

INTRODUCTION TO PRACTICE OF MOLECULAR SIMULATION

MOLECULAR DYNAMICS, MONTE CARLO, BROWNIAN DYNAMICS. LATTICE BOLTZMANN AND DISSIPATIVE PARTICLE DYNAMICS

AKIRA SATOH

Introduction to Practice of Molecular Simulation

This page intentionally left blank

Introduction to Practice of Molecular Simulation Molecular Dynamics, Monte Carlo, Brownian Dynamics, Lattice Boltzmann, Dissipative Particle Dynamics

Akira Satoh
Akita Prefectural University
Japan

Elsevier
32 Jamestown Road London NW1 7BY
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
First published 2011
Copyright © 2011 Elsevier Inc. All rights reserved
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.
To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library
Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress
ISBN: 978-0-12-385148-2
For information on all Elsevier publications
visit our website at www.elsevierdirect.com
This book has been manufactured using Print On Demand technology. Each copy is produced to order and is limited to black ink. The online version of this book will show color figures where appropriate.

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

Contents

Preface ix
1 Outline of Molecular Simulation and Microsimulation Methods 1
1.1 Molecular Dynamics Method 1
1.1.1 Spherical Particle Systems 2
1.1.2 Nonspherical Particle Systems 5
1.2 Monte Carlo Method 11
1.3 Brownian Dynamics Method 15
1.4 Dissipative Particle Dynamics Method 19
1.5 Lattice Boltzmann Method 24
2 Outline of Methodology of Simulations 29
2.1 Initial Positions 29
2.1.1 Spherical Particle Systems 29
2.1.2 Nonspherical Particle Systems 32
2.2 Initial Velocities 35
2.2.1 Spherical Particle Systems 35
2.2.2 Nonspherical Particle Systems 37
2.3 Reduction Methods of Computation Time 39
2.3.1 Cutoff Distance 39
2.3.2 Cell Index Method 41
2.3.3 Verlet Neighbor List Method 42
2.4 Boundary Conditions 43
2.4.1 Periodic Boundary Condition 43
2.4.2 Lees-Edwards Boundary Condition 45
3 Practice of Molecular Dynamics Simulations 49
3.1 Diffusion Phenomena in a System of Light and Heavy Molecules 49
3.1.1 Physical Phenomena of Interest 50
3.1.2 Specification of Problems in Equations 50
3.1.3 Verlet Algorithm 51
3.1.4 Parameters for Simulations 52
3.1.5 Results of Simulations 54
3.1.6 Simulation Program 55
3.2 Behavior of Rod-like Particles in a Simple Shear Flow 63
3.2.1 Physical Phenomena of Interest 64
3.2.2 Particle Model 64
3.2.3 Equation of Motion and Molecular Dynamics Algorithm 66
3.2.4 Modeling of Steric Repulsive Interaction 69
3.2.5 Nondimensionalization of Basic Equations 72
3.2.6 Treatment of the Criteria for Particle Overlap in Simulations 74
3.2.7 Parameters for Simulations 75
3.2.8 Results of Simulations 77
3.2.9 Simulation Program 81
4 Practice of Monte Carlo Simulations 105
4.1 Orientational Phenomena of Rod-like Particles in an Applied Magnetic Field 105
4.1.1 Physical Phenomena of Interest 105
4.1.2 Specification of Problems in Equations 106
4.1.3 Canonical Monte Carlo Algorithm 111
4.1.4 Parameters for Simulations 115
4.1.5 Results of Simulations 116
4.1.6 Simulation Program 118
4.2 Aggregation Phenomena in a Dispersion of Plate-like Particles 134
4.2.1 Physical Phenomena of Interest 134
4.2.2 Particle Model 134
4.2.3 Criterion of the Particle Overlap 136
4.2.4 Canonical Monte Carlo Algorithm 143
4.2.5 Treatment of the Criterion of the Particle Overlap in Simulations 143
4.2.6 Particle-Fixed Coordinate System and the Absolute Coordinate System 144
4.2.7 Attempt of Small Angular Changes in the Particle Axis and the Magnetic Moment 145
4.2.8 Parameters for Simulations 146
4.2.9 Results of Simulations 147
4.2.10 Simulation Program 150
5 Practice of Brownian Dynamics Simulations 173
5.1 Sedimentation Phenomena of Lennard-Jones Particles 173
5.2 Specification of Problems in Equations 173
5.3 Brownian Dynamics Algorithm 174
5.4 Parameters for Simulations 176
5.5 Results of Simulations 176
5.6 Simulation Program 179
6 Practice of Dissipative Particle Dynamics Simulations 187
6.1 Aggregation Phenomena of Magnetic Particles 187
6.2 Specification of Problems in Equations 187
6.2.1 Kinetic Equation of Dissipative Particles 187
6.2.2 Model of Particles 189
6.2.3 Model Potential for Interactions Between Dissipative and Magnetic Particles 190
6.2.4 Nondimensionalization of the Equation of Motion and Related Quantities 191
6.3 Parameters for Simulations 193
6.4 Results of Simulations 194
6.5 Simulation Program 197
7 Practice of Lattice Boltzmann Simulations 219
7.1 Uniform Flow Around a Two-Dimensional Circular Cylinder 219
7.2 Specification of Problems in Equations 220
7.3 Boundary Conditions 221
7.4 Various Treatments in the Simulation Program 223
7.4.1 Definition and Evaluation of the Drag Coefficient 223
7.4.2 Choice of the Procedures by Coloring Lattice Sites 224
7.4.3 Treatment of Interactions on the Cylinder Surface 225
7.4.4 Evaluation of the Velocity and Density 225
7.5 Nondimensionalization of the Basic Equations 226
7.6 Conditions for Simulations 227
7.6.1 Initial Distribution 227
7.6.2 Parameters for Simulations 227
7.7 Results of Simulations 227
7.8 Simulation Program 231
8 Theoretical Background of Lattice Boltzmann Method 255
8.1 Equilibrium Distribution 255
8.1.1 D2Q9 Model 257
8.1.2 D3Q19 Model 264
8.2 Navier-Stokes Equation 271
8.3 Body Force 275
8.4 Boundary Conditions 277
8.4.1 Bounce-back Rule 277
8.4.2 BFL Method 279
8.4.3 YMLS Method 281
8.4.4 Other Methods 282
8.5 Force and Torque Acting on Particles 282
8.6 Nondimensionalization 283
Appendix 1: Chapman-Enskog Expansion 285
Appendix 2: Generation of Random Numbers According to Gaussian Distribution 291
Appendix 3: Outline of Basic Grammars of FORTRAN and C Languages 293
Appendix 4: Unit Systems of Magnetic Materials 317
How to Acquire Simulation Programs 319
References 321

Preface

The control of internal structure during the fabrication of materials on the nanoscale may enable us to develop a new generation of materials. A deeper understanding of phenomena on the microscopic scale may lead to completely new fields of application. As a tool for microscopic analysis, molecular simulation methodssuch as the molecular dynamics and the Monte Carlo methods-have currently been playing an extremely important role in numerous fields, ranging from pure science and engineering to the medical, pharmaceutical, and agricultural sciences. The importance of these methods is expected to increase significantly with the advance of science and technology.

Many physics textbooks address the molecular simulation method for pure liquid or solid systems. In contrast, textbooks concerning the simulation method for suspensions or dispersions are less common; this fact provided the motivation for my previous textbook. Moreover, students or nonexperts needing to apply the molecular simulation method to a physical problem have few tools for cultivating the skill of developing a simulation program that do not require training under a supervisor with expertise in simulation techniques. It became clear that students and nonexpert researchers would find useful a textbook that taught the important concepts of the simulation technique and honed programming skills by tackling practical physical problems with guidance from sample simulation programs. This book would need to be written carefully; it would not simply explain a sample simulation program, but also explains the analysis procedures and include the essence of the theory, the specification of the basic equations, the method of nondimensionalization, and appropriate discussion of results. A brief explanation of the essence of the grammar of programming languages also would be useful.

In order to apply the simulation methods to more complex systems, such as carbon-nanotubes, polymeric liquids, and DNA/protein systems, the present book addresses a range of practical methods, including molecular dynamics and Monte Carlo, for simulations of practical systems such as the spherocylinder and the disklike particle suspension. Moreover, this book discusses the dissipative particle dynamics method and the lattice Boltzmann method, both currently being developed as simulation techniques for taking into account the multibody hydrodynamic interaction among dispersed particles in a particle suspension or among polymers in a polymeric liquid.

The resulting characteristics of the present book are as follows. The important and essential background relating to the theory of each simulation technique is explained, avoiding complex mathematical manipulation as much as possible. The equations that are included herein are all important expressions; an understanding
of them is key to reading a specialized textbook that treats the more theoretical aspects of the simulation methods. Much of the methodology, such as the assignment of the initial position and velocity of particles, is explained in detail in order to be useful to the reader developing a practical simulation program.

In the chapters dedicated to advancing the reader's practical skill for developing a simulation program, the following methodology is adopted. First, the sample physical phenomenon is described in order to discuss the simulation method that will be addressed in the chapter. This is followed by a series of analyses (including the theoretical backgrounds) that are conducted mainly from the viewpoint of developing a simulation program. Then, the assignment of the important parameters and the assumptions that are required for conducting the simulation of the physical problem are described. Finally, results that have been obtained from the simulation are shown and discussed, with emphasis on the visualization of the results by snapshots. Each example is conducted with a sample copy of the simulation program from which the results were obtained, together with sufficient explanatory descriptions of the important features in the simulation program to aid to the reader's understanding.

Most of the sample simulation programs are written in the FORTRAN language, excepting the simulation program for the Brownian dynamics method. We take into account that some readers may be unfamiliar with programming languages, that is, the FORTRAN or the C language; therefore, an appendix explains the important features of these programming languages from the viewpoint of developing a scientific simulation program. These explanations are expected to significantly reduce the reader's effort of understanding the grammar of the programming languages when referring to a textbook of the FORTRAN or the C language.

The present book has been written in a self-learning mode as much as possible, and therefore readers are expected to derive the important expressions for themselves-that is the essence of each simulation demonstration. This approach should appeal to the reader who is more interested in the theoretical aspects of the simulation methods.

Finally, the author strongly hopes that this book will interest many students in molecular and microsimulation methods and direct them to the growing number of research fields in which these simulation methods are indispensable, and that one day they will be the preeminent researchers in those fields.

The author deeply acknowledges contribution of Dr. Geoff N. Coverdale, who volunteered valuable assistance during the development of the manuscript. The author also wishes to express his thanks to Ms. Aya Saitoh for her dedication and patience during the preparation of so many digital files derived from the handwritten manuscripts.

Akira Satoh
Kisarazu City, Chiba Prefecture, Japan

December 2010

1 Outline of Molecular Simulation and Microsimulation Methods

Abstract

In the modern nanotechnology age, microscopic analysis methods are indispensable in order to generate new functional materials and investigate physical phenomena on a molecular level. These methods treat the constituent species of a system, such as molecules and fine particles. Macroscopic and microscopic quantities of interest are derived from analyzing the behavior of these species.

These approaches, called "molecular simulation methods," are represented by the Monte Carlo (MC) and molecular dynamics (MD) methods [1-3]. MC methods exhibit a powerful ability to analyze thermodynamic equilibrium, but are unsuitable for investigating dynamic phenomena. MD methods are useful for thermodynamic equilibrium but are more advantageous for investigating the dynamic properties of a system in a nonequilibrium situation. This book examines MD and MC methods of a nonspherical particle dispersion in a three-dimensional system, which may be directly applicable to such complicated dispersions as DNA and polymeric liquids. This book also addresses Brownian dynamics (BD) methods $[1,4]$, which can simulate the Brownian motion of dispersed particles; dissipative particle dynamics (DPD) [5-8]; and lattice Boltzmann methods [9-12], in which a liquid system is regarded as composed of virtual fluid particles. Simulation methods using the concept of virtual fluid particles are generally used for pure liquid systems, but are useful for simulating particle dispersions.

1.1 Molecular Dynamics Method

A spherical particle dispersion can be treated straightforwardly in simulations because only the translational motion of particles is important, and the treatment of the rotational motion is basically unnecessary. In contrast, since the translational and rotational motion has to be simulated for an axisymmetric particle dispersion, MD simulations become much more complicated in comparison with the spherical particle system. Simulation techniques for a dispersion composed of nonspherical particles with a general shape may be obtained by generalizing the methods employed to an axisymmetric particle dispersion. It is, therefore, very important to understand the MD method for the axisymmetric particle system.

1.1.1 Spherical Particle Systems

The concept of the MD method is rather straightforward and logical. The motion of molecules is generally governed by Newton's equations of motion in classical theory. In MD simulations, particle motion is simulated on a computer according to the equations of motion. If one molecule moves solely on a classical mechanics level, a computer is unnecessary because mathematical calculation with pencil and paper is sufficient to solve the motion of the molecule. However, since molecules in a real system are numerous and interact with each other, such mathematical analysis is impracticable. In this situation, therefore, computer simulations become a powerful tool for a microscopic analysis.

If the mass of molecule i is denoted by $m_{i,}$, and the force acting on molecule i by the ambient molecules and an external field denoted by \mathbf{f}_{i}, then the motion of a particle is described by Newton's equation of motion:

$$
\begin{equation*}
m_{i} \frac{\mathrm{~d}^{2} \mathbf{r}_{i}}{\mathrm{~d} t^{2}}=\mathbf{f}_{i} \tag{1.1}
\end{equation*}
$$

If a system is composed of N molecules, there are N sets of similar equations, and the motion of N molecules interacts through forces acting among the molecules.

Differential equations such as Eq. (1.1) are unsuitable for solving the set of N equations of motion on a computer. Computers readily solve simple equations, such as algebraic ones, but are quite poor at intuitive solving procedures such as a trial-and-error approach to find solutions. Hence, Eq. (1.1) will be transformed into an algebraic equation. To do so, the second-order differential term in Eq. (1.1) must be expressed as an algebraic expression, using the following Taylor series expansion:

$$
\begin{equation*}
x(t+h)=x(t)+h \frac{\mathrm{~d} x(t)}{\mathrm{d} t}+\frac{1}{2!} h^{2} \frac{\mathrm{~d}^{2} x(t)}{\mathrm{d} t^{2}}+\frac{1}{3!} h^{3} \frac{\mathrm{~d}^{3} x(t)}{\mathrm{d} t^{3}}+\cdots \tag{1.2}
\end{equation*}
$$

Equation (1.2) implies that x at time $(t+h)$ can be expressed as the sum of x itself, the first-order differential, the second-order differential, and so on, multiplied by a constant for each term. If x does not significantly change with time, the higherorder differential terms can be neglected for a sufficiently small value of the time interval h. In order to approximate the second-order differential term in Eq. (1.1) as an algebraic expression, another form of the Taylor series expansion is necessary:

$$
\begin{equation*}
x(t-h)=x(t)-h \frac{\mathrm{~d} x(t)}{\mathrm{d} t}+\frac{1}{2!} h^{2} \frac{\mathrm{~d}^{2} x(t)}{\mathrm{d} t^{2}}-\frac{1}{3!} h^{3} \frac{\mathrm{~d}^{3} x(t)}{\mathrm{d} t^{3}}+\cdots \tag{1.3}
\end{equation*}
$$

If the first-order differential term is eliminated from Eqs. (1.2) and (1.3), the second-order differential term can be solved as

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x(t)}{\mathrm{d} t^{2}}=\frac{x(t+h)-2 x(t)+x(t-h)}{h^{2}}+\mathrm{O}\left(h^{2}\right) \tag{1.4}
\end{equation*}
$$

The last term on the right-hand side of this equation implies the accuracy of the approximation, and, in this case, terms higher than h^{2} are neglected. If the secondorder differential is approximated as

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x(t)}{\mathrm{d} t^{2}}=\frac{x(t+h)-2 x(t)+x(t-h)}{h^{2}} \tag{1.5}
\end{equation*}
$$

This expression is called the "central difference approximation." With this approximation and the notation $\mathbf{r}_{i}=\left(x_{i}, y_{i}, z_{i}\right)$ for the molecular position and $\mathbf{f}_{i}=\left(f_{x i}, f_{y i}\right.$, $f_{z i}$) for the force acting on particle i, the equation of the x-component of Newton's equation of motion can be written as

$$
\begin{equation*}
x_{i}(t+h)=2 x_{i}(t)-x_{i}(t-h)+\frac{h^{2}}{m_{i}} f_{x i}(t) \tag{1.6}
\end{equation*}
$$

Similar equations are satisfied for the other components. Since Eq. (1.6) is a simple algebraic equation, the molecular position at the next time step can be evaluated using the present and previous positions and the present force. If a system is composed of N molecules, there are $3 N$ algebraic equations for specifying the motion of molecules; these numerous equations are solved on a computer, where the motion of the molecules in a system can be pursued with the time variable. Eq. (1.6) does not require the velocity terms for determining the molecular position at the next time step. This scheme is called the "Verlet method" [13]. The velocity, if required, can be evaluated from the central difference approximation as

$$
\begin{equation*}
\mathbf{v}_{i}(t)=\frac{\mathbf{r}_{i}(t+h)-\mathbf{r}_{i}(t-h)}{2 h} \tag{1.7}
\end{equation*}
$$

This approximation can be derived by eliminating the second-order differential terms in Eqs. (1.2) and (1.3). It has already been noted that the velocities are unnecessary for evaluating the position at the next time step; however, a scheme using the positions and velocities simultaneously may be more desirable in order to keep the system temperature constant. We show such a method in the following paragraphs.

If we take into account that the first- and second-order differentials of the position are equal to the velocity and acceleration, respectively, the neglect of differential terms equal to or higher than third-order in Eq. (1.2) leads to the following equation:

$$
\begin{equation*}
\mathbf{r}_{i}(t+h)=\mathbf{r}_{i}(t)+h \mathbf{v}_{i}(t)+\frac{h^{2}}{2 m_{i}} \mathbf{f}_{i}(t) \tag{1.8}
\end{equation*}
$$

This equation determines the position of the molecules, but the velocity term arises on the right-hand side, so that another equation is necessary for specifying
the velocity. The first-order differential of the velocity is equal to the acceleration:

$$
\begin{equation*}
\mathbf{v}_{i}(t+h)=\mathbf{v}_{i}(t)+\frac{h}{m_{i}} \mathbf{f}_{i}(t) \tag{1.9}
\end{equation*}
$$

In order to improve accuracy, the force term in Eq. (1.9) is slightly modified and the following equation obtained:

$$
\begin{equation*}
\mathbf{v}_{i}(t+h)=\mathbf{v}_{i}(t)+\frac{h}{2 m_{i}}\left(\mathbf{f}_{i}(t)+\mathbf{f}_{i}(t+h)\right) \tag{1.10}
\end{equation*}
$$

The scheme of using Eqs. (1.8) and (1.10) for determining the motion of molecules is called the "velocity Verlet method" [14]. It is well known that the velocity Verlet method is significantly superior in regard to the stability and accuracy of a simulation.

Consider another representative scheme. Noting that the first-order differential of the position is the velocity and that of the velocity is the acceleration, the application of the central difference approximation to these first-order differentials leads to the following equations:

$$
\begin{align*}
& \mathbf{r}_{i}(t+h)=\mathbf{r}_{i}(t)+h \mathbf{v}_{i}(t+h / 2) \tag{1.11}\\
& \mathbf{v}_{i}(t+h / 2)=\mathbf{v}_{i}(t-h / 2)+\frac{h}{m_{i}} \mathbf{f}_{i}(t) \tag{1.12}
\end{align*}
$$

The scheme of pursuing the positions and velocities of the molecules with Eqs. (1.11) and (1.12) is called the "leapfrog method" [15]. This name arises from the evaluation of the positions and forces, and then the velocities, by using time steps in a leapfrog manner. This method is also a significantly superior scheme in regard to stability and accuracy, comparable to the velocity Verlet method.

The MD method is applicable to both equilibrium and nonequilibrium physical phenomena, which makes it a powerful computational tool that can be used to simulate many physical phenomena (if computing power is sufficient).

We show the main procedure for conducting the MD simulation using the velocity Verlet method in the following steps:

1. Specify the initial position and velocity of all molecules.
2. Calculate the forces acting on molecules.
3. Evaluate the positions of all molecules at the next time step from Eq. (1.8).
4. Evaluate the velocities of all molecules at the next time step from Eq. (1.10).
5. Repeat the procedures from step 2 .

In the above procedure, the positions and velocities will be evaluated at every time interval h in the MD simulation. The method of specifying the initial positions and velocities will be shown in Chapter 2.

Finally, we show the method of evaluating the system averages, which are necessary to make a comparison with experimental or theoretical values. Since
microscopic quantities such as positions and velocities are evaluated at every time interval in MD simulations, a quantity evaluated from such microscopic valuesfor example, the pressure-will differ from that measured experimentally. In order to compare with experimental data, instant pressure is sampled at each time step, and these values are averaged during a short sampling time to yield a macroscopic pressure. This average can be expressed as

$$
\begin{equation*}
\bar{A}=\sum_{n=1}^{N} A_{n} / N \tag{1.13}
\end{equation*}
$$

in which A_{n} is the nth sampled value of an arbitrary physical quantity A, and \bar{A}, called the "time average," is the mathematical average of N sampling data.

1.1.2 Nonspherical Particle Systems

1.1.2.1 Case of Taking into Account the Inertia Terms

For the case of nonspherical particles, we need to consider the translational motion of the center of mass of a particle and also the rotational motion about an axis through the center of mass. Axisymmetric particles are very useful as a particle model for simulations, so we will focus on the axisymmetric particle model in this section. As shown in Figure 1.1, the important rotational motion is to be treated about the short axis line. If the particle mass is denoted by m, the inertia moment by I, the position and velocity vectors of the center of mass of particle i by \mathbf{r}_{i} and \mathbf{v}_{i}, respectively, the angular velocity vector about the short axis by ω_{i}, and the force and torque acting on the particle by \mathbf{f}_{i} and \mathbf{T}_{i}, respectively, then the equations of motion concerning the translational and rotational motion can be written as

Figure 1.1 Linear particle and angular velocity: (A) the axisymmetric particle and (B) the coordinate system.

$$
\begin{align*}
& m \frac{\mathrm{~d}^{2} \mathbf{r}_{i}}{\mathrm{~d} t^{2}}=\mathbf{f}_{i} \tag{1.14}\\
& I \frac{\mathrm{~d} \omega_{i}}{\mathrm{~d} t}=\mathbf{T}_{i} \tag{1.15}
\end{align*}
$$

Since the translational velocity \mathbf{v}_{i} is related to the position vector \mathbf{r}_{i} as $\mathbf{v}_{i}=\mathrm{d} \mathbf{r}_{i} / \mathrm{d} t$, we now consider the meaning of a quantity ϕ_{i}, which is related to the angular velocity ω_{i} as $\omega_{i}=\mathrm{d} \phi_{i} / \mathrm{d} t$. It is assumed that during a short time interval $\Delta t, \phi_{i}$ changes into $\left(\phi_{i}+\Delta \phi_{i}\right)$ where $\Delta \phi_{i}$ is expressed as $\Delta \phi_{i}=\left(\Delta \phi_{i x}, \Delta \phi_{i y}, \Delta \phi_{i z}\right)$. As shown in Figure 1.1B, ω_{z} is related to the rotational angle in the $x y$-plane about the z-axis, $\Delta \phi_{z}$. The other components have the same meanings, so that ϕ_{i} and ω_{i} for particle i can be related in the following expression:

$$
\begin{equation*}
\Delta \phi_{i}=\phi_{i}(t+\Delta t)-\phi_{i}(t)=\Delta t \omega_{i}(t) \tag{1.16}
\end{equation*}
$$

Is the use of the quantity ϕ_{i}, corresponding to \mathbf{r}_{i}, general? It seems to be more direct and more intuitive to use the unit vector \mathbf{e}_{i} denoting the particle direction rather than the quantity ϕ_{i}. The change in \mathbf{e}_{i} during an infinitesimal time interval, $\Delta \mathbf{e}_{i}$, can be written using the angular velocity ω_{i} as

$$
\begin{equation*}
\Delta \mathbf{e}_{i}(t)=\mathbf{e}_{i}(t+\Delta t)-\mathbf{e}_{i}(t)=\Delta t \omega_{i}(t) \times \mathbf{e}_{i}(t) \tag{1.17}
\end{equation*}
$$

From Eqs. (1.16) and (1.17), \mathbf{e}_{i} can be related to ϕ_{i} as

$$
\begin{equation*}
\Delta \mathbf{e}_{i}(t)=\Delta \phi_{i}(t) \times \mathbf{e}_{i}(t) \tag{1.18}
\end{equation*}
$$

Equation (1.17) leads to the governing equation specifying the change of the particle direction:

$$
\begin{equation*}
\frac{\mathrm{d} \mathbf{e}_{i}(t)}{\mathrm{d} t}=\omega_{i}(t) \times \mathbf{e}_{i}(t) \tag{1.19}
\end{equation*}
$$

Hence, Eq. (1.15) for the angular velocity and Eq. (1.19) for the particle direction govern the rotational motion of an axisymmetric particle.

In order to solve Eqs. (1.15) and (1.19) for the rotational motion on a computer, these equations have to be translated into finite difference equations. To do so, as already explained, the first- and second-order differentials have to be expressed as algebraic expressions using the finite difference approximations based on Taylor series expansions. General finite difference expressions are as follows:

$$
\left.\begin{array}{l}
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=\frac{x(t+\Delta t)-x(t)}{\Delta t}+\mathrm{O}(\Delta t), \quad \frac{\mathrm{d} x(t)}{\mathrm{d} t}=\frac{x(t)-x(t-\Delta t)}{\Delta t}+\mathrm{O}(\Delta t) \tag{1.20}\\
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=\frac{x(t+\Delta t)-x(t-\Delta t)}{2 \Delta t}+\mathrm{O}\left((\Delta t)^{2}\right)
\end{array}\right\}
$$

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x(t)}{\mathrm{d} t^{2}}=\frac{x(t+\Delta t)-2 x(t)+x(t-\Delta t)}{(\Delta t)^{2}}+\mathrm{O}\left((\Delta t)^{2}\right) \tag{1.21}
\end{equation*}
$$

The simplest algorithm can be obtained using the forward finite difference approximation in Eq. (1.20) as

$$
\left.\begin{array}{l}
\mathbf{e}_{i}(t+\Delta t)=\mathbf{e}_{i}(t)+\Delta t \omega_{i}(t) \times \mathbf{e}_{i}(t) \tag{1.22}\\
\omega_{i}(t+\Delta t)=\omega_{i}(t)+\Delta t \frac{\mathbf{T}_{i}(t)}{I}
\end{array}\right\}
$$

This algorithm is quite straightforward and understandable, but in practice does not have sufficient accuracy, since the error of the forward finite difference approximation is of the order of Δt. In order to improve the accuracy, the following algorithm has already been presented.

If the new vector function $\mathbf{u}_{i}(t)$ such as $\mathbf{u}_{i}(t)=\omega_{i}(t) \times \mathbf{e}_{i}(t)$ is introduced, Eq. (1.19) can be written as

$$
\begin{equation*}
\frac{\mathrm{d} \mathbf{e}_{i}(t)}{\mathrm{d} t}=\mathbf{u}_{i}(t) \tag{1.23}
\end{equation*}
$$

By conducting the operator $\times \mathbf{e}$ from the right side on the both sides of Eq. (1.15), the following equation is obtained:

$$
\begin{equation*}
\frac{\mathrm{d} \omega_{i}(t)}{\mathrm{d} t} \times \mathbf{e}_{i}(t)=\frac{1}{I} \mathbf{T}_{i}(t) \times \mathbf{e}_{i}(t) \tag{1.24}
\end{equation*}
$$

The left-hand side of this equation leads to

$$
\begin{equation*}
\frac{\mathrm{d} \omega_{i}}{\mathrm{~d} t} \times \mathbf{e}_{i}=\frac{\mathrm{d}\left(\omega_{i} \times \mathbf{e}_{i}\right)}{\mathrm{d} t}-\omega_{i} \times \frac{\mathrm{d} \mathbf{e}_{i}}{\mathrm{~d} t}=\frac{\mathrm{d} \mathbf{u}_{i}}{\mathrm{~d} t}-\omega_{i} \times \mathbf{u}_{i} \tag{1.25}
\end{equation*}
$$

By substituting this equation into Eq. (1.24), the following equation can be obtained:

$$
\begin{align*}
\frac{\mathrm{d} \mathbf{u}_{i}(t)}{\mathrm{d} t} & =\frac{1}{I} \mathbf{T}_{i}(t) \times \mathbf{e}_{i}(t)+\omega_{i}(t) \times \mathbf{u}_{i}(t)=\frac{1}{I} \mathbf{T}_{i}(t) \times \mathbf{e}_{i}(t)-\left|\omega_{i}(t)\right|^{2} \mathbf{e}_{i}(t) \\
& =\frac{1}{I} \mathbf{T}_{i}(t) \times \mathbf{e}_{i}(t)+\lambda_{i}(t) \mathbf{e}_{i}(t) \tag{1.26}
\end{align*}
$$

In the transformation from the first to the second expressions on the right-hand side, we have used the identity $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$ in evaluating $\omega \times(\omega \times \mathbf{e})$. The quantity $\lambda_{i}(t)$ in the third expression has been introduced in order to satisfy the following relationship:

$$
\begin{equation*}
\mathbf{e}_{i} \cdot \mathbf{u}_{i}=\mathbf{e}_{i} \cdot\left(\omega_{i} \times \mathbf{e}_{i}\right)=0 \tag{1.27}
\end{equation*}
$$

We have now completed the transformation of the variables from \mathbf{e}_{i} and ω_{i} to \mathbf{e}_{i} and \mathbf{u}_{i} for solving the rotational motion of particles.

According to the leapfrog algorithm [15], Eqs. (1.23) and (1.26) reduce to the following algebraic equations:

$$
\begin{align*}
& \mathbf{e}_{i}(t+\Delta t)=\mathbf{e}_{i}(t)+\Delta t \mathbf{u}_{i}(t+\Delta t / 2) \tag{1.28}\\
& \mathbf{u}_{i}(t+\Delta t / 2)=\mathbf{u}_{i}(t-\Delta t / 2)+\Delta t \frac{\mathbf{T}_{i}(t) \times \mathbf{e}_{i}(t)}{I}+\Delta t \lambda_{i}(t) \mathbf{e}_{i}(t) \tag{1.29}
\end{align*}
$$

Another equation is necessary for determining the value of $\lambda_{i}(t)$. The velocity $\mathbf{u}_{i}(t)$ can be evaluated from the arithmetic average of $\mathbf{u}_{i}(t+\Delta t / 2)$ and $\mathbf{u}_{i}(t+\Delta t / 2)$, and the expression is finally written using Eq. (1.29) as

$$
\begin{align*}
\mathbf{u}_{i}(t) & =\frac{\mathbf{u}_{i}(t+\Delta t / 2)+\mathbf{u}_{i}(t-\Delta t / 2)}{2} \\
& =\mathbf{u}_{i}(t-\Delta t / 2)+\frac{\Delta t}{2} \cdot \frac{\mathbf{T}_{i}(t) \times \mathbf{e}_{i}(t)}{I}+\frac{\Delta t}{2} \lambda_{i}(t) \mathbf{e}_{i}(t) \tag{1.30}
\end{align*}
$$

Since $\mathbf{u}_{i}(t)$ has to satisfy the orthogonality condition shown in Eq. (1.27), the substitution of Eq. (1.30) into Eq. (1.27) leads to the equation of $\lambda_{i}(t)$ as

$$
\begin{equation*}
\lambda_{i}(t)=-\frac{2}{\Delta t} \cdot \mathbf{e}_{i}(t) \cdot \mathbf{u}_{i}(t-\Delta t / 2) \tag{1.31}
\end{equation*}
$$

In obtaining this expression, the identity $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{a})=0$ has been used to evaluate $\mathbf{e} \cdot(\mathbf{T} \times \mathbf{e})$.

Now all the equations have been derived for determining the rotational motion of axisymmetric particles. With the value $\lambda_{i}(t)$ in Eq. (1.31), \mathbf{u}_{i} at $(t+\Delta t / 2)$ is first evaluated from Eq. (1.29), and then \mathbf{e}_{i} at $(t+\Delta t)$ is obtained from Eq. (1.28). This procedure shows that the solution of $\mathbf{u}_{i}(t+\Delta t / 2)$ gives rise to the values of $\mathbf{e}_{i}(t+\Delta t)$ and $\mathbf{T}_{i}(t+\Delta t)$, and these solutions lead to $\mathbf{u}_{i}(t+3 \Delta t / 2)$, and so forth. This algorithm is therefore another example of a leapfrog algorithm.

For the translational motion, the velocity Verlet algorithm may be used, and the particle position $\mathbf{r}_{i}(t+\Delta t)$ and velocity $\mathbf{v}_{i}(t+\Delta t)$ can be evaluated as

$$
\left.\begin{array}{l}
\mathbf{r}_{i}(t+\Delta t)=\mathbf{r}_{i}(t)+\Delta t \mathbf{v}_{i}(t)+\frac{(\Delta t)^{2}}{2 m} \mathbf{f}_{i}(t) \tag{1.32}\\
\mathbf{v}_{i}(t+\Delta t)=\mathbf{v}_{i}(t)+\frac{\Delta t}{2 m}\left\{\mathbf{f}_{i}(t)+\mathbf{f}_{i}(t+\Delta t)\right\}
\end{array}\right\}
$$

These equations can be derived in a straightforward manner from the finite difference approximations in Eqs. (1.20) and (1.21).

We have shown all the equations for specifying the translational and rotational motion of axisymmetric particles for the case of taking into account the inertia terms. The main procedure for conducting the MD simulation is as follows:

1. Specify the initial configuration and velocity of the axisymmetric particles for the translational and rotational motion.
2. Calculate the forces and torques acting on particles.
3. Evaluate the positions and velocities of the translational motion at $(t+\Delta t)$ from Eq. (1.32).
4. Evaluate $\lambda_{i}(t)(i=1,2, \ldots, N)$ from Eq. (1.31).
5. Evaluate $\mathbf{u}_{i}(i=1,2, \ldots, N)$ at $(t+\Delta t / 2)$ from Eq. (1.29).
6. Evaluate the unit vectors $\mathbf{e}_{i}(i=1,2, \ldots, N)$ at $(t+\Delta t)$ from Eq. (1.28).
7. Advance one time step to repeat the procedures from step 2 .

By following this procedure, the MD method for axisymmetric particles with the inertia terms can simulate the positions and velocities, and the directions and angular velocities, at every time interval Δt.

1.1.2.2 Case of Neglected Inertia Terms

When treating a colloidal dispersion or a polymeric solution, the Stokesian dynamics and BD methods are usually employed as a microscopic or mesoscopic analysis tool. In these methods, dispersed particles or polymers are modeled as idealized spherical or dumbbell particles, but the base liquid is usually assumed to be a continuum medium and its effect is included in the equations of motion of the particles or the polymers only as friction terms. If particle size approximates to or is smaller than micron-order, the inertia terms may be considered as negligible. In this section, we treat this type of small particles and neglect the inertia terms. For the case of axisymmetric particles moving in a quiescent fluid, the translational and angular velocities of particle i, \mathbf{v}_{i} and ω_{i}, are written as

$$
\begin{align*}
& \mathbf{v}_{i}=\frac{1}{\eta}\left\{\frac{1}{X^{A}} \mathbf{e}_{i} \mathbf{e}_{i}+\frac{1}{Y^{A}}\left(\mathbf{I}-\mathbf{e}_{i} \mathbf{e}_{i}\right)\right\} \cdot \mathbf{F}_{i} \tag{1.33}\\
& \omega_{i}=\frac{1}{\eta}\left\{\frac{1}{X^{C}} \mathbf{e}_{i} \mathbf{e}_{i}+\frac{1}{Y^{C}}\left(\mathbf{I}-\mathbf{e}_{i} \mathbf{e}_{i}\right)\right\} \cdot \mathbf{T}_{i} \tag{1.34}
\end{align*}
$$

in which X^{A}, Y^{A}, X^{C}, and Y^{C} are the resistance functions specifying the particle shape. If the long- and short-axis lengths are denoted by $2 a$ and $2 b$, respectively, and the eccentricity is denoted by $s\left(=\left(a^{2}-b^{2}\right)^{1 / 2} / a\right)$, the resistance functions for the spheroidal particle are written as [16-18]

$$
\begin{equation*}
X^{A}=6 \pi a \cdot \frac{8}{3} \cdot \frac{s^{3}}{-2 s+\left(1+s^{2}\right) L}, \quad Y^{A}=6 \pi a \cdot \frac{16}{3} \cdot \frac{s^{3}}{2 s+\left(3 s^{2}-1\right) L} \tag{1.35}
\end{equation*}
$$

$$
\begin{equation*}
X^{C}=8 \pi a^{3} \cdot \frac{4}{3} \cdot \frac{s^{3}\left(1-s^{2}\right)}{2 s-\left(1-s^{2}\right) L}, \quad Y^{C}=8 \pi a^{3} \cdot \frac{4}{3} \cdot \frac{s^{3}\left(2-s^{2}\right)}{-2 s+\left(1+s^{2}\right) L} \tag{1.36}
\end{equation*}
$$

in which L is a function of the eccentricity and is expressed as

$$
\begin{equation*}
L=L(s)=\ln \frac{1+s}{1-s} \tag{1.37}
\end{equation*}
$$

For the case of $s \ll 1$, Eqs. (1.35) and (1.36) are approximated using Taylor series expansions as

$$
\begin{align*}
& X^{A}=6 \pi a\left(1-\frac{2}{5} s^{2}+\cdots\right), \quad Y^{A}=6 \pi a\left(1-\frac{3}{10} s^{2}+\cdots\right) \tag{1.38}\\
& X^{C}=8 \pi a^{3}\left(1-\frac{6}{5} s^{2}+\cdots\right), \quad Y^{C}=8 \pi a^{3}\left(1-\frac{9}{10} s^{2}+\cdots\right) \tag{1.39}
\end{align*}
$$

In the limit of $s \rightarrow 0$, the well-known Stokes drag formula for a spherical particle in a quiescent fluid can be obtained from Eqs. (1.33), (1.34), (1.38), and (1.39):

$$
\begin{equation*}
\mathbf{v}_{i}=\frac{1}{6 \pi \eta a} \mathbf{F}_{i}, \quad \omega_{i}=\frac{1}{8 \pi \eta a^{3}} \mathbf{T}_{i} \tag{1.40}
\end{equation*}
$$

It is possible to pursue the motion of an axisymmetric particle using Eqs. (1.33) and (1.34), but further simplified equations can be used for the present axisymmetric particle. For an axisymmetric particle, the translational motion can be decomposed into the motion in the long axis direction and that in a direction normal to the particle axis. Similarly, the rotational motion can be decomposed into the rotation about the particle axis and that about a line normal to the particle axis through the mass center. If the force \mathbf{F}_{i} acting on the particle is expressed as the sum of the force $\mathbf{F}_{i}^{\|}$parallel to the particle axis and the force $\mathbf{F}_{i}{ }^{\perp}$ normal to that axis, then these forces can be expressed using the particle direction vector \mathbf{e}_{i} as

$$
\begin{equation*}
\mathbf{F}_{i}^{\|}=\mathbf{e}_{i}\left(\mathbf{e}_{i} \cdot \mathbf{F}_{i}\right)=\mathbf{e}_{i} \mathbf{e}_{i} \cdot \mathbf{F}_{i}, \quad \mathbf{F}_{i}^{\perp}=\mathbf{F}_{i}-\mathbf{F}_{i}^{\|}=\left(\mathbf{I}-\mathbf{e}_{i} \mathbf{e}_{i}\right) \cdot \mathbf{F}_{i} \tag{1.41}
\end{equation*}
$$

With these expressions, the velocities $\mathbf{v}_{i}^{\|}$and $\mathbf{v}_{i}{ }^{\perp}$ parallel and normal to the particle axis, respectively, can be written from Eq. (1.33) as

$$
\begin{equation*}
\mathbf{v}_{i}^{\|}=\frac{1}{\eta X^{A}} \mathbf{F}_{i}^{\|}, \quad \mathbf{v}_{i}^{\perp}=\frac{1}{\eta Y^{A}} \mathbf{F}_{i}^{\perp} \tag{1.42}
\end{equation*}
$$

Similarly, the angular velocities $\omega_{i}^{\|}$and ω_{i}^{\perp} about the long and short axes, respectively, are written from Eq. (1.34) as

$$
\begin{equation*}
\omega_{i}^{\|}=\frac{1}{\eta X^{C}} \mathbf{T}_{i}^{\|}, \quad \boldsymbol{\omega}_{i}^{\perp}=\frac{1}{\eta Y^{C}} \mathbf{T}_{i}^{\perp} \tag{1.43}
\end{equation*}
$$

According to Eqs. (1.42) and (1.43), $\mathbf{v}_{i}^{\|}, \mathbf{v}_{i}^{\perp}, \boldsymbol{\omega}_{i}^{\|}$, and ω_{i}^{\perp} can be evaluated from values of $\mathbf{F}_{i}^{\|}, \mathbf{F}_{i}^{\perp}, \mathbf{T}_{i}^{\|}$, and \mathbf{T}_{i}^{\perp}. The translational velocity \mathbf{v}_{i} and angular velocity ω_{i} are then obtained as

$$
\begin{equation*}
\mathbf{v}_{i}=\mathbf{v}_{i}^{\|}+\mathbf{v}_{i}^{\perp}, \quad \omega_{i}=\omega_{i}^{\|}+\omega_{i}^{\perp} \tag{1.44}
\end{equation*}
$$

With the solutions of the translational and angular velocities at the time step t shown in Eq. (1.44), the position vector \mathbf{r}_{i} and the particle direction vector \mathbf{e}_{i} at the next time step $(t+\Delta t)$ can finally be obtained as

$$
\begin{align*}
\mathbf{r}_{i}(t+\Delta t) & =\mathbf{r}_{i}(t)+\Delta t \mathbf{v}_{i}(t) \tag{1.45}\\
\mathbf{e}_{i}(t+\Delta t) & =\mathbf{e}_{i}(t)+\Delta t \omega_{i}(t) \times \mathbf{e}_{i}(t) \tag{1.46}
\end{align*}
$$

Lastly, we show the main procedure for the simulation in the following steps:

1. Specify the initial configuration and velocity of all axisymmetric particles for the translational and rotational motion.
2. Calculate all the forces and torques acting on particles.
3. Evaluate $\mathbf{F}_{i}^{\|}, \mathbf{F}_{i}^{\perp}, \mathbf{T}_{i}^{\| \|}$, and $\mathbf{T}_{i}^{\perp}(i=1,2, \ldots, N)$ from Eq. (1.41) and similar equations for the torques.
4. Calculate $\mathbf{v}_{i}^{\|}, \mathbf{v}_{i}^{\perp}, \omega_{i}^{\|}$, and $\omega_{i}^{\perp}(i=1,2, \ldots, N)$ from Eqs. (1.42) and (1.43).
5. Calculate \mathbf{v}_{i} and $\omega_{i}(i=1,2, \ldots, N)$ from Eq. (1.44).
6. Calculate \mathbf{r}_{i} and $\mathbf{e}_{i}(i=1,2, \ldots, N)$ at the next time step $(t+\Delta t)$ from Eqs. (1.45) and (1.46).
7. Advance one time step and repeat the procedures from step 2.

1.2 Monte Carlo Method

In the MD method, the motion of molecules (particles) is simulated according to the equations of motion and therefore it is applicable to both thermodynamic equilibrium and nonequilibrium phenomena. In contrast, the MC method generates a series of microscopic states under a certain stochastic law, irrespective of the equations of motion of particles. Since the MC method does not use the equations of motion, it cannot include the concept of explicit time, and thus is only a simulation technique for phenomena in thermodynamic equilibrium. Hence, it is unsuitable for the MC method to deal with the dynamic properties of a system, which are dependent on time. In the following paragraphs, we explain important points of the concept of the MC method.

Figure 1.2 Typical energy situations for a two particle system.

How do microscopic states arise for thermodynamic equilibrium in a practical situation? We discuss this problem by considering a two-particle attractive system using Figure 1.2. As shown in Figure 1.2A, if the two particles overlap, then a repulsive force or a significant interaction energy arises. As shown in Figure 1.2B, for the case of close proximity, the interaction energy becomes low and an attractive force acts on the particles. If the two particles are sufficiently distant, as shown in Figure 1.2C, the interactive force is negligible and the interaction energy can be regarded as zero. In actual phenomena, microscopic states which induce a significantly high energy, as shown in Figure 1.2A, seldom appear, but microscopic states which give rise to a low-energy system, as shown in Figure 1.2B, frequently arise. However, this does not mean that only microscopic states that induce a minimumenergy system appear. Consider the fact that oxygen and nitrogen molecules do not gather in a limited area, but distribute uniformly in a room. It is seen from this discussion that, for thermodynamic equilibrium, microscopic states do not give rise to a minimum of the total system energy, but to a minimum free energy of a system. For example, in the case of a system specified by the number of particles N, temperature T, and volume of the system V, microscopic states arise such that the following Helmholtz free energy F becomes a minimum:

$$
\begin{equation*}
F=E-T S \tag{1.47}
\end{equation*}
$$

in which E is the potential energy of the system, and S is the entropy. In the preceding example, the reason why oxygen or nitrogen molecules do not gather in a limited area can be explained by taking into account the entropy term on the right-hand side in Eq. (1.47). That is, the situation in which molecules do not gather together and form flocks but expand to fill a room gives rise to a large value of the entropy. Hence, according to the counterbalance relationship of the energy and the entropy, real microscopic states arise such that the free energy of a system is at minimum.

Next, we consider how microscopic states arise stochastically. We here treat a system composed of N interacting spherical particles with temperature T and volume V of the system; these quantities are given values and assumed to be constant. If the position vector of an arbitrary particle $i(i=1,2, \ldots, N)$ is denoted by \mathbf{r}_{i}, then the total interaction energy U of the system can be expressed as a function of the particle positions; that is, it can be expressed as $U=U\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right)$. For the present system specified by given values of N, T, and V, the appearance of a microscopic state that the particle $i(i=1,2, \ldots, N)$ exits within the small range
of $\mathbf{r}_{i} \sim\left(\mathbf{r}_{i}+\Delta \mathbf{r}_{i}\right)$ is governed by the probability density function $\rho\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right)$. This can be expressed from statistical mechanics [19,20] as

$$
\begin{equation*}
\rho\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right)=\frac{\exp \left\{-U\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right) / k T\right\}}{\int_{V} \ldots \int_{V} \exp \left\{-U\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right) / k T\right\} \mathrm{d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} \ldots \mathrm{~d} \mathbf{r}_{N}} \tag{1.48}
\end{equation*}
$$

If a series of microscopic states is generated with an occurrence according to this probability, a simulation may have physical meaning. However, this approach is impracticable, as it is extraordinarily difficult and almost impossible to evaluate analytically the definite integral of the denominator in Eq. (1.48). In fact, if we were able to evaluate this integral term analytically, we would not need a computer simulation because it would be possible to evaluate almost all physical quantities analytically.

The "Metropolis method" [21] overcomes this difficulty for MC simulations. In the Metropolis method, the transition probability from microscopic states i to $j, p_{i j}$, is expressed as

$$
p_{i j}=\left\{\begin{array}{l}
1\left(\text { for } \rho_{j} / \rho_{i} \geq 1\right) \tag{1.49}\\
\frac{\rho_{j}}{\rho_{i}}\left(\text { for } \rho_{j} / \rho_{i}<1\right)
\end{array}\right.
$$

in which ρ_{j} and ρ_{i} are the probability density functions for microscopic states j and i appearing, respectively. The ratio of ρ_{j} / ρ_{i} is obtained from Eq. (1.48) as

$$
\begin{align*}
\frac{\rho_{j}}{\rho_{i}} & =\exp \left\{-\frac{1}{k T}\left(U_{j}-U_{i}\right)\right\} \tag{1.50}\\
& =\exp \left[-\frac{1}{k T}\left\{U\left(\mathbf{r}_{1}{ }^{j}, \mathbf{r}_{2}{ }^{j}, \ldots, \mathbf{r}_{N}{ }^{j}\right)-U\left(\mathbf{r}_{1}{ }^{i}, \mathbf{r}_{2}{ }^{i}, \ldots, \mathbf{r}_{N}{ }^{i}\right)\right\}\right]
\end{align*}
$$

In the above equations, U_{i} and U_{j} are the interaction energies of microscopic states i and j, respectively. The superscripts attached to the position vectors denote the same meanings concerning microscopic states. Eq. (1.49) implies that, in the transition from microscopic states i to j, new microscopic state j is adopted if the system energy decreases, with the probability $\rho_{j} / \rho_{i}(<1)$ if the energy increases. As clearly demonstrated by Eq. (1.50), for ρ_{j} / ρ_{i} the denominator in Eq. (1.48) is not required in Eq. (1.50), because ρ_{j} is divided by ρ_{i} and the term is canceled through this operation. This is the main reason for the great success of the Metropolis method for MC simulations. That a new microscopic state is adopted with the probability ρ_{j} / ρ_{i}, even in the case of the increase in the interaction energy, verifies the accomplishment of the minimum free-energy condition for the system. In other words, the adoption of microscopic states, yielding an increase in the system energy, corresponds to an increase in the entropy.

The above discussion is directly applicable to a system composed of nonspherical particles. The situation of nonspherical particles in thermodynamic equilibrium can be specified by the particle position of the mass center, $\mathbf{r}_{i}(i=1,2, \ldots, N)$, and the unit vector $\mathbf{e}_{i}(i=1,2, \ldots, N)$ denoting the particle direction. The transition probability from microscopic states i to $j, p_{i j}$ can be written in similar form to Eq. (1.49). The exact expression of ρ_{j} / ρ_{i} becomes

$$
\begin{align*}
\frac{\rho_{j}}{\rho_{i}}=\exp \left\{-\frac{1}{k T}\left(U_{j}-U_{i}\right)\right\} & =\exp \left[-\frac{1}{k T}\left\{U\left(\mathbf{r}_{1}^{j}, \mathbf{r}_{2}^{j}, \mathbf{r}_{N}^{j}, \mathbf{e}_{1}^{j}, \mathbf{e}_{2}^{j}, \ldots, \mathbf{e}_{N}^{j}\right)\right.\right. \\
& \left.\left.-U\left(\mathbf{r}_{1}^{j}, \mathbf{r}_{2}^{j}, \mathbf{r}_{N}^{j}, \mathbf{e}_{1}^{j}, \mathbf{e}_{2}^{j}, \ldots, \mathbf{e}_{N}^{j}\right)\right\}\right] \tag{1.51}
\end{align*}
$$

The main procedure for the MC simulation of a nonspherical particle system is as follows:

1. Specify the initial position and direction of all particles.
2. Regard this state as microscopic state i, and calculate the interaction energy U_{i}.
3. Choose an arbitrary particle in order or randomly and call this particle "particle α."
4. Make particle α move translationally using random numbers and calculate the interaction energy U_{j} for this new configuration.
5. Adopt this new microscopic state for the case of $U_{j} \leq U_{i}$ and go to step 7 .
6. Calculate ρ_{j} / ρ_{i} in Eq. (1.51) for the case of $U_{j}>U_{i}$ and take a random number R_{1} from a uniform random number sequence distributed from zero to unity.
6.1. If $R_{1} \leq \rho_{j} / \rho_{i}$, adopt this microscopic state j and go to step 7 .
6.2. If $R_{1}>\rho_{j} / \rho_{i}$, reject this microscopic state, regard previous state i as new microscopic state j, and go to step 7.
7. Change the direction of particle α using random numbers and calculate the interaction energy U_{k} for this new state.
8. If $U_{k} \leq U_{j}$, adopt this new microscopic state and repeat from step 2 .
9. If $U_{k}>U_{j}$, calculate ρ_{k} / ρ_{j} in Eq. (1.51) and take a random number R_{2} from the uniform random number sequence.
9.1. If $R_{2} \leq \rho_{k} / \rho_{j}$, adopt this new microscopic state k and repeat from step 2 .
9.2. If $R_{2}>\rho_{k} / \rho_{j}$, reject this new state, regard previous state j as new microscopic state k, and repeat from step 2 .

Although the treatment of the translational and rotational changes is carried out separately in the above algorithm, a simultaneous procedure is also possible in such a way that the position and direction of an arbitrary particle are simultaneously changed, and the new microscopic state is adopted according to the condition in Eq. (1.49). However, for a strongly interacting system, the separate treatment may be found to be more effective in many cases.

We will now briefly explain how the translational move is made using random numbers during a simulation. If the position vector of an arbitrary particle α in microscopic state i is denoted by $\mathbf{r}_{\alpha}=\left(x_{\alpha}, y_{\alpha}, z_{\alpha}\right)$, this particle is moved to a new position $\mathbf{r}_{\alpha}^{\prime}=\left(x_{\alpha}^{\prime}, y_{\alpha}^{\prime}, z_{\alpha}^{\prime}\right)$ by the following equations using random
numbers R_{1}, R_{2}, and R_{3}, taken from a random number sequence ranged from zero to unity:

$$
\left.\begin{array}{l}
x_{\alpha}^{\prime}=x_{\alpha}+R_{1} \delta r_{\max } \tag{1.52}\\
y_{\alpha}^{\prime}=y_{\alpha}+R_{2} \delta r_{\max } \\
z_{\alpha}^{\prime}=z_{\alpha}+R_{3} \delta r_{\max }
\end{array}\right\}
$$

These equations imply that the particle is moved to an arbitrary position, determined by random numbers, within a cube centered at the particle center with side length of $2 \delta r_{\text {max }}$. A series of microscopic states is generated by moving the particles according to the above-mentioned procedure.

Finally, we show the method of evaluating the average of a physical quantity in MC simulations. These averages, called "ensemble averages," are different from the time averages that are obtained from MD simulations. If a physical quantity A is a function of the microscopic states of a system, and A_{n} is the nth sampled value of this quantity in an MC simulation, then the ensemble average $\langle A\rangle$ can be evaluated from the equation

$$
\begin{equation*}
\langle A\rangle=\sum_{n=1}^{M} A_{n} / M \tag{1.53}
\end{equation*}
$$

in which M is the total sampling number. In actual simulations, the sampling procedure is not conducted at each time step but at regular intervals. This may be more efficient because if the data have significant correlations they are less likely to be sampled by taking a longer interval for the sampling time. The ensemble averages obtained in this way may be compared with experimental data.

1.3 Brownian Dynamics Method

A dispersion or suspension composed of fine particles dispersed in a base liquid is a difficult case to be treated by simulations in terms of the MD method, because the characteristic time of the motion of the solvent molecules is considerably different from that of the dispersed particles. Simply speaking, if we observe such a dispersion based on the characteristic time of the solvent molecules, we can see only the active motion of solvent molecules around the quiescent dispersed particles. Clearly the MD method is quite unrealistic as a simulation technique for particle dispersions. One approach to overcome this difficulty is to not focus on the motion of each solvent molecule, but regard the solvent molecules as a continuum medium and consider the motion of dispersed particles in such a medium. In this approach, the influence of the solvent molecules is included into the equations of motion of the particles as random forces. We can observe such random motion when pollen moves at a liquid surface or when dispersed particles move in a functional fluid such as a ferrofluid. The BD method simulates the random motion of dispersed particles
that is induced by the solvent molecules; thus, such particles are called "Brownian particles."

If a particle dispersion is so significantly dilute that each particle can be regarded as moving independently, the motion of this Brownian particle is governed by the following Langevin equation [22]:

$$
\begin{equation*}
m \frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d} t}=\mathbf{f}-\xi \mathbf{v}+\mathbf{f}^{\mathrm{B}} \tag{1.54}
\end{equation*}
$$

This equation is valid for a spherical particle dispersion. In Eq. (1.54), m is the mass of a spherical particle, \mathbf{v} is the velocity vector, ξ is the friction coefficient and is expressed as $\xi=3 \pi \eta d$ for the particle diameter d with the viscosity η of a base liquid, \mathbf{f} is the force exerted by an external field, and $\mathbf{f}^{\mathrm{B}}\left(=\left(f_{x}^{\mathrm{B}}, f_{y}^{\mathrm{B}}, f_{z}^{\mathrm{B}}\right)\right)$ is the random force due to the motion of solvent molecules. This random force has the following stochastic properties:

$$
\begin{align*}
& \left\langle f_{x}^{\mathrm{B}}(t)\right\rangle=\left\langle f_{y}^{\mathrm{B}}(t)\right\rangle=\left\langle f_{z}^{\mathrm{B}}(t)\right\rangle=0 \tag{1.55}\\
& \left\langle\left\{f_{x}^{\mathrm{B}}(t)\right\}^{2}\right\rangle=\left\langle\left\{f_{y}^{\mathrm{B}}(t)\right\}^{2}\right\rangle=\left\langle\left\{f_{z}^{\mathrm{B}}(t)\right\}^{2}\right\rangle=2 \xi k T \delta\left(t-t^{\prime}\right) \tag{1.56}
\end{align*}
$$

in which $\delta\left(t-t^{\prime}\right)$ is the Dirac delta function. In Eq. (1.56) larger random forces act on Brownian particles at a higher temperature because the mean square average of each component of the random force is in proportion to the system temperature. At a higher temperature the solvent molecules move more actively and induce larger random forces.

In order to simulate the Brownian motion of particles, the basic equation in Eq. (1.54) has to be transformed into an algebraic equation, as in the MD method. If the time interval h is sufficiently short such that the change in the forces is negligible, Eq. (1.54) can be regarded as a simple first-order differential equation. Hence, Eq. (1.54) can be solved by standard textbook methods of differential equations [23], and algebraic equations can finally be obtained as

$$
\begin{align*}
\mathbf{r}(t+h)= & \mathbf{r}(t)+\frac{m}{\xi} \mathbf{v}(t)\left\{1-\exp \left(-\frac{\xi}{m} h\right)\right\} \\
& +\frac{1}{\xi} \mathbf{f}(t)\left\{h-\frac{m}{\xi}\left(1-\exp \left(-\frac{\xi}{m} h\right)\right)\right\}+\Delta \mathbf{r}^{\mathrm{B}} \tag{1.57}\\
\mathbf{v}(t+h)= & \mathbf{v}(t) \exp \left(-\frac{\xi}{m} h\right)+\frac{1}{\xi} \mathbf{f}(t)\left(1-\exp \left(-\frac{\xi}{m} h\right)\right)+\Delta \mathbf{v}^{\mathrm{B}} \tag{1.58}
\end{align*}
$$

in which $\Delta \mathbf{r}^{\mathrm{B}}$ and $\Delta \mathbf{v}^{\mathrm{B}}$ are a random displacement and velocity due to the motion of solvent molecules. The relationship of the x-components of $\Delta \mathbf{r}^{\mathrm{B}}$ and $\Delta \mathbf{v}^{\mathrm{B}}$ can
be expressed as a two-dimensional normal distribution (similarly for the other components). We do not show such an expression here [4], but instead consider a method that is superior in regard to the extension of the BD method to the case with multibody hydrodynamic interactions. The BD method based on Eqs. (1.57) and (1.58) is applicable to physical phenomena in which the inertia term is a governing factor.

Since the BD method with multibody hydrodynamic interactions among the particles is very complicated, we here focus on an alternative method that treats the friction forces between the particles and a base liquid, and the nonhydrodynamic interactions between the particles. This simpler type of simulation method is sometimes used as a first-order approximation because of the complexity of treating hydrodynamic interactions. A representative nonhydrodynamic force is the magnetic force influencing the magnetic particles in a ferrofluid.

Although the BD method based on the Ermak-McCammon analysis [24] takes into account multibody hydrodynamic interactions among particles, we apply this analysis method to the present dilute dispersion without hydrodynamic interactions, and can derive the basic equation of the position vector $\mathbf{r}_{i}(i=1,2, \ldots, N)$ of Brownian particle i as

$$
\begin{equation*}
\mathbf{r}_{i}(t+h)=\mathbf{r}_{i}(t)+\frac{1}{\xi} h \mathbf{f}_{i}(t)+\Delta \mathbf{r}_{i}^{\mathrm{B}} \tag{1.59}
\end{equation*}
$$

in which the components ($\Delta x_{i}^{\mathrm{B}}, \Delta y_{i}^{\mathrm{B}}, \Delta z_{i}^{\mathrm{B}}$) of the random displacement $\Delta \mathbf{r}_{i}^{\mathrm{B}}$ have to satisfy the following stochastic properties:

$$
\begin{align*}
& \left\langle\Delta x_{i}^{\mathrm{B}}\right\rangle=\left\langle\Delta y_{i}^{\mathrm{B}}\right\rangle=\left\langle\Delta z_{i}^{\mathrm{B}}\right\rangle=0 \tag{1.60}\\
& \left\langle\left(\Delta x_{i}^{\mathrm{B}}\right)^{2}\right\rangle=\left\langle\left(\Delta y_{i}^{\mathrm{B}}\right)^{2}\right\rangle=\left\langle\left(\Delta z_{i}^{\mathrm{B}}\right)^{2}\right\rangle=\frac{2 k T}{\xi} h \tag{1.61}
\end{align*}
$$

Equations similar to Eq. (1.59) hold for every particle in the system. Interactions among particles arise through the force $\mathbf{f}_{i}(i=1,2, \ldots, N)$ acting on them.

If a Brownian particle exhibits magnetic properties and has, for example, a magnetic dipole moment at the particle center, it will have a tendency to incline in the direction of an applied magnetic field. Hence, even in the case of spherical particles, the rotational motion is influenced by an external field, so that both the translational and the rotational motion of a particle are treated simultaneously in simulations.

If the unit vector of the particle direction is denoted by \mathbf{n}_{i}, the equation of the change in \mathbf{n}_{i} can be derived under the same conditions assumed in deriving Eq. (1.59) as

$$
\begin{equation*}
\mathbf{n}_{i}(t+h)=\mathbf{n}_{i}(t)+\frac{1}{\xi_{R}} h \mathbf{T}_{i}(t) \times \mathbf{n}_{i}(t)+\Delta \mathbf{n}_{i}^{\mathrm{B}} \tag{1.62}
\end{equation*}
$$

in which ξ_{R} is the friction coefficient of the rotational motion, expressed as $\xi_{\mathrm{R}}=\pi \eta d^{3}$, and \mathbf{T}_{i} is the torque acting on particle i by nonhydrodynamic forces. Also, $\Delta \mathbf{n}_{i}^{\mathrm{B}}$ is the rotational displacement due to random forces, expressed as

$$
\begin{equation*}
\Delta \mathbf{n}_{i}^{\mathrm{B}}=\Delta \phi_{\perp 1}^{\mathrm{B}} \mathbf{n}_{\perp 1}+\Delta \phi_{\perp 2}^{\mathrm{B}} \mathbf{n}_{\perp 2} \tag{1.63}
\end{equation*}
$$

in which $\mathbf{n}_{\perp 1}$ and $\mathbf{n}_{\perp 2}$ are a set of unit vectors normal to the direction of particle i, and $\Delta \phi_{\perp 1}^{\mathrm{B}}$ and $\Delta \phi_{\perp 2}^{\mathrm{B}}$ have the following stochastic properties:

$$
\begin{align*}
& \left\langle\Delta \phi_{\perp 1}^{\mathrm{B}}\right\rangle=\left\langle\Delta \phi_{\perp 2}^{\mathrm{B}}\right\rangle=0 \tag{1.64}\\
& \left\langle\left(\Delta \phi_{\perp 1}^{\mathrm{B}}\right)^{2}\right\rangle=\left\langle\left(\Delta \phi_{\perp 2}^{\mathrm{B}}\right)^{2}\right\rangle=\frac{2 k T}{\xi_{\mathrm{R}}} h \tag{1.65}
\end{align*}
$$

Now consider the correspondence of quantities in the translational and rotational motion. The velocity \mathbf{v}_{i} in the translational motion corresponds to the angular velocity ω_{i} in the rotational motion, and the position vector \mathbf{r}_{i} corresponds to the quantity ϕ_{i} defined as $\mathrm{d} \phi_{i} / \mathrm{d} t=\omega_{i}$. Obviously, due to the similarity of Eqs. (1.64) and (1.65) to Eqs. (1.60) and (1.61), the components $\Delta \phi_{\perp 1}^{\mathrm{B}}$ and $\Delta \phi_{\perp 2}^{\mathrm{B}}$ of the vector $\Delta \phi^{\mathrm{B}}$ have to satisfy Eqs. (1.64) and (1.65).

The basic Eqs. (1.59) and (1.62) for governing the translational and rotational motion of particles have been derived under the assumptions that the momentum of particles is sufficiently relaxed during the time interval h and that the force acting on the particles is substantially constant during this infinitesimally short time. This is the essence of the Ermak-McCammon method for BD simulations.

Next, we show the method of generating random displacements according to Eqs. (1.60) and (1.61), but, before that, the normal probability distribution needs to be briefly described. If the behavior of a stochastic variable is described by the normal distribution $\rho_{\text {normal }}(x)$ with variance $\sigma^{2}, \rho_{\text {normal }}(x)$ is written as

$$
\begin{equation*}
\rho_{\text {normal }}(x)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left(-x^{2} / 2 \sigma^{2}\right) \tag{1.66}
\end{equation*}
$$

in which the variance σ^{2} is a measure of how wide the stochastic variable x is distributed around the mean value $\langle x\rangle$, which is taken as zero for this discussion. The variance σ^{2} is mathematically defined as

$$
\begin{equation*}
\sigma^{2}=\left\langle(x-\langle x\rangle)^{2}\right\rangle=\left\langle x^{2}\right\rangle-(\langle x\rangle)^{2} \tag{1.67}
\end{equation*}
$$

If Eq. (1.66) is applied to Eqs. (1.60) and (1.61), the random displacement $\Delta x_{i}^{\mathrm{B}}$ in the x-direction can be written in normal distribution form as

$$
\begin{equation*}
\rho_{\text {normal }}\left(\Delta x_{i}^{\mathrm{B}}\right)=\left(\frac{\xi}{4 \pi k T h}\right)^{1 / 2} \exp \left\{-\frac{\xi}{4 k T h}\left(\Delta x_{i}^{\mathrm{B}}\right)^{2}\right\} \tag{1.68}
\end{equation*}
$$

The other components also obey a normal distribution. As seen in Eq. (1.68), larger random displacements tend to arise at a higher system temperature, which makes sense given that solvent molecules move more actively in the higher temperature case. The random displacements can therefore be generated by sampling according to the normal distributions shown in Eq. (1.68). An example of generating random displacements is shown in Appendix A2.

The main procedure for conducting the BD simulation based on Eqs. (1.59), (1.60), and (1.61) is:

1. Specify the initial position of all particles.
2. Calculate the forces acting on each particle.
3. Generate the random displacements $\Delta \mathbf{r}_{i}^{\mathrm{B}}=\left(\Delta x_{i}^{\mathrm{B}}, \Delta y_{i}^{\mathrm{B}}, \Delta z_{i}^{\mathrm{B}}\right)(i=1,2, \ldots, N)$ using uniform random numbers: for example, $\Delta x_{i}^{\mathrm{B}}$ is sampled according to Eq. (1.68).
4. Calculate all the particle positions at the next time step from Eq. (1.59).
5. Return to step 2 and repeat.

The physical quantities of interest are evaluated by the time average, similar to the molecular dynamics method.

1.4 Dissipative Particle Dynamics Method

As already pointed out, it is not realistic to use the MD method to simulate the motion of solvent molecules and dispersed particles simultaneously, since the characteristic time of solvent molecules is much shorter than that of dispersed particles. Hence, in the BD method, the motion of solvent molecules is not treated, but a fluid is regarded as a continuum medium. The influence of the molecular motion is combined into the equations of motion of dispersed particles as stochastic random forces. Are there any simulation methods to simulate the motion of both the solvent molecules and the dispersed particles? As far as we treat the motion of real solvent molecules, the development of such simulation methods may be impractical. However, if groups or clusters of solvent molecules are regarded as virtual fluid particles, such that the characteristic time of the motion of such fluid particles is not so different from that of dispersed particles, then it is possible to simulate the motion of the dispersed and the fluid particles simultaneously. These virtual fluid particles are expected to exchange their momentum, exhibit a random motion similar to Brownian particles, and interact with each other by particle-particle potentials. We call these virtual fluid particles "dissipative particles," and the simulation technique of treating the motion of dissipative particles instead of the solvent molecules is called the "dissipative particle dynamics (DPD) method" [4-8].

The DPD method is principally applicable to simulations of colloidal dispersions that take into account the multibody hydrodynamic interactions among particles. For colloidal dispersions, the combination of the flow field solutions for a three- or four-particle system into a simulation technique enables us to address the physical situation of multibody hydrodynamic interactions as accurately as possible. However, it is extraordinarily difficult to solve analytically the flow field even for

Figure 1.3 Modeling of a fluid: (A) the macroscopic model, (B) the mesoscopic model, and (C) the microscopic model.
a three-particle system, so a solution for a nonspherical particle system is futile to attempt. In contrast, the DPD method does not require this type of solution of the flow field in conducting simulations of colloidal dispersions that take into account multibody hydrodynamic effects. This is because they are automatically reproduced from consideration of the interactions between the dissipative and the colloidal particles. This approach to the hydrodynamic interactions is a great advantage of the DPD method. In addition, this method is applicable to nonspherical particle dispersions, and a good simulation technique for colloidal dispersions.

We will show the general categories of models employed in the modeling of a fluid for numerical simulations before proceeding to the explanation of the DPD method. Figure 1.3 schematically shows the classification of the modeling of a fluid. Figure 1.3A shows a continuum medium model for a fluid. In this case, a solution of a flow field can be obtained by solving the Navier-Stokes equations, which are the governing equations of the motion of a fluid. Figure 1.3 C shows a microscopic model in which the solvent molecules are treated and a solution of the flow field can be obtained by pursuing the motion of the solvent molecules: this is the MD approach. Figure 1.3B shows a mesoscopic model in which a fluid is assumed to be composed of virtual fluid particles: the DPD method is classified within this category.

In the following paragraphs, we discuss the equations of motion of the dissipative particles for a system composed of dissipative particles alone, without colloidal
particles. For simplification's sake, dissipative particles are simply called "particles" unless specifically identified.

In order that the solution of a flow field obtained from the particle motion agrees with that of the Navier-Stokes equations, the equations of motion of the particles have to be formalized in physically viable form. For example, as a physical restriction on the system behavior, the total momentum of a system should be conserved. The forces acting on particle i possibly seem to be a conservative force $\mathbf{F}_{i j}^{\mathrm{C}}$, exerted by other particles (particle j in this case); a dissipative force $\mathbf{F}_{i j}^{\mathrm{D}}$, due to the exchange of momentum; and a random force $\mathbf{F}_{i j}^{\mathrm{R}}$, inducing the random motion of particles. With the particle mass m and the particle velocity \mathbf{v}_{i}, the equation of motion can be written as

$$
\begin{equation*}
m \frac{\mathrm{~d} \mathbf{v}_{i}}{\mathrm{~d} t}=\sum_{j(\neq i)} \mathbf{F}_{i j}^{\mathrm{C}}+\sum_{j(\neq i)} \mathbf{F}_{i j}^{\mathrm{D}}+\sum_{j(\neq i)} \mathbf{F}_{i j}^{\mathrm{R}} \tag{1.69}
\end{equation*}
$$

The subscripts in Eq. (1.69), for example in $\mathbf{F}_{i j}^{\mathrm{C}}$, represent the force acting on particle i by particle j. Now, we embody specific expressions for each force. Since $\mathbf{F}_{i j}^{C}$ is a conservative force between particles i and j, it is assumed to be dependent on the relative position $\mathbf{r}_{i j}\left(=\mathbf{r}_{i}-\mathbf{r}_{j}\right)$ alone, not on velocities. This specific expression will be shown later. $\mathbf{F}_{i j}^{\mathrm{D}}$ and $\mathbf{F}_{i j}^{\mathrm{R}}$ have to be conserved under a Galilean transformation (refer to a textbook of mechanics); thus, they must be independent of \mathbf{r}_{i} and \mathbf{v}_{i} in a given reference frame (quantities dependent on \mathbf{r}_{i} and \mathbf{v}_{i} are not conserved), but should be functions of the relative position vector $\mathbf{r}_{i j}$ and relative velocity vector $\mathbf{v}_{i j}\left(=\mathbf{v}_{i}-\mathbf{v}_{j}\right)$. Furthermore, it is physically reasonable to assume that $\mathbf{F}_{i j}^{\mathrm{R}}$ is dependent only on the relative position $\mathbf{r}_{i j}$, and not on the relative velocity $\mathbf{v}_{i j}$. We also have to take into account that the particle motion is isotropic and the forces between particles decrease with the particle-particle separation. The following expressions for $\mathbf{F}_{i j}^{\mathrm{D}}$ and $\mathbf{F}_{i j}^{\mathrm{R}}$ satisfy all the above-mentioned requirements:

$$
\begin{align*}
& \mathbf{F}_{i j}^{\mathrm{D}}=-\gamma w_{\mathrm{D}}\left(r_{i j}\right)\left(\mathbf{e}_{i j} \cdot \mathbf{v}_{i j}\right) \mathbf{e}_{i j} \tag{1.70}\\
& \mathbf{F}_{i j}^{\mathrm{R}}=\sigma w_{\mathrm{R}}\left(r_{i j}\right) \mathbf{e}_{i j} \zeta_{i j} \tag{1.71}
\end{align*}
$$

in which $r_{i j}=\left|\mathbf{r}_{i j}\right|$, and $\mathbf{e}_{i j}$ is the unit vector denoting the direction of a line drawn from particles j to i, expressed as $\mathbf{e}_{i j}=\mathbf{r}_{i j} / r_{i j}$. The $\zeta_{i j}$ is the stochastic variable inducing the random motion of particles and has the following characteristics:

$$
\begin{equation*}
\left\langle\zeta_{i j}\right\rangle=0, \quad\left\langle\zeta_{i j}(t) \zeta_{i^{\prime} j^{\prime}}\left(t^{\prime}\right)\right\rangle=\left(\delta_{i i^{\prime}} \delta_{j j^{\prime}}+\delta_{i j^{\prime}} \delta_{j i^{\prime}}\right) \delta\left(t-t^{\prime}\right) \tag{1.72}
\end{equation*}
$$

in which $\delta_{i j}$ is the Kronecker delta, and $\delta_{i j}=1$ for $i=j$ and $\delta_{i j}=0$ for the other cases. Since this variable satisfies the equation of $\zeta_{i j}=\zeta_{j i}$, the total momentum of a system is conserved. The $w_{\mathrm{D}}\left(r_{i j}\right)$ and $w_{\mathrm{R}}\left(r_{i j}\right)$ are weighting functions representing the characteristics of forces decreasing with the particle-particle separation, and γ and σ are constants specifying the strengths of the corresponding forces. As shown
later, these constants are related to the system temperature and friction coefficients. The $\mathbf{F}_{i j}^{\mathrm{D}}$ acts such that the relative motion of particles i and j relaxes, and $\mathbf{F}_{i j}^{\mathrm{R}}$ functions such that the thermal motion is activated. Since the action-reaction law is satisfied by $\mathbf{F}_{i j}^{\mathrm{R}}$, the conservation of the total momentum is not violated by $\mathbf{F}_{i j}^{\mathrm{R}}$.

By substituting Eqs. (1.70) and (1.71) into Eq. (1.69), the equation of motion of particles can be written as

$$
\begin{equation*}
m \frac{\mathrm{~d} \mathbf{v}_{i}}{\mathrm{~d} t}=\sum_{j(\neq i)} \mathbf{F}_{i j}^{\mathrm{C}}\left(\mathbf{r}_{i j}\right)-\sum_{j(\neq i)} \gamma w_{\mathrm{D}}\left(r_{i j}\right)\left(\mathbf{e}_{i j} \cdot \mathbf{v}_{i j}\right) \mathbf{e}_{i j}+\sum_{j(\neq i)} \sigma w_{\mathrm{R}}\left(r_{i j}\right) \mathbf{e}_{i j} \zeta_{i j} \tag{1.73}
\end{equation*}
$$

The integral of this equation with respect to the time from t to $(t+\Delta t)$ leads to the finite difference equations specifying the motion of the simulation particles:

$$
\begin{align*}
& \Delta \mathbf{r}_{i}=\mathbf{v}_{i} \Delta t \tag{1.74}\\
& \Delta \mathbf{v}_{i}=\frac{1}{m}\left(\sum_{j(\neq i)} \mathbf{F}_{i j}^{\mathrm{C}}\left(\mathbf{r}_{i j}\right)-\sum_{j(\neq i)} \gamma w_{\mathrm{D}}\left(r_{i j}\right)\left(\mathbf{e}_{i j} \cdot \mathbf{v}_{i j}\right) \mathbf{e}_{i j}\right) \Delta t+\frac{1}{m} \sum_{j(\neq i)} \sigma w_{\mathrm{R}}\left(r_{i j}\right) \mathbf{e}_{i j} \Delta W_{i j} \tag{1.75}
\end{align*}
$$

The $\Delta W_{i j}$ has to satisfy the following stochastic properties, which can be obtained from Eq. (1.72):

$$
\left.\begin{array}{l}
\left\langle\Delta W_{i j}\right\rangle=0 \tag{1.76}\\
\left\langle\Delta W_{i j} \Delta W_{i j^{\prime}}\right\rangle=\left(\delta_{i i^{\prime}} \delta_{j j^{\prime}}+\delta_{i j^{\prime}} \delta_{j i^{\prime}}\right) \Delta t
\end{array}\right\}
$$

If a new stochastic variable $\theta_{i j}$ is introduced from $\Delta W_{i j}=\theta_{i j}(\Delta t)^{1 / 2}$, the third term in Eq. (1.75) can be written as

$$
\begin{equation*}
\frac{1}{m} \sum_{j(\neq i)} \sigma w_{\mathrm{R}}\left(r_{i j}\right) \mathbf{e}_{i j} \theta_{i j} \sqrt{\Delta t} \tag{1.77}
\end{equation*}
$$

in which $\theta_{i j}$ has to satisfy the following stochastic characteristics:

$$
\left.\begin{array}{l}
\left\langle\theta_{i j}\right\rangle=0 \tag{1.78}\\
\left\langle\theta_{i j} \theta_{i^{\prime} j^{\prime}}\right\rangle=\left(\delta_{i i^{\prime}} \delta_{j j^{\prime}}+\delta_{i j^{\prime}} \delta_{j i^{\prime}}\right)
\end{array}\right\}
$$

In simulations, values of the stochastic variable are sampled from a normal distribution with zero-mean value and unit variance or from a uniform distribution.

The constants γ and σ and the weighting functions $w_{\mathrm{D}}\left(r_{i j}\right)$ and $w_{\mathrm{R}}\left(r_{i j}\right)$, which appeared in Eq. (1.75), must satisfy the following relationships:

$$
\left.\begin{array}{l}
w_{\mathrm{D}}\left(r_{i j}\right)=w_{\mathrm{R}}^{2}\left(r_{i j}\right) \tag{1.79}\\
\sigma^{2}=2 \gamma k T
\end{array}\right\}
$$

The second equation is called the "fluctuation-dissipation theorem." These relationships ensure a valid equilibrium distribution of particle velocities for thermodynamic equilibrium.

Next, we show expressions for the conservative force $\mathbf{F}_{i j}^{C}$ and the weighting function $w_{\mathrm{R}}\left(r_{i j}\right)$. The $\mathbf{F}_{i j}^{\mathrm{C}}$ functions as a tool for preventing particles from significantly overlapping, so that the value of $w_{\mathrm{R}}\left(r_{i j}\right)$ has to increase with particles i and j approaching each other. Given this consideration, these expressions may be written as

$$
\begin{align*}
& \mathbf{F}_{i j}^{\mathrm{C}}=\alpha w_{\mathrm{R}}\left(r_{i j}\right) \mathbf{e}_{i j} \tag{1.80}\\
& w_{\mathrm{R}}\left(r_{i j}\right)= \begin{cases}1-\frac{r_{i j}}{r_{c}} & \text { for } r_{i j} \leq r_{c} \\
0 & \text { for } r_{i j}>r_{c}\end{cases} \tag{1.81}
\end{align*}
$$

in which α is a constant representing the strength of a repulsive force. By substituting the above-mentioned expressions into Eq. (1.75) and taking into account Eq. (1.77), the final expressions for the equations of motion of particles can be obtained as

$$
\begin{align*}
\Delta \mathbf{r}_{i}= & \mathbf{v}_{i} \Delta t \tag{1.82}\\
\Delta \mathbf{v}_{i}= & \frac{\alpha}{m} \sum_{j(\neq i)} w_{\mathrm{R}}\left(r_{i j}\right) \mathbf{e}_{i j} \Delta t-\frac{\gamma}{m} \sum_{j(\neq i)} w_{\mathrm{R}}^{2}\left(r_{i j}\right)\left(\mathbf{e}_{i j} \cdot \mathbf{v}_{i j}\right) \mathbf{e}_{i j} \Delta t \\
& +\frac{(2 \gamma k T)^{1 / 2}}{m} \sum_{j(\neq i)} w_{\mathrm{R}}\left(r_{i j}\right) \mathbf{e}_{i j} \theta_{i j} \sqrt{\Delta t} \tag{1.83}
\end{align*}
$$

As previously indicated, $\theta_{i j}$ satisfies the stochastic characteristics in Eq. (1.78) and is sampled from a normal distribution or from a uniform distribution. The DPD dynamics method simulates the motion of the dissipative particles according to Eqs. (1.82) and (1.83).

For actual simulations, we show the method of nondimensionalizing quantities. The following representative values are used for nondimensionalization: $(\mathrm{kT} / \mathrm{m})^{1 / 2}$ for velocities, r_{c} for distances, $r_{c}(m / k T)^{1 / 2}$ for time, $\left(1 / r_{c}{ }^{3}\right)$ for number densities. Using these representative values, Eqs. (1.82) and (1.83) are nondimensionalized as

$$
\begin{align*}
\Delta \mathbf{r}_{i}^{*}= & \mathbf{v}_{i}^{*} \Delta t^{*} \tag{1.84}\\
\Delta \mathbf{v}_{i}^{*}= & \alpha^{*} \sum_{j(\neq i)} w_{\mathrm{R}}\left(r_{i j}^{*}\right) \mathbf{e}_{i j} \Delta t^{*}-\gamma^{*} \sum_{j(\neq i)} w_{\mathrm{R}}^{2}\left(r_{i j}^{*}\right)\left(\mathbf{e}_{i j} \cdot \mathbf{v}_{i j}^{*}\right) \mathbf{e}_{i j} \Delta t^{*} \tag{1.85}\\
& +\left(2 \gamma^{*}\right)^{1 / 2} \sum_{j(\neq i)} w_{\mathrm{R}}\left(r_{i j}^{*}\right) \mathbf{e}_{i j} \theta_{i j} \sqrt{\Delta t^{*}}
\end{align*}
$$

in which

$$
w_{\mathrm{R}}\left(r_{i j}^{*}\right)= \begin{cases}1-r_{i j}^{*} & \text { for } r_{i j}^{*} \leq 1 \tag{1.86}\\ 0 & \text { for } r_{i j}^{*}>1\end{cases}
$$

$$
\begin{equation*}
\alpha^{*}=\alpha \frac{r_{c}}{k T}, \quad \gamma^{*}=\gamma \frac{r_{c}}{(m k T)^{1 / 2}} \tag{1.87}
\end{equation*}
$$

Nondimensionalized quantities are distinguished by the superscript *. As seen in Eq. (1.85), the specification of the number density $n^{*}\left(=n r_{c}{ }^{3}\right)$ and the number N of particles with appropriate values of α^{*}, γ^{*}, and Δt^{*} enables us to conduct DPD simulations. If we take into account that the time is nondimensionalized by the representative time based on the average velocity $\bar{v}\left(\approx(k T / m)^{1 / 2}\right)$ and distance r_{c}, the nondimensionalized time interval Δt^{*} has to be taken as $\Delta t^{*} \ll 1$.

The above-mentioned equations of motion retain a flexibility and are determined by our approach rather than the mathematical manipulation of certain basic key equations. These equations of motion are the revised version of the original equations, which were derived in order that the velocity distribution function of the particles converges to an equilibrium distribution for thermodynamic equilibrium. Hence, they are not the only valid equations of motion for the DPD method, and a new equation of motion may be proposed in order to enable us to conduct more accurate simulations.

The main procedure for conducting the DPD simulation is quite similar to the one we employed for BD simulations, so it is unnecessary to repeat the details here.

1.5 Lattice Boltzmann Method

Whether or not the lattice Boltzmann method is classified into the category of molecular simulation methods may depend on the researcher, but this method is expected to have a sufficient feasibility as a simulation technique for polymeric liquids and particle dispersions. We will therefore treat it in detail in this book. In the lattice Boltzmann method [4, 9-12], a fluid is assumed to be composed of virtual fluid particles, and such fluid particles move and collide with other fluid particles in a simulation region. A simulation area is regarded as a lattice system, and fluid particles move from site to site; that is, they do not move freely in a region. The most significant difference of this method in relation to the MD method is that the lattice Boltzmann method treats the particle distribution function of velocities rather than the positions and the velocities of the fluid particles.

Figure 1.4 illustrates the lattice Boltzmann method for a two-dimensional system. Figure 1.4A shows that a simulation region is divided into a lattice system. Figure 1.4B is a magnification of a unit square lattice cell. Virtual fluid particles, which are regarded as groups or clusters of solvent molecules, are permitted to move only to their neighboring sites, not to other, more distant sites. That is, the fluid particles at site 0 are permitted to stay there or to move to sites $1,2, \ldots, 8$ at the next time step. This implies that fluid particles for moving to sites $1,2,3$, and 4 have the velocity $c=(\Delta x / \Delta t)$, and those for moving to sites $5,6,7$, and 8 have

Figure 1.4 Two-dimensional lattice model for the lattice Boltzmann method (D2Q9 model).
the velocity $\sqrt{2} c$, in which Δx is the lattice separation of the nearest two sites and Δt is the time interval for simulations. Since the movement speeds of fluid particles are known as c or $\sqrt{2} c$, macroscopic velocities of a fluid can be calculated by evaluating the number of particles moving to each neighboring lattice site. In the usual lattice Boltzmann method, we treat the particle distribution function, which is defined as a quantity such that the above-mentioned number is divided by the volume and multiplied by the mass occupied by each lattice site. This is the concept of the lattice Boltzmann method. The two-dimensional lattice model shown in Figure 1.4 is called the "D2Q9" model because fluid particles have nine possibilities of velocities, including the quiescent state (staying at the original site).

Next, we explain the basic equations of the particle distribution function and the method of solving these equations. The detailed explanation will be shown in Chapter 8; here we outline the essence of the method. The velocity vector for fluid particles moving to their neighboring site is usually denoted by \mathbf{c}_{α} and, for the case of the D2Q9 model, there are nine possibilities, such as $\mathbf{c}_{0}, \mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{8}$. For example, the velocity of the movement in the left direction in Figure 1.4B is denoted by \mathbf{c}_{2}, and \mathbf{c}_{0} is zero vector for the quiescent state $\left(\mathbf{c}_{0}=\mathbf{0}\right)$. We consider the particle distribution function $f_{\alpha}(\mathbf{r}, t)$ at the position \mathbf{r} (at point 0 in Figure 1.4B) at time t in the α-direction. Since $f_{\alpha}(\mathbf{r}, t)$ is equal to the number density of fluid particles moving in the α-direction, multiplied by the mass of a fluid particle, the summation of the particle distribution function concerning all the directions $(\alpha=0,1, \ldots, 8)$ leads to the macroscopic density $\rho(\mathbf{r}, t)$:

$$
\begin{equation*}
\rho(\mathbf{r}, t)=\sum_{\alpha=0}^{8} f_{\alpha}(\mathbf{r}, t) \tag{1.88}
\end{equation*}
$$

Similarly, the macroscopic velocity $\mathbf{u}(\mathbf{r}, t)$ can be evaluated from the following relationship of the momentum per unit volume at the position \mathbf{r} :

$$
\begin{equation*}
\rho(\mathbf{r}, t) \mathbf{u}(\mathbf{r}, t)=\sum_{\alpha=0}^{8} f_{\alpha}(\mathbf{r}, t) \mathbf{c}_{\alpha} \tag{1.89}
\end{equation*}
$$

In Eqs. (1.88) and (1.89), the macroscopic density $\rho(\mathbf{r}, t)$ and velocity $\mathbf{u}(\mathbf{r}, t)$ can be evaluated if the particle distribution function is known. Since fluid particles collide with the other fluid particles at each site, the rate of the number of particles moving to their neighboring sites changes. In the rarefied gas dynamics, the wellknown Boltzmann equation is the basic equation specifying the velocity distribution function while taking into account the collision term due to the interactions of gaseous molecules; this collision term is a complicated integral expression. The Boltzmann equation is quite difficult to solve analytically, so an attempt has been made to simplify the collision term. One such simplified model is the Bhatnagar-Gross-Krook (BGK) collision model. It is well known that the BGK Boltzmann method gives rise to reasonably accurate solutions, although this collision model is expressed in quite simple form. We here show the lattice Boltzmann equation based on the BGK model. According to this model, the particle distribution function $f_{\alpha}\left(\mathbf{r}+\mathbf{c}_{\alpha} \Delta t, t+\Delta t\right)$ in the α-direction at the position $\left(\mathbf{r}+\mathbf{c}_{\alpha} \Delta t\right)$ at time $(t+\Delta t)$ can be evaluated by the following equation:

$$
\begin{equation*}
f_{\alpha}\left(\mathbf{r}+\mathbf{c}_{\alpha} \Delta t, t+\Delta t\right)=f_{\alpha}(\mathbf{r}, t)+\frac{1}{\tau}\left\{f_{\alpha}^{(0)}(\mathbf{r}, t)-f_{\alpha}(\mathbf{r}, t)\right\} \tag{1.90}
\end{equation*}
$$

This equation is sometimes expressed in separate expressions indicating explicitly the two different processes of collision and transformation:

$$
\left.\begin{array}{l}
f_{\alpha}\left(\mathbf{r}+\mathbf{c}_{\alpha} \Delta t, t+\Delta t\right)=\tilde{f}_{\alpha}(\mathbf{r}, t) \tag{1.91}\\
\tilde{f}_{\alpha}(\mathbf{r}, t)=f_{\alpha}(\mathbf{r}, t)+\frac{1}{\tau}\left\{f_{\alpha}^{(0)}(\mathbf{r}, t)-f_{\alpha}(\mathbf{r}, t)\right\}
\end{array}\right\}
$$

in which τ is the relaxation time (dimensionless) and $f_{\alpha}^{(0)}$ is the equilibrium distribution, expressed for the D2Q9 model as

$$
\begin{align*}
& f_{\alpha}^{(0)}=\rho w_{\alpha}\left\{1+3 \frac{\mathbf{c}_{\alpha} \cdot \mathbf{u}}{c^{2}}-\frac{3 u^{2}}{2 c^{2}}+\frac{9}{2} \cdot \frac{\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}}{c^{4}}\right\} \tag{1.92}\\
& w_{\alpha}=\left\{\begin{array}{ll}
4 / 9 & \text { for } \alpha=0 \\
1 / 9 & \text { for } \alpha=1,2,3,4 \\
1 / 36 & \text { for } \alpha=5,6,7,8
\end{array} \quad\left|\mathbf{c}_{\alpha}\right|= \begin{cases}0 & \text { for } \alpha=0 \\
c & \text { for } \alpha=1,2,3,4 \\
\sqrt{2 c} & \text { for } \alpha=5,6,7,8\end{cases} \right. \tag{1.93}
\end{align*}
$$

In these equations ρ is the local density at the position of interest, \mathbf{u} is the fluid velocity $(u=|\mathbf{u}|), c=\Delta x / \Delta t$, and w_{α} is the weighting constant.

The important feature of the BGK model shown in Eq. (1.91) is that the particle distribution function in the α-direction is independent of the other directions. The particle distributions in the other directions indirectly influence $f_{\alpha}\left(\mathbf{r}+\mathbf{c}_{\alpha} \Delta t, t+\Delta t\right)$ through the fluid velocity \mathbf{u} and the density ρ. The second expression in Eq. (1.91) implies that the particle distribution $f_{\alpha}(\mathbf{r}, t)$ at the position \mathbf{r} changes into $\tilde{f}_{\alpha}(\mathbf{r}, t)$ after the collision at the site at time t, and the first expression implies that $\tilde{f}_{\alpha}(\mathbf{r}, t)$ becomes the distribution $f_{\alpha}\left(\mathbf{r}+\mathbf{c}_{\alpha} \Delta t, t+\Delta t\right)$ at $\left(\mathbf{r}+\mathbf{c}_{\alpha} \Delta t\right)$ after the time interval Δt.

The main procedure of the simulation is as follows:

1. Set appropriate fluid velocities and densities at each lattice site.
2. Calculate equilibrium particle densities $f_{\alpha}^{(0)}(\alpha=0,1, \ldots, 8)$ at each lattice site from Eq. (1.92) and regard these distributions as the initial distributions, $f_{\alpha}=f_{\alpha}^{(0)}(\alpha=0,1, \ldots, 8)$.
3. Calculate the collision terms $\tilde{f}_{\alpha}(\mathbf{r}, t)(\alpha=0,1, \ldots, 8)$ at all sites from the second expression of Eq. (1.91).
4. Evaluate the distribution at the neighboring site in the α-direction $f_{\alpha}\left(\mathbf{r}+\mathbf{c}_{\alpha} \Delta t, t+\Delta t\right)$ from the first expression in Eq. (1.91).
5. Calculate the macroscopic velocities and densities from Eqs. (1.88) and (1.89), and repeat the procedures from step 3.

In addition to the above-mentioned procedures, we need to handle the treatment at the boundaries of the simulation region. These procedures are relatively complex and are explained in detail in Chapter 8. For example, the periodic boundary condition, which is usually used in MD simulations, may be applicable.

For the D3Q19 model shown in figure 8.3, which is applicable for three-dimensional simulations, the equilibrium distribution function is written in the same expression of Eq. (1.92), but the weighting constants are different from Eq. (1.93) and are expressed in Eq. (8.69). The basic equations for $f_{\alpha}\left(\mathbf{r}+\mathbf{c}_{\alpha} \Delta t, t+\Delta t\right)$ are the same as Eq. (1.90) or (1.91), and the above-mentioned simulation procedure is also directly applicable to the D3Q19 model.

This page intentionally left blank

2 Outline of Methodology of Simulations

Abstract

In order to develop a simulation program, it is necessary to have an overview of the general methodology, which should include the assignment of the initial configuration and velocities, the treatment of boundary conditions, and techniques for reducing computation time. An appropriate initial configuration has to be set with careful consideration given to the physical property of interest, so that the essential phenomena can be grasped. For example, if nonspherical molecules or particles are known to incline in a preferred direction, there may be some advantages to using a parallelepiped rectangular simulation region rather than a cubic one. The periodic boundary condition is a representative model to manage the boundary of a simulation region. It is almost always used for systems in thermodynamic equilibrium. On the other hand, for investigating the dynamic properties of a system, the simple shear flow is frequently treated and in this case the Lees-Edwards boundary condition is available. Techniques for reducing computation time become very important in large-scale three-dimensional simulations, and methods of tracking particle neighbors, such as the cell index method, are indispensable. The more important methods frequently employed in simulations are described in this chapter.

2.1 Initial Positions

2.1.1 Spherical Particle Systems

Setting an initial configuration of particles is an indispensable procedure for both MD and MC methods. Although it is possible to assign randomly the initial position of particles in a simulation region, a regular configuration, such as a simple cubic lattice or a face-centered cubic lattice, is handled in a more straightforward manner. The random allocation suffers from the problem of the undesirable overlap of particles and from possible difficulties in achieving high packing fractions. Lattice assignments are almost free from the overlap problem and can achieve high packing fractions. However, as will be shown later, the lattice packing may be too perfect for some simulations, requiring the adjustment of a small random perturbation. In the following paragraphs, we consider a system composed of spherical particles as an example to explain the method of setting the initial configuration in a
regular lattice formation for a two-dimensional configuration. We then proceed to a three-dimensional configuration.

Figure 2.1 shows several lattice systems that may be used to assign an initial configuration for a two-dimensional system. A basic lattice form is expanded to fill the whole simulation region, and the particles are then located at each lattice point. Figure 2.1A, the simplest lattice model, may be suitable for a gaseous system. However, even if the particle-particle distance a is equal to the particle diameter, a high packing fraction cannot be obtained by using this simple lattice model. Hence, it is inappropriate for the simulations of a liquid or solid system. Since there is only one particle in the unit cell shown in Figure 2.1 A , a system with total particle number $N\left(=Q^{2}\right)$ can be generated by replicating the unit cell $(Q-1)$ times in each direction to make a square simulation region of side length $L=Q a$. So for the use of this lattice system as the initial configuration, the particle number N has to

Figure 2.1 Initial conditions for a two-dimensional system.
be taken from $N=1,4,9,16,25,36,49,64,81,100$, and so on. The number density of particles n is given by $n=N / L^{2}$, and the area fraction is given by $\phi_{s}=$ $\pi(d / 2)^{2} N / L^{2}$, where d is the particle diameter. In practice, the number of particles N and the area fraction ϕ_{s} are first chosen; then the values of Q and L are evaluated, from which the value of a can be determined. With these values, the initial configuration of particles can be assigned according to the simple lattice system shown in Figure 2.1A.

The lattice system shown in Figure 2.1B can yield a higher packing fraction and therefore may be applicable for an initial configuration of a gaseous or liquid state, but it has limited application to a solid state. Since there are two particles in the unit cell of this lattice, a system with total particle number $N=2 Q^{2}$ of particles can be generated by replicating the unit cell $(Q-1)$ times in each direction. In this case, the simulation region is also a square of side length $L=Q a$, and the possible value of N is taken from $2,8,18,32,50,72,98,128,162,200$, and so on. The number density of particles n is given by $n=N / L^{2}$, and the area fraction ϕ_{s} is given by $\phi_{s}=\pi(d / 2)^{2} N / L^{2}$. Figure 2.1 C shows the most compact lattice for a two-dimensional system. This lattice model may also be applicable to a solid system. If the dark particles are assumed to constitute the unit lattice, it follows that there are four particles in this unit lattice. Hence, by replicating the unit lattice $(Q-1)$ times in each direction, the simulation region becomes a rectangle of side lengths $L_{x}=3^{1 / 2} a Q$ and $L_{y}=2 a Q$, with a total number of particles $N=4 Q^{2}$, where the possible value of N is taken from 4, 16, 36, 64, 100, 144, 196, 256, 324, 400, and so on. The particle number density n is given by $n=N / L_{x} L_{y}$, and the area fraction ϕ_{s} is given by $\phi_{s}=\pi(d / 2)^{2} N / L_{x} L_{y}$. The actual assignment of the abovementioned quantities for simulations is similar to that for Figure 2.1A.

Figure 2.2 shows several lattice models for a three-dimensional system. Figure 2.2 A is the simple cubic lattice model, which is suitable as an initial configuration mainly for a gaseous or liquid system. Since there is only one particle in the unit cell, the number of particles in a system is given by $N=Q^{3}$ by replicating the unit cell $(Q-1)$ times in each direction. In this case the possible value of N is taken from $N=1,8,27,64,125,216,343,512,729,1000$, and so on.

Figure 2.2 Initial conditions for a three-dimensional system.

The simulation region is a cube of side length $L=Q a$. The number density n and the volumetric fraction ϕ_{V} are given by $n=N / L^{3}$ and $\phi_{\mathrm{V}}=4 \pi(d / 2)^{3} N / 3 L^{3}$, respectively. The face-centered cubic lattice model shown in Figure 2.2B is one of the close-packed lattices, and therefore may be applicable as an initial configuration of a solid state. Since there are four particles in the unit cell, the total number of particles in the simulation region is given by $N=4 Q^{3}$ by replicating the unit cell $(Q-1)$ times in each direction. In this case, the total number of particles is taken from $N=4,32,108,256,500,864,1372$, and so on. The number density and the volumetric fraction are given by $n=N / L^{3}$ and $\phi_{\mathrm{V}}=4 \pi(d / 2)^{3} N / 3 L^{3}$, respectively. As in a two-dimensional system, for the actual assignment of the above-mentioned quantities, the particle number N and the volumetric fraction ϕ_{V} are first chosen, then Q and L are evaluated, and finally the lattice distance a is determined.

For a gaseous or liquid system, the simple lattice models shown in Figures 2.1A and 2.2 A are applicable in a straightforward manner for developing a simulation program. In contrast, for the case of a solid system, the choice of an appropriate lattice used for the initial configuration of particles is usually determined by the known physical properties of the solid.

2.1.2 Nonspherical Particle Systems

The assignment of the initial configuration of particles for a spherical particle system, explained in the previous subsection, is quite clear because only the center of the particles needs to be considered. In this subsection we explain the method of setting the initial configuration for a system composed of nonspherical particles, using spherocylinders and disk-like particles as examples. For a nonspherical particle system, the orientation of the particles must be assigned in addition to their position, so that the technique for setting the initial configuration is a little more difficult than that for a spherical particle system. For this purpose, a versatile technique whereby a wide range of initial configurations can be assigned is desirable. If particle-particle interactions are large enough to induce the cluster formation of particles in a preferred direction, then an appropriately large initial configuration has to be adopted in order for the simulation to capture such characteristic aggregate structures.

We now consider the example of a system composed of spherocylinder particles with a magnetic moment at the particle center normal to the long particle axis. The spherocylinder is a cylinder with hemisphere caps at both the ends. An ensemble of these particles can be expected to aggregate to form raft-like clusters with the magnetic moments inclining in the applied magnetic field direction. Hence, a simulation region with sufficient length in the direction of the cluster formation has to be taken in order for the simulation particles to aggregate in a reasonable manner. We shall explain the technique for setting an initial configuration using Figure 2.3. The spherocylinder can be characterized by the ratio of the particle length l to the diameter d of the cylindrical part, known as the aspect ratio $r_{\mathrm{p}}=l / d$. For the example in Figure 2.3 where $r_{\mathrm{p}}=3$, the particles are placed in contact with three and nine rows in the x - and y-directions, respectively, leading to a configuration of 27

Figure 2.3 Initial conditions for spherocylinder particles.
particles in a square region in the $x y$-plane. Extending this configuration to 18 layers in the z-direction yields an initial configuration of spherocylinder particles with a simulation region $\left(L_{x}, L_{y}, L_{z}\right)=\left(3 r_{\mathrm{p}} d, 3 r_{\mathrm{p}} d, 6 r_{\mathrm{p}} d\right)$ with total number of particles $N=486$; if four rows are arranged in the x-direction, then a simulation region larger than the present case can be adopted with a simulation region $\left(L_{x}, L_{y}, L_{z}\right)=$ $\left(4 r_{\mathrm{p}} d, 4 r_{\mathrm{p}} d, 8 r_{\mathrm{p}} d\right)$.

If the particle-particle distances are expanded equally in each direction to yield a desired volumetric fraction of particles ϕ_{V}, then this expanded system may be used as an initial configuration for simulations. Such an expansion with a factor α of particle-particle distances gives rise to the system volume $V=54 r_{\mathrm{p}}^{3} d^{3} \alpha^{3}$. The volumetric fraction ϕ_{V} is related to the system volume as $\phi_{\mathrm{V}}=N V_{\mathrm{p}} / V$, in which V_{p} is the volume of a spherocylinder particle, expressed as $V_{\mathrm{p}}=\pi d^{3}\left(3 r_{\mathrm{p}}-1\right) / 12$. From these expressions, the expansion ratio α can be obtained as

$$
\begin{equation*}
\alpha=\frac{1}{r_{\mathrm{p}}}\left(\frac{3 \pi\left(3 r_{\mathrm{p}}-1\right)}{4 \phi_{\mathrm{V}}}\right)^{1 / 3} \tag{2.1}
\end{equation*}
$$

This initial configuration is applicable for a system in which particles are expected to aggregate in the direction of the particle short axis, as shown in Figure 2.4A. If particles are expected to aggregate in the direction of the particle long axis, as shown in Figure 2.4B, it is straightforward to follow a similar procedure with the spherocylinder particles aligned in the z-direction in Figure 2.3.

We now consider the method of setting an initial configuration of a disk-like particle system, in which particles are assumed to aggregate in a direction parallel to the disk plane surface, as shown in Figure 2.5B. Capturing such clusters in simulations requires a simulation region with suitable dimensions. As in the previous case of a spherocylinder particle system, a nearly close-packed configuration is first arranged. We here consider disk-like particles with particle aspect ratio r_{p} $\left(=d_{1} / b_{1}\right)=3$, in which the diameter of the circumference and the thickness are denoted by d_{1} and b_{1}, respectively, as shown in Figure 4.12. If three and nine particles are arranged in the x - and y-directions, respectively, the subtotal number of $N=27$ particles can be located in the $x y$-plane, as shown in Figure 2.5A. Extending this configuration with 12 layers in the z-direction leads to an initial configuration of 324 particles with particle-particle contact in the simulation region of $\left(L_{x}, L_{y}, L_{z}\right)=$ $\left(3 r_{\mathrm{p}} b_{1}, 3 r_{\mathrm{p}} b_{1}, 12 r_{\mathrm{p}} b_{1}\right)$. By expanding particle-particle distances equally in each direction by the expansion factor α, the volume of a system V becomes $V=108 r_{\mathrm{p}}^{3} b_{1}^{3} \alpha^{3}$. Given the volume of a disk-like particle, $V_{\mathrm{p}}=(\pi / 4)$ $b_{1}^{3}\left(r_{\mathrm{p}}-1\right)^{2}+\left(\pi^{2} / 8\right) b_{1}^{3}\left(r_{\mathrm{p}}-1\right)+(\pi / 6) b_{1}^{3}$, the expansion factor α can be derived as

$$
\begin{equation*}
\alpha=\frac{1}{2 r_{\mathrm{p}}}\left[\frac{\pi}{\phi_{\mathrm{V}}}\left\{6\left(r_{\mathrm{p}}-1\right)^{2}+3 \pi\left(r_{\mathrm{p}}-1\right)+4\right\}\right]^{1 / 3} \tag{2.2}
\end{equation*}
$$

In this derivation, the relationship of $\phi_{\mathrm{V}}=N V_{\mathrm{p}} / V$ has been used.
The main procedure for setting the initial configuration is summarized as follows:

1. Consider an appropriate initial configuration, with sufficient consideration given to the physical phenomenon of interest.
2. Set a nearly close-packed situation as an initial configuration.
3. Calculate the total number of particles N.
4. Evaluate the expansion ratio α from Eq. (2.1) or Eq. (2.2) to give rise to the desired volumetric fraction ϕ_{V}.
5. Expand particle-particle distances equally by the factor α.

