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Preface

The control of internal structure during the fabrication of materials on the nano-

scale may enable us to develop a new generation of materials. A deeper under-

standing of phenomena on the microscopic scale may lead to completely new fields

of application. As a tool for microscopic analysis, molecular simulation methods—

such as the molecular dynamics and the Monte Carlo methods—have currently

been playing an extremely important role in numerous fields, ranging from pure

science and engineering to the medical, pharmaceutical, and agricultural sciences.

The importance of these methods is expected to increase significantly with the

advance of science and technology.

Many physics textbooks address the molecular simulation method for pure liquid

or solid systems. In contrast, textbooks concerning the simulation method for sus-

pensions or dispersions are less common; this fact provided the motivation for my

previous textbook. Moreover, students or nonexperts needing to apply the molecu-

lar simulation method to a physical problem have few tools for cultivating the skill

of developing a simulation program that do not require training under a supervisor

with expertise in simulation techniques. It became clear that students and nonexpert

researchers would find useful a textbook that taught the important concepts of the

simulation technique and honed programming skills by tackling practical physical

problems with guidance from sample simulation programs. This book would need

to be written carefully; it would not simply explain a sample simulation program,

but also explains the analysis procedures and include the essence of the theory, the

specification of the basic equations, the method of nondimensionalization, and

appropriate discussion of results. A brief explanation of the essence of the grammar

of programming languages also would be useful.

In order to apply the simulation methods to more complex systems, such as

carbon-nanotubes, polymeric liquids, and DNA/protein systems, the present book

addresses a range of practical methods, including molecular dynamics and Monte

Carlo, for simulations of practical systems such as the spherocylinder and the disk-

like particle suspension. Moreover, this book discusses the dissipative particle

dynamics method and the lattice Boltzmann method, both currently being devel-

oped as simulation techniques for taking into account the multibody hydrodynamic

interaction among dispersed particles in a particle suspension or among polymers

in a polymeric liquid.

The resulting characteristics of the present book are as follows. The important

and essential background relating to the theory of each simulation technique is

explained, avoiding complex mathematical manipulation as much as possible. The

equations that are included herein are all important expressions; an understanding



 

of them is key to reading a specialized textbook that treats the more theoretical

aspects of the simulation methods. Much of the methodology, such as the assign-

ment of the initial position and velocity of particles, is explained in detail in order

to be useful to the reader developing a practical simulation program.

In the chapters dedicated to advancing the reader’s practical skill for developing

a simulation program, the following methodology is adopted. First, the sample

physical phenomenon is described in order to discuss the simulation method that

will be addressed in the chapter. This is followed by a series of analyses (including

the theoretical backgrounds) that are conducted mainly from the viewpoint of

developing a simulation program. Then, the assignment of the important parameters

and the assumptions that are required for conducting the simulation of the physical

problem are described. Finally, results that have been obtained from the simulation

are shown and discussed, with emphasis on the visualization of the results by snap-

shots. Each example is conducted with a sample copy of the simulation program

from which the results were obtained, together with sufficient explanatory descrip-

tions of the important features in the simulation program to aid to the reader’s

understanding.

Most of the sample simulation programs are written in the FORTRAN language,

excepting the simulation program for the Brownian dynamics method. We take

into account that some readers may be unfamiliar with programming languages,

that is, the FORTRAN or the C language; therefore, an appendix explains the

important features of these programming languages from the viewpoint of develop-

ing a scientific simulation program. These explanations are expected to signifi-

cantly reduce the reader’s effort of understanding the grammar of the programming

languages when referring to a textbook of the FORTRAN or the C language.

The present book has been written in a self-learning mode as much as possible,

and therefore readers are expected to derive the important expressions for

themselves—that is the essence of each simulation demonstration. This approach

should appeal to the reader who is more interested in the theoretical aspects of the

simulation methods.

Finally, the author strongly hopes that this book will interest many students in

molecular and microsimulation methods and direct them to the growing number of

research fields in which these simulation methods are indispensable, and that one

day they will be the preeminent researchers in those fields.

The author deeply acknowledges contribution of Dr. Geoff N. Coverdale, who

volunteered valuable assistance during the development of the manuscript. The

author also wishes to express his thanks to Ms. Aya Saitoh for her dedication and

patience during the preparation of so many digital files derived from the handwrit-

ten manuscripts.

Akira Satoh

Kisarazu City, Chiba Prefecture, Japan

December 2010
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1 Outline of Molecular Simulation
and Microsimulation Methods

In the modern nanotechnology age, microscopic analysis methods are indispensable

in order to generate new functional materials and investigate physical phenomena

on a molecular level. These methods treat the constituent species of a system, such

as molecules and fine particles. Macroscopic and microscopic quantities of interest

are derived from analyzing the behavior of these species.

These approaches, called “molecular simulation methods,” are represented by

the Monte Carlo (MC) and molecular dynamics (MD) methods [1�3]. MC methods

exhibit a powerful ability to analyze thermodynamic equilibrium, but are

unsuitable for investigating dynamic phenomena. MD methods are useful for ther-

modynamic equilibrium but are more advantageous for investigating the dynamic

properties of a system in a nonequilibrium situation. This book examines MD and

MC methods of a nonspherical particle dispersion in a three-dimensional system,

which may be directly applicable to such complicated dispersions as DNA and

polymeric liquids. This book also addresses Brownian dynamics (BD) methods

[1,4], which can simulate the Brownian motion of dispersed particles; dissipative

particle dynamics (DPD) [5�8]; and lattice Boltzmann methods [9�12], in which a

liquid system is regarded as composed of virtual fluid particles. Simulation meth-

ods using the concept of virtual fluid particles are generally used for pure liquid

systems, but are useful for simulating particle dispersions.

1.1 Molecular Dynamics Method

A spherical particle dispersion can be treated straightforwardly in simulations because

only the translational motion of particles is important, and the treatment of the rota-

tional motion is basically unnecessary. In contrast, since the translational and rota-

tional motion has to be simulated for an axisymmetric particle dispersion, MD

simulations become much more complicated in comparison with the spherical particle

system. Simulation techniques for a dispersion composed of nonspherical particles

with a general shape may be obtained by generalizing the methods employed to an

axisymmetric particle dispersion. It is, therefore, very important to understand the MD

method for the axisymmetric particle system.

Introduction to Practice of Molecular Simulation. DOI: 10.1016/B978-0-12-385148-2.00001-X
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1.1.1 Spherical Particle Systems

The concept of the MD method is rather straightforward and logical. The motion of

molecules is generally governed by Newton’s equations of motion in classical the-

ory. In MD simulations, particle motion is simulated on a computer according to

the equations of motion. If one molecule moves solely on a classical mechanics

level, a computer is unnecessary because mathematical calculation with pencil and

paper is sufficient to solve the motion of the molecule. However, since molecules

in a real system are numerous and interact with each other, such mathematical anal-

ysis is impracticable. In this situation, therefore, computer simulations become a

powerful tool for a microscopic analysis.

If the mass of molecule i is denoted by mi, and the force acting on molecule i by

the ambient molecules and an external field denoted by fi, then the motion of a par-

ticle is described by Newton’s equation of motion:

mi

d2ri

dt2
5 f i ð1:1Þ

If a system is composed of N molecules, there are N sets of similar equations, and

the motion of N molecules interacts through forces acting among the molecules.

Differential equations such as Eq. (1.1) are unsuitable for solving the set of N

equations of motion on a computer. Computers readily solve simple equations, such

as algebraic ones, but are quite poor at intuitive solving procedures such as a trial-

and-error approach to find solutions. Hence, Eq. (1.1) will be transformed into an

algebraic equation. To do so, the second-order differential term in Eq. (1.1) must be

expressed as an algebraic expression, using the following Taylor series expansion:

xðt1 hÞ5 xðtÞ1 h
dxðtÞ
dt

1
1

2!
h2

d2xðtÞ
dt2

1
1

3!
h3

d3xðtÞ
dt3

1? ð1:2Þ

Equation (1.2) implies that x at time (t1 h) can be expressed as the sum of x

itself, the first-order differential, the second-order differential, and so on, multiplied

by a constant for each term. If x does not significantly change with time, the higher-

order differential terms can be neglected for a sufficiently small value of the time

interval h. In order to approximate the second-order differential term in Eq. (1.1) as

an algebraic expression, another form of the Taylor series expansion is necessary:

xðt2 hÞ5 xðtÞ2 h
dxðtÞ
dt

1
1

2!
h2

d2xðtÞ
dt2

2
1

3!
h3

d3xðtÞ
dt3

1? ð1:3Þ

If the first-order differential term is eliminated from Eqs. (1.2) and (1.3), the

second-order differential term can be solved as

d2xðtÞ
dt2

5
xðt1 hÞ2 2xðtÞ1 xðt2 hÞ

h2
1Oðh2Þ ð1:4Þ
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The last term on the right-hand side of this equation implies the accuracy of the

approximation, and, in this case, terms higher than h2 are neglected. If the second-

order differential is approximated as

d2xðtÞ
dt2

5
xðt1 hÞ2 2xðtÞ1 xðt2 hÞ

h2
ð1:5Þ

This expression is called the “central difference approximation.” With this approxi-

mation and the notation ri5 (xi, yi, zi) for the molecular position and fi5 (fxi, fyi,

fzi) for the force acting on particle i, the equation of the x-component of Newton’s

equation of motion can be written as

xiðt1 hÞ5 2xiðtÞ2 xiðt2 hÞ1 h2

mi

fxiðtÞ ð1:6Þ

Similar equations are satisfied for the other components. Since Eq. (1.6) is a

simple algebraic equation, the molecular position at the next time step can be

evaluated using the present and previous positions and the present force. If a

system is composed of N molecules, there are 3N algebraic equations for speci-

fying the motion of molecules; these numerous equations are solved on a com-

puter, where the motion of the molecules in a system can be pursued with the

time variable. Eq. (1.6) does not require the velocity terms for determining the

molecular position at the next time step. This scheme is called the “Verlet

method” [13]. The velocity, if required, can be evaluated from the central differ-

ence approximation as

viðtÞ5
riðt1 hÞ2 riðt2 hÞ

2h
ð1:7Þ

This approximation can be derived by eliminating the second-order differential

terms in Eqs. (1.2) and (1.3). It has already been noted that the velocities are unnec-

essary for evaluating the position at the next time step; however, a scheme using the

positions and velocities simultaneously may be more desirable in order to keep the

system temperature constant. We show such a method in the following paragraphs.

If we take into account that the first- and second-order differentials of the posi-

tion are equal to the velocity and acceleration, respectively, the neglect of differen-

tial terms equal to or higher than third-order in Eq. (1.2) leads to the following

equation:

riðt1 hÞ5 riðtÞ1 hviðtÞ1
h2

2mi

f iðtÞ ð1:8Þ

This equation determines the position of the molecules, but the velocity term

arises on the right-hand side, so that another equation is necessary for specifying
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the velocity. The first-order differential of the velocity is equal to the

acceleration:

viðt1 hÞ5 viðtÞ1
h

mi

f iðtÞ ð1:9Þ

In order to improve accuracy, the force term in Eq. (1.9) is slightly modified

and the following equation obtained:

viðt1 hÞ5 viðtÞ1
h

2mi

ðf iðtÞ1 f iðt1 hÞÞ ð1:10Þ

The scheme of using Eqs. (1.8) and (1.10) for determining the motion of molecules

is called the “velocity Verlet method” [14]. It is well known that the velocity Verlet

method is significantly superior in regard to the stability and accuracy of a simulation.

Consider another representative scheme. Noting that the first-order differential

of the position is the velocity and that of the velocity is the acceleration, the appli-

cation of the central difference approximation to these first-order differentials leads

to the following equations:

riðt1 hÞ5 riðtÞ1 hviðt1 h=2Þ ð1:11Þ

viðt1 h=2Þ5 viðt2 h=2Þ1 h

mi

f iðtÞ ð1:12Þ

The scheme of pursuing the positions and velocities of the molecules with

Eqs. (1.11) and (1.12) is called the “leapfrog method” [15]. This name arises from

the evaluation of the positions and forces, and then the velocities, by using time

steps in a leapfrog manner. This method is also a significantly superior scheme in

regard to stability and accuracy, comparable to the velocity Verlet method.

The MD method is applicable to both equilibrium and nonequilibrium physical

phenomena, which makes it a powerful computational tool that can be used to simu-

late many physical phenomena (if computing power is sufficient).

We show the main procedure for conducting the MD simulation using the veloc-

ity Verlet method in the following steps:

1. Specify the initial position and velocity of all molecules.

2. Calculate the forces acting on molecules.

3. Evaluate the positions of all molecules at the next time step from Eq. (1.8).

4. Evaluate the velocities of all molecules at the next time step from Eq. (1.10).

5. Repeat the procedures from step 2.

In the above procedure, the positions and velocities will be evaluated at every

time interval h in the MD simulation. The method of specifying the initial positions

and velocities will be shown in Chapter 2.

Finally, we show the method of evaluating the system averages, which are

necessary to make a comparison with experimental or theoretical values. Since
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microscopic quantities such as positions and velocities are evaluated at every time

interval in MD simulations, a quantity evaluated from such microscopic values—

for example, the pressure—will differ from that measured experimentally. In order

to compare with experimental data, instant pressure is sampled at each time step,

and these values are averaged during a short sampling time to yield a macroscopic

pressure. This average can be expressed as

A5
XN
n51

An=N ð1:13Þ

in which An is the nth sampled value of an arbitrary physical quantity A, and A,

called the “time average,” is the mathematical average of N sampling data.

1.1.2 Nonspherical Particle Systems

1.1.2.1 Case of Taking into Account the Inertia Terms

For the case of nonspherical particles, we need to consider the translational motion

of the center of mass of a particle and also the rotational motion about an axis

through the center of mass. Axisymmetric particles are very useful as a particle

model for simulations, so we will focus on the axisymmetric particle model in this

section. As shown in Figure 1.1, the important rotational motion is to be treated

about the short axis line. If the particle mass is denoted by m, the inertia moment

by I, the position and velocity vectors of the center of mass of particle i by ri and

vi, respectively, the angular velocity vector about the short axis by ωi, and the force

and torque acting on the particle by fi and Ti, respectively, then the equations of

motion concerning the translational and rotational motion can be written as

(A)

ωz

φz
Δφz

e

x

y

z

(B)

(T )
ω

Figure 1.1 Linear particle and angular velocity: (A) the axisymmetric particle and (B) the

coordinate system.
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m
d2ri

dt2
5 f i ð1:14Þ

I
dωi

dt
5Ti ð1:15Þ

Since the translational velocity vi is related to the position vector ri as vi5 dri/dt,

we now consider the meaning of a quantity φi, which is related to the angular

velocity ωi as ωi5 dφi/dt. It is assumed that during a short time interval Δt, φi

changes into (φi1Δφi) where Δφi is expressed as Δφi5 (Δφix, Δφiy, Δφiz). As
shown in Figure 1.1B, ωz is related to the rotational angle in the xy-plane about the

z-axis, Δφz. The other components have the same meanings, so that φi and ωi for

particle i can be related in the following expression:

Δφi 5φiðt1ΔtÞ2φiðtÞ5ΔtωiðtÞ ð1:16Þ

Is the use of the quantity φi, corresponding to ri, general? It seems to be more

direct and more intuitive to use the unit vector ei denoting the particle direction

rather than the quantity φi. The change in ei during an infinitesimal time interval,

Δei, can be written using the angular velocity ωi as

ΔeiðtÞ5 eiðt1ΔtÞ2 eiðtÞ5ΔtωiðtÞ3 eiðtÞ ð1:17Þ

From Eqs. (1.16) and (1.17), ei can be related to φi as

ΔeiðtÞ5ΔφiðtÞ3 eiðtÞ ð1:18Þ

Equation (1.17) leads to the governing equation specifying the change of the parti-

cle direction:

deiðtÞ
dt

5ωiðtÞ3 eiðtÞ ð1:19Þ

Hence, Eq. (1.15) for the angular velocity and Eq. (1.19) for the particle direction

govern the rotational motion of an axisymmetric particle.

In order to solve Eqs. (1.15) and (1.19) for the rotational motion on a computer,

these equations have to be translated into finite difference equations. To do so, as

already explained, the first- and second-order differentials have to be expressed as

algebraic expressions using the finite difference approximations based on Taylor

series expansions. General finite difference expressions are as follows:

dxðtÞ
dt

5
xðt1ΔtÞ2xðtÞ

Δt
1OðΔtÞ; dxðtÞ

dt
5

xðtÞ2 xðt2ΔtÞ
Δt

1OðΔtÞ

dxðtÞ
dt

5
xðt1ΔtÞ2xðt2ΔtÞ

2Δt
1OððΔtÞ2Þ

9>>>=
>>>;

ð1:20Þ
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d2xðtÞ
dt2

5
xðt1ΔtÞ22xðtÞ1 xðt2ΔtÞ

ðΔtÞ2 1OððΔtÞ2Þ ð1:21Þ

The simplest algorithm can be obtained using the forward finite difference

approximation in Eq. (1.20) as

eiðt1ΔtÞ5 eiðtÞ1ΔtωiðtÞ3 eiðtÞ
ωiðt1ΔtÞ5ωiðtÞ1Δt

TiðtÞ
I

9>=
>; ð1:22Þ

This algorithm is quite straightforward and understandable, but in practice does not

have sufficient accuracy, since the error of the forward finite difference approxima-

tion is of the order of Δt. In order to improve the accuracy, the following algorithm

has already been presented.

If the new vector function ui(t) such as ui (t)5ωi (t)3 ei (t) is introduced,

Eq. (1.19) can be written as

deiðtÞ
dt

5 uiðtÞ ð1:23Þ

By conducting the operator 3 e from the right side on the both sides of Eq. (1.15),

the following equation is obtained:

dωiðtÞ
dt

3 eiðtÞ5 1

I
TiðtÞ3 eiðtÞ ð1:24Þ

The left-hand side of this equation leads to

dωi

dt
3 ei 5

dðωi 3 eiÞ
dt

2ωi 3
dei

dt
5

dui

dt
2ωi 3 ui ð1:25Þ

By substituting this equation into Eq. (1.24), the following equation can be obtained:

duiðtÞ
dt

5
1

I
TiðtÞ3 eiðtÞ1ωiðtÞ3 uiðtÞ5

1

I
TiðtÞ3 eiðtÞ2 ωiðtÞ

�� ��2eiðtÞ
5

1

I
TiðtÞ3 eiðtÞ1λiðtÞeiðtÞ

ð1:26Þ

In the transformation from the first to the second expressions on the right-hand

side, we have used the identity a3 (b3 c)5 (a � c)b2 (a � b)c in evaluating

ω3 (ω3 e). The quantity λi (t) in the third expression has been introduced in order

to satisfy the following relationship:

eiUui 5 eiUðωi 3 eiÞ5 0 ð1:27Þ
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We have now completed the transformation of the variables from ei and ωi to ei
and ui for solving the rotational motion of particles.

According to the leapfrog algorithm [15], Eqs. (1.23) and (1.26) reduce to the

following algebraic equations:

eiðt1ΔtÞ5 eiðtÞ1Δtuiðt1Δt=2Þ ð1:28Þ

uiðt1Δt=2Þ5 uiðt2Δt=2Þ1Δt
TiðtÞ3 eiðtÞ

I
1ΔtλiðtÞeiðtÞ ð1:29Þ

Another equation is necessary for determining the value of λi (t). The velocity

ui(t) can be evaluated from the arithmetic average of ui(t1Δt/2) and ui(t1Δt/2),

and the expression is finally written using Eq. (1.29) as

uiðtÞ 5
uiðt1Δt=2Þ1 uiðt2Δt=2Þ

2

5 uiðt2Δt=2Þ1 Δt

2
U
TiðtÞ3 eiðtÞ

I
1

Δt

2
λiðtÞeiðtÞ

ð1:30Þ

Since ui(t) has to satisfy the orthogonality condition shown in Eq. (1.27), the sub-

stitution of Eq. (1.30) into Eq. (1.27) leads to the equation of λi(t) as

λiðtÞ5 2
2

Δt
UeiðtÞUuiðt2Δt=2Þ ð1:31Þ

In obtaining this expression, the identity a � (b3 a)5 0 has been used to evaluate

e � (T3 e).