(A)

(B)

Figure 2.5 Initial conditions for disk-like particles.
6. Perturb the particle positions by small distances using random numbers in order to destroy the regularity of the initial configuration; otherwise, all particle-particle interactions may be zero and therefore the particles may not move with time.

2.2 Initial Velocities

2.2.1 Spherical Particle Systems

In the MD method, the motion of particles is described by pursuing their position and velocity over time, so these factors have to be specified as an initial condition. If the system of interest is in thermodynamic equilibrium with temperature T, the particle velocities are described by the following Maxwellian distribution [25]:

$$
\begin{equation*}
f\left(\mathbf{v}_{i}\right)=\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \exp \left\{-\frac{m}{2 k T}\left(v_{i x}^{2}+v_{i y}^{2}+v_{i z}^{2}\right)\right\} \tag{2.3}
\end{equation*}
$$

in which k is Boltzmann's constant, m is the mass of particles, and $\mathbf{v}_{i}=\left(v_{i x}, v_{i y}, v_{i z}\right)$ is the velocity vector of particle i. Since the Maxwellian distribution f is the

Figure 2.6 Velocity distributions in equilibrium.
probability density distribution function, the probability of particle i being found in the infinitesimal velocity range between \mathbf{v}_{i} and $\left(\mathbf{v}_{i}+d \mathbf{v}_{i}\right)$ becomes $f\left(\mathbf{v}_{i}\right) d \mathbf{v}_{i}$. Characteristics of this function can be understood more straightforwardly by treating the distribution function f_{x} as the x-velocity component. Figure 2.6 clearly shows that a higher system temperature leads to an increase in the probability of particles appearing with a larger velocity component $v_{i x}$. If we focus on the magnitude of the particle velocities instead of the velocity components, clearer discussion concerning such characteristics becomes possible. The probability density distribution function $\chi\left(v_{i}\right)$ for the speed $v_{i}=\left(v_{i x}{ }^{2}+v_{i y}{ }^{2}+v_{i z}{ }^{2}\right)$ of particle i can be derived from Eq. (2.3) as

$$
\begin{equation*}
\chi\left(v_{i}\right)=4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} v_{i}^{2} \exp \left(-\frac{m}{2 k T} v_{i}^{2}\right) \tag{2.4}
\end{equation*}
$$

This equation is derived, first, by a transformation from orthogonal to spherical coordinates, that is, from $\left(v_{i x}, v_{i y}, v_{i z}\right)$ to $\left(v_{i}, \theta, \phi\right)$ with the relationship of $\left(v_{i x}, v_{i y}\right.$, $\left.v_{i z}\right)=\left(v_{i} \sin \theta \cos \phi, v_{i} \sin \theta \sin \phi, v_{i} \cos \theta\right)$, and second, from the integral with respect to θ and ϕ in the normalization equation of the Maxwellian distribution. The integrand in the normalization equation after this integral is the distribution function $\chi\left(v_{i}\right)$. Figure 2.7 shows the distribution χ as a function of the particle speed v_{i} for several system temperatures. Figure 2.7 shows that the curve of χ has a peak value position that moves further to the right with increasing value of the temperature. That is, the percentage of particles with larger velocities increases with the temperature. The particle speed v_{mp} yielding the peak value of the distribution can be derived from Eq. (2.4) as $v_{\mathrm{mp}}=(2 k T / m)^{1 / 2}$, which is called the "most probable velocity." This means that particles with speed v_{mp} are likely to be the most numerous in the system. Note that the most probable speed is larger for a higher system temperature and a smaller mass.

For a given system temperature T, the initial velocities of particles for simulations can be assigned according to the probability density function in Eq. (2.3) or

Figure 2.7 Particle speed distributions in equilibrium.

Eq. (2.4). The detailed explanation is given in Appendix A2, so here we only show the final technique. With six different uniform random numbers, $R_{1}, R_{2}, \ldots, R_{6}$, the initial velocity components ($v_{i x}, v_{i y}, v_{i z}$) of particle i can be set as

$$
\left.\begin{array}{l}
v_{i x}=\left(-2 \frac{k T}{m} \ln R_{1}\right)^{1 / 2} \cos \left(2 \pi R_{2}\right) \\
v_{i y}=\left(-2 \frac{k T}{m} \ln R_{3}\right)^{1 / 2} \cos \left(2 \pi R_{4}\right) \tag{2.5}\\
v_{i z}=\left(-2 \frac{k T}{m} \ln R_{5}\right)^{1 / 2} \cos \left(2 \pi R_{6}\right)
\end{array}\right\}
$$

Note that each particle requires a new, that is, a different, set of random numbers.
The temperature which is evaluated from the initial particle velocities assigned by the above-mentioned method is approximately equal to the desired system temperature, but may not necessarily be satisfactory. Hence, an equilibration procedure is usually necessary before starting the main loop in an actual simulation program. This will be explained in the next subsection.

2.2.2 Nonspherical Particle Systems

For a nonspherical particle system, the initial angular velocities need to be assigned in addition to the translational velocities. Similar to the translational velocity $\mathbf{v}=$ (v_{x}, v_{y}, v_{z}) discussed above, the angular velocity $\omega=\left(\omega_{x}, \omega_{y}, \omega_{z}\right)$ is also governed by the Maxwellian distribution $f_{\omega}(\omega)$. The expression for $f_{\omega}(\omega)$ is

$$
\begin{equation*}
f_{\omega}(\omega)=\left(\frac{I}{2 \pi k T}\right)^{3 / 2} \exp \left\{-\frac{I}{2 k T}\left(\omega_{x}^{2}+\omega_{y}^{2}+\omega_{z}^{2}\right)\right\} \tag{2.6}
\end{equation*}
$$

in which I is the inertia moment of a particle. The characteristics of the exponential function in Eq. (2.3) or Eq. (2.6) demonstrate that the probability of particles appearing with larger translational and angular velocities increases with the system temperature. Similar to $v_{\mathrm{mp}}=(2 k T / m)^{1 / 2}, \omega_{\mathrm{mp}}=(2 k T / I)^{1 / 2}$ is the most probable angular velocity to yield the maximum value of the Maxwellian distribution f_{ω}. The method for setting the initial translational velocities using uniform random numbers, explained in the previous subsection, is applicable to the present angular velocity case. Here, m and ($v_{i x}, v_{i y}, v_{i z}$) in Eq. (2.5) are replaced by I and $\left(\omega_{i x}, \omega_{i y}\right.$, $\omega_{i z}$); note that new uniform random numbers need to be used.

As already mentioned, an equilibration procedure may be necessary in order to obtain the desired system temperature T. In the example of a liquid, the temperature $T_{\text {cal }}$, which is calculated from averaging the assigned velocities of particles, may differ significantly from the desired system temperature T. This may be due to the energy exchange between the kinetic and the potential energies. Hence, an equilibration procedure is frequently necessary before starting the main loop in a simulation program. The temperatures calculated from the translational and angular velocities of particles are denoted by $T_{\mathrm{cal}}^{(t)}$ and $T_{\mathrm{cal}}^{(r)}$, respectively, and written as

$$
\begin{equation*}
T_{\mathrm{cal}}^{(t)}=\frac{1}{3 N} \sum_{i=1}^{N} \frac{m v_{i}^{2}}{k}, \quad T_{\mathrm{cal}}^{(r)}=\frac{1}{3 N} \sum_{i=1}^{N} \frac{I \omega_{i}^{2}}{k} \tag{2.7}
\end{equation*}
$$

in which N is the total number of particles, assumed to be $N \gg 1 . T_{\text {cal }}^{(t)}$ and $T_{\text {cal }}^{(r)}$, calculated from \mathbf{v}_{i} and $\omega_{i}(i=1,2, \ldots, N)$, are generally not equal to the desired temperature T. The equilibration procedure adjusts these temperatures to T during the simulation by using the method of scaling the translational and angular velocities of each particle. If $T_{\text {cal }}^{(t) \text { ave }}$ and $T_{\text {cal }}^{(r) \text { ave }}$ denote the averaged values of $T_{\text {cal }}^{(t)}$ and $T_{\text {cal }}^{(r)}$ taken, for example, over 50 time steps, then the scaling factors $c_{0}^{(t)}$ and $c_{0}^{(r)}$ are determined as

$$
\begin{equation*}
c_{0}^{(t)}=\sqrt{T / T_{\mathrm{cal}}^{(t) \mathrm{ave}}}, \quad c_{0}^{(r)}=\sqrt{T / T_{\mathrm{cal}}^{(r) \mathrm{ave}}} \tag{2.8}
\end{equation*}
$$

With the scaling factors determined, the translational and angular velocities of all particles in a system are scaled as

$$
\begin{equation*}
\mathbf{v}_{i}^{\prime}=c_{0}^{(t)} \mathbf{v}_{i}, \quad \omega_{i}^{\prime}=c_{0}^{(r)} \omega_{i} \quad(i=1,2, \ldots, N) \tag{2.9}
\end{equation*}
$$

This treatment yields the desired system temperature T. In this example the scaling procedure would be conducted at every 50 time steps, but in practice an appropriate time interval must be adopted for each simulation case. The abovementioned equilibration procedure is repeated to give rise to the desired system temperature with sufficient accuracy. (Note that if a system has a macroscopic velocity, i.e., if it is not in a quiescent state, the scaling procedure has to be slightly modified.)

2.3 Reduction Methods of Computation Time

2.3.1 Cutoff Distance

Computation time is an important factor for successfully obtaining reasonable results from molecular simulations. In some cases, due to an excessive restriction of the required computation time, only a small or two-dimensional system is able to be treated. The most time-consuming procedure is the calculation of interaction energies between particles in the MC method and that of forces and torques in the MD method. Even with the action-reaction law taken into account, the $N(N-1) / 2$ calculations of energies or forces are necessary per unit time step (or unit MC step) for an N -particle system. Therefore, if it is possible to restrict the pairs of particles for the calculation, the computation time may significantly decrease. Fortunately, many particle-particle potentials are of short-range order, so that the potential energy between particles rapidly decreases with the particle-particle separation over a distance only several times the particle diameter. Therefore we may be able to treat only interactions within this range. Although magnetic or electrostatic forces are of long-range order, the above-mentioned concept is applicable to these interactions if the criterion separation between particles is taken to be of sufficient length.

2.3.1.1 Spherical Particle Systems

An important concept in simulation methodology is that a significant limitation on the computation of interaction energies or forces between particles leads to an extraordinary reduction of the simulation time. To understand this concept, we consider the interaction energies between particles or potential curves. For example, the Lennard-Jones potential U_{LJ} is expressed as

$$
\begin{equation*}
U_{\mathrm{LJ}}=4 \varepsilon\left\{\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right\} \tag{2.10}
\end{equation*}
$$

This potential is usually used as a model potential for rare gases such as Ar molecule; σ is the quantity corresponding to the particle diameter, and r is the separation between particles (molecules). Figure 2.8 shows the curve of the Lennard-Jones potential, in which U_{LJ} and r are nondimensionalized by ε and σ. Figure 2.8 illustrates a steep potential barrier in the range of $r \leqq \sigma$, which induces such a significant repulsive interaction that particles are prevented from significantly overlapping, and an attractive interaction in the range of $r \gtrsim \sigma$, which rapidly decreases to zero. These characteristics of the potential curve indicate that the interaction energy after a distance of approximately $r=3 \sigma$ can be assumed to be negligible. Hence, particle interaction energies or forces do not need to be calculated in the range of $r>3 \sigma$ in actual simulations. The distance for cutting off the calculation of energies or forces is known as the cutoff distance or cutoff radius, denoted by $r_{\text {coff }}$ in this book.

Figure 2.8 Lennard-Jones potential.

2.3.1.2 Nonspherical Particle Systems

The above cutoff procedure is directly applicable to a nonspherical particle system using the cutoff radius $r_{\text {coff }}$ based on the particle center-to-center distance. That is, the calculation of energies or forces is unnecessary for $r_{i j} \geq r_{\text {coff }}$ in simulations. For example, this applies to the case of rod-like particles that have a magnetic dipole moment at their particle center, as shown in Figure 2.9A. Unfortunately, the method is not suitable for the case of rod-like particles with plus and minus (NS) magnetic charges at the centers of hemisphere caps, as shown in Figure 2.9B. For this case, the most direct criterion is to calculate the distance between each pair of magnetic charges of the two interacting spherocylinder particles and compare this separation with a suitable cutoff radius $r_{\text {coff. }}$. This will require the distances of the four pairs of magnetic charges to be calculated. However, with prior knowledge of the arrangement of the two spherocylinder particles, it is possible to determine certain cases where we may know, without calculating the distances for all the four pairs of charges, that there are only two pairs of the distances satisfying the relationship of $r_{i j} \leq r_{\text {coff }}$. Referring to Figure 2.10, if the center-to-center distance between particles i and j is denoted by $r_{i j}$ and the distance between the magnetic charges in the particle is denoted by l, then the following three cases have to be considered for this assessment:

1. For $r_{i j} \geq r_{\text {coff }}+l$

No interactions.
2. For $r_{\text {coff }}+l>r_{i j}>r_{\text {coff }}$

A possibility of two pairs of interactions at the most.
3. For $r_{i j} \leq r_{\text {coff }}$

A possibility of all four pairs of interactions.
Figure 2.10 A corresponds to case 1 , in which the distance for any pair is beyond the cutoff radius. Figure 2.10 B corresponds to case 2, in which there is a possibility of a certain magnetic charge interacting with both the magnetic charges in the other

Figure 2.9 Treatment of the cutoff distance for different rod-like particle models.

Figure 2.10 Check for interactions in the criterion of the particle distance $r_{i j}$.
particle within the cutoff radius. Figure 2.10 C corresponds to case 3 , in which the two particles are proximate enough to give rise to a possibility of four pairs of magnetic charges being within the cutoff range. Hence, if case 1 holds, the calculation of energies or forces between particles is unnecessary, and for case 2, if two pairs of magnetic charges are found to be within the cutoff range, the further calculation of energies or forces is unnecessary.

Finally, it should be noted that the introduction of the cutoff radius by itself does not necessarily lead to a significant reduction in the computational time, since the $N(N-1) / 2$ calculations have to be conducted in order to evaluate the distances between particles. Hence, the following cell index method, or the Verlet neighbor list method, is used with the cutoff method to accomplish a significant reduction in the computation time.

2.3.2 Cell Index Method

If in some way we had already determined the names of the particles within the cutoff range from each particle, the calculation of the particle-particle distances for all pairs of particles at each time step would be unnecessary. Several methods have been developed for grasping such particle names. We first explain the cell index method $[27,28]$ in this subsection. In order for the reader to understand the method straightforwardly, we treat a two-dimensional system composed of the spherocylinder particles shown in Figure 2.9A. With reference
\(L_{y} \xlongequal[\begin{array}{|c|c|c|c|c|c|}\hline 31 \& 32 \& 33 \& 34 \& 35 \& 36

\hline 25 \& 26 \& 27 \& 28 \& 29 \& 30

\hline 19 \& 20 \& 21 \& 22 \& 23 \& 24

\hline 13 \& 14 \& 15 \& 16 \& 17 \& 18

\hline 7 \& 8 \& 9 \& 10 \& 11 \& 12

\hline 1 \& 2 \& 3 \& 4 \& 5 \& 6

\hline\end{array}]\)\[\)| L_{x} | | | |
| :---: | :---: | :---: | :---: |

\]\(

Figure 2.11 Cell index method for grasping neighboring particles.
to Figure 2.11, the simulation region with dimensions of (L_{x}, L_{y}) is divided into (Q_{x}, Q_{y}) equal parts in each direction $\left(Q_{x}=Q_{y}=6\right)$ in order to divide the whole region into small cells. Each cell has the dimensions of ($L_{x} / Q_{x}, L_{y} / Q_{y}$), in which $\left(Q_{x}, Q_{y}\right)$ are maximized to satisfy the relationships $L_{x} / Q_{x} \geq r_{\text {coff }}$ and $L_{y} /$ $Q_{y} \geq r_{\text {coff. }}$. Since each side of a small cell is longer than the cutoff distance $r_{\text {coff }}$, the particles locating, for example, in the 15th cell in Figure 2.11, have a possibility to interact with those in their own cell 15 and those belonging to the neighboring cells, that is, in the 8th, 9th, 10th, 14th, 16th, 20th, 21st, and 22nd cells. Particles in other cells are beyond the cutoff area, so they are not used to calculate the distances between particles. Each cell needs to memorize the names of the particles which belong to it. As shown in Figure 2.11, the cell index method provides a significant reduction in the computation time for large values of $\left(Q_{x}, Q_{y}\right)$. For the case of the particles shown in Figure 2.9B, the method is simply applied if the values of $\left(Q_{x}, Q_{y}\right)$ are adopted in such a way to satisfy the relationships of $L_{x} / Q_{x} \geq r_{\text {coff }}+l$ and $L_{y} / Q_{y} \geq r_{\text {coff }}+l$.

2.3.3 Verlet Neighbor List Method

In the Verlet neighbor list method [29], a distance r_{l}, which is longer than the cutoff radius, is adopted, and each particle grasps the names of the particles within range of r_{l} from its center. Referring to Figure 2.12, it is clear that particles within range of $r<r_{\text {coff }}$ are certainly within range of $r<r_{l}$. Hence, if the list of particles within range of $r<r_{l}$ is renewed with such frequency that the particles outside the range of $r=r_{l}$ cannot attain to the cutoff area, then it is sufficient to calculate the distances between the particle of interest and its neighboring particles being within range of $r \leq r_{l}$. If r_{l} is sufficiently short compared with the dimensions of a simulation region, and the information concerning the names of the neighboring particles is renewed, for example, at every 10 time steps, then a significant reduction in the computation time can be expected. The Verlet neighbor list method is applicable to the MD method as well as to the MC method. Note that the cutoff distance is usually taken as $r_{\text {coff }}<L / 2$ (L is the side length of a simulation region).

Figure 2.12 Verlet neighbor list method.

2.4 Boundary Conditions

2.4.1 Periodic Boundary Condition

Fortunately, a system of one-mol-order size, being composed of about 6×10^{23} particles, never needs to be directly treated in molecular simulations for thermodynamic equilibrium (actually, it is impossible). The use of the periodic boundary condition, explained below, enables us to treat only a relatively small system of about $100-10,000$ particles in order to obtain such reasonable results as to explain the corresponding experimental data accurately.

Figure 2.13 schematically illustrates the concept of the periodic boundary condition for a two-dimensional system composed of spherocylinder particles. The central square is a simulation region and the surrounding squares are virtual simulation boxes, which are made by replicating the main simulation box. As Figure 2.13 shows, the origin of the $x y$-coordinate system is taken at the center of the simulation region, and the dimensions of the simulation region in the x - and y-directions are denoted by L_{x} and L_{y}. The two specific procedures are necessary in treating the periodic boundary condition, that is, first the treatment of outgoing particles crossing the boundary surfaces of the simulation region and second the calculation of interaction energies or forces with virtual particles being in the replicated simulation boxes.

As shown in Figure 2.13, a particle crossing and exiting the left boundary surface has to enter from the right virtual box. This treatment can be expressed using the FORTRAN language as

```
IF(RXI.GE.LX/2.D0) THEN
        RXI=RXI-LX
ELSE IF(RXI.LT.-LX/2.D0) THEN
        RXI=RXI+LX
END IF
```


Figure 2.13 Periodic boundary condition.

The rounding-up function DNINT can yield a simple one-line expression as

$$
\text { RXI }=\text { RXI }-\mathrm{DNINT}(\mathrm{RXI} / \mathrm{LX}) * \mathrm{LX}
$$

Note that the position of particle i is denoted by (RXI, RYI). Similar procedures have to be conducted for the case of the y - and z-directions.

When the interaction energy or force of particle i with other particles, for example, particle j, is calculated, an appropriate particle j has to be chosen as an object from real and virtual particles j. This may be done in such a way that the distance between particle i and particle j is minimal. This treatment can be expressed using the FORTRAN language as

```
IF(RXIJ.GT.LX/2.D0) THEN
    RXIJ = RXIJ-LX
ELSE IF (RXIJ.LT.-LX/2.D0) THEN
    RXIJ \(=\) RXIJ +LX
END IF
```

The rounding-up function DNINT gives rise to a simple one-line expression as

$$
\mathrm{RXIJ}=\mathrm{RXIJ}-\mathrm{DNINT}(\mathrm{RXIJ} / \mathrm{LX}) * \mathrm{LX}
$$

in which $\mathrm{RXIJ}=\mathrm{RXI}-\mathrm{RXJ}$, expressing the relative position of particles i to j. Similar procedures have to be conducted for the y - and z-directions. The abovementioned procedures are applicable directly to a system composed of rod-like particles, such as that shown in Figure 2.9A, in which the interaction energies or forces are dependent only on the particle center-to-center distance. If we treat the pairs of magnetic charges instead of particle center-to-center interactions, the
above-mentioned procedures are also applicable, but in this case RXIJ and similar variables have to be taken as the distances between magnetic charges.

2.4.2 Lees-Edwards Boundary Condition

The periodic boundary condition is quite useful for molecular simulations of a system in thermodynamic equilibrium, but is this boundary condition still available for nonequilibrium situations? In treating the dynamic properties of a system in nonequilibrium, the most basic and important flow is a simple shear flow, as shown in Figure 2.14 . The velocity profile, linearly varying from $-U$ at the lower surface to U at the upper one, can be generated by sliding the lower and upper walls in the left and right directions with the velocity U, respectively. This flow field is called the "simple shear flow." In generating such a simple shear flow in actual molecular simulations, the upper and lower replicated simulation boxes, shown in Figure 2.13, are made to slide in different directions with a certain constant speed. This sliding periodic boundary condition is called the "Lees-Edwards boundary condition" [30]. Figure 2.15 schematically depicts the concept of this boundary condition; the replicated boxes in the upper and lower layers slide in each direction by the distance ΔX. If particles move out of the simulation box by crossing the boundary surface normal to the x-axis, as shown in Figure 2.15, they are made to come into the simulation box through the opposite boundary surface, which is exactly the same procedure as the periodic boundary condition. The important treatment in the Lees-Edwards boundary condition concerns the particles crossing the boundary surfaces normal to the y-axis. The same treatment of the periodic boundary condition is applied to the y-coordinate of such particles, but the x-coordinate should be shifted from x to $(x-\Delta X)$ in the case of Figure 2.15. In addition, the x-component v_{x} of these particles needs to be modified to $\left(v_{x}-U\right)$, but the y-component v_{y} can be used without modification. The above-mentioned procedures concerning x and v_{x} can be expressed using the FORTRAN language as

```
IF (RYI.GE.LY/2.D0) THEN
    RXI=RXI-DX
    RXI \(=\) RXI - DNINT(RXI/LX)*LX
    VXI=VXI-U
ELSE (RYI.LT.-LY/2.D0) THEN
    RXI=RXI + DX
    RXI \(=\) RXI - DNINT(RXI/LX)*LX
    \(\mathrm{VXI}=\mathrm{VXI}+\mathrm{U}\)
END IF
```

A slightly simplified expression can be written as

```
CORY=DNINT(RYI/LY)
RXI=RXI-CORY*DX
RXI=RXI-DNINT(RXI/LX)*LX
VXI=VXI-CORY*U
```


Figure 2.14 Simple shear flow.

Figure 2.15 Lees-Edwards boundary condition.

The y - and z-coordinates are treated as in the periodic boundary condition, and the modification of v_{y} and v_{z} is unnecessary.

For the case of evaluating interaction energies or forces, the similar procedures have to be conducted for the particles interacting with virtual particles which are in the replicated simulation boxes in the upper or lower layers. This treatment can be expressed using the FORTRAN language as

```
IF (RYJI.GE.LY/2.D0) THEN
    RYJI=RYJI-LY
    RXJI=RXJI-DX
    RXJI=RXJI-DNINT(RXJI/LX)*LX
ELSE IF (RYJI.LT.-LY/2.D0) THEN
```

$$
\begin{aligned}
& \text { RYJI }=\mathrm{RYJI}+\mathrm{LY} \\
& \mathrm{RXJI}=\mathrm{RXJI}+\mathrm{DX} \\
& \mathrm{RXJI}=\mathrm{RXJI}-\mathrm{DNINT}(\mathrm{RXJI} / \mathrm{LX}) * \mathrm{LX} \\
& \mathrm{END} \mathrm{IF}
\end{aligned}
$$

A slightly simplified expression can be written as
CORY = DNINT(RYJI/LY)
RYJI $=$ RYJI-CORY*LY
RXJI=RXJI-CORY*DX
RXJI $=$ RXJI - DNINT(RXJI/LX)*LX
The relative position RZJI in the z-direction is treated according to the periodic boundary condition.

The above-mentioned procedures are valid for the particle model shown in Figure 2.9A and also apply to the model shown in Figure 2.9B by focusing on the interactions between magnetic charges instead of the particle centers.

This page intentionally left blank

3 Practice of Molecular Dynamics Simulations

In the present and subsequent chapters, we consider examples of physical phenomena in order to explain a series of important procedures employed in conducting molecular simulations. In particular, we discuss the formalization of a problem and the method for nondimensionalizing quantities, and we make several analyses indispensable for developing a simulation program. These techniques are demonstrated in a sample simulation program with explanatory remarks included to clarify important features.

In this chapter, we consider two different physical phenomena as examples for the practice of molecular dynamics simulations. The first example discusses a diffusion problem with two kinds of molecules initially immersed in a small region in thermodynamic equilibrium. The simulation then follows the particle diffusion after the wall surrounding the region has been removed. For this case the Verlet algorithm is used for simulating the particle motion. The second example discusses the problem of the behavior of axisymmetric particles (spherocylinders in this case) in a simple shear flow. This case is an example of a more advanced type of molecular dynamics (MD) simulation where the translational and rotational motion of the particles is simulated simultaneously; therefore this exercise is considerably more advanced. The techniques demonstrated in this example are fundamental to many practical applications and may offer many valuable suggestions in developing a simulation program for systems such as DNA or polymer solutions.

3.1 Diffusion Phenomena in a System of Light and Heavy Molecules

In this section we demonstrate a MD simulation employing only the translational motion of spherical molecules. A spherical molecule system is a basic form employed in molecular simulations, and the diffusion problem in this system is a useful example because almost all the important methodology for developing a simulation program is included in this exercise. A system composed of two kinds of molecules has been chosen because the extra complexity renders the example more useful and practical.

3.1.1 Physical Phenomena of Interest

The two kinds of molecules, that is, the N_{A} light molecules with mass m and N_{B} heavy molecules with mass M, are placed in a two-dimensional square cell with side length L in equilibrium with temperature T. Both kinds of molecules have the same diameter σ, and the interaction between molecules is assumed to be expressed by the Lennard-Jones potential. At the moment the wall surrounding the square retaining cell is removed, these molecules start to diffuse into the larger surrounding area. In this example, we will consider how this physical phenomenon depends on the system temperature and the mass ratio.

3.1.2 Specification of Problems in Equations

The starting point for the formalization of a problem is the development of the governing equation-in this case, the equation of motion of the molecules. The equation of motion of an arbitrary light molecule i and arbitrary heavy molecule j are written from Newton's equation of motion, respectively, as

$$
\begin{align*}
& m \frac{\mathrm{~d}^{2} \mathbf{r}_{i}}{\mathrm{~d} t^{2}}=\mathbf{f}_{i}=\sum_{p=1}^{N} \mathbf{f}_{i p} \tag{3.1}\\
& M \frac{\mathrm{~d}^{2} \mathbf{r}_{j}}{\mathrm{~d} t^{2}}=\mathbf{f}_{j}=\sum_{p=1}^{N} \mathbf{f}_{j p} \tag{3.2}
\end{align*}
$$

in which $N=N_{\mathrm{A}}+N_{\mathrm{B}}, \mathbf{f}_{i p}$ is the force exerted by molecule p on molecule i, and \mathbf{f}_{i} is the total force acting on molecule i from all the other molecules irrespective of the type of molecule. This notation is similarly applicable to a heavy molecule j. The force acting between molecules can be derived from the Lennard-Jones potential. With the aid of the basic formulae of vector analysis, the force \mathbf{f} is derived from a potential U as

$$
\begin{equation*}
\mathbf{f}=-\nabla U=-\left(\mathbf{i} \frac{\partial U}{\partial x}+\mathbf{j} \frac{\partial U}{\partial y}+\mathbf{k} \frac{\partial U}{\partial z}\right) \tag{3.3}
\end{equation*}
$$

The notation ∇ on the right-hand side is the nabla operator, which is defined by the last expression on the right-hand side, and (i, \mathbf{j}, \mathbf{k}) are the unit vectors in the (x, y, z) directions, respectively. Equation (3.3) implies that the force acts in the direction of the interaction energy decreasing at the maximum. By substituting Eq. (2.10) into Eq. (3.3), the force $\mathbf{f}_{q p}$ exerted by molecule p on molecule q can be derived as

$$
\begin{equation*}
\mathbf{f}_{q p}=24 \varepsilon\left\{2\left(\frac{\sigma}{r_{q p}}\right)^{12}-\left(\frac{\sigma}{r_{q p}}\right)^{6}\right\} \frac{\mathbf{r}_{q p}}{r_{q p}^{2}} \tag{3.4}
\end{equation*}
$$

in which $\mathbf{r}_{q p}$ is the relative position vector of molecule q to molecule p, expressed as $\mathbf{r}_{q p}=\mathbf{r}_{q}-\mathbf{r}_{p}$, and $r_{q p}=\left|\mathbf{r}_{q p}\right|$.

In practice, simulations usually treat a nondimensional system, in which the governing equations and all physical quantities are nondimensionalized by certain representative values. Therefore, in the following paragraphs, we show the method of nondimensionalizing the equations.

For a Lennard-Jones system, the following representative values are generally used for nondimensionalizing quantities: σ for distances, ε for energies, $(\varepsilon / m)^{1 / 2}$ for velocities, $\sigma(m / \varepsilon)^{1 / 2}$ for time, ε / σ for forces, ε / k for temperatures, $1 / \sigma^{3}$ for number densities, and m / σ^{3} for densities. Nondimensional quantities are expressed as the original quantities with superscript *. Each quantity is expressed as a nondimensional quantity multiplied by the corresponding representative value. The substitution of these quantities into the original dimensional equation yields the desired nondimensional equation. These procedures give rise to the nondimensional form of Eqs. (3.1) and (3.2) expressed, respectively, as

$$
\begin{align*}
& \frac{\mathrm{d}^{2} \mathbf{r}_{i}^{*}}{\mathrm{~d} t^{* 2}}=\mathbf{f}_{i}^{*}=\sum_{p=1}^{N} \mathbf{f}_{i p}^{*} \tag{3.5}\\
& K \frac{\mathrm{~d}^{2} \mathbf{r}_{j}^{*}}{\mathrm{~d} t^{* 2}}=\mathbf{f}_{j}^{*}=\sum_{p=1}^{N} \mathbf{f}_{j p}^{*} \tag{3.6}
\end{align*}
$$

in which the force is nondimensionalized from Eq. (3.4) as

$$
\begin{equation*}
\mathbf{f}_{q p}^{*}=24\left\{2\left(\frac{1}{r_{q p}^{*}}\right)^{12}-\left(\frac{1}{r_{q p}^{*}}\right)^{6}\right\} \frac{\mathbf{r}_{q p}^{*}}{\left(r_{q p}^{*}\right)^{2}} \tag{3.7}
\end{equation*}
$$

The parameter K, appearing in Eq. (3.6), is a nondimensional parameter expressing the mass ratio $K=M / m$, which arises due to the mass m being used as the representative mass. As in this example, it is usual for several additional nondimensional parameters to arise when equations and quantities are nondimensionalized. In order to compare the simulation with experimental results, appropriate values of these nondimensional parameters need to be adopted.

3.1.3 Verlet Algorithm

In this example we employ the Verlet algorithm in order to simulate the motion of the molecules. Referring to Eq. (1.6), the algebraic equations according to the Verlet algorithm can be expressed concerning a light molecule i and heavy molecule j as

$$
\begin{equation*}
\mathbf{r}_{i}^{*}\left(t^{*}+h^{*}\right)=2 \mathbf{r}_{i}^{*}\left(t^{*}\right)-\mathbf{r}_{i}^{*}\left(t^{*}-h^{*}\right)+h^{* 2} \mathbf{f}_{i}^{*}\left(t^{*}\right) \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{r}_{j}^{*}\left(t^{*}+h^{*}\right)=2 \mathbf{r}_{j}^{*}\left(t^{*}\right)-\mathbf{r}_{j}^{*}\left(t^{*}-h^{*}\right)+\frac{h^{* 2}}{K} \mathbf{f}_{j}^{*}\left(t^{*}\right) \tag{3.9}
\end{equation*}
$$

As these equations indicate, in order to execute a simulation program, the Verlet algorithm needs the information of all the molecular positions at $t^{*}=0$ and the first time step $t^{*}=h^{*}$. If the initial positions and velocities of molecules and the system temperature T are assigned at $t^{*}=0$, then the molecular positions at $t^{*}=h^{*}$ may be evaluated from Eqs. (3.10) and (3.11).

For the given values of the molecular position $\mathbf{r}_{i}^{*}(0)$ and velocity $\mathbf{v}_{i}^{*}(0)$ at $t^{*}=0$, the position $\mathbf{r}_{i}^{*}\left(h^{*}\right)$ at $t^{*}=h^{*}$ can be evaluated from Eq. (1.8) as

$$
\begin{equation*}
\mathbf{r}_{i}^{*}\left(h^{*}\right)=\mathbf{r}_{i}^{*}(0)+h^{*} \mathbf{v}_{i}^{*}(0)+\frac{h^{* 2}}{2} \mathbf{f}_{i}^{*}(0) \tag{3.10}
\end{equation*}
$$

Similarly, the equation for a heavy molecule j can be obtained as

$$
\begin{equation*}
\mathbf{r}_{j}^{*}\left(h^{*}\right)=\mathbf{r}_{j}^{*}(0)+h^{*} \mathbf{v}_{j}^{*}(0)+\frac{h^{* 2}}{2 K} \mathbf{f}_{j}^{*}(0) \tag{3.11}
\end{equation*}
$$

Hence, if the initial position and velocity at $t^{*}=0$ are assigned, the position at the next time step can be evaluated from Eqs. (3.10) and (3.11), and the simulation can commence according to Eqs. (3.8) and (3.9).

3.1.4 Parameters for Simulations

In addition to the above assignment of the initial positions and velocities, it is necessary to assign the number of molecules N, the system temperature T^{*}, and the mass ratio K. Setting these parameters corresponds to the specification of the physical system of interest. Moreover, an appropriate time interval h^{*} and the total number of time steps needed for one simulation run must also be carefully specified in order to conduct a simulation successfully without serious problems, such as a system divergence. Additionally, other specifications may be necessary to assist the postprocessing analysis and visualization. For example, in making an animation, it may be necessary to write out various types of data at specific time steps.

The initial positions are usually assigned by a method employing uniform random numbers. The Maxwellian distribution function, which is the velocity distribution for thermodynamic equilibrium, can be written in nondimensional form for a two-dimensional system from Eq. (2.3) as

$$
\begin{equation*}
f^{*}\left(\mathbf{v}_{j}^{*}\right)=\left(\frac{K}{2 \pi T^{*}}\right) \exp \left\{-\frac{K}{2 T^{*}}\left(v_{j x}^{* 2}+v_{j y}^{* 2}\right)\right\} \tag{3.12}
\end{equation*}
$$

This equation is for a heavy molecule j, but it also holds for a light molecule i by replacing subscript i and K by j and unity, respectively. The method of assigning
the initial velocities according to this normal distribution function is explained in Appendix A2. Since the number of degrees of freedom for a two-dimensional system is different from that for a three-dimensional system, the relationship between the average velocity and the specified temperature has a slightly different expression from that in Eq. (2.7). If the square mean velocities of a light molecule i and heavy molecule j are denoted by $\overline{v_{i}^{* 2}}$ and $\overline{v_{j}^{* 2}}$, respectively, these quantities are related to the system temperature by

$$
\begin{equation*}
T^{*}=\frac{\overline{v_{i}^{* 2}}}{2}=K \frac{\overline{v_{j}^{* 2}}}{2} \tag{3.13}
\end{equation*}
$$

The number of light molecules N_{A} is taken to be equal to that of heavy molecules N_{B} where $N_{\mathrm{A}}=N_{\mathrm{B}}=20$ in this exercise. Note that in practice a personal computer can easily handle a much larger system, such as $N_{\mathrm{A}}=1000$ or 10,000 . Generally speaking, it is desirable to run a set of simulations where each parameter is given at least three different values in order to grasp how it may influence the simulation results. If there are many parameters governing a phenomenon, it is advisable that important parameters are taken in several different cases, with a typical value set assigned to the other parameters. In the present exercise, therefore, the temperature T^{*} and mass ratio K are taken as $T^{*}=1.5,5$, and 10 , and $K=2,5$, and 10 , respectively. The number density $n^{*}\left(=n \sigma^{2}\right)$ is taken only for the single case of $n^{*}=0.1$.

Finally, we discuss an appropriate value for the time interval, which has to be carefully determined because it has a significant influence on both the accuracy of the results and the stability of a simulation. If the mean speed of molecule i is assumed to be equal to the root mean square of velocity, the mean distance of travel for the translational motion during the time interval h is expected as $h\left(\overline{v_{i}^{2}}\right)^{1 / 2}$. This distance is required to be much shorter than the characteristic distance of the Lennard-Jones potential. Referring to Figure 2.8, this can be expressed mathematically as

$$
\begin{equation*}
h\left(\overline{v_{i}^{2}}\right)^{1 / 2} \ll 0.1 \times \sigma \tag{3.14}
\end{equation*}
$$

Using Eq. (3.13) and expressing the average velocity as a function of T^{*}, it follows that Eq. (3.14) can be written in nondimensional form as

$$
\begin{equation*}
h^{*} \ll 0.1 / \sqrt{2 T^{*}} \tag{3.15}
\end{equation*}
$$

As is clearly shown in Eq. (3.15), a shorter time interval is required for a higher temperature; for example, h^{*} is taken as $h^{*}=0.005,0.001$, and 0.0005 for $T^{*}=1$, 5 , and 10 , respectively. Unless the time interval is sufficiently short, molecules will have a tendency to overlap in a manner that is physically unreasonable, which will induce divergence of the system. After determining an appropriate value of the time interval, one can determine the length of a simulation run, that is, the total number of time steps. For example, if T^{*} and h^{*} are adopted as $T^{*}=10$ and
$h^{*}=0.0005$, the mean travel distance of molecules per unit time step $h^{*}\left(2 T^{*}\right)^{1 / 2}$ is approximately equal to 0.002 . Hence, if the total number of time steps is set to be 50,000 , the paths of the molecules will be of sufficient length to examine the diffusion phenomenon.

3.1.5 Results of Simulations

We show some results of the snapshots of molecules in Figures 3.1 and 3.2, which were obtained by conducting the simulation program that is shown in the next subsection. The figures were obtained for a molecular mass ratio of $K=2$ and 10 , respectively. Each figure shows two snapshots at $t^{*}=8$ for the two cases of the temperature $T^{*}=1.5$ and 5 . These figures clearly show that both species of molecules move more actively and diffuse further in the higher-temperature case. If the snapshots for the same temperature are compared, the diffusion of heavy molecules is less active, and this situation is more significant for the larger mass ratio.

The sequence of snapshots in Figure 3.3 shows how molecules diffuse from the center toward the outer simulation boundaries with time for $K=10$ and $T^{*}=5$. This sequence clearly shows that light molecules start to diffuse from the central area in the outward directions more significantly than heavy molecules.

These results indicate the main qualitative features of the diffusion phenomenon of light and heavy molecules. However, the above discussion is too simple from an academic point of view, therefore quantitative considerations and discussion based on the theoretical background are indispensable. How can we theoretically explain the qualitative features that both the light and heavy molecules diffuse more significantly for a higher temperature, and also that heavy molecules are less able to move for larger values of the mass ratio? This may be explained theoretically by considering that Eq. (3.13) implies the mean velocity is larger for a higher

Figure 3.1 Diffusion phenomena of molecules for the mass ratio $K=2$: (A) $T^{*}=1.5$ and (B) $T^{*}=5$ (white and black molecules denote light and heavy molecules, respectively).

Figure 3.2 Diffusion phenomena of molecules for the mass ratio $K=10$: (A) $T^{*}=1.5$ and (B) $T^{*}=5$ (white and black molecules denote light and heavy molecules, respectively).
temperature and that the mean velocity of the heavier molecules is smaller for a larger mass ratio. This may be one of the key theoretical considerations in fully understanding the present simulation results. In academic simulations, such theoretical considerations are conducted in more complex form by combining different threads in order to form a uniformed conclusion about the results. These sophisticated considerations help one to avoid presenting erroneous simulation results, which sometimes happens, for a variety of reasons. Although we here show only the results in the form of snapshots, academic research would require comprehensive quantitative results that might include the change in the internal structures and analysis of the transport coefficients. Furthermore, it will usually be necessary to check the influence of the time interval and the size of a system on the results.

3.1.6 Simulation Program

We here show a sample simulation program to simulate the present diffusion phenomenon. The program is written in the FORTRAN language. Since the main program is usually written in order to clarify a flow of procedure in a straightforward way, the assignment of the initial positions and velocities is treated in a subroutine subprogram. The reader is advised to develop a simulation program with a clear logical flow, thereby simplifying the debugging of a program under development and making it, on completion, a straightforward and useful resource.

For these reasons, the important variables in a program need to be explained in comments at the beginning of the program and each subroutine. These comments provide the user an image of a specific physical meaning from the variable name. In scientific numerical simulations, double-precision variables are usually used for real-type variables, but higher is sometimes more desirable in certain cases, such as solving the problem of an inverse matrix. The following simple simulation program

Figure 3.3 Movement of molecules with time for the mass ratio $K=10$ and the temperature $T^{*}=5:(\mathrm{A}) t^{*}=0$, (B) $t^{*}=6,(\mathrm{C}) t^{*}=12$, and (D) $t^{*}=18$.
has been developed according to these guidelines. The important variables are shown below to help the reader better understand the program.

```
RX(I),RY(I) : (x,y) coordinates of the position vector r}\mp@subsup{\mathbf{r}}{i}{*}\mathrm{ of molecule }
RXO (I),RYO (I) : Position vector ri*i
FX(I),FY(I) : Force fi* acting on molecule i
N : Number of molecules in the system
NA, NB : Numbers of light and heavy molecules, respectively
K : Mass ratio K=M/m
T : Desired temperature T*
H : Time interval }\mp@subsup{h}{}{*
NDENS : Number density of molecules
L
: Side length of the square simulation region
```

| RAN (J) | $: \quad$ Uniform random numbers ranging $0 \sim 1(J=1 \sim$ NRANMX $)$ |
| :--- | :--- | :--- |
| NRAN | $: \quad$ Number of used random numbers |

Several remarks are attached to the more important statements in the program for the benefit of the reader. Note that the line numbers are for the sake of convenience only and are not necessary during the execution of a simulation program.

$\mathrm{T}=5.0 \mathrm{DO}$
$\mathrm{K}=10 . \mathrm{DO}$
$\mathrm{NA}=20$
$\mathrm{NB}=\mathrm{NA}$
$\mathrm{H}=0.001 \mathrm{D} 0$
$\mathrm{RC}=3 . \mathrm{D} 0$
$\mathrm{N}=\mathrm{NA}+\mathrm{NB}$
NDENS = 0.1D0
$\mathrm{L}=\mathrm{DSQRT}(\mathrm{DBLE}(\mathrm{N}) /$ NDENS $)$
$\mathrm{HSQ}=\mathrm{H} * \mathrm{H}$
OPEN (24,FILE='aaa031.data',STATUS='UNKNOWN')
OPEN (25,FILE='aaa041.data',STATUS='UNKNOWN')
NTIMEMX $=10000$
NPRINT $=1000$
NGRAPH $=2000$
NOPT $=20$
IX $=0$
CALL RANCAL (NRANMX,IX,RAN)
NRAN $=1$
----- PARAMETER (2
(1) $N P=9$
----- PARAMETER (1) ------

10 CONTINUE --- FORCE CAL. ---
SWITCH $=0$
CALL FORCE (N, L, RC, SWITCH)
- The molecular positions are calculated at the
CALL POSITR1 (N, NA, H, K) the subroutine POSITR1.
WRITE (NP,5) T , K , NDENS , NA , NB , L , H, RC
CALL PRINTOUT (N, NA, TIME, NP)
TIME $=0 . D 0$
--- INITIALIZATION ---
START OF MAIN LOOP
SWITCH $=10$
DO 100 NTIME=1, NTIMEMX
-The forces acting on each particle are calculated in the subroutine FORCE.
-The molecular positions are calculated from Eqs. (3.8) and (3.9). The previous molecular positions are saved in RXO(*) and RYO(*), and the present are saved in $\mathrm{RX}\left({ }^{*}\right)$ and $\mathrm{RY}\left({ }^{*}\right)$.
CALL FORCE (N, L, RC,SWITCH)
CCO $=1 . \mathrm{DO} / \mathrm{K}$
CC1 $=1 . \mathrm{D} 0$
DO $50 \mathrm{I}=1, \mathrm{~N}$
IF (I .EQ. NA+1) $\mathrm{CC} 1=\mathrm{CCO}$
$\mathrm{RXI}=2 . \mathrm{DO}$ *RX(I) - RX0(I) + FX(I)*HSQ*CC1
$R Y I=2 . D 0 * R Y(I)-R Y 0(I)+F Y(I) * H S Q * C C 1$
$\operatorname{RXO}(I)=R X(I)$
$R Y O(I)=R Y(I)$
$R X(I)=R X I$
$R Y(I)=R Y I$
- The molecular positions are written out at every NPRINT
time steps for subsequently checking the reliability of results.
50 CONTINUE

0132 C 0133 0134
0135
0136
0137 C
0138
0139
0140
0141 C
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152 C
0153 C
0154
0155 C
0156 C
0157 C
0158 C
0159
0160 C
0161 C
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182 C
0183
0184 C
0185
0186 C
0187
0188 C
0189
0190
0191 C
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
C
C
C
IF (MOD (NTIME,NPRINT) .EQ. O) THEN
TIME $=H^{*}$ DBLE (NTIME)
CALL PRINTOUT(N, NA, TIME, NP)
END IF
IF (MOD (NTIME, NGRAPH) .EQ. O) THEN
NOPT $=$ NOPT +1
WRITE (NOPT,56) N, NA, NB, L, REAL (H) *REAL (NTIME)
DO 60 I $=1, N$
IF (I .LE. NA) THEN
- The molecular positions are written out at every
NGRAPH time steps for the postprocessing analysis.
$\mathrm{R}=1 . \mathrm{D} 0$
ELSE
$R=1.5 \mathrm{D} 0$
END IF
WRITE (NOPT,58) I, R, RX(I), RY(I)
60 CONTINUE
CLOSE (NOPT, STATUS='KEEP')
END IF
100 CONTINUE

CLOSE (NP, STATUS='KEEP')

/1H ,' MOLECULAR DYNAMICS SIMULATION
/1H ,'FOR TWO-DIMENSIONAL MOLECULAR DIFFUSION PROBLEM

/1H ,'TEMPERATURE=',F6.2 ,2X, 'MASS RATIO=',F6.2 ,2X,
' NDENS=', F6. 3
/1H ,'NUMBER OF MOLECULES OF SPECIES A=',I4
/1H ,'NUMBER OF MOLECULES OF SPECIES B=',I4
/1H ,'MAGNITUDE OF CAGE=',F7.2,2X, 'TIME DIFF.=',
F8.5 , 2x, 'CUTOFF RADIUS=',F6.2/)
56 FORMAT (3I6, 2E13.8)
58 FORMAT (I5, F8.3, 2E26.18)
STOP
END
年

C**** SUB PRINTOUT *****
SUBROUTINE PRINTOUT (N, NA, TIME, NP)
IMPLICIT REAL*8 ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$), INTEGER ($\mathrm{I}-\mathrm{N}$)
COMMON /BLOCK1/ RXO, RYO, RX, RY
PARAMETER (NN=80)
$\begin{array}{ll}\text { REAL*8 } & R X 0(N N), ~ R Y 0(N N), ~ R X(N N), ~ R Y(N N) ~ \\ \text { INTEGER N, NA, NP }\end{array}$
INTEGER N, NA, NP
WRITE (NP,2) TIME of the heavy molecules.
2 FORMAT (/1H ,'---------------- TIME=',E13.5/)
WRITE (NP,*)
WRITE (NP,*)'MOLECULES OF SPECIES A'
WRITE (NP, *)
DO 10 I=1,NA
WRITE (NP,5) I, RX(I), RY(I)
5 FORMAT(1H ,'I=',I3 ,5X, 'RX=',F8.2 ,5X, 'RY=',F8.2)
10 CONTINUE
WRITE (NP, *)

0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212 C
0213
0214 C
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
C
C
WRITE (NP, *)'MOLECULES OF SPECIES B'
WRITE (NP, *)
DO $20 \mathrm{I}=\mathrm{NA}+1$, N
WRITE (NP, 5) I, RX (I) , RY (I)
20 CONTINUE
CONTINUE
WRITE (NP,*)
RETURN
C**** SUB INIPOSIT *****
SUBROUTINE INIPOSIT (N, L)
IMPLICIT REAL*8 ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$), INTEGER ($\mathrm{I}-\mathrm{N}$)

- A subroutine for setting the
initial molecular positions.
C
COMMON /BLOCK1/ RX0, RY0, RX, RY
COMMON /BLOCK5/ NRAN , RAN , IX
C PARAMETER (NN=80, NRANMX=50000)
C REAL*8 RX0 (NN), RY0 (NN), RX (NN), RY (NN), L
REAL*8 RXIJ , RYIJ , RIJSQ , CRX0 , CRYO
REAL RAN (NRANMX)
INTEGER N, NRAN
C
DO $10 \mathrm{I}=1, \mathrm{~N}$
2 NRAN $=$ NRAN +1
CRX0 $=L^{*}(\operatorname{DBLE}($ RAN $(N R A N))-0.5 D 0)$
CRX0 $=L^{\star}(\operatorname{DBLE}($ RAN (NRAN $\left.))-0.5 D 0\right)$
NRAN $=$ NRAN +1
CRY0 $=L^{\star}(\operatorname{DBLE}($ RAN $($ NRAN $))-0.5 D 0)$
IF (I .NE. 1) THEN
DO $5 \mathrm{~J}=1, \mathrm{I}-1$
RXIJ $=$ CRXO - RXO (J)
RYIJ $=$ CRYO - RYO (J)
RXIJ $=$ RXIJ - DNINT $(R X I J / L) * L$
RYIJ $=$ RYIJ - DNINT $(R Y I J / L) * L$
RIJSQ $=$ RXIJ*RXIJ + RYIJ*RYIJ
RYIJ $=$ RYIJ - DNINT $(R Y I J / L) * I$
RIJSQ $=$ RXIJ*RXIJ + RYIJ*RYIJ
IF (RIJSQ.LT. 1.DO) GOTO 2
5 CONTINUE
END IF
RXO (I) $=$ CRX0
RYO (I) $=$ CRYO
C
10 CONTINUE
C**** SUB INIVEL ****
SUBROUTINE INIVEL (N, NA, NB, T, K, PI)
 - Dissimilar to the regular configuration
explained in Section 2.1, the initial
molecular positions are assigned using
random numbers. If $r_{i j}^{*}<1$, such molecu-
lar positions are not employed because
END
C
of an extraordinary overlap.
RETURN
REIURI
END
IMPLICIT REAL*8 ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$), INTEGER ($\mathrm{I}-\mathrm{N}$)
C
COMMON /BLOCK3/ VELX , VELY
COMMON /BLOCK5/ NRAN , RAN , IX
C
C
PARAMETER (NN=80, NRANMX=50000)
INTEGER N, NA, NB, NRAN
REAL*8 VELX (NN) , VELY(NN) , T , K , PI
$\begin{array}{ll}\text { REAL*8 } & \text { VELX (NN) , } \\ \text { REAL } & \text { RAN (NRANMX) }\end{array}$
REAL*8 MOMXA, MOMYA, MOMXB, MOMYB
REAL*8 CC0, CC1, CC10, CC11
- The initial velocities are set
- A subroutine for setting the
initial molecular velocities.
$\mathrm{CCO}=1 . \mathrm{DO} / \mathrm{K}$
$\mathrm{CC} 1=1 . \mathrm{D} 0$
according to Eq. (2.5) based on
DO $10 \mathrm{I}=1, \mathrm{~N}$
$\operatorname{IF}(\mathrm{I} \cdot \mathrm{EQ} . \mathrm{NA}+1) \mathrm{CC} 1=\mathrm{CC} 0$
$I F(I \quad . E Q . N A+1$
NRAN $=$ NRAN +1
CC10 $=\operatorname{DSQRT}(-2 . \mathrm{D} 0 * \mathrm{~T} * \mathrm{CC} 1 * \mathrm{DLOG}(\operatorname{DBLE}($ RAN (NRAN))))
NRAN $=$ NRAN +1
CC11 $=2 . D 0 * P I * D B L E(R A N(N R A N))$
$\operatorname{VELX}(I)=C C 10 * \operatorname{DCOS}(\mathrm{CC} 11)$
$\operatorname{VELY}(I)=C C 10 * D S I N(C C 11)$
Eq. (3.12) using random numbers.

0343	C		
0344		DO 10 J=I+1,N	
0345	C		FOR I-TH AND J-TH --
0346		RXIJ $=$ RXI - RX(${ }^{\text {R }}$	- The periodic $B C$ is used for
0347 0348		RYIJ = RYI - RY(J) IF (SWITCH . EQ (0) THEN	SWITCH $=0$.
0349		RXIJ = RXIJ-DNINT (RXIJ*LINV)*L	-The particles separating over the
0350		RYIJ $=$ RYIJ-DNINT (RYIJ*LINV)*L	cutoff distance $r_{\text {coff }}^{*}$ are passed
0351		END IF	without calculation of forces.
0352		IF (DABS (RXIJ) .GT. RC) GOTO 10	
0353		IF (DABS (RYIJ) .GT. RC) GOTO 10	- The forces between molecules
0354		RIJSQ $=$ RXIJ*RXIJ + RYIJ*RYIJ	are calculated from Eq. (3.7).
0355		IF (RIJSQ .GT. RCSQ) GOTO 10	
0356	C		-The factor 24 in Eq. (3.7) will be
0357		SR2 = 1.D0/RIJSQ	multiplied later.
0358		SR6 = SR2**3	- The action-reaction law can
0359		SR12 = SR6**2	- The action-reaction law can
0360		FIJ $=(2 . D 0 *$ SR12-SR6) /RIJSQ	provide the force $F X(J)$ and $F Y(J)$
0361		FXIJ = FIJ*RXIJ	as (-FXIJ) and (-FYIJ).
0362		FYIJ = FIJ*RYIJ	
0363		FXI = FXI + FXIJ	
0364		FYI = FYI + FYIJ	
0365		FX(J) = FX(J) - FXIJ	
0366		FY(J) = FY(J) - FYIJ	
0367	10	CONTINUE	
0368	C		
0369		FX(I) $=$ FXI	
0370		FY(I) $=$ FYI	
0371	C		
0372	20	CONTINUE	
0373	C		
0374		DO $30 \mathrm{I}=1, \mathrm{~N}$	
0375		$F X(I)=F X(I) * 24 . D 0$	
0376		$F Y(I)=F Y(I) * 24 . D 0$	
0377	30	CONTINUE	
$\begin{aligned} & 0378 \\ & 0379 \end{aligned}$			$\begin{aligned} & \text { RETURN } \\ & \text { END } \end{aligned}$
0380	C****	SUB POSITR1 ****	
0381		SUBROUTINE POSITR1($\mathrm{N}, \mathrm{NA}, \mathrm{H}, \mathrm{K}$)	- The starting value of the
0382 0383	C	IMPLICIT REAL*8 ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$), INTEGER ($\mathrm{I}-\mathrm{N}$)	molecular positions is calculated
0384	C		from Eqs. (3.10) and (3.11).
0385		COMMON /BLOCK1/ RX0 , RY0, RX, RY	
0386		COMMON /BLOCK2/ FX , FY	
0387		COMMON /BLOCK3/ VELX, VELY	
0388	C		
0389		PARAMETER (NN=80)	
0390	C		
0391		REAL*8 RX0 (NN), RYO (NN), RX (NN) , RY (NN)	
0392		REAL*8 FX(NN) , FY(NN) , VELX (NN), VELY(NN)	
0393		REAL* 8 H , K	
0394		REAL*8 HSQ2, CC0, CC1	
0395		INTEGER NA , N	
0396	C		
0397		HSQ2 $=H^{*} \mathrm{H} / 2$. D 0	
0398		CC0 $=1 . \mathrm{D} 0 / \mathrm{K}$	
0399		$\mathrm{CC1}=1 . \mathrm{D} 0$	
0400	C		
0401		DO $10 \mathrm{I}=1, \mathrm{~N}$	
0402		IF (I .EQ. NA+1) CC1 = CC0	
0403		$\mathrm{RX}(\mathrm{I})=\mathrm{RXO}(\mathrm{I})+\mathrm{H}$ *VELX(I) + HSQ2*FX(I)*CCI	CC 1
0404		RY(I) $=$ RYO(I) + H*VELY(I) + HSQ2*FY(I)*CC	CC 1
0405	10	CONTINUE	
0406			RETURN
0407			END
0408	C****	SUB RANCAL ****	
0409 0410	C	SUBROUTINE RANCAL (N, IX, X)	- A subroutine for generating a
0411		DIMENSION $\mathrm{X}(\mathrm{N})$	niform random number sequence.
0412		DATA INTEGMX/2147483647/	
0413		DATA INTEGST,INTEG/584287,48828125/	

```
0414 C
0415 AINTEGMX = REAL ( INTEGMX )
0416 C
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0 4 2 7
```



```
0429 C (SINGLE PRECISION) FOR 64-BIT COMPUTER. *
0430 C N : NUMBER OF RANDOM NUMBERS TO GENERATE *
0431 C IX : INITIAL VALUE OF RANDOM NUMBERS (POSITIVE INTEGER) *
0432 C : LAST GENERATED VALUE IS KEPT *
0433 C X(N) : GENERATED RANDOM NUMBERS (0<X (N)<1) *
0434C***********************************************************************
0435 C**** SUB RANCAL ****
0436 ccc SUBROUTINE RANCAL ( N, IX, X )
0437 C
0 4 3 8 ~ C C C ~ I M P L I C I T ~ R E A L * 8 ( A - H , O - Z ) , I N T E G E R * 8 ~ ( I - N )
0439 C
0440 ccc REAL X(N)
0 4 4 1 ~ C C C ~ I N T E G E R * 8 ~ I N T E G M X , ~ I N T E G 6 4 , ~ I N T E G S T , ~ I N T E G
0442 C
0443 CCC DATA INTEGMX/2147483647/
0444 CCC DATA INTEG64/2147483648/
0445 cCc DATA INTEGST,INTEG/584287,48828125/
0446 C
0 4 4 7 \text { CCC AINTEGMX = REAL ( INTEGMX )}
0448 ccc AINTEGMX = REAL ( INTEG64 )
0449 C
0450 ccc IF ( IX.LT.0 ) PAUSE
0451 ccc IF (IX.EQ.0) IX = INTEGST
0452 ccc DO 30 I=1,N
0453 ccc IX = IX*INTEG
0454 ccc IX = KMOD (IX,INTEG64)
0 4 5 5 ~ C C C ~ I F ~ ( I X ) ~ 1 0 , ~ 2 0 , ~ 2 0 ~
0456 CCC10 IX = (IX+INTEGMX) +1
0457 ccc20 X(I) = REAL(IX)/AINTEGMX
0458 ccc30 CONTINUE
0459 ccc RETURN
0460 ccc END
```


3.2 Behavior of Rod-like Particles in a Simple Shear Flow

In the present section, we consider the behavior of axisymmetric particles, known as spherocylinders, in a simple shear flow as the second demonstration of the MD method. MD simulations for rod-like particles are much more complex than those for a spherical particle system, since the translational and rotational motion of rodlike particles must be treated simultaneously. Hence, this exercise is of a considerably high level and may be applicable to a range of academic research fields. The present simulation method for a spherocylinder particle system is expected to offer many important suggestions in developing practical simulation programs, such as for the adsorption phenomenon between carbon-nanotubes and nonspherical molecules.

3.2.1 Physical Phenomena of Interest

The dispersion of interest in this exercise is composed of spherocylinder particles with mass m and inertia moment I, and it is subjected to a simple shear flow. The spherocylinder particle has a positive and negative magnetic charges (NS poles) at each center of the hemisphere cap situated at both ends of the cylindrical body. This magnetic particle is coated with a steric (surfactant) layer, which acts to prevent the particles from aggregating and thus sedimentation in the gravitational field. In this exercise we consider how such a dispersion behaves under the circumstance of an applied magnetic field in addition to the simple shear flow.

The main subjects for the formalization of this problem are explained in the following subsections. Essentially, they are the modeling of the particles, the formalization of the equation of motion, the derivation of forces and torques acting on particles, and the nondimensionalization of quantities.

3.2.2 Particle Model

As shown in Figure 3.4, a magnetic rod-like particle is modeled as a spherocylinder, with the magnetic charges $\pm q$ at the center of each hemisphere cap, which has a length l_{0} and a cylindrical diameter d of the cylindrical part. The particle is covered with a uniform steric (surfactant) layer with thickness δ, and the overlap of these steric layers induces a repulsive interaction between the particles. In the following we show magnetic forces and torques acting on the magnetic particles.

If a magnetic charge q and a magnetic dipole moment \mathbf{m} are acted upon by a uniform applied magnetic field \mathbf{H}, then the force \mathbf{F} acting on the charge and the torque \mathbf{T} acting on the dipole moment may be found from a standard textbook on magnetic material engineering as

$$
\begin{equation*}
\mathbf{F}=\mu_{0} q \mathbf{H}, \quad \mathbf{T}=\mu_{0} \mathbf{m} \times \mathbf{H} \tag{3.16}
\end{equation*}
$$

The magnetic field $\mathbf{H}^{(\text {ind })}$ at an arbitrary relative position $\mathbf{r}(r=|\mathbf{r}|)$ induced by the magnetic charge q is expressed as

$$
\begin{equation*}
\mathbf{H}^{(\mathrm{ind})}=\frac{q}{4 \pi r^{2}} \cdot \frac{\mathbf{r}}{r} \tag{3.17}
\end{equation*}
$$

Note that in this book we employ such a unit system concerning magnetic properties that the magnetization corresponds to the magnetic field, that is,

Figure 3.4 Particle model.
$\mathbf{B}=\mu_{0}(\mathbf{H}+\mathbf{M})$; the correspondence table between two representative unit systems is shown in Appendix A4. With these basic formulae, we derive the magnetic force and torque acting on the spherocylinder particle shown in Figure 3.4.

If the position vector of the center of particle i is denoted by \mathbf{r}_{i} and the particle direction by \mathbf{e}_{i}, then the position vectors $\mathbf{r}_{i}{ }^{+}$and $\mathbf{r}_{i}{ }^{-}$of the magnetic charges q and $-q$ can be expressed as

$$
\begin{equation*}
\mathbf{r}_{i}^{+}=\mathbf{r}_{i}+\left(l_{0} / 2\right) \mathbf{e}_{i}, \quad \mathbf{r}_{i}^{-}=\mathbf{r}_{i}-\left(l_{0} / 2\right) \mathbf{e}_{i} \tag{3.18}
\end{equation*}
$$

The magnetic field $\mathbf{H}_{i j}^{+}$at the position \mathbf{r}_{i}^{+}induced by particle j can be written from Eq. (3.17) as

$$
\begin{align*}
\mathbf{H}_{i j}^{+} & =\frac{q}{4 \pi} \cdot \frac{\mathbf{r}_{i}^{+}-\mathbf{r}_{j}^{+}}{\left|\mathbf{r}_{i}^{+}-\mathbf{r}_{j}^{+}\right|^{3}}-\frac{q}{4 \pi} \cdot \frac{\mathbf{r}_{i}^{+}-\mathbf{r}_{j}^{-}}{\left|\mathbf{r}_{i}^{+}-\mathbf{r}_{j}^{-}\right|^{3}} \\
& =\frac{q}{4 \pi}\left\{\frac{\mathbf{r}_{i j}+\frac{l_{0}}{2}\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)}{\left|\mathbf{r}_{i j}+\frac{l_{0}}{2}\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\right|^{3}}-\frac{\mathbf{r}_{i j}+\frac{l_{0}}{2}\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)}{\left|\mathbf{r}_{i j}+\frac{l_{0}}{2}\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)\right|^{3}}\right\} \tag{3.19}
\end{align*}
$$

Similarly, $\mathbf{H}_{i j}^{-}$at \mathbf{r}_{i}^{-}induced by particle j is written as

$$
\begin{equation*}
\mathbf{H}_{i j}^{-}=\frac{q}{4 \pi}\left\{\frac{\mathbf{r}_{i j}-\left(l_{0} / 2\right)\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)}{\left|\mathbf{r}_{i j}-\left(l_{0} / 2\right)\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)\right|^{3}}-\frac{\mathbf{r}_{i j}-\left(l_{0} / 2\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)}{\left|\mathbf{r}_{i j}-\left(l_{0} / 2\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\right|^{3}}\right\} \tag{3.20}
\end{equation*}
$$

in which $\mathbf{r}_{i j}=\mathbf{r}_{i}-\mathbf{r}_{j}$. Hence, the magnetic forces acting on the positive and negative magnetic charges of particle $i, \mathbf{F}_{i j}^{+}$and $\mathbf{F}_{i j}^{-}$, by the magnetic charges of particle j, are finally written as

$$
\begin{align*}
& \mathbf{F}_{i j}^{+}=\mu_{0} q \mathbf{H}_{i j}^{+}=\frac{\mu_{0} q^{2}}{4 \pi}\left\{\frac{\mathbf{r}_{i j}+\left(l_{0} / 2\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)}{\left|\mathbf{r}_{i j}+\left(l_{0} / 2\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\right|^{3}}-\frac{\mathbf{r}_{i j}+\left(l_{0} / 2\right)\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)}{\left|\mathbf{r}_{i j}+\left(l_{0} / 2\right)\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)\right|^{3}}\right\} \tag{3.21}\\
& \mathbf{F}_{i j}^{-}=-\mu_{0} q \mathbf{H}_{i j}^{-}=-\frac{\mu_{0} q^{2}}{4 \pi}\left\{\frac{\mathbf{r}_{i j}-\left(l_{0} / 2\right)\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)}{\left|\mathbf{r}_{i j}-\left(l_{0} / 2\right)\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)\right|^{3}}-\frac{\mathbf{r}_{i j}-\left(l_{0} / 2\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)}{\left|\mathbf{r}_{i j}-\left(l_{0} / 2\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\right|^{3}}\right\} \tag{3.22}
\end{align*}
$$

Similarly, the magnetic torque about the particle axis of particle $i, \mathbf{T}_{i j}^{+}$, due to the force acting on the positive charge by the magnetic charges of particle j, is obtained as

$$
\begin{equation*}
\mathbf{T}_{i j}^{+}=\frac{l_{0}}{2} \mathbf{e}_{i} \times \mathbf{F}_{i j}^{+}=\frac{\mu_{0} q^{2} l_{0}}{8 \pi}\left\{\frac{\mathbf{e}_{i} \times \mathbf{r}_{i j}+\frac{l_{0}}{2}\left(-\mathbf{e}_{i} \times \mathbf{e}_{j}\right)}{\left|\mathbf{r}_{i j}+\frac{l_{0}}{2}\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\right|^{3}}-\frac{\mathbf{e}_{i} \times \mathbf{r}_{i j}+\frac{l_{0}}{2}\left(\mathbf{e}_{i} \times \mathbf{e}_{j}\right)}{\left|\mathbf{r}_{i j}+\frac{l_{0}}{2}\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)\right|^{3}}\right\} \tag{3.23}
\end{equation*}
$$

Also, such a torque $\mathbf{T}_{i j}^{-}$due to the force acting on the negative charge is as follows:

$$
\begin{equation*}
\mathbf{T}_{i j}^{-}=-\frac{l_{0}}{2} \mathbf{e}_{i} \times \mathbf{F}_{i j}^{-}=\frac{\mu_{0} q^{2} l_{0}}{8 \pi}\left\{\frac{\mathbf{e}_{i} \times \mathbf{r}_{i j}-\frac{l_{0}}{2}\left(\mathbf{e}_{i} \times \mathbf{e}_{j}\right)}{\left|\mathbf{r}_{i j}-\frac{l_{0}}{2}\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)\right|^{3}}-\frac{\mathbf{e}_{i} \times \mathbf{r}_{i j}-\frac{l_{0}}{2}\left(-\mathbf{e}_{i} \times \mathbf{e}_{j}\right)}{\left|\mathbf{r}_{i j}-\frac{l_{0}}{2}\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\right|^{3}}\right\} \tag{3.24}
\end{equation*}
$$

From these equations, the total magnetic force and torque acting on particle i by particle j are written as

$$
\begin{equation*}
\mathbf{F}_{i j}^{(\mathrm{m})}=\mathbf{F}_{i j}^{+}+\mathbf{F}_{i j}^{-}, \quad \mathbf{T}_{i j}^{(\mathrm{m})}=\mathbf{T}_{i j}^{+}+\mathbf{T}_{i j}^{-} \tag{3.25}
\end{equation*}
$$

It is noted that $\mathbf{F}_{j i}^{(\mathrm{m})}=-\mathbf{F}_{i j}^{(\mathrm{m})}$ due to the action-reaction law.
A uniform applied magnetic field does not induce a force acting on a particle because there is no field gradient, but it does induce torque. Similar to the above derivation, the torque due to an applied magnetic field can be derived as

$$
\begin{equation*}
\mathbf{T}_{i}^{(\mathrm{H})}=\frac{l_{0}}{2} \mathbf{e}_{i} \times \mu_{0} q \mathbf{H}-\frac{l_{0}}{2} \mathbf{e}_{i} \times\left(-\mu_{0} q \mathbf{H}\right)=\mu_{0}\left(l_{0} q \mathbf{e}_{i}\right) \times \mathbf{H} \tag{3.26}
\end{equation*}
$$

Since the force and torque due to the overlap of the steric layers cannot be derived straightforwardly, we will discuss this interaction in detail later.

3.2.3 Equation of Motion and Molecular Dynamics Algorithm

The spherocylinder particle is axisymmetric and therefore we can employ the method shown in Section 1.1.2 for simulating the motion of particles. However, several modifications are necessary because we consider the behavior of the particles in a simple shear flow, not in a quiescent flow. If the particles are smaller than micron order, the inertia terms are negligible, which means that we can use the equations shown in Section 1.1.2. The equations of motion under the circumstance of a simple shear flow can be obtained by adding new terms due to the flow into Eqs. (1.42) and (1.43) as

$$
\begin{align*}
& \mathbf{v}_{i}^{\|}=\mathbf{U}^{\|}\left(\mathbf{r}_{i}\right)+\frac{1}{\eta X^{A}} \mathbf{F}_{i}^{\|}, \quad \mathbf{v}_{i}^{\perp}=\mathbf{U}^{\perp}\left(\mathbf{r}_{i}\right)+\frac{1}{\eta Y^{A}} \mathbf{F}_{i}{ }^{\perp} \tag{3.27}\\
& \boldsymbol{\omega}_{i}^{\|}=\mathbf{\Omega}^{\|}+\frac{1}{\eta X^{C}} \mathbf{T}_{i}^{\|}, \quad \boldsymbol{\omega}_{i}{ }^{\perp}=\mathbf{\Omega}^{\perp}+\frac{1}{\eta Y^{C}} \mathbf{T}_{i}{ }^{\perp}-\frac{Y^{H}}{Y^{C}}\left(\varepsilon \cdot \mathbf{e}_{i} \mathbf{e}_{i}\right): \mathbf{E} \tag{3.28}
\end{align*}
$$

in which an arbitrary vector is decomposed into the two vectors parallel and normal to the particle axis. These vectors are denoted by superscripts $\|$ and \perp, respectively: for example, $\mathbf{v}_{i}=\mathbf{v}_{i}^{\|}+\mathbf{v}_{i}{ }^{\perp}$. We here treat only the angular velocity $\omega_{i}{ }^{\perp}$ and neglect $\omega_{i}^{\|}$because the rotational motion about the particle axis does not affect the
particle orientation and the magnetic interactions. The velocity field $\mathbf{U}(\mathbf{r})$ for a simple shear flow is defined as

$$
\mathbf{U}(\mathbf{r})=\dot{\gamma}\left[\begin{array}{lll}
0 & 1 & 0 \tag{3.29}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

in which \mathbf{r} is the position vector from the origin of the coordinate system, expressed as $\mathbf{r}=(x, y, z)$. In this flow case, the rotational angular velocity $\boldsymbol{\Omega}$ and the rate-of-strain tensor \mathbf{E} are derived from the definitions as

$$
\boldsymbol{\Omega}=\frac{1}{2} \nabla \times \mathbf{U}(r)=-\frac{\dot{\gamma}}{2}\left[\begin{array}{l}
0 \tag{3.30}\\
0 \\
1
\end{array}\right], \quad \mathbf{E}=\frac{1}{2}\left(\nabla \mathbf{U}+(\nabla \mathbf{U})^{t}\right)=\frac{\dot{\gamma}}{2}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

in which the superscript t denotes a transposed tensor, and $\dot{\gamma}$ is the shear rate and a constant representing the strength of a shear flow. Also, ε appeared as the last term in the second equation of Eq. (3.28) is a third-rank tensor called "Eddington's epsilon." The $i j k$-component of this tensor, $\varepsilon_{i j k}$, is expressed as

$$
\varepsilon_{i j k}=\left\{\begin{array}{lll}
1 & \text { for } & (i, j, k)=(x, y, z),(y, z, x),(z, x, y) \tag{3.31}\\
-1 & \text { for } & (i, j, k)=(z, y, x),(y, x, z),(x, z, y) \\
0 & \text { for } & \text { the other cases }
\end{array}\right\}
$$

With these characteristics of $\varepsilon_{i j k}$ and \mathbf{E} in Eq. (3.30), the last term of the second equation in Eq. (3.28) can be simplified to

$$
-\frac{Y^{H}}{Y^{C}}\left(\varepsilon \cdot \mathbf{e}_{i} \mathbf{e}_{i}\right): \mathbf{E}=-\frac{Y^{H}}{Y^{C}} \cdot \frac{\dot{\gamma}}{2}\left[\begin{array}{c}
e_{i z} e_{i x} \tag{3.32}\\
-e_{i z} e_{i y} \\
e_{i y}{ }^{2}-e_{i x}{ }^{2}
\end{array}\right]
$$

In obtaining Eq. (3.32), the following simple formulae have been used:

$$
\begin{align*}
& \mathbf{a b}=\left[\begin{array}{lll}
a_{x} b_{x} & a_{x} b_{y} & a_{x} b_{z} \\
a_{y} b_{x} & a_{y} b_{y} & a_{y} b_{z} \\
a_{z} b_{x} & a_{z} b_{y} & a_{z} b_{z}
\end{array}\right] \tag{3.33}\\
& \mathbf{A :} \mathbf{:} \mathbf{B}=A_{x x} B_{x x}+A_{x y} B_{y x}+A_{x z} B_{z x}+A_{y x} B_{x y}+A_{y y} B_{y y}+A_{y z} B_{z y} \\
& \quad+A_{z x} B_{x z}+A_{z y} B_{y z}+A_{z z} B_{z z}
\end{aligned} \quad \begin{aligned}
& (\varepsilon \cdot \mathbf{a b}): \mathbf{A}=\left[\begin{array}{l}
a_{z}\left(b_{x} A_{x y}+b_{y} A_{y y}+b_{z} A_{z y}\right)-a_{y}\left(b_{x} A_{x z}+b_{y} A_{y z}+b_{z} A_{z z}\right) \\
a_{x}\left(b_{x} A_{x z}+b_{y} A_{y z}+b_{z} A_{z z}\right)-a_{z}\left(b_{x} A_{x x}+b_{y} A_{y x}+b_{z} A_{z x}\right) \\
a_{y}\left(b_{x} A_{x x}+b_{y} A_{y x}+b_{z} A_{z x}\right)-a_{x}\left(b_{x} A_{x y}+b_{y} A_{y y}+b_{z} A_{z y}\right)
\end{array}\right] \tag{3.34}
\end{align*}
$$

in which \mathbf{a} and \mathbf{b} are arbitrary one-rank tensors, \mathbf{A} and \mathbf{B} are arbitrary two-rank tensors, and ε is the three-rank tensor previously defined.

The quantities used to determine the translational and angular velocities from Eqs. (3.27) and (3.28) can be obtained from the force \mathbf{F}_{i} and torque \mathbf{T}_{i} acting on particle i and also from the particle direction \mathbf{e}_{i} as

$$
\left.\begin{array}{ll}
\mathbf{F}_{i}^{\|}=\left(\mathbf{F}_{i} \cdot \mathbf{e}_{i}\right) \mathbf{e}_{i}, & \mathbf{F}_{i}{ }^{\perp}=\mathbf{F}_{i}-\mathbf{F}_{i}^{\|}, \tag{3.36}\\
\mathbf{T}_{i}^{\perp}=\mathbf{T}_{i}-\mathbf{T}_{i}^{\|}, & \boldsymbol{\Omega}_{i}^{\|}=\left(\mathbf{\Omega}_{i} \cdot \mathbf{e}_{i}\right) \mathbf{e}_{i}, \\
\boldsymbol{\Omega}_{i}{ }^{\perp}=\mathbf{\Omega}_{i}-\mathbf{e}_{i}, \\
\Omega_{i}^{\|}
\end{array}\right\}
$$

With the solutions of $\mathbf{v}_{i}(t)$ and $\omega_{i}(t)$, the particle position $\mathbf{r}_{i}(t+\Delta t)$ and the particle direction $\mathbf{e}_{i}(t+\Delta t)$ at the next time step can be evaluated from Eqs. (1.45) and (1.46). That is,

$$
\begin{align*}
& \mathbf{r}_{i}(t+\Delta t)=\mathbf{r}_{i}(t)+\Delta t \mathbf{v}_{i}(t) \tag{3.37}\\
& \mathbf{e}_{i}(t+\Delta t)=\mathbf{e}_{i}(t)+\Delta t \omega_{i}^{\perp}(t) \times \mathbf{e}_{i}(t) \tag{3.38}
\end{align*}
$$

Finally, we discuss the resistance functions $X^{A}, Y^{A}, X^{C}, Y^{C}$, and Y^{H} [4,16-18]. There would be no difficulties for simulations if the solutions of these resistance functions were known for a spherocylinder particle. However, the solutions are known only for a cylindrical particle with sufficiently large aspect ratio, or for the spherical particle explained before. These solutions are for a solid particle, but in our case we are considering a solid particle coated with a soft steric layer, and the resistance functions have not yet been solved for this case.

Hence, in conducting MD simulations for the present particle dispersion, we have several options for overcoming the problem for the resistance functions. The first option is to tackle the difficult mathematical problem of solving these resistance functions. The second option is to apply the known solutions of a solid spheroidal particle as the first approximation. The third option is to introduce the modeling of the spherocylinder particle in order for the known solutions to be applied more accurately. Here we adopt the second option, that is, the solutions shown in Eqs. (1.35) and (1.36) for a solid spheroid are used for the resistance functions for the spherocylinder shown in Figure 3.4. In addition, the resistance function Y^{H} can be written as

$$
\begin{equation*}
Y^{H}=8 \pi a^{3} \cdot \frac{4}{3} \cdot \frac{s^{5}}{-2 s+\left(1+s^{2}\right) L} \tag{3.39}
\end{equation*}
$$

In the limiting case of $s \ll 1$, this can be approximated as

$$
\begin{equation*}
Y^{H}=8 \pi a^{3}\left(\frac{1}{2} s^{2}-\frac{1}{5} s^{4}+\cdots\right) \tag{3.40}
\end{equation*}
$$

in which a, b, and s are assumed to be expressed as $a=l / 2+\delta, b=d / 2+\delta$, and $s=\sqrt{(l / 2+\delta)^{2}-(d / 2+\delta)^{2}} /(l / 2+\delta)$, respectively.

3.2.4 Modeling of Steric Repulsive Interaction

If the two spherocylinder particles coated with a surfactant layer, shown in Figure 3.4, overlap, how should we write this repulsive interaction as a mathematical expression? To answer this question, we first need to analyze the behavior of the surfactant molecules in detail in such a situation. However, it may be possible to develop a physically acceptable model as a first approximation by combining the known solutions in a sophisticated manner. For a spherical particle system, an expression for the repulsive interaction has already been obtained. Hence, the extension of this potential to the present spherocylinder particle system enables us to overcome the problem of the unknown potential for a spherocylinder coated with a soft surfactant layer.

We consider a spherical particle modeled as a solid sphere of diameter d coated by a uniform surfactant layer of thickness δ. An interaction energy arising from the overlap of these two particles has already been derived from the entropy calculation as $[31,32]$

$$
\begin{equation*}
u_{i j}^{(\mathrm{V})}=\frac{\pi d^{2} n_{\mathrm{s}} k T}{2}\left\{2-\left(\frac{r_{i j}}{\delta}\right) \ln \left(\frac{d+2 \delta}{r_{i j}}\right)-\frac{r_{i j}-d}{\delta}\right\} \tag{3.41}
\end{equation*}
$$

in which n_{s} is the number of surfactant molecules per unit area on the particle surface, k is Boltzmann's constant, and T is the system temperature. The force acting on particle $i, \mathbf{F}_{i j}^{(\mathrm{V})}$, by particle j due to the overlap can be obtained from this equation as

$$
\begin{equation*}
\mathbf{F}_{i j}^{(\mathrm{V})}=-\frac{\partial}{\partial \mathbf{r}_{i}} u_{i j}^{(\mathrm{V})}=-\frac{\partial}{\partial \mathbf{r}_{i j}} u_{i j}^{(\mathrm{V})}=\frac{\pi d^{2} n_{\mathrm{s}} k T}{2 \delta} \mathbf{t}_{i j} \ln \left(\frac{d+2 \delta}{r_{i j}}\right) \quad\left(\text { for } d \leq r_{i j} \leq d+2 \delta\right) \tag{3.42}
\end{equation*}
$$

in which $\mathbf{t}_{i j}\left(=\mathbf{r}_{i j} / r_{i j}\right)$ is the unit vector. It is shown in Eq. (3.42) that this repulsive force acts along a line drawn between the two particles.

We now idealize the spherocylinder particle in order to apply Eq. (3.42). The most feasible model is a linear sphere-connected model shown in Figure 3.5. In this model, solid spheres are linearly connected in contact and covered by a uniform surfactant layer of thickness δ. If the constituent spherical particles are located at each fixed position in the rod-like particle, this model does not necessarily yield

Figure 3.5 Sphere-connected model for calculating repulsive interactions.
a maximum repulsive interaction energy at a position where the maximum energy is provided from the overlap of the original spherocylinder particles. In order to overcome this shortcoming, the above model must be slightly modified to yield a maximum repulsive energy at a position of minimum separation between the two spherocylinder particles. To do so, two spheres are first located at the positions in each spherocylinder, where a maximum repulsive energy is yielded, and then other spheres are linearly added on each side of these two spheres on the original particle to produce a modified sphere-connected model. This is the particle model we use for evaluating interaction energies due to particle overlap.

In the following paragraphs, we show a method for calculating the force and torque acting between particles i and j based on the above-mentioned sphereconnected model. An important task for evaluating such a force and torque is to find the positions along each particle axis at which the separation between the two spherocylinder particles is minimized for the given position and orientation of these two particles. Hence, we focus on a method for finding this minimum separation, including a way of assessing the particle overlap.

The notation \mathbf{r}_{i} is used for the center of spherocylinder particle i shown in Figure 3.4; similarly, \mathbf{r}_{j} is used for particle j. Figure 3.6 demonstrates that there is a view angle from which the two particles can be seen as existing in two parallel planes. In Figure 3.6, two points P_{i} and P_{j} are taken on each particle axis line such that the line drawn between these points is normal to the two parallel planes. Consideration of the two points P_{i} and P_{j} enables us to make a systematic and sophisticated assessment of the particle overlap. If the points P_{i} and P_{j} are denoted by $\left(\mathbf{r}_{i}+k_{i} \mathbf{e}_{i}\right)$ and $\left(\mathbf{r}_{j}+k_{j} \mathbf{e}_{j}\right)$, respectively, the line $\overline{P_{i} P_{j}}$ has to satisfy the following equation from the orthogonality condition:

$$
\begin{equation*}
\mathbf{e}_{i} \cdot\left\{\left(\mathbf{r}_{i}+k_{i} \mathbf{e}_{i}\right)-\left(\mathbf{r}_{j}+k_{j} \mathbf{e}_{j}\right)\right\}=0, \quad \mathbf{e}_{j} \cdot\left\{\left(\mathbf{r}_{i}+k_{i} \mathbf{e}_{i}\right)-\left(\mathbf{r}_{j}+k_{j} \mathbf{e}_{j}\right)\right\}=0 \tag{3.43}
\end{equation*}
$$

The solutions of k_{i} and k_{j} satisfying this relationship leads to the determination of the specific positions of P_{i} and P_{j}. Equation (3.43) yields the final results as

$$
\left[\begin{array}{l}
k_{i} \tag{3.44}\\
k_{j}
\end{array}\right]=\frac{1}{1-\left(\mathbf{e}_{i} \cdot \mathbf{e}_{j}\right)^{2}}\left[\begin{array}{cc}
-1 & \mathbf{e}_{i} \cdot \mathbf{e}_{j} \\
-\mathbf{e}_{i} \cdot \mathbf{e}_{j} & 1
\end{array}\right]\left[\begin{array}{c}
\mathbf{e}_{i} \cdot \mathbf{r}_{i j} \\
\mathbf{e}_{i} \cdot \mathbf{r}_{i j}
\end{array}\right]
$$

This equation has been derived under the assumption of $\mathbf{e}_{i} \cdot \mathbf{e}_{j} \neq \pm 1$. This condition is necessary for the existence of the solution because $\mathbf{e}_{i} \cdot \mathbf{e}_{j}= \pm 1$ implies a parallel

Figure 3.6 Assessment of the particle overlap.
or line configuration of the particles. If the line $\overline{P_{i} P_{j}}$ is longer than $(d+2 \delta)$, there is no particle overlap. Hence, we first consider the general case under the assumptions that $\mathbf{e}_{i} \cdot \mathbf{e}_{j} \neq \pm 1$ and the line $\overline{P_{i} P_{j}}$ is shorter than $(d+2 \delta)$.

There are three cases of overlap for the two spherocylinder particles: that is, hemisphere-hemisphere, hemisphere-cylinder, and cylinder-cylinder overlap. We first consider a cylinder-cylinder overlap between particles i and j. The condition for this overlap is derived as

$$
\begin{equation*}
\left|\left(\mathbf{r}_{i}+k_{i} \mathbf{e}_{i}\right)-\left(\mathbf{r}_{j}+k_{j} \mathbf{e}_{j}\right)\right|<d+2 \delta, \quad\left|k_{i}\right|<l_{0} / 2, \quad\left|k_{j}\right|<l_{0} / 2 \tag{3.45}
\end{equation*}
$$

Next, we consider the criterion for the overlap between the cylindrical part of particle i and the hemisphere cap of particle j. In this case, the conditions of $\left|k_{i}\right|<l_{0} / 2$ and $\left|k_{j}\right| \geq l_{0} / 2$ are satisfied. A vertical line is drawn from the center of the hemisphere to the axis line of particle i, and the intersection point on this axis line of particle i is denoted by $Q_{i(j)}$, which is expressed as $\left(\mathbf{r}_{i}+k_{i}^{s} \mathbf{e}_{i}\right)$ with an unknown constant k_{i}^{s}. The determination of k_{i}^{s} yields explicit specification of the position $Q_{i(j)}$. If the center of hemisphere of particle j is denoted by \mathbf{r}_{j}^{s} (similarly \mathbf{r}_{i}^{s} for particle i), then k_{i}^{s} is solved from the orthogonality condition of $\left(\mathbf{r}_{i}+k_{i}^{s} \mathbf{e}_{i}-\mathbf{r}_{j}^{s}\right)$ and \mathbf{e}_{i} :

$$
\begin{equation*}
k_{i}^{s}=\mathbf{e}_{i} \cdot\left(\mathbf{r}_{j}^{s}-\mathbf{r}_{i}\right) \tag{3.46}
\end{equation*}
$$

The use of this solution of k_{i}^{s} gives rise to the criterion condition for the overlap between the cylindrical part of particle i and the hemisphere cap of particle j as

$$
\begin{equation*}
\left|k_{i}^{s}\right| \leq l_{0} / 2, \quad\left|\left(\mathbf{r}_{i}+k_{i}^{s} \mathbf{e}_{i}\right)-\mathbf{r}_{j}^{s}\right|<d+2 \delta \tag{3.47}
\end{equation*}
$$

Finally, the overlap between the hemisphere caps between particles i and j arises when the following condition is satisfied:

$$
\begin{equation*}
\left|k_{i}^{s}\right|>l_{0} / 2, \quad\left|\mathbf{r}_{i}^{s}-\mathbf{r}_{j}^{s}\right|<d+2 \delta \tag{3.48}
\end{equation*}
$$

The above-mentioned criterion conditions are summarized as follows:

1. For $\left|\left(\mathbf{r}_{i}+k_{i} \mathbf{e}_{i}\right)-\left(\mathbf{r}_{j}+k_{j} \mathbf{e}_{j}\right)\right| \geq d+2 \delta$, there is no overlap.
2. For $\left|\left(\mathbf{r}_{i}+k_{i} \mathbf{e}_{i}\right)-\left(\mathbf{r}_{j}+k_{j} \mathbf{e}_{j}\right)\right|<d+2 \delta$, there is a possibility of overlap.
2.1. For $\left|k_{i}\right| \leq l_{0} / 2$ and $\left|k_{j}\right| \leq l_{0} / 2$, an overlap occurs.
2.2. For $\left|k_{i}\right| \leq l_{0} / 2$ and $\left|k_{j}\right|>l_{0} / 2$ and $\left|k_{i}{ }^{s}\right|<l_{0} / 2$, there is a possibility of overlap between the cylinder part of particle i and the hemisphere cap of particle j.
2.2.1. $\left|\left(\mathbf{r}_{i}+k_{i}^{s} \mathbf{e}_{i}\right)-\mathbf{r}_{j}^{s}\right| \geq d+2 \delta$, there is no overlap.
2.2.2. $\left|\left(\mathbf{r}_{i}+k_{i}^{S} \mathbf{e}_{i}\right)-\mathbf{r}_{j}^{S}\right|<d+2 \delta$, an overlap occurs.
2.3. For $\left|k_{i}\right| \leq l_{0} / 2$ and $\left|k_{j}\right|>l_{0} / 2$ and $\left|k_{i}^{s}\right| \geq l_{0} / 2$, there is a possibility of overlap between the hemisphere caps between particles i and j.
2.3.1. For $\left|\mathbf{r}_{i}^{s}-\mathbf{r}_{j}^{s}\right| \geq d+2 \delta$, there is no overlap.
2.3.2. For $\left|\mathbf{r}_{i}^{s}-\mathbf{r}_{j}^{s}\right|<d+2 \delta$, an overlap occurs.
2.4. For $\left|k_{j}\right|>\left|k_{i}\right|>l_{0} / 2$ and $\left|k_{i}^{s}\right|<l_{0} / 2$, there is a possibility of overlap between the cylinder part of particle i and the hemisphere cap of particle j.
2.4.1. For $\left|\left(\mathbf{r}_{i}+k_{i}^{s} \mathbf{e}_{i}\right)-\mathbf{r}_{j}^{s}\right| \geq d+2 \delta$, there is no overlap.
2.4.2. For $\left|\left(\mathbf{r}_{i}+k_{i}^{s} \mathbf{e}_{i}\right)-\mathbf{r}_{j}^{s}\right|<d+2 \delta$, an overlap occurs.
2.5. For $\left|k_{j}\right|>\left|k_{i}\right|>l_{0} / 2$ and $\left|k_{i}^{s}\right| \geq l_{0} / 2$, there is a possibility of overlap between the hemisphere caps between particles i and j.
2.5.1. For $\left|\mathbf{r}_{i}^{s}-\mathbf{r}_{j}^{s}\right| \geq d+2 \delta$, there is no overlap.
2.5.2. For $\left|\mathbf{r}_{i}^{s}-\mathbf{r}_{j}^{s}\right|<d+2 \delta$, an overlap occurs.

These overlap criteria have been shown under the assumption of $\left|k_{j}\right|>\left|k_{i}\right|$. However, the above description is sufficient on the analysis level, because the exchange of subscripts i and j in a simulation program reduces to the same criterion procedure for particle overlap.

In addition to particle overlap in a general configuration, we need to consider several special cases, that is, particle overlap in a parallel or line configuration. The latter is straightforward to analyze and therefore we address the former case. According to the distance $\left|k_{i j}{ }^{c}\right| \quad\left(=\left|\mathbf{r}_{i j} \cdot \mathbf{e}_{i}\right|\right)$ between the centers of particles i and j along the particle axis, whether or not particles i and j overlap can be determined by the following procedures:

1. For $\left|k_{i j}{ }^{c}\right| \leq l_{0}$, an overlap occurs.
2. For $\left|k_{i j}{ }^{c}\right|>l_{0}$,
2.1. For $\left|\mathbf{r}_{i}{ }^{s}-\mathbf{r}_{j}^{s}\right| \geq d+2 \delta$, there is no overlap.
2.2. For $\left|\mathbf{r}_{i}^{s}-\mathbf{r}_{j}^{s}\right|<d+2 \delta$, an overlap occurs.

If the particle separation satisfies $\left(\left|\mathbf{r}_{i j}\right|^{2}-\left|k_{i j}{ }^{c}\right|^{2}\right)^{1 / 2} \geq d+2 \delta$, then overlap does not occur.

The above-assessing procedures concerning particle overlap enable us to recognize a specific configuration of the two particles in which the minimum distance can be obtained from the line of each particle axis. The notation $\mathbf{r}_{i}^{(\mathrm{min})}$ and $\mathbf{r}_{j}^{(\mathrm{min})}$ is used for expressing such positions on the axis lines. The present modified linear sphere-connected model for particle i can be constructed by placing other spheres on both sides of the sphere at $\mathbf{r}_{i}^{(\min)}$ repeatedly. According to this model, a force acting on particle i by particle j, arising from the overlap of the steric layers, can be obtained by evaluating the interaction forces between the constituent spherical particles and then by summing these interactions. Similarly, a torque acting on particle i by particle j can be evaluated by performing the vector product of each force vector of the constituent spheres and the corresponding relative position vectors from the center of particle i.

3.2.5 Nondimensionalization of Basic Equations

In actual simulations, it is usual to treat a nondimensional system in which quantities are nondimensionalized by the corresponding representative values. The present simulation employs the following representative values for nondimensionalization: d for distances, $1 / \dot{\gamma}$ for time, $\dot{\gamma} d$ for velocities, $\dot{\gamma}$ for angular velocities, $3 \pi \eta \dot{\gamma} d^{2}$ for forces, $\pi \eta \dot{\gamma} d^{3}$ for torques, and so on. With these representative values, the equations of motion in Eqs. (3.27) and (3.28) are nondimensionalized as

$$
\begin{equation*}
\mathbf{v}_{i}^{\| *}=\mathbf{U}^{\| *}\left(\mathbf{r}_{i}^{*}\right)+\frac{\mathbf{F}_{i}^{\| *}}{X^{A *}\left(l^{*}+2 \delta^{*}\right)}, \quad \mathbf{v}_{i}^{\perp *}=\mathbf{U}^{\perp *}\left(\mathbf{r}_{i}^{*}\right)+\frac{\mathbf{F}_{i}^{\perp *}}{Y^{A *}\left(l^{*}+2 \delta^{*}\right)} \tag{3.49}
\end{equation*}
$$

$$
\begin{equation*}
\omega_{i}^{\perp *}=\mathbf{\Omega}^{\perp *}+\frac{\mathbf{T}_{i}^{\perp *}}{Y^{C *}\left(l^{*}+2 \delta^{*}\right)^{3}}-\frac{Y^{H *}}{Y^{C *}}\left(\varepsilon \cdot \mathbf{e}_{i} \mathbf{e}_{i}\right): \mathbf{E}^{*} \tag{3.50}
\end{equation*}
$$

in which

$$
\left.\begin{array}{l}
X^{A *}=\frac{X^{A}}{6 \pi(l / 2+\delta)}=\frac{8}{3} \cdot \frac{s^{3}}{-2 s+\left(1+s^{2}\right) L} \\
Y^{A *}=\frac{Y^{A}}{6 \pi(l / 2+\delta)}=\frac{16}{3} \cdot \frac{s^{3}}{2 s+\left(3 s^{2}-1\right) L}
\end{array}\right\} \begin{aligned}
& Y^{C *}=\frac{Y^{C}}{8 \pi(l / 2+\delta)^{3}}=\frac{4}{3} \cdot \frac{s^{3}\left(2-s^{2}\right)}{-2 s+\left(1+s^{2}\right) L} \\
& Y^{H *}=\frac{Y^{H}}{8 \pi(l / 2+\delta)^{3}}=\frac{4}{3} \cdot \frac{s^{5}}{-2 s+\left(1+s^{2}\right) L} \\
& \mathbf{E}^{*}=\frac{1}{2}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \mathbf{\Omega}^{*}=-\frac{1}{2}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad\left(\varepsilon \cdot \mathbf{e}_{i} \mathbf{e}_{i}\right): \mathbf{E}^{*}=\frac{1}{2}\left[\begin{array}{c}
e_{i z} e_{i x} \\
-e_{i z} e_{i y} \\
e_{i y}^{2}-e_{i x}^{2}
\end{array}\right]
\end{aligned}
$$

Also, Eqs. (3.37) and (3.38) can be written in nondimensionalized form as

$$
\begin{align*}
& \mathbf{r}_{i}^{*}\left(t^{*}+\Delta t^{*}\right)=\mathbf{r}_{i}{ }^{*}\left(t^{*}\right)+\Delta t^{*} \mathbf{v}_{i}^{*}\left(t^{*}\right), \\
& \mathbf{e}_{i}\left(t^{*}+\Delta t^{*}\right)=\mathbf{e}_{i}\left(t^{*}\right)+\Delta t^{*} \omega_{i}^{\perp *}\left(t^{*}\right) \times \mathbf{e}_{i}\left(t^{*}\right) \tag{3.55}
\end{align*}
$$

The forces acting on the positive and negative magnetic charges of particle i in Eqs. (3.21) and (3.22) are nondimensionalized as

$$
\begin{align*}
& \mathbf{F}_{i j}^{+*}=\lambda_{\mathrm{m}}\left\{\frac{\mathbf{r}_{i j}^{*}+\left(l_{0}^{*} / 2\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)}{\left|\mathbf{r}_{i j}^{*}+\left(l_{0}^{*} / 2\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\right|^{3}}-\frac{\mathbf{r}_{i j}^{*}+\left(l_{0}^{*} / 2\right)\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)}{\left|\mathbf{r}_{i j}^{*}+\left(l_{0}^{*} / 2\right)\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)\right|^{3}}\right\} \tag{3.56}\\
& \mathbf{F}_{i j}^{-*}=-\lambda_{\mathrm{m}}\left\{\frac{\mathbf{r}_{i j}^{*}-\left(l_{0}^{*} / 2\right)\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)}{\left|\mathbf{r}_{i j}^{*}-\left(l_{0}^{*} / 2\right)\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)\right|^{3}}-\frac{\mathbf{r}_{i j}^{*}-\left(l_{0}^{*} / 2\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)}{\left|\mathbf{r}_{i j}^{*}-\left(l_{0}^{*} / 2\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\right|^{3}}\right\} \tag{3.57}
\end{align*}
$$

in which $q l_{0}$ is the magnitude of a magnetic moment, expressed as $m=q l_{0}$, and λ_{m} is the nondimensional parameter representing the strength of magnetic forces relative to the shear force of a simple shear flow, expressed as

$$
\begin{equation*}
\lambda_{\mathrm{m}}=\frac{\mu_{0} m^{2}}{12 \pi^{2} \eta \dot{\gamma} l_{0}^{2} d^{4}} \tag{3.58}
\end{equation*}
$$

The nondimensionalization procedure generally leads to the appearance of such nondimensional numbers; the most famous nondimensional number-the Reynolds number, in fluid mechanics-arises from a similar nondimensional procedure.

Similarly, the torque acting on particle i by particle j in Eqs. (3.23) and (3.24) is nondimensionalized as

$$
\begin{align*}
& \mathbf{T}_{i j}^{+*}=\frac{3 l_{0}^{*}}{2} \lambda_{\mathrm{m}}\left\{\frac{\mathbf{e}_{i} \times \mathbf{r}_{i j}^{*}-\left(l_{0}^{*} / 2\right)\left(\mathbf{e}_{i} \times \mathbf{e}_{j}\right)}{\left|\mathbf{r}_{i j}^{*}+\left(l_{0}^{*} / 2\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\right|^{3}}-\frac{\mathbf{e}_{i} \times \mathbf{r}_{i j}^{*}+\left(l_{0}^{*} / 2\right)\left(\mathbf{e}_{i} \times \mathbf{e}_{j}\right)}{\left|\mathbf{r}_{i j}^{*}+\left(l_{0}^{*} / 2\right)\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)\right|^{3}}\right\} \tag{3.59}\\
& \mathbf{T}_{i j}^{-*}=\frac{3 l_{0}^{*}}{2} \lambda_{\mathrm{m}}\left\{\frac{\mathbf{e}_{i} \times \mathbf{r}_{i j}^{*}-\left(l_{0}^{*} / 2\right)\left(\mathbf{e}_{i} \times \mathbf{e}_{j}\right)}{\left|\mathbf{r}_{i j}^{*}-\left(l_{0}^{*} / 2\right)\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right)\right|^{3}}-\frac{\mathbf{e}_{i} \times \mathbf{r}_{i j}^{*}+\left(l_{0}^{*} / 2\right)\left(\mathbf{e}_{i} \times \mathbf{e}_{j}\right)}{\left|\mathbf{r}_{i j}^{*}-\left(l_{0}^{*} / 2\right)\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)\right|^{3}}\right\} \tag{3.60}
\end{align*}
$$

The torque exerted by an applied magnetic field in Eq. (3.26) is written in nondimensional form:

$$
\begin{equation*}
\mathbf{T}_{i}^{(\mathrm{H}) *}=\lambda_{\mathrm{H}} \mathbf{e}_{i} \times \mathbf{h} \tag{3.61}
\end{equation*}
$$

in which \mathbf{h} is a unit vector denoting the magnetic field direction, expressed as $\mathbf{h}=\mathbf{H} / H$. As before, λ_{H} is a nondimensional parameter representing the strength of magnetic particle-field interactions relative to the torque due to the shear flow force, expressed as

$$
\begin{equation*}
\lambda_{\mathrm{H}}=\frac{\mu_{0} m H}{\pi \eta \dot{\gamma} d^{3}} \tag{3.62}
\end{equation*}
$$

The repulsive force due to the overlap of the surfactant layers in Eq. (3.42) is nondimensionalized as

$$
\begin{equation*}
\mathbf{F}_{i j}^{(V) *}=\lambda_{V} \mathbf{t}_{i j} \ln \left(\frac{1+2 \delta^{*}}{r_{i j}^{*}}\right) \quad\left(\text { for } 1 \leq r_{i j}^{*} \leq 1+2 \delta^{*}\right) \tag{3.63}
\end{equation*}
$$

in which λ_{V} is a nondimensional parameter representing the strength of such repulsive forces relative to the shear flow force.

We have finished nondimensionalizing almost all the quantities necessary for simulations. The nondimensional parameters characterizing the physical phenomenon are λ_{m} for magnetic particle-particle interactions, λ_{H} for magnetic particle-field interactions, and λ_{V} for steric repulsive interactions.

3.2.6 Treatment of the Criteria for Particle Overlap in Simulations

In the previous subsection on the modeling of steric repulsive interactions, we presented a mathematical discussion on the assessment for the overlap of the steric layers. In actual calculations in a simulation program, the systematic classification
of the overlapping regimes enables us to quickly grasp a logical flow of the calculation procedures; this subject may be on a technical side rather than a mathematical one. As shown in Table 3.1, particle overlapping can be classified into four cases: that is, a general overlap (itree $=1$), a linear overlap (itree $=0$), a normal overlap (itree $=2$), and a parallel overlap (itree $=3$). Note that the variable names "itree" and "ipath" are commonly used in a simulation program, so that the overlap treatment is conducted for the cases specified by "itree" and "ipath" in a simulation program. The important point in a simulation program is that if $\left|k_{j}\right|<\left|k_{i}\right|$, then the overlap regimes shown in Table 3.1 are easily applicable after the replacement of indices i and j by j and i. Hence, the assumption of the condition $\left|k_{j}\right| \geq\left|k_{i}\right|$ for starting a mathematical analysis provides a relatively straightforward classification without losing our way in a mathematical labyrinth. The classification in the substage for each case depends on which hemisphere cap of particle j overlaps with particle i. That is, the directions of particles i and j are important for the successive treatment of repulsive interactions. For a linear overlapping case, the calculation of the repulsive force between only one pair of the spheres completes the overlapping treatment. On the other hand, for the other overlapping cases, two spheres are first placed at the nearest separation positions on each axis line, as previously explained, in order to calculate the force and torque for this pair of spheres. Then, other spheres are repeatedly added to the both ends of each sphere in linear formation to form the linear sphere-connected particles i and j. Finally, the interaction forces and torques are calculated for each pair of constituent spheres of particles i and j; the summation of these forces and torques for each pair of spheres yields the total force and torque acting on particle i by particle j. For example, we briefly consider the case of itree $=1$ and ipath $=1$ in Table 3.1. The positions of the two spheres are first determined on each axis line, and then the next spheres are placed at each neighboring position in the $\left(-\mathbf{n}_{i}\right)$ and $\left(-\mathbf{n}_{j}\right)$ directions; the repulsive forces and torques are calculated for each pair of these constituent spheres.

3.2.7 Parameters for Simulations

We set the following initial conditions for simulations. A magnetic field is applied in the y-axis direction, and a simple shear flow is applied in the x-direction. The spherocylinder particles are expected to aggregate in the magnetic field direction (y-axis direction) because they are magnetized in the particle axis direction. Hence we employ a rectangular-parallelepiped simulation box, with its longer axis along the field direction with a square base. We first place six rows of particles in the x-axis direction with their particle axis pointing to the y-axis direction, then repeat this procedure in the z-direction to obtain the initial configuration of 36 particles in the $x z$-plane. Finally, we expand this configuration in the y-axis direction to obtain the total six layers of these particles. The initial configuration of 216 particles, therefore, can be assigned from this procedure. A rectangular-parallelepiped simulation box needs to be set, with an appropriate aspect ratio dependent upon the particle aspect ratio. The present simulation uses a simulation box where the length in the y-axis direction is twice the length in the x-axis direction; note that the

Table 3.1 Regime of Overlap

[^0]above-mentioned setting procedure is slightly different from that explained in Section 2.1.2. In the present simulation, the particle aspect ratio r_{p} is taken as $r_{\mathrm{p}}=5$, the volumetric fraction as $\phi_{\mathrm{V}}=0.05$, and the thickness of a surfactant layer as $\delta^{*}=0.15$.

A shear flow and a magnetic field have a tendency to make the spherocylinder particles incline in the flow direction and in the applied direction, respectively. The orientational behavior of the magnetic spherocylinder particles, therefore, depends in a complicated manner on the strength of magnetic interactions as well as the flow shear rate. The main objective of the present simulation is to discuss the influences of magnetic particle-field, magnetic particle-particle, and steric repulsive interactions on the behavior of spherocylinder particles in a simple shear flow. Hence, simulations are carried out for various cases of the nondimensional parameters λ_{m} and λ_{H} such as $\lambda_{\mathrm{m}}=0,10,20$, and 50 and $\lambda_{\mathrm{H}}=0,10,20,50$, and 100 . On the other hand, λ_{V} is taken to have the single value $\lambda_{\mathrm{V}}=150$; a larger value of λ_{V} induces a large repulsive force at the particle overlapping.

3.2.8 Results of Simulations

Figure 3.7 shows the change in aggregate structures with time for no applied magnetic field and no magnetic interactions between particles. The rod-like particles rotate in the $x y$-plane about the z-axis because there is no applied magnetic field. Describing in more detail, the particles incline in the flow direction (x-axis direction) during a long period as in Figures 3.7A and C. Once particles have been kicked below the x-axis, they quickly rotate toward the preferred direction, as shown in Figures 3.7A and C by way of a transient snapshot shown in Figure 3.7B. This is because much larger torques act on the rod-like particles when inclining in a direction normal to the flow.

Figure 3.8 shows a snapshot for no applied magnetic field under strong magnetic particle-particle interactions $\lambda_{\mathrm{m}}=10$. The figure on the left-hand side is a general snapshot viewed from a certain angle to grasp how nearly the particles incline in the flow direction. The figure on the right-hand side is an oblique view for grasping the formation of wall-like clusters along the flow direction, that is, it is viewed almost from the negative x-axis direction. In this case, even if no magnetic field is applied, rod-like particles seldom rotate from the situation in Figure 3.8 because magnetic particle-particle interactions become more dominant than viscous shear forces, and so the particles form complex three-dimensional aggregate structures. However, the individual particles have a tendency to incline in the shear flow direction.

Figure 3.9 shows a snapshot for a strong applied magnetic field $\lambda_{\mathrm{H}}=10$ and no magnetic interactions $\lambda_{\mathrm{m}}=0$. In this situation, the applied magnetic field makes rod-like particles incline in the magnetic field direction. The final particle orientation is determined by the balance of the torque due to the applied field and the torque due to a shear flow; in Figure 3.9 all rod-like particles tend to incline in the same direction (the direction of the flow) because there is no disturbance due to magnetic particle-particle interactions.

Figure 3.10 shows the result for magnetic interactions $\lambda_{\mathrm{m}}=10$ and for an external magnetic field $\lambda_{\mathrm{H}}=10$ as in Figure 3.9. A significant difference to the case of

Figure 3.7 Time change in aggregate structures for $\lambda_{\mathrm{H}}=0$ and $\lambda_{\mathrm{m}}=0$: (A) $t=t_{1}$, (B) $t=t_{2}$, and (C) $t=t_{3}$.

Figure 3.9 is that, to a certain degree, aggregates have wall-like structures along the flow direction. The particle aggregation is due to magnetic interactions between particles, and the viscous forces and torques induce more complex aggregates, such as these wall-like structures. Wall-like clusters are also observed for the case of magnetic spherical particles in an applied magnetic field subject to a simple shear flow. Magnetic particle-particle interactions emphasize the tendency of particles to incline in the flow direction, which is clearly seen by comparing with the case in Figure 3.9. Note that the particles in Figure 3.10 do not orient toward the same preferred direction.

Figure 3.8 Aggregate structures for $\lambda_{\mathrm{H}}=0$ and $\lambda_{\mathrm{m}}=10$: (A) an oblique view and (B) viewed nearly from the negative x-axis.

Figure 3.9 Aggregate structures for $\lambda_{\mathrm{H}}=10$ and $\lambda_{\mathrm{m}}=0$: (A) an oblique view and (B) viewed nearly from the negative x-axis.

Figure 3.11 is a snapshot for a significantly strong applied magnetic field $\lambda_{\mathrm{H}}=50$, but without magnetic particle-particle interactions. Since a magnetic field is significantly strong, each particle inclines to a higher degree in the magnetic field direction (y-axis direction) as compared with that in Figure 3.9. On the other hand, wall-like clusters are not formed in this case because there are no magnetic interactions.

Figure 3.10 Aggregate structures for $\lambda_{\mathrm{H}}=10$ and $\lambda_{\mathrm{m}}=10$: (A) an oblique view and (B) viewed nearly from the negative x-axis.

Figure 3.11 Aggregate structures for $\lambda_{\mathrm{H}}=50$ and $\lambda_{\mathrm{m}}=0$: (A) an oblique view and (B) viewed nearly from the negative x-axis.

Figure 3.12 also shows $\lambda_{\mathrm{H}}=50$, as in Figure 3.11, but magnetic interactions are $\lambda_{\mathrm{m}}=10$ in this case. Comparison with Figure 3.10, clearly reveals that wall-like clusters are formed along the flow direction. The detailed observation of the internal structures of wall-like clusters indicates that the rod-like particles aggregate to

Figure 3.12 Aggregate structures for $\lambda_{\mathrm{H}}=50$ and $\lambda_{\mathrm{m}}=10$: (A) an oblique view and (B) viewed nearly from the negative x-axis.
form wall-like structures in such a way that one cluster is placed into two parallel clusters, with the plus magnetic charge of the center particle in contact with the minus magnetic charges of the two neighboring particles.

The above discussion has systematically used snapshots to present the properties of aggregates. However, this type of qualitative discussion is insufficient for an academic paper, and the addition of quantitative discussion is necessary. For this exercise, it would be suitable to discuss the radial, pair, and orientational distribution functions, whilst further investigation of the phenomena might necessitate Brownian dynamics in order to include random particle motion.

3.2.9 Simulation Program

The following sample simulation program has been written for the present simulation in FORTRAN. The important variables used in the simulation program are as follows:
$\mathrm{RX}(\mathrm{I}), \mathrm{RY}(\mathrm{I}), \mathrm{RZ}(\mathrm{I}) \quad: \quad(x, y, z)$ components of the position vector \mathbf{r}_{i}^{*} of particle i $\mathrm{NX}(\mathrm{I}), \mathrm{NY}(\mathrm{I}), \mathrm{NZ}(\mathrm{I}) \quad: \quad(x, y, z)$ components of the unit vector $\mathbf{n}_{i}\left(=\mathbf{e}_{i}\right)$ of particle i denoting the particle and magnetic moment direction
$\mathrm{FX}(\mathrm{I}), \mathrm{FY}(\mathrm{I}), \mathrm{FZ}(\mathrm{I}) \quad: \quad(x, y, z)$ components of the force \mathbf{F}_{i}^{*} acting on particle i
$\mathrm{TX}(\mathrm{I}), \mathrm{TY}(\mathrm{I}), \mathrm{TZ}(\mathrm{I}) \quad: \quad(x, y, z)$ components of the torque \mathbf{T}_{i}^{*} acting on particle i
$\mathrm{XL}, \mathrm{YL}, \mathrm{ZL}$
L
D
DEL
: Side lengths of the simulation box in the (x, y, z) directions
: Length l^{*} of the solid part of the spherocylinder particle
$\mathrm{TD} \quad: \quad$ Ratio $2 \delta^{*}(=2 \delta / d)$ of the surfactant layer thickness to the particle radius

RP	Particle aspect ratio $r_{\mathrm{p}}(=l / d)$
RP1	Particle aspect ratio $r_{\mathrm{p}}^{\prime}\left(=l_{0} / d=r_{\mathrm{p}}-1\right)$
N	Number of particles
VDENS	Volumetric fraction of particles ϕ_{V}
NDENS	Number density of particles
HX, HY, HZ	(x, y, z) components of the unit vector denoting the magnetic field direction
RAM	Nondimensional parameter λ_{m} representing the strength of magnetic particle-particle interactions
RAH	Nondimensional parameter λ_{H} representing the strength of magnetic particle-field interactions
RAV	Nondimensional parameter λ_{V} representing the strength of repulsive interactions due to the overlap of steric layers
H	Time interval
RCOFF	Cutoff distance for calculations of forces and torques
XA, YA, YC, YH	Resistance functions
GAMDOT	Shear rate $\dot{\gamma}^{*}$
MOMX (*), MOMY (*) ,	Averaged values of the particle direction at each time step

As an aid for understanding the program, comments have been added to the important features. The line numbers shown at the beginning of each line are just for the reader's convenience and are unnecessary for executing the FORTRAN program.

We briefly explain quasi-random numbers, which are used in the subroutine "INITIAL" for setting an initial configuration. A quasi-random number is generated using an irrational. For example, if $\sqrt{2}$ is used, the fractional parts of $\sqrt{2}, 2 \sqrt{2}$, $3 \sqrt{2}, 4 \sqrt{2}, \ldots$ provide a sequence of quasi-random numbers ranging from zero to unity.

0002	C*	mdcylndr1.f		*
0003	C^{*}			*
0004	C*	OPEN(9, FILE='@bbb1.dat', STATUS='UNKNOWN')		*
0005	C*	$\operatorname{OPEN}(10$, FILE='bbb11.dat', STATUS='UNKNOWN')		*
0006	C*	OPEN (13,FILE='bbb41.mgf', STATUS='UNKNOWN')		*
0007	C*	OPEN (21,FILE='bbb001.dat',STATUS='UNKNOWN')		
0008	C*	OPEN (22,FILE='bbb011.dat', STATUS='UNKNOWN')		*
0009	C^{*}	OPEN (23,FILE='bbb021.dat', STATUS='UNKNOWN')		*
0010	C*	OPEN (24,FILE='bbb031.dat', STATUS='UNKNOWN')		
0011	C*	OPEN (25,FILE='bbb041.dat', STATUS='UNKNOWN')		
0012	C*	OPEN (26,FILE='bbb051.dat', STATUS='UNKNOWN')		
0013	C*	OPEN (27,FILE='bbb061.dat',STATUS='UNKNOWN')		
0014	C*	$\operatorname{OPEN}(28$, FILE= 'bbb071.dat', STATUS='UNKNOWN')		*
0015	C*	OPEN (29,FILE='bbb081.dat', STATUS='UNKNOWN')		
0016	C*	OPEN (30,FILE='bbb091.dat', STATUS='UNKNOWN')		*
0017	C^{*}			*
0018	C*	- MOLECULAR DYNAMICS SIMULATIONS		
0019	C*	THREE-DIMENSIONAL MOLECULAR DYNAMICS SIMULATIONS OF		*
0020	C*	A DISPERSION COMPOSED OF MAGNETIC SPHEROCYLINDERS		*
0021	C^{*}	IN A SIMPLE SHEAR FLOW.		*
0022	C*			*
0023	C*	1. RODLIKE MODEL WITH ARBITRARY ASPECT RATIO.		*
0024	C*	2. NO HYDRODYNAMIC INTERACTIONS AMONG PARTICLES.		*
0025	C*			*
0026	C*	VER. 1 BY A.SATOH , '08	5/23	*
0027	C**			

C
C

RXI $=\mathrm{RX}(\mathrm{I})+\mathrm{H}^{*}(\mathrm{CFOXA} * F X I P+C F O Y A * F X I N)+R Y(I) * G A M D O T * H$
RYI $=R Y(I)+H^{*}(C F O X A * F Y I P+C F O Y A * F Y I N)$
RZI $=R Z(I)+H^{*}(C F O X A * F Z I P+C F O Y A * F Z I N)$
CORY $=$ DNINT(RYI/YL)
RXI $=$ RXI - CORY*DX
RX(I) $=$ RXI - DNINT(RXI/XL)*XL
$R Y(I)=R Y I-C O R Y * Y L$
$\mathrm{RZ}(\mathrm{I})=\mathrm{RZI}-\mathrm{DNINT}(\mathrm{RZI} / \mathrm{ZL}) * Z \mathrm{~L}$
--- (2) ROTATIONAL MOTION ---
$\mathrm{COO}=\mathrm{TXI} * N X I+\mathrm{TYI} * N Y I+T Z I * N Z I$
TXIP $=\mathrm{COO}{ }^{*} \mathrm{NXI}$
TYIP $=\mathrm{COO}$ *YI
TZIP $=\mathrm{COO}$ *ZI
TXIN $=$ TXI - TXIP
TYIN $=$ TYI - TYIP
TZIN $=$ TZI - TZIP
$\mathrm{COO}=-0.5 \mathrm{D} 0 * \mathrm{NZI}$
OMEIPX = C00*NXI
OMEIPY $=\mathrm{C} 00 * \mathrm{NYI}$
OMEIPZ $=C 00 * N Z I$
OMEINX $=\quad-$ OMEIPX
OMEINY = - OMEIPY
OMEINZ $=-0.5 D 0-$ OMEIPZ
C1X = CT0YC*TXIN
C1Y $=$ CT0YC*TYIN
$\mathrm{C} 1 \mathrm{Z}=\mathrm{CTOYC}$ *TZIN
C2X $=-$ CEOYHYC* (NZI*NXI)
C2Y = -CEOYHYC* (-NZI*NYI)
$\mathrm{C} 2 \mathrm{Z}=-\mathrm{CE} 0$ YHYC* (NYI**2 - NXI**2)
WXIN $=$ OMEINX + C1X + C2X
WYIN $=$ OMEINY + C1Y + C2Y
WZIN = OMEINZ + C1Z + C2Z
C3X $=$ WYIN*NZI -WZIN*NYI
C3Y = WZIN*NXI - WXIN*NZI
$\mathrm{C} 3 Z=$ WXIN*NYI - WYIN*NXI
$\mathrm{NXI}=\mathrm{NXI}+\mathrm{H}^{*} \mathrm{C} 3 \mathrm{X}$
$\mathrm{NYI}=\mathrm{NYI}+\mathrm{H}^{*} \mathrm{C} 3 \mathrm{Y}$
$\mathrm{NZI}=\mathrm{NZI}+\mathrm{H}^{*} \mathrm{C} 3 \mathrm{Z}$
$\mathrm{COO}=\mathrm{DSQRT}(\mathrm{NXI**2}+\mathrm{NYI**2}+\mathrm{NZI**2}$)
$\mathrm{NX}(\mathrm{I})=\mathrm{NXI} / \mathrm{COO}$
$N Y(I)=N Y I / C 00$
NZ (I) = NZI/COO
CONTINUE
CALL FORCECAL (NP, NTIME) \quad - Calculation of the forces and torques.
IF (MOD (NTIME, DNSMPL) .EQ. 0) THEN
NSMPL $=$ NSMPL +1
$\mathrm{C} 1=0 . \mathrm{D} 0$
$\mathrm{C} 2=0 . \mathrm{D} 0$
$\mathrm{C} 3=0 . \mathrm{D} 0$
DO $450 \mathrm{~J}=1, \mathrm{~N}$
$\mathrm{C} 1=\mathrm{C} 1+\mathrm{NX}(\mathrm{J})$
$\mathrm{C} 2=\mathrm{C} 2+\mathrm{NY}(\mathrm{J})$
$\mathrm{C} 3=\mathrm{C} 3+\mathrm{NZ}(\mathrm{J})$
CONTINUE
MOMX (NSMPL) $=$ REAL (C1)/REAL (N)
MOMY (NSMPL) $=$ REAL (C2)/REAL (N)
MOMZ (NSMPL) $=$ REAL (C3)/REAL (N)
END IF

- The terms of the torque and the shear rate are calculated in the angular velocity in Eq. (3.50).

```
0313 IF( MOD (NTIME,NGRAPH) .EQ. 0 ) THEN
0314 NOPT = NOPT + 1
0315
0316
0317
0318
0319
0320 C
0321 C
0322
0 3 2 3
0324
0325
0326
0327 C
0328 C
0329
0330 C
0331 C
0 3 3 2 ~ C
0333 C
0334 C
0335 C
0336
0337
0 3 3 8
0339
0340
0341 C
0342
0 3 4 3
0344
0345
0346
0347
0348
0349
0350
0 3 5 1
0352
0 3 5 3
0354 C
0 3 5 5
0356
0357
0358
0359
0360
0 3 6 1
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0 3 7 3
0374
0375
0376
0377
0378
0379
0380 1113 FORMAT
1113 FORMAT( 3F6.2 , 2F7.3 , 4E12.4 )
0381 1115 FORMAT( E11.3 , F8.3, 2F7.4, 3F9.3 )
0382 1117 FORMAT( 2F6.2 , 4E12.4 )
0383 1119 FORMAT( 3I8 )
0384 1121 FORMAT( (10F8.5) )
```



```
0412
0413
0414
0415
0416
0417 C
0418 C
0419
0420
0421
0422
0423
0424 C
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434 C
0435
0436
0437
0438
0439
0440
0441 C
0442
0443
0444
0445
0 4 4 6 ~ C
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456 C**** SUB INITIAL ****
```

```
0457
0458 C
0459
0 4 6 0 ~ C ~
0461
0462
0463
0464
0465
0466
0467 C
0468
0469 C
0470
0471 REAL*8 RX(NN) , RY(NN) , RZ (NN) , NX (NN) , NY (NN) , NZ (NN)
0472 C
0473
0474
0475
0476 C
0477
0478
0479
0480
0481
0482
0483
0484
0485 C
0486
0 4 8 7
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526 C**** SUB DATAOPUT ****
0527 SUBROUTINE DATAOPUT( NOPT1, NANMCTR, NTIMEMX, NANIME, N )
0528 C
    SUBROUTINE INITIAL( BETA )
C
c
    IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
                                    - A subroutine for setting the
                                    initial positions and velocities of
particles.
    COMMON /BLOCK1/ RX , RY , RZ
    COMMON /BLOCK2/ NX , NY , NZ
    COMMON /BLOCK5/ XL , YL , ZL
    COMMON /BLOCK6/ RP , RP1 , D , DEL , TD
    COMMON /BLOCK8/ N , NDENS, VDENS
    COMMON /BLOCK9/ H , RCOFF, GAMDOT, DX , CORY
PARAMETER( NN=1000 , PI=3.141592653589793D0 )
REAL*8 NDENS , , RY(NN) , RZ (NN) , NX(NN) , NY (NN) , NZ (NN)
0470 lll
    INTEGER Q , PTCL
    REAL*8 A , XLUNT , YLUNT , ZLUNT, RAN1 , RAN2 , RAN3
    REAL*8 C1 , C2 , C3
A = 1.D0/( (BETA*NDENS)**(1./3.) )
                                    - The volume occupied by one particle is
                                    \betaa*3}\mathrm{ and therefore a*=1/( }\beta\mp@subsup{n}{}{*}\mp@subsup{)}{}{1/3}\mathrm{ because
    Q = NINT(( (REAL (N+1))**(1./3.) )
```



```
    YL = A*DBLE (Q)*BETA
- The side lengths of the unit cell are ( }\mp@subsup{a}{}{*},
        ZL = A*DBLE (Q)
    a*, a*) in each direction.
XLUNT = A
    YLUNT = A*BETA
ZLUNT = A
0459
        C
RAN1 = DSQRT( 2.D0)
RAN1 = DSQRT( 2.D0 )
RAN1 = DSQRT( 2.D0 )
    PTCL = 0
                                    - POSITION
                                -RAN1, RAN2, and RAN3 are quasi-random numbers.
        -Q particles are located in each axis direction.
    DO 10 K=0,Q-1
    DO }10\textrm{J}=0,\textrm{Q}-
    DO 10 I=0,Q-1
        PTCL = PTCL + 1
        C1 = RAN1*DBLE (PTCL)
        C1 = C1 - DINT(C1)
        C1 = C1 - 0.5D0
        C1 = C1 - 0.5D0
        - Each particle is moved in parallel by (XLUNT/3, YLUNT/3,
        C2 = C2 - DINT(C2)
            C2 = C2 - 0.5D0
            C3 = RAN3*DBLE (PTCL)
            C3 = C3 - DINT(C3)
            C3 = C3 - DINT (C3)
            RX(PTCL) = DBLE (I)*XLUNT+XLUNT/3D0+C1*(XLUNT/8.D0) -XL/2.D0
            RY(PTCL) = DBLE (J)*YLUNT+YLUNT/3D0+C2* (YLUNT/8.D0) -YL/2.D0
            RZ(PTCL) = DBLE (K)*ZLUNT+ZLUNT/3D0+C3*(ZLUNT/8.DO)-ZL/2.D0
            10 CONTINUE
N = PTCL
C
    RAN1 = DSQRT( 2.D0 )
    RAN2 = DSQRT( 3.D0 )
    DO 20 I=1,N
            C1 = RAN1*DBLE (I)
            C1 = C1 - DINT (C1)
                                ZLUNT/3) to remove subtle situations at outer boundary particles.
C
                                    _-_--- POSITION
                                    surfaces. Also, to remove the regularity of the initial configu-
                                ration, each particle is moved randomly by the maximum
                                displacement (1/2)\times(XLUNT/8, YLUNT/8, ZLUNT/8) using
                                quasi-random numbers.
                                quasi-random numbers.
                                so that the simulation box center is the coordinate origin.
            C1 = C1 - 0.5D0
            C1 = PI/2.D0 + (5
            C2 = RAN2*DBLE (I)
            C2 = C2 - DINT(C2)
            C2 = C2 - DINT (C2)
            C2 = PI/2.D0 + (5.D0/180.D0)*PI*C2
            NX(I) = DSIN(C1)*DCOS(C2)
            NY(I) = DSIN(C1)*DSIN(C2)
            NZ(I) = DCOS(C1)
            2 0 ~ C O N T I N U E
                                    ------ MOMENT -----
                                    he
```


C

0529
0530 C
0531
0532
0533
0534
0535
0536 C
0537
0538 C
0539
0540
0541 C
0542
0543
0544
0545
0546
0547 C
0548
0549
0550
0551 C
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561 C
0562 C
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573 C
0574 C
0575
0576
0577
0578
0579
0580
0581
0582 C 0583 C
0584
0585
0586
0587
0588
0589
0590
0591 C 0592 C
0593
0594
0595
0596
0597
0598
0599
0600
C

IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
COMMON /BLOCK1/ RX , RY , RZ
COMMON /BLOCK2/ NX , NY , NZ
COMMON /BLOCK5/ XL , YL , ZL
COMMON /BLOCK6/ RP , RP1 , D , DEL , TD
COMMON /BLOCK9/ H , RCOFF, GAMDOT, DX , CORY
PARAMETER (NN=1000, PI=3.141592653589793D0)
REAL*8 RX(NN) , RY(NN) , RZ(NN) , NX(NN) , NY(NN) , NZ (NN)
REAL*8 RP102, CRADIUS , CX1, CY1, CZ1, CX2 , CY2 , CZ2
RP102 $=$ RP1/2.D0
CRADIUS $=(D+T D) / 2 . D 0$
$\mathrm{XL} 2=\mathrm{XL} / 2 . \mathrm{D} 0$
YL2 $=$ YL/2.D0
ZL2 $=$ ZL/2.D0
IF (NANMCTR .EQ. 1) THEN
WRITE (NOPT1,181) (NTIMEMX/NANIME)
END IF
IF ((NANMCTR.GE.1) .AND. (NANMCTR.LE.9)) THEN
WRITE (NOPT1,183) NANMCTR
ELSE IF ((NANMCTR.GE.10) .AND. (NANMCTR.LE.99)) THEN WRITE (NOPT1,184) NANMCTR
ELSE IF ((NANMCTR.GE.100) .AND. (NANMCTR.LE.999)) THEN WRITE (NOPT1,185) NANMCTR
ELSE IF ((NANMCTR.GE.1000) .AND. (NANMCTR.LE.9999)) THEN WRITE (NOPT1,186) NANMCTR
END IF
--- CYLINDER (1)
WRITE (NOPT1,211) N
DO $250 \mathrm{I}=1, \mathrm{~N}$
$\mathrm{CX1}=\mathrm{RX}(\mathrm{I})-\mathrm{NX}(\mathrm{I}) * \mathrm{RP} 102$
- Drawing of the cylindrical part of
$C Y 1=R Y(I)-N Y(I) * R P 102$
$C Z 1=R Z(I)-N Z(I) * R P 102$
$\mathrm{CX} 2=\mathrm{RX}(\mathrm{I})+\mathrm{NX}(\mathrm{I}) * \mathrm{RP} 102$
$C Y 2=R Y(I)+N Y(I) * R P 102$
$\mathrm{CZ} 2=\mathrm{RZ}(\mathrm{I})+\mathrm{NZ}(\mathrm{I}) * \mathrm{RP} 102$
WRITE (NOPT1,248) CX1, CY1, CZ1, CX2, CY2, CZ2, (CRADIUS+1.D-5)
250 CONTINUE
--- SPHERE MINUS (2) ---
WRITE (NOPT1,311) N
DO $350 \mathrm{I}=1$, N
$\mathrm{CX1}=\mathrm{RX}(\mathrm{I})-\mathrm{NX}(\mathrm{I}) * \mathrm{RP} 102$
CY1 $=\operatorname{RY}(I)-N Y(I) * R P 102$
$C Z 1=R Z(I)-N Z(I) * R P 102$
WRITE (NOPT1,348) CX1, CY1, CZ1, CRADIUS, 0.0, 0.8, 1.0
350 CONTINUE
WRITE (NOPT1,311) N
DO 450 I=1,N
$\mathrm{CX1}=\mathrm{RX}(\mathrm{I})+\mathrm{NX}(\mathrm{I}) * \mathrm{RP} 102$
$\mathrm{CY} 1=\mathrm{RY}(\mathrm{I})+\mathrm{NY}(\mathrm{I}) * \mathrm{RP} 102$
$\mathrm{CZ1}=\mathrm{RZ}(\mathrm{I})+\mathrm{NZ}(\mathrm{I}) * R P 102$
WRITE (NOPT1,348) CX1, CY1, CZ1, CRADIUS, 1.0, 0.0, 0.0
450 CONTINUE
-------------------------------------- SIM.REGEON LINES (4) ---
WRITE (NOPT1, 648) 17
WRITE (NOPT1, 649) -XL2, -YL2, -ZL2
WRITE (NOPT1,649) XL2, -YL2, -ZL2
WRITE (NOPT1,649) XL2, YL2, -ZL2
WRITE (NOPT1,649) -XL2, YL2, -ZL2
WRITE (NOPT1, 649) -XL2, -YL2, -ZL2
WRITE (NOPT1,649) -XL2, -YL2, ZL2
WRITE (NOPT1,649) XL2, -YL2, ZL2
- Drawing of the hemisphere of the
negative charge.
- MicroAVS can make a visualiza-
tion or animation by reading the
data from bbb41.mgf.
- A subroutine for writing out
the data which can be used
for making an animation
based on the commercial
software MicroAVS.


```
0741
0742
0743
0744
0745
0746
0747
0748
0749 C
0750
0751
0752
0753 C
0754 C
0755
0756
0757
0758
0759
0760
0761 C
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774 C
0775
0776
0777
0778
0779
0780
0 7 8 1
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0 7 9 4
0795
0796
0797
0798
0799
0800
0801
0802
0803 C
0804
0805
0806
0807
0808
0809
0810
IF( RXIJ .GT. XL/2.DO ) THEN
    RXIJ = RXIJ - XL
    RXJ = RXJ + XL
ELSE IF( RXIJ .LT. -XL/2.D0 ) THEN
    RXIJ = RXIJ + XL
    RXJ = RXJ - XL
END IF
IF( DABS (RXIJ) .GE. RCOFF ) GOTO 1000
RIJSQ= RXIJ***2 + RYIJ**2 + RZIJ**2
IF( RIJSQ .GE. RCOFF2 ) GOTO 1000
RIJ = DSQRT (RIJSQ)
-------------------------------- START OF MAGNETIC FORCES ---
NXIJ = NXI - NXJ
NYIJ = NYI - NYJ
NZIJ = NZI - NZJ
NXIJ2 = NXI + NXJ
-The magnetic force acting between
NYIJ2 = NYI + NYJ
NZIJ2 = NZI + NZJ
particles }i\mathrm{ and }j\mathrm{ is calculated.
FXIJP01 = RXIJ + RP102*NXIJ
                                    --- MAGNETIC FORCES ---
FYIJP01 = RYIJ + RP102*NYIJ
-To calculate the first and second terms of
FZIJP01 = RZIJ + RP102*NZIJ
FXIJP02 = RXIJ + RP102*NXIJ2
Eq. (3.56) and also Eq. (3.57) separately,
we calculate quantities needed in order.
FYIJP02 = RYIJ + RP102*NYIJ2
FZIJP02 = RZIJ + RP102*NZIJ2
FXIJM01 = RXIJ - RP102*NXIJ2
FYIJM01 = RYIJ - RP102*NYIJ2
FZIJM01 = RZIJ - RP102*NZIJ2
FXIJMO2 = RXIJ - RP102*NXIJ
FXIJM02 = RXIJ - RP102*NXIJ 
FYIJM02 = RYIJ - RP102*NYIJ
FZIJMO2 = RZIJ - RP102*NZIJ
C2R11 = FXIJP01**2 + FYIJP01**2 + FZIJP01**2
C2R12 = FXIJP02**2 +FYIJP02**2 + FZIJP02**2
C2R21 = FXIJM01**2 + FYIJM01**2 + FZIJM01**2
C2R22 = FXIJM02**2 + FYIJM02**2 + FZIJMO2**2
C1R11 = DSQRT( C2R11 )
C1R11 = DSQRT( C2R11 )
C1R21 = DSQRT( C2R21 )
- The denominators of the first and
C1R22 = DSQRT( C2R22 )
IF( C1R11.GE. 1.D0 ) THEN
    R11 = C1R11*C2R11
ELSE
    R11 = C1R11
    END IF
    IF( C1R12 .GE. 1.D0 ) THEN
        R12 = C1R12*C2R12
    ELSE
        R12 = C1R12
    END IF
    IF( C1R21 .GE. 1.D0 ) THEN
        R21 = C1R21*C2R21
    ELSE
        R21 = C1R21
    END IF
    IF( C1R22 .GE. 1.D0 ) THEN
        R22 = C1R22*C2R22
    ELSE
        R22 = C1R22
    END IF
        C
        second terms in Eq. (3.56) are calculated
        and saved in R11 and R12.
                                - Similarly, those in Eq. (3.57) are
\begin{tabular}{|c|c|c|c|}
\hline C11X & \(=\) & FXIJP01/R11 & - The first and second terms in Eq. (3.56) are calculated \\
\hline C11Y & = & FYIJP01/R11 & and saved in (C11X, C11Y, C11Z) and (C12X, C12Y, \\
\hline C112 & = & FZIJP01/R11 & C127) \\
\hline C12X & = & FXIJP02/R12 & C12Z). \\
\hline C12Y & = & FYIJP02/R12 & - Eq. (3.56) is calculated, but \(\lambda_{m}\) is multiplied in the final \\
\hline C12Z & = & FZIJP02/R12 & stage. \\
\hline
\end{tabular}
```



```
0883 C
0884 C
0885 C
0886
0887 C
0 8 8 8
0889
0890 C
0891
0892
0893
0 8 9 4
0 8 9 5
0896
0897
0 8 9 8 ~ C
0 8 9 9
0 9 0 0
0 9 0 1
0902
0903
0904
0905
0906
0907
0908 C
0909
0 9 1 0
0 9 1 1
0912
0913
0914
0915
0916 C
0917
0918
0919
0920
0921
0922
0923
0924
0925 C
0926
0927
0928
0929
0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941 C
0942
0943 C
0944
0945 C
0946
0947
0948 C
0949
0 9 5 0
0951
0952
0953
0954 C
```



```
1026 C
1 0 2 7 \text { C}
1028 C
1029 200
1030
1 0 3 1
1032
1033
1 0 3 4
1035
1036
1037
1038
1039
1040
1041
1042
1 0 4 3 ~ C ~
1044
1045
1046 C
1047
1048
1049
1 0 5 0
1 0 5 1 ~ C ~
1052
1053 C
1054
1055
1056
1057
1058
1059
1060
1 0 6 1
1062
1063
1064
1065 C
1066
1067
1068
1069
1070
1071
1 0 7 2
1 0 7 3
1074
1075
1076
1 0 7 7
1078 C
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1 0 8 9
1090
1091 C
1092
1093
1094
1095
1096
1 0 9 7
```

- The direction in which the next neighboring sphere is added to form the sphere-connected particle j is specified by C12; similarly, C22 is used for particle $i . C 12=1$ means the particle axis direction. C12=-1 means the opposite direction to the particle axis.

```
(1) GENERAL ---
```

(1) GENERAL ---
NNJJ --- FOR II AND JJ ---
NNJJ --- FOR II AND JJ ---
CNINJ = NXI*NXJ + NYI*NYJ + NZI*NZJ
CNINJ = NXI*NXJ + NYI*NYJ + NZI*NZJ
IF(CNINJ .GT. O.DO) THEN
IF(CNINJ .GT. O.DO) THEN
IF(KKJ .GE. O.DO) THEN
IF(KKJ .GE. O.DO) THEN
IPATH = 1
IPATH = 1
ELSE
ELSE
IPATH = 4
IPATH = 4
END IF
END IF
ELSE
ELSE
IF(KKJ .GE. O.DO) THEN
IF(KKJ .GE. O.DO) THEN
IPATH = 3
IPATH = 3
ELSE
ELSE
IPATH = 2
IPATH = 2
END IF
END IF
END IF

```
END IF
```



```
(KKIS2) concerning the negative magnetic charge of
```

(KKIS2) concerning the negative magnetic charge of
particle j is calculated.
particle j is calculated.
KKIS = CNINJ*RP102 - (RRXIJ*NNXI + RRYIJ*NNYI + RRZIJ*NNZI)
KKIS = CNINJ*RP102 - (RRXIJ*NNXI + RRYIJ*NNYI + RRZIJ*NNZI)
KKIS2 = -CNINJ*RP102 - (RRXIJ*NNXI + RRYIJ*NNYI + RRZIJ*NNZI)
KKIS2 = -CNINJ*RP102 - (RRXIJ*NNXI + RRYIJ*NNYI + RRZIJ*NNZI)
C1 = RP102 - KKJ
C1 = RP102 - KKJ
C1 = DINT(C1)
C1 = DINT(C1)
C2 = RP102 - DABS(KKJ)
C2 = RP102 - DABS(KKJ)
C2 = DINT(C2)
C2 = DINT(C2)
IF(IPATH .EQ. 1) THEN
IF(IPATH .EQ. 1) THEN

- According to the repulsive force model shown in
- According to the repulsive force model shown in
Section 3.2.4, the position of the first constituent sphere
Section 3.2.4, the position of the first constituent sphere
to be placed is determined. The variables used to do so
to be placed is determined. The variables used to do so
C12 =-1.D0
C12 =-1.D0
C22 =-1.D0
C22 =-1.D0
IF(ISUBTREE .EQ. 1) THEN
IF(ISUBTREE .EQ. 1) THEN
C11 = RP102
C11 = RP102
C21 = KKIS
C21 = KKIS
IF(KKIS .GT. RP102) C21 = RP102
IF(KKIS .GT. RP102) C21 = RP102
IF(KKIS .LT.-RP102) C21 =-RP102
IF(KKIS .LT.-RP102) C21 =-RP102
ELSE
ELSE
C11 = KKJ + C1
C11 = KKJ + C1
C21 = KKI + C1
C21 = KKI + C1
END IF
END IF
ELSE IF(IPATH .EQ. 2) THEN
ELSE IF(IPATH .EQ. 2) THEN
C12 = 1.D0
C12 = 1.D0
C22 =-1.D0
C22 =-1.D0
IF(ISUBTREE .EQ. 1) THEN
IF(ISUBTREE .EQ. 1) THEN
C11 =-RP102
C11 =-RP102
C21 = KKIS2
C21 = KKIS2
IF(KKIS2 .GT. RP102) C21 = RP102
IF(KKIS2 .GT. RP102) C21 = RP102
IF(KKIS2 .LT.-RP102) C21 =-RP102
IF(KKIS2 .LT.-RP102) C21 =-RP102
ELSE
ELSE
C11 = KKJ - C2
C11 = KKJ - C2
C21 = KKI + C2
C21 = KKI + C2
END IF
END IF
ELSE IF(IPATH .EQ. 3) THEN
ELSE IF(IPATH .EQ. 3) THEN
C12 =-1.D0
C12 =-1.D0
C22 = 1.D0
C22 = 1.D0
IF(ISUBTREE .EQ. 1) THEN
IF(ISUBTREE .EQ. 1) THEN
C11 = RP102
C11 = RP102
C21 = KKIS
C21 = KKIS
IF(KKIS .LT. -RP102) C21 = -RP102
IF(KKIS .LT. -RP102) C21 = -RP102
IF(KKIS .GT. RP102) C21 = RP102
IF(KKIS .GT. RP102) C21 = RP102
ELSE
ELSE
C11 = KKJ + C1
C11 = KKJ + C1
C21 = KKI - C1
C21 = KKI - C1
END IF
END IF
ELSE
ELSE
C12 = 1.D0
C12 = 1.D0
C22 = 1.D0
C22 = 1.D0
IF(ISUBTREE .EQ. 1) THEN
IF(ISUBTREE .EQ. 1) THEN
C11 =-RP102
C11 =-RP102
C21 = KKIS2
C21 = KKIS2
--- PATH=2 ---

```
                                    --- PATH=2 ---
```

1099
1100
1101
1102
1103
1104
1105 C
1106 C
1107
1108
1109 C
1110
1111
1112
1113
1114 C
1115
1116
1117
1118
1119 C
1120245
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
IF(KKIS2 .LT. -RP102) C21 = -RP102
IF(KKIS2 .LT. -RP102) C21 = -RP102
IF(KKIS2 .GT. RP102) C21 = RP102
IF(KKIS2 .GT. RP102) C21 = RP102
ELSE
ELSE
C11 = KKJ - C2
C11 = KKJ - C2
C21 = KKI - C2
C21 = KKI - C2
END IF
END IF
END IF
END IF
JJJE = IDNINT(RP1)
JJJE = IDNINT(RP1)
DO 250 JJJ= 0, JJJE
DO 250 JJJ= 0, JJJE
CKKJ = C11 + C12*DBLE(JJJ)
CKKJ = C11 + C12*DBLE(JJJ)
CKKI = C21 + C22*DBLE (JJJ)
CKKI = C21 + C22*DBLE (JJJ)
IF((DABS(CKKJ) .GT. RP102+1.D-10) .OR.
IF((DABS(CKKJ) .GT. RP102+1.D-10) .OR.
(DABS (CKKI) .GT. RP102+1.D-10)) GOTO 250
(DABS (CKKI) .GT. RP102+1.D-10)) GOTO 250
IF(ISUBTREE .EQ. 1) THEN
IF(ISUBTREE .EQ. 1) THEN
IF((DABS (CKKI) .GT. RP102+1.D-10) .OR.
IF((DABS (CKKI) .GT. RP102+1.D-10) .OR.
(DABS (CKKJ) .GT. RP102+1.D-10)) GOTO 1000
(DABS (CKKJ) .GT. RP102+1.D-10)) GOTO 1000
END IF
END IF
XJ = RRXJ + NNXJ**CKKJ
XJ = RRXJ + NNXJ**CKKJ
YJ = RRYJ + NNYJ*CKKJ
YJ = RRYJ + NNYJ*CKKJ
ZJ = RRZJ + NNZJ*CKKJ
ZJ = RRZJ + NNZJ*CKKJ
XI = RRXI + NNXI*CKKI
XI = RRXI + NNXI*CKKI
YI = RRYI + NNYI*CKKI
YI = RRYI + NNYI*CKKI
ZI = RRZI + NNZI*CKKI
ZI = RRZI + NNZI*CKKI
RRIJ = DSQRT((XI-XJ)**2 + (YI-YJ)**2 + (ZI-ZJ)**2)
RRIJ = DSQRT((XI-XJ)**2 + (YI-YJ)**2 + (ZI-ZJ)**2)
IF(ISUBTREE .EQ. 1) THEN
IF(ISUBTREE .EQ. 1) THEN
IF(RRIJ .GE. D1) GOTO 1000
IF(RRIJ .GE. D1) GOTO 1000
END IF
END IF
XRXI = XI - RRXI
XRXI = XI - RRXI
YRYI = YI - RRYI
YRYI = YI - RRYI
-To evaluate the torque, the relative position
-To evaluate the torque, the relative position
ZRZI = ZI - RRZI
ZRZI = ZI - RRZI
of the sphere from the rod-like particle center
of the sphere from the rod-like particle center
RZI = ZI - RRZI
RZI = ZI - RRZI
XRXJ = XJ - RRXJ
XRXJ = XJ - RRXJ
YRYJ $=Y J-R R Y J$
ZRZJ $=Z J-R R Z J$
TXIJ0 $=(X I-X J) / R R I J$
TYIJ0 $=(Y I-Y J) / R R I J$
TZIJ0 $=(\mathrm{ZI}-\mathrm{ZJ}) /$ RRIJ
ISKIP $=0$
CALL STEFORCE (RRIJ,RAV,ISKIP,TXIJO,TYIJO,TZIJO)
IF (. NOT. KEEP) THEN

- The posttreatment for the case of the
C1 $=$ FXIJS
particle names exchanged.

1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264 C
1265
1266 C
1267 C
1268 C
126960
1270
1271
1272 C
1273
1274
1275
1276
1277 C
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287 C
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312

FZJIS	$=$ C3
C1	$=$ TXIJS
C2	$=$ TYIJS
C3	$=$ TZIJS
TXIJS	$=$ TXJIS
TYIJS	$=$ TYJIS
TZIJS	$=$ TZJIS
TXJIS	$=$ C1
TYJIS	$=$ C2
TZJIS	$=\mathrm{C} 3$

END IF
FXI $=$ FXI + FXIJS
FYI $=$ FYI + FYIJS
$F Z I=F Z I+F Z I J S$
FX(J) $=$ FX(J) + FXJIS
$F Y(J)=F Y(J)+F Y J I S$
FZ $(J)=F Z(J)+$ FZJIS
TXI $=$ TXI + TXIJS
TYI $=$ TYI + TYIJS
TZI $=$ TZI + TZIJS
TX(J) $=$ TX(J) + TXJIS
$T Y(J)=T Y(J)+T Y J I S$
$T Z(J)=T Z(J)+T Z J I S$

- The treatment for the parallel arrangement in Table 3.1.
GOTO 1000
-- (3) PARALLEL --
_-- FOR I AND J _-_
CNINJ $=$ NXI*NXJ + NYI*NYJ + NZI*NZJ
KIS $=$ CNINJ*RP102 - (RXIJ*NXI + RYIJ*NYI + RZIJ*NZI)
KJS = CNINJ*RP102 + (RXIJ*NXJ + RYIJ*NYJ + RZIJ*NZJ)
--- CHECK OVERLAP ---
CWIDTH $=($ RXIJ + KIS*NXI - RP102*NXJ $) * * 2$
$+(R Y I J+K I S * N Y I-R P 102 * N Y J) * * 2$
 + (RZIJ + KIS*NZI - RP102*NZJ)**2
IF (CWIDTH .GE. D1SQ) GOTO 1000
IF (CNINJ .GE. O.DO) THEN
IPATH $=1$
ELSE
IF (KIS .LE. -RP102) THEN
IPATH $=2$
ELSE
IPATH $=3$
END IF
END IF
KEEP = .TRUE.
II $=$ I
$J J=J$
RRXI $=$ RXI
RRYI $=$ RYI
RRZI = RZI
RRXJ = RXJ
RRYJ = RYJ
RRZJ $=$ RZJ
RRXIJ = RXIJ
RRYIJ = RYIJ
RRZIJ = RZIJ
NNXI $=$ NXI
NNYI $=$ NYI
NNZI = NZI
NNXJ $=$ NXJ
NNYJ = NYJ
NNZJ $=$ NZJ
KKIS = KIS
IF ((IPATH .EQ. 1) .AND. (KIS .GT. KJS)) THEN
KEEP = .FALSE.
II $=\mathrm{J}$
JJ $=I$
RRXI = RXJ
RRYI $=$ RYJ
 - The square distance between particles i
and j is calculated and saved in CWIDTH.
In this calculation, the length of the vertical
line drawn from the positive magnetic
charge of particle j to the axis line of
particle i is evaluated.
1313
1314
1315
1316
1317
1318
1319
1320
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328 C
1329 C
1330
1331
1332
1333
1334 C
1335
1336
1336
1337
1338 C
1339
1340
1341
1342
1343
1344
1345 C
1346
1347
1348
1349
1350
1351
1352
1353 C
1354
1354
1355
1356
1357
1358
1359
1360
1361
1362 C
1363
1363
1364
1365 C
1366
1367
1368
1369
1370
1371 C
1372645
1373
1374
1374
1375
1376
1377
1378
1379
1379
1380
1381
1381
1382
1383
C
C
KKIC $=-($ RRXIJ*NNXI+ RRYIJ*NNYI + RRZIJ*NNZI)
KKJC $=($ RRXIJ*NNXJ + RRYIJ*NNYJ + RRZIJ*NNZJ)
CKKIC $=$ DABS (KKIC $)$
CKKIC2 \quad CKKIC/2.D0 $\quad \begin{aligned} & \text { ACCording to the repulsive force model in Section 3.2.4, the } \\ & \text { position of the first sphere to be placed is determined. The }\end{aligned}$
CKKIC $=$ DABS $($ KKIC $)$
CKKIC2 \quad CKKIC $/ 2$. D0 $\quad 4$ According to the repulsive force model in Section 3.2.4, the
C11 $=\mathrm{KKJC} / 2 \cdot \mathrm{D} 0$
$\mathrm{C} 21=\mathrm{KKIC} / 2 \cdot \mathrm{D} 0$
variables used to do so are C11 and C21 for particles j and
i, respectively.
$\mathrm{C} 11=\mathrm{KKJC} / 2 \cdot \mathrm{D} 0$
$\mathrm{C} 21=\mathrm{KKIC} / 2 . \mathrm{D} 0$
- The point at which the vertical line drawn from the center
RRZI $=$ RZJ
RRXJ $=$ RXI
RRXU $=$ RXI
RRYJ $=$ RYI
RRZJ $=$ RZI
RRXIJ $=-$ RXIJ
RRYIJ $=-$ RYIJ
RRYIJ $=-$ RYIJ
RRZIJ $=-$ RZIJ
RRZIJ $=-$ RZIJ
NNXI $=$ NXJ
NNXI $=$ NXJ
NNYI $=$ NYJ
NNZI $=$ NZJ
NNXJ $=$ NXI
- The point at which the vertical line drawn from the center
of particle j intersects the axis line of particle i is assumed to
NNYJ $=$ NYI
be denoted by $\mathbf{r}_{i}+k_{i}^{C} e_{i}, k_{i}^{C}$, and a similar quantity k_{j}^{C} is
NNZJ $=$ NZI
evaluated.
KKIS $=$ KJS
END IF
--- FOR II AND JJ ---
C
C
IF (IPATH .EQ. 1) THEN
i, respectively.
--- PATH=1 ---
$\mathrm{C} 12=1 . \mathrm{D} 0$
$\mathrm{C} 22=1 . \mathrm{D} 0$
C12 $=1 . \mathrm{D} 0$
$\mathrm{C} 22=1 . \mathrm{D} 0$
IF (CKKIC2 .GT. RP102) THEN
$\mathrm{C} 11=\mathrm{RP} 102$
C21 $=-$ RP102
END IF
ELSE IF (IPATH .EQ. 2) THEN
--- PATH=2 ---
C
ELSE IF (IPAT
C12 $=-1$. D0
$\mathrm{C} 22=1 . \mathrm{D} 0$
IF (CKKIC2 .GT. RP102) THEN
$\mathrm{C} 11=-\mathrm{RP} 102$
$\mathrm{C} 21=-\mathrm{RP} 102$
C21 $=-$ RP102
END IF
ELSE
$\begin{gathered}\text { C12 }\end{gathered}=1$. D0
$\mathrm{C} 12=1 . \mathrm{D} 0$
$\mathrm{C} 22=-1 . \mathrm{D} 0$
IF (CKKIC2 .GT. RP102) THEN
IF (CKKIC2 .GT.
C11 = RP102
$\mathrm{C} 21=\mathrm{RP} 102$
$\underset{\text { END }}{\mathrm{C} 21}=$
END IF
END IF
JJJE $=$ IDNINT (RP102)
JJJE $=$ IDNINT (RP102)
DO 650 JJJ=0, JJJE
CKKJ $=\mathrm{C} 11+\mathrm{C} 12 *$ DBLE $(J J J)$
CKKI $=\mathrm{C} 21+\mathrm{C} 22 *$ DBLE (JJJ)
CKKI $=\mathrm{C} 21+\mathrm{C} 22 *$ DBLE (JJJ)
CKKI $=\mathrm{C} 21+\mathrm{C} 22 *$ DBLE (JJJ)
IF (JJJ .EQ. 0) GOTO 645
IF (JJJ.EQ.
IF ((DABS (CKKI)
.GT. RP102+1.D-10) .OR.
(DABS (CKKJ) .GT. RP102+1.D-10)) GOTO 1000
\&
C
- The direction in which the next neighboring
sphere is added to form the sphere-connected
sphere is added to form the sphere-connected
particle j is specified by C12.
$X J=$ RRXJ + NNXJ*CKKJ
$\mathrm{XJ}=$ RRXJ + NNXJ*CKKJ
$Y J=$ RRYJ + NNYJ*CKKJ
$\mathrm{YJ}=$ RRYJ + NNYJ*CKKJ
YJ $=$ RRYJ + NNYJ*CKKJ
$Z J=$ RRZJ + NNZJ*CKKJ
$\mathrm{XI}=\mathrm{RRXI}+\mathrm{NNXI*}$ CKKI
$\mathrm{YI}=\mathrm{RRYI}+\mathrm{NNYI*CKKI}$
$\mathrm{ZI}=$ RRZI + NNZI*CKKI
RRIJ $=$ DSQRT ((XI-XJ) **2
RRIJ $=\operatorname{DSQRT}((\mathrm{XI}-\mathrm{XJ}) * * 2+(\mathrm{YI}-\mathrm{YJ}) * * 2+(\mathrm{ZI}-\mathrm{ZJ}) * * 2)$
IF (RRIJ.GE. D1) GOTO 1000
XRXI $=X I-$ RRXI
YRYI $=Y I-R R Y I$
$Z R Z I=Z I-R R Z I$
ZRZI $=\mathrm{ZI}-\mathrm{RRZI}$
$\mathrm{ZRZI}=\mathrm{ZI}-\mathrm{RRZI}$
$\mathrm{XRXJ}=\mathrm{XJ}-\mathrm{RRXJ}$

1384
XJ = RRXJ - NNXJ*CKKJ
YJ = RRYJ - NNYJ*CKKJ
$\mathrm{ZJ}=$ RRZJ - NNZJ*CKKJ
XI $=$ RRXI - NNXI*CKKI
YI = RRYI - NNYI*CKKI
ZI = RRZI - NNZI*CKKI
RRIJ $=\operatorname{DSQRT}((X I-X J) * * 2+(Y I-Y J) * * 2+(Z I-Z J) * * 2)$
XRXI = XI - RRXI
YRYI $=Y I-R R Y I$
ZRZI = ZI - RRZI
XRXJ $=X J-$ RRXJ
YRYJ = YJ - RRYJ
ZRZJ $=Z J-R R Z J$
TXIJ0 $=(X I-X J) / R R I J$
TYIJO $=(Y I-Y J) / R R I J$
TZIJ0 $=(Z I-Z J) / R R I J$
ISKIP $=0$
CALL STEFORCE (RRIJ,RAV,ISKIP,TXIJ0,TYIJ0,TZIJ0)
IF (. NOT. KEEP) THEN
C1 $=$ FXIJS
C2 = FYIJS
$\mathrm{C} 3=\mathrm{FZIJS}$
FXIJS $=$ FXJIS
FYIJS $=$ FYJIS
FZIJS = FZJIS
FXJIS = C1
FYJIS $=\mathrm{C} 2$
FZJIS = C3
-To evaluate the torque, the relative position of
the sphere from the rod-like particle center is the sphere from the rod-like particle center is calculated.
-The posttreatment for the case of the particle

```
YRYJ = YJ - RRYJ
```

YRYJ = YJ - RRYJ
ZRZJ = ZJ - RRZJ
ZRZJ = ZJ - RRZJ
TXIJO= (XI-XJ)/RRIJ
TXIJO= (XI-XJ)/RRIJ
TYIJO= (YI-YJ)/RRIJ
TYIJO= (YI-YJ)/RRIJ
TZIJO=(ZI-ZJ)/RRIJ
TZIJO=(ZI-ZJ)/RRIJ
ISKIP = 0
ISKIP = 0
CALL STEFORCE(RRIJ,RAV,ISKIP,TXIJO,TYIJO,TZIJO)
CALL STEFORCE(RRIJ,RAV,ISKIP,TXIJO,TYIJO,TZIJO)
IF(.NOT. KEEP) THEN
IF(.NOT. KEEP) THEN
C1 = FXIJS
C1 = FXIJS
C2 = FYIJS
C2 = FYIJS
C3 = FZIJS
C3 = FZIJS
FXIJS = FXJIS
FXIJS = FXJIS
FYIJS = FYJIS
FYIJS = FYJIS
FZIJS = FZJIS
FZIJS = FZJIS
FXJIS = C1
FXJIS = C1
FYJIS = C2
FYJIS = C2
FZJIS = C3
FZJIS = C3
C1 = TXIJS
C1 = TXIJS
C2 = TYIJS
C2 = TYIJS
C3 = TZIJS
C3 = TZIJS
TXIJS = TXJIS
TXIJS = TXJIS
TYIJS = TYJIS
TYIJS = TYJIS
TZIJS = TZJIS
TZIJS = TZJIS
TXJIS = C1
TXJIS = C1
TYJIS = C2
TYJIS = C2
TZJIS = C3
TZJIS = C3
END IF
END IF
FXI = FXI + FXIJS
FXI = FXI + FXIJS
FYI = FYI + FYIJS
FYI = FYI + FYIJS
FZI = FZI + FZIJS
FZI = FZI + FZIJS
FX(J) = FX(J) + FXJIS
FX(J) = FX(J) + FXJIS
FY(J) = FY(J) + FYJIS
FY(J) = FY(J) + FYJIS
FZ(J) = FZ(J) + FZJIS
FZ(J) = FZ(J) + FZJIS
TXI = TXI + TXIJS
TXI = TXI + TXIJS
TYI = TYI + TYIJS
TYI = TYI + TYIJS
TZI = TZI + TZIJS
TZI = TZI + TZIJS
TX(J) = TX(J) + TXJIS
TZ(J) = TZ(J) + TZJIS
TZ(J) = TZ(J) + TZJIS
--- COUNT JUST ONCE FOR CENTRAL PLACE ---
--- COUNT JUST ONCE FOR CENTRAL PLACE ---
IF(JJJ .EQ. 0) GOTO 650
IF(JJJ .EQ. 0) GOTO 650
calculated.
calculated.
CH
CH
names exchanged.

```
                                    names exchanged.
```

 - Because of the parallel arrangement, a
 similar calculation of the repulsive forces is
 carried out for the particles placed on the
 particle axis in the opposite direction.
 TZ(J) = TZ(J) + TZJIS
C
650 CONTINUE
C
GOTO 1000
C --------------------- END OF ENERGY DUE TO STERIC INER. ---
1 4 8 3 ~ 1 0 0 0 ~ C O N T I N U E
1485 FX(I) = FXI
1486 FY(I) = FYI
1487 FZ(I) = FZI
1488 TX(I) = TXI
1489 TY(I) = TYI
1490 TZ(I) = TZI
C
2000 CONTINUE
C
C
DO 2010 I=1,N
TX(I) = TX(I) + (NY(I)*HZ - NZ(I)*HY)*RAH
TY(I) = TY(I) + (NZ(I)*HX - NX(I)*HZ)*RAH
TZ(I) = TZ(I) + (NX(I)*HY - NY(I)*HX)*RAH
2010 CONTINUE
RETURN
END
C**** SUB STEFORCE ****
SUBROUTINE STEFORCE(RRIJ,RAV,ISKIP,TXIJ,TYIJ,TZIJ)
C
IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
COMMON /WORK20/ XRXI , YRYI , ZRZI , XRXJ , YRYJ , ZRZJ
COMMON /WORK21/ FXIJS, FYIJS, FZIJS, FXJIS, FYJIS, FZJIS
COMMON /WORK22/ TXIJS, TYIJS, TZIJS, TXJIS, TYJIS, TZJIS
COMMON /WORK23/ RCOFF2 , RP102 , D1 , D1SQ
REAL*8 FXIJ , FYIJ , FZIJ , C0
FXIJ = 0.DO
FYIJ = 0.DO
FZIJ = 0.DO
C
IF(RRIJ .LT. D1) THEN
IF(RRIJ .LE. 1.D0) RRIJ = 1.0001D0
C0 = DLOG(D1 / RRIJ)
FXIJ = TXIJ*C0
FYIJ = TYIJ*C0
FZIJ = TZIJ*C0
END IF
variable.
--- STERIC REPULSION ---
-A subroutine for calculating the
repulsive forces resulting from
the overlap of the surfactant
layers according to Eq. (3.63).

```
- The torque due to the external magnetic field is calculated and added to the corresponding variable.
1482 C
1484 C

1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476 C
1478 C
1479
1480 C
1481 C
1482 C
1000 CONTINUE
1484 C
\(1485 \quad \mathrm{FX}(\mathrm{I})=\mathrm{FXI}\)
\(1486 \quad \mathrm{FY}(\mathrm{I})=\mathrm{FYI}\)
\(1487 \quad \mathrm{FZ}(\mathrm{I})=\mathrm{FZI}\)
\(T X(I)=T X I\)
\(T Y(I)=T Y I\)
\(T Z(I)=T Z I\)
C
14922000 CONTINUE
1493 C
1494 C
1495
1496
\(1498 \mathrm{TZ}(\mathrm{I})=\mathrm{TZ}(\mathrm{I})+(\mathrm{NX}(\mathrm{I}) * H Y-N Y(I) * H X) * R A H\)
1499
1500
1501
1502 C**** SUB STEFORCE ****
1503 SUBROUTINE STEFORCE ( RRIJ,RAV,ISKIP,TXIJ,TYIJ,TZIJ )
1504 C
1505
1506 C
1507 COMMON /WORK20/ XRXI , YRYI, ZRZI, XRXJ, YRYJ, ZRZJ
1508 COMMON /WORK21/ FXIJS, FYIJS, FZIJS, FXJIS, FYJIS, FZJIS
1509 COMMON /WORK22/ TXIJS, TYIJS, TZIJS, TXJIS, TYJIS, TZJIS
1510
1511 C
1512
1513 C
1514
1515
1516
1517 C
1518
1519 IF ( RRIJ .LE. 1.D0 ) RRIJ = 1.0001D0
1520 C0 = DLOG ( D1 / RRIJ )
1521 FXIJ = TXIJ*C0
1522 FYIJ \(=\) TYIJ*C0
1523 FZIJ \(=\) TZIJ*C0
1524 END IF
```

```
                                    C1 = TXIJS
```

```
                                    C1 = TXIJS
                                    C2 = TYIJS
                                    C2 = TYIJS
                                    C3 = TZIJS
                                    C3 = TZIJS
                                    TXIJS = TXJIS
                                    TXIJS = TXJIS
                            TYIJS = TYJIS
                            TYIJS = TYJIS
                            TZIJS = TZJIS
                            TZIJS = TZJIS
                    TXJIS = C1
                    TXJIS = C1
                    TYJIS = C2
                    TYJIS = C2
                            TZJIS = C3
                            TZJIS = C3
END IF
END IF
FXI = FXI + FXIJS
FXI = FXI + FXIJS
FYI = FYI + FYIJS
FYI = FYI + FYIJS
FZI = FZI + FZIJS
FZI = FZI + FZIJS
FX(J) = FX(J) + FXJIS
FX(J) = FX(J) + FXJIS
FY(J) = FY(J) + FYJIS
FY(J) = FY(J) + FYJIS
FZ(J) = FZ(J) + FZJIS
FZ(J) = FZ(J) + FZJIS
TXI = TXI + TXIJS
TXI = TXI + TXIJS
TYI = TYI + TYIJS
TYI = TYI + TYIJS
TZI = TZI + TZIJS
TZI = TZI + TZIJS
TX(J) = TX(J) + TXJIS
TX(J) = TX(J) + TXJIS
TY(J) = TY(J) + TYJIS
TY(J) = TY(J) + TYJIS
TX(J) TX(J) + TXJIS
```

TX(J) TX(J) + TXJIS

```

1525 C
1526 FXIJS = FXIJ*RAV
1527
1528
1529
1530
1531
1532
1533 C
1534
1535
1536
1537
1538
1539
1540
1541
```

S = FXIJ*RAV
FYIJS = FYIJ*RAV
FZIJS = FZIJ*RAV
FXJIS = - FXIJS
FYJIS = - FYIJS
FZJIS = - FZIJS
IF(ISKIP .EQ. 1) RETURN
TXIJS = YRYI*FZIJS - ZRZI*FYIJS
TYIJS = ZRZI*FXIJS - XRXI*FZIJS
TZIJS = XRXI*FYIJS - YRYI*FXIJS
TXJIS = YRYJ*FZJIS - ZRZJ*FYJIS
TYJIS = ZRZJ*FXJIS - XRXJ*FZJIS
TZJIS = XRXJ*FYJIS - YRYJ*FXJIS

```
- The torques acting on particles \(i\) and \(j\) due
to the repulsive forces are calculated and
saved in (TXIJ S,TYIJ S,TZIJ S) and (TXJ IS,
TYJ IS,TZJ IS), respectively.
RETURN
END

\section*{4 Practice of Monte Carlo Simulations}

In the present chapter we demonstrate the two examples of an Monte Carlo (MC) simulation by considering the aggregation phenomena of magnetic particles in an applied magnetic field. The first exercise treats a two-dimensional suspension composed of magnetic spherocylinder particles with the purpose of discussing the dependence of the particle behavior on the magnetic particle-particle and the particle-field interactions. The second exercise treats a three-dimensional suspension composed of magnetic disk-like particles for discussing similar particle behavior in thermodynamic equilibrium. Understanding the MC method for simulations of these nonspherical systems is an important first step in treating a more complex system, such as DNA, polymeric liquids, or carbon-nanotubes. The sample simulation programs that follow each exercise have been taken from real-life academic-oriented research projects and are therefore realistic examples for guidance in writing an academic or commercial simulation program. In both examples demonstrated here, the canonical MC algorithm is used under the physical conditions of a given number of particles, temperature, and volume of the system.

\subsection*{4.1 Orientational Phenomena of Rod-like Particles in an Applied Magnetic Field}

In the present section we consider a suspension composed of magnetic rod-like particles as a two-dimensional system that is in thermodynamic equilibrium under the conditions of a constant number of particles, temperature, and volume. A sample simulation program written in the FORTRAN language completes the exercise.

\subsection*{4.1.1 Physical Phenomena of Interest}

The system, assumed to be in thermodynamic equilibrium, is composed of \(N\) ferromagnetic particles with diameter \(d\) and length \(l_{0}(=l+d)\) that are dispersed in a base liquid. Each magnetic rod-like particle is modeled as a spherocylinder, as already explained in Section 3.2, with magnetic plus and minus charges at the centers of each hemisphere cap; it is therefore magnetized in the particle axis direction. Each particle is coated with a surfactant layer for stabilization purposes. In this type of dispersion, the aggregation phenomenon of magnetic particles is strongly dependent on the magnetic field strength, magnetic interactions, and the number


Figure 4.1 Rod-like particle model with a steric layer: (A) the spherocylinder model and (B) the sphere-connected model.
density. In this example we discuss the influence of these effects on particle aggregation by means of a canonical MC simulation.

\subsection*{4.1.2 Specification of Problems in Equations}

The main consideration in formulating the present problem is the interaction energy between the particles. Similar to Section 3.2, it is necessary to take into account magnetic interactions and steric repulsive interactions acting between particles for the spherocylinder particle model shown in Figure 4.1A. The treatment of the steric interactions due to particle overlap is difficult even in the present two-dimensional case. Therefore, in evaluating the steric interactions, we employ the simple linear sphere-connected model shown in Figure 4.1B. In this model, each constituent sphere is covered by a uniform steric layer. Hence, a repulsive interaction energy due to the overlap of the two steric layers can be obtained by summing all interaction energies for each pair of spheres belonging to the two different rod-like particles. This is a characteristic feature of the sphere-connected model, which is different from the model employed in Section 3.2 in that the constituent spheres are in fixed positions in the present case.

It is difficult to treat the particle overlap in a manner that results in an efficient simulation program, even for the two-dimensional case, and therefore considerable effort is required to address this problem for a three-dimensional system. In many cases, rather than directly addressing the three-dimensional system, it is more effective to first develop a two-dimensional simulation program and then extend it to the three-dimensional case. The three-dimensional simulation program shown in Section 3.2 has been developed using this approach from the present two-dimensional program, which will be shown in Section 4.1.6.

We use the notation \(\mathbf{r}_{i}\) for the position vector of the center of particle \(i(i=1\), \(2, \ldots, N), \mathbf{e}_{i}\) for the particle axis direction vector, and \(\pm q\) for the plus and minus magnetic charges at both hemispheres. The interaction energy with an applied magnetic field \(\mathbf{H}\) is expressed similar to the spherical particles as
\[
\begin{equation*}
u_{i}=-\mu_{0} \mathbf{m}_{i} \cdot \mathbf{H} \tag{4.1}
\end{equation*}
\]
in which \(\mathbf{m}_{i}\) is the magnetic moment, expressed as \(\mathbf{m}_{i}=q l \mathbf{e}_{i}\left(=m \mathbf{e}_{i}\right)\). Eq. (4.1) implies that a rod-like particle tends to incline in the magnetic field direction, leading to a minimum interaction energy.

We first show an expression for the interaction energy \(u\) between magnetic charges \(q\) and \(q^{\prime}\). If the magnetic charges are separated by distance \(r\), the interaction energy is expressed as
\[
\begin{equation*}
u=\frac{\mu_{0} q q^{\prime}}{4 \pi r} \tag{4.2}
\end{equation*}
\]

This equation is quite well known [31]. Eq. (4.2) is applied to the present magnetic rod-like particle shown in Figure 4.1. The interaction energy for the rod-like particles shown in Figure 4.1B can be obtained by summing the interaction energies for the four pairs of magnetic charges. If the position vectors of the plus and minus charges of an arbitrary particle \(i\) are denoted by \(\mathbf{r}_{i}^{+}\)and \(\mathbf{r}_{i}^{-}\), respectively, they are written as
\[
\begin{equation*}
\mathbf{r}_{i}^{+}=\mathbf{r}_{i}+(l / 2) \mathbf{e}_{i}, \quad \mathbf{r}_{i}^{-}=\mathbf{r}_{i}-(l / 2) \mathbf{e}_{i} \tag{4.3}
\end{equation*}
\]

With this notation, the magnetic interaction energy \(u_{i j}\) between rod-like particles \(i\) and \(j\) is expressed as
\[
\begin{equation*}
u_{i j}=\frac{\mu_{0} q^{2}}{4 \pi}\left\{\frac{1}{\left|\mathbf{r}_{i}^{+}-\mathbf{r}_{j}^{+}\right|}-\frac{1}{\left|\mathbf{r}_{i}^{+}-\mathbf{r}_{j}^{-}\right|}-\frac{1}{\left|\mathbf{r}_{i}^{-}-\mathbf{r}_{j}^{+}\right|}+\frac{1}{\left|\mathbf{r}_{i}^{-}-\mathbf{r}_{j}^{-}\right|}\right\} \tag{4.4}
\end{equation*}
\]

The first term on the right-hand side is an interaction energy between the plus charges of particles \(i\) and \(j\). The second term is an energy between the plus charge of particle \(i\) and the minus charge of particle \(j\). The third term is an energy between the minus charge of particle \(i\) and the plus charge of particle \(j\). The fourth term is an energy between the minus charges of particles \(i\) and \(j\). Substitution of Eq. (4.3) into Eq. (4.4) leads to
\[
\begin{equation*}
u_{i j}=\frac{\mu_{0} q^{2}}{4 \pi}\left\{\frac{1}{\left|\mathbf{r}_{i j}+l \mathbf{e}_{i j} / 2\right|}-\frac{1}{\left|\mathbf{r}_{i j}+l\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right) / 2\right|}-\frac{1}{\left|\mathbf{r}_{i j}-l\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right) / 2\right|}+\frac{1}{\left|\mathbf{r}_{i j}-l \mathbf{e}_{i j} / 2\right|}\right\} \tag{4.5}
\end{equation*}
\]
in which \(\mathbf{r}_{i j}=\mathbf{r}_{i}-\mathbf{r}_{j}\) and \(\mathbf{e}_{i j}=\mathbf{e}_{i}-\mathbf{e}_{j}\).
We now consider an interaction energy \(u_{i j}^{(V)}\) arising from the overlap of the steric layers. For a spherical particle with diameter \(d\) covered by a uniform surfactant layer with thickness \(\delta\), an overlap of these two particles yields a repulsive interaction energy \(u_{i j}^{(V)}\), as already shown in Eq. (3.41):
\[
\begin{equation*}
u_{i j}^{(V)}=k T \lambda_{V}\left\{2-\frac{2 r_{i j} / d}{t_{\delta}} \ln \left(\frac{d+2 \delta}{r_{i j}}\right)-2 \frac{r_{i j} / d-1}{t_{\delta}}\right\} \tag{4.6}
\end{equation*}
\]
in which \(r_{i j}\) is the separation between particles \(i\) and \(j\) (center-to-center distance), \(t_{\delta}\) is the ratio of the steric layer thickness to the particle radius expressed as \(t_{\delta}=2 \delta / d\), \(\lambda_{\mathrm{V}}\) is a nondimensional parameter representing the strength of steric repulsive interactions expressed as \(\lambda_{\mathrm{V}}=\pi d^{2} n_{\mathrm{s}} / 2\), and \(n_{\mathrm{s}}\) is the number of surfactant molecules per
unit area on the particle surface. If the particle separation satisfies \(r_{i j}<\mathrm{d}+2 \delta\), the two steric layers of particles \(i\) and \(j\) overlap. In the following, we apply this interaction energy to the two spherocylinder particles shown in Figure 4.1B.

The sphere-connected model enables us to employ the evaluation approach, which has been used for calculating magnetic interactions. That is, the net steric interaction energy between the two rod-like particles can be obtained by summing a steric interaction energy for each pair of constituent spherical particles belonging to the two different rod-like particles. However, this approach becomes inefficient, or requires enormous computation time, as the rod-like particle becomes longer (i.e., for an increase in the number of spherical particles). Since the steric layer is thin compared with the particle diameter, the pair-wise calculation of the repulsive interactions implies that, for some calculations, the result is negligible. We therefore need to develop an alternative technique for calculating the steric interactions. This kind of difficulty frequently appears in developing a simulation program, so the process of overcoming this problem provides a good opportunity for the development of a higher-level simulation program. Therefore, in the following we discuss this problem in more detail.

The spatial relationship of two rod-like particles \(i\) and \(j\) is a function of the particle position vectors \(\mathbf{r}_{i}\) and \(\mathbf{r}_{j}\) and the particle direction (unit) vectors \(\mathbf{e}_{i}\) and \(\mathbf{e}_{j}\). In practice, a two-dimensional system is considerably more straightforward than a three-dimensional system in treating the overlap assessment. Referring to Figure 4.2, we now discuss the overlap between particles \(i\) and \(j\). Assessing how the two rod-like particles overlap first requires finding the intersection point of each particle axis. If the two axis lines intersect at the positions ( \(\mathbf{r}_{i}+k_{i} \mathbf{e}_{i}\) ) and \(\left(\mathbf{r}_{j}+k_{j} \mathbf{e}_{j}\right)\) of particles \(i\) and \(j\), respectively, then the unknown constants \(k_{i}\) and \(k_{j}\) have to satisfy the following equation:
\[
\begin{equation*}
\mathbf{r}_{i}+k_{i} \mathbf{e}_{i}=\mathbf{r}_{j}+k_{j} \mathbf{e}_{j} \tag{4.7}
\end{equation*}
\]


Figure 4.2 Analysis of the overlap condition of steric layers.

Vector product of \(\mathbf{e}_{j}\) (or \(\mathbf{e}_{i}\) ) on both sides of this equation yields \(\left|k_{i}\right|\) (or \(\left.\left|k_{j}\right|\right)\) :
\[
\begin{equation*}
\left|k_{i}\right|=\frac{\left|\mathbf{r}_{i j} \times \mathbf{e}_{j}\right|}{\left|\mathbf{e}_{i} \times \mathbf{e}_{j}\right|}, \quad\left|k_{j}\right|=\frac{\left|\mathbf{r}_{i j} \times \mathbf{e}_{i}\right|}{\left|\mathbf{e}_{i} \times \mathbf{e}_{j}\right|} \tag{4.8}
\end{equation*}
\]

These equations are valid for a nonparallel configuration. For parallel cases, the treatment of the particle overlap is quite straightforward and will be explained later.

Next we need to find the point \(\left(\mathbf{r}_{i}+k_{i}^{s} \mathbf{e}_{i}\right)\) on the axis line of particle \(i\), which is the intersection point of the line drawn from the position \(\mathbf{r}_{j}^{+}\)of the plus magnetic charge of particle \(j\) that perpendicularly intersects the axis line of particle \(i\). The orthogonality condition of this vertical line and the particle direction vector \(\mathbf{e}_{i}\) provides the solution of the unknown constant \(k_{i}^{s}\) as
\[
\begin{equation*}
k_{i}^{s}=\frac{l}{2} \mathbf{e}_{i} \cdot \mathbf{e}_{j}-\mathbf{r}_{i j} \cdot \mathbf{e}_{i} \tag{4.9}
\end{equation*}
\]

The solution of \(k_{j}^{s}\) can be obtained by exchanging the subscriptions \(i\) and \(j\) in this equation. Similarly, if a line drawn from the position \(\mathbf{r}_{j}^{-}\)perpendicularly intersects the axis line of particle \(i\) at the position \(\left(\mathbf{r}_{i}+k_{i}^{s /} \mathbf{e}_{i}\right)\), the above-mentioned mathematical procedure gives rise to the solution of \(k_{i}^{s \prime}\) as
\[
\begin{equation*}
k_{i}^{s \prime}=-\frac{l}{2} \mathbf{e}_{i} \cdot \mathbf{e}_{j}-\mathbf{r}_{i j} \cdot \mathbf{e}_{i} \tag{4.10}
\end{equation*}
\]

The use of these intersection points enables us to calculate effectively the repulsive interaction energy between particles \(i\) and \(j\) arising from the overlap of the steric layers. First, the solutions of \(k_{i}\) and \(k_{j}\) are obtained from Eqs. (4.7) and (4.8). From the large-or-small relationship and the positive-or-negative sign of \(k_{i}\) and \(k_{j}\), we see which sphere of particle \(i\) has a possibility of interacting with which sphere of particle \(j\). For example, since \(k_{j}>k_{i}>0\) in Figure 4.2, there is a possibility of the plus magnetic charged sphere of particle \(j\) interacting with any constituent spheres of particle \(i\). Which sphere of particle \(i\) interacts with the plus charged sphere of particle \(j\) can be determined by the solution \(k_{i}^{s}\) in Eq. (4.9). Because \(k_{i}^{s}>l / 2\) in Figure 4.2, it has a possibility to interact with the plus magnetic charged sphere of particle \(i\). At this stage, we have identified the first pair of constituent spheres of the particles \(i\) and \(j\) required for calculating the interaction energy due to the overlap of the steric layers.

After this calculation, we shift our attention to the next neighboring constituent spheres of each particle and calculate their interaction energy. Repeating this procedure finally yields the total interaction energy due to the particle overlap of particles \(i\) and \(j\). An important advantage of this procedure is that the nonoverlap of the constituent spheres can be used to terminate the calculation. In other words, this method becomes much more efficient with an increasing particle length when compared to the simple calculation method, in which all possible pairs of constituent
spheres are treated. Note that there may be situations where one constituent sphere of particle \(j\) may interact with two constituent spheres of particle \(i\). For example, in Figure 4.2, this situation may arise if the two axis lines intersect under the condition of \(-l / 2<k_{i}^{s}<l / 2\); in this case, the sphere of particle \(j\) is located at a position between the two constituent spheres of particle \(i\).

The parallel configuration and the linear configuration do not require values of \(k_{i}\) and \(k_{j}\) for the calculation of the steric interaction energy. The linear configuration satisfies the relationships of \(\left|\mathbf{e}_{i} \cdot \mathbf{e}_{j}\right|=\left|\mathbf{e}_{i} \cdot \mathbf{t}_{i j}\right|=1\), in which \(\mathbf{t}_{i j}\) is the unit vector between particles \(i\) and \(j\), expressed as \(\mathbf{t}_{i j}=\mathbf{r}_{i j} / r_{i j}\). Only the two spheres at the end of each particle have a possibility to overlap for the linear configuration, so that just one calculation is sufficient for this case; these spheres can be straightforwardly specified by the signs of \(\mathbf{e}_{i} \cdot \mathbf{e}_{j}\) and \(\mathbf{e}_{i} \cdot \mathbf{t}_{i j}\). For the parallel configuration, a value of \(k_{i}^{s}\) in Eq. (4.9) provides information as to how the two particles are shifted in separation along the particle axis direction. The value of \(k_{i}^{s}\) or \(k_{j}^{s}\) indicates which sphere of particle \(j\) interacts with which sphere of particle \(i\) in the nearest configuration.

In the above discussion, we have explained the fundamental and mathematical aspects of evaluating the steric interaction between the particles. The technical aspect of this treatment, required for developing a simulation program, will be discussed in detail later in the next subsection on the MC algorithm.

Finally, we show the nondimensional expressions of the important physical quantities. If distances and energies are nondimensionalized by the particle diameter \(d\) and the thermal energy \(k T\), respectively, Eqs. (4.1), (4.4), (4.5), and (4.6) are nondimensionalized as
\[
\begin{align*}
& u_{i}^{*}=u_{i} / k T=-\xi \mathbf{e}_{i} \cdot \mathbf{h} \\
& u_{i j}^{*}=u_{i j} / k T=\lambda_{0}\left\{\frac{1}{\left|\mathbf{r}_{i}^{+*}-\mathbf{r}_{j}^{+*}\right|}-\frac{1}{\left|\mathbf{r}_{i}^{+*}-\mathbf{r}_{j}^{-*}\right|}-\frac{1}{\left|\mathbf{r}_{i}^{-*}-\mathbf{r}_{j}^{+*}\right|}+\frac{1}{\left|\mathbf{r}_{i}^{-*}-\mathbf{r}_{j}^{-*}\right|}\right\} \tag{4.12}
\end{align*}
\]
\[
\begin{align*}
u_{i j}^{*} & =u_{i j} / k T \\
& =\lambda_{0}\left\{\frac{1}{\left|\mathbf{r}_{i j}^{*}+r_{p} \mathbf{e}_{i j} / 2\right|}-\frac{1}{\left|\mathbf{r}_{i j}^{*}+r_{p}\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right) / 2\right|}-\frac{1}{\left|\mathbf{r}_{i j}^{*}-r_{p}\left(\mathbf{e}_{i}+\mathbf{e}_{j}\right) / 2\right|}+\frac{1}{\left|\mathbf{r}_{i j}^{*}-r_{p} \mathbf{e}_{i j} / 2\right|}\right\} \tag{4.13}
\end{align*}
\]
\[
\begin{equation*}
u_{i j}^{(V) *}=u_{i j}^{(V)} / k T=\lambda_{V}\left\{2-\frac{2 r_{i j}^{*}}{t_{\delta}} \ln \left(\frac{1+t_{\delta}}{r_{i j}^{*}}\right)-2 \frac{r_{i j}^{*}-1}{t_{\delta}}\right\} \tag{4.14}
\end{equation*}
\]
in which \(r_{\mathrm{p}}\) is the particle aspect ratio, defined as \(r_{\mathrm{p}}=/ / d\). In addition, the nondimensional parameters \(\xi\) and \(\lambda_{0}\) are expressed as
\[
\begin{equation*}
\xi=\mu_{0} m H / k T, \quad \lambda_{0}=\mu_{0}(q d)^{2} / 4 \pi d^{3} k T \tag{4.15}
\end{equation*}
\]
in which \(\mathbf{h}=\mathbf{H} / H(H=|\mathbf{H}|)\) and the quantities with superscript * are dimensionless quantities. As previously explained in Eqs. (3.62) and (3.58), the meanings of \(\xi\) and \(\lambda_{0}\) are the strengths of magnetic particle-field and magnetic particle-particle interactions, respectively. A slightly different nondimensional parameter \(\lambda=r_{\mathrm{p}}^{2} \lambda_{0}\) is introduced for discussion.

\subsection*{4.1.3 Canonical Monte Carlo Algorithm}

The system is in thermodynamic equilibrium, composed of \(N\) rod-like particles with specified volume \(V\) (i.e., area in this two-dimensional case) and temperature \(T\), and it is appropriate to use the canonical MC algorithm for the simulation. The total system potential energy is evaluated by summing the magnetic particle-field and the particle-particle interaction energy together with the steric repulsive interaction energy due to the overlap of the steric layers. That is,
\[
\begin{equation*}
U^{*}=\sum_{i=1}^{N} u_{i}^{*}+\sum_{i=1}^{N} \sum_{j=1(j>i)}^{N}\left(u_{i j}^{*}+u_{i j}^{(V) *}\right) \tag{4.16}
\end{equation*}
\]

We now consider a transition from the present microscopic state \(k\), which has a system potential energy \(U_{k}\). A new microscopic state \(l\) is generated by selecting one particle and moving it to a new position by using random numbers, which yields a new system potential energy \(U_{l}\). The transition probability from microscopic state \(k\) to \(l, p_{k l}\), is given by Eq. (1.49), but in this case the probability density ratio is
\[
\begin{equation*}
\frac{\rho_{l}}{\rho_{k}}=\exp \left\{-\frac{1}{k T}\left(U_{l}-U_{k}\right)\right\}=\exp \left\{-\left(U_{l}^{*}-U_{k}^{*}\right)\right\} \tag{4.17}
\end{equation*}
\]

After this treatment of the translational displacement of the particle, a similar procedure is conducted for the rotational displacement. A series of trials for the translational and rotational displacement, when applied to all the system particles, is called an "MC step," which corresponds to a time step in the molecular dynamics method.

From the viewpoint of developing a simulation program, we now show the scheme for calculating the interaction energy due to the overlap of the steric layers. Figure 4.3 shows the categories of overlap for the two particles. There are four typical overlap regimes: linear (itree \(=0\) ), general (itree \(=1\) ), perpendicular (itree \(=2\) ), and parallel (itree \(=3\) ). Any overlap of the steric layers can be classified into one of these four regimes. Note that the variables itree and ipath (appearing later) have no physical meaning but are used for the sake of convenience; these variables are used in the sample simulation program with consistent meaning. We explain the four overlap cases in more detail in the following paragraphs.

(A)

(B)

(C)

(D)

Figure 4.3 Typical overlap regime of the steric layers: \((\mathrm{A})\) linear (itree \(=0\) ), \((\mathrm{B})\) general (itree \(=1\) ), \((\mathrm{C})\) perpendicular (itree \(=2\) ), and \((\mathrm{D})\) parallel (itree \(=3)\).


Figure 4.4 Overlap in the general situation (itree \(=1\) ).

\subsection*{4.1.3.1 General Overlap Case (itree = 1)}

In this case, there are four types of overlap dependent upon the location of the plus and minus magnetic charges, which are schematically shown in Figure 4.4. In order to treat the particle overlap consistently in a simulation program, the names of the two particles may be exchanged in such a way so as to satisfy the relationship \(\left|k_{i}\right|<\left|k_{j}\right|\). This condition is assumed to be satisfied in the following discussion. Figures 4.4A and C show the possibility of the plus magnetic charge of particle \(j\) overlapping with particle \(i\). Figures 4.4 B and D are for the overlap of the minus magnetic charge of particle \(j\) with particle \(i\).

The four types of particle overlaps in Figure 4.4 can be identified in the following way. By reason of \(\left|k_{i}\right|<\left|k_{j}\right|\), the particle on the left-hand side in Figure 4.4 is
particle \(i\), and the particle on the right-hand side is particle \(j\). For the case of \(\mathbf{e}_{i} \cdot \mathbf{e}_{j} \geq 0\), the overlap regime is ipath \(=1\) or ipath \(=4\), and for the case of \(\mathbf{e}_{i} \cdot \mathbf{e}_{j}<0\), it is ipath \(=2\) or ipath \(=3\). Furthermore, the sign of \(k_{j}\) enables us to identify whether ipath \(=1\) or ipath \(=4\) arises for the overlap, which is also applicable to the identification of ipath \(=2\) or ipath \(=3\). For example, for the case of \(\mathbf{e}_{i} \cdot \mathbf{e}_{j} \geq 0\) and \(k_{j} \geq 0\), there is a possibility of particle overlap in the situation ipath \(=1\).

We now discuss which constituent sphere of particle \(i\) interacts with the magnetic charged sphere of particle \(j\). Since the principle is the same for all cases, we focus on the case of ipath \(=1\). The value of \(k_{i}^{s}\) can allow us to identify which sphere of particle \(i\) has the possibility to interact with the plus magnetic charged sphere of particle \(j\). For simplification, we name the constituent spheres in the rodlike particle in such a way that the plus magnetic charged sphere is called "subparticle 1, " the next neighboring sphere is called "subparticle 2 ," and so on. For \(k_{i}^{s} \geq l / 2\), subparticle 1 of particle \(j\) may overlap with subparticle 1 of particle \(i\); similarly, \(l / 2>k_{i}^{s} \geq(l / 2-d)\) overlaps with subparticle 1 or subparticle 2 ; and \((l / 2-d)>k_{i}^{s} \geq(l / 2-2 d)\) overlaps with subparticle 2 or subparticle 3 . Even if the rod-like particle is composed of numerous subparticles, the above-mentioned procedure can provide us with a method to find which subparticle of particle \(i\) overlaps with particle \(j\).

We now consider the case in which subparticle 1 of particle \(j\) overlaps with subparticle 2 or 3 of particle \(i\). The total repulsive interaction energy between particles \(i\) and \(j\) can be obtained by calculating the interaction energy in Eq. (4.14) for this pair of subparticles and by repeating this calculation procedure for the neighboring subparticles for subparticle 2 of particle \(j\) and subparticle 3 or 4 (note that subparticle 4 does not exist for the present three-sphere-connected model) of particle \(i\), and so on. The calculation procedure can be terminated when a pair of the subparticles is found to be separated by more than the distance \((d+2 \delta)\). In the case of Figure 4.4 A , only the first two calculations are needed to obtain the total steric repulsive interaction energy between particles \(i\) and \(j\). This discussion clearly suggests that the present method becomes much more effective for a longer rod-like particle. In the sample simulation program shown later, the above-mentioned procedures are employed for calculating the steric interaction energy together with the variables itree and ipath with the same meaning as above.

\subsection*{4.1.3.2 Normal Overlap Case (itree = 2)}

Figure 4.5 shows the two categories of particle overlap in a normal orientation. As in the general overlap case, the subscripts \(i\) and \(j\) may be exchanged in order to satisfy \(\left|k_{i}\right|<\left|k_{j}\right|\). Figure 4.5A shows an overlap between subparticle 1 of particle \(j\) and particle \(i\), and Figure 4.5B is for the case of the other end subparticle of particle \(j\) overlapping with particle \(i\). These two categories can be identified by the value of \(k_{j}\); that is, there is a possibility of particle overlap in the situation ipath \(=1\) or ipath \(=2\) for \(k_{j}>0\) or \(k_{j}<0\), respectively.

We treat the case ipath \(=1\) shown in Figure 4.5 to consider which subparticle of particle \(i\) possibly overlaps with the subparticle of particle \(j\). As in the general


Figure 4.5 Overlap in the normal situation (itree \(=2\) ).


Figure 4.6 Overlap in the linear situation (itree \(=0\) ).
overlap situation, subparticle 1 possibly overlaps with subparticle 1 of particle \(j\) for \(k_{i}^{s} \geq l / 2\), subparticle 1 or 2 overlaps with particle \(j\) for \(l / 2>k_{i}^{s} \geq(l / 2-d)\), and subparticle 2 or 3 does so for \((l / 2-d)>k_{i}^{s} \geq(l / 2-2 d)\). For the case where the rodlike particle is composed of numerous subparticles, the above-mentioned procedure is repeated to find a pair or two pairs of interacting subparticles.

\subsection*{4.1.3.3 Linear Overlap Case (itree \(=0\) )}

In the linear overlap case, there are four types of overlap possibility, as shown in Figure 4.6. The four categories can be identified by assessing the signs of \(\mathbf{e}_{i} \cdot \mathbf{e}_{j}\) and \(\mathbf{e}_{j} \cdot \mathbf{t}_{i j}\). That is, the relationship \(\mathbf{e}_{i} \cdot \mathbf{e}_{j}>0\) provides an overlap for ipath \(=1\) or ipath \(=2\), and \(\mathbf{e}_{i} \cdot \mathbf{e}_{j}<0\) provides an overlap for ipath \(=3\) or ipath \(=4\). For the case of \(\mathbf{e}_{i} \cdot \mathbf{e}_{j}>0\), the sign of \(\mathbf{e}_{j} \cdot \mathbf{t}_{i j}\) can identify whether the overlap is for ipath \(=1\) or ipath \(=2\). Subsequently, there is a possibility of particle overlap in the situation


Figure 4.7 Overlap in the parallel situation (itree = 3).
where ipath \(=1\) for \(\mathbf{e}_{i} \cdot \mathbf{e}_{j}>0\) and \(\mathbf{e}_{j} \cdot \mathbf{t}_{i j}>0\), ipath \(=2\) for \(\mathbf{e}_{i} \cdot \mathbf{e}_{j}>0\) and \(\mathbf{e}_{j} \cdot \mathbf{t}_{i j}<0\), ipath \(=3\) for \(\mathbf{e}_{i} \cdot \mathbf{e}_{j}<0\) and \(\mathbf{e}_{j} \cdot \mathbf{t}_{i j}>0\), and ipath \(=4\) for \(\mathbf{e}_{i} \cdot \mathbf{e}_{j}<0\) and \(\mathbf{e}_{j} \cdot \mathbf{t}_{i j}<0\). Once the type of particle overlap is identified, the pair of the overlapping subparticles is readily identified in order to calculate the interaction energy.

\subsection*{4.1.3.4 Parallel Overlap Case (itree \(=3\) )}

For the parallel overlap case, there are three types of particle overlap, as shown in Figure 4.7. For the case of ipath \(=1\) in Figure 4.7A, the relationship \(k_{i}^{s} \leq k_{j}^{s}\) needs to be satisfied by exchanging the particle names. The overlap regime is identified by assessing the sign of \(\mathbf{e}_{i} \cdot \mathbf{e}_{j}\) with a value of \(k_{i}^{s}\). That is, the overlap regime is ipath \(=1\) for \(\mathbf{e}_{i} \cdot \mathbf{e}_{j}>0\), ipath \(=2\) for \(\mathbf{e}_{i} \cdot \mathbf{e}_{j}<0\) and \(k_{i}^{s} \leq-l / 2\), and ipath \(=3\) for \(\mathbf{e}_{i} \cdot \mathbf{e}_{j}<0\) and \(k_{i}^{s}>-l / 2\).

We focus on the cases ipath \(=2\) and 3 for discussion, since the treatment for ipath \(=1\) is almost the same as in the general overlap case. For ipath \(=2\) and 3 , the determination of the separation between the particle centers makes the subsequent treatment more straightforward. The separation between the particle centers along the particle axis, \(k_{i j}^{c}\), is expressed as \(k_{i j}^{c}=\left|k_{i}^{s}\right|-l / 2\) for ipath \(=2\), and as \(k_{i j}^{c}=\) \(k_{i}^{s}+l / 2\) for ipath \(=3\). Because of the similarity in the treatment for ipath \(=2\) and 3 , we explain only the case of ipath \(=2\). The value of \(k_{i j}^{c}\) allows us to find which subparticle of particle \(i\) overlaps with the minus magnetic charged sphere of particle \(j\). There is a possibility of the overlap with subparticle 1 or 2 of particle \(i\) for \(d \geq k_{i j}^{c}>0\) and of the overlap with subparticle 2 or 3 for \(2 d \geq k_{i j}^{c}>d\). This calculation procedure is repeated until the end-sphere of particle \(i\) obtains the total steric interaction energy.

\subsection*{4.1.4 Parameters for Simulations}

We employed the following parameters for conducting the simulations. It is presumed that the rod-like particles aggregate to form chain-like clusters along the
applied field direction (i.e., \(y\)-axis direction). We therefore choose to employ a rectangular simulation region dependent upon the particle aspect ratio; we therefore adopt a rectangular region having a side length in the \(y\)-direction twice that of in the \(x\)-direction. The results shown in the next subsection were obtained under the assumption that a rod-like particle may be represented by three spherical subparticles. The area fraction \(\phi_{\mathrm{V}}=0.2\), the nondimensional parameter \(\lambda_{\mathrm{V}}\), representing the strength of steric repulsive interactions, is set as \(\lambda_{\mathrm{V}}=150\). The thickness of the steric layer is assumed as \(t_{\delta}=0.3\). The maximum distance \(\delta r_{\text {max }}^{*}\) and angle \(\delta \theta_{\max }\) per one trial in the MC algorithm are taken as \(\delta r_{\max }^{*}=0.1\) and \(\delta \theta_{\max }=5^{\circ}\). The MC simulations were carried out for various cases of the magnetic particle-field and the particle-particle interactions, \(\xi\) and \(\lambda\), respectively.

\subsection*{4.1.5 Results of Simulations}

Figures \(4.8-4.11\) show the results relating to the aggregate structures, which were obtained by conducting the sample simulation program shown in the next subsection. Figure 4.8 was obtained for \(\lambda_{0}=0.75\), Figure 4.9 for \(\lambda_{0}=1.75\), Figure 4.10 for \(\lambda_{0}=4\), and Figure 4.11 for \(\lambda_{0}=7.5\). Each figure has two snapshots: one for the case of no external field, and the other for the case of a strong applied magnetic field.

For the case of \(\lambda_{0}=0.75\), shown in Figure 4.8, the magnetic interaction between particles is of the same order of the thermal energy and therefore no aggregates are observed in Figures 4.8A and B. Figure 4.8A is for the case of no external field and therefore the rod-like particles have no specifically favored directional characteristic. On the other hand, the rod-like particles tend to incline in the magnetic field direction in Figure 4.8B because \(\xi=20\) represents a significantly strong magnetic field.


Figure 4.8 Snapshots of aggregate structures for \(\lambda=3\left(\lambda_{0}=0.75\right)\) : (A) \(\xi=0\) and (B) \(\xi=20\).


Figure 4.9 Snapshots of aggregate structures for \(\lambda=7\left(\lambda_{0}=1.75\right)\) : (A) \(\xi=0\) and (B) \(\xi=20\).


Figure 4.10 Snapshots of aggregate structures for \(\lambda=16\left(\lambda_{0}=4\right)\) : (A) \(\xi=0\) and (B) \(\xi=20\).
Figure 4.9 shows snapshots for the slightly stronger interaction \(\lambda_{0}=1.75\). These snapshots are similar to Figure 4.8 , because \(\lambda_{0}=1.75\) is not significantly larger than the thermal energy.

For the stronger case of \(\lambda_{0}=4\), shown in Figure 4.10, the magnetic interaction between particles is now more dominant than the thermal energy, and thus significant aggregate structures are observed. In the case of no applied magnetic field,


Figure 4.11 Snapshots of aggregate structures for \(\lambda=30\left(\lambda_{0}=7.5\right)\) : (A) \(\xi=0\) and (B) \(\xi=20\).
shown in Figure 4.10A, loop-like clusters can be observed. Since the arrangement of the contact of the plus and minus magnetic charged spheres gives rise to a lower magnetic interaction energy, this type of connection is repeated and may result in the formation of necklace-like clusters. In the case of no external magnetic field there is no mechanism for forming chain-like clusters. In Figure 4.10B, the external magnetic field is significantly strong in comparison to the thermal energy, and therefore rod-like particles tend to aggregate to form chain-like clusters in the field direction.

These characteristics exhibited by aggregate structures can be recognized more clearly in the case of the much stronger interaction \(\lambda_{0}=7.5\) shown in Figure 4.11. In addition to the necklace-like clusters, star-like clusters are partially observed in Figure 4.11A. The snapshot in Figure 4.11B suggests the possibility that large-scale network-like or thick chain-like clusters may be formed in the field direction for stronger magnetic interaction cases.

\subsection*{4.1.6 Simulation Program}

We now show a sample simulation program written in the FORTRAN language employing the simulation techniques described above in the present demonstration of the MC method.

The important variables used in the program are described below.
\(\mathrm{RX}(\mathrm{I}), \mathrm{RY}(\mathrm{I}) \quad: \quad(x, y)\) components of the position vector \(\mathbf{r}_{i}^{*}\) of particle \(i\)
\(\mathrm{NX}(\mathrm{I}), \mathrm{NY}(\mathrm{I}) \quad: \quad(x, y)\) components of the unit vector \(\mathbf{e}_{i}\) of particle \(i\) denoting the particle direction
\begin{tabular}{|c|c|}
\hline XL, YL & Side lengths of the simulation box in the ( \(x, y\) ) directions \\
\hline N & Number of particles \\
\hline D & Particle diameter ( \(\mathrm{D}=1\) in this case) \\
\hline VDENS & Area fraction of particles \(\phi_{\mathrm{V}}\) \\
\hline RA & Nondimensional parameter \(\lambda\) representing the strength of magnetic particle-particle interactions \\
\hline KU & Nondimensional parameter \(\xi\) representing the strength of magnetic particle-field interactions \\
\hline RV & Nondimensional parameter \(\lambda_{\mathrm{V}}\) representing the strength of repulsive interactions due to the overlap of the steric layers \\
\hline RCOFF & Cutoff distance for calculations of interaction energies \\
\hline DELR & : \(\delta r_{\text {max }}^{*}\) \\
\hline DELT & \(\delta \theta_{\text {max }}\) \\
\hline RAN (J) & Uniform random numbers ranging \(0 \sim 1\) ( \(\mathrm{J}=1 \sim\) NRANMX ) \\
\hline NRAN & Number of used random numbers \\
\hline E(I) & Energy of particle \(i\) interacting with other particles \\
\hline \[
\begin{aligned}
& \operatorname{MOMX}(*), \\
& \operatorname{MOMY}(*)
\end{aligned}
\] & : Mean value of the particle direction at each MC step \\
\hline MEANENE (*) & Mean value of the system energy at each MC step \\
\hline
\end{tabular}

As an aid for the reader, comments have been placed beside important programming features. The line numbers are added for convenience and are unnecessary for the execution of the simulation program.

Finally, note that the cluster-moving method [4] may not be required for the case of a rod-like particle suspension, although it is indispensable for a spherical particle system in order to obtain physically reasonable aggregate structures in a strongly interacting system.

\begin{tabular}{|c|c|c|c|}
\hline 0029 & C & N : & : NUMBER OF PARTICLES \\
\hline 0030 & C & D : & : DIAMETER OF PARTICLE ( =1 FOR THIS CASE ) \\
\hline 0031 & C & VDENS : & : VOLUMETRIC FRACTION OF PARTICLES \\
\hline 0032 & C & RA : & : NONDIMENSIONAL PARAMETER OF PARTICLE-PARTICLE INTERACT \\
\hline 0033 & C & KU : & : NONDIMENSIONAL PARAMETER OF PARTICLE-FIELD INTERACTION \\
\hline 0034 & C & RV : & : NONDIMENSIONAL PARAMETER OF STERIC REPULSION \\
\hline 0035 & C & RCOFF : & : CUTOFF RADIUS FOR CALCULATION OF INTERACTION ENERGIES \\
\hline 0036 & C & XL, YL : & : DIMENSIONS OF SIMULATION REGION \\
\hline 0037 & C & & \\
\hline 0038 & C & \multicolumn{2}{|l|}{RX (N), RY(N) : PARTICLE POSITION} \\
\hline 0039 & C & \multicolumn{2}{|l|}{NX(N), NY(N) : DIRECTION OF MAGNETIC MOMENT} \\
\hline 0040 & C & \multicolumn{2}{|l|}{E(I) : INTERACTION ENERGY OF PARTICLE I WITH THE OTHERS} \\
\hline 0041 & C & \multicolumn{2}{|l|}{MOMX (**), MOMY (**) : MAGNETIC MOMENT OF SYSTEM AT EACH MC STEP} \\
\hline 0042 & C & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{MEANENE (**) : MEAN ENERGY OF SYSTEM AT EACH MC STEP}} \\
\hline 0043 & C & & \\
\hline 0044 & C & DELR & : MAXIMUM MOVEMENT DISTANCE \\
\hline 0045 & C & \multirow[t]{3}{*}{DELT} & : MAXIMUM MOVEMENT IN ORIENTATION \\
\hline 0046 & C & & \\
\hline 0047 & C & & -XL/2 < RX(*) < XL/2, -YL/2 < RY(*) < YL/2 \\
\hline 0048 & C & & \\
\hline 0049 & C & & \\
\hline 0050 & & \multicolumn{2}{|l|}{IMPLICIT REAL*8 ( \(\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}\) ), INTEGER ( \(\mathrm{I}-\mathrm{N}\) )} \\
\hline 0051 & C & & \\
\hline 0052 & & COMMON / & /BLOCK1/ RX , RY \\
\hline 0053 & & COMMON / & /BLOCK2/ NX , NY \\
\hline 0054 & & COMMON /B & /BLOCK3/ XL , YL \\
\hline 0055 & & COMMON /B & /BLOCK4/ RA , KU , RV , TD , RP \\
\hline 0056 & & COMMON /B & /BLOCK5/ VDENS, N , NPTC , RCOFF, D , NPTCHF \\
\hline 0057 & & COMMON / & /BLOCK6/ E , ENEW , EOLD \\
\hline 0058 & & COMMON /B & /BLOCK7/ NRAN , RAN , IX \\
\hline 0059 & & COMMON /B & /BLOCK8/ DELR , DELT \\
\hline 0060 & & \multicolumn{2}{|l|}{COMMON /BLOCK9/ MOMX , MOMY , MEANENE} \\
\hline 0061 & \multicolumn{3}{|l|}{C} \\
\hline 0062 & & \multicolumn{2}{|l|}{PARAMETER ( \(\mathrm{NN}=1000\), \(\mathrm{NNS}=200000\) )} \\
\hline \[
\begin{aligned}
& 0063 \\
& 0064
\end{aligned}
\] & \multirow[t]{5}{*}{C} & \multicolumn{2}{|l|}{PARAMETER ( NRANMX \(=500000\), PI=3.141592653589793D0 )} \\
\hline 0065 & & REAL*8 & RX (NN) , RY(NN) , NX(NN) , NY(NN) , E (NN) \\
\hline 0066 & & REAL* 8 & VDENS , KU \\
\hline 0067 & & REAL & MOMX (NNS), MOMY (NNS), MEANENE (NNS) \\
\hline 0068 & & INTEGER & N, NPTC, NDNSMX , NPTCHF \\
\hline 0069 & \multicolumn{3}{|l|}{C} \\
\hline 0070 & & \multicolumn{2}{|l|}{REAL RAN (NRANMX)} \\
\hline 0071 & & INTEGER & NRAN , IX , NRANCHK \\
\hline 0072 & \multicolumn{3}{|l|}{C} \\
\hline 0073 & & REAL* 8 & RXCAN , RYCAN , NXCAN , NYCAN \\
\hline 0074 & & REAL* 8 & RXI , RYI , NXI , NYI \\
\hline 0075 & & REAL*8 & RXIJ , RYIJ , RIJ , RIJSQ , RCOFF2 \\
\hline 0076 & & REAL* 8 & ECAN , C1 , C2 , C3 , CX , CY \\
\hline 0077 & & INTEGER & MCSMPL , MCSMPLMX , MCSMPL1 , MCSMPL2 \\
\hline 0078 & & INTEGER & NGRAPH , NOPT \\
\hline 0079 & & LOGICAL & OVRLAP \\
\hline 0080 & \multicolumn{3}{|l|}{C} \\
\hline 0081 & & & \(\operatorname{OPEN}(9, \mathrm{FILE}=\) '@daa1.data', STATUS='UNKNOWN') \\
\hline 0082 & & & OPEN (10,FILE='daa11.data', STATUS='UNKNOWN') \\
\hline 0083 & & & OPEN (21,FILE='daa001.data', STATUS='UNKNOWN') \\
\hline 0084 & & & OPEN (22,FILE='daa011.data',STATUS='UNKNOWN') \\
\hline 0085 & & & OPEN (23,FILE='daa021.data',STATUS='UNKNOWN') \\
\hline 0086 & & & OPEN (24,FILE='daa031.data',STATUS='UNKNOWN') \\
\hline 0087 & & & OPEN (25,FILE='daa041.data',STATUS='UNKNOWN') \\
\hline 0088 & & & OPEN (26,FILE='daa051.data',STATUS='UNKNOWN') \\
\hline 0089 & & & OPEN (27,FILE='daa061.data',STATUS='UNKNOWN') \\
\hline 0090 & & & OPEN (28,FILE='daa071.data',STATUS='UNKNOWN') \\
\hline 0091 & & & OPEN (29,FILE='daa081.data',STATUS='UNKNOWN') \\
\hline 0092 & & & OPEN (30,FILE='daa091.data',STATUS='UNKNOWN') \\
\hline 0093 & & & \\
\hline
\end{tabular}

0099
0100
0101
0102
0103
0104
0105
0106
0107
0108 C
0109
0110
0111 C
0112
0113
0114
0115
0116 C
0117
0118
0119
0120
0121 C
0122 C
0123 C
0124 C
0125 C
0126 C
0127 CCC
0128 CCC
0129 CCC
0130 CCC
0131 CCC
0132 CCC
0133 C
0134
0135 C
0136 C
0137
0138
0139
0140 C
0141 C
0142 C
0143 C
0144 C
0145 C
0146 C
0147 C
0148
0149 C
0150
0151 C
0152 C
0153
0154
0155
0156
0157
0158
0159 C
0160 C
0161
0162
0163
0164
0165