Now all the equations have been derived for determining the rotational

motion of axisymmetric particles. With the value λi(t) in Eq. (1.31), ui at

(t1Δt/2) is first evaluated from Eq. (1.29), and then ei at (t1Δt) is obtained

from Eq. (1.28). This procedure shows that the solution of ui (t1Δt/2) gives

rise to the values of ei(t1Δt) and Ti(t1Δt), and these solutions lead to

ui(t1 3Δt/2), and so forth. This algorithm is therefore another example of a

leapfrog algorithm.

For the translational motion, the velocity Verlet algorithm may be used, and the

particle position ri(t1Δt) and velocity vi(t1Δt) can be evaluated as

riðt1ΔtÞ5 riðtÞ1ΔtviðtÞ1
ðΔtÞ2
2m

f iðtÞ

viðt1ΔtÞ5 viðtÞ1
Δt

2m

(
f iðtÞ1 f iðt1ΔtÞ

)
9>>>>=
>>>>;

ð1:32Þ
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These equations can be derived in a straightforward manner from the finite differ-

ence approximations in Eqs. (1.20) and (1.21).

We have shown all the equations for specifying the translational and rotational

motion of axisymmetric particles for the case of taking into account the inertia

terms. The main procedure for conducting the MD simulation is as follows:

1. Specify the initial configuration and velocity of the axisymmetric particles for the transla-

tional and rotational motion.

2. Calculate the forces and torques acting on particles.

3. Evaluate the positions and velocities of the translational motion at (t1Δt) from

Eq. (1.32).

4. Evaluate λi(t) (i5 1, 2, . . ., N) from Eq. (1.31).

5. Evaluate ui (i5 1, 2, . . ., N) at (t1Δt/2) from Eq. (1.29).

6. Evaluate the unit vectors ei ði5 1; 2; . . . ;NÞ at (t1Δt) from Eq. (1.28).

7. Advance one time step to repeat the procedures from step 2.

By following this procedure, the MD method for axisymmetric particles with

the inertia terms can simulate the positions and velocities, and the directions and

angular velocities, at every time interval Δt.

1.1.2.2 Case of Neglected Inertia Terms

When treating a colloidal dispersion or a polymeric solution, the Stokesian

dynamics and BD methods are usually employed as a microscopic or mesoscopic

analysis tool. In these methods, dispersed particles or polymers are modeled as

idealized spherical or dumbbell particles, but the base liquid is usually assumed

to be a continuum medium and its effect is included in the equations of motion

of the particles or the polymers only as friction terms. If particle size approxi-

mates to or is smaller than micron-order, the inertia terms may be considered as

negligible. In this section, we treat this type of small particles and neglect the

inertia terms. For the case of axisymmetric particles moving in a quiescent fluid,

the translational and angular velocities of particle i, vi and ωi, are written as

vi 5
1

η
1

XA
eiei 1

1

YA
ðI2 eieiÞ

� �
UFi ð1:33Þ

ωi 5
1

η
1

XC
eiei 1

1

YC
ðI2 eieiÞ

� �
UTi ð1:34Þ

in which XA, YA, XC, and YC are the resistance functions specifying the particle

shape. If the long- and short-axis lengths are denoted by 2a and 2b, respectively,

and the eccentricity is denoted by s (5(a22 b2)1/2/a), the resistance functions for

the spheroidal particle are written as [16�18]

XA 5 6πaU
8

3
U

s3

22s1 ð11 s2ÞL ; YA 5 6πaU
16

3
U

s3

2s1 ð3s2 2 1ÞL ð1:35Þ
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XC 5 8πa3U
4

3
U

s3ð12 s2Þ
2s2 ð12 s2ÞL ; YC 5 8πa3U

4

3
U

s3ð22 s2Þ
22s1 ð11 s2ÞL ð1:36Þ

in which L is a function of the eccentricity and is expressed as

L5 LðsÞ5 ln
11 s

12 s
ð1:37Þ

For the case of s{1, Eqs. (1.35) and (1.36) are approximated using Taylor series

expansions as

XA 5 6πa
�
12

2

5
s2 1?

�
; YA 5 6πa

�
12

3

10
s2 1?

�
ð1:38Þ

XC 5 8πa3
�
12

6

5
s2 1?

�
; YC 5 8πa3

�
12

9

10
s2 1?

�
ð1:39Þ

In the limit of s-0, the well-known Stokes drag formula for a spherical particle

in a quiescent fluid can be obtained from Eqs. (1.33), (1.34), (1.38), and (1.39):

vi 5
1

6πηa
Fi; ωi 5

1

8πηa3
Ti ð1:40Þ

It is possible to pursue the motion of an axisymmetric particle using Eqs. (1.33)

and (1.34), but further simplified equations can be used for the present axisymmet-

ric particle. For an axisymmetric particle, the translational motion can be decom-

posed into the motion in the long axis direction and that in a direction normal to

the particle axis. Similarly, the rotational motion can be decomposed into the rota-

tion about the particle axis and that about a line normal to the particle axis through

the mass center. If the force Fi acting on the particle is expressed as the sum of the

force Fjj
i parallel to the particle axis and the force Fi

\ normal to that axis, then

these forces can be expressed using the particle direction vector ei as

Fjj
i 5 eiðeiUFiÞ5 eieiUFi; F\

i 5Fi 2Fjj
i 5 ðI2 eieiÞUFi ð1:41Þ

With these expressions, the velocities vjji and vi
\ parallel and normal to the particle

axis, respectively, can be written from Eq. (1.33) as

vjji 5
1

ηXA
Fjj
i ; v\i 5

1

ηYA
F\
i ð1:42Þ
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Similarly, the angular velocities ωjj
i and ω\

i about the long and short axes, respec-

tively, are written from Eq. (1.34) as

ωjj
i 5

1

ηXC
Tjj
i ; ω\

i 5
1

ηYC
T\
i ð1:43Þ

According to Eqs. (1.42) and (1.43), vjji , v
\
i , ω

jj
i ; and ω\

i can be evaluated from

values of Fjj
i , F

\
i , T

jj
i ; and T\

i . The translational velocity vi and angular velocity ωi

are then obtained as

vi 5 vjji 1 v\i ; ωi 5ωjj
i 1ω\

i ð1:44Þ

With the solutions of the translational and angular velocities at the time step t

shown in Eq. (1.44), the position vector ri and the particle direction vector ei at the
next time step (t1Δt) can finally be obtained as

riðt1ΔtÞ5 riðtÞ1ΔtviðtÞ ð1:45Þ

eiðt1ΔtÞ5 eiðtÞ1ΔtωiðtÞ3 eiðtÞ ð1:46Þ

Lastly, we show the main procedure for the simulation in the following steps:

1. Specify the initial configuration and velocity of all axisymmetric particles for the transla-

tional and rotational motion.

2. Calculate all the forces and torques acting on particles.

3. Evaluate Fjj
i ; F

\
i ; T

jj
i ; and T\

i (i5 1, 2, . . ., N) from Eq. (1.41) and similar equations for

the torques.

4. Calculate vjji ; v
\
i ; ω

jj
i ; and ω\

i (i5 1, 2, . . ., N) from Eqs. (1.42) and (1.43).

5. Calculate vi and ωi (i5 1, 2, . . ., N) from Eq. (1.44).

6. Calculate ri and ei (i5 1, 2, . . ., N) at the next time step (t1Δt) from Eqs. (1.45) and

(1.46).

7. Advance one time step and repeat the procedures from step 2.

1.2 Monte Carlo Method

In the MD method, the motion of molecules (particles) is simulated according to

the equations of motion and therefore it is applicable to both thermodynamic equi-

librium and nonequilibrium phenomena. In contrast, the MC method generates a

series of microscopic states under a certain stochastic law, irrespective of the equa-

tions of motion of particles. Since the MC method does not use the equations of

motion, it cannot include the concept of explicit time, and thus is only a simulation

technique for phenomena in thermodynamic equilibrium. Hence, it is unsuitable for

the MC method to deal with the dynamic properties of a system, which are depen-

dent on time. In the following paragraphs, we explain important points of the con-

cept of the MC method.
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How do microscopic states arise for thermodynamic equilibrium in a practical

situation? We discuss this problem by considering a two-particle attractive system

using Figure 1.2. As shown in Figure 1.2A, if the two particles overlap, then a

repulsive force or a significant interaction energy arises. As shown in Figure 1.2B,

for the case of close proximity, the interaction energy becomes low and an attrac-

tive force acts on the particles. If the two particles are sufficiently distant, as shown

in Figure 1.2C, the interactive force is negligible and the interaction energy can be

regarded as zero. In actual phenomena, microscopic states which induce a signifi-

cantly high energy, as shown in Figure 1.2A, seldom appear, but microscopic states

which give rise to a low-energy system, as shown in Figure 1.2B, frequently arise.

However, this does not mean that only microscopic states that induce a minimum-

energy system appear. Consider the fact that oxygen and nitrogen molecules do not

gather in a limited area, but distribute uniformly in a room. It is seen from this dis-

cussion that, for thermodynamic equilibrium, microscopic states do not give rise to

a minimum of the total system energy, but to a minimum free energy of a system.

For example, in the case of a system specified by the number of particles N, tem-

perature T, and volume of the system V, microscopic states arise such that the fol-

lowing Helmholtz free energy F becomes a minimum:

F5E2 TS ð1:47Þ

in which E is the potential energy of the system, and S is the entropy. In the pre-

ceding example, the reason why oxygen or nitrogen molecules do not gather in a

limited area can be explained by taking into account the entropy term on the

right-hand side in Eq. (1.47). That is, the situation in which molecules do not

gather together and form flocks but expand to fill a room gives rise to a large

value of the entropy. Hence, according to the counterbalance relationship of the

energy and the entropy, real microscopic states arise such that the free energy of a

system is at minimum.

Next, we consider how microscopic states arise stochastically. We here treat a

system composed of N interacting spherical particles with temperature T and vol-

ume V of the system; these quantities are given values and assumed to be constant.

If the position vector of an arbitrary particle i (i5 1, 2, . . ., N) is denoted by ri,

then the total interaction energy U of the system can be expressed as a function of

the particle positions; that is, it can be expressed as U5U(r1, r2,. . .,rN). For the
present system specified by given values of N, T, and V, the appearance of a

microscopic state that the particle i (i5 1, 2, . . ., N) exits within the small range

(A) Overlapping (B) Close proximity (C) Sufficiently distant

Figure 1.2 Typical energy situations for a two particle system.
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of ri B (ri1Δri) is governed by the probability density function ρ(r1, r2,. . .,rN).
This can be expressed from statistical mechanics [19,20] as

ρðr1; r2; . . . ; rNÞ5
expf2Uðr1; r2; . . . ; rNÞ=kTgÐ

V
. . .
Ð
V
expf2Uðr1; r2; . . . ; rNÞ=kTgdr1 dr2 . . . drN

ð1:48Þ

If a series of microscopic states is generated with an occurrence according to

this probability, a simulation may have physical meaning. However, this approach

is impracticable, as it is extraordinarily difficult and almost impossible to evaluate

analytically the definite integral of the denominator in Eq. (1.48). In fact, if we

were able to evaluate this integral term analytically, we would not need a computer

simulation because it would be possible to evaluate almost all physical quantities

analytically.

The “Metropolis method” [21] overcomes this difficulty for MC simulations. In

the Metropolis method, the transition probability from microscopic states i to j, pij,

is expressed as

pij 5

1 ðfor ρj=ρi $ 1Þ
ρj
ρi

ðfor ρj=ρi , 1Þ

8<
: ð1:49Þ

in which ρj and ρi are the probability density functions for microscopic states j and

i appearing, respectively. The ratio of ρj/ρi is obtained from Eq. (1.48) as

ρj
ρi

5 exp 2
1

kT
ðUj 2UiÞ

8<
:

9=
;

5 exp 2
1

kT
Uðr1j; r2j; . . . ; rNjÞ2Uðr1i; r2i; . . . ; rNiÞ� �2

4
3
5

ð1:50Þ

In the above equations, Ui and Uj are the interaction energies of microscopic

states i and j, respectively. The superscripts attached to the position vectors denote

the same meanings concerning microscopic states. Eq. (1.49) implies that, in the

transition from microscopic states i to j, new microscopic state j is adopted if the

system energy decreases, with the probability ρj/ρi (,1) if the energy increases. As

clearly demonstrated by Eq. (1.50), for ρj/ρi the denominator in Eq. (1.48) is not

required in Eq. (1.50), because ρj is divided by ρi and the term is canceled through

this operation. This is the main reason for the great success of the Metropolis

method for MC simulations. That a new microscopic state is adopted with the prob-

ability ρj/ρi, even in the case of the increase in the interaction energy, verifies the

accomplishment of the minimum free-energy condition for the system. In other

words, the adoption of microscopic states, yielding an increase in the system

energy, corresponds to an increase in the entropy.
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The above discussion is directly applicable to a system composed of nonspheri-

cal particles. The situation of nonspherical particles in thermodynamic equilibrium

can be specified by the particle position of the mass center, ri(i5 1, 2, . . ., N), and
the unit vector ei(i5 1, 2, . . ., N) denoting the particle direction. The transition

probability from microscopic states i to j, pij can be written in similar form to

Eq. (1.49). The exact expression of ρj/ρi becomes

ρj
ρi

5 exp 2
1

kT
ðUj2UiÞ

8<
:

9=
;5exp 2

1

kT

(
Uðr j

1 ; r
j
2 ; r

j
N ; e

j
1 ; e

j
2 ; . . . ; e

j
NÞ

2
4

2Uðr j
1 ; r

j
2 ; r

j
N ; e

j
1 ; e

j
2 ; . . . ; e

j
NÞ
�#

ð1:51Þ

The main procedure for the MC simulation of a nonspherical particle system is

as follows:

1. Specify the initial position and direction of all particles.

2. Regard this state as microscopic state i, and calculate the interaction energy Ui.

3. Choose an arbitrary particle in order or randomly and call this particle “particle α.”
4. Make particle α move translationally using random numbers and calculate the interaction

energy Uj for this new configuration.

5. Adopt this new microscopic state for the case of Uj#Ui and go to step 7.

6. Calculate ρj/ρi in Eq. (1.51) for the case of Uj.Ui and take a random number R1 from a

uniform random number sequence distributed from zero to unity.

6.1. If R1# ρj/ρi, adopt this microscopic state j and go to step 7.

6.2. If R1. ρj/ρi, reject this microscopic state, regard previous state i as new microscopic

state j, and go to step 7.

7. Change the direction of particle α using random numbers and calculate the interaction

energy Uk for this new state.

8. If Uk#Uj, adopt this new microscopic state and repeat from step 2.

9. If Uk.Uj, calculate ρk/ρj in Eq. (1.51) and take a random number R2 from the uniform

random number sequence.

9.1. If R2# ρk/ρj, adopt this new microscopic state k and repeat from step 2.

9.2. If R2. ρk/ρj, reject this new state, regard previous state j as new microscopic state k,

and repeat from step 2.

Although the treatment of the translational and rotational changes is carried out

separately in the above algorithm, a simultaneous procedure is also possible in

such a way that the position and direction of an arbitrary particle are simulta-

neously changed, and the new microscopic state is adopted according to the condi-

tion in Eq. (1.49). However, for a strongly interacting system, the separate

treatment may be found to be more effective in many cases.

We will now briefly explain how the translational move is made using ran-

dom numbers during a simulation. If the position vector of an arbitrary particle

α in microscopic state i is denoted by rα5 (xα, yα, zα), this particle is moved

to a new position rα
0 5 (xα

0 , yα
0 , zα

0 ) by the following equations using random
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numbers R1, R2, and R3, taken from a random number sequence ranged from

zero to unity:

xα
0 5 xα 1R1δrmax

yα
0 5 yα 1R2δrmax

zα
0 5 zα 1R3δrmax

9=
; ð1:52Þ

These equations imply that the particle is moved to an arbitrary position, deter-

mined by random numbers, within a cube centered at the particle center with side

length of 2δrmax. A series of microscopic states is generated by moving the parti-

cles according to the above-mentioned procedure.

Finally, we show the method of evaluating the average of a physical quantity in

MC simulations. These averages, called “ensemble averages,” are different from

the time averages that are obtained from MD simulations. If a physical quantity A

is a function of the microscopic states of a system, and An is the nth sampled value

of this quantity in an MC simulation, then the ensemble average hAi can be evalu-

ated from the equation

hAi5
XM
n51

An=M ð1:53Þ

in which M is the total sampling number. In actual simulations, the sampling proce-

dure is not conducted at each time step but at regular intervals. This may be more

efficient because if the data have significant correlations they are less likely to be

sampled by taking a longer interval for the sampling time. The ensemble averages

obtained in this way may be compared with experimental data.

1.3 Brownian Dynamics Method

A dispersion or suspension composed of fine particles dispersed in a base liquid is a

difficult case to be treated by simulations in terms of the MD method, because the

characteristic time of the motion of the solvent molecules is considerably different

from that of the dispersed particles. Simply speaking, if we observe such a disper-

sion based on the characteristic time of the solvent molecules, we can see only

the active motion of solvent molecules around the quiescent dispersed particles.

Clearly the MD method is quite unrealistic as a simulation technique for particle

dispersions. One approach to overcome this difficulty is to not focus on the motion

of each solvent molecule, but regard the solvent molecules as a continuum medium

and consider the motion of dispersed particles in such a medium. In this approach,

the influence of the solvent molecules is included into the equations of motion of

the particles as random forces. We can observe such random motion when pollen

moves at a liquid surface or when dispersed particles move in a functional fluid such

as a ferrofluid. The BD method simulates the random motion of dispersed particles
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that is induced by the solvent molecules; thus, such particles are called “Brownian

particles.”

If a particle dispersion is so significantly dilute that each particle can be

regarded as moving independently, the motion of this Brownian particle is gov-

erned by the following Langevin equation [22]:

m
dv

dt
5 f2 ξv1 fB ð1:54Þ

This equation is valid for a spherical particle dispersion. In Eq. (1.54), m is the

mass of a spherical particle, v is the velocity vector, ξ is the friction coefficient and

is expressed as ξ5 3πηd for the particle diameter d with the viscosity η of a base

liquid, f is the force exerted by an external field, and fB (5( fx
B, fy

B, fz
B)) is the ran-

dom force due to the motion of solvent molecules. This random force has the fol-

lowing stochastic properties:

f Bx ðtÞ
	 


5 f By ðtÞ
D E

5 f Bz ðtÞ
	 


5 0 ð1:55Þ

f Bx ðtÞ
� �2D E

5 f By ðtÞ
n o2
� �

5 f Bz ðtÞ
� �2D E

5 2ξkTδðt2 t0Þ ð1:56Þ

in which δ(t2 t0) is the Dirac delta function. In Eq. (1.56) larger random forces act

on Brownian particles at a higher temperature because the mean square average of

each component of the random force is in proportion to the system temperature. At

a higher temperature the solvent molecules move more actively and induce larger

random forces.

In order to simulate the Brownian motion of particles, the basic equation in

Eq. (1.54) has to be transformed into an algebraic equation, as in the MD method.

If the time interval h is sufficiently short such that the change in the forces is negli-

gible, Eq. (1.54) can be regarded as a simple first-order differential equation.

Hence, Eq. (1.54) can be solved by standard textbook methods of differential equa-

tions [23], and algebraic equations can finally be obtained as

rðt1 hÞ5 rðtÞ1 m

ξ
vðtÞ 12 exp 2

ξ
m
h

� �� �

1
1

ξ
fðtÞ h2

m

ξ
12 exp 2

ξ
m
h

� �� �� �
1ΔrB

ð1:57Þ

vðt1 hÞ5 vðtÞexp 2
ξ
m
h

� �
1

1

ξ
fðtÞ 12 exp 2

ξ
m
h

� �� �
1ΔvB ð1:58Þ

in which ΔrB and ΔvB are a random displacement and velocity due to the motion

of solvent molecules. The relationship of the x-components of ΔrB and ΔvB can
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be expressed as a two-dimensional normal distribution (similarly for the other com-

ponents). We do not show such an expression here [4], but instead consider a

method that is superior in regard to the extension of the BD method to the case

with multibody hydrodynamic interactions. The BD method based on Eqs. (1.57)

and (1.58) is applicable to physical phenomena in which the inertia term is a gov-

erning factor.

Since the BD method with multibody hydrodynamic interactions among the par-

ticles is very complicated, we here focus on an alternative method that treats the

friction forces between the particles and a base liquid, and the nonhydrodynamic

interactions between the particles. This simpler type of simulation method is some-

times used as a first-order approximation because of the complexity of treating

hydrodynamic interactions. A representative nonhydrodynamic force is the mag-

netic force influencing the magnetic particles in a ferrofluid.

Although the BD method based on the Ermak�McCammon analysis [24] takes

into account multibody hydrodynamic interactions among particles, we apply this

analysis method to the present dilute dispersion without hydrodynamic interactions,

and can derive the basic equation of the position vector ri(i5 1, 2,. . ., N) of

Brownian particle i as

riðt1 hÞ5 riðtÞ1
1

ξ
hf iðtÞ1ΔrBi ð1:59Þ

in which the components (ΔxBi ;ΔyBi ;ΔzBi ) of the random displacement ΔrBi have

to satisfy the following stochastic properties:

ΔxBi
	 


5 ΔyBi
	 


5 ΔzBi
	 


5 0 ð1:60Þ

ΔxBi
 �2D E

5 ΔyBi
 �2D E

5 ΔzBi
 �2D E

5
2kT

ξ
h ð1:61Þ

Equations similar to Eq. (1.59) hold for every particle in the system. Interactions

among particles arise through the force fi(i5 1, 2,. . ., N) acting on them.

If a Brownian particle exhibits magnetic properties and has, for example, a mag-

netic dipole moment at the particle center, it will have a tendency to incline in the

direction of an applied magnetic field. Hence, even in the case of spherical parti-

cles, the rotational motion is influenced by an external field, so that both the trans-

lational and the rotational motion of a particle are treated simultaneously in

simulations.

If the unit vector of the particle direction is denoted by ni, the equation of the

change in ni can be derived under the same conditions assumed in deriving

Eq. (1.59) as

niðt1 hÞ5 niðtÞ1
1

ξR
hTiðtÞ3 niðtÞ1ΔnBi ð1:62Þ
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in which ξR is the friction coefficient of the rotational motion, expressed as

ξR5πηd3, and Ti is the torque acting on particle i by nonhydrodynamic forces.

Also, ΔnBi is the rotational displacement due to random forces, expressed as

ΔnBi 5ΔφB
\1n\1 1ΔφB

\2n\2 ð1:63Þ

in which n\1 and n\2 are a set of unit vectors normal to the direction of particle i,

and ΔφB
\1 and ΔφB

\2 have the following stochastic properties:

ΔφB
\1

	 

5 ΔφB

\2

	 

5 0 ð1:64Þ

ΔφB
\1

 �2D E
5 ΔφB

\2

 �2D E
5

2kT

ξR
h ð1:65Þ

Now consider the correspondence of quantities in the translational and rotational

motion. The velocity vi in the translational motion corresponds to the angular

velocity ωi in the rotational motion, and the position vector ri corresponds to the

quantity φi defined as dφi/dt5ωi. Obviously, due to the similarity of Eqs. (1.64)

and (1.65) to Eqs. (1.60) and (1.61), the components ΔφB
\1 and ΔφB

\2 of the vector

ΔφB have to satisfy Eqs. (1.64) and (1.65).

The basic Eqs. (1.59) and (1.62) for governing the translational and rotational

motion of particles have been derived under the assumptions that the momentum of

particles is sufficiently relaxed during the time interval h and that the force acting on

the particles is substantially constant during this infinitesimally short time. This is

the essence of the Ermak�McCammon method for BD simulations.

Next, we show the method of generating random displacements according to

Eqs. (1.60) and (1.61), but, before that, the normal probability distribution needs to

be briefly described. If the behavior of a stochastic variable is described by the nor-

mal distribution ρnormal(x) with variance σ2, ρnormal(x) is written as

ρnormalðxÞ5
1

ð2πσ2Þ1=2
expð2 x2=2σ2Þ ð1:66Þ

in which the variance σ2 is a measure of how wide the stochastic variable x is dis-

tributed around the mean value hxi, which is taken as zero for this discussion. The

variance σ2 is mathematically defined as

σ2 5 hðx2 hxiÞ2i5 hx2i2 ðhxiÞ2 ð1:67Þ

If Eq. (1.66) is applied to Eqs. (1.60) and (1.61), the random displacement ΔxBi
in the x-direction can be written in normal distribution form as

ρnormalðΔxBi Þ5
ξ

4πkTh

� �1=2

exp 2
ξ

4kTh
ΔxBi
 �2� �

ð1:68Þ
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The other components also obey a normal distribution. As seen in Eq. (1.68),

larger random displacements tend to arise at a higher system temperature, which

makes sense given that solvent molecules move more actively in the higher temper-

ature case. The random displacements can therefore be generated by sampling

according to the normal distributions shown in Eq. (1.68). An example of generat-

ing random displacements is shown in Appendix A2.

The main procedure for conducting the BD simulation based on Eqs. (1.59),

(1.60), and (1.61) is:

1. Specify the initial position of all particles.

2. Calculate the forces acting on each particle.

3. Generate the random displacements ΔrBi 5 (ΔxBi , ΔyBi , ΔzBi ) (i5 1, 2,. . ., N) using

uniform random numbers: for example, ΔxBi is sampled according to Eq. (1.68).

4. Calculate all the particle positions at the next time step from Eq. (1.59).

5. Return to step 2 and repeat.

The physical quantities of interest are evaluated by the time average, similar to

the molecular dynamics method.

1.4 Dissipative Particle Dynamics Method

As already pointed out, it is not realistic to use the MD method to simulate the

motion of solvent molecules and dispersed particles simultaneously, since the char-

acteristic time of solvent molecules is much shorter than that of dispersed particles.

Hence, in the BD method, the motion of solvent molecules is not treated, but a fluid

is regarded as a continuum medium. The influence of the molecular motion is com-

bined into the equations of motion of dispersed particles as stochastic random forces.

Are there any simulation methods to simulate the motion of both the solvent mole-

cules and the dispersed particles? As far as we treat the motion of real solvent mole-

cules, the development of such simulation methods may be impractical. However, if

groups or clusters of solvent molecules are regarded as virtual fluid particles, such

that the characteristic time of the motion of such fluid particles is not so different

from that of dispersed particles, then it is possible to simulate the motion of the dis-

persed and the fluid particles simultaneously. These virtual fluid particles are

expected to exchange their momentum, exhibit a random motion similar to

Brownian particles, and interact with each other by particle�particle potentials. We

call these virtual fluid particles “dissipative particles,” and the simulation technique

of treating the motion of dissipative particles instead of the solvent molecules is

called the “dissipative particle dynamics (DPD) method” [4�8].

The DPD method is principally applicable to simulations of colloidal dispersions

that take into account the multibody hydrodynamic interactions among particles.

For colloidal dispersions, the combination of the flow field solutions for a three- or

four-particle system into a simulation technique enables us to address the physical

situation of multibody hydrodynamic interactions as accurately as possible.

However, it is extraordinarily difficult to solve analytically the flow field even for
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a three-particle system, so a solution for a nonspherical particle system is futile to

attempt. In contrast, the DPD method does not require this type of solution of the

flow field in conducting simulations of colloidal dispersions that take into account

multibody hydrodynamic effects. This is because they are automatically reproduced

from consideration of the interactions between the dissipative and the colloidal par-

ticles. This approach to the hydrodynamic interactions is a great advantage of the

DPD method. In addition, this method is applicable to nonspherical particle disper-

sions, and a good simulation technique for colloidal dispersions.

We will show the general categories of models employed in the modeling of a

fluid for numerical simulations before proceeding to the explanation of the DPD

method. Figure 1.3 schematically shows the classification of the modeling of a fluid.

Figure 1.3A shows a continuum medium model for a fluid. In this case, a solution of

a flow field can be obtained by solving the Navier�Stokes equations, which are the

governing equations of the motion of a fluid. Figure 1.3C shows a microscopic

model in which the solvent molecules are treated and a solution of the flow field can

be obtained by pursuing the motion of the solvent molecules: this is the MD

approach. Figure 1.3B shows a mesoscopic model in which a fluid is assumed to be

composed of virtual fluid particles: the DPD method is classified within this

category.

In the following paragraphs, we discuss the equations of motion of the dissipa-

tive particles for a system composed of dissipative particles alone, without colloidal

Figure 1.3 Modeling of a fluid: (A) the macroscopic model, (B) the mesoscopic model, and

(C) the microscopic model.
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particles. For simplification’s sake, dissipative particles are simply called “parti-

cles” unless specifically identified.

In order that the solution of a flow field obtained from the particle motion

agrees with that of the Navier�Stokes equations, the equations of motion of the

particles have to be formalized in physically viable form. For example, as a physi-

cal restriction on the system behavior, the total momentum of a system should be

conserved. The forces acting on particle i possibly seem to be a conservative force

Fij
C, exerted by other particles (particle j in this case); a dissipative force Fij

D, due to

the exchange of momentum; and a random force Fij
R, inducing the random motion

of particles. With the particle mass m and the particle velocity vi, the equation of

motion can be written as

m
dvi

dt
5
X
jð6¼iÞ

FC
ij 1

X
jð6¼iÞ

FD
ij 1

X
jð6¼iÞ

FR
ij ð1:69Þ

The subscripts in Eq. (1.69), for example in Fij
C, represent the force acting on

particle i by particle j. Now, we embody specific expressions for each force. Since

Fij
C is a conservative force between particles i and j, it is assumed to be dependent

on the relative position rij (5ri2 rj) alone, not on velocities. This specific expres-

sion will be shown later. Fij
D and Fij

R have to be conserved under a Galilean trans-

formation (refer to a textbook of mechanics); thus, they must be independent of ri
and vi in a given reference frame (quantities dependent on ri and vi are not con-

served), but should be functions of the relative position vector rij and relative

velocity vector vij (5vi2 vj). Furthermore, it is physically reasonable to assume

that Fij
R is dependent only on the relative position rij, and not on the relative veloc-

ity vij. We also have to take into account that the particle motion is isotropic and

the forces between particles decrease with the particle�particle separation. The

following expressions for Fij
D and Fij

R satisfy all the above-mentioned requirements:

FD
ij 5 2γwDðrijÞðeijUvijÞeij ð1:70Þ

FR
ij 5σwRðrijÞeijζ ij ð1:71Þ

in which rij5 jrijj, and eij is the unit vector denoting the direction of a line drawn

from particles j to i, expressed as eij5 rij/rij. The ζ ij is the stochastic variable induc-
ing the random motion of particles and has the following characteristics:

hζ iji5 0; hζ ijðtÞζ i0j0 ðt0Þi5 ðδii0δjj0 1 δij0δji0 Þδðt2 t0Þ ð1:72Þ

in which δij is the Kronecker delta, and δij5 1 for i5 j and δij5 0 for the other

cases. Since this variable satisfies the equation of ζ ij5 ζ ji, the total momentum of a

system is conserved. The wD(rij) and wR(rij) are weighting functions representing

the characteristics of forces decreasing with the particle�particle separation, and γ
and σ are constants specifying the strengths of the corresponding forces. As shown
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later, these constants are related to the system temperature and friction coefficients.

The Fij
D acts such that the relative motion of particles i and j relaxes, and Fij

R func-

tions such that the thermal motion is activated. Since the action�reaction law is

satisfied by Fij
R, the conservation of the total momentum is not violated by Fij

R.

By substituting Eqs. (1.70) and (1.71) into Eq. (1.69), the equation of motion of

particles can be written as

m
dvi

dt
5
X
jð6¼iÞ

FC
ij ðrijÞ2

X
jð6¼iÞ

γwDðrijÞðeijUvijÞeij 1
X
jð6¼iÞ

σwRðrijÞeijζ ij ð1:73Þ

The integral of this equation with respect to the time from t to (t1Δt) leads to

the finite difference equations specifying the motion of the simulation particles:

Δri 5 viΔt ð1:74Þ

Δvi 5
1

m

X
jð6¼iÞ

FC
ij ðrijÞ2

X
jð6¼iÞ

γwDðrijÞðeijUvijÞeij
 !

Δt1
1

m

X
jð6¼iÞ

σwRðrijÞeijΔWij

ð1:75Þ

The ΔWij has to satisfy the following stochastic properties, which can be

obtained from Eq. (1.72):

hΔWiji5 0

hΔWijΔWi0j0 i5 ðδii0δjj0 1 δij0δji0 ÞΔt

�
ð1:76Þ

If a new stochastic variable θij is introduced from ΔWij5 θij(Δt)1/2, the third term

in Eq. (1.75) can be written as

1

m

X
jð6¼iÞ

σwRðrijÞeijθij
ffiffiffiffiffiffi
Δt

p
ð1:77Þ

in which θij has to satisfy the following stochastic characteristics:

hθiji5 0

hθijθi0j0 i5 ðδii0δjj0 1 δij0δji0 Þ
�

ð1:78Þ

In simulations, values of the stochastic variable are sampled from a normal dis-

tribution with zero-mean value and unit variance or from a uniform distribution.

The constants γ and σ and the weighting functions wD(rij) and wR(rij), which

appeared in Eq. (1.75), must satisfy the following relationships:

wDðrijÞ5w2
RðrijÞ

σ2 5 2γkT

�
ð1:79Þ
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The second equation is called the “fluctuation�dissipation theorem.” These rela-

tionships ensure a valid equilibrium distribution of particle velocities for thermody-

namic equilibrium.

Next, we show expressions for the conservative force Fij
C and the weighting func-

tion wR(rij). The Fij
C functions as a tool for preventing particles from significantly over-

lapping, so that the value of wR(rij) has to increase with particles i and j approaching

each other. Given this consideration, these expressions may be written as

FC
ij 5αwRðrijÞeij ð1:80Þ

wRðrijÞ5
12

rij

rc

0

for rij # rc
for rij . rc

8<
: ð1:81Þ

in which α is a constant representing the strength of a repulsive force. By substitut-

ing the above-mentioned expressions into Eq. (1.75) and taking into account

Eq. (1.77), the final expressions for the equations of motion of particles can be

obtained as

Δri 5 viΔt ð1:82Þ

Δvi 5
α
m

X
jð6¼iÞ

wRðrijÞeijΔt2
γ
m

X
jð6¼iÞ

w2
RðrijÞðeijUvijÞeijΔt

1
ð2γkTÞ1=2

m

X
jð6¼iÞ

wRðrijÞeijθij
ffiffiffiffiffiffi
Δt

p ð1:83Þ

As previously indicated, θij satisfies the stochastic characteristics in Eq. (1.78)

and is sampled from a normal distribution or from a uniform distribution. The DPD

dynamics method simulates the motion of the dissipative particles according to

Eqs. (1.82) and (1.83).

For actual simulations, we show the method of nondimensionalizing quantities.

The following representative values are used for nondimensionalization: (kT/m)1/2

for velocities, rc for distances, rc(m/kT)
1/2 for time, (1/rc

3) for number densities.

Using these representative values, Eqs. (1.82) and (1.83) are nondimensionalized as

Δr�i 5 v�i Δt� ð1:84Þ

Δv�i 5α�
X
jð6¼iÞ

wRðr�ijÞeijΔt� 2 γ�
X
jð6¼iÞ

w2
Rðr�ijÞðeijUv�ijÞeijΔt�

1 ð2γ�Þ1=2
X
jð6¼iÞ

wRðr�ijÞeijθij
ffiffiffiffiffiffiffiffi
Δt�

p ð1:85Þ

in which

wRðr�ijÞ5
12 r�ij
0

for r�ij # 1

for r�ij . 1

�
ð1:86Þ
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α� 5α
rc

kT
; γ� 5 γ

rc

ðmkTÞ1=2
ð1:87Þ

Nondimensionalized quantities are distinguished by the superscript *. As seen in

Eq. (1.85), the specification of the number density n*(5nrc
3) and the number N of

particles with appropriate values of α*, γ*, and Δt* enables us to conduct DPD

simulations. If we take into account that the time is nondimensionalized by the

representative time based on the average velocity v (�(kT/m)1/2) and distance rc, the

nondimensionalized time interval Δt* has to be taken as Δt*{1.

The above-mentioned equations of motion retain a flexibility and are determined

by our approach rather than the mathematical manipulation of certain basic key

equations. These equations of motion are the revised version of the original equa-

tions, which were derived in order that the velocity distribution function of the par-

ticles converges to an equilibrium distribution for thermodynamic equilibrium.

Hence, they are not the only valid equations of motion for the DPD method, and a

new equation of motion may be proposed in order to enable us to conduct more

accurate simulations.

The main procedure for conducting the DPD simulation is quite similar to the

one we employed for BD simulations, so it is unnecessary to repeat the details

here.

1.5 Lattice Boltzmann Method

Whether or not the lattice Boltzmann method is classified into the category of

molecular simulation methods may depend on the researcher, but this method is

expected to have a sufficient feasibility as a simulation technique for polymeric

liquids and particle dispersions. We will therefore treat it in detail in this book. In

the lattice Boltzmann method [4, 9�12], a fluid is assumed to be composed of vir-

tual fluid particles, and such fluid particles move and collide with other fluid parti-

cles in a simulation region. A simulation area is regarded as a lattice system, and

fluid particles move from site to site; that is, they do not move freely in a region.

The most significant difference of this method in relation to the MD method is that

the lattice Boltzmann method treats the particle distribution function of velocities

rather than the positions and the velocities of the fluid particles.

Figure 1.4 illustrates the lattice Boltzmann method for a two-dimensional sys-

tem. Figure 1.4A shows that a simulation region is divided into a lattice system.

Figure 1.4B is a magnification of a unit square lattice cell. Virtual fluid particles,

which are regarded as groups or clusters of solvent molecules, are permitted to

move only to their neighboring sites, not to other, more distant sites. That is, the

fluid particles at site 0 are permitted to stay there or to move to sites 1, 2,. . ., 8 at

the next time step. This implies that fluid particles for moving to sites 1, 2, 3, and

4 have the velocity c5 (Δx/Δt), and those for moving to sites 5, 6, 7, and 8 have
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the velocity
ffiffiffi
2

p
c, in which Δx is the lattice separation of the nearest two sites and

Δt is the time interval for simulations. Since the movement speeds of fluid parti-

cles are known as c or
ffiffiffi
2

p
c, macroscopic velocities of a fluid can be calculated by

evaluating the number of particles moving to each neighboring lattice site. In the

usual lattice Boltzmann method, we treat the particle distribution function, which is

defined as a quantity such that the above-mentioned number is divided by the vol-

ume and multiplied by the mass occupied by each lattice site. This is the concept

of the lattice Boltzmann method. The two-dimensional lattice model shown in

Figure 1.4 is called the “D2Q9” model because fluid particles have nine possibili-

ties of velocities, including the quiescent state (staying at the original site).