```

 C3 = 0.D0
 DO 450 J=1,N
 C1 = C1 + NY(J)
 C2 = C2 + NX(J)
 C3 = C3 + E(J)
 450 CONTINUE
 MOMY (MCSMPL) = REAL (C1)/REAL (N)
 MOMX (MCSMPL) = REAL (C2)/REAL (N)
 MEANENE (MCSMPL) = REAL (C3-KU*C1)/REAL (2*N)
 --- DATA OUTPUT FOR GRAPHICS (1) ---
 IF(MOD (MCSMPL,NGRAPH) .EQ. O) THEN
 NOPT = NOPT + 1
 WRITE (NOPT,462) N , XL , YL , D , DT , NPTC
 WRITE (NOPT, 464) (RX(I), I=1,N) , (RY(I), I=1,N) ,
 (NX(I),I=1,N) , (NY(I),I=1,N)
 CLOSE (NOPT,STATUS='KEEP')
 END IF
 --- CHECK OF THE SUM OF RANDOM NUMBERS ---
 IF(NRAN .GE. NRANCHK) THEN
 CALL RANCAL(NRANMX, IX, RAN)
 NRAN = 1
 END IF
 C
C
ONTINUE
C
0312 1012 FORMAT(I7 , 8F9.4)
0313 1013 FORMAT(2F9.5 , I4, 2F8.5)

```
0269 C
0270 C
0271 C
0272 C
0273
0274
0275
0276
0277
0278 C
0279 C
0280
0281
0282
0283
0284
0285
0286 C
0287
0288
0289 C
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0311
0321 C
*
0
0330
0331 C
0332
0333
0334 C
0335
0336
0337 c
0338 C
0339
0340
0341
0342
0343 c
0344
0345
0346
0347
0347
0348
0349 C
0350 C
0352
0353
0354
0355
0356 C
0357
0358
0359
0360
0361
0362
0363
0363
0364
0365
0366 C
0367
0368
0369
0370
0371
0372
0373 C
0374
0375
0376
0377
0378 C
0379
0379
0380
0381
0381
0382
0383
0384
0385
0386
0387
0388
```

```
```

0315 1016 FORMAT((5E16.9)) STOP

```
```

0315 1016 FORMAT((5E16.9)) STOP
0316 STOP
0316 STOP
0318C**
0318C**
0319C****************************** SUBROUTINE *******************************
0319C****************************** SUBROUTINE *******************************
0320C***
0320C***
C**** SUB PRNTDATA ****
C**** SUB PRNTDATA ****
SUBROUTINE PRNTDATA(MCSST, MCSMX, NP)
SUBROUTINE PRNTDATA(MCSST, MCSMX, NP)
C
C
C
C
C
C
0351 DO 35 I=1,10
0351 DO 35 I=1,10

```
    1014 FORMAT( 2I8 )
```

 1014 FORMAT(2I8)
 C
C
IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
COMMON /BLOCK9/ MOMX , MOMY , MEANENE
COMMON /BLOCK9/ MOMX , MOMY , MEANENE
PARAMETER(NN=1000 , NNS=200000)
PARAMETER(NN=1000 , NNS=200000)
PARAMETER(NRANMX =500000 , PI=3.141592653589793D0)
PARAMETER(NRANMX =500000 , PI=3.141592653589793D0)
INTEGER MCSST , MCSMX , NP
INTEGER MCSST , MCSMX , NP
REAL MOMX (NNS) , MOMY (NNS) , MEANENE (NNS)
REAL MOMX (NNS) , MOMY (NNS) , MEANENE (NNS)
REAL AMOMX (10) , AMOMY (10) , AMEANENE (10) ,C0
REAL AMOMX (10) , AMOMY (10) , AMEANENE (10) ,C0
INTEGER IC , IMC(0:10) , JS , JE
INTEGER IC , IMC(0:10) , JS , JE
-The total MC steps are equally divided into 50
-The total MC steps are equally divided into 50
blocks, and the end value of each block is
blocks, and the end value of each block is
written out.
written out.
IC = (MCSMX-MCSST+1)/50
IC = (MCSMX-MCSST+1)/50
DO 20 I= MCSST-1+IC , MCSMX , IC
DO 20 I= MCSST-1+IC , MCSMX , IC
WRITE(NP,10) I ,MOMX(I) ,MOMY(I) ,MEANENE(I)
WRITE(NP,10) I ,MOMX(I) ,MOMY(I) ,MEANENE(I)
20 CONTINUE
20 CONTINUE
C
C
IC = (MCSMX-MCSST+1)/10
IC = (MCSMX-MCSST+1)/10
DO 30 I=0,10
DO 30 I=0,10
IMC(I) = MCSST - 1 + IC*I
IMC(I) = MCSST - 1 + IC*I
IF(I .EQ. 10) IMC(I) =MCSMX
IF(I .EQ. 10) IMC(I) =MCSMX
30 CONTINUE
30 CONTINUE
C
C
AMOMY(I) = 0.
AMOMY(I) = 0.
AMOMX(I) }=0
AMOMX(I) }=0
AMEANENE (I) = 0.
AMEANENE (I) = 0.
35 CONTINUE
35 CONTINUE
C
C
DO 50 I=1,10
DO 50 I=1,10
JS = IMC(I-1) + 1
JS = IMC(I-1) + 1
JE = IMC(I)
JE = IMC(I)
DO 40 J=JS,JE
DO 40 J=JS,JE
AMOMY (I) = AMOMY (I) + MOMY (J)
AMOMY (I) = AMOMY (I) + MOMY (J)
AMOMX(I) = AMOMX(I) + MOMX(J)
AMOMX(I) = AMOMX(I) + MOMX(J)
AMEANENE(I) = AMEANENE(I) + MEANENE(J)
AMEANENE(I) = AMEANENE(I) + MEANENE(J)
40 CONTINUE
40 CONTINUE
5 0 ~ C O N T I N U E
5 0 ~ C O N T I N U E
DO 70 I=1,10
DO 70 I=1,10
C0 = REAL(IMC(I)-IMC(I-1))
C0 = REAL(IMC(I)-IMC(I-1))
AMOMY (I) = AMOMY(I) /CO
AMOMY (I) = AMOMY(I) /CO
AMOMX(I) = AMOMX(I) /C0
AMOMX(I) = AMOMX(I) /C0
AMEANENE (I) = AMEANENE (I)/C0
AMEANENE (I) = AMEANENE (I)/C0
70 CONTINUE
70 CONTINUE
C ----- STEP HEIKIN INSATU -----
C ----- STEP HEIKIN INSATU -----
WRITE (NP, 75)
WRITE (NP, 75)
DO 90 I=1,10
DO 90 I=1,10
WRITE (NP, 80) I, IMC (I-1) +1, IMC (I), AMOMX (I) , AMOMY (I), AMEANENE (I)
WRITE (NP, 80) I, IMC (I-1) +1, IMC (I), AMOMX (I) , AMOMY (I), AMEANENE (I)
90 CONTINUE
90 CONTINUE
--
--
0 FORMAT (1H ,'MCSMPL=',I5, 3X ,'MOMENT (X) =',F7.4, 3X ,
0 FORMAT (1H ,'MCSMPL=',I5, 3X ,'MOMENT (X) =',F7.4, 3X ,
\& 'MOMENT(Y)=',F7.4, 3X ,'MEAN ENERGY=',E12.5)
\& 'MOMENT(Y)=',F7.4, 3X ,'MEAN ENERGY=',E12.5)
75 FORMAT(//1H ,'---
75 FORMAT(//1H ,'---
\& /1H ,' MONTE CARLO HEIKIN
\& /1H ,' MONTE CARLO HEIKIN
\& /)
\& /)
80 FORMAT (1H ,'I=',I2, 2X ,'SMPLMN=',I5, 2X ,'SMPLMX=',I5
80 FORMAT (1H ,'I=',I2, 2X ,'SMPLMN=',I5, 2X ,'SMPLMX=',I5
\& /1H ,15X,'MOMENT(X)=',F7.4, 3X ,
\& /1H ,15X,'MOMENT(X)=',F7.4, 3X ,
\& 'MOMENT (Y)=',F7.4, 3X ,'MEAN ENERGY=',E12.5/)
\& 'MOMENT (Y)=',F7.4, 3X ,'MEAN ENERGY=',E12.5/)
RETURN
RETURN
END

```
                                    END
```


| |
| :--- | :--- | :--- |

C
IPATH = 1

```
```

```
C31 = RXIJ + CKI*NXI + CKJ*NXJ
```

```
C31 = RXIJ + CKI*NXI + CKJ*NXJ
C32 = RYIJ + CKI*NYI + CKJ*NYJ
C32 = RYIJ + CKI*NYI + CKJ*NYJ
C41 = RXIJ - CKI*NXI + CKJ*NXJ
C41 = RXIJ - CKI*NXI + CKJ*NXJ
C42 = RYIJ - CKI*NYI + CKJ*NYJ
C42 = RYIJ - CKI*NYI + CKJ*NYJ
C00 = 1.0D-8
C00 = 1.0D-8
IF( (DABS (C11).LT. C00) .AND. (DABS (C12).LT. C00) )THEN
IF( (DABS (C11).LT. C00) .AND. (DABS (C12).LT. C00) )THEN
    KI = CKI
    KI = CKI
    KJ = CKJ
    KJ = CKJ
    GOTO 110
    GOTO 110
    END IF
    END IF
    IF( (DABS (C21).LT. C00) .AND. (DABS (C22).LT. C00) )THEN
    IF( (DABS (C21).LT. C00) .AND. (DABS (C22).LT. C00) )THEN
    KI = -CKI
    KI = -CKI
    KJ = CKJ
    KJ = CKJ
    GOTO 110
    GOTO 110
END IF
END IF
IF( (DABS (C31).LT. C00) .AND. (DABS (C32).LT. C00) )THEN
IF( (DABS (C31).LT. C00) .AND. (DABS (C32).LT. C00) )THEN
    KI = CKI
    KI = CKI
        KJ = -CKJ
        KJ = -CKJ
        GOTO 110
        GOTO 110
    END IF
    END IF
    IF( (DABS (C41).LT. C00) .AND. (DABS (C42).LT. C00) ) THEN
    IF( (DABS (C41).LT. C00) .AND. (DABS (C42).LT. C00) ) THEN
        KI = -CKI
        KI = -CKI
        KJ = -CKJ
        KJ = -CKJ
        GOTO 110
        GOTO 110
    END IF
    END IF
IF( CKJ .GT. CKI ) THEN
IF( CKJ .GT. CKI ) THEN
    II = I
    II = I
    JJ = J
    JJ = J
    RRXI = RXI
    RRXI = RXI
    RRYI = RYI
    RRYI = RYI
    RRXJ = RXJ
    RRXJ = RXJ
    RRYJ = RYJ
    RRYJ = RYJ
    RRXIJ = RXIJ
    RRXIJ = RXIJ
    RRYIJ = RYIJ
    RRYIJ = RYIJ
    NNXI = NXI
    NNXI = NXI
    NNYI = NYI
    NNYI = NYI
    NNXJ = NXJ
    NNXJ = NXJ
        NNYJ = NYJ
        NNYJ = NYJ
    KKI = KI
    KKI = KI
    KKJ = KJ
    KKJ = KJ
ELSE
ELSE
    II = J
    II = J
    JJ = I
    JJ = I
    RRXI = RXJ
    RRXI = RXJ
    RRYI = RYJ
    RRYI = RYJ
    RRXJ = RXI
    RRXJ = RXI
    RRYJ = RYI
    RRYJ = RYI
    RRXIJ = -RXIJ
    RRXIJ = -RXIJ
    RRYIJ = -RYIJ
    RRYIJ = -RYIJ
    NNXI = NXJ
    NNXI = NXJ
    NNYI = NYJ
    NNYI = NYJ
    NNXJ = NXI
    NNXJ = NXI
        NNYJ = NYI
        NNYJ = NYI
    KKI = KJ
    KKI = KJ
        KKI = KJ 
        KKI = KJ 
    END IF
    END IF
END IF
END IF
    ITREE=0: LINEAR
    ITREE=0: LINEAR
    ITREE=1: GENERAL
    ITREE=1: GENERAL
    ITREE=2: NORMALL
    ITREE=2: NORMALL
    ITREE=3: PARALLEL
    ITREE=3: PARALLEL
IF( ITREE .EQ. 1 ) GOTO 200
IF( ITREE .EQ. 1 ) GOTO 200
IF( ITREE .EQ. 2 ) GOTO 400
IF( ITREE .EQ. 2 ) GOTO 400
IF( ITREE .EQ. 3 ) GOTO 600
IF( ITREE .EQ. 3 ) GOTO 600
CNINJ = NXI*NXJ + NYI*NYJ
CNINJ = NXI*NXJ + NYI*NYJ
IF( CNINJ .GT. O.DO ) THEN
IF( CNINJ .GT. O.DO ) THEN
    IF( KKJ .GE. O.DO ) THEN
```

 IF(KKJ .GE. O.DO) THEN
    ```
-The subscripts are exchanged between \(i\) and \(j\) so as to satisfy \(\left|k_{j}\right|>\left|k_{i}\right|\).
- As a result, the particle names \(i\) and \(j\) in Figure 4.2 are expressed as II and JJ in the program.
- The final results of \(k_{i}\) and \(k_{j}\) are obtained by checking the sign of \(k_{i}\) and \(k_{j}\).
```

 RRXI J = RXIJ
    ```
        RRXI J = RXIJ
        NNYI = NYJ
        NNYI = NYJ
        NNYI = NYJ
        NNYI = NYJ
--------------------------------------
```

```
        ELSE
```

0686
0687
0688
0689
0690
0691
0692
0693
0694
0695 C
0696
0697
0698
0699
0 7 0 0
0701
0702 C
0703
0704 C
0705
0706 C
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716 C
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727 C
0728
0729 C
0730
0731 C
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741 C
0742
0743
0744
0745
0746
0747
0748
0749
0750
0751
0752
0753 C
0754
0755 C
0756
0757 C
0758
0759
0760
0761

```
```

 IPATH \(=4\)
    ```
        IPATH \(=4\)
        END IF
        END IF
ELSE
ELSE
    IF ( KKJ .GE. O.DO ) THEN
    IF ( KKJ .GE. O.DO ) THEN
            IPATH \(=3\)
            IPATH \(=3\)
            ELSE
            ELSE
            IPATH \(=2\)
            IPATH \(=2\)
    END IF
    END IF
END IF
KKIS = CNINJ*DBLE(NPTCHF) - ( RRXIJ*NNXI + RRYIJ*NNYI )
KKIS = CNINU*DBLE(NPTCHF) - (RRXIJ*NNXI + RRYIJ*NNYI )
RCHKSQ =( RRXIJ + KKIS *NNXI - NNXJ*DBLE (NPTCHF) )**2
& +( RRYIJ + KKIS *NNYI - NNYJ*DBLE (NPTCHF) )**2
RCHKSQ2=( RRXIJ + KKIS2*NNXI + NNXJ*DBLE(NPTCHF) )**2
            +( RRYIJ + KKIS2*NNYI + NNYJ*DBLE(NPTCHF) )**2
IF( IPATH .EQ. 1 ) THEN
                                    --- PATH=1 ---
    IF( RCHKSQ .GE. DSQ ) GOTO 1000
    IF( KKIS .GE. O.DO ) THEN
            IKKIS = IDINT(KKIS) + 
    ELSE
            IKKIS = IDINT(KKIS)
                                    - The constituent spheres in the rod-like particle are
                                    named in such a way that the central sphere is 0, the
                                    neighboring spheres are 1,2,\ldots, in the particle direction,
    END IF
    IF( IKKIS .GT. NPTCHF ) IKKIS = NPTCHF
    JJS = NPTCHF
    IIDEF = NPTCHF - IKKIS
    JJE = -NPTCHF + IIDEF
                                    -The interaction energy between the sphere
    DO 250 JJ= JJS, JJE, -1
        XJ = RRXJ + DBLE (JJ) *NNXJ
            YJ = RRYJ + DBLE(JJ)*NNYJ
    YJ = RRYJ + DBLE(JJ)*NNYJ 
- After the assessment of the particle overlap
                regime, }\mp@subsup{k}{i}{s}(\textrm{KKIS})\mathrm{ and }\mp@subsup{k}{i}{\mp@subsup{s}{}{\prime}}\mathrm{ (KKIS2) are calculated
                from Eqs. (4.9) and (4.10).
                                    and -1,-2,\ldots, in the opposite direction.
                                    -The interaction energy between the sphere
                                    particle j is checked.
                                    -The two spheres of particle i are checked
                                as an object interacting with the sphere of
        IF( II.LT. -NPTCHF) GOTO' 250
        XI = RRXI + DBLE(II)*NNXI
        YI = RRYI + DBLE(II)*NNYI
        ECAN = ECAN + ENESTER( XI, YI, XJ, YJ, TD, RV, OVRLAP )
        IF ( OVRLAP ) RETURN
    CONTINUE
250
ELSE IF( IPATH .EQ. 2 ) THEN
    IF( RCHKSQ2 .GE. DSQ ) GOTO 1000
                                    --- PATH=2 ---
                                    -The center of the sphere of particle i is
    IF( KKIS2 .GE. O.DO ) THEN
        .DO ) THEN
            IKKIS2 = IDINT(KKIS2) + 1
                                    denoted by (XI,YI) and, similarly, (XJ,YJ )
    ELSE
                                    for the sphere of particle j.
            IKKIS2 = IDINT(KKIS2)
    END IF
    IF( IKKIS2 .GT. NPTCHF ) IKKIS2 = NPTCHF
    JJS = NPTCHF
    IIDEF = NPTCHF - IKKIS2
    IIDEF = NPTCHF - IKKIS2
    DO 252 JJ= JJS, JJE, -1
        JJJ= -JJ
        XJ = RRXJ + DBLE (JJJ) *NNXJ
        YJ = RRYJ + DBLE (JJJ) *NNYJ
        DO 252 II= JJ-IIDEF, JJ-IIDEF-1, -1
        IF( II .LT. -NPTCHF ) GOTO' 252
        XI = RRXI + DBLE(II)*NNXI
        YI = RRYI + DBLE(II)*NNYI
        ECAN = ECAN + ENESTER( XI, YI, XJ, YJ, TD, RV, OVRLAP )
        IF ( OVRLAP ) RETURN
    CONTINUE
        252
ELSE IF( IPATH .EQ. 3 ) THEN
    IF( RCHKSQ .GE. DSQ ) GOTO 1000
                                    --- PATH=3 ---
    IF( -KKIS .GE. O.DO ) THEN
            IKKIS = IDINT(-KKIS) + 1
        ELSE
            IKKIS = IDINT(-KKIS)
```



```
0909 C
0 9 1 1 ~ C ~
0 9 7 4
0975 C
0976 C
0977 C
0979
0980
0 9 8 1
0982
0983 C
0984
0919
0 9 2 0
0921
0922
0923
0924
0925
0926
0927
0928
0929
0929
0930
0931
0932 C
0933
0934 C
0935
0936 C
0910
0913
0913
0914
0915
0916
0917
0918 C
```

0910 IF(IPATH .EQ. 1) THEN

```
0910 IF( IPATH .EQ. 1 ) THEN
0912 IF( KKIS .GE. 0.DO ) THEN
0912 IF( KKIS .GE. 0.DO ) THEN
            IKKIS = IDINT(KKIS) + 1
            IKKIS = IDINT(KKIS) + 1
        ELSE
        ELSE
            IKKIS = IDINT(KKIS)
            IKKIS = IDINT(KKIS)
        END IF
        END IF
        IIDEF = NPTCHF - IKKIS
        IIDEF = NPTCHF - IKKIS
        XJ = RRXJ + DBLE (NPTCHF)*NNXJ
        XJ = RRXJ + DBLE (NPTCHF)*NNXJ
        YJ = RRYJ + DBLE (NPTCHF)*NNYJ
        YJ = RRYJ + DBLE (NPTCHF)*NNYJ
        IINUMBR = NPTC + 1 - IIDEF
        IINUMBR = NPTC + 1 - IIDEF
        DO 650 II= NPTCHF-IIDEF, NPTCHF-IIDEF-1, -1
        DO 650 II= NPTCHF-IIDEF, NPTCHF-IIDEF-1, -1
            IF( II .LT. -NPTCHF ) GOTO 650
            IF( II .LT. -NPTCHF ) GOTO 650
            XI = RRXI + DBLE(II)*NNXI
            XI = RRXI + DBLE(II)*NNXI
            YI = RRYI + DBLE(II)*NNYI
            YI = RRYI + DBLE(II)*NNYI
            IINUMBR = IINUMBR - 1
            IINUMBR = IINUMBR - 1
            ECAN = ECAN + DBLE (IINUMBR)*
            ECAN = ECAN + DBLE (IINUMBR)*
        & ENESTER( XI, YI, XJ, YJ, TD, RV, OVRLAP )
        & ENESTER( XI, YI, XJ, YJ, TD, RV, OVRLAP )
            IF ( OVRLAP ) RETURN
            IF ( OVRLAP ) RETURN
        CONTINUE
        CONTINUE
        END IF
        END IF
KKIJC = DABS( KKIS ) - DBLE (NPTCHF)
KKIJC = DABS( KKIS ) - DBLE (NPTCHF)
IF( IPATH .EQ. 2 ) THEN
IF( IPATH .EQ. 2 ) THEN
            IKKIJC = IDINT( KKIJC )
            IKKIJC = IDINT( KKIJC )
            IIDEF = IKKIJC
            IIDEF = IKKIJC
            XJ = RRXJ - DBLE (NPTCHF)*NNXJ
            XJ = RRXJ - DBLE (NPTCHF)*NNXJ
            YJ = RRYJ - DBLE (NPTCHF)*NNYJ
            YJ = RRYJ - DBLE (NPTCHF)*NNYJ
            IINUMBR = NPTC + 1 - IIDEF
            IINUMBR = NPTC + 1 - IIDEF
            DO 652 II= NPTCHF-IIDEF, NPTCHF-IIDEF-1, -1
            DO 652 II= NPTCHF-IIDEF, NPTCHF-IIDEF-1, -1
            IF( II..LT. -NPTCHF ) GOTO 652
            IF( II..LT. -NPTCHF ) GOTO 652
                    XI = RRXI + DBLE(II)*NNXI
                    XI = RRXI + DBLE(II)*NNXI
                    YI = RRYI + DBLE(II)*NNYI
                    YI = RRYI + DBLE(II)*NNYI
            IINUMBR = IINUMBR - 1
            IINUMBR = IINUMBR - 1
                    ECAN = ECAN + DBLE (IINUMBR)*
                    ECAN = ECAN + DBLE (IINUMBR)*
                            &
                            &
                    ENESTER( XI, YI, XJ, YJ, TD, RV, OVRLAP )
                    ENESTER( XI, YI, XJ, YJ, TD, RV, OVRLAP )
0949 & IF ( OVRLAP ) RETURN
0949 & IF ( OVRLAP ) RETURN
0950 652 CONTINUE
0950 652 CONTINUE
        END IF
        END IF
        KKIJC = KKIS + DBLE (NPTCHF)
        KKIJC = KKIS + DBLE (NPTCHF)
    IF( IPATH .EQ. 3 ) THEN
    IF( IPATH .EQ. 3 ) THEN
        IKKIJC = IDINT( KKIJC )
        IKKIJC = IDINT( KKIJC )
        IIDEF = IKKIJC
        IIDEF = IKKIJC
            XJ = RRXJ + DBLE (NPTCHF)*NNXJ
            XJ = RRXJ + DBLE (NPTCHF)*NNXJ
            YJ = RRYJ + DBLE (NPTCHF)*NNYJ
            YJ = RRYJ + DBLE (NPTCHF)*NNYJ
            IINUMBR = NPTC + 1 - IIDEF
            IINUMBR = NPTC + 1 - IIDEF
            DO 654 II= NPTCHF-IIDEF, NPTCHF-IIDEF-1, -1
            DO 654 II= NPTCHF-IIDEF, NPTCHF-IIDEF-1, -1
            IF( II .LT. -NPTCHF ) GOTO 654
            IF( II .LT. -NPTCHF ) GOTO 654
            III = -II
            III = -II
                    XI = RRXI + DBLE(III)*NNXI
                    XI = RRXI + DBLE(III)*NNXI
                    YI = RRYI + DBLE(III)*NNYI
                    YI = RRYI + DBLE(III)*NNYI
            IINUMBR = IINUMBR - 1
            IINUMBR = IINUMBR - 1
                    ECAN = ECAN + DBLE (IINUMBR)*
                    ECAN = ECAN + DBLE (IINUMBR)*
                                    ENESTER( XI, YI, XJ, YJ, TD, RV, OVRLAP )
                                    ENESTER( XI, YI, XJ, YJ, TD, RV, OVRLAP )
                    IF ( OVRLAP ) RETURN
                    IF ( OVRLAP ) RETURN
            654 IF ( OV
            654 IF ( OV
        END IF
        END IF
            C GOTO 1000
            C GOTO 1000
            C
            C
0978 1000 CONTINUE
0978 1000 CONTINUE
C
C
C
C
C
C
C
C
650
650
-The interaction energy between the sphere of the
-The interaction energy between the sphere of the
positive magnetic charge of particle j}\mathrm{ and the sphere
positive magnetic charge of particle j}\mathrm{ and the sphere
IKKIS (and (IKKIS-1)) of particle i is calculated.
IKKIS (and (IKKIS-1)) of particle i is calculated.
There are IINUMBER pairs of particles.
```

There are IINUMBER pairs of particles.

```
```

 -The separation between the central
    ```
                                    -The separation between the central
                                    -The center of the sphere of particle i is denoted
                                    -The center of the sphere of particle i is denoted
                                    b by (XI,YI) and, similarly, (XJ,YJ) for particle j.
                                    b by (XI,YI) and, similarly, (XJ,YJ) for particle j.
                                    spheres of particles i and j along the
                                    spheres of particles i and j along the
            ECAN = ECAN + DBLE(IINUMBR)*
            ECAN = ECAN + DBLE(IINUMBR)*
0952 C
            0937
0938
0939
0939
0940
0941
0942
0943
0944
0945
0945
0946
0946
0948
0950
0951
0953
0954 C
0955
C
C
C
C
        IIDEF = IKKIJC
        IIDEF = IKKIJC
                            ECAN = ECAN
                            ECAN = ECAN
            C GOTO 1000
```

 C GOTO 1000
    ```


```

C

```
C
C
C
    --------------------- END OF ENERGY DUE TO STERIC INER. ---
    --------------------- END OF ENERGY DUE TO STERIC INER. ---
                                    RETURN
                                    RETURN
                                    END
                                    END
C#### FUN ENESTER ####
C#### FUN ENESTER ####
    DOUBLE PRECISION FUNCTION ENESTER(XI, YI, XJ, YJ, TD, RV, OVRLAP)
    DOUBLE PRECISION FUNCTION ENESTER(XI, YI, XJ, YJ, TD, RV, OVRLAP)
                            IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
```

 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
    ```

0985 C
0986
0987 C
0988
0989
0990
0991
0992
0993
0994
LOGICAL OVRLAP
RIJ \(=\operatorname{DSQRT}((X I-X J) * * 2+(Y I-Y J) * * 2)\)
\(\mathrm{X}=2 . \mathrm{D} \mathrm{O}^{*}(\mathrm{RIJ}-1 . \mathrm{D} 0)\)
- A function subprogram for calculating the interaction energy due to the overlap of the

IF ( X .LT. O.DO ) THEN
OVRLAP \(=\).TRUE.
ENESTER = 1.D9
RETURN
END IF
write (6,*)'xi,yi,xj,yj', xi,yi,xj,yj
0995 ccc
IF ( RIJ .LE. (TD+1.D0) ) THEN
\(\mathrm{C} 1=(\mathrm{X}+2 . \mathrm{D} 0) / \mathrm{TD}\)
\(\mathrm{C} 2=\mathrm{DLOG}((\mathrm{TD}+1 . \mathrm{D} 0) /(\mathrm{X} / 2 . \mathrm{D} 0+1 . \mathrm{D} 0))\)
C3 \(=\mathrm{X} / \mathrm{TD}\)
ENESTER \(=R^{*}(2 . D 0-C 1 * C 2-C 3)\)
RETURN
ELSE
ENESTER = 0.DO
RETURN
END IF
RETURN
END
- A subroutine for generating a uniform random number sequence.
- This is for a 32-bit CPU based on the expression of two's complement.

\subsection*{4.2 Aggregation Phenomena in a Dispersion of Plate-like Particles}

In this section, we consider aggregation phenomena in a suspension composed of disk-like particles. As seen in the rod-like particle system, there are several obstacles to developing a simulation program employing a nonspherical particle system. That is, we need to first make a mathematical analysis of particle overlap and then express the overlap criterion in the language of a simulation program. Hence, in this section we show the mathematical analysis from the viewpoint of developing a simulation program. The exercise of interest is a circular disk-like particle with a magnetic dipole moment at the particle center. We discuss the influences of magnetic particle-particle interactions and the magnetic field strength on aggregation phenomena. The subject of the present exercise is partly under our research group's study, and therefore the sample simulation program has an academic emphasis. The system of interest is in thermodynamic equilibrium and has a given number of particles, temperature, and volume; therefore, the canonical MC algorithm is employed.

\subsection*{4.2.1 Physical Phenomena of Interest}

It is assumed that the system composed of disk-like particles with a magnetic moment at the particle center is in thermodynamic equilibrium. In the present exercise, we discuss aggregation phenomena in this type of dispersion under the influence of an applied magnetic field by means of an MC simulation.

The main points in formalizing this demonstration are to develop the particle model, to express the potential energy between particles, and to analyze the criterion for particle overlap. We explain these important subjects in detail below.

\subsection*{4.2.2 Particle Model}

As shown in Figure 4.12, we here employ a disk-like particle with a magnetic moment \(\mathbf{m}\) (along the disk surface) normal to the particle axis at the particle center with the section shape of a spherocylinder. The central part of this disk-like particle is a short cylinder with diameter \(d\) and thickness \(b_{1}\). The side of the cylinder is surrounded by the semi-shape of a torus shape, resulting in a particle circumcircle with dimension \(d_{1}\left(=d+b_{1}\right)\), as shown in Figure 4.12. The configurational state of a single axisymmetric particle \(i\) is specified by the position of the particle center \(\mathbf{r}_{i}\), the particle direction (normal to the disk surface) \(\mathbf{e}_{i}\), and the magnetic moment direction \(\mathbf{n}_{i}\) where \(\mathbf{e}_{i}\) and \(\mathbf{n}_{i}\) are the unit vectors. In the MC method, knowledge of only the position and direction of each particle is sufficient to advance an MC step, while both the translational and angular velocities need to be treated in the MD method. The magnetic moment is assumed to be fixed in the particle body, so that only the rotation of the particle can provide a change in the magnetic moment direction.


Figure 4.12 Particle model: (A) plane view and (B) side view.

The interaction energy \(u_{i}\) between the magnetic moment \(\mathbf{m}_{i}\) and an applied magnetic field \(\mathbf{H}\) is expressed as
\[
\begin{equation*}
u_{i}=-\mu_{0} \mathbf{m}_{i} \cdot \mathbf{H} \tag{4.18}
\end{equation*}
\]
in which \(\mu_{0}\) is the permeability of free space. This expression clearly implies that the inclination of the magnetic moment along the field direction yields a minimum interaction energy; that is, the particle has a tendency to orient in such a way that the magnetic moment will incline in the field direction.

The magnetic interaction energy \(u_{i j}\) between particles \(i\) and \(j\) is expressed as [31]
\[
\begin{equation*}
u_{i j}=\frac{\mu_{0}}{4 \pi r_{i j}^{3}}\left\{\mathbf{m}_{i} \cdot \mathbf{m}_{j}-\frac{3}{r_{i j}^{2}}\left(\mathbf{m}_{i} \cdot \mathbf{r}_{i j}\right)\left(\mathbf{m}_{j} \cdot \mathbf{r}_{i j}\right)\right\} \tag{4.19}
\end{equation*}
\]
in which \(\mathbf{r}_{i}\) is the position vector of particle \(i(i=1,2, \ldots, N), \mathbf{r}_{i j}=\mathbf{r}_{i}-\mathbf{r}_{j}\), and \(r_{i j}=\left|\mathbf{r}_{i j}\right|\). Eq. (4.19) implies that a minimum interaction energy can be obtained when both magnetic moments incline in the same direction along a line drawn between the particle centers. However, note that a thermodynamic equilibrium state will be determined by the balance of the decrease in the system energy and the increase in the system entropy; that is, the entropy should be treated in addition to the energy in order to discuss the thermodynamic equilibrium state. This approach may provide an important facility to molecular simulation methods as a tool for analyzing physical phenomena at the microscopic level. In addition to magnetic forces, the interactions due to electric double layers and steric layers are important considerations, but in this example we have chosen to neglect these interactions for simplification and clarification of the method.

In our approach, by treating a nondimensional form of the system, we are able to discuss the physical phenomenon of interest in a much more reasonable manner, since several important factors governing the physical phenomenon appear as explicit terms in the nondimensional equations. In the nondimensionalization procedure the representative values used are particle thickness \(b_{1}\) for distances and
thermal energy \(k T\) for energies. With these representative values, Eqs. (4.18) and (4.19) are written as
\[
\begin{align*}
& u_{i}^{*}=u_{i} / k T=-\xi \mathbf{n}_{i} \cdot \mathbf{h}  \tag{4.20}\\
& u_{i j}^{*}=u_{i j} / k T=\lambda \frac{1}{r_{i j}^{* 3}}\left\{\mathbf{n}_{i} \cdot \mathbf{n}_{j}-3\left(\mathbf{n}_{i} \cdot \mathbf{t}_{i j}\right)\left(\mathbf{n}_{j} \cdot \mathbf{t}_{i j}\right)\right\} \tag{4.21}
\end{align*}
\]
in which \(\mathbf{n}_{i}=\mathbf{m}_{i} / m, m=\left|\mathbf{m}_{i}\right|, \mathbf{h}=\mathbf{H} / H, H=|\mathbf{H}|, \mathbf{t}_{i j}=\mathbf{r}_{i j} / r_{i j}\), and the superscript * implies nondimensionalized quantities; \(\mathbf{n}_{i}\) and \(\mathbf{h}\) are the unit vectors denoting the magnetic moment direction and the magnetic field direction, respectively. The procedure gives rise to the nondimensional parameters \(\xi\) and \(\lambda\) that are defined as
\[
\begin{equation*}
\xi=\mu_{0} m H / k T, \quad \lambda=\mu_{0} m^{2} / 4 \pi b_{1}^{3} k T \tag{4.22}
\end{equation*}
\]

This is a typical example of the nondimensionalizing procedure giving rise to the appearance of nondimensional parameters or nondimensional numbers. In the present exercise, the physical phenomenon is governed by the magnetic particlefield interactions, the particle-particle interactions, and the random forces and torques acting on each particle. It is therefore reasonable that the ratios of these factors appear in the basic equations as nondimensional parameters \(\xi\) and \(\lambda\) in Eq. (4.22). These parameters imply the strengths of the magnetic particle-field and the particle-particle interactions relative to the thermal energy, respectively.

\subsection*{4.2.3 Criterion of the Particle Overlap}

Assessing the overlap of the two disk-like particles shown in Figure 4.12 is significantly different from that of a pair of spherical particles. Both the torus parts may overlap, or the torus part and the disk part may overlap. Taking into account all the possible overlap regimes during a simulation requires probing into the essence of the overlap and then making a systematic analysis based on the insight gained from a careful investigation of the problem. This is usually undertaken in advance as part of the preparation required in writing a computer simulation program. In the previous case of the spherocylinder, systematic analysis on the particle overlap criterion was achieved by viewing a pair from such a direction that the planes including the corresponding particles are seen to be parallel. For our disk-like particle, a systematic analysis may be possible by focusing on the line of intersection generated by the two corresponding planes. Hence, we first consider the case of nonparallel planes, in which the intersection line can certainly be defined. The use of the maximum section circle of diameter \(d_{1}\) of the disk-like particle enables us to indicate the typical overlap patterns schematically in Figure 4.13. Figure 4.13A is for the case of the intersection line penetrating each particle (circle), Figures 4.13B and C are for the intersection line penetrating only one particle, and Figure 4.13D is for the intersection line located outside both particles. Since the present disk-like particles have a definite thickness, the above-mentioned regimes of the particle


Figure 4.13 Overlap of circular disk-like particles with infinitesimal thin thickness.


Figure 4.14 Analysis of circles with radius \(r_{0}(=d / 2)\).
overlap need to be slightly modified. That is, in each regime, the particle overlap is assessed by calculating the minimum separation between the two particles. We discuss this method of assessing an overlap in detail below.

Advancing our analysis, we now consider the configuration of particles \(i\) and \(j\) shown in Figure 4.14, with the notion \(\mathbf{r}_{i}\) for the particle center position, the unit vector \(\mathbf{e}_{i}\) for denoting the particle direction (normal to the disk surface), the point \(S_{i}\) for the intersection point of the vertical line drawn from \(\mathbf{r}_{i}\) to the intersection line, the position vector \(\mathbf{r}_{i}^{s}\) for point \(S_{i}\), and the unit vector \(\mathbf{e}_{i}^{s}\) for denoting the direction of \(\left(\mathbf{r}_{i}^{s}-\mathbf{r}_{i}\right)\), with similar notation for particle \(j\). In addition, the notation \(\mathbf{t}_{i j}^{s}\) is used as the unit vector denoting the direction of the line drawn from points \(S_{j}\) to \(S_{i}\). In the following paragraphs, these quantities are first evaluated for a pair of particles and then they are used to discuss the criterion for particle overlap.

The unit vector \(\mathbf{t}_{i j}^{s}\) along the intersection line is normal to both the vectors \(\mathbf{e}_{i}\) and \(\mathbf{e}_{j}\), so that \(\mathbf{t}_{i j}^{s}\) can be expressed from the formula of vector product as
\[
\begin{equation*}
\mathbf{t}_{i j}^{s}=\mathbf{e}_{j} \times \mathbf{e}_{i} /\left|\mathbf{e}_{j} \times \mathbf{e}_{i}\right| \tag{4.23}
\end{equation*}
\]
in which \(\mathbf{t}_{i j}^{s}\) is necessarily taken from \(S_{j}\) toward \(S_{i}\). Since \(\mathbf{e}_{i}^{s}\) is normal to both \(\mathbf{e}_{i}\) and \(\mathbf{t}_{i j}^{s}\) and, similarly, \(\mathbf{e}_{j}^{s}\) is normal to \(\mathbf{e}_{j}\) and \(\mathbf{t}_{i j}^{s}\), the use of the vector \(\mathbf{t}_{i j}^{s}\) provides the solutions of \(\mathbf{e}_{i}^{s}\) and \(\mathbf{e}_{j}^{s}\) as
\[
\begin{equation*}
\mathbf{e}_{i}^{s}=-\mathbf{e}_{i} \times \mathbf{t}_{i j}^{s}, \quad \mathbf{e}_{j}^{s}=\mathbf{e}_{j} \times \mathbf{t}_{i j}^{s} \tag{4.24}
\end{equation*}
\]

In the particle configuration shown in Figure 4.14, it is clear that the unit vectors \(\mathbf{e}_{i}^{s}\) and \(\mathbf{e}_{j}^{s}\) in Eq. (4.24) point toward the intersection line from the center of each particle. In certain situations, however, these vectors may point in the opposite direction. The treatment of ensuring that \(\mathbf{e}_{i}^{s}\) and \(\mathbf{e}_{j}^{s}\) point toward the intersection line will be discussed in detail in Section 4.2.5. If the distance between the center of particle \(i\) and point \(S_{i}\) is denoted by \(k_{i}^{s}\) (similarly, \(k_{j}^{s}\) for particle \(j\) ), and the separation between points \(S_{i}\) and \(S_{j}\) is denoted by \(k_{i j}^{s}\), the expression of point \(S_{i}\) in the two different forms yields the following equation:
\[
\begin{equation*}
\mathbf{r}_{i}+k_{i}^{s} \mathbf{e}_{i}^{s}=\mathbf{r}_{j}+k_{j}^{s} \mathbf{e}_{j}^{s}+k_{i j}^{s} \mathbf{t}_{i j}^{s} \tag{4.25}
\end{equation*}
\]

The left- and right-hand sides in this equation are related to the same position vector \(\mathbf{r}_{i}^{s}\), which is traced from the center of particles \(i\) and \(j\), respectively. With the orthogonality condition of the unit vectors, Eq. (4.25) provides the following expressions:
\[
\begin{equation*}
k_{i}^{s}=-\frac{\mathbf{e}_{j} \cdot \mathbf{r}_{i j}}{\mathbf{e}_{j} \cdot \mathbf{e}_{i}^{s}}, \quad k_{j}^{s}=\frac{\mathbf{e}_{i} \cdot \mathbf{r}_{i j}}{\mathbf{e}_{i} \cdot \mathbf{e}_{j}^{s}}, \quad k_{i j}^{s}=\mathbf{r}_{i j} \cdot \mathbf{t}_{i j}^{s} \tag{4.26}
\end{equation*}
\]

Another preliminary discussion is necessary before proceeding to the analysis of the particle overlap. Figure 4.15 shows the possibility of the torus part of particle \(j\) overlapping with the disk surface part of particle \(i\), where the angle between the two planes including each particle is denoted by \(\theta_{0}\). A line is drawn from the nearest point \(Q_{j}\) at the torus center circle of particle \(j\) so that it is perpendicular to the plane of particle \(i\), and this line will intersect the plane at a point denoted by \(Q_{i(j)}\), as shown in Figure 4.15 . The length of the vertical line \(k_{i(j)}^{O}\) can be straightforwardly obtained from a simple geometric relationship as
\[
\begin{equation*}
k_{i(j)}^{Q}=\left(k_{j}^{s}-d / 2\right)\left|\mathbf{e}_{j}^{s} \cdot \mathbf{e}_{i}\right| \tag{4.27}
\end{equation*}
\]

The position vector \(\mathbf{r}_{i(j)}^{Q}\) of point \(Q_{i(j)}\) can therefore be written as
\[
\begin{equation*}
\mathbf{r}_{i(j)}^{Q}=\mathbf{r}_{j}+(d / 2) \mathbf{e}_{j}^{s}-k_{i(j)}^{Q} \mathbf{e}_{i} \tag{4.28}
\end{equation*}
\]


Figure 4.15 Analysis of the overlap of the flat part of particle \(i\) and the circumference of particle \(j\) : (A) plane view, (B) side view, and (C) vector expression.

Note that Eqs. (4.27) and (4.28) are valid for \(k_{j}^{S} \geq d / 2\), as shown in Figure 4.15 . In the case of \(k_{j}^{S}<d / 2\), the following expressions are used instead of Eqs. (4.27) and (4.28):
\[
\begin{align*}
& k_{i(j)}^{Q}=\left(d / 2-k_{j}^{S}\right)\left|\mathbf{e}_{j}^{s} \cdot \mathbf{e}_{i}\right|  \tag{4.29}\\
& \mathbf{r}_{i(j)}^{Q}=\mathbf{r}_{j}+(d / 2) \mathbf{e}_{j}^{s}+k_{i(j)}^{Q} \mathbf{e}_{i} \tag{4.30}
\end{align*}
\]

We have now completed the preparatory analysis and are able to begin discussion of the particle overlap conditions. For simplicity, the condition \(k_{i}^{S} \leq k_{j}^{S}\) is assumed to be satisfied in the following. It is reasonable to discuss the particle overlap condition for the three different cases with regard to the directions of \(\mathbf{e}_{i}\) and \(\mathbf{e}_{j}\) :
1. Case of \(\mathbf{e}_{i} \neq \pm \mathbf{e}_{j}\) (general overlap).
2. Case of \(\mathbf{e}_{i}= \pm \mathbf{e}_{j}\) and \(\mathbf{e}_{i} \cdot \mathbf{r}_{i j}=0\) (two particles being in the same plane).
3. Case of \(\mathbf{e}_{i}= \pm \mathbf{e}_{j}\) and \(\mathbf{e}_{i} \cdot \mathbf{r}_{i j} \neq 0\) (two particles being in the two parallel planes).

The procedure for assessing the particle overlap with regard to particles \(i\) and \(j\) is as follows:
1. For \(\mathbf{e}_{i}= \pm \mathbf{e}_{j}\) and \(\mathbf{e}_{i} \cdot \mathbf{r}_{i j}=0\) (both particles being in one plane).
1.1. For \(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right| \geq d_{1}\), no overlap.
1.2. For \(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|<d_{1}\), an overlap.
2. For \(\mathbf{e}_{i}= \pm \mathbf{e}_{j}\) and \(\mathbf{e}_{i} \cdot \mathbf{r}_{i j} \neq 0\) (particles \(i\) and \(j\) being in two parallel planes).
2.1. For \(\left|\mathbf{e}_{i} \cdot \mathbf{r}_{i j}\right| \geq \mathrm{b}_{1}\), no overlap.
2.2. For \(\left|\mathbf{e}_{i} \cdot \mathbf{r}_{i j}\right|<\mathrm{b}_{1}\), a possibility of overlap.

The line drawn between \(\mathbf{r}_{i}\) and \(\mathbf{r}_{j}\) is projected onto each plane. The projected lines will intersect the corresponding torus center circles at points \(P_{i}\) and \(P_{j}\), respectively. Then the unit vector \(\mathbf{e}_{i}^{p}\) denoting the direction from the particle center to point \(P_{i}\) (similarly \(\mathbf{e}_{j}^{p}\) ) can be expressed as
\(\mathbf{e}_{j}^{p}=\frac{\left(\mathbf{e}_{i} \times \mathbf{r}_{i j}\right) \times \mathbf{e}_{i}}{\left|\left(\mathbf{e}_{i} \times \mathbf{r}_{i j}\right) \times \mathbf{e}_{i}\right|}=\frac{\mathbf{r}_{i j}-\left(\mathbf{e}_{i} \cdot \mathbf{r}_{i j}\right) \mathbf{e}_{i}}{\left|\mathbf{r}_{i j}-\left(\mathbf{e}_{i} \cdot \mathbf{r}_{i j}\right) \mathbf{e}_{i}\right|}, \quad \mathbf{e}_{i}^{p}=-\mathbf{e}_{j}^{p}\)
\(\mathbf{r}_{i j}^{p}=\mathbf{r}_{i j}-\left(\mathbf{e}_{i} \cdot \mathbf{r}_{i j}\right) \mathbf{e}_{i}\)
With these vectors,
2.2.1. For \(\left|\mathbf{r}_{i j}^{p}\right|<d\), an overlap.
2.2.2. For \(\left|\mathbf{r}_{i j}^{p}\right| \geq d_{1}\), no overlap.
2.2.3. For \(\left|\mathbf{r}_{i j}^{p}\right| \geq d\) and \(\left|\left(\mathbf{r}_{i}+(d / 2) \mathbf{e}_{i}^{p}\right)-\left(\mathbf{r}_{j}+(d / 2) \mathbf{e}_{j}^{p}\right)\right|<b_{1}\), an overlap.
2.2.4. For \(\left|\mathbf{r}_{i j}^{p}\right| \geq d\) and \(\left|\left(\mathbf{r}_{i}+(d / 2) \mathbf{e}_{i}^{p}\right)-\left(\mathbf{r}_{j}+(d / 2) \mathbf{e}_{j}^{p}\right)\right| \geq b_{1}\), no overlap.
3. For \(\mathbf{e}_{i} \neq \pm \mathbf{e}_{j}\) (general overlap situations)
3.1. For \(k_{j}^{s}>d / 2\),
3.1.1. For \(k_{i(j)}^{Q} \geq b_{1}\), no overlap irrespective of values of \(\left|\mathbf{r}_{i(j)}{ }^{Q}-\mathbf{r}_{i}\right|\).
3.1.2. For \(k_{i(j)}{ }^{Q}<b_{1}\), a possibility of overlap.
a. For \(\left|\mathbf{r}_{i(j)}{ }^{Q}-\mathbf{r}_{i}\right|<d / 2\), an overlap.
b. For \(\left|\mathbf{r}_{i(j)}{ }^{Q}-\mathbf{r}_{i}\right| \geq d / 2\), a possibility of overlap.
b.1. For \(r_{i j}{ }^{(\min )} \geq b_{1}\), no overlap.
b.2. For \(r_{i j}{ }^{(\min )}<b_{1}\), an overlap.
3.2. For \(k_{i}^{s}<d / 2\) and \(k_{j}^{s} \leq d / 2\), depending on the value of \(r_{i j}{ }^{(\min )}\) (defined later)
3.2.1. For \(\left|\mathbf{r}_{i(j)} Q-\mathbf{r}_{i}\right|<d / 2\), an overlap.
3.2.2. For \(\left|\mathbf{r}_{i(j)}{ }^{Q}-\mathbf{r}_{i}\right| \geq d / 2\), a possibility of overlap.
a. For \(r_{i j}{ }^{(\text {min })} \geq b_{1}\), no overlap.
b. For \(r_{i j}{ }^{(\text {min })}<b_{1}\), an overlap.

The above-mentioned analysis has effectively generated an algorithm for assessing the particle overlap. Notice that the algorithm has been organized from the viewpoint of developing a simulation program, so it can be readily translated into a programming language.

Figure 4.16 shows a method of evaluating the minimum distance \(r_{i j}{ }^{(\text {min })}\), which has already been used in the analysis but not yet given an exact definition. The particle coordinate system \(X Y Z\) is fixed at the center of the torus circle of particle \(i\),


Figure 4.16 Evaluation of the minimum distance of particles \(i\) and \(j\) using the particle-fixed coordinate system XYZ: (A) plane view and (B) side view.
and the center of particle \(j\) is assumed to be expressed as \(\left(x_{0}, y_{0}, z_{0}\right)\) in this coordinate system, where the \(X\)-axis is taken parallel to the intersection line. The angle between the two planes that include particles \(i\) and \(j\) is denoted by the angle \(\theta_{0}\), as shown in Figure 4.16B. An arbitrary position vector \(\mathbf{x}_{1}=\left(x_{1}, y_{1}, z_{1}\right)\) on the torus center circle line of particle \(i\) is taken in the counterclockwise direction by the angle \(\alpha\). Similarly, an arbitrary position vector \(\mathbf{x}_{2}=\left(x_{2}, y_{2}, z_{2}\right)\) on the torus center circle line of particle \(j\) is taken in a similar way by the angle \(\beta\), as shown in Figure 4.16A. Then \(\mathbf{x}_{1}\) and \(\mathbf{x}_{2}\) are expressed as
\[
\begin{align*}
& \mathbf{x}_{1}=\left(r_{0} \cos \alpha, r_{0} \sin \alpha, 0\right)  \tag{4.33}\\
& \mathbf{x}_{2}=\left(r_{0} \cos \beta+x_{0}, r_{0} \sin \beta \cos \theta_{0}+y_{0}, r_{0} \sin \beta \sin \theta_{0}+z_{0}\right) \tag{4.34}
\end{align*}
\]
in which \(r_{0}=d / 2\). The square separation between \(\mathbf{x}_{1}\) and \(\mathbf{x}_{2}\) is a function of the angles \(\alpha\) and \(\beta\), expressed as
\[
\begin{align*}
g(\alpha, \beta)= & \left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2} \\
= & \left(r_{0} \cos \beta+x_{0}-r_{0} \cos \alpha\right)^{2}+\left(r_{0} \sin \beta \cos \theta_{0}+y_{0}-r_{0} \sin \alpha\right)^{2} \\
& +\left(r_{0} \sin \beta \sin \theta_{0}+z_{0}\right)^{2} \tag{4.35}
\end{align*}
\]

Certain values of \(\alpha\) and \(\beta\) give rise to a minimum value of \(g(\alpha, \beta)\). It is clear that the positions \(\mathbf{x}_{1}\) and \(\mathbf{x}_{2}\) on the different torus center circles specified by the angles \(\alpha\) and \(\beta\) that minimize the function \(g\) yield their minimum separation distance. The values of \(\alpha\) and \(\beta\) to satisfy a minimum \(g(\alpha, \beta)\) can be obtained by solving the equations of \(\partial g / \partial \alpha=\partial g / \partial \beta=0\). The equation \(\partial g / \partial \alpha=0\) yields the following relationship:
\[
\begin{equation*}
\tan \alpha=\frac{y_{2}}{x_{2}} \tag{4.36}
\end{equation*}
\]

Furthermore, the expression \(\partial g / \partial \beta=0\) gives rise to the following relationship:
\[
\begin{equation*}
\tan \beta=\frac{y_{0}-y_{1}}{x_{0}-x_{1}} \cos \theta_{0}+\frac{z_{0}}{x_{0}-x_{1}} \sin \theta_{0} \tag{4.37}
\end{equation*}
\]

The solutions of \(\alpha\) and \(\beta\) can be obtained by solving Eqs. (4.36) and (4.37). However, because of the difficulty of an analytical approach, we here employ Newton's iteration method [33] for numerically solving these equations. From the particle configuration in Figure 4.16, we reasonably expect that Newton's iteration method will effectively provide a converged solution after several iterations, because \(g(\alpha, \beta)\) has a relatively simple form. We show the algorithm of Newton's iteration method in the following steps:
1. Suppose a starting value \(\beta_{n}\), around an expected solution, for \(\beta\).
2. Calculate \(\left(x_{2}, y_{2}, z_{2}\right)\).
3. Calculate \(\left(x_{1}, y_{1}, z_{1}\right)=\left(r_{0} x_{2} / \sqrt{x_{2}^{2}+y_{2}^{2}}, r_{0} y_{2} / \sqrt{x_{2}^{2}+y_{2}^{2}}, 0\right)\) from Eqs. (4.36) and (4.33).
4. Evaluate \(f\left(\beta_{n}\right)\) from Eq. (4.37).
\[
\begin{equation*}
f\left(\beta_{n}\right)=\tan \beta_{n}-\frac{y_{0}-y_{1}}{x_{0}-x_{1}} \cos \theta_{0}-\frac{z_{0}}{x_{0}-x_{1}} \sin \theta_{0} \tag{4.38}
\end{equation*}
\]
5. Evaluate the derivative of \(f(\beta)\) with respect to \(\beta\).
\[
\begin{equation*}
f^{\prime}\left(\beta_{n}\right)=\frac{1}{\cos ^{2} \beta_{n}}-\frac{\cos \theta_{0}}{\left(x_{0}-x_{1}\right)^{2}}\left\{-\frac{\partial y_{1}}{\partial \beta}\left(x_{0}-x_{1}\right)+\frac{\partial x_{1}}{\partial \beta}\left(y_{0}-y_{1}\right)\right\}-z_{0} \sin \theta_{0} \frac{\partial x_{1} / \partial \beta}{\left(x_{0}-x_{1}\right)^{2}} \tag{4.39}
\end{equation*}
\]
in which
\[
\left.\begin{array}{l}
\frac{\partial x_{1}}{\partial \beta}=r_{0} \cdot \frac{\frac{\partial x_{2}}{\partial \beta} \sqrt{x_{2}^{2}+y_{2}^{2}}-\left(x_{2} \frac{\partial x_{2}}{\partial \beta}+y_{2} \frac{\partial y_{2}}{\partial \beta}\right) x_{2} / \sqrt{x_{2}^{2}+y_{2}^{2}}}{x_{2}^{2}+y_{2}^{2}}  \tag{4.40}\\
\frac{\partial y_{1}}{\partial \beta}=r_{0} \cdot \frac{\frac{\partial y_{2}}{\partial \beta} \sqrt{x_{2}^{2}+y_{2}^{2}}-\left(x_{2} \frac{\partial x_{2}}{\partial \beta}+y_{2} \frac{\partial y_{2}}{\partial \beta}\right) y_{2} / \sqrt{x_{2}^{2}+y_{2}^{2}}}{x_{2}^{2}+y_{2}^{2}}
\end{array}\right\}
\]

The right-hand sides are evaluated by setting \(\beta=\beta_{n}\).
6. Evaluate the next approximation \(\beta_{n+1}\) from Newton's method:
\[
\begin{equation*}
\beta_{n+1}=\beta_{n}-\frac{f\left(\beta_{n}\right)\left(x_{0}-x_{1}\right)^{2}}{f^{\prime}\left(\beta_{n}\right)\left(x_{0}-x_{1}\right)^{2}} \tag{4.41}
\end{equation*}
\]
7. Go to step 8 in the case of sufficiently convergence such as \(\left|\beta_{n+1}-\beta_{n}\right|<\varepsilon\) ( \(\varepsilon\) is infinitesimal small), otherwise repeat from step 2 by regarding \(\beta_{n+1}\) as \(\beta_{n}\).
8. Calculate \(\alpha_{n+1}\) from Eq. (4.36) with the converged value of \(\beta_{n+1}\), and evaluate \(g\left(\alpha_{n+1}\right.\), \(\beta_{n+1}\) ) from Eq. (4.35), yielding the desired minimum distance \(r_{i j}^{(\min )}=\sqrt{g\left(\alpha_{n+1}, \beta_{n+1}\right)}\).

We here employ a value satisfying \(x_{2}=x_{0} / 2\) as a starting value of \(\beta\). With this value, \(\beta\) can be obtained from Eq. (4.34) as \(\beta=\cos ^{-1}\left(-x_{0} / 2 r_{0}\right)\) : although there are two solutions of the equation of \(\cos \beta=-x_{0} / 2 r_{0}\), such a solution as satisfying \(z_{2}<z_{0}\) is adopted for \(\beta\). This solution \(\beta\) provides the values of \(y_{2}\) and \(z_{2}\) from Eq. (4.34).

\subsection*{4.2.4 Canonical Monte Carlo Algorithm}

As already indicated, we consider a system composed of \(N\) magnetic particles in an applied magnetic field in thermodynamic equilibrium. The canonical MC method is therefore adopted for a given system temperature \(T\), volume \(V\), and number of particles \(N\). The system potential energy \(U^{*}\) can be expressed as the summation of the magnetic particle-particle interaction energy \(u_{i j}^{*}\) and the magnetic particlefield interaction energy \(u_{i}^{*}\) as
\[
\begin{equation*}
U^{*}=\sum_{i=1}^{N} u_{i}^{*}+\sum_{i=1}^{N} \sum_{j=1(j>i)}^{N} u_{i j}^{*} \tag{4.42}
\end{equation*}
\]
in which \(u_{i}^{*}\) and \(u_{i j}^{*}\) have already been shown in Eqs. (4.20) and (4.21).
The canonical MC algorithm has been explained in Chapter 1 for a nonspherical particle system. According to Eq. (1.52), an arbitrary particle is translated into an adjacent position using random numbers. If the energy \(U^{*}\) decreases, the movement is accepted, but if it increases, it is employed according to the probability shown in Eq. (1.49). The rotational movement is first attempted and then accepted or rejected in a similar procedure. Although the simultaneous attempt of the translational and rotational movements is possible, the above-mentioned separate attempts will become more effective in the case of a strongly interacting system.

\subsection*{4.2.5 Treatment of the Criterion of the Particle Overlap in Simulations}

The criterion of the particle overlap has already been discussed in detail from a mathematical point of view. In this subsection, we address important points to be noted with regard to the actual treatment of particle overlap in the simulation.
1. Exchange of the particle names \(i\) and \(j\) :

The particle subscriptions \(i\) and \(j\) are exchanged in such a way to satisfy \(k_{i}^{s} \leq k_{j}^{s}\). That is, in the case of \(k_{i}^{s}>k_{j}^{s}\), the subscriptions \(i\) and \(j\) are replaced with \(j\) and \(i\), respectively; therefore the criterion for particle overlap in Section 4.2.3 is directly applicable.
2. Reversal of the directions of the unit vectors \(\mathbf{e}_{i}\) and \(\mathbf{e}_{j}\) :

As shown in Figures (4.14) and (4.15), the unit vectors \(\mathbf{e}_{i}\) and \(\mathbf{e}_{j}\) are temporarily reversed in such a way that the angle \(\theta_{0}\) will satisfy \(0 \leq \theta_{0} \leq \pi / 2\). In the case of \(\mathbf{r}_{j i} \cdot \mathbf{e}_{i} \geq 0, \mathbf{e}_{i}\) is unchanged, otherwise \(\mathbf{e}_{i}\) is temporarily reversed in direction as \(\mathbf{e}_{i} \rightarrow-\mathbf{e}_{i}\). For this new \(\mathbf{e}_{i}, \mathbf{e}_{j}\) is unchanged for \(\mathbf{e}_{i} \cdot \mathbf{e}_{j} \geq 0\); otherwise \(\mathbf{e}_{j}\) is temporarily reversed for the successive procedure. These treatments confirm that \(\theta_{0}\) becomes an acute angle, as shown in Figure 4.14. Note that the exchange of the subscriptions \(i\) and \(j\) may be necessary in the following procedures.
3. Reversal of the direction of the unit vector \(\mathbf{t}_{i j}^{\mathbf{t}}\) :

The unit vector \(\mathbf{t}_{i j}^{s}\) is taken in the direction from point \(S_{j}\) to \(S_{i}\). For \(\mathbf{t}_{i j}^{s}\) evaluated from Eq. (4.23), if \(\mathbf{t}_{i j}^{s} \cdot \mathbf{r}_{i j} \geq 0\), \(\mathbf{t}_{i j}^{s}\) is unchanged, otherwise \(\mathbf{t}_{i j}^{s}\) is temporarily reversed as \(\mathbf{t}_{i j}^{s} \rightarrow-\mathbf{t}_{i j}^{s}\). This treatment ensures that \(\mathbf{t}_{i j}^{s}\) is from point \(S_{j}\) toward point \(S_{i}\) even if particle \(j\) is on the left-hand side.
4. Reversal of the unit vectors \(\mathbf{e}_{i}\) and \(\mathbf{e}_{j}\) :

With the unit vectors \(\mathbf{e}_{i}^{s}\) and \(\mathbf{e}_{j}^{s}\) evaluated from Eq. (4.24), the solutions \(k_{i}^{s}\) and \(k_{j}^{s}\) can be obtained from Eq. (4.26). However, note that the definition of these unit vectors
pointing toward the intersection line from each particle center is not necessarily satisfied but depends on the interaction position. In other words, since the sign of \(k_{i}^{s}\) or \(k_{j}^{s}\) is not necessarily positive, \(\mathbf{e}_{i}^{s}\) or \(\mathbf{e}_{j}^{s}\) may be reversed in this situation. In the case of \(k_{i}^{s} \geq 0, \mathbf{e}_{i}^{s}\) is unchanged, and in the case of \(k_{i}^{s}<0, \mathbf{e}_{i}^{s}\) is reversed as \(\mathbf{e}_{i}^{s} \rightarrow-\mathbf{e}_{i}^{s}\), making \(k_{i}^{s}\) positive. Similar treatment is made for \(k_{j}^{s}\) and \(\mathbf{e}_{j}^{s}\).

These procedures ensure that the previous algorithm for assessing the particle overlap and Newton's iteration method for finding the minimum separation are directly applicable without any changes.

\subsection*{4.2.6 Particle-Fixed Coordinate System and the Absolute Coordinate System}

We here explain the particle-fixed coordinate system and the absolute coordinate system, which are necessary for a rotation of the particle and a rotation of the magnetic moment. As previously defined, we use the notation \(\mathbf{e}\) for the particle direction and \(\mathbf{n}\) for the magnetic moment direction, as shown in Figure 4.17. We call the coordinate system fixed at the particle the "particle-fixed coordinate system," simply expressed as the XYZ-coordinate system, centered at the particle center with the \(Z\)-axis along the particle axis direction. On the other hand, the coordinate system fixed, for example, on the computational cell is called the "absolute coordinate system," simply expressed as the xyz-coordinate system. Note that each particle has its own particle-fixed coordinate system centered at its particle center.

We briefly consider the rotation of the \(x y z\)-coordinate system about the \(z\)-axis by an angle \(\phi\), and then the rotation of the rotated \(x y z\)-coordinate system about the \(y\)-axis by an angle \(\theta\) to generate the XYZ-coordinate system. For these rotations, the rotational matrix \(\mathbf{R}\) can be written as
\[
\begin{align*}
\mathbf{R} & =\left(\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right)\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\
-\sin \phi & \cos \phi & 0 \\
\sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta
\end{array}\right) \tag{4.43}
\end{align*}
\]

(A)

(B)

Figure 4.17 Particle-fixed coordinate system and absolute coordinate system.

This rotational matrix will allow us to express the relationship between an arbitrary position \(\mathbf{a}^{b}=\left(a_{x}^{b}, a_{y}^{b}, a_{z}^{b}\right)\) in the XYZ-coordinate system and \(\mathbf{a}=\left(a_{x}, a_{y}, a_{z}\right)\) in the \(x y z\)-coordinate system as
\[
\begin{equation*}
\mathbf{a}^{b}=\mathbf{R} \cdot \mathbf{a} \tag{4.44}
\end{equation*}
\]

The inverse matrix \(\mathbf{R}^{-1}\) of \(\mathbf{R}\) is equal to the transpose matrix \(\mathbf{R}^{t}\) of \(\mathbf{R}\), so that a can be obtained from \(\mathbf{a}^{b}\) as
\[
\begin{equation*}
\mathbf{a}=\mathbf{R}^{-1} \cdot \mathbf{a}^{b} \tag{4.45}
\end{equation*}
\]

Thus, the particle direction \(\mathbf{e}\) and the magnetic moment direction \(\mathbf{n}\) of an arbitrary particle can be expressed as
\[
\begin{equation*}
\mathbf{e}=\mathbf{R}^{-1} \cdot \mathbf{e}^{b}, \quad \mathbf{n}=\mathbf{R}^{-1} \cdot \mathbf{n}^{b} \tag{4.46}
\end{equation*}
\]

Since the XYZ-coordinate system is adopted so that the Z-axis is pointing in the particle direction, the unit vector \(\mathbf{e}^{b}\) satisfies \(\mathbf{e}^{b}=(0,0,1)\). This gives rise to the particle direction \(\mathbf{e}\) in the xyz-coordinate system expressed as \(\mathbf{e}=\left(e_{x}, e_{y}, e_{z}\right)=\) ( \(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta\) ). If necessary, known values of ( \(e_{x}, e_{y}, e_{z}\) ) yield the sine and cosine functions of \(\theta\) and \(\phi\) as \(\cos \theta=e_{z}, \sin \theta=\sqrt{1-e_{z}^{2}}\), \(\cos \phi=e_{x} / \sin \theta\), and \(\sin \phi=e_{y} / \sin \theta\), in which it is noted that \(\theta\) is defined in the range of \(0 \leq \theta \leq \pi / 2\). Several special features arising from this definition of range will be explained later.

We briefly explain the method for expressing the magnetic moment direction \(\mathbf{n}\). As shown in Figure 4.17B, the direction of the magnetic moment can be specified by an angle \(\psi\) in the counterclockwise direction from the \(X\)-axis in the \(X Y Z\)-coordinate system. That is, the magnetic moment direction \(\mathbf{n}^{b}\) is expressed as \(\mathbf{n}^{b}=(\cos \psi, \sin \psi, 0)\), so that the vector \(\mathbf{n}\) in the \(x y z\)-coordinate system can be obtained from Eq. (4.46) as \(\mathbf{n}=\mathbf{R}^{-1} \cdot \mathbf{n}^{b}\).

\subsection*{4.2.7 Attempt of Small Angular Changes in the Particle Axis and the Magnetic Moment}

In MC simulations, an attempt is made to move each particle in translation and rotation with small displacements using uniform random numbers. Since the attempt of the translational movement is similar to that for a spherical particle system, we here show the method of rotating the particle direction and the magnetic moment direction.

We first consider the rotation of the particle direction. As shown previously, the particle direction \((\theta, \phi)\) of an arbitrary particle is assumed to be made as \((\theta+\Delta \theta\), \(\phi+\Delta \phi)\), with the small change \((\Delta \theta, \Delta \phi)\). Special treatment will be necessary if \((\theta+\Delta \theta)\) or \((\phi+\Delta \phi)\) is then larger than \(\pi / 2\) for \(\theta\) or \(2 \pi\) for \(\phi\) and also if smaller than zero for \(\theta\) or \(\phi\), because the angles \(\theta\) and \(\phi\) are defined within the ranges of \(0 \leq \theta \leq \pi / 2\) and \(0 \leq \phi<2 \pi\).
1. For the case of \(\theta+\Delta \theta<0\) :

We make a modification such that \(\theta^{\prime}=-(\theta+\Delta \theta), \phi^{\prime}=\phi+\Delta \phi+\pi\), and \(\psi^{\prime}=\psi+\pi\), and use these values \(\left(\theta^{\prime}, \phi^{\prime}, \psi^{\prime}\right)\) for the rotational movement. Note that ( \(\phi^{\prime}-2 \pi\) ) needs to be adopted as \(\phi^{\prime}\) if \(\phi^{\prime} \geq 2 \pi\) since \(\phi^{\prime}\) is defined in the range of \(0 \leq \phi^{\prime}<2 \pi\). Similar treatment is required for \(\psi^{\prime}\).
2. For the case of \(\theta+\Delta \theta \geq \pi / 2\) :

We make a modification such that \(\theta^{\prime}=\pi-(\theta+\Delta \theta), \quad \phi^{\prime}=\phi+\Delta \phi+\pi\), and \(\psi^{\prime}=2 \pi-\psi\). If \(\phi^{\prime}\) or \(\psi^{\prime}\) is outside the range of \(0 \leq \phi^{\prime}, \psi^{\prime}<2 \pi\), the above-mentioned treatment is applicable.
3. For the case of \(0 \leq \theta+\Delta \theta<\pi / 2\) :

In this case, a special modification is unnecessary and \(\left(\theta^{\prime}, \phi^{\prime}, \psi^{\prime}\right)\) are merely expressed as \(\theta^{\prime}=\theta+\Delta \theta, \phi^{\prime}=\phi+\Delta \phi\), and \(\psi^{\prime}=\psi\), except that \(\phi^{\prime}\) is modified as in the previous case if \(\phi^{\prime}\) is outside the defined range.

For the above-modified \(\theta^{\prime}, \phi^{\prime}\), and \(\psi^{\prime}\), the rotational displacement is attempted and determined by the MC assessing procedure.

We next consider the rotation of the magnetic moment. The angle \(\psi\) specifying the direction is slightly displaced as \((\psi+\Delta \psi)\). Since \(\psi\) is defined in the range of \(0 \leq \psi<2 \pi, \quad \psi^{\prime}\) is modified such that \(\psi^{\prime}=\psi+\Delta \psi-2 \pi\) for \(\psi+\Delta \psi \geq 2 \pi\), \(\psi^{\prime}=\psi+\Delta \psi+2 \pi\) for \(\psi+\Delta \psi<0\) and \(\psi^{\prime}=\psi+\Delta \psi\) for the other cases. With this modified \(\psi^{\prime}\), the magnetic moment direction \(\mathbf{n}^{\prime b}\) is specified as \(\mathbf{n}^{\prime b}=\left(\cos \psi^{\prime}, \sin \psi^{\prime}, 0\right)\) in the XYZ-coordinate system, and therefore the vector \(\mathbf{n}^{\prime}\) in the \(x y z\)-coordinate system can be obtained as \(\mathbf{n}^{\prime}=\mathbf{R}^{-1} \cdot \mathbf{n}^{\prime b}\) from Eq. (4.46). The magnetic interaction energies are calculated for the new magnetic moment direction, and the MC procedure determines whether this new state is accepted or rejected.

\subsection*{4.2.8 Parameters for Simulations}

\subsection*{4.2.8.1 Initial Conditions}

The assignment of an initial configuration of the circular disk-like particles explained in Section 2.1.2 is applied to the present system with different number of particles. As shown in Figure 2.5, four disk-like particles are located linearly along the \(x\)-axis, with the particles aligning in the \(y\)-direction. This stack of 4 particles is repeatedly placed in the \(y\)-direction, giving rise to 48 disk-like particles in the \(x y\) plane at this stage. These particles are expanded in the \(z\)-direction to total 6 layers, giving a final sum of 288 particles placed in the simulation region. In this contact configuration, the size of the simulation region \(\left(L_{x}, L_{y}, L_{z}\right)\) is \(\left(4 r_{\mathrm{p}} b_{1}, 12 b_{1}, 6 r_{\mathrm{p}} b_{1}\right)\). The expansion of the distance between each pair of particles by \(\alpha\) times each side length yields the desired volumetric fraction of particles \(\phi_{\mathrm{V}}\). The relationship between \(\alpha\) and \(\phi_{\mathrm{V}}\) can be expressed as
\[
\begin{equation*}
\alpha=\left[\frac{\pi}{24 r_{\mathrm{p}}^{2} \phi_{\mathrm{V}}}\left\{6\left(r_{\mathrm{p}}-1\right)^{2}+3 \pi\left(r_{\mathrm{p}}-1\right)+4\right\}\right]^{\frac{1}{3}} \tag{4.47}
\end{equation*}
\]

This configuration is perfectly regular, and therefore each particle is given a small translational displacement in order for the initial configuration to be able to transform to an equilibrium state straightforwardly. Then the direction of each particle is assigned as \(\mathbf{e}_{i}=(0,1,0)(i=1,2, \ldots, N)\).

Finally the direction of the magnetic moment is set to be arbitrary using random numbers. Thus, setting the \(\psi\) in the \(X Y\)-plane gives rise to \(\mathbf{n}^{b}=\left(n_{x}^{b}, n_{y}^{b}, 0\right)=(\cos \psi\), \(\sin \psi, 0\) ) and Eq. (4.46) finally yields the direction \(\mathbf{n}\) in the \(x y z\)-coordinate system.

\subsection*{4.2.8.2 Assignment of Parameters}

The simulations were conducted for the particle number \(N=288\) and the volumetric fraction ranging \(\phi_{\mathrm{V}}=0.05 \sim 0.3\). An external magnetic field is applied in the \(z\)-direction as \(\mathbf{h}=(0,0,1)\). We here employ the cutoff distance \(r_{\text {coff }}^{*}=5 d_{1}^{*}\) for calculating magnetic interaction energies; an academic study may require a longer cutoff distance because magnetic energies are of long-range order. The nondimensional parameters \(\xi\) and \(\lambda\) representing the strengths of magnetic particle-field and particle-particle interactions are taken as \(\xi=0,1,10\), and 30 and \(\lambda=0,1,10,30\), and 60 . Note that the situation where \(\xi \gg 1\) or \(\lambda \gg 1\) means that the magnetic field or the magnetic particle-particle interaction is more dominant than the Brownian motion, respectively. The total number of MC steps \(N_{\text {mcsmplemx }}\) is usually taken as \(N_{\text {mcsmplemx }}=100,000-1,000,000\), but the present exercise is only for the purpose of demonstration and therefore we employ a smaller value \(N_{\text {mcsmplemx }}=100,000\).

\subsection*{4.2.9 Results of Simulations}

Figures 4.18-4.21 show the snapshots of the aggregate structures, which were obtained using the sample simulation program presented in the next subsection. Figure 4.18 is for no magnetic interactions between particles, that is, \(\lambda=0\), and


Figure 4.18 Aggregate structures for \(\lambda=0\) : (A) \(\xi=0\) and (B) \(\xi=30\).


Figure 4.19 Aggregate structures for \(\xi=0\) : (A) \(\lambda=10\) and (B) \(\lambda=30\).


Figure 4.20 Aggregate structures for \(\xi=10\) : (A) \(\lambda=10\) and (B) \(\lambda=30\).

Figures 4.19-4.21 are for the magnetic field strength \(\xi=0\) (i.e., no field), 10 , and 30, respectively.

For the case of \(\lambda=0\) in Figure 4.18, no aggregates are formed because magnetic particle-particle interactions are absent. In addition, since an external magnetic field is also absent in Figure 4.18A, the particles do not show a specifically favored direction in their orientational characteristics. On the other hand, the application of a strong magnetic field, as shown in Figure 4.17B, makes the magnetic moment of each particle incline almost in the field direction (i.e., \(z\)-direction), resulting in the particle direction significantly fixed in the \(x y\)-plane.


Figure 4.21 Aggregate structures for \(\xi=30\) : (A) \(\lambda=30\) and (B) \(\lambda=60\).

Figure 4.19 is for no applied magnetic field \(\xi=0\), so that the particles have no tendency to incline in a specifically favored direction. In the case of \(\lambda=10\) shown in Figure 4.19A, short aggregates are found but are not significant. On the other hand, for the case of \(\lambda=30\) shown in Figure 4.19B, the disk-like particles aggregate to form column-like clusters in the particle direction (i.e., in the direction normal to the disk surface); each cluster inclines in its favored direction. This is because the magnetic particle-particle interaction is much more dominant than the Brownian motion. A careful observation of the column-like clusters indicates that the disk-like particles in the column-like cluster have their magnetic moments alternating in direction with the neighboring particles. This is because this type of internal structure gives rise to a minimum interaction energy for the magnetic particle-particle interaction. In the case of an external magnetic field of \(\xi=10\), shown in Figure 4.20 B , the characteristic of the internal structure is the same as in Figure 4.19B because the magnetic interaction of \(\lambda=30\) is much more dominant than the applied magnetic field strength \(\xi=10\); that is, the magnetic particle-particle interaction tends to determine the internal structures of column-like clusters.

In contrast, for the strong applied magnetic field \(\xi=30\) shown in Figure 4.21A, column-like clusters obtained in Figure 4.20B are not formed, but the magnetic moment of each particle tends to incline toward the field direction and the particles move singly without forming clusters. The field strength \(\xi=30\) implies that an applied magnetic field significantly governs the aggregation process, so that the snapshot in Figure 4.21A is not essentially different from that in Figure 4.18B. A stronger interaction \(\lambda=60\) shown in Figure 4.21B recovers the formation of the column-like clusters that were seen in Figure 4.20B; in this case, the magnetic interactions significantly govern the aggregation process as compared with the external magnetic field. These discussions demonstrate that the internal structures
of the aggregates are dependent on which factor is more dominant among the Brownian motion, the magnetic particle-particle interaction, and the magnetic field strength.

\subsection*{4.2.10 Simulation Program}

We now present the sample simulation program, written in FORTRAN, for simulating the present physical phenomenon. The important variables used in the program are explained as follows:
\begin{tabular}{|c|c|}
\hline RX(I), RY(I), RZ (I) & ( \(x, y, z\) ) components of the position vector \(\mathbf{r}_{i}^{*}\) of particle \(i\) \\
\hline EX(I), EY(I), EZ (I) & \((x, y, z)\) components of the unit vector \(\mathbf{e}_{i}\) of particle \(i\) denoting the particle direction \\
\hline NX (I) , NY (I) , NZ (I) & ( \(x, y, z\) ) components of the unit vector \(\mathbf{n}_{i}\) of particle \(i\) denoting the magnetic moment direction \\
\hline XL, YL, ZL & Side lengths of the simulation box in the ( \(x, y, z\) ) directions \\
\hline N & Number of particles \\
\hline D1 & Diameter of the circular disk-like particle \(d_{1}^{*}\) \\
\hline D & Diameter of the cylinder part of the circular disk-like particle \(d^{*}\) \\
\hline RP & Particle aspect ratio \(d_{1}^{*}\left(=d_{1} / b_{1}\right)\) \\
\hline VP & Volume of the disk-like particle \\
\hline VDENS & Volumetric fraction \(\phi_{\mathrm{V}}\) \\
\hline HX, HY, HZ & \((x, y, z)\) components of the unit vector \(\mathbf{h}\) denoting the field direction \\
\hline RA & Nondimensional parameter \(\lambda\) representing the strength of magnetic particle-particle interactions \\
\hline KU & Nondimensional parameter \(\xi\) representing the strength of magnetic particle-field interactions \\
\hline RCOFF & Cutoff distance for calculations of interaction energies \\
\hline DELR & Maximum displacement in the translational movement \\
\hline DELT & Maximum angle in the rotational movement \\
\hline RAN (J) & Uniform random numbers ranging \(0 \sim 1\) ( \(J=1 \sim\) NRANMX ) \\
\hline NRAN & Number of used random numbers \\
\hline E (I) & Energy of particle \(i\) interacting with other particles \\
\hline MOMX (*) , ..., MOMZ (*) & Mean value of the particle direction at each MC step \\
\hline MEANENE (*) & Mean value of the system energy at each MC step \\
\hline
\end{tabular}

Brief comments have been added to the important features of the program in order to clarify the meaning for the reader. Note that the line numbers are merely for convenience and are unnecessary for the execution of the program.

The use of quasi-random numbers for saving the pseudo-random numbers RAN(*) has already been explained in Section 3.2.9.






```

0452
0453
0455 C
0456 4
0457 C
0458 C
0459 C
0460 C
0461
0462
0463
0464
0464
0466
0467
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478 C
0479
0480
0481
0482
0482
0483
0484
0485 \&
C
400
CONTINUE
C
C
C
464
467
0471
0487 \&
\&
IF(MOD (MCSMPL,NGRAPH) .EQ. O) THEN
NOPT = NOPT + 1
WRITE (NOPT, 472) N , XL , YL , ZL , D , D1 , RP
WRITE (NOPT,473) (
WRITE (NOPT,473)
WRITE (NOPT,473)
(NXB (I), I=1,N),(NYB (I), I=1,N)
WRITE (NOPT, 473) (ETHETA(I),I=1,N), (EPHI(I), I=1,N),
(ETHETA(I),I=1,
WRITE(NOPT,474) (((RMAT(II,JJ,I),II=1,3), JJ=1,3),
I=1,N ()
C Cllol
Clol
Cllol
C2 = 0.D0
C2 = 0.D0
C3 = 0.D0
C4 = 0.D0
C Cllol

----- MOMENT AND ENERGY OF SYSTEM -----
DO 420 J=1,N
-To check the system convergence afterward,
the average of the particle direction vector is
calculated.
C1 = C1 + NX(J)
C2 = C2 + NY(J)
C3 = C3 + NZ (J)
C4 = C4 + E(J)
CONTINUE
MOMX (NSMPL) = REAL (C1)/REAL (N)
MOMX (NSMPL)
- The data of the particle positions and
directions are written out at every NGRAPH
MC steps for the postprocessing analysis.
MOMZ (NSMPL) = REAL (C3)/REAL (N)
MEANENE (NSMPL) = REAL (C4-KU* (C1*HX+C2*HY+C3*HZ))/REAL (2*N)
END IF
C
4 2 0
0488 \&
(RMAT(II,JJ,I)
C M M - ---- MOMENT AND
*

```

```

C
C
538 C
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552 C
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0564
0566
0567
0568
0569 474 FORMAT ((11F7.3))
.3))
0570 1002 FORMAT(/1H ,'+++++++++++++++++++++++++++++++++++'
0571 \& /1H ,' WITHOUT CLUSTER MOVEMENT
0572 \& /1H ,'+++++++++++++++++++++++++++++++++++''/
0573 1004 FORMAT(///1H ,18X, 'START OF MC SAMPLING STEP=',I9
0574
0575
0576 1014 FORMAT(3F7.2, 3F9.3, F9.3)
0 5 7 7 1 0 1 6 ~ F O R M A T (~ 2 F 9 . 5 ~) ~
0578 1017 FORMAT(3F7.2)
0 5 7 9 1 0 1 8 ~ F O R M A T (~ 6 I 9 ~) ~
0580 1020 FORMAT(2F7.3 , I4 , F7.3 , E12.4)
0581 1022 FORMAT(2I9)
0582 1024 FORMAT((7E11.4))
0583 1367 FORMAT(3I9, 2F9.4)
0584 1368 FORMAT(I6 , F8.4 , 3F10.5)
0585 1392 FORMAT(2I9)
0586 1394 FORMAT((7E11.4))
0587 1501 FORMAT(I8)
0588 1502 FORMAT((10F8.3))
0589 1511 FORMAT(I8)
0590 1513 FORMAT((10I8))
0591 1515 FORMAT((10F8.3))
0592 1521 FORMAT(I8)
0 5 9 3 - 1 5 2 3 ~ F O R M A T (~ 2 I 8 ~) ~
0594 1525 FORMAT((10F8.3))
0595 1541 FORMAT(I8)
0596 1543 FORMAT((10I8))
0597 1545 FORMAT((10F8.3))
0599
STOP
END

```


```

0602 C*
0603 C
0604 C**** SUB PRNTDATA ****
0605 SUBROUTINE PRNTDATA(MCSST, MCSMX, NP)
0606 C
0607
0608 C
0609
0610 C
0611 PARAMETER(NN=1360 , NNS=200000)
0612 PARAMETER(NRANMX=1000000 , PI=3.141592653589793D0)
0613 C
0614
0615
0616 C
0617
0618
0619 C
0620 C
0621
0622
0623
0624
0625 C
0626 IC = (MCSMX-MCSST+1)/10
0627 DO 30 I=0,10
0628
0629
0630
0631 C
0632 C
0633
0634
0635
0636
0637
0638
0639 C
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650 C
0651
0652
0653
0654
0655
0656
0657
0658 C
0659
0660
0661
0662
0663
0664 C
0665
0666
0667
0667
0668
0669
0670
0671
0672
0672
0673
0674
DO 35 I=1,10
AMOMX(I) = 0.
AMMOMY (I)
AMOMY (I) }=0
AMEANENE (I) = 0.
-The total MC steps are equally divided into }1
IC = (MCSMX-MCSST+1)/50
DO 20 I= MCSST-1+IC , MCSMX , IC
WRITE (NP,10) I, MOMX(I), MOMY(I), MOMZ(I), MEANENE (I)
20 CONTINUE
C ----- MONTE CARLO STEP HEIKIN -----
IMC (I) = MCSST - 1 + IC*I
IF(I.EQ. 10) IMC(I) =MCSMX
-The total MC steps are equally divided into 50
blocks, and the end value of each block is
30 CONTINUE
written out.
INTEGER MCSST , MCSMX , NP
REAL MOMX (NNS) , MOMY (NNS) , MOMZ (NNS) , MEANENE (NNS)
615 C
REAL AMOMX(10) , AMOMY(10) , AMOMZ (10) , AMEANENE (10) , C0
INTEGER IC, IMC (0:10), JS , JE
C
IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
007
COMMON /BLOCK10/ MOMX , MOMY , MOMZ , MEANENE
- ----- KEIKA INSATU ------
\#0 35 I=1,10-2,
C
C
AMOMY (I)
C**
C
TMPITCIT REAI*8 (A-H,0-Z), TNTEGER (I-N)
blocks, and the subaverages are calculated for
35 CONTINUE
C
DO 50 I=1,10
JS = IMC(I-1) + 1
JE = IMC(I)
DO 40 J=JS,JE
AMOMX(I) = AMOMX (I) + MOMX (J)
AMOMY (I) = AMOMY (I) + MOMY (J)
AMOMY(I) = AMOMY(I)
AMOMZ (I) = AMOMZ (I) + + MOMZ (J)
40 CONTINUE
CONTINUE
50 CONTINUE
C
DO 70 I=1,10
C0 = REAL (IMC (I)-IMC (I-1))
AMOMX(I) }==\mathrm{ AMOMX(I) /CO
AMOMX(I)
AMOMY(I) = AMOMY(I) /CO
AMEANENE(I) = AMEANENE (I)/CO
7 0 ~ C O N T I N U E
C CONTINUE ----- STEP HEIKIN INSATU -----
WRITE (NP,75)
DO 90 I=1,10
WRITE (NP, 80) I, IMC (I-1) +1, IMC (I) , AMOMX (I), AMOMY (I), AMOMZ (I),
\& NRIE(NP,80)I,IMC(I-1)+1,IMC(I), AMOMX(I),AM
\&
90 CONTINUE
C
10 FORMAT (1H ,'MCSMPL=',I8, 2X ,'MOMENT (X)=',F7.4, 2X,
l0 FORMAT(1H ,'MCSMPL=',I8, 2X ,'MOMENT (X)=',F7.4, 2X ,
\& / 1H , 53X , 'MEAN ENERGY=',E12.5)
75 FORMAT(//1H ,'--
\& /1H ,' MONTE CARLO HEIKIN
\& % /1)
80 FORMAT(1H ,'I=',I2, 2X ,'SMPLMN=',I8, 2X ,'SMPLMX=',I8
\& /1H,15X,'MOMENT(X)=',F7.4, 2X,',MOMENT (Z)=',F7.4
\& 'MOMENT (Y) =',F7.4, 2X ', 'MOMENT (Z)=',F7.4
\& /1H ,53X, 'MEAN ENERGY=',E12.5/)

```



0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0839
0840
0841 C**** SUB INITIAL ****
0842 SUBROUTINE INITIAL
0843 C
0844
0845 C
0846
0847
0848
0849
, D1 RP , VP , IPICLMDL
0851 COMMON /BLOCK11/ EX , EY , EZ
0852 COMMON /BLOCK12/ NXB , NYB
0853
0854 C
0855
0856 C
0857
0858
0859
0860
0861
0862 C
0863
0864
0865
0866 C
0867
0868
0869
0870
0871
0872
0873
0874
0875
0876
0877
0878
0879
0880
0881 C
0882 C
\(\begin{array}{lll}0885 & \text { XLUNT } & =R P \\ 0886 & \text { YLUNT } & =1 . D 0\end{array}\)
0886 YLUNT \(=1 . D 0\)
0887 ZLUNT = RP

0893
0894 C

0883 VMN \(=\operatorname{DBLE}(\) INIPX*INIPY*INIPZ )*RP**2
0884 CRATIO \(=(\quad(\operatorname{DBLE}(N) * V P) /(V M N * V D E N S ~) \quad\) )**(1./3.)

0888 XLUNT \(=\) XLUNT*CRATIO
0889 YLUNT = YLUNT*CRATIO
0890 ZLUNT = ZLUNT*CRATIO
0891 XL \(=\) XLUNT*DBLE (INIPX)
0892 YL \(=\) YLUNT*DBLE (INIPY)
REAL*8 NDENS
REAL*8 RX(NN) , RY(NN) , RZ (NN) , NX(NN) , NY (NN) , NZ (NN)
REAL*8 EX(NN), EY(NN), EZ (NN)
REAL* 8 NXB (NN), NYB (NN)
REAL*8 ETHETA(NN), EPHI (NN) , NPSI (NN) , RMAT (3, 3, NN)
INTEGER PTCL , ICNTR
REAL*8 XLUNT , YLUNT, ZLUNT, RAN1, RAN2, RAN3
REAL*8 VDENSMX , CRATIO , C0 , C1 , C2 , C3
IF ( INITREE .EQ. 1 ) THEN
INIPX = 3
INIPY \(=9\)
INIPZ \(=12\)
\(\mathrm{N}=324\)
ELSE IF ( INITREE .EQ. 2 ) THEN
INIPX \(=4\)
INIPY = 12
INIPZ \(=6\)
\(\mathrm{N}=288\)
ELSE
WRITE (6,*) '******************** SUB-INITIAL IS STOPPED *****'
STOP
END IF

YL \(\quad=\) YLUNT*DBLE (INIPY)
\(=\) ZLUNT*DBLE (INIPZ)
- The volumetric fraction \(\phi_{\mathrm{V}}\) satisfies \(\phi_{\mathrm{V}}=V_{P} \times N /\left(\alpha^{3} \times V_{m n}\right)\), so that \(\alpha\) can be obtained as \(\alpha=\left(V_{P} \times N /\left(\phi_{V} \times V_{m n}\right)\right)^{1 / 3}\), in which \(V M N=V_{m n}\) and CRATIO \(=\alpha\).
- As shown in Figure 2.5, VMN is the minimum volume for a contact arrangement of the particles.

C
181 FORMAT('\# Micro AVS Geom:2.00'
    \& /'\# Animation of MC simulation results'
    \& /I4)
    183 FORMAT('step',I1)
    184 FORMAT ('step', I2)
    185 FORMAT ('step',I3)
    186 FORMAT('step',I4)
    211 FORMAT( 'column'/'cylinder'/'dvertex_and_color'/'32'/I7 )
    248 FORMAT ( 6 F 10.3 , F6.2 , 3F4.1)
    311 FORMAT ( 'sphere'/'sphere_sample'/'color'/I7 )
    348 FORMAT ( 3 F 10.3 , F6.2 , 3 F 5.2 )
    648 FORMAT( 'polyline'/'pline_sample'/'vertex'/I3 )
        IMPLICIT REAL*8 ( \(\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}\) ), INTEGER ( \(\mathrm{I}-\mathrm{N}\) )
                                A subroutine for setting the
                                initial position and direction of
                                each particle.



\section*{C}

C

C
```

IF(DABS(RYIJ) .GE. RCOFF) GOTO 1000
RZIJ = RZI - RZJ
IF(RZIJ.GT. ZL/2.DO) THEN
RZIJ = RZIJ - ZL
RZJ = RZJ + ZL
ELSE IF(RZIJ .LT. -ZL/2.DO) THEN
RZIJ = RZIJ + ZL
RZJ = RZJ - ZL
END IF
IF(DABS(RZIJ) .GE. RCOFF) GOTO 1000
RIJSQ= RXIJ**2 + RYIJ**2 + RZIJ**2
IF(RIJSQ.GE. RCOFF2) GOTO 1000
IF(RIJSQ .LT. 1.DO) THEN
OVRLAP = .TRUE.
RETURN
END IF
RIJ = DSQRT(RIJSQ)
---------------------------------- START OF MAGNETIC ENERGY ---
IF(IPTCLMDL .EQ. 1) THEN
ELSE IF(IPTCLMDL .EQ. 2) THEN
NXJ = NX(J)
NYJ = NY(J)
NZJ = NZ(J)
NXIJ = NXI - NXJ
NYIJ = NYI - NYJ
NZIJ = NZI - NZJ
NXIJ2 = NXI + NXJ
NYIJ2 = NYI + NYJ
NZIJ2 = NZI + NZJ
EXJ = EX(J)
EYJ = EY(J)
EZJ = EZ(J)
RXJI = -RXIJ
RYJI = -RYIJ
RZJI = -RZIJ
C11 = RXIJ*NXIJ + RYIJ*NYIJ + RZIJ*NZIJ
C21 = RXIJ*NXIJ2 + RYIJ*NYIJ2 + RZIJ*NZIJ2
C12 = 1.D0 - (NXI*NXJ + NYI*NYJ + NZI*NZJ)
C22 = 1.D0 + (NXI*NXJ + NYI*NYJ + NZI*NZJ)
C01 = D/RIJSQ
C02 = D**2/(2.D0*RIJSQ)
R00 = RIJ*(1.D0 + C01*C11 + C02*C12)**0.5
R11 = RIJ*(1.D0 - C01*C11 + C02*C12)**0.5
R01 = RIJ*(1.D0 + C01*C21 + C02*C22)**0.5
R10 = RIJ*(1.D0 - C01*C21 + C02*C22)**0.5
IF((R00 .LT. 1.D0) .OR. (R11 .LT. 1.D0) .OR.
(R01 .LT. 1.D0) .OR. (R10 .LT. 1.D0)) THEN
OVRLAP = .TRUE.

```
-The treatment for the particle model with a plus and a minus magnetic charge at the torus part; this model is not used in the present exercise.
- If the two particles are separated over the cutoff distance \(r_{\text {coff, }}^{*}\), the calculation is unnecessary.
```

END IF
RIJ = DSQRT (RIJSQ)
IF (IPTCLMDL .EQ. 1) THEN

- The magnetic interaction energies are

```
```

 NXJ = NX(J)
    ```
    NXJ = NX(J)
    NYJ = NY(J)
    NYJ = NY(J)
    NZJ = NZ(J)
    NZJ = NZ(J)
    EXJ = EX(J)
    EXJ = EX(J)
    EYJ = EY(J)
    EYJ = EY(J)
    EZJ = EZ(J)
    EZJ = EZ(J)
    RXJI = -RXIJ
    RXJI = -RXIJ
    RYJI = -RYIJ
    RYJI = -RYIJ
    RZJI = -RZIJ
    RZJI = -RZIJ
    C00 = NXI*NXJ + NYI*NYJ + NZI*NZJ
    C00 = NXI*NXJ + NYI*NYJ + NZI*NZJ
    C01 = NXI*RXIJ + NYI*RYIJ + NZI*RZIJ
    C01 = NXI*RXIJ + NYI*RYIJ + NZI*RZIJ
    C02 = NXJ*RXIJ + NYJ*RYIJ + NZJ*RZIJ
    C02 = NXJ*RXIJ + NYJ*RYIJ + NZJ*RZIJ
    RIJ3 = RIJ*RIJSQ
    RIJ3 = RIJ*RIJSQ
    C1 =(RA/RIJ3)*( C00 - 3.D0*C01*C02/RIJSQ )
    C1 =(RA/RIJ3)*( C00 - 3.D0*C01*C02/RIJSQ )
    ECAN = ECAN + C1
    ECAN = ECAN + C1 calculated.
```

 -The treatment for the particle model
 with a magnetic dipole at the particle
 center.
center.
$N X J=N X(J)$
NYJ $=$ NY(J)
Nは, NZ
NYI = NYI NYJ
NZIJ $=$ NZI $-N Z J$
NXIJ2 $=$ NXI + NXJ
NYIJ2 $=$ NYI + NYJ
NZIJ2 $=$ NZI + NZJ
EXJ $=\operatorname{EX}(J)$
$E Z J=E Z(J)$
RXJI $=-$ RXIJ
RYJI $=-$ RYIJ
RZJI $=-$ RZIJ
OVRLAP = .TRUE.

```
    \&
.

1120
1121
1122 C
1123
1124
1125 C
1126
1127 C
1128 C
1129
1130 C
1131
1132
1133
1134
1135 C
1136 C
1137 C
1138 C
1139 C
1140
1141
1142
1143
1144
1145 C
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155 C
1156 C
1157 C
1158 C
1159 C
1160 C
1161 C
1162 C
1163 C
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173 C
1174 C
1175 C
1176
1177 C
1178
1179
1180
1181
1182
1183 C
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
```

 RETURN
 END IF
 ECAN = ECAN
 + RA*(1.D0/R00 + 1.D0/R11 - 1.D0/R01 - 1.D0/R10)
 END IF
------------------------------------ END OF MAGNETIC ENERGY ---
IF(ISTREET .EQ. 1) GOTO 1000
IF(RIJ .GE. D1) THEN
OVRLAP = .FALSE.
GOTO 1000
END IF
--
--------- CHECK THE OVERLAP OF PARTICLES I AND J --------
CEIEJ = EXI*EXJ + EYI*EYJ + EZI*EZJ
TXIJ = RXIJ/RIJ
TYIJ = RYIJ/RIJ
TZIJ = RZIJ/RIJ
C11 = TXIJ*EXI + TYIJ*EYI + TZIJ*EZI
IF(DABS (CEIEJ) .GT. 0.999D0) THEN
IF(DABS (C11) .LT. 0.001D0) THEN
ITREE = 2
ELSE
ITREE = 3
END IF
ELSE
ITREE = 1
END IF

```
- The regime of particle overlap is assessed. There are three regimes: a general arrangement (ITREE \(=1\) ), a one-plane arrangement (ITREE=2), and a parallel arrangement (ITREE=3).
- The assessment of the overlap between particles \(i\) and \(j\).
```

 ITREE=1: GENERAL
 ITREE=2: ONE PLANE
 ITREE=3: TWO PARALLEL
 PLANES
 (1) ITREE=2 ---
 IF(ITREE .EQ. 2) THEN
-The treatment for a one-plane arrangement (ITREE =2).
IF(RIJ .GE. D1) THEN
OVRLAP = .FALSE.
GOTO 1000
ELSE
OVRLAP = .TRUE.
RETURN
END IF
END IF
- The occurrence of a particle
overlap can be assessed by only the
particle-particle distance.
(2) ITREE=3 ---
IF(ITREE .EQ. 3) THEN
-The treatment for a parallel arrangement (ITREE=3).
CEIRIJ = EXI*RXIJ + EYI*RYIJ + EZI*RZIJ
IF(DABS(CEIRIJ) .GE. 1.DO) THEN
- No overlap if the condition (2.1) in
Section 4.2.3 is satisfied.
OVRLAP = .FALSE.
GOTO 1000
END IF
RXIP = RXIJ - CEIRIJ*EXI
RZIP = RZIJ - CEIRIJ*EZI
C0 = DSQRT(RXIP**2 + RYIP**2 + RZIP**2)
IF(CO .LE. D) THEN
OVRLAP = .TRUE.
- An overlap in the case of 2.2.1 in Section 4.2.3.
RETURN
ELSE IF(C0 .GE. D1) THEN
OVRLAP = .FALSE.
GOTO 1000
- No overlap in the case of 2.2.2 in Section 4.2.3.