Next, we explain the basic equations of the particle distribution function and the

method of solving these equations. The detailed explanation will be shown in

Chapter 8; here we outline the essence of the method. The velocity vector for fluid

particles moving to their neighboring site is usually denoted by cα and, for the case

of the D2Q9 model, there are nine possibilities, such as c0, c1, c2,. . ., c8. For exam-

ple, the velocity of the movement in the left direction in Figure 1.4B is denoted by

c2, and c0 is zero vector for the quiescent state (c05 0). We consider the particle

distribution function fα(r,t) at the position r (at point 0 in Figure 1.4B) at time t in

the α-direction. Since fα(r,t) is equal to the number density of fluid particles mov-

ing in the α-direction, multiplied by the mass of a fluid particle, the summation of

the particle distribution function concerning all the directions (α5 0, 1,. . ., 8) leads
to the macroscopic density ρ(r,t):

ρðr; tÞ5
X8
α50

fαðr; tÞ ð1:88Þ

8

2

6 4

0 1

7

3 5

y

x

Δx

(A) (B)

Figure 1.4 Two-dimensional lattice model for the lattice Boltzmann method (D2Q9 model).
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Similarly, the macroscopic velocity u(r,t) can be evaluated from the following

relationship of the momentum per unit volume at the position r:

ρðr; tÞuðr; tÞ5
X8
α50

fαðr; tÞ cα ð1:89Þ

In Eqs. (1.88) and (1.89), the macroscopic density ρ(r,t) and velocity u(r,t) can

be evaluated if the particle distribution function is known. Since fluid particles col-

lide with the other fluid particles at each site, the rate of the number of particles

moving to their neighboring sites changes. In the rarefied gas dynamics, the well-

known Boltzmann equation is the basic equation specifying the velocity distribu-

tion function while taking into account the collision term due to the interactions of

gaseous molecules; this collision term is a complicated integral expression. The

Boltzmann equation is quite difficult to solve analytically, so an attempt has been

made to simplify the collision term. One such simplified model is the Bhatnagar-

Gross-Krook (BGK) collision model. It is well known that the BGK Boltzmann

method gives rise to reasonably accurate solutions, although this collision model is

expressed in quite simple form. We here show the lattice Boltzmann equation

based on the BGK model. According to this model, the particle distribution func-

tion fα(r1 cαΔt,t1Δt) in the α-direction at the position (r1 cαΔt) at time

(t1Δt) can be evaluated by the following equation:

fαðr1 cαΔt; t1ΔtÞ5 fαðr; tÞ1
1

τ
f ð0Þα ðr; tÞ2 fαðr; tÞ
� � ð1:90Þ

This equation is sometimes expressed in separate expressions indicating explicitly

the two different processes of collision and transformation:

fαðr1 cαΔt; t1ΔtÞ5 ~f αðr; tÞ
~f αðr; tÞ5 fαðr; tÞ1

1

τ
f ð0Þα ðr; tÞ2 fαðr; tÞ
� �

9>=
>; ð1:91Þ

in which τ is the relaxation time (dimensionless) and f ð0Þα is the equilibrium distri-

bution, expressed for the D2Q9 model as

f ð0Þα 5 ρ wα 11 3
cαUu
c2

2
3u2

2c2
1

9

2
U
ðcαUuÞ2

c4

� �
ð1:92Þ

wα 5
4=9 for α5 0

1=9 for α5 1; 2; 3; 4
1=36 for α5 5; 6; 7; 8

cαj j5
0 for α5 0

c for α5 1; 2; 3; 4ffiffiffiffiffi
2c

p
for α5 5; 6; 7; 8

8<
:

8<
:

ð1:93Þ
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In these equations ρ is the local density at the position of interest, u is the fluid

velocity (u5 juj), c5Δx/Δt, and wα is the weighting constant.

The important feature of the BGK model shown in Eq. (1.91) is that the particle

distribution function in the α-direction is independent of the other directions. The

particle distributions in the other directions indirectly influence fα(r1 cαΔt,t1Δt)

through the fluid velocity u and the density ρ. The second expression in Eq. (1.91)

implies that the particle distribution fα(r,t) at the position r changes into ~fαðr; tÞ
after the collision at the site at time t, and the first expression implies that
~fαðr; tÞ becomes the distribution fα(r1 cαΔt,t1Δt) at (r1 cαΔt) after the time

interval Δt.

The main procedure of the simulation is as follows:

1. Set appropriate fluid velocities and densities at each lattice site.

2. Calculate equilibrium particle densities fα
ð0Þ (α5 0, 1,. . ., 8) at each lattice site from

Eq. (1.92) and regard these distributions as the initial distributions, fα 5 fα
ð0Þ (α5 0, 1,. . ., 8).

3. Calculate the collision terms ~fαðr; tÞ (α5 0, 1,. . ., 8) at all sites from the second expres-

sion of Eq. (1.91).

4. Evaluate the distribution at the neighboring site in the α-direction fα(r1 cαΔt,t1Δt)

from the first expression in Eq. (1.91).

5. Calculate the macroscopic velocities and densities from Eqs. (1.88) and (1.89), and repeat

the procedures from step 3.

In addition to the above-mentioned procedures, we need to handle the treatment

at the boundaries of the simulation region. These procedures are relatively complex

and are explained in detail in Chapter 8. For example, the periodic boundary condi-

tion, which is usually used in MD simulations, may be applicable.

For the D3Q19 model shown in figure 8.3, which is applicable for three-dimen-

sional simulations, the equilibrium distribution function is written in the same

expression of Eq. (1.92), but the weighting constants are different from Eq. (1.93)

and are expressed in Eq. (8.69). The basic equations for fα(r1 cαΔt,t1Δt) are the

same as Eq. (1.90) or (1.91), and the above-mentioned simulation procedure is also

directly applicable to the D3Q19 model.
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2 Outline of Methodology of
Simulations

In order to develop a simulation program, it is necessary to have an overview of

the general methodology, which should include the assignment of the initial config-

uration and velocities, the treatment of boundary conditions, and techniques for

reducing computation time. An appropriate initial configuration has to be set with

careful consideration given to the physical property of interest, so that the essential

phenomena can be grasped. For example, if nonspherical molecules or particles are

known to incline in a preferred direction, there may be some advantages to using a

parallelepiped rectangular simulation region rather than a cubic one. The periodic

boundary condition is a representative model to manage the boundary of a simula-

tion region. It is almost always used for systems in thermodynamic equilibrium. On

the other hand, for investigating the dynamic properties of a system, the simple

shear flow is frequently treated and in this case the Lees�Edwards boundary condi-

tion is available. Techniques for reducing computation time become very important

in large-scale three-dimensional simulations, and methods of tracking particle

neighbors, such as the cell index method, are indispensable. The more important

methods frequently employed in simulations are described in this chapter.

2.1 Initial Positions

2.1.1 Spherical Particle Systems

Setting an initial configuration of particles is an indispensable procedure for both

MD and MC methods. Although it is possible to assign randomly the initial posi-

tion of particles in a simulation region, a regular configuration, such as a simple

cubic lattice or a face-centered cubic lattice, is handled in a more straightforward

manner. The random allocation suffers from the problem of the undesirable overlap

of particles and from possible difficulties in achieving high packing fractions.

Lattice assignments are almost free from the overlap problem and can achieve high

packing fractions. However, as will be shown later, the lattice packing may be too

perfect for some simulations, requiring the adjustment of a small random perturba-

tion. In the following paragraphs, we consider a system composed of spherical par-

ticles as an example to explain the method of setting the initial configuration in a

Introduction to Practice of Molecular Simulation. DOI: 10.1016/B978-0-12-385148-2.00002-1

© 2011 Elsevier Inc. All rights reserved.



 

regular lattice formation for a two-dimensional configuration. We then proceed to a

three-dimensional configuration.

Figure 2.1 shows several lattice systems that may be used to assign an initial

configuration for a two-dimensional system. A basic lattice form is expanded to fill

the whole simulation region, and the particles are then located at each lattice point.

Figure 2.1A, the simplest lattice model, may be suitable for a gaseous system.

However, even if the particle�particle distance a is equal to the particle diameter,

a high packing fraction cannot be obtained by using this simple lattice model.

Hence, it is inappropriate for the simulations of a liquid or solid system. Since there

is only one particle in the unit cell shown in Figure 2.1A, a system with total parti-

cle number N (5Q2) can be generated by replicating the unit cell (Q2 1) times in

each direction to make a square simulation region of side length L5Qa. So for the

use of this lattice system as the initial configuration, the particle number N has to

(A)

y y

y

a a

a

2a

3a√

a a
x

x

x

(B)

(C)

Figure 2.1 Initial conditions for a two-dimensional system.
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be taken from N5 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, and so on. The number den-

sity of particles n is given by n5N/L2, and the area fraction is given by φs5
π(d/2)2N/L2, where d is the particle diameter. In practice, the number of particles N

and the area fraction φs are first chosen; then the values of Q and L are evaluated,

from which the value of a can be determined. With these values, the initial configu-

ration of particles can be assigned according to the simple lattice system shown in

Figure 2.1A.

The lattice system shown in Figure 2.1B can yield a higher packing fraction and

therefore may be applicable for an initial configuration of a gaseous or liquid state,

but it has limited application to a solid state. Since there are two particles in the

unit cell of this lattice, a system with total particle number N5 2Q2 of particles can

be generated by replicating the unit cell (Q2 1) times in each direction. In this

case, the simulation region is also a square of side length L5Qa, and the possible

value of N is taken from 2, 8, 18, 32, 50, 72, 98, 128, 162, 200, and so on. The

number density of particles n is given by n5N/L2, and the area fraction φs

is given by φs5π(d/2)2N/L2. Figure 2.1C shows the most compact lattice for a

two-dimensional system. This lattice model may also be applicable to a solid sys-

tem. If the dark particles are assumed to constitute the unit lattice, it follows that

there are four particles in this unit lattice. Hence, by replicating the unit lattice

(Q2 1) times in each direction, the simulation region becomes a rectangle of side

lengths Lx5 31/2aQ and Ly5 2aQ, with a total number of particles N5 4Q2, where

the possible value of N is taken from 4, 16, 36, 64, 100, 144, 196, 256, 324, 400,

and so on. The particle number density n is given by n5N/LxLy, and the area

fraction φs is given by φs5π(d/2)2N/LxLy. The actual assignment of the above-

mentioned quantities for simulations is similar to that for Figure 2.1A.

Figure 2.2 shows several lattice models for a three-dimensional system.

Figure 2.2A is the simple cubic lattice model, which is suitable as an initial config-

uration mainly for a gaseous or liquid system. Since there is only one particle in

the unit cell, the number of particles in a system is given by N5Q3 by replicating

the unit cell (Q2 1) times in each direction. In this case the possible value

of N is taken from N5 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, and so on.

(A)

a a

(B)

Figure 2.2 Initial conditions for a three-dimensional system.
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The simulation region is a cube of side length L5Qa. The number density n and

the volumetric fraction φV are given by n5N/L3 and φV5 4π(d/2)3N/3L3, respec-
tively. The face-centered cubic lattice model shown in Figure 2.2B is one of the

close-packed lattices, and therefore may be applicable as an initial configuration of

a solid state. Since there are four particles in the unit cell, the total number of parti-

cles in the simulation region is given by N5 4Q3 by replicating the unit cell

(Q2 1) times in each direction. In this case, the total number of particles is taken

from N5 4, 32, 108, 256, 500, 864, 1372, and so on. The number density and the

volumetric fraction are given by n5N/L3 and φV5 4π(d/2)3N/3L3, respectively.
As in a two-dimensional system, for the actual assignment of the above-mentioned

quantities, the particle number N and the volumetric fraction φV are first chosen,

then Q and L are evaluated, and finally the lattice distance a is determined.

For a gaseous or liquid system, the simple lattice models shown in Figures 2.1A

and 2.2A are applicable in a straightforward manner for developing a simulation

program. In contrast, for the case of a solid system, the choice of an appropriate

lattice used for the initial configuration of particles is usually determined by the

known physical properties of the solid.

2.1.2 Nonspherical Particle Systems

The assignment of the initial configuration of particles for a spherical particle sys-

tem, explained in the previous subsection, is quite clear because only the center of

the particles needs to be considered. In this subsection we explain the method of

setting the initial configuration for a system composed of nonspherical particles,

using spherocylinders and disk-like particles as examples. For a nonspherical parti-

cle system, the orientation of the particles must be assigned in addition to their

position, so that the technique for setting the initial configuration is a little more

difficult than that for a spherical particle system. For this purpose, a versatile tech-

nique whereby a wide range of initial configurations can be assigned is desirable.

If particle�particle interactions are large enough to induce the cluster formation of

particles in a preferred direction, then an appropriately large initial configuration

has to be adopted in order for the simulation to capture such characteristic aggre-

gate structures.

We now consider the example of a system composed of spherocylinder particles

with a magnetic moment at the particle center normal to the long particle axis. The

spherocylinder is a cylinder with hemisphere caps at both the ends. An ensemble of

these particles can be expected to aggregate to form raft-like clusters with the mag-

netic moments inclining in the applied magnetic field direction. Hence, a simula-

tion region with sufficient length in the direction of the cluster formation has to be

taken in order for the simulation particles to aggregate in a reasonable manner. We

shall explain the technique for setting an initial configuration using Figure 2.3. The

spherocylinder can be characterized by the ratio of the particle length l to the diam-

eter d of the cylindrical part, known as the aspect ratio rp5 l/d. For the example

in Figure 2.3 where rp5 3, the particles are placed in contact with three and nine

rows in the x- and y-directions, respectively, leading to a configuration of 27
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particles in a square region in the xy-plane. Extending this configuration to 18

layers in the z-direction yields an initial configuration of spherocylinder particles

with a simulation region (Lx, Ly, Lz)5 (3rpd, 3rpd, 6rpd) with total number of parti-

cles N5 486; if four rows are arranged in the x-direction, then a simulation region

larger than the present case can be adopted with a simulation region (Lx, Ly, Lz)5
(4rpd, 4rpd, 8rpd).

If the particle�particle distances are expanded equally in each direction to yield

a desired volumetric fraction of particles φV, then this expanded system may be

used as an initial configuration for simulations. Such an expansion with a factor α
of particle�particle distances gives rise to the system volume V5 54rp

3d3α3. The

volumetric fraction φV is related to the system volume as φV5NVp/V, in which Vp

is the volume of a spherocylinder particle, expressed as Vp5 πd3(3rp2 1)/12. From

these expressions, the expansion ratio α can be obtained as

α5
1

rp

3πð3rp 2 1Þ
4φV

� �1=3
ð2:1Þ

This initial configuration is applicable for a system in which particles are

expected to aggregate in the direction of the particle short axis, as shown in

Figure 2.4A. If particles are expected to aggregate in the direction of the particle

long axis, as shown in Figure 2.4B, it is straightforward to follow a similar proce-

dure with the spherocylinder particles aligned in the z-direction in Figure 2.3.

(A)
x

x

z

z
y

y

(B)

Figure 2.3 Initial conditions for spherocylinder particles.
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We now consider the method of setting an initial configuration of a disk-like par-

ticle system, in which particles are assumed to aggregate in a direction parallel to

the disk plane surface, as shown in Figure 2.5B. Capturing such clusters in simula-

tions requires a simulation region with suitable dimensions. As in the previous case

of a spherocylinder particle system, a nearly close-packed configuration is first

arranged. We here consider disk-like particles with particle aspect ratio rp
(5 d1/b1)5 3, in which the diameter of the circumference and the thickness are

denoted by d1 and b1, respectively, as shown in Figure 4.12. If three and nine parti-

cles are arranged in the x- and y-directions, respectively, the subtotal number of

N5 27 particles can be located in the xy-plane, as shown in Figure 2.5A. Extending

this configuration with 12 layers in the z-direction leads to an initial configuration of

324 particles with particle�particle contact in the simulation region of (Lx, Ly, Lz)5
(3rpb1, 3rpb1, 12rpb1). By expanding particle�particle distances equally in each

direction by the expansion factor α, the volume of a system V becomes

V5 108rp
3b1

3α3. Given the volume of a disk-like particle, Vp5 (π/4)
b1
3(rp2 1)21 (π2/8)b1

3(rp2 1)1 (π/6)b1
3, the expansion factor α can be derived as

α5
1

2rp

π
φV

6ðrp 2 1Þ2 1 3πðrp 2 1Þ1 4
� �� �1=3

ð2:2Þ

In this derivation, the relationship of φV5NVp/V has been used.

The main procedure for setting the initial configuration is summarized as

follows:

1. Consider an appropriate initial configuration, with sufficient consideration given to the

physical phenomenon of interest.

2. Set a nearly close-packed situation as an initial configuration.

3. Calculate the total number of particles N.

4. Evaluate the expansion ratio α from Eq. (2.1) or Eq. (2.2) to give rise to the desired volu-

metric fraction φV.

5. Expand particle�particle distances equally by the factor α.

(A) Aggregation in the
 short axis direction

(B) Aggregation in the
 long axis direction

Figure 2.4 Aggregation for sphero-

cylinder particles.
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6. Perturb the particle positions by small distances using random numbers in order to

destroy the regularity of the initial configuration; otherwise, all particle�particle interac-

tions may be zero and therefore the particles may not move with time.

2.2 Initial Velocities

2.2.1 Spherical Particle Systems

In the MD method, the motion of particles is described by pursuing their position

and velocity over time, so these factors have to be specified as an initial condition.

If the system of interest is in thermodynamic equilibrium with temperature T, the

particle velocities are described by the following Maxwellian distribution [25]:

f ðviÞ5 m

2πkT

� �3=2
exp 2

m

2kT
v2ix 1 v2iy 1 v2iz

� 	n o
ð2:3Þ

in which k is Boltzmann’s constant, m is the mass of particles, and vi5 (vix, viy, viz)

is the velocity vector of particle i. Since the Maxwellian distribution f is the

y

y

z

(A) (B)

z

x
x

Figure 2.5 Initial conditions for disk-like particles.
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probability density distribution function, the probability of particle i being found in

the infinitesimal velocity range between vi and (vi1 dvi) becomes f(vi)dvi.

Characteristics of this function can be understood more straightforwardly by treat-

ing the distribution function fx as the x-velocity component. Figure 2.6 clearly

shows that a higher system temperature leads to an increase in the probability of

particles appearing with a larger velocity component vix. If we focus on the magni-

tude of the particle velocities instead of the velocity components, clearer discussion

concerning such characteristics becomes possible. The probability density distribu-

tion function χ(vi) for the speed vi5 (vix
21 viy

21 viz
2) of particle i can be derived

from Eq. (2.3) as

χðviÞ5 4π
m

2πkT

� �3=2
v2i exp 2

m

2kT
v2i

� 	
ð2:4Þ

This equation is derived, first, by a transformation from orthogonal to spherical

coordinates, that is, from (vix, viy, viz) to (vi, θ, φ) with the relationship of (vix, viy,

viz)5 (vi sin θ cos φ, vi sin θ sin φ, vi cos θ), and second, from the integral with

respect to θ and φ in the normalization equation of the Maxwellian distribution.

The integrand in the normalization equation after this integral is the distribution

function χ(vi). Figure 2.7 shows the distribution χ as a function of the particle

speed vi for several system temperatures. Figure 2.7 shows that the curve of χ has

a peak value position that moves further to the right with increasing value of the

temperature. That is, the percentage of particles with larger velocities increases

with the temperature. The particle speed vmp yielding the peak value of the distribu-

tion can be derived from Eq. (2.4) as vmp5 (2kT/m)1/2, which is called the “most

probable velocity.” This means that particles with speed vmp are likely to be the

most numerous in the system. Note that the most probable speed is larger for a

higher system temperature and a smaller mass.

For a given system temperature T, the initial velocities of particles for simula-

tions can be assigned according to the probability density function in Eq. (2.3) or

T = high

T = low

νix

fx

Figure 2.6 Velocity distributions in

equilibrium.
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Eq. (2.4). The detailed explanation is given in Appendix A2, so here we only show

the final technique. With six different uniform random numbers, R1, R2,. . ., R6, the

initial velocity components (vix, viy, viz) of particle i can be set as

vix 5 22
kT

m
ln R1

0
@

1
A
1=2

cosð2πR2Þ

viy 5 22
kT

m
ln R3

0
@

1
A
1=2

cosð2πR4Þ

viz 5 22
kT

m
ln R5

0
@

1
A
1=2

cosð2πR6Þ

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð2:5Þ

Note that each particle requires a new, that is, a different, set of random numbers.