```
```

\&

```


1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313 C
1314 C
1315
1316
1317
1318
1319
1320
1321 C
1322
1323
1324
1325
1326
1327
1328
1329 C
1330 C
1331
1332
1333
1334
1335
1336
1337 C
1338 C
1339
1340
1341
1342
1343
1344
```

 EEYJS = EYJS
 EEZJS = EZJS
 KKIS = KIS
 KKJS = KJS
 KKIJS = KIJS
 ELSE
II = J
JJ = I
RRXI = RXJ
RRYI = RYJ
RRZI = RZJ
RRXJ = RXI
RRYJ = RYI
RRZJ = RZI
RRXIJ = -RXIJ
RRYIJ = -RYIJ
RRZIJ = -RZIJ
RRXJI = -RXJI
RRYJI = -RYJI
RRZJI = -RZJI
TTXIJ = -TXIJ
TTYIJ = -TYIJ
TTZIJ = -TZIJ
TTXIJS= -TXIJS
TTYIJS= -TYIJS
TTZIJS= -TZIJS
EEXI = EXJ
EEYI = EYJ
EEZI = EZJ
EEXJ = EXI
EEYJ = EYI
EEZJ = EZI
EEXIS = EXJS
EEYIS = EYJS
EEZIS = EZJS
EEXJS = EXIS
EEYJS = EYIS
EEZJS = EZIS
KKIS = KJS
KKJS = KIS
KKIJS = KIJS
END IF
------------------ REPLACEMENT OF DIRECTIONS OF EI AND EJ ---
CHCKO = RRXJI*EEXI + RRYJI*EEYI + RRZJI*EEZI

```
IF ( CHCKO .LT. O.DO ) THEN
    EEXI \(=-\) EEXI
        EEYI \(=-E E Y I\)
        EEZI \(=-E E Z I\)
END IF
CEIEJ = EEXI*EEXJ + EEYI*EEYJ + EEZI*EEZJ
IF ( CEIEJ .LT. O.DO ) THEN
    EEXJ \(=-\) EEXJ
    EEYJ = -EEYJ
    EEZJ = -EEZJ
    CEIEJ = -CEIEJ
END IF
-------------------------- REPLACEMENT OF DIRECTION OF TIJS ---
CHCKO = TTXIJS*RRXIJ + TTYIJS*RRYIJ + TTZIJS*RRZIJ
IF ( CHCKO .LT. O.DO ) THEN
    TTXIJS \(=\)-TTXIJS
    TTYIJS \(=\)-TTYIJS
    TTZIJS \(=-\) TTZIJS
END IF
-------- REPLACEMENT OF DIRECTIONS OF EIS,EJS,KIS,KJS,KIJS ---
IF ( KKIS .LT. O.DO ) THEN
    KKIS \(=-\) KKIS
    EEXIS \(=-\) EEXIS
    EEYIS = -EEYIS
    EEZIS \(=-\) EEZIS
END IF
\begin{tabular}{|c|c|c|}
\hline 1345 & & IF ( KKJS .LT. O.DO ) THEN \\
\hline 1346 & & KKJS \(=-\) KKJS \\
\hline 1347 & & EEXJS \(=-\)-EXXJS \\
\hline 1348 & & EEYJS \(=\)-EEYJS \\
\hline 1349 & & EEZJS = -EEZJS \\
\hline 1350 & & END IF \\
\hline 1351 & & IF ( KKIJS .LT. O.DO ) THEN \\
\hline 1352 & & KKIJS \(=-\mathrm{KKIJS}\) \\
\hline 1353 & & END IF \\
\hline 1354 & C & \\
\hline 1355 & C & \\
\hline 1356 & C & (3) ITREE=1 --- \\
\hline 1357 & C & ( \({ }^{\text {e }}\) The treatment for a general arrangement (ITREE =1). \\
\hline 1358 & & IF ( ITREE .EQ. 1 ) THEN \({ }^{\text {a }}\) (The treatment for a general arrangement (ITREE=1). \\
\hline 1359 & C & \\
\hline 1360 & C & \\
\hline 1361 & & KIJQ \(=\) DABS ( EEXJS*EEXI + EEYJS*EEYI + EEZJS*EEZI ) \\
\hline 1362 & & IF ( KKJS . GE. D02 ) THEN \\
\hline 1363 & & KIJQ \(=(\mathrm{KKJS}-\) D02 \() *\) KIJQ \({ }^{\text {a }}\) ( \(k_{i(j)}^{Q}\) in Eq. (4.27) and \(\mathrm{r}_{i(j)}^{\mathrm{e}}\) in \\
\hline 1364 & & RXIJQ \(=\) RRXJ + D02*EEXJS - KIJQ*EEXI \(\quad\) Eq. (4.28) are evaluated. \\
\hline 1365 & & RYIJQ \(=\) RRYJ + D02*EEYJS - KIJQ*EEYI \(\quad\) IPATH \(=1\) means \(k_{j}^{S} \geq d / 2\). \\
\hline 1366 & & RZIJQ \(=\) RRZJ + D02*EEZJS - KIJQ*EEZI \\
\hline 1367 & & IPATH \(=1\) \\
\hline 1368 & & ELSE \\
\hline 1369 & &  \\
\hline 1370 & &  \\
\hline 1371 & & RYIJQ \(=\) RRYJ + D02*EEYJS + KIJQ*EEYI \(\quad\) Eq. (4.30) are evaluated. \\
\hline 1372 & & RZIJQ \(=\) RRZJ + D02*EEZJS + KIJQ*EEZI \(\quad\) IPATH \(=2\) means \(k_{j}^{s}<d / 2\). \\
\hline 1373 & & IPATH \(=2\) \\
\hline 1374 & & END IF \\
\hline 1375 & & CHCK1 \(=\) DSQRT ( \(\left.\mathrm{RXIJQ}^{\text {-RRXI }}\right) * * 2+(R Y I J Q-R R Y I) * * 2\) \\
\hline 1376 & \& & + (RZIJQ-RRZI)**2 ) \\
\hline 1377 & & IF ( CHCK1 .LE. D02 ) THEN \\
\hline 1378 & C & --- (3)-1 INNER CIRCLE --- \\
\hline 1379 & & IF ( IPATH .EQ. 2 ) THEN - An \\
\hline 1380 & & OVRLAP \(=\).TRUE. \(\quad\) An overlap in the case of 3.2.1 in \\
\hline 1381 & &  \\
\hline 1382 & & ELSE IF ( IPATH .EQ. 1 ) THEN \\
\hline 1383 & & IF ( KIJQ . LT. 1.D0 ) THEN - An overlap in the case of 3.1.2.a in \\
\hline 1384 & & OVRLAP \(=\).TRUE. \\
\hline 1385 & & RETURN \({ }^{\text {a }}\) ( Section 4.2.3. \\
\hline 1386 & & ELSE \\
\hline 1387 & & OVRLAP \(=\).FALSE. \(\quad\). No overlap in the case of 3.11 in \\
\hline 1388 & & GOTO 1000 - No overlap in the case of 3.1.1 in \\
\hline 1389 & & END IF \({ }^{\text {a }}\) Section 4.2.3. \\
\hline 1390 & & END IF \\
\hline 1391 & & ELSE \\
\hline 1392 & C & --- (3)-2 OUTER CIRCLE --- \\
\hline 1393 & & IF ( IPATH .EQ. 1 ) THEN \\
\hline 1394 & C & --- (3)-2-1 IPATH=1 --- \\
\hline 1395 & & IF ( KIJQ .GE. 1.D0 ) THEN . N0 \\
\hline 1396 & & OVRLAP \(=\).FALSE. \(\quad\) No Overlap in the case of 3.1.1 in \\
\hline 1397 & & GOTO 1000 Section 4.2.3. \\
\hline 1398 & & ELSE \\
\hline 1399 & & RIJMN = RIJMNFUN( EEXI, EEYI, EEZI, EEXJ, EEYJ, EEZJ, \\
\hline 1400 & \& & EEXIS, EEYIS, EEZIS, EEXJS, EEYJS, EEZJS, \\
\hline 1401 & \& & KKIS, KKJS, KKIJS, RRXIJ, RRYIJ, RRZIJ, D ) \\
\hline 1402 & & IF ( RIJMN .GE. 1.D0 ) THEN - No overlap in the case of 3.12 b 1 \\
\hline 1403 & & OVRLAP \(=\).FALSE. \(\quad\) NO Overlap in the case of 3.1.2.b.1 \\
\hline 1404 & & GOTO 1000 in Section 4.2.3. \\
\hline 1405 & & ELSE \\
\hline 1406 & & OVRLAP = .TRUE. \\
\hline 1407 & & RETURN - An overlap in the case of 3.1.2.b. 2 \\
\hline 1408 & & END IF \(\quad\) in Section 4.2.3. \\
\hline 1409 & & END IF \(\quad\) in Section 4.2.3. \\
\hline 1410 & & ELSE IF ( IPATH .EQ. 2 ) THEN \\
\hline 1411 & C & --- (3)-2-2 IPATH=2 -- \\
\hline 1412 & & RIJMN = RIJMNFUN( EEXI, EEYI, EEZI, EEXJ, EEYJ, EEZJ, \\
\hline 1413 & \& & EEXIS, EEYIS, EEZIS, EEXJS, EEYJS, EEZJS, \\
\hline 1414 & \& & KKIS, KKJS, KKIJS, RRXIJ, RRYIJ, RRZIJ, D ) \\
\hline 1415 & & IF ( RIJMN .GE. 1.DO ) THEN \\
\hline 1416 & & OVRLAP \(=\).FALSE.\(\quad \bullet\) No overlap in the case of 3.2.2.a in \\
\hline 1417 & & GOTO 1000 Section 4.2.3. \\
\hline 1418 & & ELSE \\
\hline
\end{tabular}
```

1419 OVRLAP = .TRUE.
1420
1421
1422 C
1 4 2 3
1424 C
1425
1426 C
1427 C
1428
1429 C
1430 C
1 4 3 1 ~ 1 0 0 0 ~ C O N T I N U E ~
1432
1 4 3 3
1434
1435
1436 \&
1 4 3 7
1438 C
1 4 3 9
1440 C
1 4 4 1
1442 C
1443
1444 C
1445 REAL*8 X0, Y0, Z0, X1, Y1 , Z1, X2, Y2, Z2
1446 REAL*8 D02 , CS , SN , BETAN1 , BETAN2 , BETAN , DBETAN
1447 REAL*8 FBETAN , FPBETAN , GAB , GABMN
1448 REAL*8 DX1DB , DY1DB , DX2DB , DY2DB
1449 REAL*8 CX0X1 , CX0X1SQ , CY0CY1

```

```

1450 1451 lllem, REAL*8 SNBETA, CSBETA , CR2, CRSQ , C
1 4 5 2
1453 C
1454 DDEG = 10.D0 * (PI/180.D0)
1455 D02 = D/2.D0
M (l)
lll
1458 X0 = KIJS
1459 CHCKO = EXIS*EXJ + EYIS*EYJ + EZIS*EZJ
1460 IF(CHCKO .LE. O.DO) THEN
1 4 6 1
1462
1463
1 4 6 4
1465
1466
1467
1468
1469
1470
471 C
1472 C
1473 C
1474 IF(DABS(X0) .LE. 0.05DO) THEN
1475 X2 = X0
475
1476
1477
1478
1479
1480
1 4 8 1
1482
1483
1484
1485
1486
1 4 8 7
1488
1489 C
1490
1491
1491
1492
1493
RETURN
END IF
END IF
END IF
END IF
C
C\#\#\#\# FUN RIJMNFUN \#\#\#\#
DOUBLE PRECISION FUNCTION RIJMNFUN(EXI, EYI, EZI, EXJ,EYJ,EZJ,
\& EXIS, EYIS, EZIS, EXJS, EYJS, EZJS,
\& KIS, KJS, KIJS, RXIJ, RYIJ, RZIJ, D)
IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)

- An overlap in the case of 3.2.2.b in
Section 4.2.3.

```

```

C
REAL*8 KIS, KJS, KIJS

- A function subprogram for
PARAMETER(PI=3.141592653589793D0)
Newton's method.
INTEGER ICTR
C
- CS = cos (}\mp@subsup{0}{0}{})\mathrm{ and SN =sin((
DELX = EXIS
DELY = EYIS
DELZ = EZIS
ELSE
DELX = -EXIS
DELY = -EYIS
DELY = -EYIS
END IF
Y0 = -(RXIJ*DELX + RYIJ*DELY + RZIJ*DELZ)
ZO = KJS*DABS(EXJS*EXI + EYJS*EYI + EZJS*EZI)
C
--- FOR THE CASE OF COS (BETA)=0 ---
M,
_ VALID ONLY FOR OUTER CIRCLE -
C
RETURN
END
\&
-

1440 C
1441
444 C N

- }\mp@subsup{\textrm{x}}{0}{}=(\mp@subsup{x}{0}{},\mp@subsup{y}{0}{},\mp@subsup{z}{0}{})\mathrm{ is evaluated.
X2 = X0
X2 = X0 - D02*CS
Z2 = Z0 - D02*SN
- The case of }\mp@subsup{x}{0}{}=(0,\mp@subsup{y}{0}{},\mp@subsup{z}{0}{})\mathrm{ and
X1 = 0.D0
|\mp@subsup{r}{i(j)}{O}}\mp@subsup{\mathbf{r}}{j}{}|\geqd/2 enables us to
conduct simple treatment.
X1 = 0.D0
X1 = 0.D0
IF(Y2 .GE. 0.D0) THEN
Y1 = D02
ELSE
Y1 = -D02
END IF
GAB = (X2-X1)**2 + (Y2-Y1)**2 + (Z2-Z1)**2
RIJMNFUN = DSQRT(GAB)
RETURN
END IF
-A starting value of }\mp@subsup{\mathbf{x}}{2}{}\mathrm{ is given. It
C
X2 = X0 / 2.D0
C1 = 1.0D0
C2 = -X0/D
IF(DABS(C2).GE. 1.D0) C2 = DSIGN(C1, C2)

```
```

1494 BETAN1 = DACOS(C2)
1495 BETAN2 = 2.DO*PI - BETAN1
C1 = DSIN(BETAN1)
C2 = DSIN(BETAN2)
IF(C1 .GE. C2) THEN
BETAN = BETAN2
ELSE
BETAN = BETAN1
-The minimum value of g(\alpha,\beta) is
saved in GABMN.
C
C
C
GABMN = 1.D5
ICTR = 0
10 ICTR = ICTR + 1
SNBETA = DSIN(BETAN)
CSBETA = DCOS(BETAN)
x2 = D02*CSBETA + X0
= DO2*CSBETA + + X0
= D02*SNBETA*SN + Z0
START OF NEWTON PROCEDURE -----
END IF

```

1495
1496
1497
1498
1499
1500
1501
1502
1503
1504 C
1505 C
1506
1507
1508
1509
1510
1511
1512
1513
1514 C
1515
1516
1517
1518
1519
1520
1521
1522
1522
1523
1524
1525
1526
1527 C
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1556 C**
绪
C THIS SUBROUTINE IS FOR GENERATING UNIFORM RANDOM NUMBERS
1559 C (SINGLE PRECISION) FOR 32-BIT COMPUTER.
1560 C N : NUMBER OF RANDOM NUMBERS TO GENERATE
1561 C IX : INITIAL VALUE OF RANDOM NUMBERS (POSITIVE INTEGER)
1562 C : LAST GENERATED VALUE IS KEPT
\(1563 \mathrm{C} \quad \mathrm{X}(\mathrm{N}) \quad\) GENERATED RANDOM NUMBERS \((0<\mathrm{X}(\mathrm{N})<1) \quad *\)
\(1564 \mathrm{C} * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
1565 C**** SUB RANCAL ****
1566 SUBROUTINE RANCAL ( N, IX, X )
1567 C
1568
1569 C
- A subroutine for generating a uniform random number sequence.
```

1570
1 5 7 1
1572 C
1 5 7 3
1 5 7 4
1575 C
1576
1577 C
1578
1 5 7 9
1580
1581
1582
1583
1 5 8 4
1585
1586
REAL X(N)
INTEGER INTEGMX, INTEGST, INTEG
DATA INTEGMX/2147483647/
DATA INTEGST,INTEG/584287,48828125/

```
-This is for a 32-bit CPU based on the expression of two's complement.

\section*{5 Practice of Brownian Dynamics Simulations}

In the previous chapters, we have shown how the MD method and MC method are applied in a practical simulation. In the present and successive chapters, we follow the same approach and demonstrate the microsimulation methods required for the application of the Brownian Dynamics (BD) method, the DPD method, and the lattice Boltzmann method. These further methods are very useful as simulation tools for a colloidal dispersion or a suspension composed of dispersed particles. These simulation methods have many applications in the pharmaceutical field, as well as in science and engineering.

The exercise in the present chapter is for a BD simulation to discuss how Lennard-Jones particles sediment in the gravitational field for cases when the Brownian motion is expected to be significant. This example of a physical phenomenon becomes attractive as a research subject when the particle aggregation is strongly related to the sedimentation. The sample simulation program is written in the C programming language.

\subsection*{5.1 Sedimentation Phenomena of Lennard-Jones Particles}

We consider a thermodynamic equilibrium state of \(N\) Brownian particles with mass \(m\) dispersed in a base liquid contained in a rectangular parallelepiped box. For simplification, the Brownian particles are assumed to be the Lennard-Jones particle, where the particle-particle interactions can be expressed as a Lennard-Jones potential. The objective of the present practice is to discuss how the Brownian particles in thermodynamic equilibrium sediment after the gravitational field is switched on. The system temperature, gravitational force, and particle-particle interactions are expected to significantly influence the sedimentation phenomenon.

\subsection*{5.2 Specification of Problems in Equations}

Since the particles sediment under the effect of the Brownian motion in a gravitational field, we are required to use the BD method, explained in Section 1.3, in order to simulate this phenomenon. In contrast to a magnetic particle system in which the particle rotation is restricted by an external magnetic field, the Lennard-Jones particles are only influenced by the isotropic force due to the Lennard-Jones potential. We
therefore only need to treat the translational motion of the Brownian particles. The particles hydrodynamically interact through their ambient fluid, but it is difficult to take into account these multibody hydrodynamic interactions, even for the relatively simple spherical particle system. It is still more so for a nonspherical particle system, such as a rod-like or disk-like particle suspension. The difficulty of treating multibody hydrodynamic interactions forces us to take into account only the friction term as a first approximation, even in the case of a nondilute suspension. In the present exercise, we therefore take into account the nonhydrodynamic interaction but neglect the multibody hydrodynamic interaction among the particles.

If the position vector of an arbitrary particle \(i\) is denoted by \(\mathbf{r}_{i}\), the velocity by \(\mathbf{v}_{i}\), the nonhydrodynamic force by \(\mathbf{f}_{i}\), and the random force by \(\mathbf{f}_{i}^{\mathrm{B}}\), then the equation of motion of particle \(i\) is expressed as [1,4]
\[
\begin{equation*}
m \frac{\mathrm{~d}^{2} \mathbf{r}_{i}}{\mathrm{~d} t^{2}}=\mathbf{f}_{i}-\xi \mathbf{v}_{i}+\mathbf{f}_{i}^{\mathrm{B}} \tag{5.1}
\end{equation*}
\]
in which \(\xi\) is the friction coefficient, expressed as \(\xi=3 \pi \eta d\) ( \(\eta\) is the liquid viscosity) under the assumption that the Lennard-Jones particles are spherical with diameter \(d\). The random force \(\mathbf{f}_{i}^{\mathrm{B}}=\left(f_{i x}^{\mathrm{B}}, f_{i y}^{\mathrm{B}}, f_{i z}^{\mathrm{B}}\right)\) must satisfy the following stochastic properties:
\[
\begin{align*}
& \left\langle f_{i x}^{\mathrm{B}}(t)\right\rangle=\left\langle f_{i y}^{\mathrm{B}}(t)\right\rangle=\left\langle f_{i z}^{\mathrm{B}}(t)\right\rangle=0  \tag{5.2}\\
& \left\langle\left\{f_{i x}^{\mathrm{B}}(t)\right\}^{2}\right\rangle=\left\langle\left\{f_{i y}^{\mathrm{B}}(t)\right\}^{2}\right\rangle=\left\langle\left\{f_{i z}^{\mathrm{B}}(t)\right\}^{2}\right\rangle=2 \xi k T \delta\left(t-t^{\prime}\right) \tag{5.3}
\end{align*}
\]

The force \(\mathbf{f}_{i j}\) acting on particle \(i\) by particle \(j\) due to the Lennard-Jones potential is expressed as
\[
\begin{equation*}
\mathbf{f}_{i j}=24 \varepsilon\left\{2\left(\frac{d}{r_{i j}}\right)^{12}-\left(\frac{d}{r_{i j}}\right)^{6}\right\} \frac{\mathbf{r}_{i j}}{r_{i j}^{2}} \tag{5.4}
\end{equation*}
\]
in which \(\mathbf{r}_{i j}\) is the position vector of particle \(i\) relative to particle \(j\), expressed as \(\mathbf{r}_{i j}=\mathbf{r}_{i}-\mathbf{r}_{j}\), and \(r_{i j}\) is the magnitude of \(\mathbf{r}_{i j}\), that is, \(r_{i j}=\left|\mathbf{r}_{i j}\right|\). The total force acting on particle \(i, \mathbf{f}_{i}\), can be obtained by summing \(\mathbf{f}_{i j}\) from the contributions of all the ambient particles.

The method of nondimensionalizing quantities is described in the next section.

\subsection*{5.3 Brownian Dynamics Algorithm}

As explained in Section 1.3, the Ermak-McCammon method [24] enables us to transform the equation of motion in Eq. (5.1) into Eq. (1.59). We here show the nondimensional expressions in the following. It may be inappropriate to use the
representative values usually employed for the Lennard-Jones system, because we consider a dispersion of fine particles-which are regarded as a Lennard-Jones particle performing Brownian motion-and not a pure molecular system. We therefore use the following representative values: the particle diameter \(d\) for distances; mg / \((3 \pi \eta d)\) for the velocities, which is obtained by equating the friction force to the gravitational force; and the gravitational force \(m g\) for forces. With these representative values, the equation of an arbitrary particle \(i\) is written in nondimensional form as
\[
\begin{equation*}
\mathbf{r}_{i}^{*}\left(t^{*}+h^{*}\right)=\mathbf{r}_{i}^{*}\left(t^{*}\right)+h^{*} \mathbf{f}_{i}^{*}\left(t^{*}\right)+\Delta \mathbf{r}_{i}^{\mathrm{B} *} \tag{5.5}
\end{equation*}
\]
in which the components \(\left(\Delta x_{i}^{\mathrm{B} *}, \Delta y_{i}^{\mathrm{B} *}, \Delta z_{i}^{\mathrm{B} *}\right)\) of the random displacement \(\Delta \mathbf{r}_{i}^{\mathrm{B} *}\) must satisfy the following stochastic characteristics:
\[
\begin{align*}
& \left\langle\Delta x_{i}^{\mathrm{B}^{*}}\right\rangle=\left\langle\Delta y_{i}^{\mathrm{B}^{*}}\right\rangle=\left\langle\Delta z_{i}^{\mathrm{B}^{*}}\right\rangle=0  \tag{5.6}\\
& \left\langle\left(\Delta x_{i}^{\mathrm{B}^{*}}\right)^{2}\right\rangle=\left\langle\left(\Delta y_{i}^{\mathrm{B}^{*}}\right)^{2}\right\rangle=\left\langle\left(\Delta z_{i}^{\mathrm{B}^{*}}\right)^{2}\right\rangle=2 R_{\mathrm{B}} h^{*} \tag{5.7}
\end{align*}
\]
in which \(R_{\mathrm{B}}\) is a nondimensional parameter representing the strength of the random force relative to the gravitational force, expressed as \(R_{\mathrm{B}}=k T /(m g d)\). The gravitational force \(\mathbf{f}_{i}^{(g)}\) acting on particle \(i\) and the force \(\mathbf{f}_{i j}{ }^{(\mathrm{LJ})}\) due to the Lennard-Jones interaction are expressed in nondimensional form as
\[
\begin{align*}
& \mathbf{f}_{i}^{(g)^{*}}=\hat{\mathbf{g}}  \tag{5.8}\\
& \mathbf{f}_{i j}^{(\mathrm{L})^{*}}=24 R_{\mathrm{LJ}}\left\{2\left(\frac{1}{r_{i j}^{*}}\right)^{12}-\left(\frac{1}{r_{i j}^{*}}\right)^{6}\right\} \frac{\mathbf{r}_{i j}^{*}}{\left(r_{i j}^{*}\right)^{2}} \tag{5.9}
\end{align*}
\]
in which \(R_{\mathrm{LJ}}\) is a nondimensional parameter presenting the strength of the force due to the Lennard-Jones potential relative to the gravitational force, expressed as \(R_{\mathrm{LJ}}=\varepsilon /(m g d)\), and \(\hat{\mathbf{g}}\) is the unit vector, denoting the gravitational direction. The consideration of these forces provides the nondimensional force \(\mathbf{f}_{i}^{*}\) acting on particle \(i\) as
\[
\begin{equation*}
\mathbf{f}_{i}^{*}=\mathbf{f}_{i}^{(g)^{*}}+\sum_{j(\neq i)} \mathbf{f}_{i j}^{(\mathrm{LJ})^{*}}=\hat{\mathbf{g}}+24 R_{\mathrm{LJ}} \sum_{j(\neq i)}\left\{2\left(\frac{1}{r_{i j}^{*}}\right)^{12}-\left(\frac{1}{r_{i j}^{*}}\right)^{6}\right\} \frac{\mathbf{r}_{i j}^{*}}{\left(r_{i j}^{*}\right)^{2}} \tag{5.10}
\end{equation*}
\]

Since the particles sediment in the gravitational field direction, assumed to be the negative direction of the \(y\)-axis, the periodic boundary condition is not applicable at the sedimentation surface, but it is applicable to the boundary surfaces normal to the \(x\) - and \(z\)-directions. On the sedimentation surface, the elastic reflection condition is here employed for the boundary in order to ensure that a particle cannot cross the boundary surface. In the concrete treatment of a reflecting particle, the velocity component parallel to the boundary surface is unchanged, but the velocity component normal to the boundary surface is reversed in direction.

The main procedure of the BD simulation is summarized as follows. First, we set the number of particles \(N\), the size of simulation region ( \(L_{x}^{*}, L_{y}^{*}, L_{z}^{*}\) ), and the volumetric fraction \(\phi_{\mathrm{V}}\). Then, the assignment of the initial position of the particles enables us to begin the main loop in a simulation program. The particles are simulated according to the basic equations shown in Eq. (5.5) together with generating the random displacements of the particles based on the stochastic properties in Eqs. (5.6) and (5.7); these random displacements are sampled from the normal distribution specified by Eqs. (5.6) and (5.7). In order that we may discuss quantitatively the particle sedimentation phenomenon, the time variation in the local densities is evaluated for each thin-sliced volume along the \(y\)-direction. The pair correlation function is usually employed for an accurate quantitative discussion of the internal particle structure of a system, but we here focus only on the method of snapshots and employ the local number density.

\subsection*{5.4 Parameters for Simulations}

In conducting the following BD simulations, the number of particles is taken as \(N=108\), and the volumetric fraction is taken as \(\phi_{\mathrm{V}}=0.1\) to give a number density \(n^{*}=6 \phi_{\mathrm{V}} / \pi\). The face-centered cubic lattice system shown in Figure 2.2B is employed as an initial configuration of particles, yielding the lattice constant \(a^{*}=\left(4 / n^{*}\right)^{1 / 3}\) and \(Q=(N / 4)^{1 / 3}\); the replication of the unit cell \((Q-1)\) times in each direction generates the particle configuration for the whole simulation region. The dimensions of the region are therefore \(\left(L_{x}^{*}, L_{y}^{*}, L_{z}^{*}\right)=(Q a, Q a, Q a)\). An appropriate time interval \(h^{*}\) has to be chosen with sufficient consideration. Setting an unreasonably large time interval is likely to induce a serious particle overlap problem, which will result in the instability of the system. Choice of the appropriate time interval is strongly dependent on the nondimensional parameters \(R_{\mathrm{LJ}}\) and \(R_{\mathrm{B}}\). The larger these quantities, the smaller the time interval (i.e., \(h^{*} \ll 1\) ). In the present demonstration, \(h^{*}=0.00005\) was adopted for the case of \(R_{\mathrm{LJ}}=R_{\mathrm{B}}=1\). The simulations were carried out for various cases of \(R_{\mathrm{LJ}}\) and \(R_{\mathrm{B}}\), where we have used \(R_{\mathrm{LJ}}=1\) and 5 and also \(R_{\mathrm{B}}=0.1,1\), and 5 .

\subsection*{5.5 Results of Simulations}

Figures 5.1-5.3 show the snapshots of the Lennard-Jones particles in the sedimentation process under the influence of the gravitational field, which were obtained by conducting the sample simulation program explained in the next section. The snapshots in Figures 5.1 and 5.2 were obtained for different cases of \(R_{\mathrm{B}}\) after the particle distribution attains to a steady state (in the macroscopical meaning). Those in Figure 5.3 are from the visualization of the sedimentation process with advancing time.

Figure 5.1A clearly shows that the particles have sedimented on the base surface area under the gravitational field. This is because the value of the nondimensional parameter \(R_{\mathrm{B}}=0.1\) implies a significant influence of the gravitational force over the random Brownian force. On the other hand, in the case of \(R_{\mathrm{LJ}}=5\) in


Figure 5.1 Snapshots in a steady state for \(R_{\mathrm{LJ}}=1\) : (A) \(R_{\mathrm{B}}=0.1\), (B) \(R_{\mathrm{B}}=1\), and (C) \(R_{\mathrm{B}}=5\).

Figure 5.2A, the Lennard-Jones interactions significantly affect the sedimentation process, exhibiting characteristic aggregates formed differently from those in Figure 5.1 A . For the case of the influence of the random force being equal to that of the gravitational force in Figure 5.2B, the particles have almost completely sedimented on the base area, but the internal structure seems to be considerably different from that found in Figure 5.1A. This is an example where the use of quantitative results from the pair correlation function would be required for a deeper discussion. In the case of \(R_{\mathrm{B}}=5\) shown in Figures 5.1 and 5.2 , the particles actively exhibit the Brownian motion without sedimenting on the base surface area; however, the particles tend to aggregate to form clusters with increasing values of \(R_{\mathrm{LJ}}\) even in the case of \(R_{\mathrm{B}}=5\). From these snapshots, we may conclude that the gravitational force mainly governs the sedimentation process, and the Lennard-Jones interactions between particles mainly determine the internal structures of the aggregates formed during the sedimentation process. As already pointed out, a higher-level academic study


Figure 5.2 Snapshots in a steady state for \(R_{\mathrm{LJ}}=5\) : (A) \(R_{\mathrm{B}}=0.1\), (B) \(R_{\mathrm{B}}=1\), and (C) \(R_{\mathrm{B}}=5\).
would require quantitative results, such as the pair correlation function, in addition to the qualitative results visualized here.

Figure 5.3 shows how the particles sediment with time, that is, the particle sedimentation process for the case of \(R_{\mathrm{LJ}}=1\) and \(R_{\mathrm{B}}=0.1\) : Figures \(5.3 \mathrm{~A}-\mathrm{C}\) are for nondimensional time \(t^{*}=1,4\), and 8 , respectively. In this case of \(R_{\mathrm{B}}=0.1\), the gravitational force is much more dominant than the random force (i.e., the Brownian motion), so that the particles sediment, attain at the bottom surface, and form layer structures from the base with time.

Figure 5.4 shows the results of the local number density of particles \(n^{*}\) at the position \(y^{*}\) of each sliced layer taken from the base surface in the opposite direction to the gravitational field. Note that the nondimensional time is used, and the data or subaveraged values were calculated at every certain number of time steps. This figure demonstrates quantitative characteristics of the sedimentation process with time, which clearly suggests the layered structures of sedimented particles indicated previously.


Figure 5.3 Time change of aggregate structures for \(R_{\mathrm{LJ}}=1\) and \(R_{\mathrm{B}}=0.1\) : (A) \(t^{*}=1\), (B) \(t^{*}=4\), and (C) \(t^{*}=8\).

\subsection*{5.6 Simulation Program}

We show a sample simulation program for the example of the present sedimentation phenomenon in the following. The program is written in the C language.

To aid the reader's understanding, the important variables used in the program are shown as follows:
\(\mathrm{RX}[\mathrm{i}], \mathrm{RY}[\mathrm{i}], \mathrm{RZ}[\mathrm{i}] \quad: \quad(x, y, z)\) components of the position vector \(\mathbf{r}_{i}^{*}\) of particle \(i\) FX[i], FY[i], FZ[i] : \((x, y, z)\) components of the force \(\mathbf{f}_{i}^{*}\) acting on particle \(i\)
\(\mathrm{RXB}[\mathrm{i}], \mathrm{RYB}[\mathrm{i}], \quad: \quad(x, y, z)\) components of the random displacements \(\Delta \mathbf{r}_{i}^{\mathrm{B} *}\) of RZB[i]
XL, YL, ZL particle \(i\)
: Side lengths of the simulation box in the \((x, y, z)\) directions
h
ndens0
phaiv0
: Time interval \(h^{*}\)
: Initial number density of particles
: Initial volumetric fraction of particles


Figure 5.4 Time change in the local number density distribution for \(R_{\mathrm{LJ}}=1\) and \(R_{\mathrm{B}}=0.1\).
\begin{tabular}{lll} 
RLJ , RB & \(: \quad\) Nondimensional parameters \(R_{\mathrm{LJ}}\) and \(R_{\mathrm{B}}\) \\
n & \(: \quad\) Number of particles \\
RAN [j] & \(: \quad\) Uniform random numbers ranging \(0 \sim 1(j=1 \sim\) NRANMX \()\) \\
NRAN & \(:\) & Number of used random numbers
\end{tabular}

Note that the line numbers are added for convenience and are grammatically unnecessary.

In the following program, several explanatory comments have been added to the important features to assist the reader's understanding.


rancal() ;
NRAN \(=1\);
nranchk \(=\) NRANMX \(-6^{*} \mathrm{n}\);
- A sequence of uniform random numbers is prepared in advance. When necessary, random numbers are taken out from the variable RAN[*].


                            /*--- set initial positions ---*/
iniposit ( n , ndens0 ) ; \(\mathrm{YL}=\mathrm{XL} ; \mathrm{ZL}=\mathrm{XL}\);
/*--- set grid for num. dens.dist. ---*/
gridcal( nychk, ychk ) ;
                                /*--- calculate energy ---*/
forcecal ( \(n, r c o f f, r \operatorname{cof} 2) ; \quad / \star---\) cal random displacement \(---* /\)
randisp( \(n, h\) ) ;

```

for(i=1 ; i <= nychk ; i++) {
cndns[i] = 0.;
}

```
-The variables are initialized for saving the local number densities afterward.
nsmpl \(=0\);

for ( ntime = 1 ; ntime <= ntimemx1 ; ntime++ ) \{
```

 for (i=1 ; i<=n ; i++) {
 -The particle positions at the next time step
 are calculated from Eq. (5.5).
 rxi = RX[i] + h*FX[i] + RXB[i] ;
 ryi = RY[i] + h*FY[i] + RYB[i] ;
 rzi = RZ[i] + h*FZ[i] + RZB[i] ;
 rxi += - rint(rxi/XL - 0.5)*XL ;
 rzi += - rint(rzi/ZL - 0.5)*ZL ;
 if(ryi < 0.) ryi = - ryi ;
 if(ryi > YL) ryi = YL - ('ryi - YL) ;
 RX[i] = rxi ;
 RY[i] = ryi ;
 RY[i] = ryi;
 }
 forcecal(n, rcoff, rcoff2)
 randisp(n , h) ;
 if (NRAN >= nranchk) {
 }
 }

```

```

/*---
for (i=1 ; i<=n ; i++) {
FY[i] = FY[i] - RG ;
rxi = RX[i] + h*FX[i] + RXB[i] ;
ryi = RY[i] + h*FY[i] + RYB[i] ;
rzi = RZ[i] + h*FZ[i] + RZB[i] ;
rzi = RZ[i] + h*FZ[i] + RZB[i] ;
rzi += - rint(rzi/ZL - 0.5)*ZL ;
rzi += - rint(rzi/ZL - 0.5 ;
if(ryi > YL) ryi = YL - (ryi - YL) ;

```
-The forces acting on particles are calculated in the function forcecal. The random displacements are generated in the function randisp.
```

randisp(n , h) ;
/*--- check of random numbers used ---*/

```
\}
\}
```

for (ntime = 1 ; ntime <= ntimemx ; ntime++) {

```
```

for (ntime = 1 ; ntime <= ntimemx ; ntime++) {

```
- The particle positions at the next time step are evaluated according to Eq. (5.5).
- The periodic \(B C\) is used for the \(x\) - and \(z\)-directions.
-The elastic collision model at the boundary surface is used for the \(y\)-direction.

\section*{- The elastic collision model at the boundary surface is used for the \(y\)-direction.}
- The periodic BC is used for the \(x\) - and \(z\)-directions.
```

 {}\begin{array}{l}{\mathrm{ checked. If over nranc}}\\{\mathrm{ sequence is renewed.}}
 are evaluated according to Eq. (J.5).
 z-directions.
 surface is used for the y-direction.
 - The number of the used random numbers is
 checked. If over nranchk, a uniform random number
    ```
```

0189
0 1 9 0
0 1 9 1
0192
0 1 9 3
0 1 9 4
0 1 9 5
0196
0 1 9 7
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0249
0250
0251
0252
025
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
265 **
0265 /*
0267 /*-------------------------- functions ---*/
0268 /*+++ fun iniposit +++*/

```
        for ( i=1 ; i<= nychk ; i++ ) {
            ychk[i] = c1 * (double)i ;
        }
    }
/*+++ ndnscal ++++*/
    ndnscal( n, nychk, ychk, cndns )
    int n , nychk ;
    double ychk[NN], cndns[NN] ;
    {
            int i, j ;
            for ( i=1 ; i<=n ; i++ ) {
            for ( j=1 ; j<=nychk ; j++ ) {
                if( ychk[j] >= RY[i] ) {
                    f( Ychk[j] >= RY[i]
                        goto L2 ;
                }
            }
cndns[nychk] += 1. ;
            continue ;
        }
        }
/*+++ forcecal +++*/
    forcecal( n, rcoff, rcoff2 )
    double rcoff, rcoff2 ;
    int n ;
```

 \{
 0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
29
0294
0295
0296
0297
0298
0299
029
0300
0302
0303
0304
0305
0306
0306
0308
0309
0310
0311
0312
0313
314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0339
0340
0341
0342
0343
0344
0345
0346
0347 double rcoff, rcoff2 ;
0348 int n;
0348
0349

```
```

 iniposit(n , ndens)
    ```
```

 iniposit(n , ndens)
 double ndens ;
 double ndens ;
 int n ;
 int n ;
 {
 {
 double rxi, ryi, rzi, rx0, ry0, rz0 , c0 ;
 double rxi, ryi, rzi, rx0, ry0, rz0 , c0 ;
 int q, k , ix , iy , iz , iface ;
 int q, k , ix , iy , iz , iface ;
 c0 = pow((4./ndens), (1./3.)) ;
 c0 = pow((4./ndens), (1./3.)) ;
 q = rint(pow((double)(n/4), (1./3.))) ;
 q = rint(pow((double)(n/4), (1./3.))) ;
 XL = c0*(double)q;
 XL = c0*(double)q;
 k = 0 ;
 k = 0 ;
 for (iface=1 ; iface<=4 ; iface++) {
 for (iface=1 ; iface<=4 ; iface++) {
 if(iface ==1) {
 if(iface ==1) {
 rx0 = 0.0001 ; ry0 = 0.0001 ; rz0 = 0.0001 ;
 rx0 = 0.0001 ; ry0 = 0.0001 ; rz0 = 0.0001 ;
 else if(iface == 2) {
 else if(iface == 2) {
 rx0 =c0/2. ; ry0 = c0/2. ; rz0 = 0.0001 ;
 rx0 =c0/2. ; ry0 = c0/2. ; rz0 = 0.0001 ;
 } else if(iface == 3) {
 } else if(iface == 3) {
 rx0 =c0/2. ; ry0 = 0.0001 ; rz0 = c0/2. ;
 rx0 =c0/2. ; ry0 = 0.0001 ; rz0 = c0/2. ;
 } else {
 } else {
 rx0 = 0.0001 ; ry0 = c0/2. ; rz0 = c0/2. ;
 rx0 = 0.0001 ; ry0 = c0/2. ; rz0 = c0/2. ;
 }
 }
 for (iz=0 ; iz <= q-1 ; iz++) {
 for (iz=0 ; iz <= q-1 ; iz++) {
 rzi = (double)iz*c0 + rz0 ;
 rzi = (double)iz*c0 + rz0 ;
 if(rzi >= XL) break ;
 if(rzi >= XL) break ;
 for (iy=0 ; iy <= q-1 ; iy++) {
 for (iy=0 ; iy <= q-1 ; iy++) {
 ryi = (double)iy*c0 + ry0 ;
 ryi = (double)iy*c0 + ry0 ;
 if(ryi >= XL) break ;
 if(ryi >= XL) break ;
 for (ix=0 ; ix <= q-1 ; ix++) {
 for (ix=0 ; ix <= q-1 ; ix++) {
 rxi = (double)ix*c0 + rx0 ;
 rxi = (double)ix*c0 + rx0 ;
 if(rxi >= XL) break ;
 if(rxi >= XL) break ;
 k += 1;
k += 1;
RX[k] = rxi ; RY[k] = ryi ; RZ[k] = rzi ;
RX[k] = rxi ; RY[k] = ryi ; RZ[k] = rzi ;
}
}
}
}
}
}
}
}
}*
}*
/*+++ fun gridcal +++*/
/*+++ fun gridcal +++*/
gridcal(nychk, ychk)
gridcal(nychk, ychk)
int nychk ;
int nychk ;
double ychk[NN] ;
double ychk[NN] ;
{
{
double c1 ;
double c1 ;
int i ;
int i ;
c1 = YL/(double)nychk ;

```
        c1 = YL/(double)nychk ;
```

- In order to evaluate the local number densities, the simulation box is divided into equal volumes sliced in the y-direction.
- The y-axis side length of each volume is $\mathrm{YL} /$ nychk, in which nychk is the number of the sliced volumes.

```
```

-A function for setting the initial

```
```

-A function for setting the initial
particle positions.

```
particle positions.
```

```
    /*--- start ---*/
```

 /*--- start ---*/
 - }\mp@subsup{n}{}{*}=4/\mp@subsup{a}{}{*3},\mp@subsup{a}{}{*}=(4/\mp@subsup{n}{}{*}\mp@subsup{)}{}{1/3},\mathrm{ and
 - }\mp@subsup{n}{}{*}=4/\mp@subsup{a}{}{*3},\mp@subsup{a}{}{*}=(4/\mp@subsup{n}{}{*}\mp@subsup{)}{}{1/3},\mathrm{ and
 Q=(N/4\mp@subsup{)}{}{1/3}}\mathrm{ . a* and Q are
 Q=(N/4\mp@subsup{)}{}{1/3}}\mathrm{ . a* and Q are
 saved in the variables c0 and
 saved in the variables c0 and
 q, respectively.
 q, respectively.
 - The particles are placed in the
 - The particles are placed in the
 face-centered cubic lattice formation
 face-centered cubic lattice formation
 shown in Figure 2.2(B).
 shown in Figure 2.2(B).
 -The four ways of setting provides this
 -The four ways of setting provides this
 initial formation of particles.
 initial formation of particles.
 - Each particle is moved in parallel by a
 - Each particle is moved in parallel by a
 small distance 0.0001 to remove subtle
 small distance 0.0001 to remove subtle
 situations at outer boundary surfaces.
 situations at outer boundary surfaces.
 {nt n ;
 - The number of the particles
belonging to each volume is
calculated in order to evaluate the
local number density.
- The later procedure of dividing
cndns[*] by the volume, leading to
the number density of particles.

```
- A function for calculating the forces acting on particles.
```

0350 double rxi , ryi , rzi , rxij, ryij, rzij, rijsq ;
0351
0352
0354
0355
0356
0357
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
366
0367
0368
0 3 6 9
0370 /*
/* ryij += ryi - rint(ryij/YL)*YL ; */
0371
0 3 7 2
0373
373
0374
0375
0 3 7 6
0377
0378
0379
0 3 8 0
380
0 3 8 1
0382
0 3 8 3
0384
0384
0385
0386
0 3 8 7
0388
0389
0 3 9 0
0 3 9 1
0392-
039
0 3 9 4
0395
0395
0396
0 3 9 7
0 3 9 8
0398
0399
0400
401
0402
0403
0404
0405
0406
0406
0406 } } randisp +++*/,
0408 randisp(n , h)
0409
0410
0410 int n ;
0411 double h;
0412 {
0413
0413
0414
0415
0416 for (i=1 ; i<= n ; i++) {
0416 for (i=1 ; i<= n ; i++) {
-The random displacements can be
for(i=1 ; i<= n ; i++) {
FX[i] *= RLJ*24. ;
FX[i] *= RLJ*24. ;
FX[i] *=RLJ*24.;;
}
}
{
double ran1, ran2 ;
double ran1, r
/*--- random disp x ---*/
0417 NRAN += 1 ;
0418 NRAN += 1 ;
ran1 = (doub
0421 ran2 = (double) (RAN[NRAN]) ;
0422 RXB[i] = pow(-2.* (2.*h*RB)*log(ran1) , 0.5) * cos(2.*PI*ran2);
0423
NRAN += 1 ;
ran1 = (double) (RAN[NRAN]) ;

```
-The random displacements can be generated from Eq. (A2.3) with the variance of the right-hand side term in Eq. (5.7).
```

 FX[i] = fxi ;
 FY[i] = fyi;
 FY[i] = fyi;
 }
 h ;
    ```

```

rxij = rxi - RX[j] ;
rxij = rxi - RX[j] ;
if(fabs(rxij) >= rcoff) goto L10 ;
if(fabs(rxij) >= rcoff

```


```

0353

```



```

-The variables for saving forces are initialized.

```

```

 - The consideration of the action-
 - The consideration of the action-
 - The consideration of the action-
 i<j.

```



```

 if(fabs(ryij) >= rcoff) goto L10 ;
 rzij = rzi - RZ[j] ;
 rzij += - rint(rzij/ZL)*ZL ;
 if(fabs(rzij) >= rcoff) goto L10 ;
 | -The treatment of the periodic BC.
 | -The treatment of the periodic BC.
 | -The treatment of the periodic BC.
 | -The treatment of the periodic BC.
 rijsq= rxij*rxij + ryij*ryij + rzij*rzij ;
 if(rijsq >= rcoff2)) goto L10;
 sr2 = 1./rijsq ; sr6 = sr2*sr2*sr2 ; sr12 = sr6*sr6 ;
 fij = (2.*sr12 - sr6)/rijsq ;
 fxij = fij*rxij ;
 fyij = fij*ryij ;
 - The forces acting on particles are
 fxi += fxij ;
 fxi += fxij ;
 fzi += fzij;
 -The forces acting on particles are
 the constant 24 is multiplied in the
 later procedure.
FX[j] += - fxij ;
- The action-reaction law can
FY[j] += - fyij; ;
FY[j] += - fyij; ;
provide the force acting on particle j
as (-f fij), (-fyyij), and (-f fij).
L10:
continue ;
\$10. }
initialized.
53
354
355
362
} FZ[
dou
ran1 = (double) (RAN[NRAN]) ;
NRAN += 1;
, % /*---- random disp y ---*/

```

```

0436
0437
0438
0439
0440
0441
0442
0443
0444
0 4 4 5
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
}
/*--- rancal ---*/
rancal()
{
float aintegmx ;
int integmx, integst, integ ;
int i ;
integmx = 2147483647 ;
integst = 584287 ;
integ = 48828125 ;
aintegmx = (float)integmx ;
if (IX == 0) IX = integst ;
for (i=1 ; i<NRANMX ; i++) {
IX *= integ ;
if (IX < 0)' IX = (IX+integmx) +1 ;
RAN[i] = (float)IX/aintegmx ;
}
}

```
- A function for generating a uniform random number sequence.
- This is for a 32-bit CPU based on the expression of two's complement.

\section*{6 Practice of Dissipative Particle Dynamics Simulations}

\begin{abstract}
In this chapter we consider an alternative microsimulation method called the dissipative particle dynamics (DPD) method," which is also available for simulating a particle suspension system. In the DPD method [4-8], the fluid is assumed to be composed of virtual fluid particles called "dissipative particles," and therefore the solution of a flow field can be obtained from the motion of the dissipative particles in a way similar to the MD method. A significant advantage of this method is that when it is applied to the simulation of a particle suspension, the multibody hydrodynamic interaction is taken into account without introducing a special technique. This characteristic of the DPD method provides it with a great potential as a simulation tool for particle suspensions; the present method is thus available for various fields of scientific research, including the pharmaceutical sciences and specialized engineering fields. The sample simulation program is written in the FORTRAN programming language.
\end{abstract}

\subsection*{6.1 Aggregation Phenomena of Magnetic Particles}

For our example, a system composed of \(N\) magnetic particles with mass \(m\) dispersed in a base liquid is assumed to be in thermodynamic equilibrium. The main objective of the present exercise is to discuss the feasibility of the DPD method for successfully capturing the aggregate formations of the magnetic particles, which are dependent on the strength of magnetic particle-particle interactions. It is important to note that in the present demonstration we assume the applied magnetic field to be very strong, so that we only need to consider the translational motion of magnetic particles. The rotational motion may be neglected.

\subsection*{6.2 Specification of Problems in Equations}

\subsection*{6.2.1 Kinetic Equation of Dissipative Particles}

A ferromagnetic colloidal suspension is composed of ferromagnetic particles and the molecules of a base liquid. If a base liquid is regarded as being composed of dissipative particles, the motion of magnetic particles is governed by the interaction with both the other magnetic particles and the ambient dissipative particles. In the following, we show the kinetic equation for the dissipative particles.

Three kinds of forces act on dissipative particle \(i\) : a repulsive conservative force \(\mathbf{F}_{i j}^{\mathrm{C}}\), exerted by the other particles; a dissipative force \(\mathbf{F}_{i j}^{\mathrm{D}}\), providing a viscous drag to the system; and a random or stochastic force \(\mathbf{F}_{i j}^{\mathrm{R}}\), inducing the thermal motion of particles. The force acting on the dissipative particles by magnetic particles is not taken into account in this subsection, since that force will be addressed later. The equation of motion of particle \(i\) is therefore written as
\[
\begin{equation*}
m_{\mathrm{d}} \frac{\mathrm{~d} \mathbf{v}_{i}}{\mathrm{~d} t}=\sum_{j(\neq i)} \mathbf{F}_{i j}^{\mathrm{C}}+\sum_{j(\neq i)} \mathbf{F}_{i j}^{\mathrm{D}}+\sum_{j(\neq i)} \mathbf{F}_{i j}^{\mathrm{R}} \tag{6.1}
\end{equation*}
\]
in which
\[
\begin{equation*}
\mathbf{F}_{i j}^{\mathrm{D}}=-\gamma w_{\mathrm{D}}\left(r_{i j}\right)\left(\mathbf{e}_{i j} \cdot \mathbf{v}_{i j}\right) \mathbf{e}_{i j}, \quad \mathbf{F}_{i j}^{\mathrm{R}}=\sigma w_{\mathrm{R}}\left(r_{i j}\right) \mathbf{e}_{i j} \zeta_{i j}, \quad \mathbf{F}_{i j}^{\mathrm{C}}=\alpha w_{\mathrm{R}}\left(r_{i j}\right) \mathbf{e}_{i j} \tag{6.2}
\end{equation*}
\]

In these equations, \(m_{\mathrm{d}}\) is the mass of particle \(i\), and \(\mathbf{v}_{i}\) is the velocity. Regarding the use of subscripts, as an example, \(\mathbf{F}_{i j}^{\mathrm{C}}\) is the force acting on particle \(i\) by particle \(j\). Moreover, \(\alpha, \gamma\), and \(\sigma\) are constants representing the strengths of the repulsive, the dissipative, and the random forces, respectively. The weight functions \(w_{\mathrm{D}}\left(r_{i j}\right)\) and \(w_{\mathrm{R}}\left(r_{i j}\right)\) are introduced such that the interparticle force decreases with increasing particle-particle separation. The expression for \(w_{\mathrm{R}}\left(r_{i j}\right)\) is written as
\[
w_{\mathrm{R}}\left(r_{i j}\right)=\left\{\begin{array}{cc}
1-\frac{r_{i j}}{d_{\mathrm{c}}} & \text { for } r_{i j} \leq d_{\mathrm{c}}  \tag{6.3}\\
0 & \text { for } r_{i j}>d_{c}
\end{array}\right.
\]

The weight functions \(w_{\mathrm{D}}\left(r_{i j}\right)\) and \(w_{\mathrm{R}}\left(r_{i j}\right)\), as well as \(\gamma\) and \(\sigma\), must satisfy the following relationships, respectively:
\[
\begin{equation*}
w_{\mathrm{D}}\left(r_{i j}\right)=w_{\mathrm{R}}^{2}\left(r_{i j}\right), \quad \sigma^{2}=2 \gamma k T \tag{6.4}
\end{equation*}
\]

In the above equations, \(d_{\mathrm{c}}\) is the apparent diameter of dissipative particles, \(\mathbf{r}_{i j}\) is the relative position \(\left(r_{i j}=\left|\mathbf{r}_{i j}\right|\right)\), given by \(\mathbf{r}_{i j}=\mathbf{r}_{i}-\mathbf{r}_{j} ; \mathbf{e}_{i j}\) is the unit vector denoting the direction of particle \(i\) relative to particle \(j\), expressed as \(\mathbf{e}_{i j}=\mathbf{r}_{i j} / r_{i j} ; \mathbf{v}_{i j}\) is the relative velocity, expressed as \(\mathbf{v}_{i j}=\mathbf{v}_{i}-\mathbf{v}_{j}\); \(k\) is Boltzmann's constant; and \(T\) is the liquid temperature. Also, \(\zeta_{i j}\) is a random variable inducing the random motion of the particles.

If Eq. (6.1) is integrated with respect to time over a small time interval \(\Delta t\) from \(t\) to \(t+\Delta t\), then the finite difference equations governing the particle motion in simulations can be obtained as
\[
\begin{align*}
\Delta \mathbf{r}_{i}= & \mathbf{v}_{i} \Delta t  \tag{6.5}\\
\Delta \mathbf{v}_{i}= & \frac{\alpha}{m_{\mathrm{d}}} \sum_{j(\neq i)} w_{\mathrm{R}}\left(r_{i j}\right) \mathbf{e}_{i j} \Delta t-\frac{\gamma}{m_{\mathrm{d}}} \sum_{j(\neq i)} w_{\mathrm{R}}^{2}\left(r_{i j}\right)\left(\mathbf{e}_{i j} \cdot \mathbf{v}_{i j}\right) \mathbf{e}_{i j} \Delta t \\
& +\frac{(2 \gamma k T)^{1 / 2}}{m_{\mathrm{d}}} \sum_{j(\neq i)} w_{\mathrm{R}}\left(r_{i j}\right) \mathbf{e}_{i j} \theta_{i j} \sqrt{\Delta t} \tag{6.6}
\end{align*}
\]
in which \(\theta_{i j}\) is the stochastic variable that must satisfy the following stochastic properties:
\[
\begin{equation*}
\left\langle\theta_{i j}\right\rangle=0, \quad\left\langle\theta_{i j} \theta_{i^{\prime} j^{\prime}}\right\rangle=\left(\delta_{i i^{\prime}} \delta_{j j^{\prime}}+\delta_{i j^{\prime}} \delta_{j i^{\prime}}\right) \tag{6.7}
\end{equation*}
\]
in which \(\delta_{i j}\) is the Kronecker delta. During the simulation, the stochastic variable \(\theta_{i j}\) is sampled from a uniform or normal distribution with zero average value and unit variance.

\subsection*{6.2.2 Model of Particles}

A magnetic particle is idealized as a spherical particle with a central point dipole and is coated with a uniform steric layer (or surfactant layer). Using the notation \(d_{\mathrm{s}}\) for the diameter of the particle, \(\delta\) for the thickness of the steric layer, and \(d\) \(\left(=d_{\mathrm{s}}+2 \delta\right)\) for the diameter, including the steric layer, then the magnetic interaction energy between particles \(i\) and \(j, u_{i j}^{(\mathrm{m})}\), and the particle-field interaction energy, \(u_{i}^{(\mathrm{H})}\), and the interaction energy arising due to the overlap of the steric layers, \(u_{i j}^{(\mathrm{V})}\), are expressed, respectively, as [31]
\[
\begin{align*}
& u_{i j}^{(\mathrm{m})}=\frac{\mu_{0}}{4 \pi r_{i j}^{3}}\left\{\mathbf{m}_{i} \cdot \mathbf{m}_{j}-3\left(\mathbf{m}_{i} \cdot \mathbf{t}_{i j}\right)\left(\mathbf{m}_{j} \cdot \mathbf{t}_{i j}\right)\right\}  \tag{6.8}\\
& u_{i}^{(\mathrm{H})}=-\mu_{0} \mathbf{m}_{i} \cdot \mathbf{H}  \tag{6.9}\\
& u_{i j}^{(\mathrm{V})}=k T \lambda_{\mathrm{V}}\left\{2-\frac{2 r_{i j} / d_{\mathrm{s}}}{t_{\delta}} \ln \left(\frac{d}{r_{i j}}\right)-2 \frac{r_{i j} / d_{\mathrm{s}}-1}{t_{\delta}}\right\} \tag{6.10}
\end{align*}
\]
in which \(\mu_{0}\) is the permeability of free space, \(\mathbf{m}_{i}\) is the magnetic moment \(\left(m_{0}=\left|\mathbf{m}_{i}\right|\right), \mathbf{t}_{i j}\) is the unit vector given by \(\mathbf{r}_{i j} / r_{i j}, \mathbf{r}_{i j}=\mathbf{r}_{i}-\mathbf{r}_{j}, r_{i j}=\left|\mathbf{r}_{i j}\right|, \mathbf{H}\) is the applied magnetic field \((H=|\mathbf{H}|)\), and \(t_{\delta}\) is the ratio of the thickness of the steric layer \(\delta\) to the radius of the solid part of the particle, equal to \(2 \delta / d_{\mathrm{s}}\). The nondimensional parameter \(\lambda_{\mathrm{v}}\), appearing in Eq. (6.10), represents the strength of the steric particle-particle interaction relative to the thermal energy, expressed as \(\lambda_{\mathrm{V}}=\pi d_{\mathrm{s}}^{2} n_{\mathrm{s}} / 2\), in which \(n_{\mathrm{s}}\) is the number of surfactant molecules per unit area on the particle surface.

From Eqs. (6.8) and (6.10), the forces acting on particle \(i\) are derived as
\[
\begin{equation*}
\mathbf{F}_{i j}^{(\mathrm{m})}=-\frac{3 \mu_{0}}{4 \pi r_{i j}^{4}}\left[-\left(\mathbf{m}_{i} \cdot \mathbf{m}_{j}\right) \mathbf{t}_{i j}+5\left(\mathbf{m}_{i} \cdot \mathbf{t}_{i j}\right)\left(\mathbf{m}_{j} \cdot \mathbf{t}_{i j}\right) \mathbf{t}_{i j}-\left\{\left(\mathbf{m}_{j} \cdot \mathbf{t}_{i j}\right) \mathbf{m}_{i}+\left(\mathbf{m}_{i} \cdot \mathbf{t}_{i j}\right) \mathbf{m}_{j}\right\}\right] \tag{6.11}
\end{equation*}
\]
\[
\begin{equation*}
\mathbf{F}_{i j}^{(\mathrm{V})}=\frac{k T \lambda_{\mathrm{V}}}{\delta} \cdot \frac{\mathbf{r}_{i j}}{r_{i j}} \ln \left(\frac{d}{r_{i j}}\right) \quad\left(d_{\mathrm{s}} \leq d_{i j} \leq d\right) \tag{6.12}
\end{equation*}
\]

In addition to these forces, the forces due to dissipative particles have to be taken into account, but are not treated here, since they will be addressed in the following subsection.

The motion of magnetic particles is specified by Newton's equations and are discretized in time to obtain the finite difference equations governing the particle motion in simulations:
\[
\begin{align*}
\Delta \mathbf{r}_{i} & =\mathbf{v}_{i} \Delta t  \tag{6.13}\\
\Delta \mathbf{v}_{i} & =\sum_{j(\neq i)} \mathbf{F}_{i j} \Delta t / m_{\mathrm{m}} \tag{6.14}
\end{align*}
\]
in which \(m_{\mathrm{m}}\) is the mass of magnetic particles and \(\mathbf{F}_{i j}=\mathbf{F}_{i j}{ }^{(\mathrm{m})}+\mathbf{F}_{i j}{ }^{(\mathrm{V})}\).

\subsection*{6.2.3 Model Potential for Interactions Between Dissipative and Magnetic Particles}

Each colloidal particle is modeled as a group of dissipative particles. In the ordinary application of the method, the interaction of a magnetic particle with the ambient dissipative particles is treated as the interaction between the ambient dissipative particles and the constituent dissipative particles of the magnetic particle. However, in a real dispersion, the interaction between colloidal particles and the solvent molecules should depend on the characteristics of the dispersion of interest. Such interactions are strongly dependent on the ratio of the mass and the diameter of the colloidal particles to that of solvent molecules together with the properties of the interaction potential.

Therefore, instead of regarding a colloidal particle as a group of dissipative particles, it may be possible to use a model potential to describe the interaction between the magnetic and the ambient dissipative particles.

The simplest potential model may be the hard sphere potential, in which magnetic particles are regarded as a hard sphere and dissipative particles are elastically reflected on the contact with a magnetic particle. Another simple potential model may be the Lennard-Jones potential. Although the present exercise adopts the latter model potential and attempts to discuss its validity, the simple form of the LennardJones potential based on each particle center may cause a nonphysical overlap. Hence, as shown in Figure 6.1, we consider an inscribed sphere with the same diameter as the dissipative particles, which is located on the line connecting each center of dissipative and magnetic particle. The Lennard-Jones potential is then employed using the inscribed particle and dissipative particles such that the interaction energy \(u_{i p}\) for dissipative particle \(p\) and magnetic particle \(i\) is expressed as
\[
\begin{equation*}
u_{i p}=4 \varepsilon\left\{\left(\frac{d_{\mathrm{c}}}{r_{i p}{ }^{\prime}}\right)^{m}-\left(\frac{d_{\mathrm{c}}}{r_{i p^{\prime}}}\right)^{n}\right\} \tag{6.15}
\end{equation*}
\]


Figure 6.1 Model of the interaction between magnetic and dissipative particles.
in which \(\varepsilon\) is a constant representing the strength of such an interaction, \(\mathbf{r}_{i p}{ }^{\prime}=\mathbf{r}_{i}{ }^{\prime}-\mathbf{r}_{p}, r_{i p}{ }^{\prime}=\left|\mathbf{r}_{i p}{ }^{\prime}\right|, \mathbf{r}_{i}\) is the position vector of the center of magnetic particle \(i, \mathbf{r}_{p}\) is similarly the position vector of dissipative particle \(p\), and \(\mathbf{r}_{i}^{\prime}\) is the position vector of the inscribed sphere. The expression for \(\mathbf{r}_{i}^{\prime}\) is written as
\[
\begin{equation*}
\mathbf{r}_{i}^{\prime}=\mathbf{r}_{i}-\left(d-d_{\mathrm{c}} / 2\right) \hat{\mathbf{r}}_{i p} \tag{6.16}
\end{equation*}
\]
in which \(\hat{\mathbf{r}}_{i p}=\mathbf{r}_{i p} / r_{i p}, \mathbf{r}_{i p}=\mathbf{r}_{i}-\mathbf{r}_{p}\), and \(r_{i p}=\left|\mathbf{r}_{i p}\right|\). If we set \(m=12\) and \(n=6\) in Eq. (6.15), the model potential leads to the well-known Lennard-Jones 12-6 potential, and this potential is employed in the present simulation.

From the expression of the interaction energy in Eq. (6.15), the force acting on dissipative particle \(p\) by magnetic particle \(i, \mathbf{F}_{i p}^{(\text {int })}\) is derived as
\[
\begin{equation*}
\mathbf{F}_{i p}^{(\mathrm{int})}=4 n \varepsilon\left\{\frac{m}{n}\left(\frac{d_{\mathrm{c}}}{r_{i p}{ }^{\prime}}\right)^{m}-\left(\frac{d_{\mathrm{c}}}{r_{i p}{ }^{\prime}}\right)^{n}\right\} \frac{\hat{\mathbf{r}}_{i p}}{r_{i p}{ }^{\prime}} \tag{6.17}
\end{equation*}
\]

\subsection*{6.2.4 Nondimensionalization of the Equation of Motion and Related Quantities}

For the nondimensionalization of each quantity, the following representative values are used: \(d\) for distances, \(m_{\mathrm{m}}\) for masses, \(k T\) for energies, \(\left(k T / m_{\mathrm{m}}\right)^{1 / 2}\) for velocities, \(d\left(m_{\mathrm{m}} / k T\right)^{1 / 2}\) for time, \(k T / d\) for forces, and so forth. With these representative values, Eqs. (6.5) and (6.6) are nondimensionalized as
\[
\begin{equation*}
\Delta \mathbf{r}_{i}{ }^{*}=\mathbf{v}_{i}{ }^{*} \Delta t^{*} \tag{6.18}
\end{equation*}
\]
\[
\begin{align*}
\Delta \mathbf{v}_{i}^{*}= & \frac{1}{m_{\mathrm{d}}^{*} d_{\mathrm{c}}^{*}} \alpha^{*} \sum_{j(\neq i)} w_{\mathrm{R}}\left(r_{i j}^{*}\right) \mathbf{e}_{i j} \Delta t^{*}-\frac{1}{\left(m_{\mathrm{d}}^{*}\right)^{1 / 2} d_{\mathrm{c}}^{*}} \gamma^{*} \sum_{j(\neq i)} w_{\mathrm{R}}^{2}\left(r_{i j}^{*}\right)\left(\mathbf{e}_{i j} \cdot \mathbf{v}_{i j}^{*}\right) \mathbf{e}_{i j} \Delta t^{*} \\
& -\frac{1}{\left(m_{\mathrm{d}}^{*}\right)^{3 / 4} d_{\mathrm{c}}^{* 1 / 2}}\left(2 \gamma^{*}\right)^{1 / 2} \sum_{j(\neq i)} w_{\mathrm{R}}\left(r_{i j}^{*}\right) \mathbf{e}_{i j} \theta_{i j} \sqrt{\Delta t^{*}}-\frac{1}{m_{\mathrm{d}}{ }^{*}} \sum_{k} \mathbf{F}_{k i}^{(\mathrm{int}) *} \Delta t^{*} \tag{6.19}
\end{align*}
\]
in which
\[
\begin{align*}
& w_{\mathrm{R}}\left(r_{i j}^{*}\right)= \begin{cases}1-r_{i j}^{*} / d_{\mathrm{c}}^{*} & \text { for } r_{i j}^{*} / d_{\mathrm{c}}^{*} \leq 1 \\
0 & \text { for } r_{i j}^{*} / d_{\mathrm{c}}^{*}>1\end{cases}  \tag{6.20}\\
& \alpha^{*}=\alpha \frac{d_{\mathrm{c}}}{k T}, \quad \gamma^{*}=\gamma \frac{d_{\mathrm{c}}}{\left(m_{\mathrm{d}} k T\right)^{1 / 2}} \tag{6.21}
\end{align*}
\]

In the above equations, the superscript \(*\) indicates the nondimensionalized quantities. Note that Eq. (6.19) includes the forces due to the interaction with magnetic particles, described in Section. 6.2.3.

Similarly, the nondimensional form of Eqs. (6.13), (6.14), (6.11), and (6.12) are expressed as
\[
\begin{align*}
& \Delta \mathbf{r}_{i}^{*}=\mathbf{v}_{i}^{*} \Delta t^{*}  \tag{6.22}\\
& \Delta \mathbf{v}_{i}^{*}=\sum_{j(\neq i)} \mathbf{F}_{i j}^{*} \Delta t^{*}+\sum_{p} \mathbf{F}_{i p}^{(\mathrm{int}) *} \Delta t^{*}  \tag{6.23}\\
& \mathbf{F}_{i j}^{(\mathrm{m}) *}=-3 \lambda \frac{1}{r_{i j}^{4 *}}\left[-\left(\mathbf{n}_{i} \cdot \mathbf{n}_{j}\right) \mathbf{t}_{i j}+5\left(\mathbf{n}_{i} \cdot \mathbf{t}_{i j}\right)\left(\mathbf{n}_{j} \cdot \mathbf{t}_{i j}\right) \mathbf{t}_{i j}-\left\{\left(\mathbf{n}_{j} \cdot \mathbf{t}_{i j}\right) \mathbf{n}_{i}+\left(\mathbf{n}_{i} \cdot t_{i j}\right) \mathbf{n}_{j}\right\}\right]  \tag{6.24}\\
& \mathbf{F}_{i j}^{(\mathrm{V}) *}=\lambda_{\mathrm{V}} \frac{1}{t_{\delta}^{*}} \cdot \mathbf{t}_{i j} \ln \left(\frac{1}{r_{i j}^{*}}\right) \quad\left(d_{\mathrm{s}}^{*} \leq r_{i j}^{*} \leq 1\right) \tag{6.25}
\end{align*}
\]
in which \(\mathbf{F}_{i j}^{*}=\mathbf{F}_{i j}{ }^{(\mathrm{m}) *}+\mathbf{F}_{i j}{ }^{(\mathrm{V}) *}, \mathbf{n}_{i}\) is the unit vector denoting the direction of the magnetic moment \(\mathbf{m}_{i}\), expressed as \(\mathbf{n}_{i}=\mathbf{m}_{i} / m_{0}\left(m_{0}=\left|\mathbf{m}_{i}\right|\right)\). The nondimensional parameter \(\lambda\) in Eq. (6.24) is the strength of magnetic particle interactions relative to the thermal energy, expressed as \(\lambda=\mu_{0} m_{0}{ }^{2} / 4 \pi d^{3} k T\). A slightly different parameter \(\lambda_{\mathrm{s}}=\left(d / d_{\mathrm{s}}\right)^{3} \lambda\left(=\mu_{0} m_{0}{ }^{2} / 4 \pi d_{\mathrm{s}}{ }^{3} k T\right)\), which is defined based on the diameter of the solid part, will be useful in order to compare the present results with the previous MC and BD simulations.

The expression of the force between a dissipative and a magnetic particle is written in nondimensional form as
\[
\begin{equation*}
\mathbf{F}_{i p}^{*}=\lambda_{\varepsilon}\left\{\frac{m}{n}\left(\frac{d_{\mathrm{c}}^{*}}{r_{i p}^{*}}\right)^{m}-\left(\frac{d_{\mathrm{c}}^{*}}{r_{i p}^{\prime *}}\right)^{n}\right\} \frac{\hat{\mathbf{r}}_{i p}}{r_{i p}^{*} / d_{\mathrm{c}}^{*}} \tag{6.26}
\end{equation*}
\]
in which \(\lambda_{\varepsilon}\) is a nondimensional parameter representing the strength of the interaction, expressed as \(\lambda_{\varepsilon}=4 n \varepsilon /\left(k T d_{\mathrm{c}}^{*}\right)\).

In the present simulation we consider a two-dimensional system in thermodynamic equilibrium, and therefore the relationship between the system temperature and the mean kinetic energy of one dissipative particle is expressed from the equipartition law of energies as
\[
\begin{equation*}
\overline{\frac{1}{2} m_{\mathrm{d}} v_{\mathrm{d}}^{2}}=2 \frac{k T}{2} \tag{6.27}
\end{equation*}
\]

From this equation, the mean square velocity of dissipative particles \(\overline{v_{d}^{* 2}}\) is written as
\[
\begin{equation*}
\overline{v_{\mathrm{d}}^{* 2}}=2 / m_{\mathrm{d}}^{*} \tag{6.28}
\end{equation*}
\]

Similarly, the mean square velocity of magnetic particles \(\overline{v_{\mathrm{m}}^{* 2}}\) is expressed as
\[
\begin{equation*}
\overline{v_{\mathrm{m}}^{* 2}}=2 \tag{6.29}
\end{equation*}
\]

The number density of dissipative particles is nondimensionalized as
\[
\begin{equation*}
n_{\mathrm{d}}^{*}=n_{\mathrm{d}} d^{2}=n_{\mathrm{d}} d_{\mathrm{c}}^{2}\left(d / d_{\mathrm{c}}\right)^{2}=\hat{n}_{\mathrm{d}}^{*} / d_{\mathrm{c}}^{* 2} \tag{6.30}
\end{equation*}
\]

In addition to \(n_{\mathrm{d}}^{*}\), the nondimensional density \(\hat{n}_{\mathrm{d}}^{*}\) based on the diameter of dissipative particles may be useful for quantifying the packing characteristics of the dissipative particles. The nondimensional number density of magnetic particles is expressed as \(n_{\mathrm{m}}^{*}=n_{\mathrm{m}} d^{2}\).

\subsection*{6.3 Parameters for Simulations}

In this chapter, we are considering a two-dimensional dispersion composed of ferromagnetic particles in order to investigate the validity of using the method for this type of problem. The equations of motion of a dissipative particle include many indefinite factors, so we have chosen to focus on a simplified case in which the external magnetic field is strong enough that we may neglect the rotational motion of magnetic particles. In this situation, each magnetic moment will point along the magnetic field direction. Also, we will only focus on the one specific model potential of \((m, n)=(12,6)\). Representative parameters used for the present simulations are \(\gamma^{*}=10, \alpha^{*}=\gamma^{*} / 10, m_{\mathrm{d}}^{*}=0.01, d_{\mathrm{c}}^{*}=0.4, \lambda_{\varepsilon}=10, \hat{n}_{\mathrm{d}}^{*}=1\), and \(\Delta t^{*}=0.0001\).

Eq. (6.19) shows that the displacement distance of a dissipative particle per unit time step becomes greater with decreasing values of \(m_{\mathrm{d}}^{*}\) and \(d_{\mathrm{c}}^{*}\), and for this reason the time interval \(\Delta t^{*}\) will be adjusted in proportion to the product of \(m_{\mathrm{d}}^{*}\) and \(d_{\mathrm{c}}^{*}\). In this way, a smaller value of the time interval is employed as the value of \(m_{\mathrm{d}}^{*} d_{\mathrm{c}}^{*}\) decreases. The total number of simulation steps, \(N_{\text {timemx }}\), is expected to be sufficient when the condition of \(\Delta t^{*} N_{\text {timemx }}=100\) is satisfied.

\subsection*{6.4 Results of Simulations}

We treat a multiparticle system with the number density of \(n_{\mathrm{m}}^{*} \simeq 0.4\), composed of 81 magnetic particles, to investigate the influence of the mass of dissipative particles on the aggregate structures. Figure 6.2 illustrates the results for aggregate structures in thermodynamic equilibrium for two cases of magnetic particleparticle interactions, \(\lambda_{\mathrm{s}}=10\) and 3. Unless specifically noted, all simulation results were obtained for the case of \(d_{\mathrm{c}}^{*}=0.4\) using the other representative values of the parameters given in Section 6.3. Figures 6.2A and B are for a value of the mass of dissipative particles, \(m_{\mathrm{d}}^{*}=0.05\). Figures 6.2 C and D are for \(m_{\mathrm{d}}^{*}=0.01\). Figures 6.2 E and F are for \(m_{\mathrm{d}}^{*}=0.005\). Figures \(6.2 \mathrm{~A}, \mathrm{C}\), and E were obtained for \(\lambda_{\mathrm{s}}=10\). Figures 6.2B, D, and F are for \(\lambda_{\mathrm{s}}=3\). In the figures, small and large circles indicate the dissipative and magnetic particles, respectively.

Since the magnetic particle-particle interaction is much more dominant than the thermal energy for \(\lambda_{\mathrm{s}}=10\), magnetic particles tend to aggregate to form chainlike clusters along the magnetic field direction, which was clearly shown in the


Figure 6.2 Influence of the particle mass \(m_{\mathrm{d}}^{*}\) on the aggregate structures for \(d_{\mathrm{c}}^{*}=0.4\) : (A) for \(m_{\mathrm{d}}^{*}=0.05\) and \(\lambda_{\mathrm{s}}=10\), (B) for \(m_{\mathrm{d}}^{*}=0.05\) and \(\lambda_{\mathrm{s}}=3\), (C) for \(m_{\mathrm{d}}^{*}=0.01\) and \(\lambda_{\mathrm{s}}=10\), (D) for \(m_{\mathrm{d}}^{*}=0.01\) and \(\lambda_{\mathrm{s}}=3\), (E) for \(m_{\mathrm{d}}^{*}=0.005\) and \(\lambda_{\mathrm{s}}=10\), and (F) for \(m_{\mathrm{d}}^{*}=0.005\) and \(\lambda_{\mathrm{s}}=3\).
previous MC simulations. As shown in Figures \(6.2 \mathrm{~A}, \mathrm{C}\), and E, the present DPD simulation results also reproduce this type of cluster formation well. However, the aggregate structures seem to be strongly dependent on the mass of the dissipative particles. That is, although only thin chain-like clusters are formed for the case of a relatively large mass, such as \(m_{\mathrm{d}}^{*}=0.05\), magnetic particles form thicker chain-like clusters with decreasing values of the particle mass.

Now, we consider why much thicker chain-like clusters tend to form with decreasing mass of the dissipative particles. If the mass of dissipative particles is small, the magnetic particles should move easily by separating the ambient dissipative particles so they can force a path and approach each other. The thin chain-like clusters shown in Figure 6.2A, therefore, have a sufficient probability to aggregate to form the thicker chain-like clusters shown in Figure 6.2E. On the other hand, Eq. (6.28) shows that dissipative particles with smaller mass move with larger average velocity for a given system temperature. Hence, although a chain-like cluster can thicken to a certain degree, after that further growth is limited by the Brownian motion of the magnetic particles due to the influence of the active motion of dissipative particles. Since the magnetic particle-particle interaction is of a slightly larger order than the thermal energy for the case of \(\lambda_{\mathrm{s}}=3\), significant aggregates should not be formed. However, the present DPD simulations exhibit significant cluster formation with decreasing mass of dissipative particles; such unexpected aggregate formation is significant for \(m_{\mathrm{d}}^{*}=0.005\), and we also find that relatively long chain-like clusters are formed even for the case of \(m_{\mathrm{d}}^{*}=0.05\). In order to explain these results, the first consideration must be that we do not use an equation of motion which can simulate the rotational motion of the magnetic particles, although the transnational motion is taken into account in the present exercise. Another consideration must be the model potential we have employed for the interaction between the magnetic and the dissipative particles.

For reference, the aggregate structures for \(d_{\mathrm{c}}^{*}=0.2\) are shown in Figure 6.3 under the same conditions as in Figure 6.2 except for the particle diameter. We here focus on the differences between the aggregate structures in Figures 6.2 and 6.3 without addressing the features of each aggregate structure in detail. The aggregates in Figure 6.3 have a more compact or denser internal structure, and it appears that large clusters are formed to a certain degree but do not grow any further. It seems as if the Brownian motion of the magnetic particles due to the interaction with the dissipative particles is not significant. The snapshot in Figure 6.3F also shows aggregates with a dense internal structure, and the effect of the particle Brownian motion does not appear significantly in the formation of these internal structures.

Finally, we consider what the appropriate mass of a dissipative particle should be for obtaining physically reasonable results. As pointed out previously, dissipative particles are virtual and regarded as groups or clusters of the real solvent molecules, so that it seems to be reasonable for the mass density of dissipative particles to be taken as roughly equal to the mass density of the base liquid of the dispersion system, which one must consider for evaluating physical quantities experimentally. In the present demonstration, for example, we consider a ferromagnetic colloidal


Figure 6.3 Influence of the particle mass \(m_{\mathrm{d}}^{*}\) on aggregate structures for \(d_{\mathrm{c}}^{*}=0.2\) : (A) for \(m_{\mathrm{d}}^{*}=0.05\) and \(\lambda_{\mathrm{s}}=10\), (B) for \(m_{\mathrm{d}}^{*}=0.05\) and \(\lambda_{\mathrm{s}}=3\), (C) for \(m_{\mathrm{d}}^{*}=0.01\) and \(\lambda_{\mathrm{s}}=10\), (D) for \(m_{\mathrm{d}}^{*}=0.01\) and \(\lambda_{\mathrm{s}}=3\), (E) for \(m_{\mathrm{d}}^{*}=0.005\) and \(\lambda_{\mathrm{s}}=10\), and (F) for \(m_{\mathrm{d}}^{*}=0.005\) and \(\lambda_{\mathrm{s}}=3\).
dispersion in which metallic ferromagnetic fine particles are assumed to be dispersed into a base liquid, such as kerosene or water. In this case, if the ratio of the mass density of magnetic particles to dissipative ones is regarded as \(5-8\), then the ratio of mass is \(0.013-0.008\) for \(d_{\mathrm{c}}^{*}=0.4\), and \(0.0016-0.001\) for \(d_{\mathrm{c}}^{*}=0.2\). Hence, it is for the case of \(d_{\mathrm{c}}^{*}=0.4\) and \(m_{\mathrm{d}}^{*}=0.01\) that physically reasonable aggregate structures can be regarded as being reproduced. This consideration is verified by comparing it with the results obtained by MC and BD simulations.

In addition to the previous discussion, it may be necessary to verify that the aggregate formation is truly induced by the magnetic interaction between magnetic particles in a physically reasonable manner and not by certain false mechanisms arising from the improper interaction between dissipative and magnetic particles. Figure 6.4A and B show the results that were obtained for the strength of magnetic interaction \(\lambda_{\mathrm{s}}=0\) by using the aggregate structures in Figures 6.2C and 6.3C as an initial configuration. Since the snapshot in Figure 6.4B from an initial configuration in Figure 6.3 C for \(d_{\mathrm{c}}^{*}=0.2\) and \(m_{\mathrm{d}}^{*}=0.01\) exhibits the formation of large aggregates, we may conclude that this case does not give rise to physically reasonable results. In contrast, for the case of an initial configuration in Figure 6.2C for \(d_{\mathrm{c}}^{*}=0.4\) and \(m_{\mathrm{d}}^{*}=0.01\), Figure 6.4 A shows that the thick chain-like clusters, formed in the field direction, are dissociated sufficiently. However, a large aggregate (i.e., not chain-like) still remains, although the internal structure of this aggregate is considerably looser. The dissociation of the chain-like clusters indicates that the Brownian motion has been sufficiently effective. On the other hand, this type of loose aggregate structure of magnetic particles may be the result of employing a kinetic equation without including the rotational motion, as adopted here, or from


Figure 6.4 Snapshots for \(\lambda_{\mathrm{s}}=0\) for the two initial configurations: Figures 6.2C and 6.3C were used as an initial configuration for (A) and (B), respectively.
employing the model potential for the interaction between dissipative and magnetic particles.

\subsection*{6.5 Simulation Program}

A sample simulation program is shown below for conducting the simulation of the present exercise: the program is written in FORTRAN.

The important variables used in the program are explained as follow:
\begin{tabular}{lll} 
& \(:\) & \((x, y)\) coordinates of the position vector \(\mathbf{r}_{i}^{*}\) of magnetic \\
perticle \(i\)
\end{tabular}

ND, MD, DC, VDENSD

NDENSD, NDENSDH
TMX (I), TABLE (*, I)

VTMX (I), VTABLE (\#)

VPLACE (I)

TMXD (GRP) ,
\(\operatorname{TABLED}(*, G R P))\)
GRPX (I) , GRPY(I)
ALP, GAM
\(\operatorname{FXDM}(I), F Y D M(I) \quad: \quad\) Force acting on dissipative particle \(i\) by magnetic particles
: Number of particles, mass \(m_{\mathrm{d}}^{*}\), diameter \(d_{\mathrm{c}}^{*}\), volumetric fraction concerning dissipative particles
: Number densities of dissipative particles \(n_{\mathrm{d}}^{*}, \hat{n}_{\mathrm{d}}^{*}\)
: Names of cells to which dissipative particles interacting with the magnetic particle of interest belong
: Names of magnetic particles interacting with the magnetic particle of interest
: Information starts to appear from the position VPLACE ( I ) in the variable VTABLE (I) concerning magnetic particles interacting with magnetic particle \(i\)
: Cell index method for dissipative particles
: Name of cell to which dissipative particle \(i\) belongs is saved
: Parameters \(\alpha^{*}\) and \(\gamma^{*}\) representing the strengths of repulsive and dissipative forces acting between dissipative particles, respectively

As an aid to understanding the program, explanatory comments have been added to important features. The line numbers are only for the reader's convenience, and unnecessary for executing a FORTRAN program.

\begin{tabular}{|c|c|c|}
\hline 0039 & C & VDENS : VOLUMETRIC FRACTION OF PARTICLES \\
\hline 0040 & C & RA : NONDIMENSIONAL PARAMETER OF PARTICLE-PARTICLE INTERACT \\
\hline 0041 & C & RAS : NONDIMENSIONAL PARAMETER OF PARTICLE-PARTICLE INTERACT \\
\hline 0042 & C & BASED ON THE DIAMETER OF THE SOLID PART \\
\hline 0043 & C & KU : NONDIMENSIONAL PARAMETER OF PARTICLE-FIELD INTERACTION \\
\hline 0044 & C & RV : NONDIMENSIONAL PARAMETER OF STERIC REPULSION (=120) \\
\hline 0045 & C & RVS : NONDIMENSIONAL PARAMETER OF STERIC REPULSION \\
\hline 0046 & C & BASED ON THE DIAMETER OF THE SOLID PART (=150) \\
\hline 0047 & C & RE : NONDIMENSIONAL PARAMETER OF M.PTCL.-D.PTCL INTERACTION \\
\hline 0048 & C & RCOFF : CUTOFF RADIUS FOR CALCULATION OF MAG. FORCES \\
\hline 0049 & C & RCOFFMD : CUTOFF RADIUS FOR FORCES BETWEEN M.PTCL. AND D.PTCL. \\
\hline 0050 & C & RCOFFDDM : CUTOFF RADIUS FOR FORCES BETWEEN P.PTCL. AND VIRTUAL \\
\hline 0051 & C & PTCL. INSIDE M.PTCL. \\
\hline 0052 & C & XL,YL : DIMENSIONS OF SIMULATION REGION \\
\hline 0053 & C & H : TIME INTERVAL FOR DPD SIMULATIONS \\
\hline 0054 & C & (HX, HY, HZ) : APPLIED MAGNETIC FIELD (UNIT VECTOR) \\
\hline 0055 & C & VELTHRY : AVERAGE OF (VX**2+VY**2) (DESIRED) FOR M-PTCL \\
\hline 0056 & C & VELTHRYD : AVERAGE OF (VX**2+VY**2) (DESIRED) FOR D-PTCL \\
\hline 0057 & C & NVELSC : VELOCITIES OF M-PTCL ARE SCALED EVERY NVELSC \\
\hline 0058 & C & TIME STEP TO SATISFY THE DESIRED VELOCITY \\
\hline 0059 & C & NVELSCD : VELOCITIES OF D-PTCL ARE SCALED EVERY NVELSCD \\
\hline 0060 & C & TIME STEP TO SATISFY THE DESIRED VELOCITY \\
\hline 0061 & C & \\
\hline 0062 & C & RX(N), RY(N) : PARTICLE POSITION \\
\hline 0063 & C & NX(N),NY(N) : DIRECTION OF MAGNETIC MOMENT \\
\hline 0064 & C & VX(N), VY(N) : PARTICLE VELOCITY \\
\hline 0065 & C & FX(N), FY(N) : PARTICLE FORCE DUE TO MAGNETIC FORCES \\
\hline 0066 & C & FXMD (N), FYMD (N) : PARTICLE FORCE BY D. PTCL. ON M. PTCL. \\
\hline 0067 & C & \multirow[t]{2}{*}{TMX(I) : TOTAL NUMBER OF INDEX CELLS OF D. PTCL. WHICH MAY} \\
\hline 0068 & C & \\
\hline 0069 & C & TABLE (*, I) : NAME OF INDEX CELLS WHICH MAY INTERACT WITH M. PTCL. \\
\hline 0070 & C & \multirow[t]{2}{*}{VTMX (I) : \(\begin{aligned} & \text { TOTAL NUMBER OF NEIGHBORING M.PTCL. WHICH MAY } \\ & \text { INTERACT WITH M.PTCL. WITHIN THE CUTOFF RANGE }\end{aligned}\)} \\
\hline 0071 & C & \\
\hline 0072 & C & VTABLE (NNN) : NAME OF M.PTCL. IS SAVED IN ORDER (VERLET METHOD) \\
\hline 0073 & C & VPLACE (I) : THE FIRST PTCL., WHICH INTERACTS WITH PTCL. I, \\
\hline 0074 & C & APPEARS AT VPLACE (I) IN THE TABLE OF VTABLE (**) \\
\hline 0075 & C & VRADIUS : CUTOFF RADIUS FOR VERLET METHOD \\
\hline 0076 & C & NVTABLE : VERLET TABLE IS RENEWED EVERY NVTABLE TIME STEP \\
\hline 0077 & C & \\
\hline 0078 & C & OVRLAP (*) : OVRLAP (I)=.TRUE. FOR OVERLAPING \\
\hline 0079 & C &  \\
\hline 0080 & C & ND : NUMBER OF DISSIPATIVE PARTICLES (D.PTCL.) \\
\hline 0081 & C & MD : MASS OF D.PTCL. \\
\hline 0082 & C & DC : DIAMETER OF D.PTCL. \\
\hline 0083 & C & RCOFFD : CUTOFF DISTANCE FOR INTERACTIONS BETWEEN D. PTCL. \\
\hline 0084 & C & ALP : COEFFICIENT REPRESENTING REPULSIVE FORCE OF D.PTCL. \\
\hline 0085 & C & \multirow[t]{2}{*}{GAM : COEFFICIENT REPRESENTING DISSIPATIVE FORCE OF D.PTCL} \\
\hline 0086 & C & \\
\hline 0087 & C & RXD (ND), RYD (ND) : POSITIONS OF D.PTCL. \\
\hline 0088 & C & VXD (ND), VYD (ND) : VELOCITIES OF D.PTCL. \\
\hline 0089 & C & FCXD (ND), FCYD (ND) : CONSERVATIVE FORCES ACTING ON A PARTICLE \\
\hline 0090 & C & FDXD (ND), FDYD (ND) : DISSIPATIVE FORCES ACTING ON A PARTICLE \\
\hline 0091 & C & FRXD (ND), FRYD (ND) : RANDOM FORCES ACTING ON A PARTICLE \\
\hline 0092 & C & FXDM (ND), FYDM (ND) : PARTICLE FORCE BY M. PTCL. ON D. PTCL. \\
\hline 0093 & C & NDENSDH : NUMBER DENSITY WITH HAT \\
\hline 0094 & C & NDENSD : NUMBER DENSITY OF D.PTCL. \\
\hline 0095 & C & \multirow[t]{2}{*}{VDENSD : VOLUMETRIC FRACTION OF D.PTCL.} \\
\hline 0096 & C & \\
\hline 0097 & C & GRPX (ND), GRPY (ND) : GROUP TO WHICH D.PTCL. I BELONGS \\
\hline 0098 & C & PXD : NUMBER OF CUT-OFF CELLS IN EACH DIRECTION \\
\hline 0099 & C & TMXD (GRP) : TOTAL NUMBER OF PTCL. BELONGING TO GROUP (GRP) \\
\hline 0100 & C & TABLED (*,GRP) : NAME OF PTCL. BELONGING TO GROUP (GRP) \\
\hline 0101 & C & GRPLXD (PXD) : IS USED FOR DETERMINE THE CELL TO WHICH A \\
\hline 0102 & C & PARTICLE IS BELONG \\
\hline 0103 & C & \\
\hline 0104 & C & RAN (NRANMX) : RANDOM NUMBERS BETWEEN 0 AND 1 \\
\hline 0105 & C & \\
\hline 0106 & C & -XL/2 <RX(I) < XL/2, -YL/2 <RY(I)< YL/2 \\
\hline 0107 & & \\
\hline 0108 & & IMPLICIT REAL*8 ( \(\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}\) ), INTEGER ( \(\mathrm{I}-\mathrm{N}\) ) \\
\hline 0109 & C & \\
\hline 0110 & & COMMON /BLOCK1/ RX , RY \\
\hline
\end{tabular}

```

COMMON /BLOCK2/ VX , VY
COMMON /BLOCK3/ NX , NY
COMMON /BLOCK5/ FX , FY
COMMON /BLOCK7/ N , NDENS , VDENS , D , DS , DEL , TD
COMMON /BLOCK8/ RA , RV , RE
COMMON /BLOCK10/ VTMX , VTABLE , VPLACE , NVTABLE , VRADIUS
COMMON /BLOCK11/ FXMD , FYMD , RCOFFMD , RCOFFDDM
COMMON /BLOCK13/ OVRLAP
COMMON /BLOCK15/ H , XL , YL , RCOFF
COMMON /BLOCK16/ VELTHRY, VELTHRYD, NVELSC, NVELSCD
COMMON /BLOCK21/ RXD , RYD
COMMON /BLOCK22/ VXD , VYD
MMON /BLOCK23/ FCXD , FCYD
COM/BLOCK24/ FDXD / FDYD
COMMON /BLOCK26/ ND , NDENSDH , NDENSD , VDENSD , MD
GAM , RCOFFD
COMMON /BLOCK28/ GRPX , GRPY
COMMON /BLOCK30/ PXD , GRPLXD , PXYD
COMMON /BLOCK31/ FXDM , FYDM
COMMON /BLOCK35/ NRAN , RAN , IX
PARAMETER(NN=100 , NNN=10000 , TT=500)
PARAMETER(NRANMX=100000000)
PARAMETER(PI=3.141592653589793D0)
REAL*8 RX(NN) , RY(NN) , VX(NN) , VY(NN)
, NY (NN)
REAL*8 FXMD (NN) , FYMD (NN)
TMX(NN) , TABLE(IT,NN)
INTEGER VTMX(NN) , VTABLE (NNN) , VPLACE (NN)
REAL*8 RXD (NND) , RYD (NND) , VXD (NND) , VYD (NND)
REAL*8 FCXD(NND), FCYD(NND) , FDXD (NND) , FDYD (NND)
REAL*8 FRXD (NND), FRYD (NND) , FXDM(NND) , FYDM(NND)
REAL*8 NDENSDH , NDENSD , MD
INTEGER GRPX(NND), GRPY(NND)
TMXD (PPXYD), TABLED(TTD,PPXYD) , PXD , PXYD
VELTHRY, VELTHRYD
NVELSC, NVELSCD
RAN (NRANMX)
RXI , RYI , RXID , RYID , RCOFF2, HSQ2 , H2
VXI , VYI , VXID , VYID , VELAV, VELAVD
VELMX , VELDMX
NTIME , NTIMEMX , NGRAPH , NANIME, NANMCTR
NVELAV, NVELAVD , NP , NOPT
TMX00 , TMXD00 , VTABLEOO

```
OPEN(9, FILE='@acka1.data' ,STATUS='UNKNOWN')
OPEN (10,FILE='acka11.data' ,STATUS='UNKNOWN')
OPEN (11,FILE='acka21.mgf' ,STATUS='UNKNOWN')
-The given values are written out in @ acka1 and ackall.



0325 C

0327 C
0328
0329 C
0330
0331
0332
0333 cc
0334 cc
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349 C
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365200
0366 C
0367
0368
0369
0370
0371
0372
0373 C
0374
0375
0376
0377 C
0378
0379
0380220
0381 C
0382
0383 C
0384 C
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394260
0395 C

CONTINUE

IF ( NTIME .GT. NTIMEMX/2 ) NVELAVD = NVELAVD + 1

\(R X I=R X(I)+V X(I) * H\)
\(R Y I=R Y(I)+V Y(I) * H\)
\(\mathrm{C} 1=\mathrm{VX}(\mathrm{I}) * * 2+\mathrm{VY}(\mathrm{I}) * * 2\)
- The positions of magnetic particles at the next time step are evaluated according to Eq. (6.22).
IF ( C1 .GT. VELMX ) THEN
\(\mathrm{C} 1=\mathrm{DSQRT}(\mathrm{VELMX} / \mathrm{C} 1\) )
\(V X I=V X(I) * C 1\)
\(V Y I=V Y(I) * C 1\)
\(\mathrm{RXI}=\mathrm{RX}(\mathrm{I})+\mathrm{VXI} \mathrm{*}_{\mathrm{H}}\)
\(R Y I=R Y(I)+V Y I * H\)
END IF
RXI \(=\) RXI \(-\operatorname{DNINT}(\mathrm{RXI} / \mathrm{XL}) * \mathrm{XL} \quad \bullet\) The treatment of the periodic \(B C\).
RYI \(=\) RYI - DNINT ( RYI/YL )*YL
\(R X(I)=R X I\)
RY(I) \(=\) RYI
IF ( OVRLAP (I) ) THEN
\(V X I=V X(I)+F X(I) * H\)
\(V Y I=V Y(I)+F Y(I) * H\)
ELSE
\(V X I=V X(I)+(F X(I)+F X M D(I)) * H\)
\(V Y I=V Y(I)+(F Y(I)+F Y M D(I)) * H\)
END IF
\(V X(I)=V X I\)
\(V Y(I)=V Y I\)
C1 = VXI**2 + VYI**2
IF ( C1 .GT. VELMX ) THEN C1 = DSQRT ( VELMX/C1 )
\(V X(I)=V X I * C 1\)
\(V Y(I)=V Y I * C 1\)
END IF
CONTINUE
CALL GROUP ( ND )
CALL TABLECAL ( ND , PXD )
CALL VTABLEDP ( \(\mathrm{N}, \mathrm{RCOFFD}, \mathrm{RCOFFMD}, \mathrm{XL}, \mathrm{YL}, \mathrm{DC}\) )
IF ( MOD (NTIME,NVTABLE) .EQ. O ) THEN
CALL VTABLEMA ( N , XL , YL )
END IF
CALL FORCEMAG ( RCOFF2 , NTIME )
CALL FORCEDPD ( PI )
CALL FORCEINT ( N , ND , RE , DC )
DO \(220 \mathrm{I}=1, \mathrm{~N}\)
IF ( NTIME .GT. NTIMEMX/2 ) VELAV = VELAV+VX(I)**2+VY(I)**2
CONTINUE
IF ( NTIME .GT. NTIMEMX/2 ) NVELAV = NVELAV +1
--------------------------------------- FOR VELOCITY SCALING -----
        EVELX \(=\) EVELX + VX(I)

EVELY \(=\) EVELY \(+V Y(I)\)
EVELSQ \(=\) EVELSQ + VX(I)**2 + VY(I)**2
CONTINUE
DO 260 I = 1, ND
EVELXD = EVELXD + VXD (I)
EVELYD = EVELYD + VYD (I)
\(\operatorname{EVELSQD}=\operatorname{EVELSQD}+\operatorname{VXD}(\mathrm{I}) * * 2+\operatorname{VYD}(I) * * 2\)
60 CONTINUE
\begin{tabular}{l}
\hline \(\begin{array}{l}\text { - The treatment in the case of the solid parts } \\
\text { of the two magnetic particles overlapping. }\end{array}\) \\
\(\begin{array}{l}*_{\mathrm{H}} \\
){ }_{\mathrm{H}}\end{array}\) \\
- The velocities of magnetic particles at the next \\
time step are evaluated according to Eq. (6.23).
\end{tabular}
- The treatment in the case of the solid parts
of the two magnetic particles overlapping.
\(\left(*_{\mathrm{H}}\right.\)
\() *_{\mathrm{H}}\)
- The velocities of magnetic particles at the next
time step are evaluated according to Eq. (6.23).
- The velocity of each particle is modified so as to be smaller than the maximum value.
- The information in the cell index table and in the Verlet neighbor list table is renewed.
- The forces acting between magnetic particles, between dissipative particles, and between magnetic and dissipative particles are calculated.
\begin{tabular}{|c|c|c|}
\hline 0396 & & IF ( MOD (NTIME, NVELSC) .EQ. 0 ) THEN \\
\hline 0397 & & EVELX = EVELX /DBLE ( \({ }^{*}\) NVELSC) \\
\hline 0398 & & EVELY = EVELY /DBLE ( \({ }^{*}\) *VVELSC) \\
\hline 0399 & & EVELSQ \(=\) EVELSQ/DBLE ( \({ }^{*}\) NVELSC) \\
\hline 0400 & & CALL SCALEVEL ( N, VX, VY, VELTHRY, EVELX, EVELY, EVELSQ ) \\
\hline 0401 & & EVELX \(=0\). DO \(\quad\)-The velocities of magnetic particles are scaled so as \\
\hline 0402 & & \[
\text { EVELY }=0 . D 0
\] \\
\hline 0403 & & EVELSQ \(=0\). D0 \(\quad\) to yield the desired system temperature. \\
\hline 0404 & & END IF \\
\hline 0405 & C & - DPD VELOCITY SCALING -- \\
\hline 0406 & & IF ( MOD (NTIME,NVELSCD) .EQ. 0 ) THEN \\
\hline 0407 & & EVELXD = EVELXD /DBLE (ND*NVELSCD) \\
\hline 0408 & & EVELYD = EVELYD /DBLE (ND*NVELSCD) \\
\hline 0409 & & EVELSQD = EVELSQD/DBLE (ND*NVELSCD) \\
\hline 0410 & & CALL SCALEVEL ( ND,VXD, VYD, VELTHRYD, EVELXD, EVELYD, EVELSQD ) \\
\hline 0411 & & EVELXD \(=0 . D 0 \quad\)-The velocities of dissipative particles are scaled so \\
\hline 0412 & & EVELYD \(=0 . D 0 \quad\) as to yield the desired system temperature. \\
\hline 0413 & & EVELSQD \(=0\). D0 as \\
\hline 0414 & & END IF \\
\hline 0415 & C & \\
\hline 0416 & C & \\
\hline 0417 & C & \\
\hline 0418 & C & -- DATA OUTPUT FOR GRAPHICS (1) --- \\
\hline 0419 & & IF ( MOD (NTIME, NGRAPH) .EQ. 0 ) THEN \\
\hline 0420 & & NOPT \(=\) NOPT + 1 \\
\hline 0421 & & WRITE (NOPT,592) N , XL, YL \\
\hline 0422 & & WRITE (NOPT, 594) (RX (I), \(\mathrm{I}=1, \mathrm{~N})\), (RY(I), \(\mathrm{I}=1, \mathrm{~N})\) \\
\hline 0423 & \& & (VX (I), I=1,N) , (VY(I), I=1,N) \\
\hline 0424 & \& & ( \(\mathrm{NX}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N}), \quad(\mathrm{NY}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})\) \\
\hline 0425 & & WRITE (NOPT, 596) ND \\
\hline 0426 & & WRITE (NOPT, 598) (RXD (I), \(\mathrm{I}=1, \mathrm{ND}\) ) , (RYD (I), \(\mathrm{I}=1, \mathrm{ND})\) \\
\hline 0427 & \& & (VXD (I), I=1,ND) , (VYD (I), \(\mathrm{I}=1, \mathrm{ND}\) ) \\
\hline 0428 & & CLOSE (NOPT, STATUS = 'KEEP') \\
\hline 0429 & & END IF \\
\hline 0430 & C & - DATA OUTPUT (2) FOR ANIMATION --- \\
\hline 0431 & & IF ( MOD (NTIME,NANIME) .EQ. O ) THEN \\
\hline 0432 & & NANMCTR \(=\) NANMCTR \(+1 \quad\) - The data are written out for making an \\
\hline 0433 & C & IF ( NANMCTR .EQ. 1 ) THEN animation based on the commercial \\
\hline 0435 & & WRITE (11,381) (NTIMEMX/NANIME) software MicroAVS. \\
\hline 0436 & & END IF \\
\hline 0437 & C & \\
\hline 0438 & & IF ( (NANMCTR.GE.1) .AND. (NANMCTR.LE.9) ) THEN \\
\hline 0439 & & WRITE \((11,383)\) NANMCTR \\
\hline 0440 & & ELSE IF ( (NANMCTR.GE.10) .AND. (NANMCTR.LE.99) ) THEN \\
\hline 0441 & & WRITE (11,384) NANMCTR \\
\hline 0442 & & ELSE IF ( (NANMCTR.GE.100) .AND. (NANMCTR.LE.999) ) THEN \\
\hline 0443 & & WRITE (11,385) NANMCTR \\
\hline 0444 & & ELSE IF ( (NANMCTR.GE.1000) .AND. (NANMCTR.LE.9999) ) THEN \\
\hline 0445 & & WRITE (11,386) NANMCTR \\
\hline 0446 & & END IF \\
\hline 0447 & C & \\
\hline 0448 & & \(\operatorname{WRITE}(11,388) \quad(\mathrm{N}+\mathrm{ND})\) \\
\hline 0449 & C & \\
\hline 0450 & & DO \(400 \mathrm{I}=1, \mathrm{~N}\) \\
\hline 0451 & & WRITE (11,398) RX(I) , RY(I) , 0.0, D/2.D0, 1.0, 0.0, 0.0 \\
\hline 0452 & 400 & CONTINUE \\
\hline 0453 & & DO \(410 \mathrm{I}=1\), ND \\
\hline 0454 & & WRITE (11, 398) RXD (I), RYD (I), 0.0, DC/2.D0, 0.0, 0.8, 1.0 \\
\hline 0455 & 410 & CONTINUE \\
\hline 0456 & & END IF \\
\hline 0457 & C & \\
\hline 0458 & C & --- CHECK RANDOM NUMBERS USED --- \\
\hline 0459 & & IF ( NRAN .GT. NRANCHK ) THEN - The number of the used random numbers is \\
\hline 0460 & & CALL RANCAL ( NRANMX, IX, RAN ) checked. If over NRANCHK, a uniform random \\
\hline 0461
0462 & & \begin{tabular}{ll|l}
\begin{tabular}{l} 
NRAN \\
END IF
\end{tabular} & 1 & number sequence is renewed.
\end{tabular} \\
\hline 0463 & C & \\
\hline 0464 & C & \\
\hline 0465 & 1000 & CONTINUE \\
\hline 0466 & C & \\
\hline 0467 & C & \\
\hline
\end{tabular}

```

0540 \& /1H ,'VELAV/THEORY=', F9.4, 2X, 'VELAVD/THEORY=', F9.4)
0541 1210 FORMAT(I4 , 2F6.3 , 3F8.3 , 5F7.3)
0542 1211 FORMAT(6F8.3, E11.3)
0543 1213 FORMAT(I4 , F6.3, 7F8.3)
0544 1214 FORMAT(E11.3, 3I8)

```

```

0545
0545
0545
0545
0550 C
0551 C**** SUB INIPOSIT ****
0552 SUBROUTINE INIPOSIT(N , VDENS , NDENS , PI , VRADIUS)
0552 SUBROUTINE INIPOSIT(N , VDENS , NDENS , PI , VRADIUS)
0553 C
0554
0555c
0556
0557
0558
0559 c
0560
0561
0562
0563
0564
0565 C
0566
0567
0568
0569
0 5 7 0
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593 IF(VRADIUS .GT. XL/2.DO) THEN
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603 c
0604
0605
0606
0607
0608 c
0609
0610 C
0611
C
IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
- A subroutine for setting the
COMMON /BLOCK1/ RX , RY
COMMON /BLOCK1/ RX , RY
COMMON /BLOCK15/ H , XL , YL , RCOFF
C
PARAMETER(NN=100)
C
REAL*8 RX(NN), RY(NN),NX(NN) , NY(NN) , NDENS
REAL*8
INTEGER Q , PTCL
C
A
A
XL = A*DBLE (Q)
YL = XL
C
RAN1 = DSQRT (2.D0)
RAN2 = DSQRT(3.D0)
PTCL = 0
DO }10\textrm{J}=0,\textrm{Q}-
DO 10 I=0,Q-1
PTCL = PTCL + 1
C1 = RAN1*DBLE (PTCL)
C1 = C1 - DINT (C1)
C1 = C1 - 0.5D0
C2 = RAN2*DBLE (PTCL)
C2 = C2 - DINT(C2)
C2 = C2 - 0.5D0
RX(PTCL) = DBLE(I)*A - XL/2.D0 + 0.1D0 + C1*0.091D0
RY(PTCL) = DBLE (J)*A - YL/2.D0 + 0.1D0 + C2*0.091D0
10 CONTINUE
N = PTCL
center of the simulation box is the origin of the coordinate system.
C
DO 20 I=1,N
NX(I) = 0.DO
-The direction of each magnetic moment is set in the y-direction.
NY(I) = 1.D0
CONTINUE
- }\mp@subsup{\phi}{\textrm{V}}{}=(\pi/4)/\mp@subsup{a}{}{*2},\mp@subsup{a}{}{*}=(\pi/(4\mp@subsup{\phi}{\textrm{V}}{})\mp@subsup{)}{}{1/2}\mathrm{ and }Q=\mp@subsup{N}{}{1/2}.\mathrm{ The
values of a* and Q are saved in A and Q,
----- POSITION -----
C
initial positions of magnetic
C
particles.
respectively.
-RAN1 and RAN2 are quasi-random numbers.
- Additionally each particle is moved in parallel by (1/2)\times(-XL,-YL) so that the
- Each particle is moved in parallel by the distance (0.1,0.1) to
remove subtle situations at the outer boundary surfaces. Also, to
remove the regularity of the initial configuration, each particle is
moved randomly by the maximum displacement (1/2)\times(0.091,
0.091) using quasi-random numbers.

```
```

0612	REAL*8 NDENSDH, NDENSD , MD , B , RS	, RXID , RYID
0613	REAL*8 RXI , RYI , RXIJ , RYIJ , RIJS	RCOFFMN, RCOFFMN2
0614	INTEGER P , PTCL	
0615 C		
0616	$\mathrm{B}=\mathrm{DSQRT}(1 . \mathrm{DO} / \mathrm{NDENSD})$	
0617	$\mathrm{P}=\operatorname{INT}(\mathrm{XL} / \mathrm{B}) \mathrm{Cl}$) n_{d}^{*}	- $n_{d}^{*}=1 / b^{* 2}$ and $b^{*}=\left(1 / n_{d}^{*}\right)^{1 / 2}$. Particles are placed in each axis direction.
0618	RSQCHK $=(0.5 \mathrm{DO}+\mathrm{DC} / 2 . \mathrm{D} 0) * * 2$ en ind	
0619	RCOFFMN $=0.5 \mathrm{D} 0+(\mathrm{DC} / 2 . \mathrm{D} 0) * 0.3 \mathrm{D} 0$ in eac	
0620	RCOFFMN2 $=$ RCOFFMN**2	
0621 C		- POSITION (1) ---
0622	PTCL=0	- Each particle is moved in parallel by $(1 / 2) \times(-X L,-Y L)$, so that the center of the simulation box is the origin of the coordinate system.
0623	DO 120 IY=0, P-1	
0624	RYID $=$ DBLE (IY)*B - YL/2.D0 + 0.0001D0	
0625	IF (RYID .GE. YL/2.D0) GOTO 120	
0626	DO 100 IX=0, P-1	
0627	RXID $=$ DBLE (IX)*B - XL/2.D0 + 0.0001D0	

C IF(RXID .GE. XL/2.DO) GOTO 100
DO 50 I=1,N
RXI = RX(I)
RYI = RY(I)
RXIJ = RXID - RXI
RXIJ = RXIJ - DNINT (RXIJ/XL)*XL
IF(DABS(RXIJ) .GT. RCOFFMN) GOTO 50
RYIJ = RYID - RYI
RYIJ = RYIJ - DNINT(RYIJ/YL)*YL
IF(DABS(RYIJ) .GT. RCOFFMN) GOTO 50
RIJSQ= RXIJ**2 + RYIJ***2
IF(RIJSQ .LT. RCOFFMN2) GOTO 100
50 CONTINUE
0642 C
0643
0644
0645
0646
0646
0648
0649
0650
0651 C*
0652
0653 C
0654
0655 C
0656
0657
0658 C
0659
0660 c
0661
0662
0663 C
0664
0665
0666
0667
0668
0669
0670 C
0671
0672
0673
0674
0675
0676c
0677
0678
0679
0680
0681
0682
0683 10 CONTINUE
C
TO 100
0628
0629 C
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
100 CONTINUE
ND = PTCL
RETURN
END
SUBROUTINE INIVEL(N , PI , VELMX)
IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
- A subroutine for setting the initial
velocities of magnetic particles.
COMMON /BLOCK2/ VX , VY
COMMON /BLOCK35/ NRAN , RAN , IX
PARAMETER(NN=100 , NRANMX=100000000)
REAL*8 VX(NN) , VY(NN) , MOMX , MOMY , CC1 , CC2
REAL RAN (NRANMX)
C
DO 10 I=1,N
NRAN = NRAN + 1
CC1 = DSQRT(-2.D0*(1.D0)*DLOG(DBLE (RAN (NRAN))))
NRAN = NRAN + 1
CC2 = 2.D0*PI*DBLE (RAN (NRAN))
VX(I) = CC1*DCOS(CC2)
- The initial velocities are assigned
according to Eq. (A2.3).
C
NRAN = NRAN + 1
CC1 = DSQRT(-2.D0*(1.D0)*DLOG(DBLE (RAN (NRAN))))
NRAN = NRAN + 1
CC2 = 2.D0*PI*DBLE (RAN (NRAN))
VY(I) = CC1*DSIN(CC2)
-The initial velocities are modified so as
PTCL = PTCL + 1
RXD(PTCL) = RXID
RXD (PICL) = RXID
-The dissipative particles are
- Each particle is moved in parallel by
DO 120 IY=0,P-1
(1/2)\times(-XL,-YL), so that the center of
RYID = DBLE(IY)*B - YL/2.D0 + 0.0001D0
IF(RYID .GE. YL/2.DO) GOTO }12
the simulation box is the origin of the
DO 100 IX=0,P-1
coordinate system.
RXID = DBLE(IX)*B - XL/2.D0 + 0.0001D0

```

```

 RSQCHK = (0.5D0 + DC/2.D0)**2
 RCOFFMN2 = RCOFFMN**2
 C
------- POSITION (1) ---
PTCL=0
RXID = DBLE(IX)*B - XL/2.D0 + 0.0001D0
not placed if the separation
between magnetic and
REAL*8 RXI , RYI , RXIJ , RYIJ , RIJSQ, RCOFFMN, RCOFFMN2
INTEGER P , PTCL
C
B = DSQRT(1.DO/NDENSD)
dissipative particles is shorter
than RCOFFMN.
GOTO 100
C***CC
C
to be smaller than the maximum velocity.
C1 = VX(I)**2 + VY(I)**2
IF(C1 .GT. VELMX) THEN
C1 = DSQRT(VELMX/C1)
VX(I) = VX(I)*C1
VY(I) = VY(I)*C1
END IF

```
```

0684 C MOMX = O.DO --- SET TOTAL MOMENTUM ZERO ---
MOMX = MOMX + VX(I)
MOMY = MOMY + VY(I)
2 0 ~ C O N T I N U E ~
MOMX = MOMX/DBLE (N)
MOMY = MOMY/DBLE (N)
--- CORRECT VELOCITIES TO SATISFY ---
0693 C
0694 C
DO 30 I=1,N
VX(I) = VX(I) - MOMX
VY(I) = VY(I) - MOMY
30 CONTINUE
M
M
0 7 0 1 ~ C * * * * ~ S U B ~ I N I V E L D ~ * * * * * * * * *)
SUBROUTINE INIVELD(ND , MD , PI , VELDMX) - A subroutine for setting the initial
IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
velocities of dissipative particles.
0704
0706 COMMON /BLOCK22/ VXD , VYD
0707 COMMON /BLOCK35/ NRAN , RAN , IX
0708 C
PARAMETER(NND=50000 , NRANMX=100000000)
C
0711 REAL*8 VXD (NND), VYD (NND) , MD , MOMX , MOMY , CC1 , CC2
0712 REAL RAN (NRANMX)
0713 C
0714 DO 10 I=1,ND
0715 NRAN = NRAN + 1
0716 CC1 = DSQRT(-2.D0*(1.D0/MD)*DLOG (DBLE (RAN (NRAN))))
0717
0 7 1 8
0719
0720 C
0721
0722
0723
0724
0725
0726 C
0727
0728
0728
0730
0731
0732
0733
0734 C
0735 MOMX = O.DO
0736
0737
0738
0739
0740
0741
0742
0743 C
0744 C
0745 DO 30 I=1,ND
0746
0747
0748
0749
0 7 5 0
0751 C**** SUB SCALEVEL ****
0752
VXD (I) = VXD (I) - MOMX
VXD (I) = VXD (I) - MOMX
--- CORRECT VELOCITIES TO SATISFY ---
MOMY = O.DO
DO 20 I=1,ND
MOMX = MOMX + VXD (I)
MOMX = MOMX + VXD (I)
20 CONTINUE
20 CONTINUE
20 CONTINUE
C
NRAN = NRAN + 1
CC1 = DSQRT(-2.D0*(1.D0/MD)*DLOG(DBLE (RAN (NRAN))))
NRAN = NRAN + 1
CC2 = 2.D0*PI*DBLE (RAN (NRAN))
VYD(I) = CC1*DSIN(CC2)
0726 C
C1 = VXD (I)**2 + VYD (I)**2
IF(C1 .GT. VELDMX) THEN
IF(C1 .GT. VELDMX) THEN
VXD(I) = VXD (I)*C1
VYD(I) = VYD(I)*C1
END IF
10 CONTINUE
NRAN = NRAN + 1
CC2 = 2.D0*PI*DBLE (RAN (NRAN))
- The initial velocities are assigned
VXD (I) = CC1*DCOS (CC2)
according to Eq. (A2.3).
-The initial velocities are modified so as
C
--- SET TOTAL MOMENTUM ZERO ---
_ ZERO TOTAL MOMENTUM
30 CONTINUE
_-- ZERO TOTAL MOMENTUM
to be smaller than the maximum velocity.
0702
0703 C
0704
0709

```

```

0712
C
0688
--- CORRECT VELOCITIES TO SATISFY ----
0689
090
0691
0692
0695
0696
0697
0698
0699
0 7 0 0
DO 10 I=1,ND
C
0721
0723
10 CONTINUE
0740
C
zero total system momentum.
0749
MOMY = MOMY/DBLE (ND)
C1
C*
RETURN
END
**** SUB SCALEVEL ****
SUBROUTINE SCALEVEL(N, VX, VY, VELTHRY, VELX, VELY, VELSQ)

```
\begin{tabular}{|c|c|c|c|}
\hline 0753 & C & & - A subroutine for scaling the velocities \\
\hline 0754 & & IMPLICIT REAL*8 ( \(\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}\) ), INTEGER ( \(\mathrm{I}-\mathrm{N}\) ) & (common for both magnetic and dissipative \\
\hline 0755 & C & REAL* \(8 \quad \mathrm{VX}(\mathrm{N}), \mathrm{VY}(\mathrm{N})\) & particles). \\
\hline 0757 & C & -- ZERO TOTAL MO & MENTUM FOR EACH AXIS --- \\
\hline 0758 & & DO \(10 \mathrm{I}=1, \mathrm{~N}\) & -The velocities are modified so as to yield \\
\hline 0759 & & \(V X(I)=V X(I) ~-~ V E L X ~\) & zero total momentum. \\
\hline 0760 & & \(V Y(I)=V Y(I) ~-~ V E L Y ~\) & zero total momentum. \\
\hline 0761 & 10 & CONTINUE & \\
\hline 0762 & C & - CORRECT V & ELOCITIES TO SATISFY --- \\
\hline 0763 & C & - SPECIFIED & TEMPERATURE \\
\hline 0764 & & C1 = VELTHRY/DSQRT ( VELSQ - VELX**2 - VE & LY**2 ) \\
\hline 0765 & & DO \(50 \mathrm{I}=1, \mathrm{~N}\) & \\
\hline 0766 & & \(V X I=V X(I)\) & The velocities are modified so as to yield \\
\hline 0767 & & \(V Y I=V Y(I)\) & the desired system temperature. \\
\hline 0768 & & \(V X(I)=V X I * C 1\) & \\
\hline 0769 & & \(V Y(I)=V Y I * C 1\) & \\
\hline 0770 & 50 & CONTINUE & \\
\hline 0771 & & & RETURN \\
\hline 0772 & & & END \\
\hline 0773 & C**** & SUB GRIDGENE **** & - A subroutine for generating cells for \\
\hline 0774 & & SUBROUTINE GRIDGENE ( XL , RCOFFD ) & the cell index method in the case of \\
\hline 0775 & C & & the cell index me \\
\hline 0776 & & IMPLICIT REAL*8 ( \(\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}\) ), INTEGER ( \(\mathrm{I}-\mathrm{N}\) ) & dissipative particles \\
\hline 0777 & C & & \\
\hline 0778 & & COMMON /BLOCK30/ PXD , GRPLXD , PXYD & \\
\hline 0779 & C & & \\
\hline 0780 & & INTEGER PPXD & \\
\hline 0781 & & PARAMETER ( PPXD=500 ) & \\
\hline 0782 & C & & - The cells are made by dividing the \\
\hline 0783 & & REAL*8 GRPLXD (PPXD) , C0 & simulation box into PXD equal cells in \\
\hline 0784
0785 & C & INTEGER PXD , PXYD & each axis-direction. The position of the \\
\hline 0786 & & PXD = INT ( XL/RCOFFD ) & \(x\)-coordinate (equal to \(y\)-coordinate) is \\
\hline 0787 & & PXYD \(=\) PXD**2 & saved in GRPLXD. \\
\hline 0788 & & \(\mathrm{C} 0=\mathrm{XL} / \mathrm{DBLE}(\mathrm{PXD})\) & \\
\hline
\end{tabular}

0789
0790
0791
0792
0793
0794 C**** SUB GROUP *****
0795 SUBROUTINE GROUP ( ND )
0796 C
0797
0798 C
0799
0800
0801
0802 C
0803
0804
0805 C
0806
0807
0808
0809 C
0810
0811 C
0812
0813
0814
0815
0816
0817
0818
0819 C
0820
IF ( GRPLXD (J) .GT. RYD (I) ) THEN
GRPY(I) = J GOTO 100
0823
0824
END IF

RETURN
END
- A subroutine for grasping the name of the cell to which each dissipative particle belongs.

COMMON /BLOCK21/RXD , RYD
COMMON /BLOCK28/ GRPX , GRPY
COMMON /BLOCK30/ PXD , GRPLXD , PXYD
INTEGER PPXD, PPXYD, TTD
PARAMETER ( \(\mathrm{NND}=50000, \operatorname{PPXD}=500, ~ P P X Y D=250000, ~ T T D=20\) )
\(R E A L * 8 \quad R X D\) (NND) , RYD (NND)
REAL*8 GRPLXD (PPXD)
INTEGER GRPX(NND), GRPY (NND) , PXD , PXYD
DO \(100 \quad \mathrm{I}=1\), ND
--- X AXIS ---
DO \(10 \mathrm{~J}=1\), PXD
IF ( GRPLXD (J) .GT. RXD (I) ) THEN \(\operatorname{GRPX}(I)=J\) GOTO 15
10 END IF
- If particle \(i\) belongs to the cell which is assumed to be the (GRPX(I)-th, GRPY(I)-th) cell in \(x\) - and \(y\)-directions, the name of the cell is \(G P=G R P X(I)+(G R P Y(I)-1) * P X D\).
\(\operatorname{GRPX}(I)=P X D\)

15 DO \(20 \mathrm{~J}=1, \mathrm{PXD}\)

```

0825 cran CONTINUE
C**** SUB TABLECAL *****
0832 SUBROUTINE TABLECAL(ND , PXD)
0832 SUBROUTINE TABLECAL(ND , PXD)
C
0834 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0836 COMMON /BLOCK28/ GRPX , GRPY
0837 COMMON /BLOCK29/ TMXD , TABLED
0839 INTEGER PPXD, PPXYD, TTD
PARAMETER(NND=50000 , PPXD=500 , PPXYD=250000 , TTD=20)
INTEGER GRPX(NND), GRPY(NND)
INTEGER TMXD(PPXYD), TABLED(TTD,PPXYD) , PXD , GX , GY , GP
0845 DO 10 GY=1,PXD
0845 DO 10 GY=1,PXD
GP}=GX+(GY-1)*PX
TMXD (GP) = 0
TABLED (1,GP) = 0
10 CONTINUE
DO 20 I=1,ND
GX = GRPX(I)
GY = GRPY(I)
GP = GX + (GY-1)*PXD
TMXD (GP) = TMXD (GP) + 1
TMXD (GP) = TMXD (GP) + 1
20 CONTINUE
RETURN
0860 C**** SUB VTrABIEDP ***** END
0861 C**** SUB VTABLEDP *****
SUBROUTINE VTABLEDP(N , RCOFFD , RCOFFMD , XL , YL , DC)
IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
C
COMMON /BLOCK1/ RX , RY
COMMON /BLOCK9/ TMX , TABLE
0825 cran CONTINUE
0825 cran CONTINUE
- A subroutine for grasping the names
of dissipative particles belonging to
- If particle i belongs to the cell which is assumed to
0845 DO 10 GY=1,PXD
C
be the (GX-th, GY-th) cell in the x- and y-directions,
the name of the cell is GP=GX+(GY-1)*PXD.
-The name of particle i is therefore saved in the
variable in TABLED(*,GP) concerning cell GP.
each cell.
GY =GRPY(I)
- A subroutine for grasping the cells in
which dissipative particles possibly
interact with magnetic particles.

```
0831
0838 C
0841 C
0844 C
0863 C
        COMMON /BLOCK30/ PXD , GRPLXD , PXYD
0868 C
        INTEGER TT, PPXD
        PARAMETER( \(\mathrm{NN}=100\), \(\mathrm{NNN}=10000, \mathrm{TT}=500, \operatorname{PPXD}=500\) )
        INTEGER TMX(NN), TABLE(TT,NN) , PXD , PXYD
        REAL*8 RX (NN) , RY (NN) , GRPLXD (PPXD)
        REAL*8 RXI, RYI, RX1, RY1, RX2, RY2, XI, YI, CL, MODX, MODY
        REAL*8 RSQCHK , RSQCHK2, RRISQ , RCHK
        INTEGER GPX1 , GPX2 , GPY1 , GPY2 , GP
0878 C
        \(\mathrm{CL}=\operatorname{GRPLXD}(2)-\operatorname{GRPLXD}(1)\)
        \(\begin{array}{ll}\text { CL } & =\operatorname{GRPLXD}(2)-\operatorname{GRPLXD}(1) \\ \mathrm{RCHK} & =\operatorname{RCOFFMD}+(\mathrm{CL} / 2 . \mathrm{D} 0) * 1.415 \mathrm{D} 0\end{array}\)
        RSQCHK \(=\) RCHK**2
        RSQCHK2 \(=(0.5 D 0-D C / 2\). D0-(CL/2.D0)*1.415D0) \() * * 2\)
        DO \(10 \mathrm{I}=1, \mathrm{~N}\)
            \(\operatorname{TMX}(I) \quad=0\)
            \(\begin{array}{ll}\operatorname{TABLE}(1, I) & =0\end{array}\)
    10 CONTINUE
0887 C
        DO 200 I=1,N
            \(R X I=R X(I)\)
\(\begin{array}{ll}0889 & R X I=R X(I) \\ 0890 & R Y I=R Y(I)\end{array}\)
\(0891 \quad\) RX1 \(=\) RXI - RCHK
\(\begin{array}{ll}0892 & \text { RY1 }=\text { RYI }- \text { RCHK } \\ 0893 & \text { RX2 }=\text { RXI }+ \text { RCHK }\end{array}\)
\(0892 \quad\) RY1 \(=\) RYI - RCHK
\(0894 \quad \begin{aligned} & \text { RY2 }=\text { RYI }+ \text { RCHK }\end{aligned}\)
0847
0848
0849
0850 C
0850 C
0835
0840
0842
0843
0852
0853
0854
0855
0855
0856
0856
0857
0858
0859
0860
0862
0863
0865 C
0866
0866
0868
0870
0872 C
0873
C
0874
0875
0876
0877
0878 C
0879
0879
0880
0881
0881
0882
0883
0884
0885
0886
0887 C
\begin{tabular}{|c|c|c|c|}
\hline 0895 & & GPX1 \(=\) INT ( (RX1+XL/2.D0)/CL ) - & \multirow[t]{4}{*}{- The dissipative particles only in the neighboring cells possibly interact with magnetic particle \(i\).} \\
\hline 0896 & & GPX2 \(=\) INT ( (RX2+XL/2.D0)/CL \()+2\) & \\
\hline 0897 & & GPY1 \(=\) INT ( (RY1+YL/2.D0)/CL \()-1\) & \\
\hline 0898 & & GPY2 \(=\) INT ( (RY2+YL/2.DO)/CL ) + 2 & \\
\hline 0899 & C & & \\
\hline 0900 & & DO 150 IY0 = GPY1, GPY2 & \\
\hline 0901 & & IY \(=\) IYO & \\
\hline 0902 & & MODY \(=0 . D 0\) & - The treatment of the periodic BC. \\
\hline 0903 & & IF ( IYO .LE. O ) THEN & - The treatment of the periodic BC. \\
\hline 0904 & & IY = IYO + PXD & \\
\hline 0905 & & MODY \(=-Y \mathrm{~L}\) & \\
\hline 0906 & & END IF & \\
\hline 0907 & & IF ( IYO .GT. PXD ) THEN & \\
\hline 0908 & & IY = IYO - PXD & \\
\hline 0909 & & MODY = YL & \\
\hline 0910 & & END IF & \\
\hline 0911 & & YI = GRPLXD (IY) - CL/2.DO + MODY & \\
\hline 0912 & C & & \\
\hline 0913 & & DO 140 IX0 = GPX1, GPX2 & \\
\hline 0914 & & IX = IX0 & \\
\hline 0915 & & MODX \(=0\). DO & \\
\hline 0916 & & IF ( IXO .LE. O ) THEN & \\
\hline 0917 & & IX = IXO + PXD & \\
\hline 0918 & & MODX \(=-\mathrm{XL}\) & \\
\hline 0919 & & End IF & \\
\hline 0920 & & IF ( IXO .GT. PXD ) THEN & \\
\hline 0921 & & IX = IXO - PXD & \\
\hline 0922 & & MODX \(=\mathrm{XL}\) & \\
\hline 0923 & & END IF & \\
\hline 0924 & & \(\mathrm{XI}=\operatorname{GRPLXD}(\mathrm{IX})-\mathrm{CL} / 2 . \mathrm{DO}+\mathrm{MODX}\) & \\
\hline 0925 & C & & \\
\hline 0926 & & \(\mathrm{GP}=1 \mathrm{X}+\mathrm{PXD} *(I Y-1)\) & \\
\hline 0927 & & RRISQ \(=(\mathrm{XI}-\mathrm{RXI}) * * 2+(\mathrm{YI}-\mathrm{RYI}) * * 2\) & particle \(i\) and a cell is shorter than \\
\hline 0928 & & IF ( RRISQ .GE. RSQCHK ) GOTO 140 &  \\
\hline \[
\begin{aligned}
& 0929 \\
& 0930
\end{aligned}
\] & C & IF ( RRISQ .LE. RSQCHK2 ) GOTO 140 & RSQCHK, the cell is regarded as a possible interacting cell. \\
\hline 0931 & & TMX (I) \(=\) TMX(I) + 1 & \\
\hline 0932 & & TABLE ( \(\operatorname{TMX}(\mathrm{I}), \mathrm{I})=\mathrm{GP}\) & \\
\hline 0933 & 140 & continue & \\
\hline 0934 & 150 & continue & \\
\hline 0935 & 200 & CONTINUE & \\
\hline 0936 & & & RETURN \\
\hline 0937 & & & END \\
\hline 0938 & C**** & SUB VTABLEMA ***** & - A subroutine for grasping the names of \\
\hline \[
0939
\] & & SUBROUTINE VTABLEMA ( \(\mathrm{N}, \mathrm{XL}\), YL ) & magnetic particles interacting with \\
\hline 0941 & & IMPLICIT REAL*8 ( \(\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}\) ), INTEGER (I-N) & magnetic particle themselves according \\
\hline 0942 & C & & to the Verlet neighbor list method. \\
\hline 0943 & & COMMON /BLOCK1/ RX , RY & \\
\hline 0944 & & COMMON /BLOCK10/ VTMX , VTABLE , VPLACE , & NVTABLE , VRADIUS \\
\hline 0945 & C & & \\
\hline 0946 & & PARAMETER ( NN=100 , NNN=10000 ) & \\
\hline 0947 & C & & \\
\hline 0948 & & REAL*8 RX(NN) , RY (NN) & \\
\hline 0949 & & INTEGER VTMX (NN) , VTABLE (NNN) , VPLACE ( & (vN) , N2 \\
\hline 0950 & & REAL*8 RXI , RYI , RXIJ , RYIJ , RIJ 2 , & VRADIUS2 \\
\hline 0951 & C & & \\
\hline 0952 & & VRADIUS2 = VRADIUS**2 & \\
\hline 0953 & & N2 = \({ }^{*} * * 2\) & \\
\hline 0954 & & IF ( N2 .GT. NNN ) N2 = NNN & \\
\hline 0955 & & DO \(10 \mathrm{I}=1, \mathrm{~N}\) & \\
\hline 0956 & & \(\operatorname{VTMX}(\mathrm{I})=0\) & \\
\hline 0957 & & VPLACE (I) \(=0\) & interacting with particle \(i\) is saved in \\
\hline 0958 & 10 & Do \(15 \mathrm{I}=1, \mathrm{~N} 2\) & \(\operatorname{VTMX}(1)\), and the names of the \\
\hline 0960 & & \(\operatorname{VTABLE}(\mathrm{I})=0\) & interacting particles are saved in \\
\hline 0961 & 15 & CONTINUE & \(\operatorname{VTABLE}(*)\). The name of the particle \\
\hline 0962 & C & & interacting with particle \(i\) first appears \\
\hline 0963 & C & & in the VPLACE (I)-th position of the \\
\hline \[
\begin{aligned}
& 0964 \\
& 0965
\end{aligned}
\] & C & DO \(200 \mathrm{I}=1, \mathrm{~N}\) & variable VTABLE (*). \\
\hline 0966 & & RXI \(=\) RX(I) & \\
\hline
\end{tabular}
```

0967
0968
0969
0 9 7 0
0971
0972
0973 C
0974
0 9 7 5 ~ c
0976
0977
0978
0 9 7 9
0980
0981
0982
0983 C
0986 C
0987
0988
0 9 8 9
0 9 9 0
0 9 9 1
0992
0 9 9 3
0994
0 9 9 5
0996 C
0997
0 9 9 8
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1 0 1 0
1011 C
1012
1013
1014
1015
1016
1017 C
1018
1 0 1 9
1020
1021
1022
1023
1024
1025 C
1026
1027
1028
1029
1030
1031
1032
1032
1033 C
1034 C
1035 C
1036 DO 100 I=1,N
1037 C

```
```

 \(R Y I=R Y(I)\)
    ```
    \(R Y I=R Y(I)\)
    IF ( I .EQ. 1 ) THEN
    IF ( I .EQ. 1 ) THEN
        \(\operatorname{VPLACE}(I)=1\)
        \(\operatorname{VPLACE}(I)=1\)
        ELSE
        ELSE
        \(\operatorname{VPLACE}(I)=\operatorname{VPLACE}(I-1)+\operatorname{VTMX}(I-1)\)
        \(\operatorname{VPLACE}(I)=\operatorname{VPLACE}(I-1)+\operatorname{VTMX}(I-1)\)
        END IF
        END IF
    DO \(150 \mathrm{~J}=1, \mathrm{~N}\)
    DO \(150 \mathrm{~J}=1, \mathrm{~N}\)
        IF( J.EQ.I ) GOTO 150
        RXIJ = RXI - RX(J)
        RXIJ = RXIJ - DNINT (RXIJ/XL)*XL
        IF( DABS(RXIJ) .GE. VRADIUS )
        - The treatment for the periodic
        RYIJ = RYI - RY(J)
        RYIJ = RYIJ - DNINT(RYIJ/YL)*YL
        IF( DABS(RYIJ) .GE. VRADIUS ) GOTO 150
        RIJ2 = RXIJ*RXIJ + RYIJ*RYIJ
        IF( RIJ2 .GE. VRADIUS2 )
            GOTO 150
        - If the distance between
        magnetic particles is within
        VRADIUS, the names of the
        VTMX(I) = VTMX(I) + 1
        VTABLE( VPLACE(I) + VTMX(I) - 1 ) = J
C
    150 CONTINUE
    200 CONTINUE
C**** SUB FORCEMAG *****
    SUBROUTINE FORCEMAG( RCOFF2 , NTIME )
                                    RETURN
    END
    - A subroutine for calculating
    IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
C
    COMMON /BLOCK1/ RX , RY
    COMMON /BLOCK2/ VX , VY
    COMMON /BLOCK3/ NX , NY
    COMMON /BLOCK5/ FX , FY
    COMMON /BLOCK7/ N , NDENS , VDENS , D , DS , DEL , TD
    COMMON /BLOCK8/ RA , RV , RE
    COMMON /BLOCK10/ VTMX , VTABLE , VPLACE , NVTABLE , VRADIUS
    COMMON /BLOCK13/ OVRLAP
    COMMON /BLOCK15/ H , XL , YL, RCOFF
C
    INTEGER TT
    PARAMETER(NN=100, NNN=10000, TT=500 )
C
        REAL*8 RX(NN) , RY(NN) , VX(NN) , VY (NN)
        REAL*8 FX(NN) , FY(NN) ,NX(NN) ,NY (NN)
        REAL*8 NDENS
        LOGICAL OVRLAP (NN)
        INTEGER VTMX(NN) , VTABLE (NNN) , VPLACE (NN)
        REAL*8 RXI , RYI , RXIJ , RYIJ
        REAL*8 NXI , NYI , NXJ , NYJ
        REAL*8 FXI , FYI , FXIJ , FYIJ
        REAL*8 TXIJ , TYIJ , RIJ , RIJ2 , RIJ4 , RIJORGN
        REAL*8 RA3, RMN, RMN2
        REAL*8 C0, C1, C2, C3
        INTEGER IVPLACE
        C
        RA3 = 3.D0*RA
        RMN = DS
        RMN2 = RMN**2
        -Whether or not an overlap of the solid
        parts of the two magnetic particles
        DO 10 I=1,N
            FX(I) = 0.DO
            FY(I) = 0.DO
            OVRLAP(I) = .FALSE.
        1 0 ~ C O N T I N U E
```



```
COMMON /BLOCK15/ H , XL , YL , RCOFF
```

COMMON /BLOCK15/ H , XL , YL , RCOFF
COMMON /BLOCK21/ RXD , RYD
COMMON /BLOCK21/ RXD , RYD
COMMON /BLOCK22/ VXD , VYD
COMMON /BLOCK22/ VXD , VYD
COMMON /BLOCK23/ FCXD , FCYD
COMMON /BLOCK23/ FCXD , FCYD
COMMON /BLOCK24/ FDXD , FDYD
COMMON /BLOCK24/ FDXD , FDYD
COMMON /BLOCK25/ FRXD , FRYD
COMMON /BLOCK25/ FRXD , FRYD
COMMON /BLOCK26/ ND , NDENSDH , NDENSD , VDENSD , MD
COMMON /BLOCK26/ ND , NDENSDH , NDENSD , VDENSD , MD
COMMON /BLOCK27/ DC , ALP , GAM , RCOFFD
COMMON /BLOCK27/ DC , ALP , GAM , RCOFFD
COMMON /BLOCK28/ GRPX , GRPY
COMMON /BLOCK28/ GRPX , GRPY
COMMON /BLOCK29/ TMXD , TABLED
COMMON /BLOCK29/ TMXD , TABLED
COMMON /BLOCK30/ PXD , GRPLXD , PXYD
COMMON /BLOCK30/ PXD , GRPLXD , PXYD
COMMON /BLOCK35/ NRAN , RAN , IX
COMMON /BLOCK35/ NRAN , RAN , IX
INTEGER PPXD, PPXYD, TTD
INTEGER PPXD, PPXYD, TTD
PARAMETER(NND=50000 , PPXD=500 , PPXYD=250000 , TTD=20)
PARAMETER(NND=50000 , PPXD=500 , PPXYD=250000 , TTD=20)
PARAMETER(NRANMX=100000000)
PARAMETER(NRANMX=100000000)
REAL*8 RXD (NND) , RYD (NND) , VXD (NND) , VYD (NND)
REAL*8 RXD (NND) , RYD (NND) , VXD (NND) , VYD (NND)
REAL*8 FCXD (NND), FCYD (NND) , FDXD (NND), FDYD (NND)
REAL*8 FCXD (NND), FCYD (NND) , FDXD (NND), FDYD (NND)
REAL*8 FRXD (NND), FRYD (NND)
REAL*8 FRXD (NND), FRYD (NND)
REAL*8 NDENSDH , NDENSD , MD
REAL*8 NDENSDH , NDENSD , MD
REAL*8 GRPLXD (PPXD)
REAL*8 GRPLXD (PPXD)
INTEGER GRPX(NND), GRPY(NND)
INTEGER GRPX(NND), GRPY(NND)
INTEGER TMXD(PPXYD), TABLED(TTD,PPXYD) , PXD , PXYD
INTEGER TMXD(PPXYD), TABLED(TTD,PPXYD) , PXD , PXYD
REAL RAN (NRANMX)
REAL RAN (NRANMX)
INTEGER NRAN , IX , NRANCHK
INTEGER NRAN , IX , NRANCHK
REAL*8 RXI , RYI , RXIJ , RYIJ , RIJSQ , RIJ
REAL*8 RXI , RYI , RXIJ , RYIJ , RIJSQ , RIJ
REAL*8 VXI , VYI , VXIJ , VYIJ
REAL*8 VXI , VYI , VXIJ , VYIJ
REAL*8 FCXI , FCYI , FCXIJ, FCYIJ
REAL*8 FCXI , FCYI , FCXIJ, FCYIJ
REAL*8 FDXI , FDYI , FDXIJ, FDYIJ
REAL*8 FDXI , FDYI , FDXIJ, FDYIJ
REAL*8 FRXI , FRYI , FRXIJ, FRYIJ
REAL*8 FRXI , FRYI , FRXIJ, FRYIJ
REAL*8 FXIJ , FYIJ
REAL*8 FXIJ , FYIJ
REAL*8 EXIJ , EYIJ
REAL*8 EXIJ , EYIJ
REAL*8 WR , WR2 , TTAIJ , RAN1 , RAN2 , RCOFFD2
REAL*8 WR , WR2 , TTAIJ , RAN1 , RAN2 , RCOFFD2
REAL*8 MODX , MODY , C1
REAL*8 MODX , MODY , C1
INTEGER GX , GY , GRP
INTEGER GX , GY , GRP
RCOFFD2 = RCOFFD**2

```

1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121 C
1122
1123
1124
1125 C
1126
1127
1128
1129
1130
1131
1132
\(\cap\)
    DO \(10 \mathrm{I}=1\), ND
        \(\operatorname{FCXD}(I)=0 . D 0\)
        \(\operatorname{FCYD}(I)=0 . D 0\)
        \(\operatorname{FDXD}(I)=0 . D 0\)
        \(\operatorname{FDYD}(I)=0 . D 0\)
        \(\operatorname{FRXD}(I)=0 . D 0\)
        \(\operatorname{FRYD}(I)=0 . D 0\)
    10 CONTINUE
    DO 500 I=1,ND
    RXI \(=\) RXD (I)
    RYI \(=\) RYD (I)
    \(V X I=\operatorname{VXD}(I)\)
    VYI = VYD(I)
    FCXI \(=\operatorname{FCXD}(I)\)
    FCYI = FCYD (I)
    FDXI \(=\) FDXD (I)
    FDYI = FDYD (I)
    \(\operatorname{FRXI}=\operatorname{FRXD}(I)\)
    FRYI \(=\) FRYD (I)
    DO 300 JJ=-1,1
        GY = GRPY(I) + JJ
        IF ( GY.EQ. 0 ) THEN
            \(\mathrm{GY}=\mathrm{PXD}\)
            MODY \(=-Y L\)
            GOTO 150
        END IF
        IF ( GY .EQ. PXD+1 ) THEN
            \(\mathrm{GY}=1\)
            MODY \(=\) YL
- The conservative force, i.e., the first term on the right-hand side of Eq. (6.19), is saved in FCXD(*) and FCYD(*). Similarly, the dissipative term, i.e., the second term, is saved in \(\operatorname{FDXD}\left({ }^{*}\right)\) and \(\operatorname{FDYD}\left({ }^{*}\right)\). The random term, i.e., the third term, is saved in FRXD (*) and FRYD (*).
+++ NEIGHBORING GROUP +++
    - The name of the cell in which the
    particles possibly interact with particle \(i\) of
    interest is \(\mathrm{GRP}=\mathrm{GX}+(\mathrm{GY}-1) * \mathrm{P} X \mathrm{D}\).
    -(MODX, MODY) are used in treating the
    periodic BC.


1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
\(1261 \quad \operatorname{FCXD}(I)=\mathrm{FCXI}\)
\(1262 \quad\) FCYD (I) \(=\) FCYI
\(1263 \quad \operatorname{FDXD}(I)=F D X I\)
\(1264 \quad\) FDYD (I) \(=\) FDYI
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282 C
1283
1284
1285
1286
1286
1287
1288
1289
1290
1291
1292 C
200 CONTINUE
C
300 Continue
C
\(\operatorname{FRXD}(I)=F R X I\)
FRYD (I) \(=\) FRYI
C
500 CONTINUE
C
DO \(520 \quad \mathrm{I}=1\), ND

520 CONTINUE
**** SUB FORCEINT *****

COMMON /BLOCK1/ RX , RY

C

INTEGER GP
C
RCOFFMD2 \(=\) RCOFFMD**2

RCOFFMN2 \(=\) RCOFFMN**2
DO \(10 \mathrm{I}=1, \mathrm{~N}\)
\(\operatorname{FXMD}(I)=0 . D 0\)
FYMD (I) \(=0 . D 0\)
10 CONTINUE
DO \(12 \mathrm{I}=1\), ND
\(\operatorname{FXDM}(I)=0 . D 0\)
\(\operatorname{FYDM}(I)=0 . D 0\)
12 CONTINUE

> FRXIJ \(=W R * E X I J * T T A I J\)
> FRYIJ \(=W R * E Y I J * T T A I J\)
> FRXI \(=\) FRXI + FRXIJ
> FRYI \(=\) FRYI + FRYIJ
> \(\operatorname{FRXD}(J)=\operatorname{FRXD}(J)-\operatorname{FRXIJ}\)
> \(\operatorname{FRYD}(J)=\operatorname{FRYD}(J)-\) FRYIJ
\(\operatorname{FCXD}(I)=\operatorname{FCXD}(I) * H^{*} A L P /(M D * D C)\)
\(\operatorname{FCYD}(I)=\operatorname{FCYD}(I) * H^{*} A L P /(M D * D C)\)
\(\operatorname{FDXD}(I)=F D X D(I) * H^{*} G A M /(D C * M D * * 0.5)\)
\(\operatorname{FDYD}(I)=\operatorname{FDYD}(I) * \mathrm{H}^{*} \mathrm{GAM} /\left(\mathrm{DC}^{\star} \mathrm{MD}^{*} * 0.5\right)\)
\(\operatorname{FRXD}(\mathrm{I})=\operatorname{FRXD}(\mathrm{I}) *(\mathrm{H} * 2 . \mathrm{D} 0 * \mathrm{GAM}) * * 0.5 /(\mathrm{MD} * * 0.75 * \mathrm{DC} * 0.5)\)
\(\operatorname{FRYD}(I)=\operatorname{FRYD}(I) *(H * 2 . D 0 * G A M) * * 0.5 /(M D * * 0.75 * D C * 0.5)\)

SUBROUTINE FORCEINT ( N , ND , RE , DC )
IMPLICIT REAL*8 ( \(\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z})\), INTEGER ( \(\mathrm{I}-\mathrm{N}\) )

COMMON /BLOCK9/ TMX , TABLE
COMMON /BLOCK11/ FXMD , FYMD , RCOFFMD, RCOFFDDM
COMMON /BLOCK15/ H , XL, YL , RCOFF
COMMON /BLOCK21/ RXD , RYD
COMMON /BLOCK29/ TMXD , TABLED
COMMON /BLOCK31/ FXDM , FYDM

INTEGER TT, PPXD, PPXYD, TTD
PARAMETER ( \(\mathrm{NN}=100, \mathrm{NNN}=10000, \mathrm{TT}=500\) )
PARAMETER ( \(\mathrm{NND}=50000\), \(\mathrm{PPXD}=500\), \(\mathrm{PPXYD}=250000\), \(\mathrm{TTD}=20\) )

REAL*8 RX (NN) , RY (NN) , FXMD (NN) , FYMD (NN)
\(R E A L * 8\) RXD (NND) , RYD (NND) , FXDM (NND), FYDM (NND)
INTEGER TMX(NN) , TABLE(TT,NN)
INTEGER TMXD (PPXYD), TABLED (TTD, PPXYD)
REAL*8 RCOFFMD2 , FCOFFDDM , RCOFFMN , RCOFFMN2
\(R E A L * 8\) RXI , RYI , RXIJ , RYIJ , RZIJ, RIJ , RIJ2
REAL*8 RXID , RYID , RRIJ, TXIJ , TYIJ
REAL*8 FIJ , FXIJ, FYIJ , SR2 , SR4

FCOFFDDM \(=2 . D 0 *(D C / R C O F F D D M) * * 12-(D C / R C O F F D D M) * * 6\)
RCOFFMN \(=0.5 \mathrm{DO}+(\mathrm{DC} / 2 . \mathrm{D} 0) * 0.3 \mathrm{D} 0\)
- The force acting on magnetic particle \(i\) by dissipative particles is saved in \(\operatorname{FXMD}(\mathrm{I})\) and \(\mathrm{FYMD}(\mathrm{I})\). The force acting on dissipative particle \(i\) by magnetic particles is saved in FXDM (I) and FYDM(I).
```

1321 C
1322 DO 200 I=1,N
1323 RXI = RX(I)
1324 RYI = RY(I)
1325 IF(TMX(I) .EQ. 0)
1326 C
1327
1328
GP = TABLE (J,I)
1329 IF(TMXD (GP) .EQ. 0)
C
DO 120 K=1, TMXD (GP)
1332 II = TABLED (K,GP)
1333 RXID = RXD (II)
1334
1335 C
1336 RXIJ = RXI - RXID
1337 RXIJ = RXIJ - DNINT (RXIJ/XL)*XL
IF(DABS(RXIJ) .GE. RCOFFMD)
RYIJ = RYI - RYID
RYIJ = RYIJ - DNINT (RYIJ/YL)*YL
IF(DABS(RYIJ) .GE. RCOFFMD)
RIJ2 = RXIJ**2 + RYIJ**2
IF(RIJ2 .GT. RCOFFMD2) GOTO 120
IF(RIJ2 .LT. RCOFFMN2) RIJ2 = RCOFFMN2
C
RIJ = DSQRT(RIJ2)
TXIJ = RXIJ/RIJ
TYIJ = RYIJ/RIJ
RRIJ = RIJ - 0.5D0 + DC/2.D0
SR1 = (DC/RRIJ)
SR2 = (DC/RRIJ)**2
SR4 = SR2*SR2
SR6 = SR2*SR4
-The forces are calculated according to Eq. (6.26).
SR12 = SR6*SR6
FIJ = (RE*DC/RRIJ)*(2.D0*SR12 - SR6 - FCOFFDDM)
FXIJ = FIJ*TXIJ
FYIJ = FIJ*TYIJ
C
FXMD(I) = FXMD(I) + FXIJ
FYMD(I) = FYMD(I) + FYIJ
FXDM(II) = FXDM(II) - FXIJ
FYDM(II) = FYDM(II) - FYIJ
C
120 CONTINUE
200 CONTINUE
RETURN
END
1369C***
1370 C THIS SUBROUTINE IS FOR GENERATING UNIFORM RANDOM NUMBERS *
1371 C (SINGLE PRECISION) FOR 32-BIT COMPUTER. *
1372 C N : NUMBER OF RANDOM NUMBERS TO GENERATE *
1373 C IX : INITIAL VALUE OF RANDOM NUMBERS (POSITIVE INTEGER) *
1374 C : LAST GENERATED VALUE IS KEPT *
1375 C X(N) : GENERATED RANDOM NUMBERS (0<X (N)<1) *
1376C***
1377 C**** SUB RANCAL ****
1378 SUBROUTINE RANCAL (N, IX, X)
1379 C
1380
1381 C
1382 REAL X(N)
1383 INTEGER INTEGMX, INTEGST, INTEG
1384 C
1385 DATA INTEGMX/2147483647/
1386 DATA INTEGST,INTEG/584287,48828125/
-This is for a 32-bit CPU based on the
-A subroutine for generating a uniform
random number sequence.
1387 C
1388 AINTEGMX = REAL (INTEGMX)
1389 C
1390 IF (IX.LT.0) STOP

```
```

1 3 9 1
1 3 9 2
1 3 9 3
1 3 9 4
1 3 9 5
1 3 9 6
1 3 9 7
1398
IF (IX.EQ.O) IX = INTEGST
DO 30 I=1,N
IX = IX*INTEG
IF (IX .LT. 0) IX = (IX+INTEGMX) +1
X(I) = REAL(IX)/AINTEGMX
30 CONTINUE
RETURN
END

```

\section*{7 \\ Practice of Lattice Boltzmann Simulations}

In this chapter, we consider the lattice Boltzmann method, which is generally used as a simulation technique for a pure liquid system but has a different approach to the molecular simulation and microsimulation methods. The lattice Boltzmann method is also a potential simulation technique for taking into account multibody hydrodynamic interactions among particles in a particle suspension or polymers in a polymeric liquid. Therefore, the lattice Boltzmann method may be a promising simulation tool in various fields in science and engineering.

In treating fluid properties, such as the flow field, the lattice Boltzmann method employs an abstract approach that makes use of the particle distribution function, whereas the usual fluid simulation method deals with quantities that are intuitively understandable, such as velocities and pressures. The reader may therefore find that the basic principle behind the lattice Boltzmann method is slightly more difficult to understand. However, once mastered, the concept of the particle distribution function and the theoretical background of this simulation method will enable a research scientist to apply the lattice Boltzmann method to various types of flow problems in a relatively straightforward manner.

The present exercise addresses a uniform flow around a circular cylinder, which will be a foundation for applying the lattice Boltzmann method to flow problems in a particle dispersion or a polymeric liquid. The validity of the solution obtained by this method can be evaluated by comparing it with that obtained by a fully developed simulation method, such as the finite difference method. The sample simulation program has been developed from the viewpoint of applying it to a particle suspension; it may thus be very valuable in a practical context.

\subsection*{7.1 Uniform Flow Around a Two-Dimensional Circular Cylinder}

We here consider solving the problem of uniform flow past a circular cylinder by means of the lattice Boltzmann method. In a certain limited range of the Reynolds number, a pair of vortices appears behind the cylinder. The formation of these vortices is very sensitive to the type of boundary model used for the interaction between the cylinder and the neighboring virtual fluid particles.

\subsection*{7.2 Specification of Problems in Equations}

The important task in the formalization of the present problem is the treatment of the boundary condition between the cylinder and the virtual fluid particles in the neighboring lattice sites in addition to the outer boundary conditions.

We consider a uniform flow past a two-dimensional circular cylinder in the \(x\)-direction, as shown in Figure 7.1. The present flow problem is treated as a twodimensional flow, so we use the D2Q9 lattice model, as explained in Section 1.5. The simulation region is divided into the lattice system shown in Figure 7.2. The two-dimensional circular cylinder with diameter \(D\) is fixed at the origin of the coordinate system. Numbering the velocity direction \(\alpha\) in the unit cell is as shown in Figure 1.5B, and \(\alpha\) is taken as \(\alpha=0,1,2, \ldots, 8\). If \(\mathbf{r}\) is the position vector of an arbitrary lattice point and \(f_{\alpha}(\mathbf{r}, t)\) is the particle distribution function at time \(t\), the function after the time interval \(\Delta t, f_{\alpha}\left(\mathbf{r}+\mathbf{c}_{\alpha} \Delta t, t+\Delta t\right)\), can be evaluated from Eq. (1.91) as


Figure 7.1 Uniform flow past a circular cylinder.


Figure 7.2 Simulation region made up of square lattices.
\[
\left.\begin{array}{l}
f_{\alpha}\left(\mathbf{r}+\mathbf{c}_{\alpha} \Delta t, t+\Delta t\right)=\tilde{f}_{\alpha}(\mathbf{r}, t)  \tag{7.1}\\
\tilde{f}_{\alpha}(\mathbf{r}, t)=f_{\alpha}(\mathbf{r}, t)+\frac{1}{\tau}\left\{f_{\alpha}^{(0)}(\mathbf{r}, t)-f_{\alpha}(\mathbf{r}, t)\right\}
\end{array}\right\}
\]
in which \(\tau\) is the relaxation time, \(f_{\alpha}^{(0)}\) is the thermodynamic equilibrium distribution function, and \(\mathbf{c}_{\alpha}\) is the lattice velocity in the \(\alpha\)-direction. With the notation \(\mathbf{u}\) for the macroscopic velocity and \(\rho\) for the density, the equilibrium distribution function is written as
\[
\begin{equation*}
f_{\alpha}^{(0)}=\rho w_{\alpha}\left\{1+3 \frac{\mathbf{c}_{\alpha} \cdot \mathbf{u}}{c^{2}}-\frac{3 u^{2}}{2 c^{2}}+\frac{9}{2} \cdot \frac{\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}}{c^{4}}\right\} \tag{7.2}
\end{equation*}
\]
in which \(w_{\alpha}\) is a weighting constant. For the case of the D2Q9 model, these terms are written as
\[
w_{\alpha}=\left\{\begin{array}{lll}
4 / 9 & \text { for } \alpha=0  \tag{7.3}\\
1 / 9 & \text { for } \alpha=1,2,3,4 \\
1 / 36 & \text { for } \alpha=5,6,7,8
\end{array} \quad\left|\mathbf{c}_{\alpha}\right|=\left\{\begin{array}{cl}
0 & \text { for } \alpha=0 \\
c & \text { for } \alpha=1,2,3,4 \\
\sqrt{2 c} & \text { for } \alpha=5,6,7,8
\end{array}\right.\right.
\]

In these expressions, \(c\) is the velocity of the movement for the shortest lattice distance, expressed as \(c=\Delta x / \Delta t\), in which \(\Delta x\) is the shortest distance between two neighboring sites. The lattice velocities given in Eq. (7.3) guarantee that the fluid particles can move from site to site during the time interval \(\Delta t\). If the particle distributions \(f_{\alpha}(\alpha=0,1,2, \ldots, 8)\) are known for all the directions, the macroscopic density and momentum can be evaluated from Eqs. (1.88) and (1.89). That is,
\[
\begin{equation*}
\rho(\mathbf{r}, t)=\sum_{\alpha=0}^{8} f_{\alpha}(\mathbf{r}, t), \quad \rho(\mathbf{r}, t) \mathbf{u}(\mathbf{r}, t)=\sum_{\alpha=0}^{8} f_{\alpha}(\mathbf{r}, t) \mathbf{c}_{\alpha} \tag{7.4}
\end{equation*}
\]

In the present case, a uniform flow is generated by employing a thermodynamic equilibrium distribution with a given uniform velocity at the upstream boundary surface at \(x=-h_{0}\). In order to ensure that we obtain reasonable solutions for the present flow problem, we must give careful attention to the interaction between the cylinder and the neighboring lattice sites, and to the outer boundary condition. In the next section we consider the treatment of the boundary conditions.

\subsection*{7.3 Boundary Conditions}

We are now ready to formalize the boundary conditions that complement the basic equations explained previously. The boundary surfaces to be treated are the upstream and downstream boundaries, both outer side boundaries, and the cylinder surface boundary. Among these boundary surfaces, the boundary between the cylinder


Figure 7.3 Boundary condition on the material surface.
and its neighboring lattice points is the most important and complex. In the following paragraphs, the boundary conditions relating to the cylinder surface are treated first.

We first explain the \(\mathrm{Yu}-\mathrm{Mei}\)-Luo-Shyy (YMLS) model [34] using Figure 7.3. The particle distribution function in the \(\alpha\)-direction is considered \((\alpha=2\) in Figure 7.3). In Figure 7.3, \(\mathbf{r}_{w}\) is the point at the cylinder surface, \(\mathbf{r}_{p}\) is the neighboring point inside the cylinder, \(\mathbf{r}_{l}\) is the neighboring site in the liquid area, and \(\mathbf{r}_{l^{\prime}}\) is the next neighboring point. Since the next point of \(\mathbf{r}_{l}\) in the direction of \(\alpha=1\) is inside the cylinder, \(f_{2}\left(\mathbf{r}_{l}, t+\Delta t\right)\) cannot be obtained from Eq. (7.1). That is, \(f_{2}\left(\mathbf{r}_{l}, t+\Delta t\right)\) is dependent on the particle distribution function at the cylinder surface \(\mathbf{r}_{w}\), and not on that at \(\mathbf{r}_{p}\). If the particle distribution function at \(\mathbf{r}_{w}, f_{2}\left(\mathbf{r}_{w}, t+\Delta t\right)\) is known, \(f_{2}\left(\mathbf{r}_{l}, t+\Delta t\right)\) at \(\mathbf{r}_{l}\) can be evaluated from the linear interpolation method using those at \(\mathbf{r}_{l^{\prime}}\) and \(\mathbf{r}_{w}\) as
\[
\begin{equation*}
f_{2}\left(\mathbf{r}_{l}, t+\Delta t\right)=\frac{\Delta_{w}}{1+\Delta_{w}} f_{2}\left(\mathbf{r}_{l^{\prime}}, t+\Delta t\right)+\frac{1}{1+\Delta_{w}} f_{2}\left(\mathbf{r}_{w}, t+\Delta t\right) \tag{7.5}
\end{equation*}
\]
in which \(\Delta_{w}=\left|\mathbf{r}_{l}-\mathbf{r}_{w}\right| /\left|\mathbf{r}_{l}-\mathbf{r}_{p}\right|\). Figure 7.3 shows the treatment for the direction of \(\bar{\alpha}=2\) (in the opposite direction to \(\alpha=1\) ), and Eq. (7.5) is simply applied to the direction \(\bar{\alpha}=2\), in which the connecting line in the opposite direction \((\alpha=1)\) crosses the cylinder surface. In order to evaluate \(f_{2}\left(\mathbf{r}_{l}, t+\Delta t\right)\) from Eq. (7.5), \(f_{2}\left(\mathbf{r}_{w}, t+\Delta t\right)\) at the surface is necessary, and this method uses the following equation:
\[
\begin{equation*}
f_{2}\left(\mathbf{r}_{w}, t+\Delta t\right)=\left(1-\Delta_{w}\right) \tilde{f}_{1}\left(\mathbf{r}_{l^{\prime}}, t\right)+\Delta_{w} \tilde{f}_{1}\left(\mathbf{r}_{l}, t\right) \tag{7.6}
\end{equation*}
\]

This expression means that the particle distribution function on the right-hand side, which is obtained from the linear interpolation method, becomes that in the opposite direction at the next time step. The linear YMLS method [34] uses the linear interpolation procedure with Eqs. (7.5) and (7.6) to obtain \(f_{2}\left(\mathbf{r}_{l}, t+\Delta t\right)\). In this method, only two lattice points are used for the interpolation procedure, so it is suitable for many particle dispersions in which a near-contact situation of particles frequently arises.

In addition to the present YMLS boundary model, for the purpose of study, we will employ three other methods explained in Chapter 8: the historical bounce-back rule [35,36] in Eq. (8.106); the quadratic YMLS method, based on the quadratic curve with the additional point \(\mathbf{r}_{l^{\prime \prime}}\) (Eq. (8.121)); and the Bouzidi-Firdaouss-Lallemand (BFL)
model [37] in Eqs. (8.113) and (8.116), or in Eqs. (8.117) and (8.118), which uses the slightly different interpolation scheme. The two different procedures are adopted for \(\Delta_{w} \leq 1 / 2\) and \(\Delta_{w}>1 / 2\) in order not to lose the accuracy of the interpolation.

Next, we specify the treatment at the upstream and downstream surfaces. At the upstream surface, the equilibrium distribution with a given uniform velocity \(U\) is specified. On the other hand, the extrapolation condition, which is widely used in numerical analysis methods, may be employed at the downstream boundary surface. As will be shown in Chapter 8, the extrapolation method regards the last three values at \(\mathbf{r}_{N-2}, \mathbf{r}_{N-1}\), and \(\mathbf{r}_{N}\) as having a linear relationship, expressed as
\[
\begin{equation*}
f_{\bar{\alpha}}\left(\mathbf{r}_{N}, t+\Delta t\right)=2 f_{\bar{\alpha}}\left(\mathbf{r}_{N-1}, t+\Delta t\right)-f_{\bar{\alpha}}\left(\mathbf{r}_{N-2}, t+\Delta t\right) \tag{7.7}
\end{equation*}
\]
in which \(\bar{\alpha}\) is the direction leaving the outer boundary toward the inside of the simulation region.

Similarly, the zero-gradient condition may be applicable, and in this condition the differential away from the boundary is regarded as zero:
\[
\begin{equation*}
f_{\bar{\alpha}}\left(\mathbf{r}_{N}, t+\Delta t\right)=f_{\bar{\alpha}}\left(\mathbf{r}_{N-1}, t+\Delta t\right) \tag{7.8}
\end{equation*}
\]

This condition is inferior to the previous extrapolation in accuracy but superior on the point of divergence. In addition, the uniform flow condition is employed, in which a uniform flow is assumed outside the simulation region.

Finally, the outer side boundary surfaces of the simulation region are specified. If the simulation region is sufficiently large compared with the cylinder diameter, the periodic boundary condition, which is generally used in molecular simulations, is applicable. With this condition, the particle distribution function at the upper surface in Figure \(7.1,\left.f_{\alpha}(x, y, t)\right|_{\text {upper }}(\alpha=0,1, \ldots, 8)\), is regarded as equal to \(\left.f_{\alpha}(x, y, t)\right|_{\text {lower }}\) at the lower surface. Also, the equilibrium distribution in Eq. (7.2) and the bounce-back rule may be applied at both side boundaries. However, these boundary models may cause significant distortion of the flow field, unless a sufficiently large simulation region is employed. The most effective method for removing the influences of the outer boundary surfaces is expected to be the extrapolation condition. Hence, we next discuss the relative accuracy of the uniform flow condition (i.e., the equilibrium distribution condition), the extrapolation condition, and the zero-gradient condition.

\subsection*{7.4 Various Treatments in the Simulation Program}

\subsection*{7.4.1 Definition and Evaluation of the Drag Coefficient}

The cylinder located in the fluid acts as a resistance to the smooth fluid flow. The drag coefficient \(C_{\mathrm{D}}\) for a uniform flow past a two-dimensional circular cylinder can be evaluated using the force \(F\) per unit length in the flow direction exerted by the ambient fluid, defined as
\[
\begin{equation*}
C_{\mathrm{D}}=\frac{F}{\rho U^{2} D / 2} \tag{7.9}
\end{equation*}
\]
in which \(\rho\) is the density of the fluid, \(U\) is the uniform flow velocity, and \(D\) is the cylinder diameter.

We now show the method of evaluating \(F\). It is assumed that the point \(\mathbf{r}_{l}^{\text {cyl }}\) is the nearest neighbor site in the liquid to the cylinder surface, and the neighbor lattice point from the site in the \(\alpha\)-direction is inside the cylinder. The momentum toward the cylinder surface from \(\mathbf{r}_{l}^{\text {cyl }}\) at time \(t\) is \(\mathbf{c}_{\alpha_{l}}{ }^{\text {cyl }} \tilde{f}_{\alpha_{l}}^{\text {cyl }}\left(\mathbf{r}_{l}^{\text {cyl }}, t\right) \Delta x \Delta y\), and that after the collision with the cylinder surface at \((t+\Delta t)\) is \({ }^{l}-\mathbf{c}_{\alpha_{l}}{ }_{l} f_{\alpha_{l}}\left(\mathbf{r}_{l}^{\mathrm{cyl}}, t+\Delta t\right) \Delta x \Delta y\). The change in the momentum during the time interval \(\Delta t\) is equal to the impulse \(\mathbf{F}_{\alpha_{l}}\) cyl \(\Delta t\). Hence, \(\mathbf{F}_{\alpha_{l}^{\text {cyl }}} \Delta t\) can be obtained as
\[
\begin{equation*}
\mathbf{F}_{\alpha_{l}^{\text {cyl }}}=\left\{\mathbf{c}_{\alpha_{l}^{\text {cy }}} \tilde{f}_{\alpha_{l}^{\text {cyl }}}\left(\mathbf{r}_{l}^{\text {cyl }}, t\right) \Delta x \Delta y+\mathbf{c}_{\alpha_{l}^{\text {cy }}} \tilde{\sigma}_{\alpha_{l}^{\text {cyl }}}\left(\mathbf{r}_{l}^{\text {cyl }}, t+\Delta t\right) \Delta x \Delta y\right\} / \Delta t \tag{7.10}
\end{equation*}
\]

The force acting on the cylinder by the fluid \(\mathbf{F}\) can be evaluated by summing the contributions from the neighbor lattice sites interacting with the cylinder as
\[
\begin{equation*}
\mathbf{F}=\sum_{l} \sum_{\alpha_{l}^{\mathrm{cy} 1}} \mathbf{F}_{\alpha_{l}^{\mathrm{cyl}}} \tag{7.11}
\end{equation*}
\]

In the present flow, the absolute value of \(F=|\mathbf{F}|\) is used to calculate the drag coefficient in Eq. (7.9).

The flow field and the drag coefficient have already been obtained theoretically and numerically as a function of the Reynolds number \(R e\) for a uniform flow past a cylinder, so the accuracy of the present results can be evaluated by comparison with such theoretical and numerical solutions. The Reynolds number \(R e\) is defined as \(R e=D U / \nu\), in which the kinematic viscosity \(\nu\) is expressed in Eq. (8.94) for the D2Q9 model. That is,
\[
\begin{equation*}
\nu=\frac{\Delta t c^{2}}{3}(\tau-1 / 2) \tag{7.12}
\end{equation*}
\]

\subsection*{7.4.2 Choice of the Procedures by Coloring Lattice Sites}

All the lattice points can be classified into one of several groups. That is, the group is composed of (1) lattice points at the upstream and downstream boundary surfaces, (2) lattice points at the outer side boundary surfaces, (3) lattice points interacting with the cylinder, (4) lattice points inside the cylinder, and (5) all other usual lattice points. In the simulation program, this discrimination is expressed using the function "color." The following values are given to color \((i)\) in the sample program:
\(\operatorname{color}(i)=0 \quad: \quad\) all the lattice points in the simulation region not included below \(\operatorname{color}(i)=1 \quad: \quad\) lattice points at the upstream boundary (both end points are included)
\(\operatorname{color}(i)=2 \quad: \quad\) lattice points at the downstream boundary (both end points are included)
\(\operatorname{color}(i)=3 \quad: \quad\) lattice points at the outer upper boundary surfaces (neither end point is included)
\(\operatorname{color}(i)=4 \quad: \quad\) lattice points at the outer lower boundary surfaces (neither end point is included)
\(\operatorname{color}(i)=5 \quad: \quad\) lattice points interacting with the cylinder
\(\operatorname{color}(i)=6 \quad: \quad\) lattice points inside the cylinder, interacting with the neighboring outside points
\(\operatorname{color}(i)=7 \quad: \quad\) lattice points inside the cylinder, not interacting with the neighboring outside points

In the present study, since the cylinder is fixed and does not move, the above checking procedure is only required once before starting the main loop in the program. The introduction of the color variable is useful to make the logical flow clear in the program, which is important in developing a simulation program. Moreover, this approach is directly applicable when the dispersed particles move with time, so that the checking procedure must be regularly undertaken until the end of the simulation.

\subsection*{7.4.3 Treatment of Interactions on the Cylinder Surface}

In order to use the above-mentioned boundary conditions at the cylinder surface, the quantity \(\Delta_{w}=\left|\mathbf{r}_{l}-\mathbf{r}_{w}\right| /\left|\mathbf{r}_{l}-\mathbf{r}_{p}\right|\) must be evaluated. Since the point \(\mathbf{r}_{w}\) is at the cylinder surface, the following equation has to be satisfied:
\[
\begin{equation*}
\left|\left(1-\Delta_{w}\right)\left(\mathbf{r}_{l}-\mathbf{r}_{p}\right)+\mathbf{r}_{p}-\mathbf{r}_{\mathrm{cyl}}\right|=R_{\mathrm{cyl}} \tag{7.13}
\end{equation*}
\]
in which \(R_{\text {cyl }}\) is the cylinder radius ( \(R_{\text {cyl }}=D / 2\) ), and \(\mathbf{r}_{\mathrm{cyl}}\) is the cylinder position vector ( \(\mathbf{r}_{\mathrm{cy1}}=0\) in the present exercise). Equation (7.13) reduces to an easily solved quadratic equation:
\[
\begin{equation*}
\Delta_{w}=\frac{\left(\hat{\mathbf{r}}_{l}^{2}-\hat{\mathbf{r}}_{p} \cdot \hat{\mathbf{r}}_{l}\right)-\sqrt{\left(\hat{\mathbf{r}}_{l}^{2}-\hat{\mathbf{r}}_{p} \cdot \hat{\mathbf{r}}_{l}\right)^{2}-\left(\hat{\mathbf{r}}_{l}-\hat{\mathbf{r}}_{p}\right)^{2}\left(\hat{\mathbf{r}}_{l}^{2}-R_{\mathrm{cyl}}^{2}\right)}}{\left(\hat{\mathbf{r}}_{l}-\hat{\mathbf{r}}_{p}\right)^{2}} \tag{7.14}
\end{equation*}
\]
in which the notation of \(\hat{\mathbf{r}}_{l}=\mathbf{r}_{l}-\mathbf{r}_{\text {cyl }}\) and \(\hat{\mathbf{r}}_{p}=\mathbf{r}_{p}-\mathbf{r}_{\text {cyl }}\) is used for simplification. In simulations, the value of \(\Delta_{w}\) for all pairs of the two interacting points on either side of the cylinder surface is calculated and saved.

\subsection*{7.4.4 Evaluation of the Velocity and Density}

In order to employ the equilibrium distribution function, the macroscopic velocity \(\mathbf{u}\) and density \(\rho\) at an arbitrary lattice point must be evaluated. The definition of the lattice velocities and the coordinate system are shown in Figure 1.4 and Figure 7.1, respectively. First, the density \(\rho(\mathbf{r}, t)\) at an arbitrary point \(\mathbf{r}\) is evaluated from

Eq. (7.4), and then the velocity \(\mathbf{u}=\left(u_{x}, u_{y}\right)\) is calculated from the following equations:
\[
\begin{align*}
\rho(\mathbf{r}, t) u_{x}(\mathbf{r}, t)= & c\left(f_{1}(\mathbf{r}, t)-f_{2}(\mathbf{r}, t)\right)+\sqrt{2} c\left(\frac{\sqrt{2}}{2} f_{5}(\mathbf{r}, t)-\frac{\sqrt{2}}{2} f_{6}(\mathbf{r}, t)\right) \\
& +\sqrt{2} c\left(\frac{\sqrt{2}}{2} f_{7}(\mathbf{r}, t)-\frac{\sqrt{2}}{2} f_{8}(\mathbf{r}, t)\right) \\
= & c\left(f_{1}(\mathbf{r}, t)-f_{2}(\mathbf{r}, t)+f_{5}(\mathbf{r}, t)-f_{6}(\mathbf{r}, t)+f_{7}(\mathbf{r}, t)-f_{8}(\mathbf{r}, t)\right)  \tag{7.15}\\
\rho(\mathbf{r}, t) u_{y}(\mathbf{r}, t)= & c\left(f_{3}(\mathbf{r}, t)-f_{4}(\mathbf{r}, t)+f_{5}(\mathbf{r}, t)-f_{6}(\mathbf{r}, t)-f_{7}(\mathbf{r}, t)+f_{8}(\mathbf{r}, t)\right) \tag{7.16}
\end{align*}
\]

\subsection*{7.5 Nondimensionalization of the Basic Equations}

In simulations, it is usual practice for each quantity to be nondimensionalized and for the nondimensionalized equations to be treated. Since this has been explained in Section 8.6, we briefly show the nondimensionalized results. Here time is nondimensionalized by \(\Delta t\), velocities by \(c(=\Delta x / \Delta t)\), and the particle distribution function by \(\rho_{0}\), so that the basic equation (7.1) is expressed in nondimensional form as
\[
\left.\begin{array}{l}
f_{\alpha}^{*}\left(\mathbf{r}^{*}+\mathbf{c}_{\alpha}^{*}, t^{*}+1\right)=\tilde{f}_{\alpha}^{*}\left(\mathbf{r}^{*}, t^{*}\right)  \tag{7.17}\\
\tilde{f}_{\alpha}^{*}\left(\mathbf{r}^{*}, t^{*}\right)=f_{\alpha}^{*}\left(\mathbf{r}^{*}, t^{*}\right)+\frac{1}{\tau}\left\{f_{\alpha}^{(0) *}\left(\mathbf{r}^{*}, t^{*}\right)-f_{\alpha}^{*}\left(\mathbf{r}^{*}, t^{*}\right)\right\}
\end{array}\right\}
\]
in which
\[
\begin{align*}
& f_{\alpha}^{(0)^{*}}=w_{\alpha}^{*} \rho\left\{1+3 \mathbf{c}_{\alpha}^{*} \cdot \mathbf{u}^{*}+\frac{9}{2}\left(\mathbf{c}_{\alpha}^{*} \cdot \mathbf{u}^{*}\right)^{2}-\frac{3}{2} u^{* 2}\right\}  \tag{7.18}\\
& \left|\mathbf{c}_{\alpha}^{*}\right|= \begin{cases}0 & \text { for } \alpha=0 \\
1 & \text { for } \alpha=1,2,3,4 \\
\sqrt{2} & \text { for } \alpha=5,6,7,8\end{cases} \tag{7.19}
\end{align*}
\]

In these equations, \(w_{\alpha}\) has already been shown in Eq. (7.3), and \(\tau\) is originally a nondimensional quantity. Note that the relationship \(c^{*}=1\) has been taken into account in the above derivations. The nondimensional expressions of Eq. (7.4) are:
\[
\begin{equation*}
\rho^{*}\left(\mathbf{r}^{*}, t^{*}\right)=\sum_{\alpha=0}^{8} f_{\alpha}^{*}\left(\mathbf{r}^{*}, t^{*}\right), \quad \rho^{*}\left(\mathbf{r}^{*}, t^{*}\right) \mathbf{u}^{*}\left(\mathbf{r}^{*}, t^{*}\right)=\sum_{\alpha=0}^{8} f_{\alpha}^{*}\left(\mathbf{r}^{*}, t^{*}\right) \mathbf{c}_{\alpha}^{*} \tag{7.20}
\end{equation*}
\]

Since the velocities of fluid particles are nondimensionalized by the lattice speed \(c\), the nondimensional speed of sound \(c_{\mathrm{s}}^{*}\) is expressed as \(c_{\mathrm{s}}^{*}=1 / \sqrt{3}\) in Eq. (8.46). Hence, it should be noted that one needs to treat flow problems for a macroscopic velocity \(u^{*}\) of \(u^{*} \ll 1\), unless the density significantly varies in the simulation region. The nondimensional kinematic viscosity, which is necessary for evaluating the Reynolds number, is expressed as \(\nu^{*}=(2 \tau-1) / 6\).

\subsection*{7.6 Conditions for Simulations}

\subsection*{7.6.1 Initial Distribution}

As an initial distribution, the equilibrium distribution with a uniform velocity \(U\) and density \(\rho_{0}\) is used here for the inner simulation region, as well as for the entrance boundary surface. It is possible to use an equilibrium distribution with zero velocity, but this may induce a divergence of the system with time. It is important to discuss the validity of the various initial conditions adopted in order to clarify the characteristics of the simulation program.

\subsection*{7.6.2 Parameters for Simulations}

The solution of the flow field and the drag coefficient for the case of a uniform flow past a two-dimensional circular cylinder has already been solved theoretically for \(R e \leq 1\) and numerically for \(R e \gtrsim 1\). Since a pair of stable vortices appears behind the cylinder in the range of \(7 \lesssim \operatorname{Re} \leqq 40\), it is quite reasonable to focus on a pair of vortices for \(7 \leqslant R e \leq 40\); these vortices are very sensitive to the type of surface model employed. Hence, the present simulations have been conducted within the range of \(1 \leq R e \leq 20\). The Reynolds number can be expressed as \(R e=U^{*} D^{*} /((2 \tau-1) / 6)\), so that in order to take a large Reynolds number, the relaxation time \(\tau\) is chosen as \(\tau \simeq 1 / 2\). The uniform velocity \(U^{*}\) cannot be large due to the restriction of the use of a slow uniform velocity compared with the speed of sound. From these considerations, the uniform flow velocity is taken as \(U^{*}=0.005-0.01\) and the relaxation time as \(\tau=0.515-0.8\). The cylinder diameter \(D^{*}\) is \(D^{*}=3-20\), and the size of the simulation region is taken as \(2 h_{0}^{*}=4 D^{*}-14 D^{*}\) and \(2 l_{0}^{*}=3 D^{*}-11 D^{*}\). The influence of the boundary model will appear to be more significant for a smaller simulation region.

\subsection*{7.7 Results of Simulations}

It is known that the flow field for outer flow problems is significantly distorted unless a sufficiently large simulation region is used. The results for a relatively small simulation region \(\left(2 h_{0}^{*}, 2 l_{0}^{*}\right)=\left(7 D^{*}, 6 D^{*}\right)\) are shown in Figure 7.4 for \(\operatorname{Re}=20\). Figures 7.4 A and B depict the uniform flow condition and the zero-gradient


Figure 7.4 Dependence of the flow field on the outer boundary conditions for \(R e=20\); the bounce-back rule is used for the cylinder surface: (A) uniform flow condition, (B) zero-gradient condition, and (C) numerical solution of Navier-Stokes equation.
condition, respectively, and Figure 7.4C shows the Navier-Stokes solution. The historical bounce-back rule has been used for the treatment of the interactions with the cylinder. In the case of \(R e=20\), the length of the pair of vortices is approximately the same as the cylinder diameter, and the formation of these vortices is quite sensitive to the outer boundary condition that has been adopted. The result in Figure 7.4C is the numerical solution obtained by the ordinary finite difference method, and it can be regarded as an exact solution. As shown in Figure 7.4A, for the uniform flow condition (the equilibrium distribution case), the pair of vortices behind the cylinder is significantly distorted and shortened, and the fluid flows along and does not tend to cross the outer side boundary surfaces. This is quite understandable in this case, because a uniform flow is assumed just outside the boundary surfaces; therefore, the flow crossing the boundaries does not tend to arise. The pair of distorted vortices is due to a similar reason-the flow crossing the downstream boundary surface is


Figure 7.5 Dependence of the flow field on the size of the simulation region ( \(R e=20\), the bounce-back method): (A) \(\left(2 h_{0}^{*}, 2 l_{0}^{*}\right)=\left(6 D^{*}, 5 D^{*}\right)\); (B) \(\left(2 h_{0}^{*}, 2 l_{0}^{*}\right)=\left(9 D^{*}, 7 D^{*}\right)\); and (C) \(\left(2 h_{0}^{*}, 2 l_{0}^{*}\right)=\left(14 D^{*}, 11 D^{*}\right)\).
significantly distorted. These results clearly show that a uniform flow condition has the tendency to distort the flow field significantly unless a sufficiently large simulation region is used, although this condition is found to exhibit less divergence in the calculation procedures during a simulation run. In contrast, the result for the zerogradient condition shown in Figure 7.4B is in agreement with the Navier-Stokes solution, but the pair of vortices is significantly distorted. As discussed in the following, this is again due to the use of a small simulation region. For the extrapolation boundary condition, it was found that stable solutions could not be obtained because the flow field diverged during the advance of the time steps.

Figure 7.5 shows the influence of the size of the simulation region on the formation of a pair of vortices for the three cases of \(\left(2 h_{0}^{*}, 2 l_{0}^{*}\right)=\left(6 D^{*}, 5 D^{*}\right),\left(9 D^{*}, 7 D^{*}\right)\), and \(\left(14 D^{*}, 11 D^{*}\right)\), which correspond to Figure \(7.5 \mathrm{~A}-\mathrm{C}\), respectively. The bounceback rule has been used for the collision with the cylinder, and the zero-gradient
condition has been used for the boundaries of the simulation box. The Reynolds number \(R e\) is 20, as in the previous case. For the case of our smallest simulation region, shown in Figure 7.5A, the pair of vortices unreasonably lengthens in the downstream area due to the significantly small region used. The results obtained by the lattice Boltzmann method tend to approach the Navier-Stokes solution shown in Figure 7.4C with the size of the simulation region, and the flow field is in agreement with the exact solution. This clearly demonstrates the importance of grasping the influence of this effect by investigating several cases with different size simulation regions.

Figure 7.6 shows the influence of the boundary model employed at the cylinder surface on the formation of the pair of vortices. Figure 7.6A-D illustrate the bounce-back rule, the linear YMLS method, the liner BFL method, and the Navier-Stokes solution. These results were obtained for \(R e=20\), the simulation region \(\left(2 h_{0}^{*}, 2 l_{0}^{*}\right)=\left(14 D^{*}, 11 D^{*}\right)\), and the zero-gradient condition for the outer boundary surfaces. The quadratic YMLS and BFL methods give rise to a divergence of the flow field. As clearly seen in Figure 7.6, no significant difference can be observed among these flow fields, and these three boundary models show agreement concerning the formation of the pair of vortices behind the cylinder. Qualitative and quantitative agreement with the exact solution was also confirmed


Figure 7.6 Dependence of the flow field on the surface models on the cylinder surface ( \(R e=20\), the zero-gradient condition): (A) bounce-back rule, (B) linear YMLS method, (C) linear BFL method, and (D) numerical solution of Navier-Stokes equation.
concerning the drag coefficient and the velocity distributions, although not shown here. In particular, agreement for the linear YMLS method is good, which may indicate there is some advantage to be found in the application of this boundary method for particle dispersions. As previously discussed, this is because the method that uses the fewer lattice points in the interpolation scheme is the most desirable.

\subsection*{7.8 Simulation Program}

The following list is an example simulation program written in FORTRAN for the case discussed in this chapter, and it explains the significance of the important variables used in the program:
\begin{tabular}{|c|c|}
\hline \(R X(I, J), R Y(I, J)\) & \((x, y)\) components of the position \(\mathbf{r}_{i, j}^{*}\) of lattice site \((i, j)\)
\[
(I=0,1, \ldots, P X ; J=0,1, \ldots, P Y)
\] \\
\hline VX(I,J), VY(I,J) & Macroscopic velocity \(\mathbf{u}_{i, j}^{*}\) at lattice site ( \(i, j\) ) \\
\hline RHO (I, J) & Macroscopic density at lattice site (i,j) \\
\hline F (I, J, K) & Particle distribution function \((\mathrm{K}=0,1, \ldots, 8)\) at lattice site (i,j) \\
\hline FTILD (I, J, K) & Particle distribution function after the collision at lattice ( \(i, j\) ) \\
\hline W (K) & Weighting constant \(w_{\alpha}\) \\
\hline CVEL ( \(2, \mathrm{~K}\) ) & Lattice velocity \(\mathbf{c}_{\alpha}\) (CVEL ( \(1, \mathrm{~K}\) ) is \(x\)-component, and CVEL \((2, \mathrm{~K})\) is \(y\)-component) \\
\hline XL, YL & Dimensions of the simulation region in the ( \(x, y\) ) directions \\
\hline DNS0 & Density of an inflow fluid \\
\hline DCYL & Diameter of the cylinder \\
\hline UVELX & Uniform flow velocity \(U^{*}\) \\
\hline RE & Reynolds number Re \\
\hline TAU & Relaxation time \(\tau\) \\
\hline RXCYL, RYCYL & Center of the cylinder (equal to the origin in this practice) \\
\hline ICYL, JCYL & Lattice site (in the ( \(x, y\) ) direction) representing the cylinder center \\
\hline COLOR(ITH) & Color function representing the type of lattice site \((i, j)\)
\[
(I T H=(1+P X) * J+I+1)
\] \\
\hline TBLNAM (II) & Save the name of lattice sites interacting with the cylinder \\
\hline POSINTBL (ITH) & Save the order in which each lattice site appears in TBLNAM \\
\hline TBLPOS(II) & Save the order in which quantities relate to lattice site TBLNAM (II) appear in the variable TBLDW \\
\hline TBLNUM (II) & Save the number of velocities interacting with the cylinder concerning lattice site TBLNAM (II) \\
\hline TBLDW(III) & Save the value of \(\Delta_{w}\) \\
\hline TBLAL (III) & Save the name of the lattice directions \(\alpha\) interacting with the cylinder \\
\hline
\end{tabular}

In order to assist the reader in understanding the program, explanatory statements have been added to the important features.



```

0237 C
0239
0240 C
0241
0242 C
0243 C
0244 CCC
0245 CCC
0246 CCC
0247 CCC
0248 CCC
0249 CCC
0250 CCC
0251 CCC
0252 CCC
0253 CCC
0254 C
0255
0256 C
0257 C
0258
0259 C
0260 C
0261
0262 C
0263 C
0264
0265
0266
0267
0268
0269
0270
0 2 7 1
0272
0273
0274 C
0275
0276
0277
0278
0278
0279
0280
0281 C
0282 C
0283 C
0284
0285
0286
0 2 8 7
0288 C
0289
0290
0 2 9 1
0292
0292
0293
0294
0295
0296
0297 C
0 2 9 8
0299 C
0300 C
0301 C
0302 C
0303 C
0304
0305 C
0306 C
0307 C
0308
0309 C
0310
0311 C
0312 C
0313
0314
0315 C
0

```
```

M,
C
M,
M,
M,
M,
M,
M,
M,
M,
M,
8 CONTINUE
9 CONTINUE
CONTINUE
WRITE (NP,10) DNSO, TAU, DX, DT, CLAT, ALPHAMX
WRITE (NP,11) PX, PY, PXY, XL, YL, XL1, YL1, XL2, YL2,
\& UVELX, UVELY
WRITE(NP,13) DCYL, ITREECYL, ITREESID, ITREEDWN
WRITE (NP, 14) NTIMEMX, NGRAPH, NANIME,' NSMPLCD, NTHROW, NSMPL1
WRITE (NP,15) CDFORCE0, RE
WRITE (NP,15) CDFORCEO, RE
M,
M,
M,
C
END IF
C
--- INITIALIZE(1) ---
NSMPLCD = 0
DO 20 I=1, NTIMEMX
CDFORCE'(I) = 0.DO
20 CONTINUE
C
--- INITIALIZE(2) ---
DO 30 J=0, PY
DO 30 J=0, PY
VXSUM(I,J) = 0.DO
VYSUM(I,J) = 0.D0
VYSUM(I,J)}=0.D
25 CONTINUE
30 CONTINUE
CONTINUE
--- INITIALIZE (2) ---
0296
296 C
C
NANMCTR = 0
-The following procedure is conducted in the main
loop: (1) the velocities at each lattice point are
evaluated in VELCAL, (2) the collision treatment is
carried out in COLLPROC, (3) the transfer of the
distribution function is conducted in MOVEPROC,
and (4) the BC treatment is conducted in BCPROC.

```

```

 DO 1000 NTIME = 1,NTIMEMX
 --- CAL. VEL AT EACH LAT. POS. ---
 VX(*,*),VY(*,*),RHO (*,*)
 -
 CALL VELCAL(COLOR , ITREESID, ITREEDWN, NTIME)
 CALL VELCAL(COLOR , ITREESID, ITREEDWN, NTIME)
 CALL COLLPROC(COLOR , ALPHAMX)
 COLOR , ALPHAMX)
 C
\Omega
NSMPLCD = NSMPLCD
F(*,*,8) WITHOUT BC
CALL MOVEPROC(PX , PY , ANTIALPH , RHO, DNSO , ITREECYL)
ALPH ', RHO , DNSO ' ITREECYL)

```
\begin{tabular}{|c|c|c|}
\hline 0316 & C & FX(*,*, 8) FOR BC \\
\hline 0317 & & CALL BCPROC ( PX , PY , DNSO , ALPHAMX , ITREESID , \\
\hline 0318 & & \& ITREEDWN ) \\
\hline 0319 & C & \\
\hline 0320 & C & --- DATA OUTPUT (1) FOR GRAPHICS --- \\
\hline 0321 & C & \\
\hline 0322 & & IF ( MOD (NTIME, NGRAPH) .EQ. O ) THEN \\
\hline 0323 & C & \\
\hline 0324 & & CALL VELCAL ( COLOR , ITREESID , ITREEDWN , NTIME ) \\
\hline 0325 & C & \\
\hline 0326 & & NOPT = NOPT + 1 \\
\hline 0327 & & WRITE (NOPT, 201) PX, PY, ALPHAMX \\
\hline 0328 & & WRITE (NOPT,202) ( ( \(\mathrm{F}(\mathrm{I}, \mathrm{J}, \mathrm{K}), \mathrm{K}=0\), ALPHAMX ), J=0,PY ), \\
\hline 0329 & &  \\
\hline 0330 & & WRITE (NOPT, 204) ( \(\mathrm{RXX}^{\text {( }} \mathrm{I}, \mathrm{J}\) ), J \(=0, \mathrm{PY}\) ), I=0, PX ) \\
\hline 0331 & & WRITE (NOPT, 204) ( (RY ( I, J), J=0, PY) , I=0, PX ) - The velocity data, etc., are \\
\hline 0332 & & WRITE (NOPT, 206) ( (VX ( I, J), J=0, PY), I=0, PX ) written out at every NGRAPH \\
\hline 0333 & & WRITE (NOPT, 206) ( \((\mathrm{VY}(\mathrm{I}, \mathrm{J}), \mathrm{J}=0, \mathrm{PY}), \mathrm{I}=0, \mathrm{PX})\) ) time steps for the post \\
\hline 0334
0335 & C & WRITE (NOPT, 208) ( (RHO (I, J), J=0,PY), I=0, PX ) processing analysis. \\
\hline 0336 & & CLOSE (NOPT, STATUS= 'KEEP') \\
\hline 0337 & & END IF \\
\hline 0338 & C & -- DATA OUTPUT (2) FOR ANIMATION --- \\
\hline 0339 & C & \\
\hline 0340 & & IF ( MOD (NTIME, NANIME) .EQ. O ) THEN \\
\hline 0341 & C & \\
\hline 0342 & & CALL VELCAL ( COLOR , ITREESID , ITREEDWN , NTIME ) \\
\hline 0343 & C & -The velocity data, etc., are written out at every \\
\hline 0344 & & \[
\text { NANMCTR }=\text { NANMCTR }+1
\] \\
\hline 0345 & & CALL GRAPHVEL ( NANMCTR ) NANIME time steps for making an animation. \\
\hline 0346 & C & \\
\hline 0347 & & END IF \\
\hline 0348 & C & \\
\hline 0349 & C & --- DATA BETWEEN NTIME=0 AND --- \\
\hline 0350 & C & --- =NTHROW ARE THROWN AWAY. --- \\
\hline 0351 & & IF ( NTIME .LT. NTHROW ) GOTO 1000 \\
\hline 0352 & C & \\
\hline 0353 & C & \\
\hline 0354 & & IF ( NTIME .EQ. NTHROW ) THEN \\
\hline 0355 & C & +++ INITIALIZE +++ \\
\hline 0356 & & NSMPLCD \(=0\) \\
\hline 0357 & & DO \(302 \mathrm{I}=1\), NTIMEMX \\
\hline 0358 & & CDFORCE (I) \(=0 . \mathrm{DO}\) \\
\hline 0359 & 302 & CONTINUE \\
\hline 0360 & C & \\
\hline 0361 & & DO 310 J=0, PY \\
\hline 0362 & & DO \(305 \mathrm{I}=0, \mathrm{PX}\) \\
\hline 0363 & & \(\operatorname{VXSUM}(\mathrm{I}, \mathrm{J})=0 . \mathrm{DO}\) \\
\hline 0364 & & \(\operatorname{VYSUM}(\mathrm{I}, \mathrm{J})=0 . \mathrm{DO}\) \\
\hline 0365 & & \(\operatorname{RHOSUM}(I, J)=0 . . \mathrm{DO}\) \\
\hline 0366 & 305 & - In order to evaluate average values, the \\
\hline 0367 & 310 & CONTINUE \\
\hline 0368 & & \begin{tabular}{l}
\[
\text { NSMPLVEL } \quad=0
\] \\
velocity data, etc., are sampled at every
\end{tabular} \\
\hline 0369 & C & NSMPL1 time steps. \\
\hline 0370 & & GOIO 1000 \\
\hline 0371 & C & END IF ___ CAI SUM OF VELOCITTES - \\
\hline 0373 & C & CAL. SUM OF VELOCITIES \\
\hline 0374 & & IF ( MOD (NTIME, NSMPL1) .EQ. 0 ) THEN \\
\hline 0375 & & NSMPLVEL = NSMPLVEL + 1 \\
\hline 0376 & & CALL VELCAL ( COLOR , ITREESID , ITREEDWN , NTIME ) \\
\hline 0377 & C & \\
\hline 0378 & & DO \(500 \mathrm{~J}=0, \mathrm{PY}\) \\
\hline 0379 & & DO 490 I=0, PX \\
\hline 0380 & & \(\operatorname{VXSUM}(\mathrm{I}, \mathrm{J})=\operatorname{VXSUM}(\mathrm{I}, \mathrm{J})+\operatorname{VX}(\mathrm{I}, \mathrm{J})\) \\
\hline 0381 & & \(\operatorname{VYSUM}(\mathrm{I}, \mathrm{J})=\operatorname{VYSUM}(\mathrm{I}, \mathrm{J})+\operatorname{VY}(\mathrm{I}, \mathrm{J})\) \\
\hline 0382 & & \(\operatorname{RHOSUM}(I, J)=\operatorname{RHOSUM}(I, J)+\operatorname{RHO}(I, J)\) \\
\hline 0383 & 490 & CONTINUE \\
\hline 0384 & 500 & CONTINUE \\
\hline 0385 & & END IF \\
\hline 0386 & C & \\
\hline 0387 & C & \\
\hline 0388 & 1000 & CONTINUE \\
\hline 0389 & C & \\
\hline 0390 & C &  \\
\hline 0391 & C &  \\
\hline 0392 & C & \\
\hline 0393 & C & \\
\hline 0394 & C & --- CAL. CD --- \\
\hline 0395 & & \(\mathrm{C} 1=0 . \mathrm{D} 0\) \\
\hline 0396 & & DO \(1100 \mathrm{I}=1\), NSMP LCD \\
\hline
\end{tabular}
```

0398 1100 CONTINUE
0399 CD = (C1/DBLE (NSMPLCD)) / CDFORCE0
C
C
402
0403
0404
0405 C
0 4 0 6 ~ C ~ - - - ~ D A T A ~ O U T P U T ~ (3) ~ - - - ~
0407 WRITE (11,1101) DNS0, TAU, DX, DT, CLAT, ALPHAMX
0408 WRITE (11,1103) PX, PY, PXY, XL, YL, XL1, XL2, YL1, YL2
0409 WRITE (11,1105) UVELX, UVELY
0410 WRITE (11,1107) DCYL, ITREECYL, ITREESID, ITREEDWN
0411
0412
0413 C
C
WRITE (11,1109) NTIMEMX, NGRAPH, NANIME, NSMPLCD, NTHROW, NSMPL1
WRITE (11,1111) CD, RE
WRITE (12,1121) PX, PY
WRITE (12,1123) ((VXSUM(I,J),J=0,PY), I=0,PX
WRITE (12,1123) ((VYSUM(I,J),J=0,PY), I=0,PX
WRITE (12,1125) ((RHOSUM(I,J),J=0,PY), I=0,PX)
C
C
*

```

```

C
WRITE (12,1133) CD , RE , NSMPLCD
WRITE (12,1135) (CDFORCE (I), I=1, NSMPLCD)
C
0425
0426
0427
0428
0429
0430
0
0 4 3 1
0433
0434
0435
0435
0437
0438
0439
0440
0441
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0452
0453
0454
0455
0456
0456 208 FORMAT ((6E13.6))
0457 1101 FORMAT(5F9.4, I8)
0458 1103 FORMAT(3I8, 6F9.3)
0459 1105 FORMAT(2F11.5)
0460 1107 FORMAT(F6.2 , 3I3)
0461 1109 FORMAT (6I10)
0462 1111 FORMAT(2F12.6)
0463 1121 FORMAT(2I10)
0464 1123 FORMAT((8E10.3))
0465 1125 FORMAT((8E10.3))
0466 1131 FORMAT(/1H ,'CD99=', F10.5, 3X, 'CD=', F10.5, 3X, 'RE=', F10.5)
0467 1133 FORMAT(2F10.4, I9')
0468 1135 FORMAT((7E11.4))
0469
0470
0470
0 4 7 1 ~ C
*)
Clu
0473 C*
0474 C
0475 C**** SUB AVECAL *****
0476 SUBROUTINE AVECAL(NP, NSMPLVEL, VXSUM, VYSUM, RHOSUM,

```



0689 C
0690 C
0691
0692
0693 C
0694
0695
0696
0697 0698 C
0699
0700
0701 C
0702
0703
0704 C
0705
0706
0707
0708 C
070
0709
0710
0711
0712 C
0713
0714 C


SUBROUTINE INIDIST( DNSO , ALPHAMX )
IMPLICIT REAL*8 ( \(\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}\) ), INTEGER ( \(\mathrm{I}-\mathrm{N}\) )
COMMON /BLOCK1/ F , FTILD
COMMON /BLOCK5/ XL , YL , XL1 , YL1 , XL2 , YL2 , PX , PY , PXY

INTEGER \(P P\), \(Q Q\), KK
PARAMETER ( \(\mathrm{PP}=300, \mathrm{QQ}=400, \mathrm{KK}=8, \mathrm{PI}=3.141592653589793 \mathrm{D} 0\) )
\(R E A L * 8 \quad F(0: P P, 0: Q Q, 0: K K), \operatorname{FTILD}(0: P P, 0: Q Q, 0: K K)\)
INTEGER PX , PY , PXY , ALPHAMX
REAL*8 FEQ, CDNS0
CDNSO = DNSO
DO \(110 \mathrm{~J}=0\), PY
100 I=0, PX IF ( I.EQ.O ) THEN ELSE
\(F(I, J, K)=F E Q(0 . D 0,0 . D 0, K, C D N S O)\) \(F(I, J, K)=F E Q(\) UVELX, UVELY, K, CDNSO )
END IF
10 CONTINUE
100 CONTINUE
110 CONTINUE
RETURN
END
SUB INICOLOR ****
```

INTEGER PP , QQ , KK
PARAMETER(PP=300, QQ=400, KK=8 , PI=3.141592653589793D0)
REAL*8 RHO(0:PP,0:QQ)
REAL*8 RX(0:PP,0:QQ) , RY(0:PP,0:QQ)
REAL*8 VX(0:PP,0:QQ) , VY (0:PP,0:QQ)
INTEGER PX , PY , PXY
INTEGER PPXY
PARAMETER(PPXY=150000 , NNTBL=2200 , NNTBL2=4400, NNTBL3=4400)
INTEGER COLOR(PPXY) , POSINTBL (PPXY)
INTEGER TBLNAMIN (NNTBL3) , NTBLNAMI
REAL*8 RJDG1 , RJDG2 , RJDG2SQ , RXI , RYI , C1
REAL*8 RXIJ , RYIJ , RIJSQ
INTEGER ISITE,' IC1, IS', IE, JS, JE
DO 120 J=0, PY
DO 100 I=0, PX
ISITE = (PX+1)*J + (I+1)
POSINTBL(ISITE) = 0

```




```

1036 C
1037 C
1038
1038
1039 C
1040 C
1 0 4 1
1042
1043
1044
1045
1046 C
C
1047
1048
1049 C

```
```

C
C
MN,
INTEGER (PP, QQ, KK
REAL*8 F(0:PP,0:QQ,0:KK), FTILD(0:PP,0:QQ,0:KK)
REAL* 8 RHO (0:PP,0:QQ)
REAL*8 RX(0:PP,0:QQ) , RY(0:PP,0:QQ)
REAL*8
INTEGER PX, PY, PXY
INTEGER PPXY
PARAMETER(PPXY=150000 , NNTBL=2200 , NNTBL2=4400 , NNTBL3=4400)

```
1050
1051 C
1052
1053
1054 C
1055
1056
1057
1058
1059
1060 C
1061
1062
1063
1064
1065
1066
1066
1067
1068
1069
1070
1070
1072
1073
1074
1075
1076
1077
1077
1078
1078
1079
1080
1081
        INTEGER COLOR (PPXY)
            REAL*8 VX0, VY0, RHOO
        INTEGER ITH, ICLR
C
        DO 50 J=0, PY
        VX \((0, J)=\) UVELX
        \(\operatorname{VY}(\mathrm{O}, \mathrm{J})=\) UVELY
        \(\operatorname{RHO}(0, J)=\operatorname{DNSO}\)
    50 CONTINUE
        DO \(100 \mathrm{I}=1, \mathrm{PX}\)
        DO \(90 \mathrm{~J}=0\), PY
        \(\operatorname{ITH}=(P X+1) * J+(I+1)\)
        ICLR \(=\) COLOR (ITH)
        ICLR = COLOR(ITH)
IF ( (ICLR .EQ. 6) .OR. (ICLR .EQ. 7) ) GOTO 90
        \(V X 0=F(I, J, 1)-F(I, J, 2)+F(I, J, 5)-F(I, J, 6)\)
        \(\begin{aligned} \mathrm{VXO}=F(I, J, 1)-F(I, J, 2) & +F(I, J, 5)-F(I, J, 6) \\ & +F(I, J, 7)-F(I, J, 8)\end{aligned}\)
            VYO \(=F(I, J, 3)-F(I, J, 4)+F(I, J, 7)-F(I, J, 8)\)
        \& \(\quad+\mathrm{F}(\mathrm{I}, \mathrm{J}, 8)-\mathrm{F}(\mathrm{I}, \mathrm{J}, 7)\)
        RHOO \(=F(I, J, 0)+F(I, J, 1)+F(I, J, 2)+F(I, J, 3)+F(I, J, 4)\)
        \& \(\quad+F(I, J, 5)+F(I, J, 6)+F(I, J, 7)+F(I, J, 8)\)
        VX( I, J) = VXO /RHOO
        \(\operatorname{VY}(I, J)=\operatorname{VYO} /\) RHOO
        \(\operatorname{RHO}(I, J)=\) RHOO
        IF ( (ICLR.EQ.1) .OR. (ICLR.EQ.2) .OR. (ICLR.EQ.3) .OR.
    \& (ICLR.EQ.4) ) THEN

        END IF
    90 CONTINUE
    100 CONTINUE
    PX --- INSIDE AREA ---
                                    - The local velocities and
        densities are calculated
        inside the cylinder from Eq.
                                    (7.20).
                                    --- Bupstream ---
        C
                                    - The densities are assumed to
                be not smaller than the given
C
    IF ( (ITREESID.EQ.3).OR.(ITREESID.EQ.4).OR.(ITREESID.EQ.5) ) THEN
        IF ( (ITREESID.EQ. 3 )
DO \(120 \mathrm{I}=1, \mathrm{PX}-1\)
            IF ( ITREESID.EQ.3) THEN
                F ( ITREESID.EQ. 3 )
\(\mathrm{VX}(\mathrm{I}, \mathrm{PY})=\) UVELX
                    \(\operatorname{VY}(\mathrm{I}, \mathrm{PY})=\) UVELY
                    \(\operatorname{RHO}(I, P Y)=\) DNSO
                    RHO (I, PY) \(=\) DNSO
\(\operatorname{VX}(I, ~ 0)=\operatorname{UVELX}\)
                    \(\operatorname{VX}(I, 0)=\operatorname{UVELX}\)
\(\operatorname{VY}(I, 0)=\operatorname{UVELY}\)
                    \(\operatorname{RHO}(I, 0)=\operatorname{DNSO}\)
            ELSE IF ( ITREESID.EQ.4) THEN
                \(\mathrm{VX}(\mathrm{I}, \mathrm{PY})=\mathrm{VX}(\mathrm{I}, \mathrm{PY}-1)\)
                    \(V X(I, P Y)=V X(I, P Y-1)\)
\(V Y(I, P Y)=V Y(I, P Y-1)\)
                            - (2) The zero-gradient condition
                                    - The treatment at the side boundary surfaces.
                                    - (1) The equilibrium distribution.
                    \(\mathrm{RHO}(\mathrm{I}, \mathrm{PY})=\mathrm{RHO}(\mathrm{I}, \mathrm{PY}-1)\)
\(\mathrm{IF}(\mathrm{RHO}(\mathrm{I}, \mathrm{PY}) . \operatorname{LT} . \operatorname{DNSO}\)
                                    (Eq. (7.8)).
                                density at the outer boundary
                                    - A uniform flow is set at the
upstream boundary surface.
            REAL*8
                                    - A uniform flow is set at the
upstream boundary surface.
C
surfaces.
                    \(\mathrm{VX}(\mathrm{I}, 0)=\operatorname{VX}(\mathrm{I}, 1)\)
                    \(\operatorname{VY}(I, 0)=\operatorname{VY}(I, 1)\)
                    \(\operatorname{RHO}(I, 0)=\operatorname{RHO}(I, 1)\)
                    \(\operatorname{IF}(\operatorname{RHO}(I, 0) . L T . \operatorname{DNSO}) \quad\) RHO \((I, 0)=\operatorname{DNSO}\)
            IF (RHO (I, 0) .LT. DNSO ) R
ELSE IF ( ITREESID.EQ.5 ) THEN
                    \(V X(I, P Y)=2 \cdot D 0^{*} V X(I, P Y-1)-V X(I, P Y-2)\)
\(V Y(I, P Y)=2 . D 0^{*} V Y(I, P Y-1)-V Y(I, P Y-2)\)
                    \(\mathrm{VY}(\mathrm{I}, \mathrm{PY})=2 . \mathrm{DO} \mathrm{VY}(\mathrm{I}, \mathrm{PY}-1)-\mathrm{VY}(\mathrm{I}, \mathrm{PY}-2)\)
\(\mathrm{RHO}(\mathrm{I}, \mathrm{PY})=2 . \mathrm{DO} \mathrm{RHO}(\mathrm{I}, \mathrm{PY}-1)-\mathrm{RHO}(\mathrm{I}, \mathrm{PY}-2)\)
                    \(\operatorname{IF}(\mathrm{RHO}(\mathrm{I}, \mathrm{PY})\).LT. DNSO ) RHO (I, PY) \(=\) DNSO
                    IF \((\operatorname{RHO}(I, P Y) . \operatorname{LT} . \operatorname{DNS} 0) \quad\) RHO (I,PY)
\(V X(I, 0)=2 \cdot D 0 * V X(I, 1)-V X(I, 2)\)
                    \(\operatorname{VY}(I, \quad 0)=2 . D 0 * V Y(I, 1)-V Y(I, 2)\)
                    \(\operatorname{RHO}(\mathrm{I}, 0)=2 . \mathrm{DO}\) *RHO (I,1) - RHO \((\mathrm{I}, 2)\)
                    \(\operatorname{IF}(\operatorname{RHO}(I, 0)\).LT. DNS0 \()\) RHO (I, 0) \(=\) DNSO
                    END IF
120 END IF
                            - The treatment at the downstream boundary surface.
C
        END IF
    IF ( (ITREEDWN.EQ.3).OR. (ITREEDWN.EQ.4).OR. (ITREEDWN.EQ.5) ) THEN
```

DO 140 J=1, PY-1
IF(ITREEDWN.EQ.3) THEN
VX(PX,J) = UVELX
VY(PX,J) = UVELY
RHO (PX,J) = DNSO
ELSE IF(ITREEDWN.EQ.4) THEN
VX(PX,J) = VX(PX-1,J)
VY(PX,J) = VY(PX-1,J)
RHO (PX,J) = RHO (PX-1,J)
IF(RHO(PX,J) .LT. DNSO) RHO(PX,J) = DNSO
ELSE IF(ITREEDWN.EQ.5) THEN
VX(PX,J) = 2.D0*VX(PX-1,J) - VX(PX-2,J)
VY(PX,J) = 2.D0*VY(PX-1,J) - VY(PX-2,J)
RHO (PX,J) = 2.DO*RHO(PX-1,J) - RHO(PX-2,J)
IF (RHO(PX,J) .LT. DNSO) RHO (PX,J) = DNSO
END IF
140 CONTINUE
C 140 CONTINUE THEN ++ Corners ++

```
IF ( ITREEDWN.EQ. 3 ) THEN
    VX( PX,PY) = UVELX
    VY ( PX,PY) = UVELY
    RHO (PX, PY) \(=\) DNSO
    VX( PX, 0) = UVELX
    VY ( PX, 0) = UVELY
    RHO (PX, O) = DNSO
ELSE IF ( ITREEDWN.EQ. 4 ) THEN
    \(V X(P X, P Y)=V X(P X-1, P Y-1)\)
    \(V Y(P X, P Y)=V Y(P X-1, P Y-1)\)
    RHO \((P X, P Y)=R H O(P X-1, P Y-1)\)
    IF ( RHO (PX,PY) .LT. DNSO ) RHO (PX,PY) = DNSO
    VX( PX, 0) = VX( \(P X-1,1)\)
        \(\operatorname{VY}(P X, 0)=\operatorname{VY}(P X-1,1)\)
        RHO (PX, 0\()=\operatorname{RHO}(P X-1,1)\)
        IF ( RHO (PX, 0) .LT. DNSO ) RHO (PX, 0) = DNSO
    ELSE IF ( ITREEDWN.EQ. 5 ) THEN
        \(\mathrm{VX}(\mathrm{PX}, \mathrm{PY})=2 . \mathrm{D} 0 * \mathrm{VX}(\mathrm{PX}-1, \mathrm{PY}-1)-\mathrm{VX}(\mathrm{PX}-2, \mathrm{PY}-2)\)
        \(V Y(P X, P Y)=2 . D 0 * V Y(P X-1, P Y-1)-V Y(P X-2, P Y-2)\)
        RHO (PX, PY) \(=2 . \mathrm{DO}\) *RHO \((P X-1, P Y-1)-R H O(P X-2, P Y-2)\)
    IF ( RHO (PX,PY) .LT. DNSO ) RHO (PX,PY) = DNSO
    \(\mathrm{VX}(\mathrm{PX}, 0)=2 . \mathrm{D} 0 * \mathrm{VX}(\mathrm{PX}-1,1)-\mathrm{VX}(\mathrm{PX}-2,2)\)
    VY( PX, 0) = 2.D0*VY( \(P X-1,1)\) - VY ( \(P X-2,2)\)
    RHO (PX, 0) \(=2 . \mathrm{D} 0 *\) RHO \((\mathrm{PX}-1,1)-\mathrm{RHO}(\mathrm{PX}-2,2)\)
        IF ( RHO (PX, 0). LT. DNSO ) RHO (PX, 0) = DNSO
    END IF
END IF
                                    RETURN
                                    END
SUBROUTINE COLLPROC ( COLOR , ALPHAMX )
                                    --------- COLLISION PROCEDURE ---
IMPLICIT REAL*8 (A-H, O-Z), INTEGER (I-N)
                                    - A subroutine for treating
COMMON /BLOCK1/
COMMON /BLOCK3/ RHO , FTILD
RX , RY , VX , VY
COMMON /BLOCK3/ RHO , RX, RY , VX , VY
COMMON /BLOCK4/ DNS0 , TAU , DX , DT , CLAT
COMMON /BLOCK5/ XL , YL , XL1 , YL1 , XL2 , YL2 , PX , PY , PXY
INTEGER PP , QQ , KK
PARAMETER ( \(\mathrm{PP}=300, \mathrm{QQ}=400, \mathrm{KK}=8, \mathrm{PI}=3.141592653589793 \mathrm{D} 0\) )
REAL* \(8 \quad \mathrm{~F}(0: P P, 0: Q Q, 0: K K), \operatorname{FTILD}(0: P P, 0: Q Q, 0: K K)\)
REAL* 8 RHO ( \(0: P \mathrm{PP}, 0: Q Q\) )
REAL*8 \(\quad R X(0: P P, 0: Q Q) \quad, R Y(0: P P, 0: Q Q)\)
\(R E A L * 8 \quad V X(0: P P, 0: Q Q) \quad, V Y(0: P P, 0: Q Q)\)
INTEGER ALPHAMX , PX , PY, PXY
INTEGER PPXY
PARAMETER ( PPXY=150000 , NNTBL=2200 , NNTBL2=4400 , NNTBL3=4400 )
INTEGER COLOR (PPXY)
REAL*8 FEQ, CDNS0, UVELX0, UVELY0
INTEGER ITH, ICLR
CDNSO \(=\) DNSO
DO 210 I=0, PX
DO 200 J=0, PY
- The treatment for the sites at the downstream boundary
surface and inside the simulation region, and also for the
sites interacting with the cylinder according to Eq. (7.17).
-(2) The zero-gradient condition (Eq. (7.8)).