The temperature which is evaluated from the initial particle velocities assigned

by the above-mentioned method is approximately equal to the desired system tem-

perature, but may not necessarily be satisfactory. Hence, an equilibration procedure

is usually necessary before starting the main loop in an actual simulation program.

This will be explained in the next subsection.

2.2.2 Nonspherical Particle Systems

For a nonspherical particle system, the initial angular velocities need to be assigned

in addition to the translational velocities. Similar to the translational velocity v5
(vx, vy, vz) discussed above, the angular velocity ω5 (ωx, ωy, ωz) is also governed

by the Maxwellian distribution fω(ω). The expression for fω(ω) is

fωðωÞ5
I

2πkT

� �3=2
exp 2

I

2kT
ω2
x 1ω2

y 1ω2
z

� 	
 �
ð2:6Þ

χ

T = low

T = high

νiνmpνmp
Figure 2.7 Particle speed distribu-

tions in equilibrium.
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in which I is the inertia moment of a particle. The characteristics of the exponential

function in Eq. (2.3) or Eq. (2.6) demonstrate that the probability of particles

appearing with larger translational and angular velocities increases with the system

temperature. Similar to vmp5 (2kT/m)1/2, ωmp5 (2kT/I)1/2 is the most probable

angular velocity to yield the maximum value of the Maxwellian distribution fω.

The method for setting the initial translational velocities using uniform random

numbers, explained in the previous subsection, is applicable to the present angular

velocity case. Here, m and (vix, viy, viz) in Eq. (2.5) are replaced by I and (ωix, ωiy,

ωiz); note that new uniform random numbers need to be used.

As already mentioned, an equilibration procedure may be necessary in order

to obtain the desired system temperature T. In the example of a liquid, the tem-

perature Tcal, which is calculated from averaging the assigned velocities of parti-

cles, may differ significantly from the desired system temperature T. This may be

due to the energy exchange between the kinetic and the potential energies.

Hence, an equilibration procedure is frequently necessary before starting the main

loop in a simulation program. The temperatures calculated from the translational

and angular velocities of particles are denoted by T
ðtÞ
cal and T

ðrÞ
cal; respectively, and

written as

T
ðtÞ
cal 5

1

3N

XN
i51

mv2i
k

; T
ðrÞ
cal 5

1

3N

XN
i51

Iω2
i

k
ð2:7Þ

in which N is the total number of particles, assumed to be Nc1. T
ðtÞ
cal and T

ðrÞ
cal; cal-

culated from vi and ωi (i5 1, 2,. . ., N), are generally not equal to the desired tem-

perature T. The equilibration procedure adjusts these temperatures to T during the

simulation by using the method of scaling the translational and angular velocities

of each particle. If T
ðtÞave
cal and T

ðrÞave
cal denote the averaged values of T

ðtÞ
cal and T

ðrÞ
cal taken,

for example, over 50 time steps, then the scaling factors c
ðtÞ
0 and c

ðrÞ
0 are determined as

c
ðtÞ
0 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=T ðtÞave

cal

q
; c

ðrÞ
0 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=T ðrÞave

cal

q
ð2:8Þ

With the scaling factors determined, the translational and angular velocities of all

particles in a system are scaled as

vi
0
5 c

ðtÞ
0 vi ; ωi

0
5 c

ðrÞ
0 ωi ði5 1; 2; . . . ;NÞ ð2:9Þ

This treatment yields the desired system temperature T. In this example the

scaling procedure would be conducted at every 50 time steps, but in practice an

appropriate time interval must be adopted for each simulation case. The above-

mentioned equilibration procedure is repeated to give rise to the desired system

temperature with sufficient accuracy. (Note that if a system has a macroscopic

velocity, i.e., if it is not in a quiescent state, the scaling procedure has to be

slightly modified.)
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2.3 Reduction Methods of Computation Time

2.3.1 Cutoff Distance

Computation time is an important factor for successfully obtaining reasonable

results from molecular simulations. In some cases, due to an excessive restriction

of the required computation time, only a small or two-dimensional system is able

to be treated. The most time-consuming procedure is the calculation of interaction

energies between particles in the MC method and that of forces and torques in the

MD method. Even with the action�reaction law taken into account, the N(N2 1)/2

calculations of energies or forces are necessary per unit time step (or unit MC step)

for an N-particle system. Therefore, if it is possible to restrict the pairs of particles

for the calculation, the computation time may significantly decrease. Fortunately,

many particle�particle potentials are of short-range order, so that the potential

energy between particles rapidly decreases with the particle�particle separation

over a distance only several times the particle diameter. Therefore we may be able

to treat only interactions within this range. Although magnetic or electrostatic

forces are of long-range order, the above-mentioned concept is applicable to these

interactions if the criterion separation between particles is taken to be of sufficient

length.

2.3.1.1 Spherical Particle Systems

An important concept in simulation methodology is that a significant limitation on

the computation of interaction energies or forces between particles leads to an

extraordinary reduction of the simulation time. To understand this concept, we con-

sider the interaction energies between particles or potential curves. For example,

the Lennard-Jones potential ULJ is expressed as

ULJ 5 4ε
σ
r

� 	12

2
σ
r

� 	6

 �

ð2:10Þ

This potential is usually used as a model potential for rare gases such as Ar

molecule; σ is the quantity corresponding to the particle diameter, and r is the

separation between particles (molecules). Figure 2.8 shows the curve of the

Lennard-Jones potential, in which ULJ and r are nondimensionalized by ε and σ.
Figure 2.8 illustrates a steep potential barrier in the range of r & σ, which induces

such a significant repulsive interaction that particles are prevented from signifi-

cantly overlapping, and an attractive interaction in the range of r * σ, which

rapidly decreases to zero. These characteristics of the potential curve indicate that

the interaction energy after a distance of approximately r5 3σ can be assumed to

be negligible. Hence, particle interaction energies or forces do not need to be calcu-

lated in the range of r. 3σ in actual simulations. The distance for cutting off the

calculation of energies or forces is known as the cutoff distance or cutoff radius,

denoted by rcoff in this book.
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2.3.1.2 Nonspherical Particle Systems

The above cutoff procedure is directly applicable to a nonspherical particle system

using the cutoff radius rcoff based on the particle center-to-center distance. That is,

the calculation of energies or forces is unnecessary for rij$ rcoff in simulations. For

example, this applies to the case of rod-like particles that have a magnetic dipole

moment at their particle center, as shown in Figure 2.9A. Unfortunately, the

method is not suitable for the case of rod-like particles with plus and minus (NS)

magnetic charges at the centers of hemisphere caps, as shown in Figure 2.9B. For

this case, the most direct criterion is to calculate the distance between each pair of

magnetic charges of the two interacting spherocylinder particles and compare this

separation with a suitable cutoff radius rcoff. This will require the distances of the

four pairs of magnetic charges to be calculated. However, with prior knowledge of

the arrangement of the two spherocylinder particles, it is possible to determine cer-

tain cases where we may know, without calculating the distances for all the four

pairs of charges, that there are only two pairs of the distances satisfying the rela-

tionship of rij# rcoff. Referring to Figure 2.10, if the center-to-center distance

between particles i and j is denoted by rij and the distance between the magnetic

charges in the particle is denoted by l, then the following three cases have to be

considered for this assessment:

1. For rij$ rcoff1 l

No interactions.

2. For rcoff1 l. rij. rcoff
A possibility of two pairs of interactions at the most.

3. For rij# rcoff
A possibility of all four pairs of interactions.

Figure 2.10A corresponds to case 1, in which the distance for any pair is beyond

the cutoff radius. Figure 2.10B corresponds to case 2, in which there is a possibility

of a certain magnetic charge interacting with both the magnetic charges in the other

0 1 2 3 4
–2

–1

0

1

2

3

4

6

U
LJ

/ε

√2σ r/σ Figure 2.8 Lennard-Jones potential.
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particle within the cutoff radius. Figure 2.10C corresponds to case 3, in which the

two particles are proximate enough to give rise to a possibility of four pairs of

magnetic charges being within the cutoff range. Hence, if case 1 holds, the calcula-

tion of energies or forces between particles is unnecessary, and for case 2, if two

pairs of magnetic charges are found to be within the cutoff range, the further calcu-

lation of energies or forces is unnecessary.

Finally, it should be noted that the introduction of the cutoff radius by itself

does not necessarily lead to a significant reduction in the computational time, since

the N(N2 1)/2 calculations have to be conducted in order to evaluate the distances

between particles. Hence, the following cell index method, or the Verlet neighbor

list method, is used with the cutoff method to accomplish a significant reduction in

the computation time.

2.3.2 Cell Index Method

If in some way we had already determined the names of the particles within the

cutoff range from each particle, the calculation of the particle�particle distances

for all pairs of particles at each time step would be unnecessary. Several meth-

ods have been developed for grasping such particle names. We first explain

the cell index method [27,28] in this subsection. In order for the reader to

understand the method straightforwardly, we treat a two-dimensional system

composed of the spherocylinder particles shown in Figure 2.9A. With reference

(A) No interactions (C) Possibility of four pairs
 of interactions

(B) Possibility of two pairs of
 interactions

Figure 2.10 Check for interactions in the criterion of the particle distance rij.

(A) The model with a magnetic
 dipole at the center

(B) The model with magnetic charges at the 
 centers of both the hemisphere caps

Figure 2.9 Treatment of the cutoff distance for different rod-like particle models.
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to Figure 2.11, the simulation region with dimensions of (Lx, Ly) is divided into

(Qx, Qy) equal parts in each direction (Qx5Qy5 6) in order to divide the whole

region into small cells. Each cell has the dimensions of (Lx/Qx, Ly/Qy), in which

(Qx, Qy) are maximized to satisfy the relationships Lx/Qx$ rcoff and Ly/

Qy$ rcoff. Since each side of a small cell is longer than the cutoff distance rcoff,

the particles locating, for example, in the 15th cell in Figure 2.11, have a possi-

bility to interact with those in their own cell 15 and those belonging to the

neighboring cells, that is, in the 8th, 9th, 10th, 14th, 16th, 20th, 21st, and 22nd

cells. Particles in other cells are beyond the cutoff area, so they are not used to

calculate the distances between particles. Each cell needs to memorize the

names of the particles which belong to it. As shown in Figure 2.11, the cell

index method provides a significant reduction in the computation time for large

values of (Qx, Qy). For the case of the particles shown in Figure 2.9B, the

method is simply applied if the values of (Qx, Qy) are adopted in such a way to

satisfy the relationships of Lx/Qx$ rcoff1 l and Ly/Qy$ rcoff1 l.

2.3.3 Verlet Neighbor List Method

In the Verlet neighbor list method [29], a distance rl, which is longer than the cut-

off radius, is adopted, and each particle grasps the names of the particles within

range of rl from its center. Referring to Figure 2.12, it is clear that particles

within range of r, rcoff are certainly within range of r, rl. Hence, if the list of

particles within range of r, rl is renewed with such frequency that the particles

outside the range of r5 rl cannot attain to the cutoff area, then it is sufficient to

calculate the distances between the particle of interest and its neighboring parti-

cles being within range of r# rl. If rl is sufficiently short compared with the

dimensions of a simulation region, and the information concerning the names of

the neighboring particles is renewed, for example, at every 10 time steps, then a

significant reduction in the computation time can be expected. The Verlet neigh-

bor list method is applicable to the MD method as well as to the MC method.

Note that the cutoff distance is usually taken as rcoff, L/2 (L is the side length of

a simulation region).

31 32 33 34 35 36

25 26 27 28 29 30

19 20 21 22 23 24

13
Ly

Lx

14 15 16 17 18

7 8 9 10 11 12

1 2 3 4 5 6
Figure 2.11 Cell index method for grasping neighboring

particles.
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2.4 Boundary Conditions

2.4.1 Periodic Boundary Condition

Fortunately, a system of one-mol-order size, being composed of about 63 1023 par-

ticles, never needs to be directly treated in molecular simulations for thermody-

namic equilibrium (actually, it is impossible). The use of the periodic boundary

condition, explained below, enables us to treat only a relatively small system of

about 100�10,000 particles in order to obtain such reasonable results as to explain

the corresponding experimental data accurately.

Figure 2.13 schematically illustrates the concept of the periodic boundary condition

for a two-dimensional system composed of spherocylinder particles. The central

square is a simulation region and the surrounding squares are virtual simulation boxes,

which are made by replicating the main simulation box. As Figure 2.13 shows, the ori-

gin of the xy-coordinate system is taken at the center of the simulation region, and the

dimensions of the simulation region in the x- and y-directions are denoted by Lx and

Ly. The two specific procedures are necessary in treating the periodic boundary condi-

tion, that is, first the treatment of outgoing particles crossing the boundary surfaces of

the simulation region and second the calculation of interaction energies or forces with

virtual particles being in the replicated simulation boxes.

As shown in Figure 2.13, a particle crossing and exiting the left boundary sur-

face has to enter from the right virtual box. This treatment can be expressed using

the FORTRAN language as

IF(RXI.GE.LX/2.D0) THEN

RXI5RXI2LX

ELSE IF(RXI.LT.2LX/2.D0) THEN

RXI5RXI1LX

END IF

rl

rcoff

Figure 2.12 Verlet neighbor list method.
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The rounding-up function DNINT can yield a simple one-line expression as

RXI5RXI2DNINT(RXI/LX)*LX

Note that the position of particle i is denoted by (RXI, RYI). Similar procedures

have to be conducted for the case of the y- and z-directions.

When the interaction energy or force of particle i with other particles, for exam-

ple, particle j, is calculated, an appropriate particle j has to be chosen as an object

from real and virtual particles j. This may be done in such a way that the distance

between particle i and particle j is minimal. This treatment can be expressed using

the FORTRAN language as

IF(RXIJ.GT.LX/2.D0) THEN

RXIJ5RXIJ2LX

ELSE IF (RXIJ.LT.2LX/2.D0) THEN

RXIJ5RXIJ1LX

END IF

The rounding-up function DNINT gives rise to a simple one-line expression as

RXIJ5RXIJ2DNINT(RXIJ/LX)*LX

in which RXIJ5RXI2RXJ, expressing the relative position of particles i to j.

Similar procedures have to be conducted for the y- and z-directions. The above-

mentioned procedures are applicable directly to a system composed of rod-like par-

ticles, such as that shown in Figure 2.9A, in which the interaction energies or

forces are dependent only on the particle center-to-center distance. If we treat the

pairs of magnetic charges instead of particle center-to-center interactions, the

Ly

Lx

y

x

Figure 2.13 Periodic boundary

condition.
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above-mentioned procedures are also applicable, but in this case RXIJ and similar

variables have to be taken as the distances between magnetic charges.

2.4.2 Lees�Edwards Boundary Condition

The periodic boundary condition is quite useful for molecular simulations of a sys-

tem in thermodynamic equilibrium, but is this boundary condition still available for

nonequilibrium situations? In treating the dynamic properties of a system in non-

equilibrium, the most basic and important flow is a simple shear flow, as shown in

Figure 2.14. The velocity profile, linearly varying from 2U at the lower surface to

U at the upper one, can be generated by sliding the lower and upper walls in the

left and right directions with the velocity U, respectively. This flow field is called

the “simple shear flow.” In generating such a simple shear flow in actual molecular

simulations, the upper and lower replicated simulation boxes, shown in

Figure 2.13, are made to slide in different directions with a certain constant speed.

This sliding periodic boundary condition is called the “Lees�Edwards boundary

condition” [30]. Figure 2.15 schematically depicts the concept of this boundary

condition; the replicated boxes in the upper and lower layers slide in each direction

by the distance ΔX. If particles move out of the simulation box by crossing the

boundary surface normal to the x-axis, as shown in Figure 2.15, they are made to

come into the simulation box through the opposite boundary surface, which is

exactly the same procedure as the periodic boundary condition. The important

treatment in the Lees�Edwards boundary condition concerns the particles crossing

the boundary surfaces normal to the y-axis. The same treatment of the periodic

boundary condition is applied to the y-coordinate of such particles, but the

x-coordinate should be shifted from x to (x2ΔX) in the case of Figure 2.15. In

addition, the x-component vx of these particles needs to be modified to (vx2U),

but the y-component vy can be used without modification. The above-mentioned

procedures concerning x and vx can be expressed using the FORTRAN language as

IF (RYI.GE.LY/2.D0) THEN

RXI5RXI2DX

RXI5RXI2DNINT(RXI/LX)*LX

VXI5VXI2U

ELSE (RYI.LT.2LY/2.D0) THEN

RXI5RXI1DX

RXI5RXI2DNINT(RXI/LX)*LX

VXI5VXI1U

END IF

A slightly simplified expression can be written as

CORY5DNINT(RYI/LY)

RXI5RXI2CORY*DX

RXI5RXI2DNINT(RXI/LX)*LX

VXI5VXI2CORY*U

45Outline of Methodology of Simulations



 

The y- and z-coordinates are treated as in the periodic boundary condition, and the

modification of vy and vz is unnecessary.

For the case of evaluating interaction energies or forces, the similar procedures

have to be conducted for the particles interacting with virtual particles which are in

the replicated simulation boxes in the upper or lower layers. This treatment can be

expressed using the FORTRAN language as

IF (RYJI.GE.LY/2.D0) THEN

RYJI5RYJI2LY

RXJI5RXJI2DX

RXJI5RXJI2DNINT(RXJI/LX)*LX

ELSE IF (RYJI.LT.2LY/2.D0) THEN

y

x

Lx

ΔX

Figure 2.15 Lees�Edwards boundary condition.

U

U Figure 2.14 Simple shear flow.
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RYJI5RYJI1LY

RXJI5RXJI1DX

RXJI5RXJI2DNINT(RXJI/LX)*LX

END IF

A slightly simplified expression can be written as

CORY5DNINT(RYJI/LY)

RYJI5RYJI2CORY*LY

RXJI5RXJI2CORY*DX

RXJI5RXJI2DNINT(RXJI/LX)*LX

The relative position RZJI in the z-direction is treated according to the periodic

boundary condition.

The above-mentioned procedures are valid for the particle model shown in

Figure 2.9A and also apply to the model shown in Figure 2.9B by focusing on the

interactions between magnetic charges instead of the particle centers.
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3 Practice of Molecular Dynamics
Simulations

In the present and subsequent chapters, we consider examples of physical phenom-

ena in order to explain a series of important procedures employed in conducting

molecular simulations. In particular, we discuss the formalization of a problem and

the method for nondimensionalizing quantities, and we make several analyses

indispensable for developing a simulation program. These techniques are demon-

strated in a sample simulation program with explanatory remarks included to

clarify important features.

In this chapter, we consider two different physical phenomena as examples for

the practice of molecular dynamics simulations. The first example discusses a diffu-

sion problem with two kinds of molecules initially immersed in a small region in

thermodynamic equilibrium. The simulation then follows the particle diffusion after

the wall surrounding the region has been removed. For this case the Verlet algorithm

is used for simulating the particle motion. The second example discusses the prob-

lem of the behavior of axisymmetric particles (spherocylinders in this case) in a sim-

ple shear flow. This case is an example of a more advanced type of molecular

dynamics (MD) simulation where the translational and rotational motion of the parti-

cles is simulated simultaneously; therefore this exercise is considerably more

advanced. The techniques demonstrated in this example are fundamental to many

practical applications and may offer many valuable suggestions in developing a sim-

ulation program for systems such as DNA or polymer solutions.