IF ( RHO (PX,PY) .LT. DNSO ) RHO (PX,PY) = DNSO
VX( PX, 0) = VX( PX-1,1)
\(\operatorname{VY}(P X, 0)=\operatorname{VY}(P X-1,1)\)
\(\operatorname{RHO}(P X, 0)=\operatorname{RHO}(P X-1,1)\)
IF ( RHO (PX, 0) .LT. DNSO ) RHO (PX, 0) = DNSO
ELSE IF ( ITREEDWN.EQ. 5 ) THEN
\(V X(P X, P Y)=2 . D 0 * V X(P X-1, P Y-1)-V X(P X-2, P Y-2)\)
\(V Y(P X, P Y)=2 . D 0 * V Y(P X-1, P Y-1)-V Y(P X-2, P Y-2)\)
-(3) The extrapolation condition (Eq. (7.7)).
\begin{tabular}{|c|c|c|}
\hline 1195 & & ITH \(=(P X+1) * J+(I+1)\) \\
\hline 1196 & & ICLR \(=\) COLOR(ITH) \\
\hline 1197 & & IF ( (ICLR.EQ.6) .OR. (ICLR.EQ.7) ) GOTO 200 \\
\hline 1198 & C & FOR Busual, Bdownstream, Bcyl_surface \\
\hline 1199 & & IF ( (ICLR .EQ. 0) .OR. (ICLR .EQ. 2) .OR. (ICLR .EQ. 5) ) THEN \\
\hline 1200 & & UVELX0 = VX( I, J) \\
\hline 1201 & & UVELY0 \(=\) VY ( I, J) \\
\hline 1202 & & CDNSO \(=\) RHO (I, J) \\
\hline 1203 & & DO \(100 \mathrm{~K}=0\), ALPHAMX \\
\hline 1204 & & FTILD (I, J, K) = F (I, J, K) * (TAU-1.D0)/TAU \\
\hline 1205 & \& & + FEQ( UVELX0, UVELY0, K, CDNSO ) / TAU \\
\hline 1206 & 100 & CONTINUE \\
\hline 1207 & C & -- FOR Bupstream -- \\
\hline 1208 & & ELSE IF ( ICLR .EQ. 1 ) THEN . The treatment for the sites at the upstream boundary \\
\hline 1209 & & UVELX0 \(=\) VX \((0, J) \quad\) The treatment for the sites at the upstream boundary \\
\hline 1210 & & UVELYO \(=\) VY \((0, J) \quad\) surface. The equilibrium distribution is used. \\
\hline 1211 & & CDNSO \(=\) RHO ( \(0, \mathrm{~J}\) ) \\
\hline 1212 & & DO \(120 \mathrm{~K}=0\), ALPHAMX \\
\hline 1213 & & \(\operatorname{FTILD}(0, \mathrm{~J}, \mathrm{~K})=\) FEQ ( UVELX0, UVELY0, K, CDNS0 \\
\hline 1214 & 120 & CONTINUE \\
\hline 1215 & C & --- FOR Bupper_side -- \\
\hline 1216 & & ELSE IF ( ICLR.EQ. 3 ) THEN \(\quad\) The troatment for the sites at the upper side \\
\hline 1217 & & UVELX0 \(=\) VX ( I,PY) - The treatment for the sites at the upper side \\
\hline 1218 & & UVELYO \(=\) VY ( I, PY) \({ }^{\text {a }}\) ( boundary surface. Eq. (7.17) is treated. \\
\hline 1219 & & CDNSO \(=\) RHO (I,PY) \\
\hline 1220 & & DO \(140 \mathrm{~K}=0\), ALPHAMX \\
\hline 1221 & & FTILD (I, PY, K) = F (I, PY, K) * (TAU-1.D0)/TAU \\
\hline 1222 & \& & + FEQ( UVELX0, UVELY0, K, CDNSO ) / TAU \\
\hline 1223 & 140 & CONTINUE \\
\hline 1224 & C & - FOR Blower_side -- \\
\hline 1225 & & ELSE IF ( ICLR.EQ. 4 ) THEN . The treatment for the sites at the lower side boundary \\
\hline 1226 & & UVELXO \(=V X(I, 0) \quad\) - The treatment for the sites at the lower side boundary \\
\hline 1227 & & UVELY0 \(=\) VY ( I, 0) \(\quad\) surface. Eq. (7.17) is treated. \\
\hline 1228 & & CDNSO \(=\) RHO (I, 0 ) \\
\hline 1229 & & DO \(160 \mathrm{~K}=0\), ALPHAMX \\
\hline 1230 & & \(\operatorname{FTILD}(\mathrm{I}, 0, \mathrm{~K})=\mathrm{F}(\mathrm{I}, 0, \mathrm{~K}) *(\mathrm{TAU}-1 . \mathrm{D} 0) /\) TAU \\
\hline 1231 & \& & + FEQ( UVELX0, UVELY0, K, CDNS0 ) / TAU \\
\hline 1232 & 160 & CONTINUE \\
\hline 1233 & & END IF \\
\hline 1234 & C & \\
\hline 1235 & 200 & CONTINUE \\
\hline 1236 & 210 & CONTINUE \\
\hline 1237 & & RETURN \\
\hline 1238 & & END \\
\hline 1239 & C**** & SUB MOVEPROC ***** \\
\hline 1240 & & SUBROUTINE MOVEPROC ( PX , PY , ANTIALPH , RHO, DNSO , ITREECYL ) \\
\hline 1241 & C & MOVEMENT PROCEDURE \\
\hline 1242 & & IMPLICIT REAL*8 (A-H, O-Z), INTEGER (I-N) . A subroutine for the transfer process of \\
\hline 1243 & C &  \\
\hline 1244 & & COMMON /BLOCK1/ F , FTILD \({ }^{\text {a }}\) (the particle distribution function. \\
\hline 1245 & C & \\
\hline 1246 & & COMMON /BLOCK14/ RXCYL , RYCYL , ICYL , JCYL , DCYL \\
\hline 1247 & & COMMON /BLOCK15/ COLOR , POSINTBL \\
\hline 1248 & & COMMON /BLOCK16/ TBLNAM , TBLNUM , TBLPOS , NTBL \\
\hline 1249 & & COMMON /BLOCK17/ TBLDW , TBLAL , NTBLDW \\
\hline 1250 & C & \\
\hline 1251 & & COMMON /BLOCK21/ CD , CDFORCE0 , CDFORCE , RE , NSMPLCD \\
\hline 1252 & C & \\
\hline 1253 & C & ----- \\
\hline 1254 & & INTEGER PP , QQ , KK \\
\hline 1255 & & PARAMETER ( \(\mathrm{PP}=300, \mathrm{QQ}=400\), \(\mathrm{KK}=8\), \(\mathrm{PI}=3.141592653589793 \mathrm{D} 0\) ) \\
\hline 1256 & C & \\
\hline 1257 & & REAL* \(8 \mathrm{~F}(0: P P, 0: Q Q, 0: \mathrm{KK}), \mathrm{FTILD}(0: P P, 0: Q Q, 0: K K)\) \\
\hline 1258 & & REAL* 8 RHO (0:PP, 0:QQ) \\
\hline 1259 & & INTEGER PX, PY, ANTIALPH ( \(0: \mathrm{KK}\) ) \\
\hline 1260 & C & \\
\hline 1261 & & INTEGER PPXY \\
\hline 1262 & & PARAMETER ( PPXY=150000, NNTBL=2200, NNTBL2=4400, NNTBL3=4400 ) \\
\hline 1263 & C & \\
\hline 1264 & & REAL* 8 TBLDW (NNTBL2) \\
\hline 1265 & & INTEGER COLOR (PPXY) , POSINTBL (PPXY) \\
\hline 1266 & & INTEGER TBLNAM(NNTBL) , TBLNUM (NNTBL) , TBLPOS (NNTBL) , NTBL \\
\hline 1267 & & INTEGER TBLAL (NNTBL2) , NTBLDW \\
\hline 1268 & C & \\
\hline 1269 & & INTEGER NNCD \\
\hline 1270 & & PARAMETER ( \(\mathrm{NNCD}=1000000\) ) \\
\hline 1271 & C & \\
\hline 1272 & & REAL* 8 CDFORCE (NNCD) \\
\hline 1273 & C & \\
\hline 1274 & & INTEGER ITH , ICLR, ITBL , INUM , IPOS, IALPHA , K , KANTI \\
\hline 1275 & & INTEGER I1 , I2, ID, J1, J2 , JD , I00, J00 \\
\hline
\end{tabular}


1357
1358 C
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384 C
1385
1386 C
1387
1388
1389
1390
1391
1392 C
1393
1394
1395 C
1396
1397 C
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
C
C

\section*{C}
```

IF((ICLR.EQ.6) .OR. (ICLR.EQ.7)) GOTO 20

```
IF ( K.EQ.1) THEN
    \(I 00=I-1\)
    \(\mathrm{J} 00=\mathrm{J}\)
ELSE IF ( K.EQ.2) THEN
    IOO = I+1
    \(\mathrm{J} 00=\mathrm{J}\)
ELSE IF ( K.EQ.3) THEN
    IOO = I
    J00 \(=\) J-1
ELSE IF (K.EQ.4) THEN
    IOO = I
    J00 = J+1
ELSE IF ( K.EQ.5) THEN
    I00 \(=I-1\)
    J00 = J-1
ELSE IF (K.EQ.6) THEN
    I00 \(=I+1\)
    J00 = J +1
ELSE IF ( K.EQ.7) THEN
    I00 = I-1
    J00 = J +1
ELSE IF ( K.EQ.8) THEN
    I00 \(=I+1\)
    \(\mathrm{J} 00=\mathrm{J}-1\)
END IF
IF ( ICLR .EQ. 5 ) THEN
    ITBL \(=\) POSINTBL(ITH)
    INUM \(=\) TBLNUM (ITBL)
    IPOS \(=\) TBLPOS (ITBL)
    DO 10 JJ=0,INUM-1
-The treatment of the site interacting with the cylinder.
-The order of the ITH-site, in which its information is saved in TBLNUM and TBLPOS, is extracted from POSINTBL. The result is saved in ITBL.
END IF
```

----- FOR CYL_surface -----

```
- INUM is the number of the interacting sites inside the cylinder. IPOS is the first position of such sites appearing in the corresponding variables.
        IALPHA \(=\) TBLAL( IPOS+JJ )
        KANTI = ANTIALPH(K)
                                    - (I) For IALPHA=KANTI.
            IF ( IALPHA .EQ. KANTI ) THEN
                IF ( (K.EQ.1) .OR. (K.EQ.5) .OR. (K.EQ.7) ) THEN
                CDFORCE (NSMPLCD) =CDFORCE (NSMPLCD) - FTILD (I, J, KANTI)
            END IF
                IF ( K.EQ. 1 ) THEN
                I11 = I +1
                \(\mathrm{J} 11=\mathrm{J}\)
                I21 = I+1
                \(I 21=I+1\)
\(I 22=I+2\)
                \(\mathrm{J} 21=\mathrm{J}\)
                J22 = J
            ELSE IF (K.EQ. 2 ) THEN
                I11 \(=\mathrm{I}-1\)
                \(\mathrm{J} 11=\mathrm{J}\)
                I21 = I-1
                \(I 21=I-1\)
\(I 22=I-2\)
                \(I 22=I-2\)
J21 \(=\mathrm{J}\)
                \(\mathrm{J} 21=\mathrm{J}\)
                LLSE IF ( K.EQ. 3 ) THEN
                I11 = I
                \(\mathrm{J} 11=\mathrm{J}+1\)
                I21 = \(I\)
                \(I 21=I\)
\(I 22=I\)
                J21 = J +1
                J22 = J+2
            ELSE IF ( K.EQ.4 ) THEN
                I11 \(=I\)
                J11 = J-1
                I21 = I
                \(122=I\)
                J21 = J-1
                J22 = J-2
            ELSE IF ( K.EQ. 5 ) THEN
                I11 \(=\mathrm{I}+1\)
                \(\mathrm{J} 11=\mathrm{J}+1\)
                I21 = I +1
                \(I 21=I+1\)
\(I 22=I+2\)
                \(\mathrm{J} 21=\mathrm{J}+1\)
                \(\mathrm{J} 22=\mathrm{J}+2\)
-IALPHA is the direction of the ITH-th site toward the neighboring site inside the cylinder, and the opposite direction to K is KANTI.
- The variables \((111, J 11)\) are used in the linear interpolation procedure of the BFL and YMLS methods.
- The variables \((121, J 21)\) and \((122, J 22)\) are used in the quadratic interpolation procedure for the BFL and YMLS methods.
\begin{tabular}{|c|c|c|}
\hline 1437 & & ELSE IF ( K.EQ.6 ) THEN \\
\hline 1438 & & I11 = I-1 \\
\hline 1439 & & \(\mathrm{J} 11=\mathrm{J}-1\) \\
\hline 1440 & & \(\mathrm{I} 21=\mathrm{I}-1\) \\
\hline 1441 & & I22 = I-2 \\
\hline 1442 & & J21 = J-1 \\
\hline 1443 & & J22 = J-2 \\
\hline 1444 & & ELSE IF ( K.EQ.7 ) THEN \\
\hline 1445 & & I11 = I+1 \\
\hline 1446 & & J11 \(=\mathrm{J}-1\) \\
\hline 1447 & & \(\mathrm{I} 21=\mathrm{I}+1\) \\
\hline 1448 & & \(\mathrm{I} 22=\mathrm{I}+2\) \\
\hline 1449 & & \(\mathrm{J} 21=\mathrm{J}-1\) \\
\hline 1450 & & J22 = J-2 \\
\hline 1451 & & ELSE IF ( K.EQ.8 ) THEN \\
\hline 1452 & & I11 \(=\mathrm{I}-1\) \\
\hline 1453 & & J11 = J+1 \\
\hline 1454 & & \(\mathrm{I} 21=\mathrm{I}-1\) \\
\hline 1455 & & I22 = I-2 \\
\hline 1456 & & J21 = J+1 \\
\hline 1457 & & J22 = J +2 \\
\hline 1458 & & END IF \\
\hline 1459 & C & \\
\hline 1460 & C & \\
\hline 1461 & & IF ( (ITREECYL.EQ.2) .OR. (ITREECYL.EQ.3) ) THEN \\
\hline 1462 & & CDW = TBLDW (IPOS+JJ) \\
\hline 1463 & & FWALL \(=\) (1.D0-CDW) * FTILD (I11, J11, KANTI) \\
\hline 1464 & \& & + CDW * FTILD(I , J , KANTI) \\
\hline 1465 & C & C1 - CA11 and CA12 are used in the linear \\
\hline 1466 & & \(\begin{array}{ll}C 1 & =1 . D 0+C D W \\ C 2 & =2 . D 0+C D W\end{array} \quad\) interpolation procedure of YMLS expressed \\
\hline 1468 & & CA11 \(=\) CDW /C1 \(\quad\) in Eq. (7.5), and CA21, CA22, and CA23 are \\
\hline 1469 & & CA12 \(=1 . \mathrm{D} 0 / \mathrm{C} 1 \quad\) used in the quadratic interpolation procedure \\
\hline 1470 & & CA21 \(=2 . D 0 *\) CA12/C2 \\
\hline 1471 & & CA22 \(=2 . D 0 *\) CA12*CDW of YMLS in Eq. (8.121); in advance, the \\
\hline 1472 & & CA23 \(=-\mathrm{CDW} / \mathrm{C} 2 \mathrm{coefficients} \mathrm{are} \mathrm{calculated} \mathrm{and} \mathrm{saved} \mathrm{in} \mathrm{these}\) \\
\hline 1473 & & END IF \({ }^{\text {a }}\) variables for the successive procedures. \\
\hline 1475 & c & IF ( (ITREECYL.EQ.4) .OR. (ITREECYL.EQ.5) ) THEN \\
\hline 1476 & & \(\mathrm{CDW}=\mathrm{TBLDW}(\) IPOS \(+J J\) ) \\
\hline 1477 & & \(\mathrm{C} 1 \quad=1 . \mathrm{D} 0+2 . \mathrm{D} 0 * \mathrm{CDW} \quad \bullet \mathrm{CB11}\) and CB12 are used in the linear \\
\hline 1478 & & C2 = 1.D0-2.D0*CDW interpolation procedure of BFL in Eq. \\
\hline 1479 & & CB11 \(=\) C2 (8.117), and CB21, CB22, and CB23 are \\
\hline 1480 & & CB12 \(=2 . D 0 *\) CDW \({ }^{\text {a }}\) ( used in the quadratic interpolation \\
\hline 1481 & & CB21 \(=C D W *\) C1 \({ }^{\text {c }}\) \\
\hline 1482 & & CB22 \(=\) C1*C2 \(\quad\) procedure of BFL in Eq. (8.112); in \\
\hline 1483 & & CB23 \(=-\) CDW* 2 2 \({ }^{\text {a }}\) ( advance, the coefficients are calculated \\
\hline 1484 & & CD11 \(=(-C 2) /(2 . D 0 * C D W) \quad\) and saved in these variables for the \\
\hline 1485 & & CD12 \(=1 . \mathrm{D} 0 /(2 . \mathrm{D} 0 * \mathrm{CDW}) \quad\) ) \\
\hline 1486 & & CD21 = 1.D0/CB21 \({ }^{\text {c }}\) Successive procedures. Similarly, CD11, \\
\hline 1487 & & CD22 \(=(-C 2) /\) CDW \(\quad\) CD12,., CD23 are used in calculating \\
\hline 1488 & & CD23 \\
\hline 1489 & & END IF \(\quad\) Eqs.(8.118) and 8.116\()\) for \(\Delta_{w}>1 / 2\). \\
\hline 1490 & C & \\
\hline 1491 & C & \\
\hline 1492 & & IF ( ITREECYL .EQ. 1 ) THEN - The bounce-back rule. \\
\hline 1493 & C & +++ (1) BOUNCE-BACK +++++++++++++++++ \\
\hline 1494 & & \(\mathrm{F}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{FTILD}(\mathrm{I}, \mathrm{J}, \mathrm{KANTI})\) \\
\hline 1495 & C & ELSE TF ( - The quadratic YMLS method. \\
\hline 1496 & & ELSE IF ( ITREECYL .EQ. 2 ) THEN \\
\hline 1497 & C & +++ (2A) YMLS METHOD (Quadratic) +++ \\
\hline 1498 & & \(\mathrm{F}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{CA} 21 *\) FWALL + CA \(22 *\) F (I21, J21, K) \(\quad\) - The linear Y MLS \\
\hline 1499
1500 & C \& & + CA23*F (I22,J22,K) -The linear YMLS \\
\hline 1501 & C & ELSE IF ( ITREECYL .EQ. 3 ) THEN lothod. \\
\hline 1502 & C & +++ (2B) YMLS METHOD (Liner) +++++++ \\
\hline 1503 & &  \\
\hline 1504 & C &  \\
\hline 1505 & & ELSE IF ( ITREECYL .EQ. 4 ) THEN method. \\
\hline 1506 & C & +++ (3A) BFL METHOD (Quadratic) +++++ \\
\hline 1507 & & IF ( CDW .LE. 0.5D0 ) THEN \\
\hline 1508 & C & - Eq. (8.112) is evaluated. \\
\hline 1509 & & \(\mathrm{F}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{CB} 21 * \mathrm{FTILD}(\mathrm{I}, \mathrm{J}, \mathrm{KANTI})\) \\
\hline 1510 & \& & + CB22*FTILD (I21, J21,KANTI) \\
\hline 1511 & \& & + CB23*FTILD (I22, J22,KANTI) \\
\hline 1512 & & ELSE \(\quad\) •Eq. (8.116) is evaluated. \\
\hline
\end{tabular}
```

1513 C
1514
1515
1516 \&
1 5 1 7
1518 C
1 5 1 9
C
C
1520 C
1 5 2 1
1522 C
1524 \&
1525
1526 C
1526
C
\&
C

```

```

C
C
1533 C
1534
1535
1536
1536
1538
1539 C
1 5 4 0
1541 C
1542
1543 C
C
1543
1545
1546
1547 C
1547 C
1548
1549
1550 C
1551
1552 C
1553 C 10
1554
1555 C
1556
1557 C
1558 20 CONTINUE
1559 40 CONTINUE
1560 C
1561 100 CONTINUE
1562 RETURN
1563
1564 C**** SUB BCPROC *****
1565 SUBROUTINE BCPROC(PX , PY , DNSO , ALPHAMX , ITREESID
1566 \& ITREEDWN)
1 5 6 7 C --------- BOUNDARY CONDITION PROC. ---
1 5 6 8
1569 C
1570 COMMON /BLOCK1/ F , FTILD
COMMON /BLOCK3/ RHO , RX , RY , VX , VY
1571 COMMON /BLOCK3/ RHO , RX , RY
1572
1573 C
1574 INTEGER PP , QQ , KK
1575 PARAMETER(PP =300, QQ=400, KK=8 , PI=3.141592653589793D0)
1575
1576 C
1577 REAL*8 F(0:PP,0:QQ,0:KK), FTILD(0:PP,0:QQ,0:KK)
1578 REAL*8 RHO(0:PP,0:QQ)
1579 REAL*8 RX(0:PP,0:QQ) , RY (0:PP,0:QQ)
1580 REAL*8 VX(0:PP,0:QQ) , VY(0:PP,0:QQ)
1581 INTEGER PX, PY, ALPHAMX'
1582 C
REAL*8 FEQ , CDNS0 , UVELXO , UVELY0
1583 c
1585
1586 C
1586 C
1588 --

```

```

1590 C F F (0,J,K) = FEQ(UVELX, UVELY, K, CDNSO) + An equilibrium distribution is assigned.

```










```

1596 C Concen BC for
F(I,PY,K) =F(I,PY-1,K)

```

```

 ELSE IF((ITREESID.EQ.3) .OR. (ITREE applied.
 &
 1611 C \& UVELXO = VX (I, PY) + ++ (3) UNIFORM FLOW +++
(ITREESID.EQ.5), THEN
1612 UVELX0 = VX(I,PY)
1613 UVELYO = VY(I,PY)
ll
F(I,PY,K) = FEQ(UVELX0, UVELY0, K, CDNSO)
UVELXO = VX(I,0)
UVELYO = VY(I,0)
CDNSO = RHO(I,O)
F(I, 0,K) = FEQ(UVELX0, UVELY0, K, CDNSO)
C
1624 280 CONTINUE
1625 300 CONTINUE
• III. The treatment at the downstream surface.
DO 500 J=0, PY
DO 480 K=0, ALPHAMX
IF(ITREEDWN .EQ. 1) THEN
- The extrapolation condition in Eq. (7.7) is applied.
+++ (1) EXTRAPOLATION +++
F(PX,J,K) = 2.DO*F(PX-1,J,K) - F (PX-2,J,K)
C F(PX,J,K)=2.D0*F(PX-1,J,K) -
C
36
F(PX,J,K)=F(PX-1,J,K) •The zero-gradient condition in Eq. (7.8) is applied.
\&
ELSE IF((ITREEDWN.EQ.3) .OR. }$$
\begin{array}{l}{\mathrm{ - The zero-gradient condition }}\\{(ITREEDWN.EQ.4) .OR.,}
 UVELXO = VX(PX,J)
 F(PX,J,K) = FEQ(UVELX0, UVELYO, K, CDNSO)
4
END IF
END IF
END IF
-IV. The treatment at both corner sites of the
downstream surface.
C
 ------------------------------ TWO Corners for Bdownstream ---
 DO 530 K=0, ALPHAMX }1\mathrm{) THEN - The extrapolation condition in Eq. (7.7) is applied.
 F(PX,PY,K) = 2.D0*F (PX-1,PY-1,K) - F (PX-2,PY-2,K)
 F(PX, 0,K) = 2.D0*F(PX-1, 1,K) - F(PX-2, 2,K)
 ELSE IF(ITREEDWN .EQ. 2) THEN
 F(PX,PY,K) = F F (PX-1,PY-1,K)
 F(PX,PY,K) = F F (PX-1,PY-1,K)
 F(PX,
 |-The zero-gradient condition
 |-The zero-gradient condition
 5 3 0 ~ C O N T I N U E ~
RETURN
RETURN
C**** SUB GRAPHVEL ****
 SUBROUTINE GRAPHVEL(NANMCTR)
 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
 IMPLICIT REAL (A-H,O-Z), INTEGER (I-N)
 COMMON /BLOCK3/ RHO , RX , RY , VX , VY
 COMMON /BLOCK5/ XL , YL , XL1 , YL1 , XL2 , YL2 , PX , PY , PXY
 COMMON /BLOCK6/ UVELX , UVELY
 COMMON /BLOCK6/ UVELX , UVELY , ICYL , JCYL , DCYL
 - A subroutine for writing out the
 data used for making an animation
 based on the commercial software
 MicroAVS.
C
1596 C Concm BC for
ax
1596 C % ---------------------- BC for
 +++ (2) DEF=0 +++
 +++ (2) DEF=0 +++
C
8
 ELSE IF((ITREESID.EQ.3) .OR
& & % % + ++ (3) UNIFORM FLOW +++
7 C
 - An equilibrium distribution with
1596 C remer BC for Bupper_side
 +++
l}+\begin{array}{l}{++(2) DEF=0}\end{array}
$$++
1624 280 CONTINUE
END IF
each local velocity is assigned.
-- BC for Bdownstream ---
DO 500 J=0, PY --------------------------- BC for Bdownstream ---

```

```

C
C
-The zero-gradient condition in Eq. (7.8) is
(ITREESID.EQ.5
(3) 5)
F(PX,J,K)=F(PX-1,J,K) \bulletT
+++ (2) DEF=0
+++
+++ (3) UNIFORM FLOW ++
480 CONTINUE
C

DO 530 K=0, ALPHAMX
530 CON

```
1620 C
1625 C
1626 C
1627 C
1650 C
1664 C
1665 CCC
1667 C
1605
1606
1607
1608 C
1609
1614
1615
1615
1616 C
1595 C
1610
1617
1618
1619
1620
1621 C
1623 c
1627 C
1628
1629
1629
1629
1630
1631 c
1632
1633 C
1634
1635
1636
1637
1637
1640
1641
1642
1643
1644
1644
1644
1645
1646
1651
1651
1652
1652
1653
1654
1654
1655
1655
1656
1657
1656
1657
1658
1647
1648
1658
1659
1659
1660
1660
1661
1662
1663
1663
1663 C
1665 CC
1666
1666
1667 C
1668
1668
1668
1669
1669
1669
1669
1670
1671
1671
\(\begin{array}{lll}1667 \mathrm{C} \\ 1668 & \\ 1669 & \\ 1670 & \\ 1671 & \\ 1672 & \text { C }\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1673 & & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{INTEGER PP, QQ , KK}} \\
\hline 1674 & & & & & & \\
\hline 1675 & & \multirow[t]{3}{*}{PARAMETER} & \multirow[t]{2}{*}{\(\mathrm{PP}=300\),} & \(Q \mathrm{Q}=400, \mathrm{KK}=8\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\mathrm{PI}=3.141592653589793 \mathrm{D}\)}} \\
\hline 1676 & C & & & & & \\
\hline 1677 & C & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{REAL* 8 RHO ( \(0:\) PP, \(0: Q Q\) )}} \\
\hline 1678 & & & & & & \\
\hline 1679 & & REAL* 8 & RX ( 0:PP, 0 & \multicolumn{3}{|l|}{, RY(0:PP, 0:QQ)} \\
\hline 1680 & & REAL* 8 & VX ( 0:PP, 0 & \multicolumn{3}{|l|}{, VY(0:PP, 0:QQ)} \\
\hline 1681 & & \multirow[t]{2}{*}{INTEGER} & \multicolumn{2}{|l|}{PX , PY , PXY} & & \\
\hline 1682 & C & & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{XL , YL , XL1 , YL1 , XL2 , YL2 , UVELX}} & \\
\hline 1683 & & REAL* 8 & & & & , UVELY \\
\hline 1684 & & REAL* 8 & \multicolumn{4}{|l|}{RXCYL , RYCYL , DCYL} \\
\hline 1685 & C & & & & & \\
\hline 1686 & & \multicolumn{5}{|l|}{INTEGER QQSQ , NNDUM} \\
\hline 1687 & & \multicolumn{5}{|l|}{} \\
\hline 1688 & C & & & & & \\
\hline 1689 & & REAL D & DUMRX (NNDUM) & , DUMRY (NNDUM) & , DUMVX (NNDUM) & , DUMVY ( \\
\hline 1690 & & REAL V & VEL & & & \\
\hline 1691 & & INTEGER N & NDUM, ISKIP & & & \\
\hline
\end{tabular}
\(1729-85\) FORMAT (4F8)
\(1730 \quad 181\) FORMAT('\# AVS field file'/ '\#')
1731183 FORMAT ( 'ndim=2' )
1732185 FORMAT ( 'dim1=',I4/ 'dim2=',I4)
\(\begin{array}{ll}1732 & 185 \\ 1733 & 187 \\ \text { FORMAT ( 'dim1=', I4/ 'dim2=', I4) } \\ \end{array}\)
1734 \& / 'field= uniform'/ )
    1735188 FORMAT ( 'time file=./avsvel1.dat filetype=ascii '
1736 \& 'skip=',I7,' close=1')
1737189 FORMAT ( 'variable 1 file=./avsvel1.dat filetype=ascii '
    1738 \& 'skip=',I7,' offset=2 stride=4')
1739191 FORMAT( 'variable 2 file=./avsvell.dat filetype=ascii '
1740 \& 'skip=',I7,' offset=3 stride=4')
1741197 FORMAT ( 'EOT')
1742
1743
1744 C
1745
1746 C
1747 C
1748 C
1749
1750 C
90 CONTINUE
100 CONTINUE
    NDUM \(=\) II
        IF ( NANMCTR .EQ. 1 ) THEN
            WRITE \((41,181)\)
            \(\operatorname{WRITE}(41,183)\)
            \(\operatorname{WRITE}(41,185) \quad(P X+1), \quad(P Y+1)\)
            WRITE \((41,187)\)
        END IF
        ISKIP \(=(\text { NDUM }+1)^{*}(\) NANMCTR-1 \()+1\)
        WRITE \((41,188)\) ISKIP-1
        WRITE \((41,189)\) ISKIP
        WRITE \((41,191)\) ISKIP
        \(\operatorname{WRITE}(41,197)\)
    83 FORMAT ( I5
    85 FORMAT ( 4F8.3 )
                                    RETURN
                                    END
C\#\#\#\# FUN FEQ \#\#\#\#
    DOUBLE PRECISION FUNCTION FEQ( UVELX, UVELY, ALPHA, CDNSO )
C
C
1751 C
1752 C
1753 INTEGER PP , QQ , KK
    IMPLICIT REAL*8 ( \(\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}\) ), INTEGER (I-N) \(\quad\) - The equilibrium distribution function.
    COMMON /BLOCK2/ CVEL , W , IINC , ANTIALPH, ALPHAMX


\section*{8 Theoretical Background of Lattice Boltzmann Method}

The lattice Boltzmann method [9-12] is a useful simulation technique for numerically solving flow problems. This method is also feasible as a simulation technique for systems such as a suspension of solid particles or a polymeric liquid. In a multicomponent system, the motion of the suspended particles or polymers must be solved together with the flow field of the solvent molecules. In a molecular simulation of a suspension composed of solid particles in a liquid, it is very difficult to treat the multibody hydrodynamic interactions among the suspended particles. Hence, it is usual to model the flow field as a simple shear flow, and under this approach only the motion of the suspended particles will be solved during the simulation. A typical simulation technique employing this concept is the Stokesian dynamics method. On the other hand, the lattice Boltzmann method enables us to solve the motion of suspended particles and the ambient flow field simultaneously, so there is much of interest in this method.

In the present chapter, we turn from the practice of molecular simulations to the theoretical background of the lattice Boltzmann method. The key equations are almost all indicated for the successive derivation procedure such that the reader will be able to derive all the important equations from the key expressions. Understanding the theoretical background is essential if, for example, the reader needs to employ a new boundary condition or develop a new version of the lattice Boltzmann method that can take into account the random motion of the suspended particles. For a clear, logical development, the fundamental equations for the following derivation may be found in Appendix A1. Note that we focus here on the BGK lattice Boltzmann method, which is the simplest and provides a solid foundation for application to various flow problems.

\subsection*{8.1 Equilibrium Distribution}

The lattice Boltzmann method treats the particle distribution function of virtual fluid particles, which are able to move from site to site on a lattice system. A macroscopic quantity of interest, such as the fluid velocity, can be obtained from the solution of the particle distribution function. In the case of a two-dimensional system, such as the D2Q9 model shown in Figure 8.1, fluid particles at lattice site 0 have a possibility of moving to the neighboring lattice sites \(1, \ldots, 8\). If the quiescent


Figure 8.1 Lattice model for the D2Q9.
state is included, there are nine velocities for the fluid particles moving (or not moving) to a neighboring site; a fluid particle will arrive at its neighboring site with a given microscopic velocity during a given time interval. We use the notation \(\mathbf{c}_{\alpha}\) for the velocity for the transfer in the \(\alpha\)-direction ( \(\alpha=0,1,2, \ldots, 8\) ). The particle distribution function \(f_{\alpha}(\mathbf{r}, t)\) in the \(\alpha\)-direction at the lattice site \(\mathbf{r}\) at time \(t\) can be obtained by treating the collision of the fluid particles at \(\mathbf{r}\) and evaluating the inflow and the outflow of fluid particles from and to the lattice site \(\mathbf{r}\). In the BGK lattice Boltzmann method, the particle distribution function \(f_{\alpha}\left(\mathbf{r}+\mathbf{c}_{\alpha} \Delta t, t+\Delta t\right)\) is obtained from the following equation:
\[
\begin{align*}
& f_{\alpha}\left(\mathbf{r}+\mathbf{c}_{\alpha} \Delta t, t+\Delta t\right)=\tilde{f}_{\alpha}(\mathbf{r}, t)  \tag{8.1}\\
& \tilde{f}_{\alpha}(\mathbf{r}, t)=f_{\alpha}(\mathbf{r}, t)+\frac{1}{\tau}\left\{f_{\alpha}^{(0)}(\mathbf{r}, t)-f_{\alpha}(\mathbf{r}, t)\right\} \tag{8.2}
\end{align*}
\]

The \(\tilde{f}_{\alpha}\) in Eq. (8.2) is the particle distribution function after the collision at the site \(\mathbf{r}\). Eq. (8.1) implies that this distribution moves to the neighboring site ( \(\mathbf{r}+\mathbf{c}_{\alpha} \Delta t\) ) in the \(\alpha\)-direction. The second term on the right-hand side in Eq. (8.2) is the collision term, frequently denoted by the notation \(\Omega_{\alpha}(\mathbf{r}, t)\) :
\[
\begin{equation*}
\Omega_{\alpha}(\mathbf{r}, t)=\frac{1}{\tau}\left\{f_{\alpha}^{(0)}(\mathbf{r}, t)-f_{\alpha}(\mathbf{r}, t)\right\} \tag{8.3}
\end{equation*}
\]

With the above particle distribution, the macroscopic fluid density \(\rho(\mathbf{r}, t)\) and momentum \(\rho(\mathbf{r}, t) \mathbf{u}(\mathbf{r}, t)\) can be evaluated as
\[
\begin{align*}
& \rho(\mathbf{r}, t)=\sum_{\alpha} f_{\alpha}(\mathbf{r}, t)  \tag{8.4}\\
& \rho(\mathbf{r}, t) \mathbf{u}(\mathbf{r}, t)=\sum_{\alpha} f_{\alpha}(\mathbf{r}, t) \mathbf{c}_{\alpha} \tag{8.5}
\end{align*}
\]

Additionally, if a system is in thermodynamic equilibrium with constant temperature \(T\), the following equi-partition law of energies must be satisfied:
\[
\begin{equation*}
\frac{D}{2} k T=\sum_{\alpha} \frac{m}{2}\left(\mathbf{c}_{\alpha}-\mathbf{u}\right)^{2} \frac{f_{\alpha}}{\rho} \tag{8.6}
\end{equation*}
\]
in which \(D\) is a constant for describing the dimension with the value 2 or 3 for a two- or three-dimensional space, respectively, and \(m\) is the mass of a fluid particle.

The thermodynamic equilibrium velocity distribution in the lattice Boltzmann method differs from that in the MD method. This is because virtual fluid particles in the lattice Boltzmann method are not allowed to move freely in a simulation region, but are restricted to move only from site to site. The velocity \(\mathbf{c}\) of a molecule (a fluid particle), which moves freely in a three-dimensional space with a uniform flow velocity \(\mathbf{u}\) of the system, is specified by the Maxwellian distribution \(f^{(\text {eq) }}(\mathbf{c})\) [25]:
\[
\begin{equation*}
f^{(\mathrm{eq})}(\mathbf{c})=\rho\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \exp \left\{-\frac{m}{2 k T}(\mathbf{c}-\mathbf{u})^{2}\right\} \tag{8.7}
\end{equation*}
\]

Note that this definition includes the density \(\rho\), whereas the usual Maxwellian distribution does not include the density in its expression. The equilibrium distribution in the lattice Boltzmann method \(f_{\alpha}^{(0)}\) may be expressed by expanding the exponential function in Eq. (8.7) in a Taylor series expansion as
\[
\begin{equation*}
f_{\alpha}^{(0)}=\rho w_{\alpha}\left\{1+b \frac{\mathbf{c}_{\alpha} \cdot \mathbf{u}}{c^{2}}+e \frac{u^{2}}{c^{2}}+h \frac{\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}}{c^{4}}\right\} \tag{8.8}
\end{equation*}
\]
in which \(w_{\alpha}, b, e\), and \(h\) are unknown constants to be determined later, \(w_{\alpha}\) is a weighting constant, and \(c\) is the lattice speed for fluid particles moving from site to site, expressed as \(c=\Delta x / \Delta t\).

In the lattice Boltzmann method, the whole system space is divided into a fine mesh that acts as the lattice system, and the fluid particles are only able to move from lattice site to lattice site. However, any physical phenomenon should not depend on the setting of the lattice system, and Eqs. (8.4)-(8.6) are required to remain valid for an arbitrary rotation of the lattice. This requirement will determine the above-mentioned unknown constants and, because the values of these unknown constants depend on the model used, we discuss the derivation for determining the unknown constants for the D2Q9 and D3Q19 models separately.

\subsection*{8.1.1 D2Q9 Model}

The \(x y\)-coordinate system and the \(\alpha\)-direction are specified as shown in Figure 8.1. As already pointed out, the equilibrium distribution can be obtained explicitly by determining the unknown constants \(w_{\alpha}, b, e\), and \(h\) such that the terms on the righthand side in Eqs. (8.4)-(8.6) remain unchanged by a rotation of the whole lattice system by an angle \(\phi\). Before we start the procedure of determining the unknown constants, we show preliminary expressions that are useful in the following discussion. Note that the relationship of the momentum flux is necessary for determining these constants.


Figure 8.2 Rotation of the unit vectors.

As shown in Figure 8.2, the four unit vectors, which are along the plus and minus \(x\) - and \(y\)-axes of the orthogonal coordinate system, are rotated about the \(z\) axis, and the new unit vectors are denoted by \(\mathbf{d}_{1}, \mathbf{d}_{2}, \mathbf{d}_{3}\), and \(\mathbf{d}_{4}\). These vectors are written in component expressions as
\[
\left.\begin{array}{l}
\mathbf{d}_{1}=\left(d_{1 x}, d_{1 y}\right)=(\cos \phi, \sin \phi) \\
\mathbf{d}_{2}=\left(d_{2 x}, d_{2 y}\right)=\left(\cos \left(\phi+\frac{\pi}{2}\right), \sin \left(\phi+\frac{\pi}{2}\right)\right)  \tag{8.9}\\
\mathbf{d}_{3}=\left(d_{3 x}, d_{3 y}\right)=(\cos (\phi+\pi), \sin (\phi+\pi)) \\
\mathbf{d}_{4}=\left(d_{4 x}, d_{4 y}\right)=\left(\cos \left(\phi+\frac{3 \pi}{2}\right), \sin \left(\phi+\frac{3 \pi}{2}\right)\right)
\end{array}\right\}
\]

Using these expressions, we derive several useful equations for the successive derivation. Although these equations can be derived from a simple transformation, as will be shown in the next subsection for the D3Q19 model, we here show a more sophisticated derivation based on the concept of imaginary numbers.

With the Euler formula \(e^{i \theta}=\cos \theta+i \sin \theta\) for imaginary numbers, the following relationships can be obtained:
\[
\begin{equation*}
\sum_{k=1}^{4}\left(d_{k x}+i d_{k y}\right)^{4}=\sum_{k=0}^{3}\left\{e^{i\left(k \frac{\pi}{2}+\phi\right)}\right\}^{4}=\sum_{k=0}^{3} e^{i(2 \pi k+4 \phi)}=e^{i 4 \phi} \sum_{k=0}^{3} e^{i 2 \pi k}=4 e^{i 4 \phi} \tag{8.10}
\end{equation*}
\]

Similarly,
\[
\left.\begin{array}{l}
\sum_{k=1}^{4}\left(d_{k x}+\mathrm{i} d_{k y}\right)^{3}\left(d_{k x}-\mathrm{i} d_{k y}\right)=0 \\
\sum_{k=1}^{4}\left(d_{k x}+\mathrm{i} d_{k y}\right)^{2}\left(d_{k x}-\mathrm{i} d_{k y}\right)^{2}=4 \tag{8.11}
\end{array}\right\}
\]

The corresponding real and imaginary parts on the left- and right-hand sides in Eq. (8.10) are equal, which leads to the following equation:
\[
\left.\begin{array}{l}
\sum_{k=1}^{4}\left(d_{k x}^{4}+d_{k y}^{4}-6 d_{k x}^{2} d_{k y}^{2}\right)=4 \cos 4 \phi  \tag{8.12}\\
\sum_{k=1}^{4} 4\left(d_{k x}^{3} d_{k y}-d_{k x} d_{k y}^{3}\right)=4 \sin 4 \phi
\end{array}\right\}
\]

These relationships have been derived by expanding the left-hand side in Eq. (8.10). Similarly, from Eq. (8.11),
\[
\left.\begin{array}{l}
\sum_{k=1}^{4}\left(d_{k x}^{4}-d_{k y}^{4}\right)=0 \\
\sum_{k=1}^{4}\left(d_{k x}^{3} d_{k y}+d_{k x} d_{k y}^{3}\right)=0  \tag{8.13}\\
\sum_{k=1}^{4}\left(d_{k x}^{4}+d_{k y}^{4}+2 d_{k x}^{2} d_{k y}^{2}\right)=4
\end{array}\right\}
\]

Further preliminary relationships can be derived from Eqs. (8.12) and (8.13). From the first equation in Eq. (8.12) and the third equation in Eq. (8.13),
\[
\begin{equation*}
\sum_{k=1}^{4} d_{k x}^{2} d_{k y}^{2}=\frac{1}{2}(1-\cos 4 \phi) \tag{8.14}
\end{equation*}
\]

From the second equation in Eqs. (8.12) and (8.13),
\[
\left.\begin{array}{l}
\sum_{k=1}^{4} d_{k x}^{3} d_{k y}=\frac{1}{2} \sin 4 \phi  \tag{8.15}\\
\sum_{k=1}^{4} d_{k x} d_{k y}^{3}=-\frac{1}{2} \sin 4 \phi
\end{array}\right\}
\]

From the first and third equations in Eq. (8.13),
\[
\begin{equation*}
\sum_{k=1}^{4} d_{k x}^{4}=\sum_{k=1}^{4} d_{k y}^{4}=2-\sum_{k=1}^{4} d_{k x}^{2} d_{k y}^{2}=\frac{3}{2}+\frac{1}{2} \cos 4 \phi \tag{8.16}
\end{equation*}
\]

From a similar derivation procedure, the terms concerning \(d_{k x}\) or \(d_{k y}\) to the first, second, and third powers are obtained as
\[
\left.\begin{array}{l}
\sum_{k=1}^{4} d_{k x}=\sum_{k=1}^{4} d_{k y}=0 \\
\sum_{k=1}^{4} d_{k x}^{2}=\sum_{k=1}^{4} d_{k y}^{2}=2, \quad \sum_{k=1}^{4} d_{k x} d_{k y}=0  \tag{8.17}\\
\sum_{k=1}^{4} d_{k x}^{3}=\sum_{k=1}^{4} d_{k y}^{3}=\sum_{k=1}^{4} d_{k x}^{2} d_{k y}=\sum_{k=1}^{4} d_{k x} d_{k y}^{2}=0
\end{array}\right\}
\]

We have now obtained all the preliminary equations and will proceed to the determination procedures for the unknown constants \(w_{\alpha}, b, e\), and \(h\).

As shown in Figure 8.1, we consider the rotation of the D2Q9 lattice system about the \(z\)-axis by the angle \(\phi\). We first evaluate the following quantity:
\[
\begin{align*}
\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha x}^{2} c_{\alpha y}^{2}= & w_{1} \sum_{\alpha=1}^{4} c_{\alpha x}^{2} c_{\alpha y}^{2}+w_{5} \sum_{\alpha=5}^{8} c_{\alpha x}^{2} c_{\alpha y}^{2}=w_{1} c^{4} \frac{1}{2}(1-\cos 4 \phi)  \tag{8.18}\\
& +w_{5}(\sqrt{2} c)^{4} \frac{1}{2}\left\{1-\cos 4\left(\phi+\frac{\pi}{4}\right)\right\}
\end{align*}
\]

With the assumption of
\[
\begin{equation*}
w_{1}=4 w_{5} \tag{8.19}
\end{equation*}
\]

Eq. (8.18) comes to be independent of \(\phi\). That is,
\[
\begin{equation*}
\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha x}^{2} c_{\alpha y}^{2}=w_{1} c^{4} \tag{8.20}
\end{equation*}
\]

Similar manipulation gives rise to
\[
\left.\begin{array}{l}
\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha x}^{3} c_{\alpha y}=\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha x} c_{\alpha y}^{3}=0 \\
\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha x}^{4}=\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha y}^{4}=3 w_{1} c^{4} \tag{8.21}
\end{array}\right\}
\]

The above results can be written in one expression by using the Kronecker delta \(\delta_{i j}\) :
\[
\begin{equation*}
\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha i} c_{\alpha j} c_{\alpha k} c_{\alpha l}=w_{1} c^{4}\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right) \tag{8.22}
\end{equation*}
\]

Similarly,
\[
\left.\begin{array}{l}
\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha x}=\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha y}=0, \quad \sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha i} c_{\alpha j}=3 w_{1} c^{2} \delta_{i j} \\
\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha x}^{2}=\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha y}^{2}=3 w_{1} c^{2}, \quad \sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha x} c_{\alpha y}=0  \tag{8.23}\\
\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha x}^{3}=\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha y}^{3}=\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha x}^{2} c_{\alpha y}=\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha x} c_{\alpha y}^{2}=0
\end{array}\right\}
\]

We now determine the appropriate values of the constants \(b, e, h\), and \(w_{\alpha}\) for an equilibrium distribution in Eq. (8.8). The relationships that must be satisfied for an equilibrium state are the equation of mass in Eq. (8.4), the equation of momentum in Eq. (8.5), and the equi-partition law of energies in Eq. (8.6). In these equations, \(f_{\alpha}^{(0)}\) must be used as \(f_{\alpha}\). Substitution of Eq. (8.8) into the right-hand side of Eq. (8.4) leads to
\[
\begin{equation*}
\sum_{\alpha=0}^{8} f_{\alpha}^{(0)}=\sum_{\alpha=0}^{8} \rho w_{\alpha}\left\{1+b \frac{\mathbf{c}_{\alpha} \cdot \mathbf{u}}{c^{2}}+e \frac{u^{2}}{c^{2}}+h \frac{\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}}{c^{4}}\right\}=\rho\left\{w_{\text {sum }}+w_{\text {sum }} \frac{u^{2}}{c^{2}} e+3 w_{1} \frac{u^{2}}{c^{2}} h\right\} \tag{8.24}
\end{equation*}
\]

In deriving this equation, the following relationships have been used:
\[
\left.\begin{array}{l}
\sum_{\alpha=0}^{8} w_{\alpha}\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)=\sum_{\alpha=0}^{8} w_{\alpha}\left(c_{\alpha x} u_{x}+c_{\alpha y} u_{y}\right)=0  \tag{8.25}\\
\sum_{\alpha=0}^{8} w_{\alpha}\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}=\sum_{\alpha=0}^{8} w_{\alpha}\left(c_{\alpha x}^{2} u_{x}^{2}+c_{\alpha y}^{2} u_{y}^{2}+2 u_{x} u_{y} c_{\alpha x} c_{\alpha y}\right)=3 w_{1} c^{2} u^{2}
\end{array}\right\}
\]

Equation (8.4) says that the quantity in Eq. (8.24) must equal the density \(\rho\), so that the following relationships are obtained:
\[
\begin{equation*}
w_{\text {sum }}=1, \quad w_{\text {sum }} e+3 w_{1} h=0 \tag{8.26}
\end{equation*}
\]
in which \(w_{\text {sum }}=w_{0}+4 w_{1}+4 w_{5}=w_{0}+5 w_{1}\).
Similarly, we obtain the following equation:
\[
\begin{equation*}
\sum_{\alpha=0}^{8} c_{\alpha i} f_{\alpha}^{(0)}=\sum_{\alpha=0}^{8} \rho w_{\alpha} c_{\alpha i}\left\{1+b \frac{\mathbf{c}_{\alpha} \cdot \mathbf{u}}{c^{2}}+e \frac{u^{2}}{c^{2}}+h \frac{\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}}{c^{4}}\right\}=3 \rho w_{1} u_{i} b \tag{8.27}
\end{equation*}
\]
in which the following relationships have been used for the derivation.
\[
\left.\begin{array}{l}
\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha x}\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)=\sum_{\alpha=0}^{8} w_{\alpha}\left(c_{\alpha x}^{2} u_{x}+c_{\alpha x} c_{\alpha y} u_{y}\right)=3 w_{1} c^{2} u_{x} \\
\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha x}\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}=\sum_{\alpha=0}^{8} w_{\alpha}\left(c_{\alpha x}^{3} u_{x}^{2}+2 c_{\alpha x}^{2} c_{\alpha y} u_{x} u_{y}+c_{\alpha x} c_{\alpha y}^{2} u_{y}^{2}\right)=0 \tag{8.28}
\end{array}\right\}
\]

Since the momentum equation in Eq. (8.5) must be satisfied, \(b\) is obtained as
\[
\begin{equation*}
b=\frac{1}{3 w_{1}} \tag{8.29}
\end{equation*}
\]

Then, we evaluate the momentum flux \(\Pi_{i j}^{(0)}\) by substituting the equilibrium distribution \(f_{\alpha}^{(0)}\) in Eq. (8.8) into this momentum flux expression:
\[
\begin{align*}
\Pi_{i j}^{(0)} & =\sum_{\alpha=0}^{8} c_{\alpha i} c_{\alpha j} f_{\alpha}^{(0)}=\sum_{\alpha=0}^{8} \rho w_{\alpha} c_{\alpha i} c_{\alpha j}\left\{1+b \frac{\mathbf{c}_{\alpha} \cdot \mathbf{u}}{c^{2}}+e \frac{u^{2}}{c^{2}}+h \frac{\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}}{c^{4}}\right\} \\
& =\rho w_{1}\left\{3 c^{2}\left(1+\frac{u^{2}}{c^{2}} e\right) \delta_{i j}+u^{2} h \delta_{i j}\right\}+2 \rho w_{1} u_{i} u_{j} h \tag{8.30}
\end{align*}
\]
in which the following relationships have been used for deriving this equation:
\[
\left.\begin{array}{l}
\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha x} c_{\alpha y}\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)=\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha x}^{2}\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)=\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha y}^{2}\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)=0 \\
\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha x} c_{\alpha y}\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}=2 w_{1} c^{4} u_{x} u_{y}  \tag{8.31}\\
\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha x}^{2}\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}=2 w_{1} c^{4} u_{x}^{2}+w_{1} c^{4} u^{2}
\end{array}\right\}
\]

For the case of an equilibrium state, \(\Pi_{i j}^{(0)}\) can be related to the pressure \(p\) as
\[
\begin{equation*}
\Pi_{i j}^{(0)}=p \delta_{i j}+\rho u_{i} u_{j} \tag{8.32}
\end{equation*}
\]

Hence, the comparison of Eq. (8.30) with Eq. (8.32) yields the following relationships:
\[
\begin{align*}
& h=\frac{1}{2 w_{1}}, \quad p=3 \rho w_{1} c^{2}  \tag{8.33}\\
& 3 e+h=0 \tag{8.34}
\end{align*}
\]

The pressure \(p\) is related to the speed of sound \(c_{s}\) as \(p=\rho c_{s}^{2}\), so that \(c_{s}\) can be written as
\[
\begin{equation*}
c_{s}=\sqrt{3 w_{1}} c \tag{8.35}
\end{equation*}
\]

Finally, we evaluate the kinetic energy. Preliminary relationships can be derived from Eq. (8.23) as
\[
\left.\begin{array}{l}
\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha}^{2}=6 w_{1} c^{2} \\
\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha x}^{2}\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)=\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha y}^{2}\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)=\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha}^{2}\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)=0  \tag{8.36}\\
\sum_{\alpha=0}^{8} w_{\alpha} c_{\alpha}^{2}\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}=4 w_{1} c^{4} u^{2}, \quad \sum_{\alpha=0}^{8} w_{\alpha}\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{3}=0
\end{array}\right\}
\]

Using these relationships, the right-hand side in Eq. (8.6) may be calculated as
\[
\begin{align*}
& \sum_{\alpha=0}^{8} \frac{m}{2}\left(\mathbf{c}_{\alpha}-\mathbf{u}\right)^{2} \frac{f_{\alpha}^{(0)}}{\rho}=\frac{m}{2} \sum_{\alpha=0}^{8} w_{\alpha}\left(c_{\alpha}{ }^{2}+u^{2}-2 \mathbf{c}_{\alpha} \cdot \mathbf{u}\right) \\
& \times\left\{1+b \frac{\mathbf{c}_{\alpha} \cdot \mathbf{u}}{c^{2}}+e \frac{u^{2}}{c^{2}}+h \frac{\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}}{c^{4}}\right\} \\
& =\frac{m}{2}\left\{6 w_{1}\left(1+e \frac{u^{2}}{c^{2}}\right) c^{2}+4 w_{1} h u^{2}+w_{\text {sum }}\left(1+e \frac{u^{2}}{c^{2}}\right) u^{2}+3 w_{1} h \frac{u^{4}}{c^{2}}-6 w_{1} b u^{2}\right\} \tag{8.37}
\end{align*}
\]

By taking into account Eqs. (8.26), (8.29), and (8.33), the above equation is simplified as
\[
\begin{equation*}
\sum_{\alpha=0}^{8} \frac{m}{2}\left(\mathbf{c}_{\alpha}-\mathbf{u}\right)^{2} \frac{f_{\alpha}^{(0)}}{\rho}=\frac{m}{2}\left(6 w_{1} c^{2}+6 w_{1} u^{2} e+w_{\text {sum }} u^{2}\right) \tag{8.38}
\end{equation*}
\]

Hence, Eq. (8.6) reduces to
\[
\begin{equation*}
\frac{2}{2} k T=\frac{m}{2}\left(6 w_{1} c^{2}+6 w_{1} u^{2} e+w_{\mathrm{sum}} u^{2}\right) \tag{8.39}
\end{equation*}
\]

Since the temperature \(T\) is independent of the macroscopic velocity \(u\), this equation yields the final relationships:
\[
\begin{align*}
& 6 w_{1} e+w_{\mathrm{sum}}=0  \tag{8.40}\\
& 3 m w_{1} c^{2}=k T \tag{8.41}
\end{align*}
\]

We now have the same number of equations as the unknown constants, so that the solutions required can be obtained in a straightforward way as
\[
\begin{align*}
& b=3, \quad e=-\frac{3}{2}, \quad h=\frac{9}{2}  \tag{8.42}\\
& w_{\text {sum }}=1, \quad w_{0}=\frac{4}{9}, \quad w_{1}=\frac{1}{9}, \quad w_{5}=\frac{1}{36} \tag{8.43}
\end{align*}
\]

We summarize the final results as
\[
\begin{align*}
& f_{\alpha}^{(0)}=\rho w_{\alpha}\left\{1+3 \frac{\mathbf{c}_{\alpha} \cdot \mathbf{u}}{c^{2}}-\frac{3}{2} \cdot \frac{u^{2}}{c^{2}}+\frac{9}{2} \cdot \frac{\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}}{c^{4}}\right\} \tag{8.44}
\end{align*}
\]

The speed of sound \(c_{s}\) is expressed as
\[
\begin{equation*}
c_{s}=c / \sqrt{3} \tag{8.46}
\end{equation*}
\]

\subsection*{8.1.2 D3Q19 Model}

In the case of the D3Q19 lattice model, the thermodynamic equilibrium distribution can be assumed to have the form of Eq. (8.8), and therefore the unknown constants can be derived through similar procedures to the previous D2Q9 model. Only in this present subsection, we use the notation \(\tilde{c}(=\Delta x / \Delta t)\) for the lattice speed instead of \(c\), since the notation \(c\) will be used for the abbreviated symbol of the cosine function.

In order to satisfy the isotropy condition, the lattice system has to be adopted such that it is independent of an arbitrary rotation of the lattice. In Figure 8.3, for a rotation of the lattice system about the \(z\)-axis by an angle \(\phi\) and a rotation about the \(y\)-axis by an angle \(\theta\), the rotation matrix \(\mathbf{R}\) is written as
\[
\mathbf{R}=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta  \tag{8.47}\\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right)\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
C c & -C s & S \\
s & c & 0 \\
-S c & S s & C
\end{array}\right)
\]


Figure 8.3 Lattice model for the D3Q19.
in which the abbreviations \(C=\cos \theta, S=\sin \theta, c=\cos \phi\), and \(s=\sin \phi\) are used for simplification of the equations. An arbitrary component \(\mathbf{X}\) is related to the corresponding rotated component \(\mathbf{X}^{\prime}\) by the expression \(\mathbf{X}^{\prime}=\mathbf{R} \cdot \mathbf{X}\). The transferred component \(\mathbf{d}_{k}(k=1,2, \ldots, 18)\) of each lattice point in Figure 8.3 is obtained as
\[
\left.\begin{array}{l}
\mathbf{d}_{1}=\mathbf{R}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
C c \\
s \\
-S c
\end{array}\right), \quad \mathbf{d}_{3}=\mathbf{R}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
-C s \\
c \\
S s
\end{array}\right), \quad \mathbf{d}_{5}=\left(\begin{array}{c}
-S \\
0 \\
-C
\end{array}\right) \\
\mathbf{d}_{7}=\left(\begin{array}{c}
C(c-s) \\
s+c \\
-S(c-s)
\end{array}\right), \quad \mathbf{d}_{9}=\left(\begin{array}{c}
C(c+s) \\
s-c \\
-S(c+s)
\end{array}\right), \quad \mathbf{d}_{11}=\left(\begin{array}{c}
-C s+S \\
c \\
S s+C
\end{array}\right) \\
\mathbf{d}_{13}=\left(\begin{array}{c}
C s+S \\
-c \\
-S s+C
\end{array}\right), \quad \mathbf{d}_{15}=\left(\begin{array}{c}
C c+S \\
s \\
-S c+C
\end{array}\right), \quad \mathbf{d}_{17}=\left(\begin{array}{c}
C c-S \\
s \\
-S c-C
\end{array}\right) \tag{8.48}
\end{array}\right\}
\]

From symmetric considerations, the following relationship must be satisfied:
\[
\begin{equation*}
\mathbf{d}_{2 k}=-\mathbf{d}_{2 k-1} \quad(k=1,2, \ldots, 9) \tag{8.49}
\end{equation*}
\]

The final expressions are summarized in Table 8.1.
The results in Table 8.1 give rise to those concerning \(c_{\alpha x}, c_{\alpha y}\), and \(c_{\alpha z}\), such as \(\sum_{\alpha=0}^{18}=w_{\alpha} c_{\alpha i} c_{\alpha j} c_{\alpha k} c_{\alpha l}\) in Table 8.2. As seen from the result of \(\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha i}^{4}\), the

Table 8.1 Results of Quantities for the Successive Derivation
\[
\begin{aligned}
& \sum_{k=1}^{6} d_{k x}^{4}=-4\left(C^{2} S^{2}+C^{4} c^{2} s^{2}\right)+2 \quad \sum_{k=7}^{18} d_{k x}^{4}=8\left(C^{2} S^{2}+C^{4} c^{2} s^{2}\right)+8 \\
& \sum_{k=1}^{6} d_{k y}^{4}=4\left(c^{4}-c^{2}\right)+2 \\
& \sum_{k=7}^{18} d_{k y}^{4}=-8\left(c^{4}-c^{2}\right)+8 \\
& \sum_{k=1}^{6} d_{k z}^{4}=-4\left(C^{2} S^{2}+S^{4} c^{2} s^{2}\right)+2 \\
& \sum_{k=1}^{6} d_{k x}^{2} d_{k y}^{2}=4 C^{2} c^{2} s^{2} \\
& \sum_{k=1}^{6} d_{k x}^{2} d_{k z}^{2}=4 C^{2} S^{2}\left(1-c^{2} s^{2}\right) \\
& \sum_{k=7}^{18} d_{k z}^{4}=8\left(C^{2} S^{2}+S^{4} c^{2} s^{2}\right)+8 \\
& \sum_{k=7}^{18} d_{k x}^{2} d_{k y}^{2}=-8 C^{2} c^{2} s^{2}+4 \\
& \sum_{k=7}^{18} d_{k x}^{2} d_{k z}^{2}=-8 C^{2} S^{2}\left(1-c^{2} s^{2}\right)+4 \\
& \sum_{k=1}^{6} d_{k y}^{2} d_{k z}^{2}=4 S^{2} c^{2} s^{2} \\
& \sum_{k=7}^{18} d_{k y}^{2} d_{k z}^{2}=-8 S^{2} c^{2} s^{2}+4 \\
& \sum_{k=1}^{6} d_{k x}^{2} d_{k y} d_{k z}=2 C^{2} \operatorname{Scs}\left(-c^{2}+s^{2}\right) \\
& \sum_{k=7}^{18} d_{k x}^{2} d_{k y} d_{k z}=4 C^{2} S\left(c^{2}-s^{2}\right) c s \\
& \sum_{k=1}^{6} d_{k x} d_{k y}^{2} d_{k z}=-4 C S c^{2} s^{2} \\
& \sum_{k=1}^{6} d_{k x} d_{k y} d_{k z}^{2}=2 C S^{2} c s\left(c^{2}-s^{2}\right) \\
& \sum_{k=7}^{18} d_{k x} d_{k y}^{2} d_{k z}=8 C S c^{2} s^{2} \\
& \sum_{k=7}^{18} d_{k x} d_{k y} d_{k z}^{2}=-4 C S^{2}\left(c^{2}-s^{2}\right) c s \\
& \sum_{k=1}^{6} d_{k x}^{3} d_{k y}=2 C^{3} c s\left(c^{2}-s^{2}\right) \\
& \sum_{k=7}^{18} d_{k x}^{3} d_{k y}=-4 C^{3}\left(c^{2}-s^{2}\right) c s \\
& \sum_{k=1}^{6} d_{k x}^{3} d_{k z}=-2 C^{3} S\left(1-2 c^{2} s^{2}\right)+2 C S^{3} \\
& \sum_{k=1}^{6} d_{k y}^{3} d_{k x}=2 \operatorname{Ccs}\left(-c^{2}+s^{2}\right) \\
& \sum_{k=7}^{18} d_{k x}^{3} d_{k z}=4 C^{3} S\left(1-2 c^{2} s^{2}\right)-4 C S^{3} \\
& \sum_{k=1}^{6} d_{k y}^{3} d_{k z}=2 \operatorname{Scs}\left(c^{2}-s^{2}\right) \\
& \sum_{k=1}^{6} d_{k z}^{3} d_{k x}=-2 C S^{3}\left(1-2 c^{2} s^{2}\right)+2 C^{3} S \\
& \sum_{k=1}^{6} d_{k z}^{3} d_{k y}=-2 S^{3} c s\left(c^{2}-s^{2}\right) \\
& \sum_{k=1}^{6} d_{k x}^{2}=\sum_{k=1}^{6} d_{k y}^{2}=\sum_{k=1}^{6} d_{k z}^{2}=2 \\
& \sum_{k=1}^{6} d_{k x} d_{k y}=\sum_{k=1}^{6} d_{k x} d_{k z}=\sum_{k=1}^{6} d_{k y} d_{k z}=0 \\
& \sum_{k=7}^{18} d_{k y}^{3} d_{k x}=4 C\left(c^{2}-s^{2}\right) c s \\
& \sum_{k=7}^{18} d_{k y}^{3} d_{k z}=-4 S\left(c^{2}-s^{2}\right) c s \\
& \sum_{k=7}^{18} d_{k z}^{3} d_{k x}=4 C S^{3}\left(1-2 c^{2} s^{2}\right)-4 C^{3} S \\
& \sum_{k=7}^{18} d_{k z}^{3} d_{k y}=4 S^{3}\left(c^{2}-s^{2}\right) c s \\
& \sum_{k=7}^{18} d_{k x}^{2}=\sum_{k=7}^{18} d_{k y}^{2}=\sum_{k=7}^{18} d_{k z}^{2}=8 \\
& \sum_{k=7}^{18} d_{k x} d_{k y}=\sum_{k=7}^{18} d_{k x} d_{k z}=\sum_{k=7}^{18} d_{k y} d_{k z}=0
\end{aligned}
\]

Table 8.2 Final Results of Quantities for the Successive Derivation
\[
\begin{aligned}
& \sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha x}^{4}=\tilde{c}^{4}\left(-4 w_{1}+8 w_{7}\right)\left(C^{2} S^{2}+C^{4} c^{2} s^{2}\right)+\tilde{c}^{4}\left(2 w_{1}+8 w_{7}\right) \\
& \sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha y}^{4}=\tilde{c}^{4}\left(4 w_{1}-8 w_{7}\right)\left(c^{4}-c^{2}\right)+\tilde{c}^{4}\left(2 w_{1}+8 w_{7}\right) \\
& \sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha z}^{4}=\tilde{c}^{4}\left(-4 w_{1}+8 w_{7}\right)\left(C^{2} S^{2}+S^{4} c^{2} s^{2}\right)+\tilde{c}^{4}\left(2 w_{1}+8 w_{7}\right) \\
& \Downarrow w_{1}=2 w_{7} \\
& \sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha x}^{4}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha y}^{4}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha z}^{4}=6 w_{1} \tilde{c}^{4} \\
& \sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha x}^{2} c_{\alpha y}^{2}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha x}^{2} c_{\alpha z}^{2}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha y}^{2} c_{\alpha z}^{2}=2 w_{1} \tilde{c}^{4} \\
& \sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha x}^{3} c_{\alpha y}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha x}^{3} c_{\alpha z}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha y}^{3} c_{\alpha x}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha y}^{3} c_{\alpha z}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha z}^{3} c_{\alpha x}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha z}^{3} c_{\alpha y}=0 \\
& \sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha x}^{2} c_{\alpha y} c_{\alpha z}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha x} c_{\alpha y}^{2} c_{\alpha z}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha x} c_{\alpha y} c_{\alpha z}^{2}=0 \\
& \sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha x}^{3}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha y}^{3}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha z}^{3}=0 \\
& \sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha x}^{2} c_{\alpha y}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha x}^{2} c_{\alpha z}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha y}^{2} c_{\alpha x}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha y}^{2} c_{\alpha z}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha z}^{2} c_{\alpha x}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha z}^{2} c_{\alpha y}=0 \\
& \sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha x} c_{\alpha y} c_{\alpha z}=0 \\
& \sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha x}^{2}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha y}^{2}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha z}^{2}=6 w_{1} \tilde{c}^{2} \\
& \sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha x} c_{\alpha y}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha x} c_{\alpha z}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha y} c_{\alpha z}=0 \\
& 18 \\
& w_{\alpha} c_{\alpha x}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha y}=\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha z}=0 \\
& { }_{\alpha}=0
\end{aligned}
\]
relationship of \(w_{1}=2 w_{7}\) has to be satisfied in order for this result to be independent of the rotational angle. Hence, the results after the arrow in Table 8.2 have taken into account this relationship. The expressions in Table 8.2 are written in simply unified equations as
\[
\left.\begin{array}{l}
\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha i} c_{\alpha j} c_{\alpha k} c_{\alpha l}=2 w_{1} \tilde{c}^{4}\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right) \\
\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha i} c_{\alpha j} c_{\alpha k}=0  \tag{8.50}\\
\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha i} c_{\alpha j}=6 w_{1} \tilde{c}^{2} \delta_{i j}, \quad \sum_{\alpha=0}^{18} w_{\alpha} c_{i}=0
\end{array}\right\}
\]

We are now ready to derive the equilibrium distribution for the D3Q19 lattice model.

As mentioned before, the relationships that the equilibrium distribution \(f_{\alpha}^{(0)}\) shown in Eq. (8.8) must satisfy are the mass, momentum, kinetic energy, and momentum flux equations. The former three equations are written as
\[
\begin{align*}
& \sum_{\alpha=0}^{18} f_{\alpha}^{(0)}=\rho  \tag{8.51}\\
& \sum_{\alpha=0}^{18} \mathbf{c}_{\alpha} f_{\alpha}^{(0)}=\rho \mathbf{u}  \tag{8.52}\\
& \sum_{\alpha=0}^{18} \frac{m}{2}\left(\mathbf{c}_{\alpha}-\mathbf{u}\right)^{2} \frac{f_{\alpha}^{(0)}}{\rho}=\frac{3}{2} k T \tag{8.53}
\end{align*}
\]

With the results shown in Table 8.2, the following equation is obtained:
\[
\begin{align*}
\sum_{\alpha=0}^{18} f_{\alpha}^{(0)} & =\sum_{\alpha=0}^{18} w_{\alpha} \rho\left\{1+b \frac{\mathbf{c}_{\alpha} \cdot \mathbf{u}}{\tilde{c}^{2}}+e \frac{u^{2}}{\tilde{c}^{2}}+h \frac{\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}}{\tilde{c}^{4}}\right\} \\
& =\rho\left\{w_{\text {sum }}+\frac{u^{2}}{\tilde{c}^{2}}\left(w_{\text {sum }} e+6 w_{1} h\right)\right\} \tag{8.54}
\end{align*}
\]

The comparison of this equation with Eq. (8.51) leads to
\[
\begin{equation*}
w_{\text {sum }}=1, \quad w_{\text {sum }} e+6 w_{1} h=0 \tag{8.55}
\end{equation*}
\]
in which \(w_{\text {sum }}=w_{0}+6 w_{1}+12 w_{7}=w_{0}+12 w_{1}\).

In order to compare this result with the right-hand side of Eq. (8.52), the lefthand side is evaluated using the equilibrium distribution as
\[
\begin{equation*}
\sum_{\alpha=0}^{18} c_{\alpha i} f_{\alpha}^{(0)}=\sum_{\alpha=0}^{18} \rho w_{\alpha} c_{\alpha i}\left\{1+b \frac{\mathbf{c}_{\alpha} \cdot \mathbf{u}}{\tilde{c}^{2}}+e \frac{u^{2}}{\tilde{c}^{2}}+h \frac{\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}}{\tilde{c}^{4}}\right\}=6 b w_{1} \rho u_{i} \tag{8.56}
\end{equation*}
\]

Hence, the comparison of the right-hand sides in Eqs. (8.56) and (8.52) gives rise to
\[
\begin{equation*}
6 w_{1} b=1 \tag{8.57}
\end{equation*}
\]

Similar to the D2Q9 model, the momentum flux \(\Pi_{i j}^{(0)}\) is calculated as
\[
\begin{equation*}
\Pi_{i j}^{(0)}=\sum_{\alpha=0}^{18} c_{\alpha i} c_{\alpha j} f_{\alpha}^{(0)}=\left\{6 \rho w_{1} \tilde{c}^{2}\left(1+e \frac{u^{2}}{\tilde{c}^{2}}\right)+2 \rho w_{1} u^{2} h\right\} \delta_{i j}+4 \rho w_{1} u_{i} u_{j} h \tag{8.58}
\end{equation*}
\]

In deriving this equation, the following relationships are used:
\[
\left.\begin{array}{l}
\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha x} c_{\alpha y}\left\{1+b \frac{\mathbf{c}_{\alpha} \cdot \mathbf{u}}{\tilde{c}^{2}}+e \frac{u^{2}}{\tilde{c}^{2}}+h \frac{\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}}{\tilde{c}^{4}}\right\}=4 w_{1} u_{x} u_{y} h \\
\left.\begin{array}{r}
\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha x}^{2}\left\{1+b \frac{\mathbf{c}_{\alpha} \cdot \mathbf{u}}{\tilde{c}^{2}}+e \frac{u^{2}}{\tilde{c}^{2}}+h \frac{\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}}{\tilde{c}^{4}}\right\}
\end{array}\right\}  \tag{8.59}\\
=6 w_{1} \tilde{c}^{2}\left(1+e \frac{u^{2}}{\tilde{c}^{2}}\right)+2 w_{1} u^{2} h+4 w_{1} u_{x}^{2} h
\end{array}\right\}
\]

The expression for \(\Pi_{i j}^{(0)}\) as defined by Eq. (8.32) is also valid for a three-dimensional system. The following relationships can therefore be obtained by comparison with Eq. (8.58) as
\[
\begin{align*}
& p=6 \rho w_{1} \tilde{c}^{2}  \tag{8.60}\\
& 4 w_{1} h=1, \quad 3 e+h=0 \tag{8.61}
\end{align*}
\]

Hence, the speed of sound \(c_{s}\) is expressed from \(p=\rho c_{s}^{2}\) as
\[
\begin{equation*}
c_{s}=\sqrt{6 w_{1}} \cdot \tilde{c} \tag{8.62}
\end{equation*}
\]

Finally, in order to compare with Eq. (8.53), the following reformation is performed:
\[
\begin{align*}
\sum_{\alpha=0}^{18}\left(\mathbf{c}_{\alpha}-\mathbf{u}\right)^{2} \frac{f_{\alpha}^{(0)}}{\rho}= & \sum_{\alpha=0}^{18} w_{\alpha}\left(\mathbf{c}_{\alpha}-\mathbf{u}\right)^{2}\left\{1+b \frac{\mathbf{c}_{\alpha} \cdot \mathbf{u}}{\tilde{c}^{2}}+e \frac{u^{2}}{\tilde{c}^{2}}+h \frac{\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}}{\tilde{c}^{4}}\right\} \\
= & \sum_{\alpha=0}^{18} w_{\alpha}\left(c_{\alpha}^{2}-2 \mathbf{c}_{\alpha} \cdot \mathbf{u}+u^{2}\right)\left\{1+b \frac{\mathbf{c}_{\alpha} \cdot \mathbf{u}}{\tilde{c}^{2}}+e \frac{u^{2}}{\tilde{c}^{2}}+h \frac{\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}}{\tilde{c}^{4}}\right\} \\
= & \sum_{\alpha=0}^{18} w_{\alpha}\left(c_{\alpha}^{2}-2 \mathbf{c}_{\alpha} \cdot \mathbf{u}+u^{2}\right)\left(1+e \frac{u^{2}}{\tilde{c}^{2}}\right) \\
& +\sum_{\alpha=0}^{18} w_{\alpha}\left(c_{\alpha}^{2}-2 \mathbf{c}_{\alpha} \cdot \mathbf{u}+u^{2}\right)\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right) \frac{b}{\tilde{c}^{2}} \\
& +\sum_{\alpha=0}^{18} w_{\alpha}\left(c_{\alpha}^{2}-2 \mathbf{c}_{\alpha} \cdot \mathbf{u}+u^{2}\right)\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2} \frac{h}{\tilde{c}^{4}} \\
= & \left(1+e \frac{u^{2}}{\tilde{c}^{2}}\right)\left(18 w_{1} \tilde{c}^{2}+w_{\text {sum }} u^{2}\right)-\frac{2 b}{\tilde{c}^{2}} \sum_{\alpha=0}^{18} w_{\alpha}\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2} \\
& +\frac{h}{\tilde{c}^{4}} \sum_{\alpha=0}^{18} w_{\alpha}\left\{c_{\alpha}^{2}\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}+u^{2}\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}\right\} \\
= & 18 w_{1} \tilde{c}^{2}+\left(w_{\text {sum }}-12 w_{1} b+18 w_{1} e+10 w_{1} h\right) u^{2} \tag{8.63}
\end{align*}
\]
in which Eq. (8.55) and the following relationship have been used for the derivation:
\[
\left.\begin{array}{l}
\sum_{\alpha=0}^{18} w_{\alpha}\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}=6 w_{1} \tilde{c}^{2} u^{2}  \tag{8.64}\\
\sum_{\alpha=0}^{18} w_{\alpha} c_{\alpha}^{2}\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}=10 w_{1} \tilde{c}^{4} u^{2}
\end{array}\right\}
\]

Since the temperature is independent of the macroscopic velocity \(u\), the second term on the right-hand side in Eq. (8.63) must vanish:
\[
\begin{equation*}
w_{\text {sum }}-12 w_{1} b+18 w_{1} e+10 w_{1} h=0 \tag{8.65}
\end{equation*}
\]

The comparison of Eq. (8.63) with Eq. (8.6) yields the following equation:
\[
\begin{equation*}
\frac{m}{2} 18 w_{1} \tilde{c}^{2}=\frac{3}{2} k T \tag{8.66}
\end{equation*}
\]

We now have the same number of equations as the unknown constants. The final results for the unknown constants can be obtained from Eqs. (8.55), (8.57), (8.61), and (8.65) and the relationships of \(w_{1}=2 w_{7}\) and \(w_{\text {sum }}=w_{0}+12 w_{1}\), as
\[
\left.\begin{array}{l}
w_{0}=\frac{1}{3}, \quad w_{1}=\frac{1}{18}, \quad w_{7}=\frac{1}{36}, \quad w_{\mathrm{sum}}=1  \tag{8.67}\\
b=3, \quad e=-\frac{3}{2}, \quad h=\frac{9}{2}
\end{array}\right\}
\]

With the original notation \(c\) for the lattice velocity, the equilibrium distribution for the D3Q19 model is finally written as
\[
\begin{align*}
& f_{a}^{(0)}=\rho w_{\alpha}\left\{1+3 \frac{\mathbf{c}_{\alpha} \cdot \mathbf{u}}{c^{2}}-\frac{3}{2} \cdot \frac{u^{2}}{c^{2}}+\frac{9}{2} \cdot \frac{\left(\mathbf{c}_{\alpha} \cdot \mathbf{u}\right)^{2}}{c^{4}}\right\}  \tag{8.68}\\
& w_{\alpha}=\left\{\begin{array}{ccc}
1 / 3 & \text { for } & \alpha=0 \\
1 / 18 & \text { for } & \alpha=1,2, \ldots, 6, \quad\left|\mathbf{c}_{\alpha}\right|=\left\{\begin{array}{ccc}
0 & \text { for } & \alpha=0 \\
c & \text { for } & \alpha=1,2, \ldots, 6 \\
1 / 36 & \text { for } & \alpha=7,8, \ldots, 18
\end{array} \quad \begin{array}{lll}
\sqrt{2} c & \text { for } & \alpha=7,8, \ldots, 18
\end{array}\right.
\end{array} .\left\{\begin{array}{l}
\text { for }
\end{array}\right.\right. \tag{8.69}
\end{align*}
\]

\subsection*{8.2 Navier-Stokes Equation}

In this section, we derive the Navier-Stokes equation from the preliminary equations derived in Appendix A1, which is the basic macroscopic equation for flow problems. The following derivation procedure is valid for both D2Q9 and D3Q19 models, with the exception that \(\alpha\) is taken as \(\alpha=0,1, \ldots, 8\), the axis index \(i\) is \(x\) or \(y\) for the former model, \(\alpha\) is taken as \(\alpha=0,1, \ldots, 18\), and \(i\) is \(x, y\), or \(z\) for the latter model.

The starting equation for the derivation procedure is Eq. (A1.27), rewritten as
\[
\begin{equation*}
\frac{\partial}{\partial t}\left(\rho u_{i}\right)+\sum_{j} \frac{\partial}{\partial r_{j}} \Pi_{i j}+\frac{\Delta t}{2} \varepsilon \sum_{j} \frac{\partial}{\partial r_{j}}\left\{\frac{\partial}{\partial t_{1}} \Pi_{i j}^{(0)}\right\}+\frac{\Delta t}{2} \sum_{j} \sum_{k} \frac{\partial}{\partial r_{j}}\left\{\frac{\partial}{\partial r_{k}} S_{i j k}^{(0)}\right\}=0 \tag{8.70}
\end{equation*}
\]

Another starting equation is Eq. (A1.31), rewritten as
\[
\begin{equation*}
-\frac{1}{\tau \Delta t} f_{\alpha}^{(1)}=-\frac{\partial f_{\alpha}^{(0)}}{\partial \rho} \cdot \frac{\partial}{\partial \mathbf{r}_{1}} \cdot(\rho \mathbf{u})-\sum_{i} \sum_{j} \frac{\partial f_{\alpha}^{(0)}}{\partial\left(\rho u_{i}\right)} \cdot \frac{\partial}{\partial r_{1 j}} \Pi_{i j}^{(0)}+\sum_{i} \frac{\partial}{\partial r_{1 i}}\left(c_{\alpha i} f_{\alpha}^{(0)}\right) \tag{8.71}
\end{equation*}
\]
in which
\[
\begin{align*}
& f_{\alpha}=f_{\alpha}^{(0)}+\varepsilon f_{\alpha}^{(1)}+\varepsilon^{2} f_{\alpha}^{(2)}+\cdots  \tag{8.72}\\
& \Pi_{i j}^{(0)}=\sum_{\alpha} c_{\alpha i} c_{\alpha j} f_{\alpha}^{(0)}=p \delta_{i j}+\rho u_{i} u_{j}=\frac{\rho}{3} c^{2} \delta_{i j}+\rho u_{i} u_{j}  \tag{8.73}\\
& S_{i j k}^{(0)}=\sum_{\alpha} c_{\alpha i} c_{\alpha j} c_{\alpha k} f_{\alpha}^{(0)}  \tag{8.74}\\
& \frac{\partial}{\partial t}=\varepsilon \frac{\partial}{\partial t_{1}}+\varepsilon^{2} \frac{\partial}{\partial t_{2}}, \quad \frac{\partial}{\partial r_{i}}=\varepsilon \frac{\partial}{\partial r_{1 i}} \tag{8.75}
\end{align*}
\]

We now begin the derivation procedure for the Navier-Stokes equation by deriving the solution for \(f_{\alpha}^{(1)}\) from the basic equation in Eq. (8.71). If the terms higher than the order of \((u / c)^{2}\) are neglected, the following relationships are obtained:
\[
\begin{align*}
& f_{\alpha}^{(0)}=\rho w_{\alpha}\left\{1+3 \frac{\mathbf{c}_{\alpha} \cdot \mathbf{u}}{c^{2}}\right\}  \tag{8.76}\\
& \Pi_{i j}^{(0)}=\frac{\rho}{3} c^{2} \delta_{i j}+\rho u_{i} u_{j}  \tag{8.77}\\
& \frac{\partial f_{\alpha}^{(0)}}{\partial \rho}=w_{\alpha}  \tag{8.78}\\
& \frac{\partial f_{\alpha}^{(0)}}{\partial\left(\rho u_{i}\right)}=w_{\alpha} \frac{\partial}{\partial\left(\rho u_{i}\right)}\left\{\frac{3}{c^{2}} \sum_{j} c_{\alpha j}\left(\rho u_{j}\right)\right\}=w_{\alpha} \frac{3}{c^{2}} c_{\alpha i}  \tag{8.79}\\
& \frac{\partial}{\partial r_{1 j}} \Pi_{i j}^{(0)}=\frac{c^{2}}{3} \cdot \frac{\partial \rho}{\partial r_{1 j}} \delta_{i j}+\frac{\partial}{\partial r_{1 j}}\left(\rho u_{i} u_{j}\right)  \tag{8.80}\\
& \frac{\partial}{\partial r_{1 i}}\left(c_{\alpha i} f_{\alpha}^{(0)}\right)=w_{\alpha} \frac{\partial}{\partial r_{1 i}}\left(\rho c_{\alpha i}\right)+3 w_{\alpha} \frac{1}{c^{2}} \cdot \frac{\partial}{\partial r_{1 i}}\left\{\sum_{j} \rho c_{\alpha i} c_{\alpha j} u_{j}\right\} \tag{8.81}
\end{align*}
\]

By substituting these relationships into Eq. (8.71), the solution of \(f_{\alpha}^{(1)}\) can finally be obtained as
\[
\begin{equation*}
f_{\alpha}^{(1)}=-3 w_{\alpha} \Delta t \tau \frac{1}{c^{2}} \sum_{k} \sum_{l}\left(c_{\alpha k} c_{\alpha l}-\frac{1}{3} c^{2} \delta_{k l}\right) \frac{\partial}{\partial r_{1 l}}\left(\rho u_{k}\right) \tag{8.82}
\end{equation*}
\]

With this solution, the next quantity can be evaluated:
\[
\begin{align*}
\varepsilon \Pi_{i j}^{(1)}= & \varepsilon \sum_{\alpha} c_{\alpha i} c_{\alpha j} f_{\alpha}^{(1)} \\
= & -3 \Delta t \tau \frac{1}{c^{2}} \sum_{k} \sum_{l}\left(\sum_{\alpha} w_{\alpha} c_{\alpha i} c_{\alpha j} c_{\alpha k} c_{\alpha l}\right) \frac{\partial}{\partial r_{l}}\left(\rho u_{k}\right) \\
& +\Delta t \tau\left(\sum_{\alpha} w_{\alpha} c_{\alpha i} c_{\alpha j}\right) \frac{\partial}{\partial \mathbf{r}} \cdot(\rho \mathbf{u})  \tag{8.83}\\
= & -\frac{\Delta t \tau c^{2}}{3}\left\{\frac{\partial}{\partial r_{j}}\left(\rho u_{i}\right)+\frac{\partial}{\partial r_{i}}\left(\rho u_{j}\right)\right\}
\end{align*}
\]

In deriving this equation, Eqs. (8.50), (8.22), and (8.23) are used. This equation leads to
\[
\begin{equation*}
\sum_{j} \frac{\partial}{\partial r_{j}}\left(\varepsilon \Pi_{i j}^{(1)}\right)=-\frac{\Delta t \tau c^{2}}{3}\left\{\frac{\partial^{2}}{\partial \mathbf{r}^{2}}\left(\rho u_{i}\right)+\frac{\partial}{\partial r_{i}}\left(\frac{\partial}{\partial \mathbf{r}} \cdot(\rho \mathbf{u})\right)\right\} \tag{8.84}
\end{equation*}
\]

On the other hand, \(\Pi_{i j}^{(0)}\) is written as
\[
\begin{equation*}
\sum_{j} \frac{\partial}{\partial r_{j}}\left(\Pi_{i j}^{(0)}\right)=\sum_{j} \frac{\partial}{\partial r_{j}}\left(p \delta_{i j}+\rho u_{i} u_{j}\right) \tag{8.85}
\end{equation*}
\]

With the approximation of \(\Pi_{i j} \approx \Pi_{i j}^{(0)}+\varepsilon \Pi_{i j}^{(1)}\), the following equation is obtained from Eqs. (8.84) and (8.85):
\[
\begin{equation*}
\sum_{j} \frac{\partial}{\partial r_{j}} \Pi_{i j}=\sum_{j} \frac{\partial}{\partial r_{j}}\left(p \delta_{i j}+\rho u_{i} u_{j}\right)-\frac{\Delta t \tau c^{2}}{3}\left\{\frac{\partial^{2}}{\partial \mathbf{r}^{2}}\left(\rho u_{i}\right)+\frac{\partial}{\partial r_{i}}\left(\frac{\partial}{\partial \mathbf{r}} \cdot(\rho \mathbf{u})\right)\right\} \tag{8.86}
\end{equation*}
\]

Moreover, Eqs. (A1.11) and (A1.17) give rise to
\[
\begin{equation*}
\frac{\Delta t}{2} \varepsilon \frac{\partial}{\partial t_{1}} \Pi_{i j}^{(0)}=\frac{1}{6} \Delta t c^{2} \delta_{i j} \varepsilon \frac{\partial \rho}{\partial t_{1}}=-\frac{1}{6} \Delta t c^{2} \delta_{i j} \frac{\partial}{\partial \mathbf{r}} \cdot(\rho \mathbf{u}) \tag{8.87}
\end{equation*}
\]

From this equation, the following equation can be obtained:
\[
\begin{equation*}
\frac{\Delta t}{2} \varepsilon \sum_{j} \frac{\partial}{\partial r_{j}}\left(\frac{\partial}{\partial t_{1}} \Pi_{i j}^{(0)}\right)=-\frac{1}{6} \Delta t c^{2} \frac{\partial}{\partial r_{i}}\left\{\frac{\partial}{\partial \mathbf{r}} \cdot(\rho \mathbf{u})\right\} \tag{8.88}
\end{equation*}
\]

We next evaluate the quantity \(S_{i j k}^{(0)}\). First,
\[
\begin{equation*}
S_{i j k}^{(0)}=\sum_{\alpha} c_{\alpha i} c_{\alpha j} c_{\alpha k} f_{\alpha}^{(0)}=\sum_{\alpha} w_{\alpha} c_{\alpha i} c_{\alpha j} c_{\alpha k} \rho\left(1+3 \frac{\mathbf{c}_{\alpha} \cdot \mathbf{u}}{c^{2}}\right) \tag{8.89}
\end{equation*}
\]

With this equation, the partial derivative in Eq. (8.70) is obtained as
\[
\begin{align*}
\sum_{j} \sum_{k} \frac{\partial}{\partial r_{j}} \cdot \frac{\partial}{\partial r_{k}}\left(S_{i j k}^{(0)}\right) & =\frac{1}{3} c^{2} \sum_{j} \sum_{k} \frac{\partial}{\partial r_{j}} \cdot \frac{\partial}{\partial r_{k}}\left(\rho u_{k} \delta_{i j}+\rho u_{j} \delta_{i k}+\rho u_{i} \delta_{j k}\right) \\
& =\frac{2}{3} c^{2}\left\{\frac{\partial}{\partial r_{i}}\left(\frac{\partial}{\partial \mathbf{r}} \cdot(\rho \mathbf{u})\right)+\frac{1}{2} \cdot \frac{\partial^{2}}{\partial \mathbf{r}^{2}}\left(\rho u_{i}\right)\right\} \tag{8.90}
\end{align*}
\]

We have now finished the preparation for deriving the Navier-Stokes equation. If the summation of the first and second terms, and the summation of the third and fourth terms on the left-hand side in Eq. (8.70), are denoted by \(A\) and \(B\), respectively, these quantities are evaluated as
\[
\begin{align*}
A & =\frac{\partial}{\partial t}\left(\rho u_{i}\right)+\sum_{j} \frac{\partial}{\partial r_{j}}\left(p \delta_{i j}+\rho u_{i} u_{j}\right)-\frac{\Delta t \tau c^{2}}{3}\left\{\frac{\partial^{2}}{\partial \mathbf{r}^{2}}\left(\rho u_{i}\right)+\frac{\partial}{\partial r_{i}}\left(\frac{\partial}{\partial \mathbf{r}} \cdot(\rho \mathbf{u})\right)\right\} \\
& =\frac{\partial}{\partial t}\left(\rho u_{i}\right)+\sum_{j} \frac{\partial}{\partial r_{j}}\left(\rho u_{i} u_{j}\right)+\frac{\partial p}{\partial r_{i}}-\frac{\Delta t \tau c^{2}}{3}\left\{\frac{\partial^{2}}{\partial \mathbf{r}^{2}}\left(\rho u_{i}\right)+\frac{\partial}{\partial r_{i}}\left(\frac{\partial}{\partial \mathbf{r}} \cdot(\rho \mathbf{u})\right)\right\}  \tag{8.91}\\
B & =\frac{\Delta t}{2} \varepsilon \sum_{j} \frac{\partial}{\partial r_{j}}\left(\frac{\partial}{\partial t_{1}} \Pi_{i j}^{(0)}\right)+\frac{\Delta t}{2} \sum_{j} \sum_{k} \frac{\partial}{\partial r_{j}}\left(\frac{\partial}{\partial r_{k}} S_{i j k}^{(0)}\right)  \tag{8.92}\\
& =\frac{1}{6} \Delta t c^{2}\left\{\frac{\partial^{2}}{\partial \mathbf{r}^{2}}\left(\rho u_{i}\right)+\frac{\partial}{\partial r_{i}}\left(\frac{\partial}{\partial \mathbf{r}} \cdot(\rho \mathbf{u})\right)\right\}
\end{align*}
\]

By substituting Eqs. (8.91) and (8.92) into Eq. (8.70), together with the relationship of \(\frac{\partial}{\partial \mathbf{r}} \cdot(\rho \mathbf{u})=0\) for noncompressible fluids, the Navier-Stokes equation is finally obtained as
\[
\begin{equation*}
\rho\left\{\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right\}=-\nabla p+\mu^{\mathrm{LB}} \nabla^{2} \mathbf{u} \tag{8.93}
\end{equation*}
\]
in which \(\mu^{\text {LB }}\) is the viscosity, expressed as
\[
\begin{equation*}
\mu^{\mathrm{LB}}=\frac{\rho \Delta t c^{2}}{3}\left(\tau-\frac{1}{2}\right), \quad \nu^{\mathrm{LB}}=\frac{\mu^{\mathrm{LB}}}{\rho}=\frac{\Delta t c^{2}}{3}\left(\tau-\frac{1}{2}\right) \tag{8.94}
\end{equation*}
\]

In this equation \(v^{\mathrm{LB}}\) is the kinematic viscosity.

\subsection*{8.3 Body Force}

If a body force, such as the gravitational force, acts on a fluid, how do we incorporate it into the lattice Boltzmann equation? The method can be seen in the following:
\[
\left.\begin{array}{l}
f_{\alpha}\left(\mathbf{r}+\mathbf{c}_{\alpha} \Delta t, t+\Delta t\right)=\tilde{f}_{\alpha}(\mathbf{r}, t)  \tag{8.95}\\
\tilde{f}_{\alpha}(\mathbf{r}, t)=f_{\alpha}(\mathbf{r}, t)+\Omega_{\alpha}+g_{\alpha}
\end{array}\right\}
\]
in which
\[
\begin{align*}
& \Omega_{\alpha}=\frac{1}{\tau}\left\{f_{\alpha}^{(0)}(\mathbf{r}, t)-f_{\alpha}(\mathbf{r}, t)\right\}  \tag{8.96}\\
& g_{\alpha}=\left\{\begin{array}{ccc}
0 & \text { for } & \alpha=0 \\
\frac{3 \Delta t}{c^{2}} w_{\alpha} \mathbf{c}_{\alpha} \cdot \mathbf{F} & \text { for } & \alpha \neq 0
\end{array}\right\} \tag{8.97}
\end{align*}
\]
\(g_{\alpha}\) is a quantity that is due to the body force \(\mathbf{F}\) per unit volume and has the following characteristics:
\[
\left.\begin{array}{l}
\sum_{\alpha} g_{\alpha}=0  \tag{8.98}\\
\sum_{\alpha} \mathbf{c}_{\alpha} g_{\alpha}=\sum_{\alpha} \frac{3 \Delta t}{c^{2}} w_{\alpha}\left(\mathbf{c}_{\alpha} \mathbf{c}_{\alpha}\right) \cdot \mathbf{F}=\Delta t \mathbf{F}
\end{array}\right\}
\]

In this reformation, the following relationship has been used:
\[
\begin{equation*}
\sum_{\alpha} w_{\alpha} \mathbf{c}_{\alpha} \mathbf{c}_{\alpha}=\left(c^{2} / 3\right) \mathbf{I} \tag{8.99}
\end{equation*}
\]
in which I is the unit tensor, and Eq. (8.99) is valid for both D2Q9 and D3Q19 models. It is quite clear that the quantity \(g_{\alpha}\) can be expressed in the form of Eq. (8.97), because the particle distribution tends to move in the direction of the body force \(\mathbf{F}\) acting. Therefore, the relationship of the form \(g_{\alpha} \propto \mathbf{c}_{\alpha} \cdot \mathbf{F}\) can be expected.

We will now confirm that the \(g_{\alpha}\), expressed in Eq. (8.97), appears in a reasonable form in the Navier-Stokes equation by deriving these equations starting from Eq. (8.95), as conducted in Section 8.2. There is no new concept applied here except for the inclusion of the new term \(g_{\alpha}\) into the derivation procedure shown in Section 8.2; therefore we show only the important expressions.

From Appendix A1, the relationships of the orders \(\varepsilon\) and \(\varepsilon^{2}\) are written as
\[
\begin{align*}
& \frac{\partial \rho}{\partial t_{1}}+\nabla_{1} \cdot(\rho \mathbf{u})=0 \\
& \frac{\partial}{\partial t_{1}}\left(\rho u_{i}\right)+\sum_{j} \frac{\partial}{\partial r_{1 j}} \Pi_{i j}^{(0)}=\frac{1}{\varepsilon} F_{i} \\
& \frac{\partial \rho}{\partial t_{2}}+\frac{\Delta t}{2} \cdot \frac{\partial^{2} \rho}{\partial t_{1}^{2}}+\frac{\Delta t}{2} \sum_{i} \sum_{j} \frac{\partial}{\partial r_{1 i}} \cdot \frac{\partial}{\partial r_{1 j}} \Pi_{i j}^{(0)}+\Delta t \sum_{i} \frac{\partial}{\partial t_{1}} \cdot \frac{\partial}{\partial r_{1 i}}\left(\rho u_{i}\right)=0  \tag{8.100}\\
& \frac{\partial}{\partial t_{2}}\left(\rho u_{i}\right)+\frac{\Delta t}{2} \cdot \frac{\partial^{2}}{\partial t_{1}^{2}}\left(\rho u_{i}\right)+\sum_{j} \frac{\partial}{\partial r_{1 j}} \Pi_{i j}^{(1)}+\frac{\Delta t}{2} \sum_{j} \sum_{k} \frac{\partial}{\partial r_{1 j}} \cdot \frac{\partial}{\partial r_{1 k}} S_{i j k}^{(0)}  \tag{8.101}\\
& \quad+\Delta t \sum_{j} \frac{\partial}{\partial t_{1}} \cdot \frac{\partial}{\partial r_{1 j}} \Pi_{i j}^{(0)}=0
\end{align*}
\]

These expressions lead to the following basic equations:
\[
\begin{align*}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u})=0  \tag{8.102}\\
& \frac{\partial}{\partial t}\left(\rho u_{i}\right)+\sum_{j} \frac{\partial}{\partial r_{j}} \Pi_{i j}+\sum_{j} \frac{\Delta t}{2} \cdot \frac{\partial}{\partial r_{j}}\left\{\varepsilon \frac{\partial}{\partial t_{1}} \Pi_{i j}^{(0)}+\sum_{k} \frac{\partial}{\partial r_{k}} S_{i j k}^{(0)}\right\}=F_{i} \tag{8.103}
\end{align*}
\]

Also, \(f_{\alpha}^{(1)}\) is written as
\[
\begin{align*}
f_{\alpha}^{(1)} & =-t \tau \Delta t\left\{\frac{\partial f_{\alpha}^{(0)}}{\partial t_{1}}+\sum_{i} \frac{\partial}{\partial r_{1 i}}\left(c_{\alpha i} f_{\alpha}^{(0)}\right)\right\}+\frac{\tau}{\varepsilon} g_{\alpha} \\
& =-3 w_{\alpha} \Delta t \tau \frac{1}{c^{2}} \sum_{k} \sum_{l}\left(c_{\alpha k} c_{\alpha l}-\frac{1}{3} c^{2} \delta_{k l}\right) \frac{\partial}{\partial r_{1 l}}\left(\rho u_{k}\right) \tag{8.104}
\end{align*}
\]

Finally, using these expressions in a derivation procedure similar to that used previously, the Navier-Stokes equation is obtained as
\[
\begin{equation*}
\rho\left\{\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right\}=-\nabla p+\mu^{\mathrm{LB}} \nabla^{2} \mathbf{u}+\mathbf{F} \tag{8.105}
\end{equation*}
\]
in which \(\mu^{\text {LB }}\) has already been shown in Eq. (8.94). Eq. (8.105) clearly shows that \(g_{\alpha}\) defined in Eq. (8.97) gives rise to the body force \(\mathbf{F}\) appearing in the appropriate form in the Navier-Stokes equation.

\subsection*{8.4 Boundary Conditions}

In simulations by the lattice Boltzmann method, it is very important to treat the boundary conditions in an appropriate manner at all the simulation boundary surfaces. Hence, there is a lot of current interest in developing more accurate boundary conditions, and papers addressing this problem have been appearing in academic journals. For example, if we consider a flow inside a tube or around an obstacle, or a suspension composed of solid particles, the treatment of the boundary condition at the wall or particle surface is very important for obtaining reliable solutions of the flow field. In this section, we first explain the historical bounce-back boundary condition, and then focus on several alternative boundary conditions that have a clearer physical and mathematical background.

\subsection*{8.4.1 Bounce-back Rule}

We explain the historical bounce-back rule \([35,36]\) using Figure 8.4. The lattice position of interest in a fluid is denoted by \(\mathbf{r}_{l}\), its neighboring site inside the material by \(\mathbf{r}_{p}\), and the point at the material surface on a straight line between these two points by \(\mathbf{r}_{w}\), as shown in Figure 8.4. According to the BGK lattice Boltzmann method, the particle distribution \(\tilde{f}_{\alpha}\) after the collision at time \(t\) becomes that at the neighboring site in the \(\alpha\)-direction at time \((t+\Delta t)\). The bounce-back rule employs the following treatment of the collision at the material surface:
\[
\begin{align*}
& f_{\bar{\alpha}}\left(\mathbf{r}_{l}, t+\Delta t\right)=\tilde{f}_{\alpha}\left(\mathbf{r}_{l}, t\right)-2 \rho w_{\alpha} \frac{\mathbf{u}_{w} \cdot \mathbf{c}_{\alpha}}{c_{s}^{2}}  \tag{8.106}\\
& f_{\alpha}\left(\mathbf{r}_{p}, t+\Delta t\right)=\tilde{f}_{\bar{\alpha}}\left(\mathbf{r}_{p}, t\right)+2 \rho w_{\alpha} \frac{\mathbf{u}_{w} \cdot \mathbf{c}_{\alpha}}{c_{s}^{2}} \tag{8.107}
\end{align*}
\]


Figure 8.4 Bounce-back rule for the treatment at the material surface.
in which \(\bar{\alpha}\) implies the opposite direction of \(\alpha ; \alpha\) is the direction toward the object. Eq. (8.106) means that the fluid particles at \(\mathbf{r}=\mathbf{r}_{l}\) move in the \(\alpha\)-direction, collide with the obstacle at the middle point of the two lattice points, and return to the original lattice point during \(t\) and \(t+\Delta t\). In this movement, if the solid surface moves in the \(\alpha\)-direction, the number of the particles returning after the collision decreases, so that the second term on the right-hand side in Eq. (8.106) is necessary to make this modification. The following consideration makes clear that the bounce-back rule does not offer sufficient accuracy. That is, in the treatment of Eq. (8.106), the fluid particles starting from the point \(\mathbf{r}_{l}\) do not collide with the actual solid surface \(\mathbf{r}_{w}\), but at the exact middle point between \(\mathbf{r}_{l}\) and \(\mathbf{r}_{p}\), before returning to the original site. In other words, the collision procedure is conducted under the assumption that the surface of the obstacle is at the middle point between two neighboring lattice sites. In order to improve this approach, various boundary conditions have been developed. Research in this area is still a topic of interest.

Here we consider the validity of the second term on the right-hand side in Eq. (8.106). The consideration of Eqs. (8.82), (8.72), and (A1.11) leads to
\[
\begin{equation*}
\tilde{f}_{\alpha}\left(\mathbf{r}_{l}, t\right)=f_{\alpha}\left(\mathbf{r}_{l}, t\right)+\frac{1}{\tau}\left\{f_{\alpha}^{(0)}\left(\mathbf{r}_{l}, t\right)-f_{\alpha}\left(\mathbf{r}_{l}, t\right)\right\}=f_{\alpha}\left(\mathbf{r}_{l}, t\right)+\rho \frac{w_{\alpha}}{c_{s}^{2}}\left(\mathbf{c}_{\alpha} \cdot \frac{\partial \mathbf{u}\left(\mathbf{r}_{l}\right)}{\partial \mathbf{r}}\right) \cdot \mathbf{c}_{\alpha} \Delta t \tag{8.108}
\end{equation*}
\]
in which a fluid has been assumed to be noncompressive. Substituting this equation into Eq. (8.106) yields
\[
\begin{equation*}
f_{\bar{\alpha}}\left(\mathbf{r}_{l}, t+\Delta t\right)=f_{\alpha}\left(\mathbf{r}_{l}, t\right)+\rho \frac{w_{\alpha}}{c_{s}^{2}}\left(\mathbf{c}_{\alpha} \cdot \frac{\partial \mathbf{u}\left(\mathbf{r}_{l}\right)}{\partial \mathbf{r}}\right) \cdot \mathbf{c}_{\alpha} \Delta t-2 \rho w_{\alpha} \frac{\mathbf{u}_{w} \cdot \mathbf{c}_{\alpha}}{c_{s}^{2}} \tag{8.109}
\end{equation*}
\]

If \(f_{\alpha}\left(\mathbf{r}_{l}, t\right)\) in Eq. (8.109) is assumed to be not far from an equilibrium state, it is approximated from Eq. (8.68) as
\[
\begin{equation*}
f_{\alpha}\left(\mathbf{r}_{l}, t\right) \approx f_{\bar{\alpha}}\left(\mathbf{r}_{l}, t\right)+2 \rho w_{\alpha} \frac{\mathbf{u}\left(\mathbf{r}_{l}\right) \cdot \mathbf{c}_{\alpha}}{c_{s}^{2}} \tag{8.110}
\end{equation*}
\]

Substituting this equation into Eq. (8.109) gives rise to
\[
\begin{align*}
& f_{\bar{\alpha}}\left(\mathbf{r}_{l}, t+\Delta t\right)=f_{\bar{\alpha}}\left(\mathbf{r}_{l}, t\right)+\frac{2 \rho w_{\alpha}}{c_{s}^{2}}\left[\left\{\mathbf{u}\left(\mathbf{r}_{l}\right)+\frac{\partial \mathbf{u}\left(\mathbf{r}_{l}\right)}{\partial \mathbf{r}} \cdot \frac{\Delta t}{2} \mathbf{c}_{\alpha}\right\}-\mathbf{u}_{w}\right] \cdot \mathbf{c}_{\alpha}  \tag{8.111}\\
& \approx f_{\bar{\alpha}}\left(\mathbf{r}_{l}, t\right)+\frac{2 \rho w_{\alpha}}{c_{s}^{2}}\left\{\mathbf{u}\left(\mathbf{r}_{l}+\mathbf{c}_{\alpha} \Delta t / 2\right)-\mathbf{u}_{w}\right\} \cdot \mathbf{c}_{\alpha}
\end{align*}
\]

It is seen from Eq. (8.111) that \(\mathbf{u}\left(\mathbf{r}_{l}+(1 / 2) \mathbf{c}_{\alpha} \Delta t\right)\) is equal to \(\mathbf{u}_{w}\), if the medium point \(\left(\mathbf{r}_{l}+(1 / 2) \mathbf{c}_{\alpha} \Delta t\right)\) is sufficiently near to the solid surface. Hence, we obtain the result \(f_{\bar{\alpha}}\left(\mathbf{r}_{l}, t+\Delta t\right)=f_{\bar{\alpha}}\left(\mathbf{r}_{l}, t\right)\). That is, the particle distribution in the direction away from
the solid surface approximates to the equilibrium distribution and is independent of time.

\subsection*{8.4.2 BFL Method}

In this subsection we explain the BFL method [37]. In the bounce-back rule, the solid surface is regarded as being at the middle point of two lattice sites, and virtual fluid particles are reflected at this point. Hence, the exact position of the solid surface is not employed in the bounce-back method. The BFL method attempts to improve this drawback by taking into account the exact position of the solid surface in the procedure of the collision process between virtual fluid particles and the material. As shown in Figure 8.5, \(\mathbf{r}_{l}\) is the point of interest in a fluid, \(\mathbf{r}_{p}\) is the neighboring point inside the particle, \(\mathbf{r}_{w}\) is the point at the solid surface on a line between these two points, and \(\mathbf{r}_{l^{\prime}}\) is the next neighboring point in the direction away from the solid surface. The exact position of the solid surface can be expressed using the quantity \(\Delta_{w}=\left|\mathbf{r}_{l}-\mathbf{r}_{w}\right| /\left|\mathbf{r}_{l}-\mathbf{r}_{p}\right|\); although the lattice separation is defined to be \(\Delta x\), we regarded \(\Delta x\) as unity in Sections 8.4.2 and 8.4.3 for simplicity's sake, because the final results derived here are unaffected even if \(\Delta x\) is not unity. The solid surface is at the position which is away from \(\mathbf{r}_{l}\) in the direction toward \(\mathbf{r}_{p}\) determined by \(\Delta_{w}\), as shown in Figure 8.5. The BFL method is based on an interpolation but, so as not to lose the accuracy of the interpolation, two different procedures are adopted for \(\Delta_{w} \leq 1 / 2\) and \(\Delta_{w}>1 / 2\), although the concept of the treatment is the same for both cases. The fundamental concept is that fluid particles move, collide with the solid material, and return to a certain point during the time interval \(\Delta t\). Since the unit lattice length is assumed in this analysis, the transportation distance is unity. In this collision process, the exact position of the solid surface is necessary. In the following text, the treatment for \(\Delta_{w} \leq 1 / 2\) is discussed first.

As shown in Figure 8.5 A , in the case of \(\Delta_{w} \leq 1 / 2\), the particle distribution function \(\tilde{f}_{\alpha}\left(\mathbf{r}_{m}, t\right)\) at \(\mathbf{r}_{m}\) becomes that at \(\mathbf{r}_{l}, f_{\bar{\alpha}}\left(\mathbf{r}_{l}, t+\Delta t\right)\), in which the point \(\mathbf{r}_{m}\) is evaluated such that fluid particles move in the \(\alpha\)-direction, collide with the solid surface, and arrive at the lattice point \(\mathbf{r}_{l}\); the distance of travel for a fluid particle is just unity. The point \(\mathbf{r}_{m}\) can be obtained straightforwardly as the position away from \(\mathbf{r}_{l}\)


Figure 8.5 BFL method for the treatment at the material surface.
at the distance of \(\left(1-2 \Delta_{w}\right)\), shown in Figure 8.5A. Hence, the particle distribution function \(\tilde{f}_{\alpha}\left(\mathbf{r}_{m}, t\right)\) is easily obtained from the quadratic extrapolation procedure as
\[
\begin{equation*}
\tilde{f}_{\alpha}\left(\mathbf{r}_{m}, t\right)=\Delta_{w}\left(1+2 \Delta_{w}\right) \tilde{f}_{\alpha}\left(\mathbf{r}_{l}, t\right)+\left(1-4 \Delta_{w}^{2}\right) \tilde{f}_{\alpha}\left(\mathbf{r}_{l^{\prime}}, t\right)-\Delta_{w}\left(1-2 \Delta_{w}\right) \tilde{f}_{\alpha}\left(\mathbf{r}_{l^{\prime \prime}}, t\right) \tag{8.112}
\end{equation*}
\]

Since fluid particles collide with the solid surface, \(f_{\bar{\alpha}}\left(\mathbf{r}_{l}, t+\Delta t\right)\) can finally be obtained as
\[
\begin{equation*}
f_{\bar{\alpha}}\left(\mathbf{r}_{l}, t+\Delta t\right)=\tilde{f}_{\alpha}\left(\mathbf{r}_{m}, t\right)-2 \rho w_{\alpha} \frac{\mathbf{u}_{w} \cdot \mathbf{c}_{\alpha}}{c_{s}^{2}} \tag{8.113}
\end{equation*}
\]

Equation (8.112) has been obtained from the following formula of the quadratic interpolation method. If an arbitrary function \(h(x)\) has values \(h\left(x_{1}\right), h\left(x_{2}\right)\), and \(h\left(x_{3}\right)\) for \(x=x_{1}, x_{2}\), and \(x_{3}\), respectively, \(h(x)\) at an arbitrary position \(x\) between \(x_{1}\) and \(x_{3}\) can be given from the quadratic interpolation as
\[
\begin{equation*}
h(x)=\frac{\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)} h\left(x_{1}\right)+\frac{\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} h\left(x_{2}\right)+\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} h\left(x_{3}\right) \tag{8.114}
\end{equation*}
\]

We now consider the treatment for \(\Delta_{w}>1 / 2\). As shown in Figure 8.5B, fluid particles leaving the lattice point \(\mathbf{r}_{l}\) collide with the object, and return to the position \(\mathbf{r}_{m}\) between \(\mathbf{r}_{l}\) and \(\mathbf{r}_{w}\). Hence, the following relationship is satisfied:
\[
\begin{equation*}
f_{\bar{\alpha}}\left(\mathbf{r}_{m}, t+\Delta t\right)=\tilde{f}_{\alpha}\left(\mathbf{r}_{l}, t\right)-2 \rho w_{\alpha} \frac{\mathbf{u}_{w} \cdot \mathbf{c}_{\alpha}}{c_{s}^{2}} \tag{8.115}
\end{equation*}
\]

With this expression, the particle distribution function \(f_{\bar{\alpha}}\left(\mathbf{r}_{l}, t+\Delta t\right)\) can be evaluated from the interpolation procedure based on a quadratic curve using values at \(\mathbf{r}_{m}, \mathbf{r}_{l^{\prime}}\), and \(\mathbf{r}_{l^{\prime \prime}}\) :
\[
\begin{align*}
f_{\bar{\alpha}}\left(\mathbf{r}_{l}, t+\Delta t\right)= & \frac{1}{\Delta_{w}\left(2 \Delta_{w}+1\right)} \tilde{f}_{\alpha}\left(\mathbf{r}_{l}, t\right)+\frac{2 \Delta_{w}-1}{\Delta_{w}} \tilde{f}_{\bar{\alpha}}\left(\mathbf{r}_{l}, t\right)  \tag{8.116}\\
& +\frac{1-2 \Delta_{w}}{1+2 \Delta_{w}} \tilde{f}_{\bar{\alpha}}\left(\mathbf{r}_{l^{\prime}}, t\right)-\frac{1}{\Delta_{w}\left(2 \Delta_{w}+1\right)} 2 \rho w_{\alpha} \frac{\mathbf{u}_{w} \cdot \mathbf{c}_{\alpha}}{c_{s}^{2}}
\end{align*}
\]

We call the method using Eqs. (8.112), (8.113), (8.115), and (8.116) the "quadratic BFL method."

Instead of the quadratic interpolation procedure, the linear interpolation method is also applicable, and in this case each procedure for \(\Delta_{w} \leq 1 / 2\) and \(\Delta_{w}>1 / 2\) can be expressed as
\(\Delta_{w} \leq 1 / 2\) :
\[
\begin{equation*}
f_{\bar{\alpha}}\left(\mathbf{r}_{l}, t+\Delta t\right)=\left(1-2 \Delta_{w}\right) \tilde{f}_{\alpha}\left(\mathbf{r}_{l}, t\right)+2 \Delta_{w} \tilde{f}_{\alpha}\left(\mathbf{r}_{l}, t\right)-2 \rho w_{\alpha} \frac{\mathbf{u}_{w} \cdot \mathbf{c}_{\alpha}}{c_{s}^{2}} \tag{8.117}
\end{equation*}
\]


Figure 8.6 YMLS method.
\(\Delta_{w}>1 / 2:\)
\[
\begin{equation*}
f_{\bar{\alpha}}\left(\mathbf{r}_{l}, t+\Delta t\right)=\frac{2 \Delta_{w}-1}{2 \Delta_{w}} \tilde{f}_{\bar{\alpha}}\left(\mathbf{r}_{l}, t\right)+\frac{1}{2 \Delta_{w}} \tilde{f}_{\alpha}\left(\mathbf{r}_{l}, t\right)-\frac{1}{2 \Delta_{w}} 2 \rho w_{\alpha} \frac{\mathbf{u}_{w} \cdot \mathbf{c}_{\alpha}}{c_{s}^{2}} \tag{8.118}
\end{equation*}
\]

We call this scheme the "linear BFL method."

\subsection*{8.4.3 YMLS Method}

In this subsection, we explain the YMLS method [34] using Figure 8.6. This method is also based on an interpolation scheme. The distribution function \(\tilde{f}_{\alpha}\left(\mathbf{r}_{m}, t\right)\) at the position \(\mathbf{r}_{m}\), from which fluid particles start and arrive at \(\mathbf{r}_{w}\) after the time interval \(\Delta t\), is used for the interpolation procedure. The particle distribution \(f_{\bar{\alpha}}\left(\mathbf{r}_{l}, t+\Delta t\right)\) in the \(\bar{\alpha}\)-direction away from the material surface can be obtained from the interpolation using the distribution \(\tilde{f}_{\alpha}\left(\mathbf{r}_{m}, t\right)\). As shown in Figure 8.6, with the notation of the point \(\mathbf{r}_{p}\) inside the material, and the points \(\mathbf{r}_{l}, \mathbf{r}_{l}\), and \(\mathbf{r}_{l^{\prime \prime}}\) on the fluid side away from the solid surface, the particle distribution functions at the solid surface in the \(\alpha\) - and \(\bar{\alpha}\)-directions are written, respectively, as
\[
\begin{align*}
& f_{\alpha}\left(\mathbf{r}_{w}, t+\Delta t\right)=\left(1-\Delta_{w}\right) \tilde{f}_{\alpha}\left(\mathbf{r}_{l}, t\right)+\Delta_{w} \tilde{f}_{\alpha}\left(\mathbf{r}_{l}, t\right)  \tag{8.119}\\
& f_{\bar{\alpha}}\left(\mathbf{r}_{w}, t+\Delta t\right)=f_{\alpha}\left(\mathbf{r}_{w}, t+\Delta t\right)-2 \rho w_{\alpha} \frac{\mathbf{u}_{w} \cdot \mathbf{c}_{\alpha}}{c_{s}^{2}} \tag{8.120}
\end{align*}
\]
in which \(\Delta_{w}=\left|\mathbf{r}_{l}-\mathbf{r}_{w}\right| /\left|\mathbf{r}_{l}-\mathbf{r}_{p}\right|\), as previously defined. Eq. (8.119) implies that \(f_{\alpha}\left(\mathbf{r}_{w}, t+\Delta t\right)\) is obtained from the interpolation procedure using \(\tilde{f}_{\alpha}\left(\mathbf{r}_{l}, t\right)\) and \(\tilde{f}_{\alpha}\left(\mathbf{r}_{l}, t\right)\), and Eq. (8.120) means that fluid particles are reflected at the solid surface. If \(f_{\bar{\alpha}}\left(\mathbf{r}_{w}, t+\Delta t\right), f_{\bar{\alpha}}\left(\mathbf{r}_{l}, t+\Delta t\right)\), and \(f_{\bar{\alpha}}\left(\mathbf{r}_{l^{\prime}}, t+\Delta t\right)\) are used, then \(f_{\bar{\alpha}}\left(\mathbf{r}_{l}, t+\Delta t\right)\) can be obtained from the quadratic interpolation procedure as
\[
\begin{align*}
f_{\bar{\alpha}}\left(\mathbf{r}_{l}, t+\Delta t\right)= & \frac{2}{\left(1+\Delta_{w}\right)\left(2+\Delta_{w}\right)} f_{\bar{\alpha}}\left(\mathbf{r}_{w}, t+\Delta t\right)+\frac{2 \Delta_{w}}{1+\Delta_{w}} f_{\bar{\alpha}}\left(\mathbf{r}_{l^{\prime}}, t+\Delta t\right)  \tag{8.121}\\
& -\frac{\Delta_{w}}{2+\Delta_{w}} f_{\bar{\alpha}}\left(\mathbf{r}_{l^{\prime \prime}}, t+\Delta t\right)
\end{align*}
\]

This is known as the quadratic YMLS method.

The linear interpolation procedure yields the following linear YMLS method instead of Eq. (8.121):
\[
\begin{equation*}
f_{\bar{\alpha}}\left(\mathbf{r}_{l}, t+\Delta t\right)=\frac{\Delta_{w}}{1+\Delta_{w}} f_{\bar{\alpha}}\left(\mathbf{r}_{l^{\prime}}, t+\Delta t\right)+\frac{1}{1+\Delta_{w}} f_{\bar{\alpha}}\left(\mathbf{r}_{w}, t+\Delta t\right) \tag{8.122}
\end{equation*}
\]
in which \(f_{\bar{\alpha}}\left(\mathbf{r}_{w}, t+\Delta t\right)\) is evaluated from Eq. (8.120). In this method, \(f_{\bar{\alpha}}\left(\mathbf{r}_{l}, t+\Delta t\right)\) can be obtained from the interpolation scheme using \(f_{\bar{\alpha}}\left(\mathbf{r}_{l^{\prime}}, t+\Delta t\right)\) in the fluid region and \(f_{\bar{\alpha}}\left(\mathbf{r}_{w}, t+\Delta t\right)\) at the solid surface. In the linear YMLS method, only two lattice points are used for the interpolation procedure, so that it may be suitable for particle dispersions in which a near-contact situation of dispersed particles frequently arises.

\subsection*{8.4.4 Other Methods}

As in the MD or the MC simulations, the periodic boundary condition is applicable for the thermodynamic equilibrium case. For this case, the particle distribution function at the point \(\mathbf{r}_{\text {out }}\) of the fluid particles outgoing from the simulation box, \(f_{\alpha}\left(\mathbf{r}_{\text {out }}, t+\Delta t\right)\), is made to equal to that at the point \(\mathbf{r}_{\text {in }}\) of the incoming fluid particles, \(f_{\alpha}\left(\mathbf{r}_{\text {in }}, t+\Delta t\right)\).

Finally, we explain the extrapolation boundary condition, which is usually used for numerical simulations based on the finite difference or finite element method for a flow past an obstacle. The extrapolation boundary condition is also applicable to lattice Boltzmann simulations, for which the distribution functions at the points \(\mathbf{r}_{N}, \mathbf{r}_{N-1}, \mathbf{r}_{N-2}\), which are taken from the boundary surface into the simulation region, are assumed to be in the linear relationship
\[
\begin{equation*}
f_{\bar{\alpha}}\left(\mathbf{r}_{N}, t+\Delta t\right)=2 f_{\bar{\alpha}}\left(\mathbf{r}_{N-1}, t+\Delta t\right)-f_{\bar{\alpha}}\left(\mathbf{r}_{N-2}, t+\Delta t\right) \tag{8.123}
\end{equation*}
\]
in which \(\bar{\alpha}\) is in the direction leaving the outer boundary toward the simulation region. If the zero-gradient condition is applicable, then the differential away from the boundary is regarded as zero: that is, \(f_{\bar{\alpha}}\left(\mathbf{r}_{N}, t+\Delta t\right)=f_{\bar{\alpha}}\left(\mathbf{r}_{N-1}, t+\Delta t\right)\). This boundary condition can be used for lattice points that are physically symmetric. If a simulation region is taken to be sufficiently large, the zero-gradient condition may be expected to give rise to results that are reasonably accurate.

\subsection*{8.5 Force and Torque Acting on Particles}

In the case of a suspension composed of spherical or rod-like particles, the forces and torques acting on the suspended particles need to be evaluated in order to solve the particle motion and the flow field around the suspended particles simultaneously. The momentum change of the fluid particles that collide with the particle surface and are reflected during the time interval \(\Delta t\) is equal to the impulse acting
on the particle. Hence, the force \(\mathbf{F}_{\alpha}\) acting on the particle in the \(\alpha\)-direction is obtained as
\[
\begin{equation*}
\mathbf{F}_{\alpha}(t+\Delta t / 2)=\mathbf{c}_{\alpha}\left\{f_{\bar{\alpha}}\left(\mathbf{r}_{l}^{(\mathrm{int})}, t+\Delta t\right)+\tilde{f}_{\alpha}\left(\mathbf{r}_{l}^{(\mathrm{int})}, t\right)\right\} \frac{\Delta V}{\Delta t} \tag{8.124}
\end{equation*}
\]
in which \(\Delta V\) is the volume occupied by one lattice site. Hence, the force \(\mathbf{F}_{p}\) and torque \(\mathbf{T}_{p}\) acting on the mass center of the particle are obtained from summing the contributions from the neighboring lattice sites of the particle as
\[
\begin{align*}
& \mathbf{F}_{p}(t+\Delta t / 2)=\sum_{\text {all }} \mathbf{r}_{l}^{\text {(int) }} \sum_{\alpha} \frac{\Delta V}{\Delta t}\left\{f_{\bar{\alpha}}\left(\mathbf{r}_{l}^{(\mathrm{int})}, t+\Delta t\right)+\tilde{f}_{\alpha}\left(\mathbf{r}_{l}^{(\mathrm{int})}, t\right)\right\} \mathbf{c}_{\alpha}  \tag{8.125}\\
& \mathbf{T}_{p}(t+\Delta t / 2)=\sum_{\text {all } \mathbf{r}_{l}^{\text {(int) }}} \sum_{\alpha}\left(\mathbf{r}_{w}-\mathbf{r}_{c}\right) \times \frac{\Delta V}{\Delta t}\left\{f_{\bar{\alpha}}\left(\mathbf{r}_{l}^{(\mathrm{intt})}, t+\Delta t\right)+\tilde{f}_{\alpha}\left(\mathbf{r}_{l}^{(\mathrm{int})}, t\right)\right\} \mathbf{c}_{\alpha} \tag{8.126}
\end{align*}
\]
in which \(\mathbf{r}_{c}\) is the position vector of the particle mass center, and \(\mathbf{r}_{w}\) is the position vector at the particle surface on a line drawn in the \(\alpha\)-direction from the lattice point \(\mathbf{r}_{l}^{\text {(int) }}\) in the liquid region. The summation concerning \(\alpha\) is only performed for the directions along which the above-mentioned line crosses the particle surface. Given the force and the torque from Eqs. (8.125) and (8.126), the translational and angular velocities \(\mathbf{u}_{p}\) and \(\boldsymbol{\Omega}_{p}\) of an arbitrary particle \(p\) with mass \(M_{p}\) and inertia moment \(I_{p}\) can be evaluated as
\[
\left.\begin{array}{l}
\mathbf{u}_{p}(t+\Delta t)=\mathbf{u}_{p}(t)+\frac{\Delta t}{M_{p}} \mathbf{F}_{p}(t+\Delta t / 2)  \tag{8.127}\\
\mathbf{\Omega}_{p}(t+\Delta t)=\mathbf{\Omega}_{p}(t)+\frac{\Delta t}{I_{p}} \mathbf{T}_{p}(t+\Delta t / 2)
\end{array}\right\}
\]

Note that here we have treated the case of the axisymmetric particle; therefore, only the inertia moment appears in the equation and not the inertia tensor.

\subsection*{8.6 Nondimensionalization}

Finally, we show the usual nondimensionalization method used in lattice Boltzmann simulations. The following representative quantities are used in nondimensionalizing each quantity: \(\Delta x\) for distances, \(\Delta t\) for time, \(c(=\Delta x / \Delta t)\) for velocities, \(\rho_{0}\) for the particle distribution, \(\rho_{0}(\Delta x)^{2} \Delta x /(\Delta t)^{2}\) for forces, \((\Delta x)^{2} / \Delta t\) for kinematic viscosity, and \(\rho_{0}(\Delta x / \Delta t)^{2}\) for pressures in the case of a two-dimensional system. Nondimensional equations are obtained by expressing a dimensional quantity as the product of the corresponding representative and nondimensional quantity
-for example, \(f_{\alpha}=\rho_{0} \times f_{\alpha}^{*}\) —and substituting such quantities into the dimensional equations. Since the derivation procedure is quite straightforward, only the final results are shown in the following equations:
\[
\begin{align*}
& f_{\alpha}^{*}\left(\mathbf{r}^{*}+\mathbf{c}_{\alpha}^{*}, t^{*}+1\right)=\tilde{f}_{\alpha}^{*}\left(\mathbf{r}^{*}, t^{*}\right)  \tag{8.128}\\
& \tilde{f}_{\alpha}^{*}\left(\mathbf{r}^{*}, t^{*}\right)=f_{\alpha}^{*}\left(\mathbf{r}^{*}, t^{*}\right)+\frac{1}{\tau}\left\{f_{\alpha}^{(0) *}\left(\mathbf{r}^{*}, t^{*}\right)-f_{\alpha}^{*}\left(\mathbf{r}^{*}, t^{*}\right)\right\} \tag{8.129}
\end{align*}
\]
in which
\[
\begin{align*}
& f_{\alpha}^{(0) *}\left(\mathbf{r}^{*}, t^{*}\right)=w_{\alpha} \rho^{*}\left\{1+3 \mathbf{c}_{\alpha}^{*} \cdot \mathbf{u}^{*}+\frac{9}{2}\left(\mathbf{c}_{\alpha}^{*} \cdot \mathbf{u}^{*}\right)^{2}-\frac{3}{2} u^{* 2}\right\}  \tag{8.130}\\
& c^{*}=1, \quad c_{s}^{*}=1 / \sqrt{3}, \quad \nu^{*}=(2 \tau-1) / 6, \quad p^{*}=\rho^{*} c_{s}^{* 2} \tag{8.131}
\end{align*}
\]

In these equations, the superscript * indicates the nondimensional quantities.

\section*{Appendix 1: Chapman-Enskog Expansion}

In this appendix, we derive the important equations which are the starting expressions for deriving the Navier-Stokes equation, by means of the Chapman-Enskog expansion [38].

The basic equations required in the derivation are as follows:
\[
\begin{align*}
& \rho(\mathbf{r}, t)=\sum_{\alpha} f_{\alpha}(\mathbf{r}, t)  \tag{A1.1}\\
& \rho(\mathbf{r}, t) \mathbf{u}(\mathbf{r}, t)=\sum_{\alpha} \mathbf{c}_{\alpha} f_{\alpha}(\mathbf{r}, t)  \tag{A1.2}\\
& \Pi_{i j}=\sum_{\alpha} c_{\alpha i} c_{\alpha j} f_{\alpha}(\mathbf{r}, t)  \tag{A1.3}\\
& f_{\alpha}\left(\mathbf{r}+\mathbf{c}_{\alpha} \Delta t, t+\Delta t\right)=f_{\alpha}(\mathbf{r}, t)+\Omega_{\alpha}(\mathbf{r}, t)  \tag{A1.4}\\
& \Omega_{\alpha}(\mathbf{r}, t)=\frac{1}{\tau}\left\{f_{\alpha}^{(0)}(\mathbf{r}, t)-f_{\alpha}(\mathbf{r}, t)\right\} \tag{A1.5}
\end{align*}
\]

Note that the following derivation is valid for both D2Q9 and D3Q19 models, except that \(\alpha\) has to be taken as \(\alpha=0,1, \ldots, 8\) and \(\alpha=0,1, \ldots, 16\), respectively.

A Taylor series expansion of the left-hand side of Eq. (A1.4) gives rise to
\[
\begin{align*}
& \Delta t \frac{\partial f_{\alpha}}{\partial t}+\frac{(\Delta t)^{2}}{2} \cdot \frac{\partial^{2} f_{\alpha}}{\partial t^{2}}+\Delta t\left(\mathbf{c}_{\alpha} \cdot \nabla\right) f_{\alpha}+\frac{(\Delta t)^{2}}{2}\left(\mathbf{c}_{\alpha} \cdot \nabla\right)\left(\mathbf{c}_{\alpha} \cdot \nabla\right) f_{\alpha}  \tag{A1.6}\\
& \quad+(\Delta t)^{2}\left(\mathbf{c}_{\alpha} \cdot \nabla\right) \frac{\partial f_{\alpha}}{\partial t}=\frac{1}{\tau}\left(f_{\alpha}^{(0)}-f_{\alpha}\right)
\end{align*}
\]

The particle distribution function is expanded using the infinitesimal small quantity \(\varepsilon\) as
\[
\begin{equation*}
f_{\alpha}=f_{\alpha}^{(0)}+\varepsilon f_{\alpha}^{(1)}+\varepsilon^{2} f_{\alpha}^{(2)}+\cdots \tag{A1.7}
\end{equation*}
\]

By substituting Eq. (A1.7) into Eqs. (A1.1) and (A1.2), the following relationships are obtained:
\[
\begin{align*}
& \sum_{\alpha} f_{\alpha}^{(0)}=\rho, \quad \sum_{\alpha} \mathbf{c}_{\alpha} f_{\alpha}^{(0)}=\rho \mathbf{u}  \tag{A1.8}\\
& \sum_{\alpha} f_{\alpha}^{(n)}=0, \quad \sum_{\alpha} \mathbf{c}_{\alpha} f_{\alpha}^{(n)}=0 \quad \text { for } n=1,2, \ldots \tag{A1.9}
\end{align*}
\]

Next, we consider the Chapman-Enskog expansion. There are two characteristic times employed in characterizing fluid problems: \(T_{1}\) relating to the fluid velocity, and \(T_{2}\) relating to the viscous dissipation. It is generally satisfied that \(T_{2}\) is much longer than \(T_{1}\) (i.e., \(T_{2} \gg T_{1}\) ). Hence, if the infinitesimal quantities \(\varepsilon\) and \(\Delta t\) are taken as \(\Delta t / T_{1}=\mathrm{O}(\varepsilon), T_{2}\) satisfies the relationship of \(\Delta t / T_{2}=\mathrm{O}\left(\varepsilon^{2}\right)\). On the other hand, if the representative distance is denoted by \(L_{1}\), the distance \(\Delta x\) is generally taken such that \(\Delta x / L_{1}=\mathrm{O}(\varepsilon)\). With these assumptions, the time derivative is regarded as the summation of the time derivations due to the characteristics of \(T_{1}\) and \(T_{2}\). That is,
\[
\begin{equation*}
\frac{\partial}{\partial t}=\varepsilon \frac{\partial}{\partial t_{1}}+\varepsilon^{2} \frac{\partial}{\partial t_{2}} \tag{A1.10}
\end{equation*}
\]

Similarly, the position derivative \(\partial / \partial \mathbf{r}\) is expressed, for the three-dimensional position \(\mathbf{r}=\left(r_{x}, r_{y}, r_{z}\right)\), as
\[
\begin{equation*}
\frac{\partial}{\partial r_{i}}=\varepsilon \frac{\partial}{\partial r_{1 i}} \quad(i=x, y, z) \tag{A1.11}
\end{equation*}
\]

The expressions in Eqs. (A1.10) and (A1.11) imply that the original variables \((t, \mathbf{r})\) can be transformed into the new ones \(\left(t_{1}, t_{2}, \mathbf{r}_{1}\right)\). In the usual approach, the differentiated quantities are used for comparing the magnitudes of all the terms in an equation. That is, the magnitudes of, for example, \(\partial g_{1} / \partial t\) and \(\partial g_{2} / \partial t\) are evaluated in such a way that \(\partial g_{1} / \partial t=\mathrm{O}(\varepsilon)\) and \(\partial g_{2} / \partial t=\mathrm{O}\left(\varepsilon^{2}\right)\), and they are compared with each other to neglect the smaller terms such as \(\partial g_{2} / \partial t=\mathrm{O}\left(\varepsilon^{2}\right)\). In contrast, according to the Chapman-Enskog expansion, \(\partial g_{1} / \partial t\) and \(\partial g_{2} / \partial t\) are of the same order of magnitude but are moderated by the infinitesimal parameter \(\varepsilon\) and written as \(\varepsilon \partial g_{1} /\) \(\partial t\) and \(\varepsilon^{2} \partial g_{2} / \partial t\) in an equation.

We are now ready to proceed to the important equations in the derivation of the Navier-Stokes equation by means of the Chapman-Enskog expansion. The collision term in Eq. (A1.5) has the following characteristics:
\[
\begin{equation*}
\sum_{\alpha} \Omega_{\alpha}=0, \quad \sum_{\alpha} \mathbf{c}_{\alpha} \Omega_{\alpha}=0 \tag{A1.12}
\end{equation*}
\]

From Eqs. (A1.6), (A1.10) and (A1.11),
\[
\begin{align*}
& \Delta t\left\{\varepsilon \frac{\partial f_{\alpha}}{\partial t_{1}}+\varepsilon^{2} \frac{\partial f_{\alpha}}{\partial t_{2}}\right\}+(\Delta t)^{2} \frac{\varepsilon^{2}}{2} \cdot \frac{\partial^{2} f_{\alpha}}{\partial t_{1}^{2}}+\Delta t \varepsilon\left(\mathbf{c}_{\alpha} \cdot \nabla_{1}\right) f_{\alpha}  \tag{A1.13}\\
& \\
& \quad+(\Delta t)^{2} \frac{\varepsilon^{2}}{2}\left(\mathbf{c}_{\alpha} \cdot \nabla_{1}\right)\left(\mathbf{c}_{\alpha} \cdot \nabla_{1}\right) f_{\alpha}+(\Delta t)^{2} \varepsilon^{2}\left(\mathbf{c}_{\alpha} \cdot \nabla_{1}\right) \frac{\partial f_{\alpha}}{\partial t_{1}}+\mathrm{O}\left(\varepsilon^{3}\right)=\Omega_{\alpha}
\end{align*}
\]

By multiplying \(\mathbf{c}_{\alpha}\) on both sides of this equation,
\[
\begin{align*}
\Delta t & \left\{\varepsilon \mathbf{c}_{\alpha} \frac{\partial f_{\alpha}}{\partial t_{1}}+\varepsilon^{2} \mathbf{c}_{\alpha} \frac{\partial f_{\alpha}}{\partial t_{2}}\right\}+(\Delta t)^{2} \frac{\varepsilon^{2}}{2} \mathbf{c}_{\alpha} \frac{\partial^{2} f_{\alpha}}{\partial t_{1}^{2}}+\Delta t \varepsilon \mathbf{c}_{\alpha}\left(\mathbf{c}_{\alpha} \cdot \nabla_{1}\right) f_{\alpha} \\
& +(\Delta t)^{2} \frac{\varepsilon^{2}}{2} \mathbf{c}_{\alpha}\left(\mathbf{c}_{\alpha} \cdot \nabla_{1}\right)\left(\mathbf{c}_{\alpha} \cdot \nabla_{1}\right) f_{\alpha}+(\Delta t)^{2} \varepsilon^{2} \mathbf{c}_{\alpha}\left(\mathbf{c}_{\alpha} \cdot \nabla_{1}\right) \frac{\partial f_{\alpha}}{\partial t_{1}}+\mathrm{O}\left(\varepsilon^{3}\right)=\mathbf{c}_{\alpha} \Omega_{\alpha} \tag{A1.14}
\end{align*}
\]

Equation (A1.7) is substituted into Eq. (A1.13), the summation of \(\alpha\) is conducted on the both sides, and the terms of the order \(\varepsilon\) are collected. Then, taking these collected terms equal to zero finally yields
\[
\begin{equation*}
\sum_{\alpha}\left\{\Delta t \frac{\partial f_{\alpha}^{(0)}}{\partial t_{1}}+\Delta t\left(\mathbf{c}_{\alpha} \cdot \nabla_{1}\right) f_{\alpha}^{(0)}\right\}=0 \tag{A1.15}
\end{equation*}
\]

Similarly, from Eq. (A1.14),
\[
\begin{equation*}
\sum_{\alpha}\left\{\Delta t \frac{\partial}{\partial t_{1}}\left(c_{\alpha i} f_{\alpha}^{(0)}\right)+\Delta t \sum_{j} c_{\alpha i} c_{\alpha j} \frac{\partial}{\partial r_{1 j}} f_{\alpha}^{(0)}\right\}=0 \tag{A1.16}
\end{equation*}
\]

With Eqs. (A1.8) and (A1.3), Eqs. (A1.15) and (A1.16) become
\[
\begin{align*}
& \frac{\partial}{\partial t_{1}} \rho+\nabla_{1} \cdot(\rho \mathbf{u})=0  \tag{A1.17}\\
& \frac{\partial}{\partial t_{1}}\left(\rho u_{i}\right)+\sum_{j} \frac{\partial}{\partial r_{1 j}}\left(\Pi_{i j}^{(0)}\right)=0 \tag{A1.18}
\end{align*}
\]
in which \(\Pi_{i j}^{(0)}=\sum_{\alpha} c_{\alpha i} c_{\alpha j} f_{\alpha}^{(0)}\).
Returning to the substitution of Eq. (A1.7) into Eq. (A1.13), but now taking the collected terms of the order \(\varepsilon^{2}\) equal to zero, the following expression is derived:
\[
\begin{equation*}
\frac{\partial \rho}{\partial t_{2}}+\frac{\Delta t}{2} \cdot \frac{\partial^{2} \rho}{\partial t_{1}^{2}}+\frac{\Delta t}{2} \sum_{i} \sum_{j} \frac{\partial}{\partial r_{1 i}} \cdot \frac{\partial}{\partial r_{1 j}} \Pi_{i j}^{(0)}+\Delta t \sum_{i} \frac{\partial}{\partial t_{1}} \cdot \frac{\partial}{\partial r_{1 i}}\left(\rho u_{i}\right)=0 \tag{A1.19}
\end{equation*}
\]

Similarly, returning to the derivation of Eq. (A1.16) and taking the collected terms of the order \(\varepsilon^{2}\) equal to zero yields
\[
\begin{align*}
& \frac{\partial}{\partial t_{2}}\left(\rho u_{i}\right)+\frac{\Delta t}{2} \cdot \frac{\partial^{2}}{\partial t_{1}^{2}}\left(\rho u_{i}\right)+\sum_{j} \frac{\partial}{\partial r_{1 j}} \Pi_{i j}^{(1)} \\
& \quad+\frac{\Delta t}{2} \sum_{j} \sum_{k} \frac{\partial}{\partial r_{1 j}} \cdot \frac{\partial}{\partial r_{1 k}} S_{i j k}^{(0)}+\Delta t \sum_{j} \frac{\partial}{\partial t_{1}} \cdot \frac{\partial}{\partial r_{1 j}} \Pi_{i j}^{(0)}=0 \tag{A1.20}
\end{align*}
\]
in which \(\Pi_{i j}^{(1)}=\sum_{\alpha} c_{\alpha i} c_{\alpha j} f_{\alpha}^{(1)}\) and \(S_{i j k}^{(0)}=\sum_{\alpha} c_{\alpha i} c_{\alpha j} c_{\alpha k} f_{\alpha}^{(0)}\).
Next, we reform Eqs. (A1.19) and (A1.20). Differentiating Eq. (A1.17) with respect to \(t_{1}\) yields
\[
\begin{equation*}
\frac{\partial^{2} \rho}{\partial t_{1}^{2}}=\frac{\partial}{\partial t_{1}}\left\{-\nabla_{1} \cdot(\rho \mathbf{u})\right\}=-\frac{\partial}{\partial t_{1}}\left\{\sum_{i} \frac{\partial}{\partial r_{1 i}}\left(\rho u_{i}\right)\right\} \tag{A1.21}
\end{equation*}
\]

With this result, Eq. (A1.19) is reformed and finally obtained as
\[
\begin{equation*}
\frac{\partial \rho}{\partial t_{2}}+\frac{\Delta t}{2} \sum_{i} \frac{\partial}{\partial r_{1 i}}\left\{\frac{\partial}{\partial t_{1}}\left(\rho u_{i}\right)+\sum_{j} \frac{\partial}{\partial r_{1 j}} \Pi_{i j}^{(0)}\right\}=0 \tag{A1.22}
\end{equation*}
\]

With Eq. (A1.18), Eq. (A1.22) reduces to
\[
\begin{equation*}
\frac{\partial \rho}{\partial t_{2}}=0 \tag{A1.23}
\end{equation*}
\]

Differentiating Eq. (A1.18) with respect to \(t_{1}\) gives rise to
\[
\begin{equation*}
\frac{\partial^{2}}{\partial t_{1}^{2}}\left(\rho u_{i}\right)=\frac{\partial}{\partial t_{1}}\left\{-\sum_{j} \frac{\partial}{\partial r_{1 j}} \Pi_{i j}^{(0)}\right\}=-\sum_{j} \frac{\partial}{\partial t_{1}} \cdot \frac{\partial}{\partial r_{1 j}} \Pi_{i j}^{(0)} \tag{A1.24}
\end{equation*}
\]

By substituting this result into Eq. (A1.20), the following equation is obtained:
\[
\begin{equation*}
\frac{\partial}{\partial t_{2}}\left(\rho u_{i}\right)+\sum_{j} \frac{\partial}{\partial r_{1 j}}\left[\Pi_{i j}^{(1)}+\frac{\Delta t}{2}\left\{\frac{\partial}{\partial t_{1}} \Pi_{i j}^{(0)}+\sum_{k} \frac{\partial}{\partial r_{1 k}} S_{i j k}^{(0)}\right\}\right]=0 \tag{A1.25}
\end{equation*}
\]

If Eqs. (A1.17) and (A1.23) are multiplied by \(\varepsilon\) and \(\varepsilon^{2}\), respectively, summing each side of these equations, and taking into account Eq. (A1.10), the following mass conversation law is obtained:
\[
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u})=0 \tag{A1.26}
\end{equation*}
\]

From a similar manipulation of Eqs. (A1.18) and (A1.25), the momentum conversation law is obtained as
\[
\begin{equation*}
\frac{\partial}{\partial t}\left(\rho u_{i}\right)+\sum_{j} \frac{\partial}{\partial r_{j}} \Pi_{i j}+\sum_{j} \frac{\Delta t}{2} \cdot \frac{\partial}{\partial r_{j}}\left\{\varepsilon \frac{\partial}{\partial t_{1}} \Pi_{i j}^{(0)}+\sum_{k} \frac{\partial}{\partial r_{k}} S_{i j k}^{(0)}\right\}=0 \tag{A1.27}
\end{equation*}
\]
in which \(\Pi_{i j} \approx \Pi_{i j}^{(0)}+\varepsilon \Pi_{i j}^{(1)}\).
Finally, we derive another important equation. The variable transformation of Eqs. (A1.10) and (A1.11) is conducted for Eq. (A1.6) to give
\[
\begin{align*}
\Delta t & \left\{\varepsilon \frac{\partial f_{\alpha}}{\partial t_{1}}+\varepsilon^{2} \frac{\partial f_{\alpha}}{\partial t_{2}}\right\}+\frac{(\Delta t)^{2}}{2} \varepsilon^{2} \frac{\partial^{2} f_{\alpha}}{\partial t_{1}^{2}}+\Delta t \varepsilon\left(\mathbf{c}_{\alpha} \cdot \nabla_{1}\right) f_{\alpha} \\
& +\frac{(\Delta t)^{2}}{2} \varepsilon^{2}\left(\mathbf{c}_{\alpha} \cdot \nabla_{1}\right)\left(\mathbf{c}_{\alpha} \cdot \nabla_{1}\right) f_{\alpha}+(\Delta t)^{2} \varepsilon^{2}\left(\mathbf{c}_{\alpha} \cdot \nabla_{1}\right) \frac{\partial f_{\alpha}}{\partial t_{1}}=\frac{1}{\tau}\left(f_{\alpha}^{(0)}-f_{\alpha}\right) \tag{A1.28}
\end{align*}
\]

Substituting Eq. (A1.7) into this equation, collecting the terms of the order \(\varepsilon\), and taking these collected terms equal to zero then yields
\[
\begin{equation*}
-\frac{1}{\tau \Delta t} f_{\alpha}^{(1)}=\frac{\partial f_{\alpha}^{(0)}}{\partial t_{1}}+\sum_{i} \frac{\partial}{\partial r_{1 i}}\left(c_{\alpha i} f_{\alpha}^{(0)}\right) \tag{A1.29}
\end{equation*}
\]

Since \(f_{\alpha}^{(0)}\) can be regarded as a function of the macroscopic quantities \(\rho\) and \(\rho u_{i}\), \(\partial f_{\alpha}^{(0)} / \partial t\) can be reformed using Eqs. (A1.17) and (A1.18) as
\[
\begin{align*}
\frac{\partial f_{\alpha}^{(0)}}{\partial t_{1}} & =\frac{\partial f_{\alpha}^{(0)}}{\partial \rho} \cdot \frac{\partial \rho}{\partial t_{1}}+\sum_{i} \frac{\partial f_{\alpha}^{(0)}}{\partial\left(\rho u_{i}\right)} \cdot \frac{\partial\left(\rho u_{i}\right)}{\partial t_{1}} \\
& =-\frac{\partial f_{\alpha}^{(0)}}{\partial \rho} \cdot \frac{\partial}{\partial \mathbf{r}_{1}} \cdot(\rho \mathbf{u})-\sum_{i} \sum_{j} \frac{\partial f_{\alpha}^{(0)}}{\partial\left(\rho u_{i}\right)} \cdot \frac{\partial}{\partial r_{1 j}} \Pi_{i j}^{(0)} \tag{A1.30}
\end{align*}
\]

Substituting this equation into Eq. (A1.29) yields the required equation:
\[
\begin{equation*}
-\frac{1}{\tau \Delta t} f_{\alpha}^{(1)}=-\frac{\partial f_{\alpha}^{(0)}}{\partial \rho} \cdot \frac{\partial}{\partial \mathbf{r}_{1}} \cdot(\rho \mathbf{u})-\sum_{i} \sum_{j} \frac{\partial f_{\alpha}^{(0)}}{\partial\left(\rho u_{i}\right)} \cdot \frac{\partial}{\partial r_{1 j}} \Pi_{i j}^{(0)}+\sum_{i} \frac{\partial}{\partial r_{1 i}}\left(c_{\alpha i} f_{\alpha}^{(0)}\right) \tag{A1.31}
\end{equation*}
\]

Equations (A1.27) and (A1.31) are the basic equations for deriving the important relationships in Chapter 8.

This page intentionally left blank

\section*{Appendix 2: Generation of Random Numbers According to Gaussian Distribution}

In order to set the initial velocities of particles in MD simulations, or to generate random displacements in BD and DPD simulations, it is necessary to generate random numbers according to a particular probability distribution. The probability distributions of interest here are the Gaussian distribution (also known as the normal distribution), and the Maxwell-Boltzmann distribution (or Maxwellian distribution). For example, since the velocity of particles theoretically has the Maxwellian velocity distribution for thermodynamic equilibrium, as explained in Section 2.2, the initial velocity of particles in simulations must have such a velocity distribution. We show the method of setting the initial velocity of particles according to the Maxwellian distribution in the following paragraphs.

We assume that the stochastic variable \(x\), such as the particle velocity or a random displacement, obeys the following normal distribution \(\rho(x)\) :
\[
\begin{equation*}
\rho(x)=\frac{1}{(2 \pi)^{1 / 2} \sigma} \exp \left\{-\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}\right\} \tag{A2.1}
\end{equation*}
\]
in which \(\sigma^{2}\) is the variance and \(\bar{x}\) is the average of the stochastic variable \(x\). In order to generate the stochastic variable \(x\) according to this normal distribution, the following equations are used together with a uniform random number sequence ranging from zero to unity:
\[
\begin{equation*}
x=\bar{x}+\left(-2 \sigma^{2} \ln R_{1}\right)^{1 / 2} \cos \left(2 \pi R_{2}\right) \quad \text { or } \quad x=\bar{x}+\left(-2 \sigma^{2} \ln R_{1}\right)^{1 / 2} \sin \left(2 \pi R_{2}\right) \tag{A2.2}
\end{equation*}
\]

According to either equation of Eq. (A2.2), the required number of values of the stochastic variable are generated using a series of random numbers, such as \(R_{1}\) and \(R_{2}\), taken from a uniform random number sequence. In this way, the initial velocities of particles and random displacements can be assigned. The technique in Eq. (A2.2) is called the Box-Müller method [26].

For generating a uniform random number sequence, there is an arithmetic method and a machine-generated method; the former is shown in the last subroutine of the sample simulation program in Section 3.1.6. The arithmetic method is
reproducible, and the same random number sequence can be obtained at any time in the simulations. In contrast, the machine-generated method is generally not a reproducible sequence, and a different sequence of random numbers is generated each time a simulation is run.

For the case of the Maxwellian velocity distribution, the velocity components of particle \(i\) can be assigned using the random numbers \(R_{1}, R_{2}, \ldots, R_{6}\) taken from a uniform random number sequence as
\[
\left.\begin{array}{rl}
v_{i x} & =\left\{-2(k T / m) \ln R_{1}\right\}^{1 / 2} \cos \left(2 \pi R_{2}\right) \\
v_{i y} & =\left\{-2(k T / m) \ln R_{3}\right\}^{1 / 2} \cos \left(2 \pi R_{4}\right)  \tag{A2.3}\\
v_{i z} & =\left\{-2(k T / m) \ln R_{5}\right\}^{1 / 2} \cos \left(2 \pi R_{6}\right)
\end{array}\right\}
\]

In this way, all the initial velocity components can be assigned using random numbers.

\section*{Appendix 3: Outline of Basic Grammars of FORTRAN and C Languages}

We here do not aim to explain the entire grammar of the programming languages; indeed, there is not sufficient space to do so. In each section of programming language, the main structure of a program is first explained in order to understand the logical framework of a program. Then, such important grammar as control statements is explained. Finally, several points of interest that may be outside of the main body of a program will be addressed. This will be followed by a short sample program that demonstrates the essence of a research simulation program and explains the grammar used in the program in detail. This approach is most effective, because the grammar is explained in relation to the logical flow of a simulation program. The skill to develop a simulation program has a strong relationship with the ability for embodying a logical flow using a programming language.

\section*{A3.1 FORTRAN Language}

The general structure of a program written in the FORTRAN language is composed of a main program together with subroutine subprograms or function subprograms, as shown below.
```

IMPLICIT REAL*8 (A-H, O-Z), INTEGER (I-N)
PARAMETER(NN=8)
REAL*8 RX(NN), RY(NN)
REAK*8 VX(NN), VY (NN)
INTEGER N
|\mp@code{Description of calculation procedures}

```

Main program


A main program first needs to be constructed, and then subroutine or/and function subprograms necessarily follow the main program. The main program begins with the definition of the variables and finishes with the STOP and END statements that are placed at the end to halt the execution of the program. A subroutine or function subprogram begins with a SUBROUTINE (name of a subroutine) or (precision) FUNCTION (name of a function) statement, respectively, and finishes with the RETURN and END statements that signal the return to the task of the main program. A main program must be written in such a way that the logical flow is clear, and calculations that disturb this logical flow should be treated in subroutine or function subprograms. In other words, when a program is constructed in such a way that a reader is able to grasp the logical flow in a straightforward manner, it becomes more than a hobby program-it becomes a common useful tool. This is an important consideration for developing a simulation program with contributions from and used by different persons in a successive research project.

In a subroutine subprogram, routine calculations are carried out. The calculation task moves from a main program to a subroutine subprogram by calling the name of the subroutine (the CALL statement) and returns to the main program on meeting the RETURN statement in the subroutine. A function subprogram is quite similar to a subroutine subprogram in that routine calculations are carried out in an area (the subprogram) aside from the main program. The difference between the two is that in a function subprogram the name of the function subprogram itself assumes a calculated value, and this value is passed to the main program by simply referring to the name of the function subprogram in the main program. In other words, the name of a function subprogram is treated as a variable in a main program: the calculation
task moves to a function subprogram at the time of meeting its name, and returns to the main program with a value calculated there on meeting the RETURN statement. Hence, a CALL statement is unnecessary in order to move to a subprogram area. These are the main points of the program structure and flow of the calculation procedures. There is an important point concerning the data transfer between a main program and a subprogram. In the FORTRAN language, information regarding the value of variables cannot be transferred between a main program and a subprogram unless definite descriptions are written for that purpose. There is a significant difference between the FORTRAN and the C language in this respect. We explain the method of transferring data between a main program and a subprogram in detail later.

As shown in the preceding example, main sentences generally have to be written between the 7th and 72nd columns in a FORTRAN77 program. The first column is used for defining whether or not that line is a comment line (that does not influence calculations) by employing a \(C\) character or a blank; the sixth column is for defining whether or not the line is regarded as a continuation line from the previous line by the " \(\&\) " character or blank; and the area between the 2 nd and 5 th columns is used for writing figures (or labels) of the end statements, such as the CONTINUE statement or of an indication of the destination of the GOTO statement. Various examples of this type of use can be seen in the sample simulation programs, and therefore we omit such explanations here.
```

IF(X.GT.0.D0) A=B+10.D0

```
```

IF (X.GT.O.DO) THEN
END IF

```
```

IF(X.GT.O.DO) THEN
ELSE
END IF

```
```

IF(X.GT.O.D0) THEN
ELSE IF(X.LE.-10.DO) THEN
ELSE
END IF

```
```

IF (X.GT.O.DO) THEN
ELSE IF(X.LE.-10.DO) THEN
ELSE IF(X.EQ.-5.D0) THEN
END IF

```
-This is the simplest IF statement, and THEN is unnecessary in this case.
- Execution only for \(X>0\).
- One of separate procedures is chosen for \(X>0\) or \(X \leq 0\).
- One of three separate procedures is chosen for \(X>0\) or \(X \leq-10\) or the other cases.
- One of three separate procedures is chosen for \(X>0\) or \(X \leq-10\) or \(X=-5\).

We now explain the IF and DO statements, which are perhaps the most important control statements for developing a calculation program. The IF statement is a control statement to select a calculation procedure by assessing the condition. The DO statement is a control statement to repeat a certain procedure a prescribed number of times. Typical examples of the IF statement are shown above. The IF statement implies the execution of a certain procedure if a condition is satisfied; another procedure is carried out if it is not satisfied. In the above examples, the first IF statement is the simplest and the following examples become more complex. Several IF statements can be combined to make a complex assessment, and such examples may be found in the sample simulation programs. In the IF statement, LT and LE imply \(<\) and \(\leq\), respectively; GT and GE imply \(>\) and \(\geq\), respectively; and EQ and NE imply \(=\) and \(\neq\), respectively. The statement for repeating procedures is the DO statement. Several representative examples of the DO statement are shown in the following.
```

 DO 20 I=1,N
 2 0 ~ C O N T I N U E ~
 DO 30 I=N,1,-2
 30 CONTINUE
 DO 90 I=-N,N+1,5
 90 CONTINUE
    ```

The DO statement implies that the procedure written between DO and CONTINUE is executed until the index arrives at the required end value. In the above example, I is the index and N is the end value of the loop. In the first example, the index I changes in the sequence \(\mathrm{I}=1,2, \ldots, \mathrm{~N}\). In the second example, the index \(I\) changes in the sequence \(\mathrm{I}=\mathrm{N}, \mathrm{N}-2, \mathrm{~N}-4, \ldots\); if N is even, the procedures are repeated until \(\mathrm{N}=2\), and if N is odd, they are repeated until \(\mathrm{N}=1\). The last example shows that a negative value, -N , is possible as a starting value of the index I. Either specific numbers or variables are possible for the starting and ending values and the increment interval value of the DO loop statement. Be aware that although REAL variables can be used as an index of the DO loop, INTEGER variables are desirable in order to remove any ambiguity in relation to the assessment concerning the termination of the DO loop. In order to move out of the DO loop at any time before the designed end, the GOTO statement employed with the previous IF statement may be used. A final point to be noted relating to the DO loop is that in the first above example, the index I does not have the figure N but \((\mathrm{N}+1)\) for the end of the procedure; thus, care should be taken in using the variable I in the next task. Using variables in this way should be avoided in order to prevent causing an unexpected error.

Next, we explain several types of grammar that are relatively difficult to understand when learning the FORTRAN language. First, we explain how to transfer the values of variables between the main program and a subprogram. In FORTRAN, there are two methods for the data transfer: (1) the values of variables are transferred to a subprogram through the arguments of the subprogram, and (2) the variables to be transferred between a main program and a subprogram are declared with the COMMON statements so that they can be accessed from both the main program and the subprograms. An example of the former method is as follows:
```

CALL INIVEL (N,H,T)
SUBROUTINE INIVEL (N, H, T)

```

In this case, the values of the variables N and H are transferred from a main program to a subprogram, and the procedure returns to the main program with a value of T , which was calculated in the subprogram. A big difference between FORTRAN and the C language is that in the former language new values of N and H , which were changed in the subprogram, are reflected in the main program, but in the latter language this never arises unless a specific direction is given to do so. This will be explained in detail later in the grammar of the C language.

The second method for the data transfer is to use the COMMON statement: the variables declared in the COMMON statements can be accessed from both the main program and all the subprograms without any need for specific statements for the data transfer. An example is as follows:
```

PARAMETER(NN = 100)
COMMON /BLOCK1/ N, RX, RY
REAL*8 RX(NN) , RY(NN) , H
INTEGER N
CALL INIVEL (H)
STOP
END
SUBROUTINE INIVEL (H)
PARAMETER (NN = 100)
COMMON /BLOCK1/ N, RX, RY
REAL*8 RX(NN) , RY(NN) , H
INTEGER N

```
```

RETURN
END

```

In a main program, the variables, which are used in subprograms, can be defined in the COMMON statements before the definition of other standard variables. By defining the same variables in the COMMON statements in a subprogram, the values saved on the variables can be referred to; also, new values may be saved on these variables. In the above example, the values of \(\mathrm{N}, \mathrm{RX}(*)\), and \(R \mathrm{Y}\left({ }^{*}\right)\) are transferred using the COMMON statement, and a value of H is transferred as an argument. Note that the names of the variables in the COMMON statements are not necessarily the same, but we recommend that the beginner use the same names until they obtain a more complete understanding of the language.

Another feature that the beginner may find difficult is the WRITE and FORMAT statements. These statements are used for outputting results to a data file and have no relation to the execution of the calculations. The following example is for outputting the data for the purpose of confirming either the final or intervening results of the calculation:
```

 I = 3
 XI = 5. D0
 YI = 2. D0
 PRESS = XI*YI
 WRITE (NP, 20) I, XI, YI, PRESS
 20 FORMAT('I = ',I3,3X,'XI = ',F7.3,2X,'YI = ',F7.3,2X,
\& 'PRESSURE AT (XI,YI) = , F10.3)

```

The result of the output from this FORMAT statement is as follows:
```

I= 3 XI= 5.000 YI= 2.000 PRESSURE AT (XI,YI)= 10.000

```

The above example is a part of the program for outputting the data of the variable PRESS, which is obtained by multiplying XI by YI. For the case of \(\mathrm{NP}=6\), the results are output to the display of the computer, and if the OPEN statement relates the device number (or device unit number) NP with a data file, the result is output to the data file. For example, if "OPEN (11, FILE = 'faa1.data', STATUS = 'UNKNOWN')" is declared and NP is set as NP \(=11\), the data is output to the file faal.data. Since the results shown on a display can be seen only once, data is usually output to a data file. Inside the
parentheses of the FORMAT statement, I3 means that the output is an integer and is output up to three spaces (columns) to the right of the space, F7.3 means that the output is a real number and is output using 7 spaces (columns), in which the number is rounded to three decimal places and is written to the right of the space; 3X means that three blank spaces are to be inserted. The reader can see many examples of FORMAT statements in the sample simulation programs in Chapters 3-7.

A long run of the execution of a simulation program is sometimes divided into several short runs. For this case, the intervening results are output to a data file, and the following run is carried out to continue from the previous run using the data saved in the file. This data may also be used for visualizing a particle configuration in a form such as a snapshot. To do so, only numerical data is suitable for the output to a data file-that is, without the specification of the names of the variables. A typical example is as follows:
```

 WRITE (NP, 50) N
 5 0 ~ F O R M A T ~ (~ I 8 ~) ~
WRITE (NP,55) (RX (I), I = 1,N), (RY(I),I = 1,N)
5 5 ~ F O R M A T ~ (~ (5 E 1 6 . 8) ~) ~

```

In the above example, the data saved in the array-type variables \(\mathrm{RX}\left({ }^{*}\right)\) and \(\mathrm{RY}\left({ }^{*}\right)\) are output using a simple specification without using the DO statement. The specification of (5E16.8) in the FORMAT statement means that five data are output in one line. The outer bracket ( ) is used for the repetition of the output specification 5E16.8, which means that the output data is real and is output using 16 spaces (columns) in which the data is written to the right of the space with 8 decimal places. In order to continue a separate successive run using the data which is output in the above example, we need to use the following READ statement for reading the necessary data:
```

 READ (NP1, 60) N
 6 0 ~ F O R M A T ~ (~ I 8 ~) ~
READ (NP1, 65) (RX (I), I = 1,N), (RY(I),I = 1,N)
65 FORMAT((5E16.8))

```

An important point is that the same FORMAT statement must be used for the WRITE and READ statements; otherwise, the exact numerical values cannot be read by the READ statement.

Finally, to assist the reader in understanding the grammar in more detail, we have added explanatory remarks to the following sample program, which was made by compressing a full simulation program.


```

The use of the RETURN statement arbitrary times is possible in the subroutine. The END statement is necessary for specifying the end of the descriptions of the subroutine.

```
```

INTEGER NA , N

```
INTEGER NA , N
0396 C
0396 C
0397 HSQ2 = H*H/2.D0
0397 HSQ2 = H*H/2.D0
0398 CC0 = 1.D0/K
0398 CC0 = 1.D0/K
0399 CC1 = 1.D0
0399 CC1 = 1.D0
0400 C
0400 C
0401 DO 10 I=1,N
0401 DO 10 I=1,N
0402 IF( I .EQ. NA+1 ) CC1 = CC0
0402 IF( I .EQ. NA+1 ) CC1 = CC0
0403 RX(I) = RX0(I) + H*VELX(I) + HSQ2*FX(I)*CC1
0403 RX(I) = RX0(I) + H*VELX(I) + HSQ2*FX(I)*CC1
0404 RY(I) = RY0(I) + H*VELY(I) + HSQ2*FY(I)*CC1
0404 RY(I) = RY0(I) + H*VELY(I) + HSQ2*FY(I)*CC1
0405 10 CONTINUE
0406 RETURN
0407
                                    END
```


A3.2 C Language

We will explain the grammar of the C language in a way similar to our discussion of the FORTRAN language. The main structure of a program written in the C language is made up of the function main and a set of functions that correspond to subprograms in FORTRAN. The C language has considerable flexibility in writing a program in comparison to FORTRAN. However, the logical structure concerning the arrangement of main and functions has similarities to FORTRAN, and therefore it may be beneficial for the reader to write a simulation program in a similar structure to one in FORTRAN.

We show a typical structure of a C program in the following. Note that there is no requirement that the statements be written between 7th and 72nd columns in the C language.

The function main is placed first, and other functions, corresponding to subprograms in FORTRAN, follow main. The main body of the statements in each function begins with the notation \{ and ends with the notation \}. Since there is no limit on the number of characters in one line, the notation ; is used for terminating a line of statement-that is, it means the end of the line. Except for special statements, every line must end with such a notation ; Because mathematical functions such as sin and sqrt are necessarily used in scientific calculations, the statement of \#include <math.h> needs to be declared in the first description area. Also, the statement of \#include < stdio.h > is indispensable to any program to facilitate the input or output of data to a display or data file, and for reading data from a keyboard or data file. The statements of \#define PI 3.14... and \#define NN 20 correspond to the PARAMETER statement in FORTRAN. A statement beginning with the notation \# is a preprocessor directive, which is a command to the compiler's preprocessor that treats instructions before the compilation procedure starts. The preprocessor directive of \#define NN 20 implies that the value of 20 is assigned to the variable $\mathbf{N N}$. The next statement, corresponding to the COMMON statement in FORTRAN, is the declaration of the array-type variables RX[NN] and RY[NN] being used as global variables (which can be used in the other function programs with no further definitions). The C language typically uses lower-case characters, but it may be best that the names of global variables are declared using upper case, so a programmer can be more aware of treating the global variables. In a way similar to FORTRAN, the execution of a program starts with the function main; the procedures move to a function when the function name is met and return to the main program (main) after completion of the procedures in the function. As seen in this explanation, the C language does not need the CALL statement used in the FORTRAN language for transferring the task to another function. It employs only the name of the function. The function main is written in a way to clarify the flow of calculations, whilst any complex calculation procedure is recommended as a separate function.

Next, we explain the most important statements for developing a program: the if, for, do while, and switch statements. We first explain the if statement, which is
used for choosing tasks according to certain conditions specified by the instructions. Some typical examples are as follows:

```
if(i==3) x=a ;
```

```
if( x>=0.) z=b ;
else if( }x<-10.) z=c 
else z=d ;
```

```
if( x>=5. ) {
    z=a1 ;
}
```

```
if( x>5. ) {
    z=a1 ;
}else if( }x<==10. ) 
    z=b1 ;
}else {
    z=c1 ;
}
```

```
if( (x>=-10.) && (X<=10.) ) {
    z=a1 ;
} else if( (x>=50.)||(x<=-50.) ) {
    z=b1 ;
}
```

- This is the simplest if statement. " $i=3$ " is expressed as " $i==3$ " in the C language.
- If $x \geq 0, z=b$ is set, if $x<-10, z=c$, and $z=d$ for the other cases.
- This is a block-type if statement.
- This is also a block-type if statement. One procedure is chosen depending on the condition; there are three cases $x>5, x \leq-10$, and the other cases.
- This is also a block-type if statement. "\&\&" means that if both the conditions are satisfied, $z=a 1$ is assigned and "|" means that if one of the conditions at least is satisfied, $\mathrm{z}=\mathrm{b} 1$ is assigned.

The if statement implies that the procedure is carried out if a certain condition specified in the if statement is satisfied; otherwise, another assessment or another procedure (including the end of the execution of the if directive) is conducted. The specification " $<=$ " in the condition statements represents the mathematical meaning $\leq, ">="$ means $\geq, "=="$ means $=$, and " $!="$ means \neq. We next explain the statements of for, while, and do while, which are used for specifying the repeating procedures. Several typical examples follow.

```
for(i=1; i<=n; i++) {
...;
```

```
for(i=100; i>=0; i-=2) {
    ... ;
}
```

```
i=3 ;
do {
    xnew = xold + xdef ;
    i++ ;
} while( i<=n ) ;
```

```
i=3 ;
while( i<=n ) {
    xnew = xold + xdef ;
    i++ ;
}
```

- The procedure starts at $i=1$, then is conducted at $i=2$ and continued until $i=n$.
- The procedure starts at $i=100$, and is conducted at $i=98,96, \ldots$, while $i \geq 0$. "i-=2" means"i=i-2."
- The procedure starts at $i=3$ and is conducted at $i=4,5, \ldots$, while $i \leq n$. "i++" means "i=i+1" and "i--" means " i=i-1."
- The procedure is the same as in the previous case, but terminating the procedure is assessed in a different position.

The above statements correspond to the DO statement in FORTRAN. The procedures specified between $\{$ and $\}$ are repeated, with the value of the index variable i increasing or decreasing after the execution of each cycle step. The way of changing the index value is specified by the statement between (and) in the for statement, such as " $\mathrm{i}++$ " or " $\mathrm{i}-=2$ ". In the case of the do while and while statements, the way of changing the index value is specified by " $i++$." If the statement of " $i+=3$ " is used, the index i will change so that " $i=i+3$." A difference between the do while and the while statements is the position for assessing the termination of the procedures. The procedure specified between $\{$ and $\}$ is repeatedly carried out, whilst the condition indicated in the while statement is satisfied.

A statement with characteristics similar to if is the switch statement. This statement is quite simple to use; an example follows:

```
switch (itree ) {
    case 2 ;
        x = a1 ;
        y = b1 ;
        break ;
    case 3 ;
        x = a2 ;
        y = b2 ;
        break ;
    default ;
        x = a4 ;
        y = b4;
        break ;
}
```

- When itree=2, a series of
statements defined in "case 2 " are
executed, and break means the exit
from the switch statement. A similar
procedure is carried out for "case 3."
In the other cases, a series of
statements defined in default are
executed; the break statement is
possibly unnecessary in the default
area.

As already pointed out, the function main and other functions correspond to a main program and subprograms in the FORTRAN language, respectively. There are two types of functions in the C language. That is, the first type of function corresponds to a function subprogram in the FORTRAN language, and therefore a value calculated in the function is transferred through the variable (i.e., the name of the function) in the function main. The second type of function corresponds to a subroutine subprogram, and a value calculated there is not transferred through the name of the function. Several examples that explain these two types of functions are shown here:

```
setinivel(n,press)
    double press ;
    int n ;
    {
        double vxi, vyi ;
        int i, j ;
    }
```

- This is a function that returns no calculated values to the main function. It corresponds to the subroutine subprogram in FORTRAN.

```
double press(x, y)
    double x, y;
    {
        double c1, c2, cans ;
        c1=1. ; c2=2. ;
        cans = c1*x + c2*y ;
        return( cans ) ;
    }
```

int press (x, y)
double x, y ;
\{
int ic, jc, ians ;
ians $=i c^{*}(i n t) x$
$+j c^{*}(i n t) y$;
return(ians) ;
\}

- This corresponds to the function subprogram in FORTRAN; the calculated value "cans" is substituted into the double-precision variable "press," and the value of "press" is returned to main.
- This also corresponds to the integer function subprogram in FORTRAN; the calculated value "ians" is substituted into the integer variable "press," and the value of "press" is returned to main.

In the second and third examples, a value calculated in the function is transferred to the main program main through the function name. The descriptor of the function type, such as double and integer, is, therefore, attached before the function name. In the first example, the function does not return a calculated value to the main program, but certain procedures are carried out in this function, so that the declaration of the function type is unnecessary and not attached to the function name. Note that int, float, and double imply that a variable (or data) is integertype, single-precision-real-type, and double-precision-real-type, respectively.

Next, we explain several important points that seem to be relatively difficult or may be misunderstood by the beginner who is learning the grammar of the C language. Array-type variables are defined in the declaration statements of the data type in such a way as double $\mathbf{a}[\mathbf{1 0 0}]$ or $\mathbf{r x}[20][20]$. For example, in the case of a one-dimensional array such as double a[100], it is noted that $\mathbf{a}[\mathbf{0}], \mathbf{a}[\mathbf{1}], \ldots, \mathbf{a}[99]$ storage spaces are prepared, but $\mathbf{a}[\mathbf{1 0 0}]$ is not available. The second example of double rx[20][20] means the declaration of a two-dimensional array variable, and $\mathbf{r x}[0]][0], \mathbf{r x}[0][1], \mathbf{r x}[0][2], \ldots, \mathbf{r x}[19][19]$ storage spaces are prepared.

A significant difference between FORTRAN and the C language concerns the data transfer between the function main (main program) and other functions (subprograms). In FORTRAN, when one transfers data to a subprogram as arguments, one does not take the values themselves saved in the variables but rather takes the positions or addresses of the variables in which the data are saved. This means that the values saved in the variables can freely be accessed from the subprogram, and also that new data can be assigned to such variables; these new values are reflected in the main program. This data transfer type is the "call by reference." In the case of the C language, the specification of variables as arguments, as in the FORTRAN language, does not mean the transfer of the address of the variables; rather, the values themselves saved in the variables are transferred to the function; therefore the assignment of new values to the variables in the function is never reflected in the main program. This type of data transfer is the "call by value." This means that in respect to data transfer, the C language is much safer than FORTRAN. If the data transfer is carried out by "call by reference" in a similar way to FORTRAN, then the variables of the "pointer" class must be used in the C language. A pointer variable saves the position or address of a standard variable, and therefore it is important to declare what type of data is saved at the
position. For example, if an integer value is to be saved in a variable, the address of which a pointer variable "pa" saves, then the asterisk * must be attached to the pointer variable like "*pa," and the data type must be declared like "int *pa." In the body of the program, the variable "*pa" is treated as a standard integer variable. If "int *pb, ix" is declared in the definition statement of the data types, the statement "pb=\&ix" is used in order to save the address of the integer variable "ix" in the pointer variable "pb." If "\&" is attached to a standard variable, for example, "\&ix," it will return the value of the address of the variable ix. Therefore, since a pointer variable-for example, "pa"-has the information about the address of a standard variable, a value (data) saved at the address of the standard variable can be extracted using the notation "*pa." We are now ready to begin the explanation of "call by reference."

In order to return from a function with the calculated values, the information of the addresses of the variables, in which the calculated values are saved, need to be transferred to the function by using arguments of the pointer type. For example, consider a sample program in which a calculation is carried out using a value saved in the variable " h " in the function "anscal," and the calculated data is returned to the main program through the variable "ans." One has to call the function using the statement "anscal (h, \&ans)," in which a value (i.e., not the pointer information) saved in the variable " h " is transferred to the function "anscal," and the address of the variable "ans" can be transferred to the function using the pointer information "\&ans." It is important that the data type of the variable "*ans" is declared in the function "anscal," so that the variable "*ans" can be treated as a standard variable in the function. Several typical examples (including a bad example) follow.

```
double h, ans ;
x = anscal(h, &ans) ;
anscal(h, pans)
    double h, *pans ;
    {
    *pans = h*h ;
    }
```

```
double h, ans ;
x = anscal(h, ans) ;
anscal(h, ans)
    double h, ans ;
    {
        ans = h*h ;
    }
```

- The address of "ans" is transferred to the function; "\&ans" is the address of the variable "ans." In the function, the pointer variable "pans" is used for receiving the value of "ans" in the main function. Since "ans" is a doubleprecision real, "*pans" has to be defined as a double-precision-real variable.
- This is a bad example. In this case the values saved in " h " and "ans" are transferred to the function "anscal," but the values calculated in the function can never be returned (reflected) to the main function.

```
double h, ans[100] ;
```

double h, ans[100] ;
x = anscal(h, ans) ;
x = anscal(h, ans) ;
anscal(h, ans)
anscal(h, ans)
double h, ans[100] ;
double h, ans[100] ;
{
{
for(i=0, i<=99; i++) {
for(i=0, i<=99; i++) {
ans[i] = h*(dble)i;
ans[i] = h*(dble)i;
}
}
}

```
    }
```

- For array variables, the data transfer to the function is quite similar to FORTRAN; the pointer variables are unnecessary for the data transfer for the case of array variables. The variable name itself is used as an argument in calling the function and also in the definition of the function name.

In the first example, the address of the variable "ans" in the main program is transferred as an argument "\&ans." This value is saved in the pointer variable "pans" in the function; the data type of the variable "ans" is recognized in the function by declaring "double *pans" there. Through these statements, the original value saved in the variable "ans" in the main program is changed into a new value after this new value is substituted into the variable "*pans" in the function. Clearly identifying pointer variables from standard variables by attaching the asterisk * may significantly assist the programmer by removing the danger of mistakes arising from substituting new values to those variables in other functions.

The second example demonstrates a bad example of programming, where new values calculated in the function "anscal" are not transferred to the variables "h" and "ans" in the main program, since the connection of the variables between the main function and the function "anscal" can never be made using a statement of the type "anscal (h, ans)." If the arguments are defined without pointer variables, then a function that returns a calculated value to the main program may be used, as already explained; in this case, "anscal (h, ans)" has to be changed into "double anscal (h, ans)," and "return (ans);" is added to the line after "ans = h*h;" which corresponds to a function subprogram in the FORTRAN language.

The third example demonstrates how to transfer values saved in array-type variables such as "ans." The data transfer of array-type variables can be conducted in the same way as for the FORTRAN language, and therefore pointer variables are unnecessary. That is, calling a function with the arguments that are array-type variables will have a direct type of connection, so that new values assigned to the array-type variables in the function are reflected in main without the need for pointer variables.

We have shown the three methods of returning calculated values from a function back to the main function. The first method is to use pointer variables; the second is to use array-type variables; and the third is to use a function that returns a calculated value through the name of the function itself. In addition to these three methods is another method that uses global variables that correspond to variables declared in the COMMON statements in FORTRAN. The global variables have to be declared before the "main()" statement, and for these variables we recommend the use of capital characters in their names, to help the programmer recognize them. An example of using global variables is in the sample simulation program shown in Section 5.6 as the array-type variables such as RX[NN], RY[NN], and RZ[NN].

Next, we explain the statements for inputting data, scanf and fscanf statements, and for outputting data, printf and fprintf statements. The scanf and printf statements correspond to $\operatorname{READ}\left(5,{ }^{*}\right)$ and $\operatorname{WRITE}(6, *)$ statements in FORTRAN; in these statements, data are input from a keyboard and results shown on a display. In the case of the fscanf and fprintf statements, data files are used for reading and writing the data. If the reader understands the latter reading and writing statements, the former statements are quite straightforward to understand, so we only focus on the explanation of the fscanf and fprintf statements. In order to use data files, pointer variables must be connected to the data files used in a program. To do so, the fopen statement is used, and fclose must be used to disconnect the data file used before the end of the main program; this means that a data file connected by the fopen statement should always be disconnected in a program. Some examples follow.

```
main()
    double a, b, c;
    inti;
    FILE *fopen(),*np1,*np2,*np[4];
    np1 = fopen("aaa0.data","r");
    np2 = fopen("aaa1.data","w");
    np[1] = fopen("bbb1.data","w");
    np[2] = fopen("bbb2.data","w");
    np[3] = fopen("bbb3.data","w");
    fscanf(np1,"%lf", &c );
    fprintf(np2,"a=%10.3f b = %10.3f\n", a, b);
    i=2;
    fprintf(np[i],"a=%10.3f b = %10.3f c= %10.3f\n",
    a,b,c);
    fclose(np[1]);
    fclose(np[2]);
    fclose(np[3]);
    fclose(np1);
    fclose(np2);
```

As shown in the above example, a data file must be connected to the file pointer variable, which is declared in the FILE statement, by using the fopen statement. After a data file is opened (connected), data can be input from the data file by using the fscanf (np1,. . .) statement, and also can be output by the fprintf (np2,. . .) or fprintf ($\mathbf{n p}$ [2],...). The latter example for fprintf is quite useful for outputting the particle positions at given time step intervals, which may be used for making an animation of the particle motion. In this case, the index " i " in " $\mathrm{np}[\mathrm{i}]$ " is made to change in such a way as $\mathrm{i}=1,2,3, \ldots$, with advancing time for the output. The arguments " r " and " w " in the fopen statement indicate the reading and the writing mode, respectively. A data file opened by the fopen statement must be closed (disconnected) using the fclose statement before the end of the program. If a data is read and saved in a standard variable "c," the pointer information (address) of "c" is necessary as an argument in the fscanf statement. In contrast, when a data saved in the variable "a" is output to a data file, only a value is necessary, so that the name itself is used as an argument in the fprintf statement; the pointer information is unnecessary in this case.

Next, we explain how to describe the format to output data, using the following example:

```
i = 3;
xi=5.;
```

```
yi=2.;
press=xi*yi;
fprintf(np2,"i=%3d xi=%7.3f yi=%7.3f pressure=
%10.3f\n", i, xi, yi, press);
```

The output result of the above fprintf statement is as follows:

```
i=3 xi= 5.000 yi= 2.000 pressure= 10.000
```

The C language does not have a statement corresponding to the FORMAT statement in FORTRAN. Instead, the output format for the data is specified in the fprintf statement. In the above example, "\%3d" is used for integer-type data and is written using 3 columns (spaces) from the right. Similarly, " $\% 7.3 \mathrm{f}$ " is for real-type data and is written using 7 columns from the right with three decimal places, and " n " means the start of a new paragraph. If a data is output in exponential form, for example, using "\%10.2e," this implies that a value is written using 10 columns with 2 decimals. The reader sees many examples in the sample simulation program shown in Section 5.6.

In order to make a visualization, such as an animation or snapshot, using the data of the particle positions, it is necessary to write out only data (figures) in a data file without any characters for explaining the data such as the names of variables. An example for this output is as follows:

```
for (i=1; i<100; i++) {
    fprintf(np2,"%10.4f%10.4f%10.4f\n", rx[i], ry[i],
    rz[i]);
}
```

In this example, the components of the particle position vector, rx[*], ry[*], and $\mathrm{rz}[*]$ are output at each time step using the for loop statement; the position data of particle 1 , particle 2 , and particle i are written in the first, second, and ith lines, respectively, of the data file. In order to conduct another run using the data saved in the above-mentioned manner, one needs to read such data from the data file in the following way:

```
for (i=1; i<100; i++) {
    fscanf(np1,"%lf%lf%lf\n", &rx[i], &ry[i], &rz[i]);
}
```

In the above example, "rx[*], ry[*], and rz[*]" are assumed to be defined as double-precision-real-type variables. As this example demonstrates, in the C language, data does not need to be read using the same format description that was used in the fprintf statement, but only described as "\%lf $\% \mathbf{l f} \% \mathbf{l f} / \mathrm{n}$ " in the fscanf statement; this is in contrast to FORTRAN. As already pointed out, the address of the variables-not the name itself-is necessary in reading the data by the fscanf statement.

The C language has several characteristic concepts for using variables, such as structure variables, which are not contained in the FORTRAN77 language. We do not explain them in this book, because these characteristic statements are not used in the sample simulation programs. Since imaginary variables may be useful in certain cases, the reader may find them in a textbook on the C language, if necessary.

Finally, we show some additional features of the grammar using a short sample simulation program.


```
0184
```

0184
0185
0185
0186
0186
0187
0187
0 1 8 8
0 1 8 8
0189
0189
0190
0190
0196
0196
0198
0198
0199
0199
0200
0200
0201
0201
0202
0202
0203
0203
0204
0204
0205
0205
0 2 0 6 ~ d o u b l e ~ n d e n s ~ ; ~
0 2 0 6 ~ d o u b l e ~ n d e n s ~ ; ~
0207
0207
0208
0208
0209
0209
0210
0210
0211
0211
0212
0212
0
0
0213
0213
0214
0214
0215
0215
0217
0217
0218
0218
018
018
0219
0219
0223
0223
0224
0224
0225
0225
0226
0226
0227
0227
0228
0228
0229
0229
0230
0230
0 2 3 1
0 2 3 1
0232
0232
0233
0233
0234
0234
0235
0235
0236
0236
0237
0237
0238
0238
0239
0239
0240
0240
0241
0241
0242
0242
0243
0243
0
0
0244
0244
0246
0246
0
0
0247
0247
0248
0248
0249 }
0249 }
0249 }
0249 }
0250 /*+++ fun inivel +++*/
0250 /*+++ fun inivel +++*/
0251
0251
0252
0252
0253
0253
0253 int n ;
0253 int n ;
0254 double temp ;
0254 double temp ;
0255 {
0255 {
0256
0256
0257 double c0 , c1 , c2 , c3 , t , vxi , vyi ;
0257 double c0 , c1 , c2 , c3 , t , vxi , vyi ;
0258
0258
0259
0259
0263
0263
0264
0264
0265
0265
int n ;
int n ;
double rxi, ryi, rx0, ry0, a , ax , ay
double rxi, ryi, rx0, ry0, a , ax , ay
int i , j , kx , ky , k , p , iface
int i , j , kx , ky , k , p , iface
/*--- set mol. at close-pack
/*--- set mol. at close-pack
a = sqrt((2./sqrt(3.))/ndens) ;
a = sqrt((2./sqrt(3.))/ndens) ;
p = rint(sqrt((double)(n/4))) ;
p = rint(sqrt((double)(n/4))) ;
XL = sqrt(3.)*a*(double)p ;
XL = sqrt(3.)*a*(double)p ;
-The file opened by the "fopen" statement is necessarily
-The file opened by the "fopen" statement is necessarily
-The file opened by the "fopen" statement is necessarily
fclose(np[inp]) ;
fclose(np[inp]) ;
fclose(np[inp]) ;
}
}
}
fclose (np1) ;
fclose (np1) ;
fclose (np1) ;
closed by the "fclose" statement.
closed by the "fclose" statement.
closed by the "fclose" statement.
}
}
/*--
/*--
/*--
-The arguments have to be described in the same order
-The arguments have to be described in the same order
-The arguments have to be described in the same order
as being called in the main function.
as being called in the main function.
as being called in the main function.
|*--
|*--
|*--
/*+++ fun iniposit +++*/
/*+++ fun iniposit +++*/
/*+++ fun iniposit +++*/
"%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f¥n",
"%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f¥n",
"%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f¥n",

0200 /
0200 /
iniposit(n, ndens)
iniposit(n, ndens)
iniposit(n, ndens)
-Even if any values are saved in "n" and "ndens," these
-Even if any values are saved in "n" and "ndens," these
-Even if any values are saved in "n" and "ndens," these
values are not reflected in the main function.
values are not reflected in the main function.
values are not reflected in the main function.
{
{
-The variables defined are valid only
-The variables defined are valid only
in this function, and these values have
in this function, and these values have
no influence on the main function.
no influence on the main function.
- The results calculated here are
- The results calculated here are
returned to the main program through
returned to the main program through
the global variables.
the global variables.
ax = sqrt(3.)*a ; ay = 2.*a ;
ax = sqrt(3.)*a ; ay = 2.*a ;
kx = p ; ky = p ;
kx = p ; ky = p ;
for (iface=1 ; iface<=4 ; iface++) {
for (iface=1 ; iface<=4 ; iface++) {
if(iface == 1) {
if(iface == 1) {
rx0 = c1 ; ry0 = c1 ;
rx0 = c1 ; ry0 = c1 ;
} else if(iface == 2) {
} else if(iface == 2) {
rx0 = c1 ; ry0 = a + c1 ;
rx0 = c1 ; ry0 = a + c1 ;
} else if(iface == 3) {
} else if(iface == 3) {
rx0 = ax/2. + c1 ;
} else {
} else {
rx0 = ax/2. + c1 ;
rx0 = ax/2. + c1 ;
ry0 = a*3./2. + c1 ;
ry0 = a*3./2. + c1 ;
}
}
for(j=0 ; j<=ky-1 ; j++) {
for(j=0 ; j<=ky-1 ; j++) {
ryi = (double) j*ay + ry0 ;
ryi = (double) j*ay + ry0 ;
if (ryi >= YL) break ;
if (ryi >= YL) break ;
for (i=0 ; i<=kx-1 ; i++) {
for (i=0 ; i<=kx-1 ; i++) {
rxi = (double)i*ax + rx0 ;
rxi = (double)i*ax + rx0 ;
if (rxi >= XL) break ;
if (rxi >= XL) break ;
k += 1 ;
k += 1 ;
RX[k] = rxi ;
RX[k] = rxi ;
}
}
}
}
}
}
}
}
}
}
inivel(n, temp)
inivel(n, temp)
{
{
int i ;
int i ;
0257 double c0 , c1 , c2 , c3 , t , vxi , vyi ;
0257 double c0 , c1 , c2 , c3 , t , vxi , vyi ;
c0 = 2.*PI ;
c0 = 2.*PI ;
for (i=1 ; i<=n ; i++) {
for (i=1 ; i<=n ; i++) {
- The "break" statement
- The "break" statement
- "sqrt" means a mathematical
- "sqrt" means a mathematical
function that calculates the square
function that calculates the square
root of a value.
root of a value.
enables the procedure to be
enables the procedure to be
terminated and to leave the
terminated and to leave the
calculation in the "for" or the
calculation in the "for" or the
"if" statement unit.
"if" statement unit.
- "log(x)" means a natural
- "log(x)" means a natural
logarithm, "cos(x)" and
logarithm, "cos(x)" and
"sin(x)" mean a cosine and a
"sin(x)" mean a cosine and a
sine function, "fabs (x)" returns
sine function, "fabs (x)" returns
the absolute value of }x\mathrm{ ,
the absolute value of }x\mathrm{ ,
"pow (x,y)"means xy, and "m%n"
"pow (x,y)"means xy, and "m%n"
returns the reminder. Also,
returns the reminder. Also,
"floor(x)" means truncation,
"floor(x)" means truncation,
"rint (x)" means rounding-up,
"rint (x)" means rounding-up,
and "exp(x)" is an exponential
and "exp(x)" is an exponential
function. In the above functions,
function. In the above functions,
x}\mathrm{ is regarded to be a double-
x}\mathrm{ is regarded to be a double-
precision real, and m and n are
precision real, and m and n are
integer variables.

```
integer variables.
```


In this example, the line numbers are attached for the sake of convenience-they are not necessary in writing a program. In the C language, all variables used in a program must be defined using the data type statement such as int, float, and double.

A3.3 Execution Procedures of FORTRAN and C Programs

The execution of a program in the FORTRAN or the C language involves two procedures: one to make an executive-type program by compiling the program, and another to conduct a command for running the executive-type program. When error messages appear in compiling a program, one has to modify the program so as to completely remove those errors. Error messages are quite useful for the beginner in the process to learn how to develop a program, so that the reader is recommended to spend sufficient time on tackling such problems. Note that if there are no error messages, it does not mean that there are no bugs in the simulation program, but just implies there are no grammatical errors. Hence, after error messages disappear in compiling, one should check a program another 5 times. Since this kind of careful verification procedure is necessary to remove fatal bugs, programmers have to avoid employing complex logical structures in writing a program.

The sample simulation programs shown in each chapter of this book are almost directly portable to free FORTRAN and C compilers, for example, in a free Linux system. However, if the reader intends to conduct a large-scale simulation, it is desirable to introduce a commercial compiler, which may offer higher performance for the computer.

If a Linux system is installed with GNU family compilers in the FORTRAN and C languages, typical execution procedures are as follows:

```
> f77 sample1.f
> ./a.out
```

```
> f77 -o sample1.out sample1.f
> ./sample1.out
```

$>$ cc sample1.c -lm
$>$./a.out

$>$ cc -o sample1.out sample1.c -lm
$>$./sample1.out

The "a.out" is a default name of an executive-type program, but in the second example, the name of an executive-type program is assigned to a chosen name and
the execution is carried out using this name. Since mathematical functions are usually used in a program, the compile option "-lm" is necessary for a C program.

If you use a commercial compiler, offered by Intel or other companies, installed on a Linux system, a typical example for the execution is as follows:

```
> ifort -o sample1.out sample1.f
>./sample1.out
```

in which "ifort" is the command for starting the FORTRAN compiler. If the reader is using a freeware, the required command may be "g77," "f90," "f95," "gfortran," "ifc," or "fort."

If the reader wants more information on the compile options, "man ifort" or "man ifc" can be used to access to the manual of the compiler. Note that since the grammar is slightly different among different compilers, one compiler may output error messages in compiling, but another does not. Hence, we recommend that the reader devise a program in a general form, otherwise, a large amount of tuning tasks may be necessary to apply it to a compiler on another computer.

If error messages are output in compiling the same programs in this book, the following data type statement may be a reason; in this case, the reader is advised to replace "REAL*8" with "DOUBLE PRECISION." Also, error messages may be resolved by reducing the size of array-type variables.

This page intentionally left blank

Appendix 4: Unit Systems of Magnetic Materials

The CGS unit system and the SI unit system, which was developed from the MKSA unit system, are generally used in the field of magnetic materials. Although the CGS unit system is commonly used in the commercial world, the SI unit system is invariably used in textbooks on magnetic materials. Using quantities expressed in different unit systems at the same time will lead to wrong expressions for physical quantities, so one must adhere to the same unit system for handling equations or physical values of magnetic materials. Many textbooks on magnetic materials provide tables to transform values from one unit system to another. We here summarize the two unit systems based on the MKSA system. In the first unit system, the magnetization \mathbf{M} corresponds to the magnetic field \mathbf{H} in units. In the second unit system, \mathbf{M} corresponds to the magnetic flux density B. Some typical quantities used for magnetic materials are tabulated below.

Note that in this book we use the first unit system of \mathbf{M} corresponding to \mathbf{H} in units.

	$\mathbf{B}=\mu_{0}(\mathbf{H}+\mathbf{M})$	$\mathbf{B}=\mu_{0} \mathbf{H}+\mathrm{M}$
Magnetic field strength, \mathbf{H}	[A / m]	[A / m]
Magnetization strength, M	[A / m]	[$\mathrm{Wb} / \mathrm{m}^{2}$]
Magnetic flux density, B	[T] $\left(=\left[\mathrm{Wb} / \mathrm{m}^{2}\right]\right)$	[T] $\left(=\left[\mathrm{Wb} / \mathrm{m}^{2}\right]\right)$
Permeability of free space, μ_{0}	$\begin{gathered} \mu_{0}=4 \pi \times 10^{-7}[\mathrm{H} / \mathrm{m}] \\ (=[\mathrm{Wb} /(\mathrm{A} \cdot \mathrm{~m})] \end{gathered}$	$\begin{gathered} \mu_{0}=4 \pi \times 10^{-7}[\mathrm{H} / \mathrm{m}] \\ (=[\mathrm{Wb} /(\mathrm{A} \cdot \mathrm{~m})] \end{gathered}$
Magnetic charge, q	[$\mathrm{A} \cdot \mathrm{m}$]	$[\mathrm{Wb}](=[\mathrm{N} \cdot \mathrm{m} / \mathrm{A}])$
Magnetic moment, m	[$\mathrm{A} \cdot \mathrm{m}^{2}$]	$[\mathrm{Wb} \cdot \mathrm{m}]\left(=\left[\mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{A}\right]\right)$
Potential energy, U	$\begin{gathered} U=-\mu_{0} \mathbf{m} \cdot \mathbf{H}[\mathrm{~J}] \\ (=[\mathrm{Wb} \cdot \mathrm{~A}]) \end{gathered}$	$U=-\mathbf{m} \cdot \mathbf{H}[\mathrm{J}](=[\mathrm{Wb} \cdot \mathrm{A}])$
Torque, \mathbf{T}	$\begin{aligned} & \mathbf{T}=\mu_{0} \mathbf{m} \times \mathbf{H}[\mathrm{N} \cdot \mathrm{~m}] \\ &(=[\mathrm{Wb} \cdot \mathrm{~A}]) \end{aligned}$	$\begin{aligned} & \mathbf{T}=\mathbf{m} \times \mathbf{H}[\mathrm{N} \cdot \mathrm{~m}] \\ &(=[\mathrm{Wb} \cdot \mathrm{~A}]) \end{aligned}$
Magnetic field induced by magnetic charge, \mathbf{H}	$\mathbf{H}=\frac{q}{4 \pi r^{2}} \cdot \frac{\mathrm{r}}{r}[\mathrm{~A} / \mathrm{m}]$	$\mathbf{H}=\frac{q}{4 \pi \mu_{0} r^{2}} \cdot \frac{\mathrm{r}}{r}[\mathrm{~A} / \mathrm{m}]$
Magnetic force acting between two magnetic charges, \mathbf{F}	$\begin{aligned} \mathbf{F} & =\frac{\mu_{0} q q^{\prime}}{4 \pi r^{2}} \cdot \frac{\mathbf{r}}{[}[\mathrm{N}] \\ & (=[\mathrm{Wb} \cdot \mathrm{~A} / \mathrm{m}]) \end{aligned}$	$\begin{aligned} & \mathbf{F}=\frac{q q^{\prime}}{4 \pi \mu_{0} r^{2}} \cdot \frac{\mathbf{r}}{r}[\mathrm{~N}] \\ &=[\mathrm{Wb} \cdot \mathrm{~A} / \mathrm{m}]) \end{aligned}$
Magnetic interaction between two magnetic moments, U	$\begin{gathered} U=\frac{\mu_{0}}{4 \pi r^{3}}\left\{\mathbf{m}_{1} \cdot \mathbf{m}_{2}-\frac{3}{r^{2}}\right. \\ \left.\times\left(\mathbf{m}_{1} \cdot \mathbf{r}\right)\left(\mathbf{m}_{2} \cdot \mathbf{r}\right)\right\} \\ {[\mathrm{J}](=[\mathrm{Wb} \cdot \mathrm{~A}])} \end{gathered}$	$\begin{aligned} U= & \frac{1}{4 \pi \mu_{0} r^{3}}\left\{\mathbf{m}_{1} \cdot \mathbf{m}_{2}-\frac{3}{r^{2}}\right. \\ & \left.\times\left(\mathbf{m}_{1} \cdot \mathbf{r}\right)\left(\mathbf{m}_{2} \cdot \mathbf{r}\right)\right\} \\ & {[\mathrm{J}](=[\mathrm{Wb} \cdot \mathrm{~A}]) } \end{aligned}$
Combined units: $[\mathrm{H}]=[\mathrm{Wb} / \mathrm{A}],[\mathrm{T}]=\left[\mathrm{Wb} / \mathrm{m}^{2}\right],[\mathrm{J}]=[\mathrm{N} \cdot \mathrm{m}]$ Equivalent units: $[\mathrm{N}]=[\mathrm{Wb} \cdot \mathrm{A} / \mathrm{m}]$		

This page intentionally left blank

How to Acquire Simulation Programs

A copy of the sample simulation programs that are shown in this book can be requested directly from the author via e-mail:
asatoh_book2010@excite.co.jp
Please note that the following information is required:

1. the purchase date,
2. the number of purchased copies,
3. the profession of the purchaser.

The sample simulation programs in this book can be used free of charge for educational purposes in an academic environment such as a university, but are not permitted to be used for commercial purposes. In addition, the user takes responsibility for all results obtained from using the sample simulation programs.

The author would deeply appreciate the report of any bugs in the programs, but regrets that he is unable to accept any inquiries concerning the content of the simulation programs.

This page intentionally left blank

References

[1] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.
[2] D.C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, 1995.
[3] J.M. Haile, Molecular Dynamics Simulation, Elementary Methods, John Wiley \& Sons, New York, 1992.
[4] A. Satoh, Introduction to Molecular-Microsimulation of Colloidal Dispersions, Elsevier Science, Amsterdam, 2003.
[5] P.J. Hoogerbrugge, J.M.V.A. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhys. Lett. 19 (1992) 155-160.
[6] J.M.V.A. Koelman, P.J. Hoogerbrugge, Dynamic simulations of hard-sphere suspensions under steady shear, Europhys. Lett. 21 (1993) 363-368.
[7] P. Espanol, Hydrodynamics from dissipative particle dynamics, Phys. Rev. E 52 (1995) 1734-1742.
[8] C.A. Marsh, G. Backx, M.H. Ernst, Static and dynamic properties of dissipative particle dynamics, Phys. Rev. E 56 (1997) 1676-1691.
[9] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Clarendon Press, Oxford, 2001.
[10] D.H. Rothman, S. Zaleski, Lattice-Gas Cellular Automata, Simple Models of Complex Hydrodynamics, Cambridge University Press, Cambridge, 1997.
[11] J.-P. Rivet, J.P. Boon, Lattice Gas Hydrodynamics, Cambridge University Press, Cambridge, 2001.
[12] B. Chopard, M. Droz, Cellular Automata Modeling of Physical Systems, Cambridge University Press, Cambridge, 1998.
[13] L. Verlet, Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev. 159 (1967) 98-103.
[14] W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters, J. Chem. Phys. 76 (1982) 637-649.
[15] R.W. Hockney, The potential calculation and some applications, Methods Comput. Phys. 9 (1970) 136-211.
[16] S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications, Butterworth-Heinemann, Stoneham, 1991.
[17] H. Brenner, Rheology of a dilute suspension of axisymmetric Brownian particles, Int. J. Multiphase Flow 1 (1974) 195-341.
[18] S. Kim, R.T. Mifflin, The resistance and mobility functions of two equal spheres in low-Reynolds-number flow, Phys. Fluids 28 (1985) 2033-2045.
[19] D.A. McQuarrie, Statistical Mechanics, Harper \& Row, New York, 1976.
[20] J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, second ed., Academic Press, London, 1986.
[21] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21 (1953) 1087-1092.
[22] H.C. Tuckwekk, Elementary Applications of Probability Theory, second ed., Chapman \& Hall, London, 1995.
[23] A. Jeffrey, Mathematics for Engineers and Scientists, fifth ed., Chapman \& Hall, London, 1996.
[24] D.L. Ermak, J.A. McCammon, Brownian dynamics with hydrodynamic interactions, J. Chem. Phys. 69 (1978) 1352-1360.
[25] G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, second ed., Oxford University Press, Oxford, 1994.
[26] G.E.P Box, M.E. Müller, A note on the generation of random normal deviates, Ann. Math. Stat. 29 (1958) 610-611.
[27] B. Quentrec, C. Brot, New method for searching for neighbors in molecular dynamics computations, J. Comput. Phys. 13 (1975) 430-432.
[28] R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles, McGraw-Hill, New York, 1981.
[29] S.M. Thompson, Use of neighbor lists in molecular dynamics, CCP5 Quarterly 8 (1983) 20-28.
[30] A.W. Lees, S.F. Edwards, The computer study of transport processes under extreme conditions, J. Phys. C 5 (1972) 1921-1929.
[31] R.E. Rosensweig, Ferrohydrodynamics, Cambridge University Press, Cambridge, 1985.
[32] R.E. Rosensweig, J.W. Nestor, R.S. Timminins, Ferrohydrodynamics fluids for direct conversion of heat energy, Symp. AIChE-I Chem. Eng. 5 (1965) 104-118.
[33] C. Pozrikidis, Introduction to Theoretical and Computational Fluid Dynamics, Oxford University Press, Oxford, 1997.
[34] D. Yu, R. Mei, L.-S. Luo, W. Shyy, Viscous flow computations with the method of lattice Boltzmann equation, Prog. Aerospace Sci. 39 (2003) 329-367.
[35] A.J.C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech. 271 (1994) 285-309.
[36] A.J.C. Ladd, Short-time motion of colloidal particles: numerical simulation via a fluctuating lattice-Boltzmann equation, Phys. Rev. Lett. 70 (1993) 1339-1342.
[37] M. Bouzidi, M. Firdaouss, P. Lallemand, Momentum transfer of a Boltzmann-lattice fluid with boundaries, Phys. Fluids 13 (2001) 3452-3459.
[38] S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge, 1960.

[^0]: Note that \mathbf{n}_{i} is used as \mathbf{e}_{i}.