3.1 Diffusion Phenomena in a System of Light and
Heavy Molecules

In this section we demonstrate a MD simulation employing only the translational

motion of spherical molecules. A spherical molecule system is a basic form

employed in molecular simulations, and the diffusion problem in this system is a

useful example because almost all the important methodology for developing a

simulation program is included in this exercise. A system composed of two kinds

of molecules has been chosen because the extra complexity renders the example

more useful and practical.
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3.1.1 Physical Phenomena of Interest

The two kinds of molecules, that is, the NA light molecules with mass m and NB

heavy molecules with mass M, are placed in a two-dimensional square cell with

side length L in equilibrium with temperature T. Both kinds of molecules have the

same diameter σ, and the interaction between molecules is assumed to be expressed

by the Lennard-Jones potential. At the moment the wall surrounding the square

retaining cell is removed, these molecules start to diffuse into the larger surround-

ing area. In this example, we will consider how this physical phenomenon depends

on the system temperature and the mass ratio.

3.1.2 Specification of Problems in Equations

The starting point for the formalization of a problem is the development of the

governing equation—in this case, the equation of motion of the molecules. The

equation of motion of an arbitrary light molecule i and arbitrary heavy molecule

j are written from Newton’s equation of motion, respectively, as

m
d2ri

dt2
5 f i 5

XN
p51

f ip ð3:1Þ

M
d2rj

dt2
5 f j 5

XN
p51

f jp ð3:2Þ

in which N5NA1NB, fip is the force exerted by molecule p on molecule i, and fi
is the total force acting on molecule i from all the other molecules irrespective of

the type of molecule. This notation is similarly applicable to a heavy molecule j.

The force acting between molecules can be derived from the Lennard-Jones poten-

tial. With the aid of the basic formulae of vector analysis, the force f is derived

from a potential U as

f5 2rU5 2 i
@U

@x
1 j

@U

@y
1 k

@U

@z

� �
ð3:3Þ

The notation r on the right-hand side is the nabla operator, which is defined

by the last expression on the right-hand side, and (i, j, k) are the unit vectors

in the (x, y, z) directions, respectively. Equation (3.3) implies that the force acts

in the direction of the interaction energy decreasing at the maximum. By substi-

tuting Eq. (2.10) into Eq. (3.3), the force fqp exerted by molecule p on molecule

q can be derived as

fqp 5 24ε 2
σ
rqp

� �12
2

σ
rqp

� �6
( )

rqp

r2qp
ð3:4Þ
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in which rqp is the relative position vector of molecule q to molecule p, expressed

as rqp5 rq2 rp, and rqp5 jrqpj.
In practice, simulations usually treat a nondimensional system, in which the

governing equations and all physical quantities are nondimensionalized by certain

representative values. Therefore, in the following paragraphs, we show the method

of nondimensionalizing the equations.

For a Lennard-Jones system, the following representative values are generally

used for nondimensionalizing quantities: σ for distances, ε for energies, (ε/m)1/2 for
velocities, σ(m/ε)1/2 for time, ε/σ for forces, ε/k for temperatures, 1/σ3 for number

densities, and m/σ3 for densities. Nondimensional quantities are expressed as the

original quantities with superscript *. Each quantity is expressed as a nondimen-

sional quantity multiplied by the corresponding representative value. The substitu-

tion of these quantities into the original dimensional equation yields the desired

nondimensional equation. These procedures give rise to the nondimensional form

of Eqs. (3.1) and (3.2) expressed, respectively, as

d2r�i
dt�2

5 f�i 5
XN
p51

f�ip ð3:5Þ

K
d2r�j
dt�2

5 f�j 5
XN
p51

f�jp ð3:6Þ

in which the force is nondimensionalized from Eq. (3.4) as

f�qp 5 24 2
1

r�qp

 !12

2
1

r�qp

 !6
8<
:

9=
; r�qp

ðr�qpÞ2
ð3:7Þ

The parameter K, appearing in Eq. (3.6), is a nondimensional parameter expressing

the mass ratio K5M/m, which arises due to the mass m being used as the represen-

tative mass. As in this example, it is usual for several additional nondimensional

parameters to arise when equations and quantities are nondimensionalized. In order

to compare the simulation with experimental results, appropriate values of these

nondimensional parameters need to be adopted.

3.1.3 Verlet Algorithm

In this example we employ the Verlet algorithm in order to simulate the motion

of the molecules. Referring to Eq. (1.6), the algebraic equations according to

the Verlet algorithm can be expressed concerning a light molecule i and heavy

molecule j as

r�i ðt� 1 h�Þ5 2r�i ðt�Þ2 r�i ðt� 2 h�Þ1 h�2f�i ðt�Þ ð3:8Þ
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r�j ðt� 1 h�Þ5 2r�j ðt�Þ2 r�j ðt� 2 h�Þ1 h�2

K
f�j ðt�Þ ð3:9Þ

As these equations indicate, in order to execute a simulation program, the

Verlet algorithm needs the information of all the molecular positions at t*5 0 and

the first time step t*5 h*. If the initial positions and velocities of molecules and the

system temperature T are assigned at t*5 0, then the molecular positions at t*5 h*

may be evaluated from Eqs. (3.10) and (3.11).

For the given values of the molecular position r�i ð0Þ and velocity v�i ð0Þ at t*5 0,

the position r�i ðh�Þ at t*5 h* can be evaluated from Eq. (1.8) as

r�i ðh�Þ5 r�i ð0Þ1 h�v�i ð0Þ1
h�2

2
f�i ð0Þ ð3:10Þ

Similarly, the equation for a heavy molecule j can be obtained as

r�j ðh�Þ5 r�j ð0Þ1 h�v�j ð0Þ1
h�2

2K
f�j ð0Þ ð3:11Þ

Hence, if the initial position and velocity at t*5 0 are assigned, the position at

the next time step can be evaluated from Eqs. (3.10) and (3.11), and the simulation

can commence according to Eqs. (3.8) and (3.9).

3.1.4 Parameters for Simulations

In addition to the above assignment of the initial positions and velocities, it is

necessary to assign the number of molecules N, the system temperature T*, and the

mass ratio K. Setting these parameters corresponds to the specification of the physi-

cal system of interest. Moreover, an appropriate time interval h* and the total num-

ber of time steps needed for one simulation run must also be carefully specified in

order to conduct a simulation successfully without serious problems, such as a

system divergence. Additionally, other specifications may be necessary to assist the

postprocessing analysis and visualization. For example, in making an animation, it

may be necessary to write out various types of data at specific time steps.

The initial positions are usually assigned by a method employing uniform ran-

dom numbers. The Maxwellian distribution function, which is the velocity distribu-

tion for thermodynamic equilibrium, can be written in nondimensional form for a

two-dimensional system from Eq. (2.3) as

f �ðv�j Þ5
K

2πT�

� �
exp 2

K

2T� ðv�2jx 1 v�2jy Þ
� �

ð3:12Þ

This equation is for a heavy molecule j, but it also holds for a light molecule i

by replacing subscript i and K by j and unity, respectively. The method of assigning
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the initial velocities according to this normal distribution function is explained

in Appendix A2. Since the number of degrees of freedom for a two-dimensional

system is different from that for a three-dimensional system, the relationship

between the average velocity and the specified temperature has a slightly different

expression from that in Eq. (2.7). If the square mean velocities of a light molecule i

and heavy molecule j are denoted by v�2i and v�2j ; respectively, these quantities are

related to the system temperature by

T� 5
v�2i
2

5K
v�2j
2

ð3:13Þ

The number of light molecules NA is taken to be equal to that of heavy molecules

NB where NA5NB5 20 in this exercise. Note that in practice a personal computer

can easily handle a much larger system, such as NA5 1000 or 10,000. Generally

speaking, it is desirable to run a set of simulations where each parameter is given at

least three different values in order to grasp how it may influence the simulation

results. If there are many parameters governing a phenomenon, it is advisable that

important parameters are taken in several different cases, with a typical value set

assigned to the other parameters. In the present exercise, therefore, the temperature

T* and mass ratio K are taken as T*5 1.5, 5, and 10, and K5 2, 5, and 10, respec-

tively. The number density n*(5nσ2) is taken only for the single case of n*5 0.1.

Finally, we discuss an appropriate value for the time interval, which has to be

carefully determined because it has a significant influence on both the accuracy of

the results and the stability of a simulation. If the mean speed of molecule i is

assumed to be equal to the root mean square of velocity, the mean distance of

travel for the translational motion during the time interval h is expected as hðv2i Þ1=2.
This distance is required to be much shorter than the characteristic distance of

the Lennard-Jones potential. Referring to Figure 2.8, this can be expressed mathe-

matically as

hðv2i Þ1=2{0:13σ ð3:14Þ

Using Eq. (3.13) and expressing the average velocity as a function of T*, it follows

that Eq. (3.14) can be written in nondimensional form as

h�{0:1=
ffiffiffiffiffiffiffiffi
2T�

p
ð3:15Þ

As is clearly shown in Eq. (3.15), a shorter time interval is required for a higher

temperature; for example, h* is taken as h*5 0.005, 0.001, and 0.0005 for T*5 1,

5, and 10, respectively. Unless the time interval is sufficiently short, molecules will

have a tendency to overlap in a manner that is physically unreasonable, which will

induce divergence of the system. After determining an appropriate value of the

time interval, one can determine the length of a simulation run, that is, the total

number of time steps. For example, if T* and h* are adopted as T*5 10 and
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h*5 0.0005, the mean travel distance of molecules per unit time step h*(2T*)1/2 is

approximately equal to 0.002. Hence, if the total number of time steps is set to be

50,000, the paths of the molecules will be of sufficient length to examine the diffu-

sion phenomenon.

3.1.5 Results of Simulations

We show some results of the snapshots of molecules in Figures 3.1 and 3.2, which

were obtained by conducting the simulation program that is shown in the next sub-

section. The figures were obtained for a molecular mass ratio of K5 2 and 10,

respectively. Each figure shows two snapshots at t*5 8 for the two cases of the

temperature T*5 1.5 and 5. These figures clearly show that both species of mole-

cules move more actively and diffuse further in the higher-temperature case. If the

snapshots for the same temperature are compared, the diffusion of heavy molecules

is less active, and this situation is more significant for the larger mass ratio.

The sequence of snapshots in Figure 3.3 shows how molecules diffuse from the

center toward the outer simulation boundaries with time for K5 10 and T*5 5.

This sequence clearly shows that light molecules start to diffuse from the central

area in the outward directions more significantly than heavy molecules.

These results indicate the main qualitative features of the diffusion phenomenon

of light and heavy molecules. However, the above discussion is too simple from an

academic point of view, therefore quantitative considerations and discussion based

on the theoretical background are indispensable. How can we theoretically explain

the qualitative features that both the light and heavy molecules diffuse more signifi-

cantly for a higher temperature, and also that heavy molecules are less able to

move for larger values of the mass ratio? This may be explained theoretically by

considering that Eq. (3.13) implies the mean velocity is larger for a higher

(A) (B)

Figure 3.1 Diffusion phenomena of molecules for the mass ratio K5 2: (A) T*5 1.5 and

(B) T*5 5 (white and black molecules denote light and heavy molecules, respectively).
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temperature and that the mean velocity of the heavier molecules is smaller for a

larger mass ratio. This may be one of the key theoretical considerations in fully

understanding the present simulation results. In academic simulations, such theoret-

ical considerations are conducted in more complex form by combining different

threads in order to form a uniformed conclusion about the results. These sophisti-

cated considerations help one to avoid presenting erroneous simulation results,

which sometimes happens, for a variety of reasons. Although we here show only

the results in the form of snapshots, academic research would require comprehen-

sive quantitative results that might include the change in the internal structures and

analysis of the transport coefficients. Furthermore, it will usually be necessary to

check the influence of the time interval and the size of a system on the results.

3.1.6 Simulation Program

We here show a sample simulation program to simulate the present diffusion phe-

nomenon. The program is written in the FORTRAN language. Since the main pro-

gram is usually written in order to clarify a flow of procedure in a straightforward

way, the assignment of the initial positions and velocities is treated in a subroutine

subprogram. The reader is advised to develop a simulation program with a clear

logical flow, thereby simplifying the debugging of a program under development

and making it, on completion, a straightforward and useful resource.

For these reasons, the important variables in a program need to be explained in

comments at the beginning of the program and each subroutine. These comments

provide the user an image of a specific physical meaning from the variable name.

In scientific numerical simulations, double-precision variables are usually used for

real-type variables, but higher is sometimes more desirable in certain cases, such as

solving the problem of an inverse matrix. The following simple simulation program

(A) (B)

Figure 3.2 Diffusion phenomena of molecules for the mass ratio K5 10: (A) T*5 1.5 and

(B) T*5 5 (white and black molecules denote light and heavy molecules, respectively).
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has been developed according to these guidelines. The important variables are

shown below to help the reader better understand the program.

RX(I),RY(I) : (x, y) coordinates of the position vector r�i of molecule i

RX0(I),RY0(I) : Position vector r�i at the previous time step

FX(I),FY(I) : Force f�i acting on molecule i

N : Number of molecules in the system

NA,NB : Numbers of light and heavy molecules, respectively

K : Mass ratio K5M/m

T : Desired temperature T*

H : Time interval h*

NDENS : Number density of molecules

L : Side length of the square simulation region

(A) (B)

(C) (D)

Figure 3.3 Movement of molecules with time for the mass ratio K5 10 and the temperature

T*5 5: (A) t*5 0, (B) t*5 6, (C) t*5 12, and (D) t*5 18.
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RAN(J) : Uniform random numbers ranging 0B1(J51BNRANMX)
NRAN : Number of used random numbers

Several remarks are attached to the more important statements in the program

for the benefit of the reader. Note that the line numbers are for the sake of conve-

nience only and are not necessary during the execution of a simulation program.

0001 C*********************************************************************
0002 C*                           diffuse.f                               *
0003 C*                                                                   *
0004 C*    MOLECULAR DYNAMICS METHOD FOR MOLECULAR DIFFUSION PROBLEM      *
0005 C*                  --- TWO-DIMENSIONAL CASE ---                     *
0006 C*                                                                   *
0007 C*     OPEN( 9,FILE= '@aaa1.data',STATUS='UNKNOWN')                  *
0008 C*     OPEN(21,FILE='aaa001.data',STATUS='UNKNOWN') ; POSITION DATA  *
0009 C*     OPEN(22,FILE='aaa011.data',STATUS='UNKNOWN') ; POSITION DATA  *
0010 C*     OPEN(23,FILE='aaa021.data',STATUS='UNKNOWN') ; POSITION DATA  *
0011 C*     OPEN(24,FILE='aaa031.data',STATUS='UNKNOWN') ; POSITION DATA  *
0012 C*     OPEN(25,FILE='aaa041.data',STATUS='UNKNOWN') ; POSITION DATA  *
0013 C*                                                                   *
0014 C*                                                                   *
0015 C*                                    VER.4 , BY A.SATOH , '04 3/13  *
0016 C*********************************************************************
0017 C
0018 C     RX(I) , RY(I)  : POSITION OF I-TH MOLECULE
0019 C     RX0(I),RY0(I)  : POSITION OF I-TH MOLECULE AT PREVIOUS TIME
0020 C     FX(I) , FY(I)  : FORCE ACTING ON I-TH MOLECULE
0021 C     T       : TEMPERATURE
0022 C     K       : MASS RATIO = MB/MA
0023 C     NDENS   : NUMBER DENSITY OF MOLECULES
0024 C     H       : TIME DIFFERENCE
0025 C     RC      : CUTOFF RADIUS FOR FORCE
0026 C     L       : MAGNITUDE OF CAGE
0027 C     NA      : NUMBER OF MOLECULES OF SPECIES A
0028 C     NB      : NUMBER OF MOLECULES OF SPECIES B
0029 C     N       : TOTAL NUMBER OF MOLECULES
0030 C            -L/2 < RX(I) < L/2  ,  -L/2 < RY(I) < L/2
0031 C---------------------------------------------------------------------
0032 C
0033       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0034 C
0035       COMMON /BLOCK1/ RX0 , RY0 , RX , RY
0036       COMMON /BLOCK2/ FX  , FY
0037       COMMON /BLOCK3/ VELX, VELY
0038       COMMON /BLOCK4/ H , RC , L , T , K , NDENS
0039       COMMON /BLOCK5/ NRAN  , RAN   , IX
0040 C
0041       PARAMETER( NN=80, NRANMX=50000 )
0042       PARAMETER( PI=3.141592653589793D0 )
0043 C
0044       REAL*8  RX0(NN), RY0(NN), RX(NN)  , RY(NN)
0045       REAL*8  FX(NN) , FY(NN) , VELX(NN), VELY(NN)
0046       REAL*8  H , RC , L , T , K , NDENS 
0047 C
0048       REAL    RAN(NRANMX)
0049       INTEGER NRAN  , IX
0050 C
0051       REAL*8  RXI, RYI, TIME, HSQ, CC0, CC1
0052       INTEGER N, NA, NB
0053       INTEGER SWITCH, NTIME, NTIMEMX
0054       INTEGER NP, NOPT, NGRAPH, NPRINT
0055 C
0056                  OPEN( 9,FILE= '@aaa1.data',STATUS='UNKNOWN')
0057                  OPEN(21,FILE='aaa001.data',STATUS='UNKNOWN')
0058                  OPEN(22,FILE='aaa011.data',STATUS='UNKNOWN')
0059                  OPEN(23,FILE='aaa021.data',STATUS='UNKNOWN')

• The given values and intermediate 
results are written out in @aaa1.data 
and the molecular positions are done in 
aaa001 to aaa041.

57Practice of Molecular Dynamics Simulations



 

0064       T   = 5.0D0
0065       K   = 10.D0
0066       NA  = 20
0067       NB  = NA
0068       H   = 0.001D0
0069       RC  = 3.D0
0070       N   = NA + NB
0071       NDENS = 0.1D0
0072       L   = DSQRT( DBLE(N)/NDENS )
0073       HSQ = H*H
0074 C                                            ----- PARAMETER (2) -----
0075       NTIMEMX= 10000
0076       NPRINT = 1000
0077       NGRAPH = 2000
0078       NOPT   = 20
0079 C                                            ----- PARAMETER (3) -----
0080       IX     = 0
0081       CALL RANCAL(NRANMX,IX,RAN)
0082       NRAN   = 1
0083 C
0084 C     ----------------------------------------------------------------
0085 C     -----------------    INITIAL CONFIGURATION    ------------------
0086 C     ----------------------------------------------------------------
0087 C
0088 C                                        --- SET INITIAL POSITIONS ---
0089       CALL INIPOSIT( N , L )
0090 C                                         --- SET INITIAL VELOCITY ---
0091       CALL INIVEL( N, NA, NB, T, K, PI )
0092 C                                   --- EVALUATE STARTING VALUE R1 --- 
0093       DO 10 I=1,N
0094         RX(I) = RX0(I)
0095         RY(I) = RY0(I)
0096    10 CONTINUE
0097 C                                                   --- FORCE CAL. --- 
0098       SWITCH = 0
0099       CALL FORCE( N, L, RC, SWITCH )
0100 C                                        --- CAL PREVIOUS POSITION --- 
0101       CALL POSITR1( N, NA, H, K )
0102 C
0103 C                                          --- PRINT OUT CONSTANTS ---
0104       WRITE(NP,5) T , K , NDENS , NA , NB , L , H , RC
0105 C                              --- PRINT OUT INITIAL CONFIGURATION ---
0106       CALL PRINTOUT( N, NA, TIME, NP )
0107 C                                               --- INITIALIZATION ---
0108       TIME = 0.D0
0109 C     ---------------------------------------------------------------
0110 C     ------------------    START OF MAIN LOOP    -------------------
0111 C     ---------------------------------------------------------------
0112 C
0113       SWITCH = 10
0114 C
0115       DO 100 NTIME=1, NTIMEMX
0116 C
0117         CALL FORCE(N, L, RC,SWITCH)
0118         CC0 = 1.D0/K
0119         CC1 = 1.D0
0120 C
0121         DO 50 I=1,N
0122 C
0123           IF ( I .EQ. NA+1 ) CC1 = CC0
0124           RXI    = 2.D0*RX(I) - RX0(I) + FX(I)*HSQ*CC1 
0125           RYI    = 2.D0*RY(I) - RY0(I) + FY(I)*HSQ*CC1 
0126           RX0(I) = RX(I)

• The periodic BC is used for SWITCH=0 but not 
for the other cases.  

0127           RY0(I) = RY(I)
0128           RX(I)  = RXI
0129           RY(I)  = RYI
0130 C
0131    50   CONTINUE

0060                  OPEN(24,FILE='aaa031.data',STATUS='UNKNOWN')
0061                  OPEN(25,FILE='aaa041.data',STATUS='UNKNOWN')
0062                                                                  NP=9
0063 C                                            ----- PARAMETER (1) -----

• Temperature T* = 5, mass ratio K = 10, numbers of 
light and heavy molecules NA = NB = 20, time interval 
h* = 0.001, cutoff distance r*coff = 3, number density n* 
= 0.1, and simulation region size L* = (N/n*)1/2.   

• The total number of time steps is 10,000, and the molecular positions 
are written out at every 2000 time steps for the postprocessing analysis. 

• A sequence of uniform random numbers is prepared 
in advance and when necessary, random numbers are 
taken out from the variable RAN(*).  

• The molecular positions are calculated at the 
next time step from Eqs. (3.10) and (3.11) in 
the subroutine POSITR1.

• The forces acting on each particle are calculated 
in the subroutine FORCE.
• The molecular positions are calculated from Eqs. 
(3.8) and (3.9). The previous molecular positions 
are saved in RX0(*) and RY0(*), and the present 
are saved in RX(*) and RY(*).   

• The molecular positions are written out at every NPRINT 
time steps for subsequently checking the reliability of results. 
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0137 C                                       --- DATA OUTPUT FOR GRAPH ---
0138         IF ( MOD(NTIME,NGRAPH) .EQ. 0 ) THEN
0139           NOPT = NOPT + 1 
0140           WRITE(NOPT,56)  N, NA, NB, L, REAL(H)*REAL(NTIME)
0141 C
0142           DO 60 I =1,N
0143             IF( I .LE. NA ) THEN
0144               R = 1.D0
0145             ELSE
0146               R = 1.5D0
0147             END IF
0148             WRITE(NOPT,58) I, R, RX(I), RY(I)
0149    60     CONTINUE
0150           CLOSE(NOPT, STATUS='KEEP')
0151         END IF
0152 C
0153 C
0154   100 CONTINUE
0155 C
0156 C     ---------------------------------------------------------------
0157 C     ---------------------   END OF MAIN LOOP   --------------------
0158 C     ---------------------------------------------------------------
0159       CLOSE(NP, STATUS='KEEP')
0160 C
0161 C     ------------------------- FORMAT -------------------------------
0162     5 FORMAT(/1H ,'-------------------------------------------------'
0163      &       /1H ,'         MOLECULAR DYNAMICS SIMULATION           '
0164      &       /1H ,'FOR TWO-DIMENSIONAL MOLECULAR DIFFUSION PROBLEM  '
0165      &       /1H ,'-------------------------------------------------'
0166      &       /1H ,'TEMPERATURE=',F6.2 ,2X, 'MASS RATIO=',F6.2 ,2X,
0167      &            'NDENS=',F6.3
0168      &       /1H ,'NUMBER OF MOLECULES OF SPECIES A=',I4
0169      &       /1H ,'NUMBER OF MOLECULES OF SPECIES B=',I4
0170      &       /1H ,'MAGNITUDE OF CAGE=',F7.2 ,2X, 'TIME DIFF.=',
0171      &            F8.5 ,2X, 'CUTOFF RADIUS=',F6.2/)
0172    56 FORMAT( 3I6, 2E13.8 )
0173    58 FORMAT( I5, F8.3 , 2E26.18 )
0174                                                                   STOP
0175                                                                   END
0176 C*********************************************************************
0177 C*********************     SUBROUTINE    *****************************
0178 C*********************************************************************
0179 C
0180 C**** SUB PRINTOUT *****
0181       SUBROUTINE PRINTOUT( N, NA, TIME, NP )
0182 C
0183       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0184 C
0185       COMMON /BLOCK1/ RX0, RY0, RX, RY
0186 C
0187       PARAMETER( NN=80 )
0188 C
0189       REAL*8  RX0(NN), RY0(NN), RX(NN), RY(NN), TIME
0190       INTEGER N, NA, NP
0191 C
0192       WRITE(NP,2) TIME
0193     2 FORMAT(/1H ,'--------------- TIME=',E13.5/)
0194       WRITE(NP,*)
0195       WRITE(NP,*)'MOLECULES OF SPECIES A'
0196       WRITE(NP,*)
0197       DO 10 I=1,NA
0198         WRITE(NP,5) I, RX(I), RY(I)
0199     5   FORMAT(1H ,'I=',I3 ,5X, 'RX=',F8.2 ,5X, 'RY=',F8.2)
0200    10 CONTINUE
0201       WRITE(NP,*)

0132 C                                             --- PRINT OUT DATA ---
0133         IF ( MOD(NTIME,NPRINT) .EQ. 0 ) THEN
0134           TIME = H*DBLE(NTIME)
0135           CALL PRINTOUT( N, NA, TIME, NP )
0136         END IF

• The molecular positions are written out at every 
NGRAPH time steps for the postprocessing analysis. 

• The positions of light molecules are 
first written out and followed by those
of the heavy molecules. 
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0207       WRITE(NP,*)
0208                                                                 RETURN
0209                                                                 END
0210 C**** SUB INIPOSIT *****
0211       SUBROUTINE INIPOSIT( N, L )
0212 C
0213       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0214 C
0215       COMMON /BLOCK1/ RX0, RY0, RX, RY
0216       COMMON /BLOCK5/ NRAN  , RAN   , IX
0217 C
0218       PARAMETER( NN=80, NRANMX=50000 )
0219 C
0220       REAL*8  RX0(NN), RY0(NN), RX(NN), RY(NN), L
0221       REAL*8  RXIJ , RYIJ , RIJSQ , CRX0 , CRY0 
0222       REAL    RAN(NRANMX)
0223       INTEGER N, NRAN
0224 C
0225       DO 10 I=1,N
0226     2   NRAN = NRAN + 1
0227         CRX0 = L*( DBLE(RAN(NRAN))-0.5D0)
0228         NRAN = NRAN + 1
0229         CRY0 = L*( DBLE(RAN(NRAN))-0.5D0)
0230         IF( I .NE. 1 ) THEN
0231           DO 5 J=1,I-1
0232             RXIJ = CRX0 - RX0(J)
0233             RYIJ = CRY0 - RY0(J)
0234             RXIJ = RXIJ - DNINT( RXIJ/L )*L 
0235             RYIJ = RYIJ - DNINT( RYIJ/L )*L 
0236             RIJSQ = RXIJ*RXIJ + RYIJ*RYIJ
0237             IF ( RIJSQ .LT. 1.D0 )      GOTO 2
0238     5     CONTINUE
0239         END IF
0240         RX0(I) = CRX0 
0241         RY0(I) = CRY0 
0242 C
0243    10 CONTINUE
0244                                                                 RETURN
0245                                                                 END
0246 C**** SUB INIVEL ****
0247       SUBROUTINE INIVEL( N, NA, NB, T, K, PI ) 
0248 C
0249       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0250 C
0251       COMMON /BLOCK3/ VELX , VELY
0252       COMMON /BLOCK5/ NRAN , RAN   , IX

• A subroutine for setting the
initial molecular velocities.   

• A subroutine for setting the 
initial molecular positions.  

• Dissimilar to the regular configuration 
explained in Section 2.1, the initial 
molecular positions are assigned using
random numbers. If r*ij <1, such molecu-
lar positions are not employed because 
of an extraordinary overlap.     

0253 C
0254       PARAMETER( NN=80, NRANMX=50000 )
0255 C
0256       INTEGER N, NA, NB, NRAN
0257       REAL*8  VELX(NN) , VELY(NN) , T , K , PI
0258       REAL    RAN(NRANMX)
0259       REAL*8  MOMXA, MOMYA, MOMXB, MOMYB
0260       REAL*8  CC0, CC1, CC10, CC11
0261 C
0262       CC0 = 1.D0/K
0263       CC1 = 1.D0
0264 C
0265       DO 10 I=1,N
0266         IF ( I .EQ. NA+1 ) CC1 = CC0
0267         NRAN = NRAN + 1
0268         CC10 = DSQRT( -2.D0*T*CC1*DLOG( DBLE(RAN(NRAN)) ) )
0269         NRAN = NRAN + 1
0270         CC11 = 2.D0*PI*DBLE(RAN(NRAN))
0271         VELX(I) = CC10*DCOS(CC11)
0272         VELY(I) = CC10*DSIN(CC11)

0202       WRITE(NP,*)'MOLECULES OF SPECIES B'
0203       WRITE(NP,*)
0204       DO 20 I=NA+1,N
0205         WRITE(NP,5) I,RX(I),RY(I)
0206    20 CONTINUE

• The initial velocities are set 
according to Eq. (2.5) based on 
Eq. (3.12) using random numbers. 
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0278       MOMYB = 0.D0
0279 C
0280       DO 20 I=1,N
0281         IF ( I .LE. NA ) THEN
0282           MOMXA = MOMXA + VELX(I)
0283           MOMYA = MOMYA + VELY(I)
0284         ELSE
0285           MOMXB = MOMXB + VELX(I)
0286           MOMYB = MOMYB + VELY(I)
0287         END IF
0288    20 CONTINUE
0289 C
0290       MOMXA = MOMXA/DBLE(NA)
0291       MOMYA = MOMYA/DBLE(NA)
0292       MOMXB = MOMXB/DBLE(NB)
0293       MOMYB = MOMYB/DBLE(NB)
0294 C
0295 C                               --- CORRECT VELOCITIES TO SATISFY  ---
0296 C                               ---    ZERO TOTAL MOMENTUM         ---
0297 C
0298       CC10  = MOMXA
0299       CC11  = MOMYA
0300       DO 30 I=1,N
0301         IF ( I .EQ. NA+1 ) THEN
0302           CC10 = MOMXB
0303           CC11 = MOMYB
0304         END IF
0305         VELX(I) = VELX(I)-CC10
0306         VELY(I) = VELY(I)-CC11
0307    30 CONTINUE
0308                                                                 RETURN
0309                                                                 END
0310 C**** SUB FORCE ****
0311       SUBROUTINE FORCE( N, L, RC, SWITCH )
0312 C
0313       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0314 C
0315       COMMON /BLOCK1/ RX0, RY0, RX, RY

• A subroutine for calculating the 
forces acting on molecules. 

0316       COMMON /BLOCK2/ FX , FY
0317 C
0318       PARAMETER( NN=80 )
0319 C
0320       INTEGER N, SWITCH
0321       REAL*8  RX0(NN), RY0(NN), RX(NN), RY(NN)
0322       REAL*8  FX(NN) , FY(NN)
0323       REAL*8  L, RC
0324       REAL*8  RXI, RYI, RXIJ, RYIJ, RIJSQ
0325       REAL*8  FXI, FYI, FXIJ, FYIJ, FIJ
0326       REAL*8  RCSQ, LINV
0327       REAL*8  SR2, SR6, SR12
0328 C
0329       RCSQ = RC*RC
0330       LINV = 1.D0/L
0331 C
0332       DO 5 I=1,N
0333         FX(I) = 0.D0
0334         FY(I) = 0.D0
0335     5 CONTINUE
0336 C
0337       DO 20 I=1,N-1
0338 C                                            --- FOR I-TH MOLECULE ---
0339         RXI = RX(I)
0340         RYI = RY(I)
0341         FXI = FX(I)
0342         FYI = FY(I)

• The action–reaction law enables us to calculate 
the forces of only pairs of particles satisfying j > i.  

0273    10 CONTINUE
0274 C                                      --- SET TOTAL MOMENTUM ZERO ---
0275       MOMXA = 0.D0
0276       MOMYA = 0.D0
0277       MOMXB = 0.D0

• To make the system momentum 
zero, the total momentum is first 
calculated for each light and heavy 
molecule.  

• The extra momentum permol-
ecule is calculated from the 
total momentum.  

• The total momentum is forced to 
be zero by subtracting the extra 
momentum per molecule from the 
velocity components of each 
molecule.  

• The force variables are initialized 
as zero before proceeding to the 
main loop. 
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0346           RXIJ = RXI - RX(J)
0347           RYIJ = RYI - RY(J)
0348           IF ( SWITCH .EQ. 0 ) THEN
0349             RXIJ = RXIJ-DNINT( RXIJ*LINV )*L 
0350             RYIJ = RYIJ-DNINT( RYIJ*LINV )*L 
0351           END IF
0352           IF ( DABS(RXIJ) .GT. RC ) GOTO 10
0353           IF ( DABS(RYIJ) .GT. RC ) GOTO 10
0354           RIJSQ = RXIJ*RXIJ + RYIJ*RYIJ
0355           IF ( RIJSQ .GT. RCSQ )    GOTO 10
0356 C
0357           SR2   = 1.D0/RIJSQ
0358           SR6   = SR2**3
0359           SR12  = SR6**2
0360           FIJ   = ( 2.D0*SR12-SR6 )/RIJSQ
0361           FXIJ  = FIJ*RXIJ
0362           FYIJ  = FIJ*RYIJ
0363           FXI   = FXI + FXIJ
0364           FYI   = FYI + FYIJ
0365           FX(J) = FX(J) - FXIJ
0366           FY(J) = FY(J) - FYIJ
0367    10   CONTINUE
0368 C
0369         FX(I) = FXI
0370         FY(I) = FYI
0371 C
0372    20 CONTINUE
0373 C
0374       DO 30 I=1,N
0375         FX(I) = FX(I)*24.D0
0376         FY(I) = FY(I)*24.D0
0377    30 CONTINUE
0378                                                                 RETURN
0379                                                                 END
0380 C**** SUB POSITR1 ****
0381       SUBROUTINE POSITR1( N, NA, H, K )
0382 C
0383       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0384 C
0385       COMMON /BLOCK1/ RX0 , RY0,  RX,  RY
0386       COMMON /BLOCK2/ FX  , FY
0387       COMMON /BLOCK3/ VELX, VELY
0388 C
0389       PARAMETER( NN=80 )
0390 C
0391       REAL*8  RX0(NN), RY0(NN), RX(NN)  , RY(NN)
0392       REAL*8  FX(NN) , FY(NN) , VELX(NN), VELY(NN)
0393       REAL*8  H , K
0394       REAL*8  HSQ2, CC0, CC1
0395       INTEGER NA  , N
0396 C
0397       HSQ2  = H*H/2.D0
0398       CC0   = 1.D0/K
0399       CC1   = 1.D0
0400 C
0401       DO 10 I=1,N
0402         IF( I .EQ. NA+1 ) CC1 = CC0
0403         RX(I) = RX0(I) + H*VELX(I) + HSQ2*FX(I)*CC1 
0404         RY(I) = RY0(I) + H*VELY(I) + HSQ2*FY(I)*CC1 
0405    10 CONTINUE
0406                                                                 RETURN
0407                                                                 END
0408 C**** SUB RANCAL ****
0409       SUBROUTINE RANCAL( N, IX, X )
0410 C
0411       DIMENSION  X(N)
0412       DATA INTEGMX/2147483647/
0413       DATA INTEGST,INTEG/584287,48828125/

0343 C
0344         DO 10 J=I+1,N
0345 C                                            --- FOR I-TH AND J-TH ---

• The periodic BC is used for 
SWITCH = 0.
• The particles separating over the
cutoff distance r*coff are passed 
without calculation of forces.     

• The forces between molecules 
are calculated from Eq. (3.7).  

• The factor 24 in Eq. (3.7) will be 
multiplied later.  

• The action–reaction law can 
provide the force FX(J) and FY(J) 
as (–FXIJ) and (–FYIJ).  

• The starting value of the 
molecular positions is calculated 
from Eqs. (3.10) and (3.11).  

• A subroutine for generating a 
niform random number sequence.  
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0414 C
0415       AINTEGMX = REAL( INTEGMX )
0416 C
0417       IF ( IX.LT.0 ) PAUSE
0418       IF ( IX.EQ.0 ) IX = INTEGST
0419       DO 30 I=1,N
0420          IX = IX*INTEG
0421          IF (IX) 10, 20, 20
0422    10    IX   = (IX+INTEGMX)+1
0423    20    X(I) = REAL(IX)/AINTEGMX
0424    30 CONTINUE
0425       RETURN
0426       END
0427 C********************************************************************* 
0428 C   THIS SUBROUTINE IS FOR GENERATING UNIFORM RANDOM NUMBERS         * 
0429 C   (SINGLE PRECISION) FOR 64-BIT COMPUTER.                          * 
0430 C      N      : NUMBER OF RANDOM NUMBERS TO GENERATE                 * 
0431 C      IX     : INITIAL VALUE OF RANDOM NUMBERS (POSITIVE INTEGER)   * 
0432 C             : LAST GENERATED VALUE IS KEPT                         * 
0433 C      X(N)   : GENERATED RANDOM NUMBERS (0<X(N)<1)                  * 
0434 C********************************************************************* 
0435 C**** SUB RANCAL ****
0436 ccc   SUBROUTINE RANCAL( N, IX, X )
0437 C
0438 ccc   IMPLICIT REAL*8(A-H,O-Z),INTEGER*8 (I-N)
0439 C
0440 ccc   REAL      X(N)
0441 ccc   INTEGER*8 INTEGMX, INTEG64, INTEGST, INTEG
0442 C
0443 CCC   DATA INTEGMX/2147483647/
0444 ccc   DATA INTEG64/2147483648/
0445 ccc   DATA INTEGST,INTEG/584287,48828125/
0446 C
0447 CCC   AINTEGMX = REAL( INTEGMX )
0448 ccc   AINTEGMX = REAL( INTEG64 )
0449 C
0450 ccc   IF ( IX.LT.0 ) PAUSE
0451 ccc   IF ( IX.EQ.0 ) IX = INTEGST
0452 ccc   DO 30 I=1,N
0453 ccc      IX = IX*INTEG
0454 ccc      IX = KMOD(IX,INTEG64)
0455 CCC      IF (IX) 10, 20, 20
0456 CCC10    IX   = (IX+INTEGMX)+1
0457 ccc20    X(I) = REAL(IX)/AINTEGMX
0458 ccc30 CONTINUE
0459 ccc   RETURN
0460 ccc   END

• This is for a 32-bit CPU based on 
the expression of two’s comple-
ment.  

• This is also a random number 
generating subroutine for a 64-bit 
CPU based on the expression of 
two’s complement.  

3.2 Behavior of Rod-like Particles in a Simple Shear Flow

In the present section, we consider the behavior of axisymmetric particles, known

as spherocylinders, in a simple shear flow as the second demonstration of the MD

method. MD simulations for rod-like particles are much more complex than those

for a spherical particle system, since the translational and rotational motion of rod-

like particles must be treated simultaneously. Hence, this exercise is of a consider-

ably high level and may be applicable to a range of academic research fields. The

present simulation method for a spherocylinder particle system is expected to offer

many important suggestions in developing practical simulation programs, such as

for the adsorption phenomenon between carbon-nanotubes and nonspherical

molecules.
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3.2.1 Physical Phenomena of Interest

The dispersion of interest in this exercise is composed of spherocylinder particles

with mass m and inertia moment I, and it is subjected to a simple shear flow. The

spherocylinder particle has a positive and negative magnetic charges (NS poles) at

each center of the hemisphere cap situated at both ends of the cylindrical body.

This magnetic particle is coated with a steric (surfactant) layer, which acts to pre-

vent the particles from aggregating and thus sedimentation in the gravitational

field. In this exercise we consider how such a dispersion behaves under the circum-

stance of an applied magnetic field in addition to the simple shear flow.

The main subjects for the formalization of this problem are explained in the fol-

lowing subsections. Essentially, they are the modeling of the particles, the formal-

ization of the equation of motion, the derivation of forces and torques acting on

particles, and the nondimensionalization of quantities.

3.2.2 Particle Model

As shown in Figure 3.4, a magnetic rod-like particle is modeled as a spherocylin-

der, with the magnetic charges 6q at the center of each hemisphere cap, which has

a length l0 and a cylindrical diameter d of the cylindrical part. The particle is cov-

ered with a uniform steric (surfactant) layer with thickness δ, and the overlap of

these steric layers induces a repulsive interaction between the particles. In the fol-

lowing we show magnetic forces and torques acting on the magnetic particles.

If a magnetic charge q and a magnetic dipole moment m are acted upon by a

uniform applied magnetic field H, then the force F acting on the charge and the

torque T acting on the dipole moment may be found from a standard textbook on

magnetic material engineering as

F5μ0qH; T5μ0m3H ð3:16Þ

The magnetic field H(ind) at an arbitrary relative position r (r5 jrj) induced by

the magnetic charge q is expressed as

HðindÞ 5
q

4πr2
U
r

r
ð3:17Þ

Note that in this book we employ such a unit system concerning magnetic prop-

erties that the magnetization corresponds to the magnetic field, that is,

l0

l

δ

d

Figure 3.4 Particle model.
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B5μ0(H1M); the correspondence table between two representative unit systems

is shown in Appendix A4. With these basic formulae, we derive the magnetic force

and torque acting on the spherocylinder particle shown in Figure 3.4.

If the position vector of the center of particle i is denoted by ri and the particle

direction by ei, then the position vectors ri
1 and ri

2 of the magnetic charges q and

2 q can be expressed as

r1
i 5 ri 1 ðl0=2Þei; r2

i 5 ri 2 ðl0=2Þei ð3:18Þ

The magnetic field H1
ij at the position ri

1 induced by particle j can be written

from Eq. (3.17) as

H1
ij 5

q

4π
U

r1
i 2 r1

j

r1
i 2 r1

j

��� ���3 2
q

4π
U

r1
i 2 r2

j

r1
i 2 r2

j

��� ���3

5
q

4π

rij 1
l0

2
ðei 2 ejÞ

rij 1
l0

2
ðei 2 ejÞ

����
����
3
2

rij 1
l0

2
ðei 1 ejÞ

rij 1
l0

2
ðei 1 ejÞ

����
����
3

8>>><
>>>:

9>>>=
>>>;

ð3:19Þ

Similarly, H2
ij at ri

2 induced by particle j is written as

H2
ij 5

q

4π
rij 2 ðl0=2Þðei 1 ejÞ
jrij 2 ðl0=2Þðei 1 ejÞj3

2
rij 2 ðl0=2Þðei 2 ejÞ
jrij 2 ðl0=2Þðei 2 ejÞj3

� �
ð3:20Þ

in which rij5 ri2 rj. Hence, the magnetic forces acting on the positive and nega-

tive magnetic charges of particle i, F1
ij and F2

ij ; by the magnetic charges of parti-

cle j, are finally written as

F1
ij 5μ0qH

1
ij 5

μ0q
2

4π
rij 1 ðl0=2Þðei 2 ejÞ
jrij 1 ðl0=2Þðei 2 ejÞj3

2
rij 1 ðl0=2Þðei 1 ejÞ
jrij 1 ðl0=2Þðei 1 ejÞj3

� �
ð3:21Þ

F2
ij 5 2 μ0qH

2
ij 5 2

μ0q
2

4π
rij 2 ðl0=2Þðei 1 ejÞ
jrij 2 ðl0=2Þðei 1 ejÞj3

2
rij 2 ðl0=2Þðei 2 ejÞ
jrij 2 ðl0=2Þðei 2 ejÞj3

� �
ð3:22Þ

Similarly, the magnetic torque about the particle axis of particle i, T1
ij ; due to the

force acting on the positive charge by the magnetic charges of particle j, is obtained as

T1
ij 5

l0

2
ei3F1

ij 5
μ0q

2l0

8π

ei3rij1
l0

2
ð2ei3ejÞ

rij1
l0

2
ðei2ejÞ

����
����
3

2
ei3rij1

l0

2
ðei3ejÞ

rij1
l0

2
ðei1ejÞ

����
����
3

8>>><
>>>:

9>>>=
>>>;

ð3:23Þ
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Also, such a torque T2
ij due to the force acting on the negative charge is as

follows:

T2
ij 52

l0

2
ei3F2

ij 5
μ0q

2l0

8π

ei3rij2
l0

2
ðei3ejÞ

rij2
l0

2
ðei1ejÞ

����
����
3
2
ei3rij2

l0

2
ð2ei3ejÞ

rij2
l0

2
ðei2ejÞ

����
����
3

8>>><
>>>:

9>>>=
>>>;
ð3:24Þ

From these equations, the total magnetic force and torque acting on particle i by

particle j are written as

F
ðmÞ
ij 5F1

ij 1F2
ij ; T

ðmÞ
ij 5T1

ij 1T2
ij ð3:25Þ

It is noted that F
ðmÞ
ji 5 2F

ðmÞ
ij due to the action�reaction law.

A uniform applied magnetic field does not induce a force acting on a particle

because there is no field gradient, but it does induce torque. Similar to the above

derivation, the torque due to an applied magnetic field can be derived as

T
ðHÞ
i 5

l0

2
ei 3μ0qH2

l0

2
ei 3 ð2μ0qHÞ5μ0ðl0qeiÞ3H ð3:26Þ

Since the force and torque due to the overlap of the steric layers cannot be

derived straightforwardly, we will discuss this interaction in detail later.

3.2.3 Equation of Motion and Molecular Dynamics Algorithm

The spherocylinder particle is axisymmetric and therefore we can employ the method

shown in Section 1.1.2 for simulating the motion of particles. However, several modi-

fications are necessary because we consider the behavior of the particles in a simple

shear flow, not in a quiescent flow. If the particles are smaller than micron order, the

inertia terms are negligible, which means that we can use the equations shown in

Section 1.1.2. The equations of motion under the circumstance of a simple shear flow

can be obtained by adding new terms due to the flow into Eqs. (1.42) and (1.43) as

vjji 5UjjðriÞ1
1

ηXA
Fjj
i ; vi

\ 5U\ðriÞ1
1

ηYA
Fi

\ ð3:27Þ

ωjj
i 5Ωjj 1

1

ηXC
Tjj
i ; ωi

\ 5Ω\ 1
1

ηYC
Ti

\ 2
YH

YC
ðεUeieiÞ : E ð3:28Þ

in which an arbitrary vector is decomposed into the two vectors parallel and normal

to the particle axis. These vectors are denoted by superscripts jj and \, respec-

tively: for example, vi 5 vjji 1 vi
\: We here treat only the angular velocity ωi

\ and

neglect ωjj
i because the rotational motion about the particle axis does not affect the
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particle orientation and the magnetic interactions. The velocity field U(r) for a sim-

ple shear flow is defined as

UðrÞ5 _γ
0 1 0

0 0 0

0 0 0

2
4

3
5 x

y

z

2
4
3
5 ð3:29Þ

in which r is the position vector from the origin of the coordinate system,

expressed as r5 (x, y, z). In this flow case, the rotational angular velocity Ω and

the rate-of-strain tensor E are derived from the definitions as

Ω5
1

2
r3UðrÞ5 2

_γ
2

0

0

1

2
4
3
5; E5

1

2
ðrU1 ðrUÞtÞ5 _γ

2

0 1 0

1 0 0

0 0 0

2
4

3
5 ð3:30Þ

in which the superscript t denotes a transposed tensor, and _γ is the shear rate and a

constant representing the strength of a shear flow. Also, ε appeared as the last term

in the second equation of Eq. (3.28) is a third-rank tensor called “Eddington’s epsi-

lon.” The ijk-component of this tensor, εijk, is expressed as

εijk 5
1 for ði; j; kÞ5 ðx; y; zÞ; ðy; z; xÞ; ðz; x; yÞ
21 for ði; j; kÞ5 ðz; y; xÞ; ðy; x; zÞ; ðx; z; yÞ
0 for the other cases

8<
:

9=
; ð3:31Þ

With these characteristics of εijk and E in Eq. (3.30), the last term of the second

equation in Eq. (3.28) can be simplified to

2
YH

YC
ðεUeieiÞ : E5 2

YH

YC
U
_γ
2

eizeix
2eizeiy

eiy
2 2 eix

2

2
4

3
5 ð3:32Þ

In obtaining Eq. (3.32), the following simple formulae have been used:

ab5

axbx axby axbz
aybx ayby aybz
azbx azby azbz

2
4

3
5 ð3:33Þ

A :B 5AxxBxx 1AxyByx 1AxzBzx 1AyxBxy 1AyyByy 1AyzBzy

1AzxBxz 1AzyByz 1AzzBzz
ð3:34Þ

ðεUabÞ : A5
azðbxAxy 1 byAyy 1 bzAzyÞ2 ayðbxAxz 1 byAyz 1 bzAzzÞ
axðbxAxz 1 byAyz 1 bzAzzÞ2 azðbxAxx 1 byAyx 1 bzAzxÞ
ayðbxAxx 1 byAyx 1 bzAzxÞ2 axðbxAxy 1 byAyy 1 bzAzyÞ

2
4

3
5 ð3:35Þ
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in which a and b are arbitrary one-rank tensors, A and B are arbitrary two-rank

tensors, and ε is the three-rank tensor previously defined.

The quantities used to determine the translational and angular velocities from

Eqs. (3.27) and (3.28) can be obtained from the force Fi and torque Ti acting on

particle i and also from the particle direction ei as

Fjj
i 5 ðFiUeiÞei; Fi

\ 5Fi 2Fjj
i ; Tjj

i 5 ðTiUeiÞei;
Ti

\ 5Ti 2Tjj
i ; Ωjj

i 5 ðΩiUeiÞei; Ωi
\ 5Ωi 2Ωjj

i

�
ð3:36Þ

With the solutions of vi(t) and ωi(t), the particle position ri(t1Δt) and the particle

direction ei(t1Δt) at the next time step can be evaluated from Eqs. (1.45) and

(1.46). That is,

riðt1ΔtÞ5 riðtÞ1ΔtviðtÞ ð3:37Þ

eiðt1ΔtÞ5 eiðtÞ1Δtωi
\ðtÞ3 eiðtÞ ð3:38Þ

Finally, we discuss the resistance functions XA, YA, XC, YC, and YH [4,16�18].

There would be no difficulties for simulations if the solutions of these resistance

functions were known for a spherocylinder particle. However, the solutions are

known only for a cylindrical particle with sufficiently large aspect ratio, or for the

spherical particle explained before. These solutions are for a solid particle, but in

our case we are considering a solid particle coated with a soft steric layer, and the

resistance functions have not yet been solved for this case.

Hence, in conducting MD simulations for the present particle dispersion, we

have several options for overcoming the problem for the resistance functions. The

first option is to tackle the difficult mathematical problem of solving these resis-

tance functions. The second option is to apply the known solutions of a solid sphe-

roidal particle as the first approximation. The third option is to introduce the

modeling of the spherocylinder particle in order for the known solutions to be

applied more accurately. Here we adopt the second option, that is, the solutions

shown in Eqs. (1.35) and (1.36) for a solid spheroid are used for the resistance

functions for the spherocylinder shown in Figure 3.4. In addition, the resistance

function YH can be written as

YH 5 8πa3U
4

3
U

s5

22s1 ð11 s2ÞL ð3:39Þ

In the limiting case of s{1, this can be approximated as

YH 5 8πa3
1

2
s2 2

1

5
s4 1?

� �
ð3:40Þ

in which a, b, and s are assumed to be expressed as a5 l/21 δ, b5 d/21 δ, and

s5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl=21 δÞ2 2 ðd=21 δÞ2

q
=ðl=21 δÞ; respectively.
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3.2.4 Modeling of Steric Repulsive Interaction

If the two spherocylinder particles coated with a surfactant layer, shown in

Figure 3.4, overlap, how should we write this repulsive interaction as a mathemati-

cal expression? To answer this question, we first need to analyze the behavior of

the surfactant molecules in detail in such a situation. However, it may be possible

to develop a physically acceptable model as a first approximation by combining

the known solutions in a sophisticated manner. For a spherical particle system, an

expression for the repulsive interaction has already been obtained. Hence, the

extension of this potential to the present spherocylinder particle system enables us

to overcome the problem of the unknown potential for a spherocylinder coated

with a soft surfactant layer.

We consider a spherical particle modeled as a solid sphere of diameter d coated

by a uniform surfactant layer of thickness δ. An interaction energy arising from the

overlap of these two particles has already been derived from the entropy calculation

as [31,32]

u
ðVÞ
ij 5

πd2nskT
2

22
rij

δ

� 	
ln

d1 2δ
rij

� �
2

rij 2 d

δ

� �
ð3:41Þ

in which ns is the number of surfactant molecules per unit area on the particle sur-

face, k is Boltzmann’s constant, and T is the system temperature. The force acting

on particle i, F
ðVÞ
ij ; by particle j due to the overlap can be obtained from this equa-

tion as

F
ðVÞ
ij 5 2

@

@ri
u
ðVÞ
ij 5 2

@

@rij
u
ðVÞ
ij 5

πd2nskT
2δ

tij ln
d12δ
rij

� �
ðfor d# rij#d12δÞ

ð3:42Þ

in which tij (5rij/rij) is the unit vector. It is shown in Eq. (3.42) that this repulsive

force acts along a line drawn between the two particles.

We now idealize the spherocylinder particle in order to apply Eq. (3.42). The

most feasible model is a linear sphere-connected model shown in Figure 3.5. In

this model, solid spheres are linearly connected in contact and covered by a uni-

form surfactant layer of thickness δ. If the constituent spherical particles are located
at each fixed position in the rod-like particle, this model does not necessarily yield

Figure 3.5 Sphere-connected model for

calculating repulsive interactions.
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a maximum repulsive interaction energy at a position where the maximum energy

is provided from the overlap of the original spherocylinder particles. In order to

overcome this shortcoming, the above model must be slightly modified to yield a

maximum repulsive energy at a position of minimum separation between the two

spherocylinder particles. To do so, two spheres are first located at the positions in

each spherocylinder, where a maximum repulsive energy is yielded, and then other

spheres are linearly added on each side of these two spheres on the original particle

to produce a modified sphere-connected model. This is the particle model we use

for evaluating interaction energies due to particle overlap.

In the following paragraphs, we show a method for calculating the force and tor-

que acting between particles i and j based on the above-mentioned sphere-

connected model. An important task for evaluating such a force and torque is to

find the positions along each particle axis at which the separation between the two

spherocylinder particles is minimized for the given position and orientation of these

two particles. Hence, we focus on a method for finding this minimum separation,

including a way of assessing the particle overlap.

The notation ri is used for the center of spherocylinder particle i shown in

Figure 3.4; similarly, rj is used for particle j. Figure 3.6 demonstrates that there is a

view angle from which the two particles can be seen as existing in two parallel

planes. In Figure 3.6, two points Pi and Pj are taken on each particle axis line such

that the line drawn between these points is normal to the two parallel planes.

Consideration of the two points Pi and Pj enables us to make a systematic and

sophisticated assessment of the particle overlap. If the points Pi and Pj are denoted

by (ri1 kiei) and (rj1 kjej), respectively, the line PiPj has to satisfy the following

equation from the orthogonality condition:

eiUfðri 1 kieiÞ2 ðrj 1 kjejÞg5 0; ejUfðri 1 kieiÞ2 ðrj 1 kjejÞg5 0 ð3:43Þ

The solutions of ki and kj satisfying this relationship leads to the determination

of the specific positions of Pi and Pj. Equation (3.43) yields the final results as

ki
kj


 �
5

1

12 ðeiUejÞ2
21 eiUej

2eiUej 1


 �
eiUrij
eiUrij


 �
ð3:44Þ

This equation has been derived under the assumption of ei � ej 6¼ 61. This condition

is necessary for the existence of the solution because ei � ej 5 61 implies a parallel

see

Pi (ri + kiei)

Pj (rj + kjej)
Figure 3.6 Assessment of the

particle overlap.
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or line configuration of the particles. If the line PiPj is longer than (d1 2δ), there
is no particle overlap. Hence, we first consider the general case under the assump-

tions that ei � ej 6¼61 and the line PiPj is shorter than (d1 2δ).
There are three cases of overlap for the two spherocylinder particles: that is,

hemisphere�hemisphere, hemisphere�cylinder, and cylinder�cylinder overlap.

We first consider a cylinder�cylinder overlap between particles i and j. The condi-

tion for this overlap is derived as

jðri 1 kieiÞ2 ðrj 1 kjejÞj, d1 2δ; jkij, l0=2; jkjj, l0=2 ð3:45Þ

Next, we consider the criterion for the overlap between the cylindrical part of

particle i and the hemisphere cap of particle j. In this case, the conditions of

jkij, l0/2 and jkjj$ l0/2 are satisfied. A vertical line is drawn from the center of the

hemisphere to the axis line of particle i, and the intersection point on this axis line

of particle i is denoted by Qi(j), which is expressed as (ri1 ki
sei) with an unknown

constant ki
s. The determination of ki

s yields explicit specification of the position

Qi(j). If the center of hemisphere of particle j is denoted by rj
s (similarly ri

s for parti-

cle i), then ki
s is solved from the orthogonality condition of (ri1 ki

sei2 rj
s) and ei:

ki
s 5 eiUðrjs 2 riÞ ð3:46Þ

The use of this solution of ki
s gives rise to the criterion condition for the overlap

between the cylindrical part of particle i and the hemisphere cap of particle j as

ki
sj j# l0=2; ðri 1 ki

seiÞ2 rj
s

�� ��, d1 2δ ð3:47Þ

Finally, the overlap between the hemisphere caps between particles i and j arises

when the following condition is satisfied:

ki
sj j. l0=2; ri

s 2 rj
s

�� ��, d1 2δ ð3:48Þ

The above-mentioned criterion conditions are summarized as follows:

1. For j(ri1 kiei)2 (rj1 kjej)j$ d1 2δ, there is no overlap.

2. For j(ri1 kiei)2 (rj1 kjej)j, d1 2δ, there is a possibility of overlap.

2.1. For jkij# l0/2 and jkjj# l0/2, an overlap occurs.

2.2. For jkij# l0/2 and jkjj. l0/2 and jkisj, l0=2; there is a possibility of overlap between

the cylinder part of particle i and the hemisphere cap of particle j.

2.2.1. jðri 1 ki
seiÞ2 rj

sj$ d1 2δ; there is no overlap.

2.2.2. jðri 1 ki
seiÞ2 rj

sj, d1 2δ; an overlap occurs.

2.3. For jkij# l0/2 and jkjj. l0/2 and jkisj$ l0=2; there is a possibility of overlap between

the hemisphere caps between particles i and j.

2.3.1. For jris 2 rj
sj$ d1 2δ; there is no overlap.

2.3.2. For jris 2 rj
sj, d1 2δ; an overlap occurs.

2.4. For jkjj. jkij. l0/2 and jkisj, l0=2; there is a possibility of overlap between the cyl-

inder part of particle i and the hemisphere cap of particle j.

2.4.1. For jðri 1 ki
seiÞ2 rj

sj$ d1 2δ; there is no overlap.

2.4.2. For jðri 1 ki
seiÞ2 rj

sj, d1 2δ; an overlap occurs.
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2.5. For jkjj. jkij. l0/2 and jkisj$ l0=2; there is a possibility of overlap between the

hemisphere caps between particles i and j.

2.5.1. For jris 2 rj
sj$ d1 2δ; there is no overlap.

2.5.2. For jris 2 rj
sj, d1 2δ; an overlap occurs.

These overlap criteria have been shown under the assumption of jkjj. jkij.
However, the above description is sufficient on the analysis level, because the

exchange of subscripts i and j in a simulation program reduces to the same criterion

procedure for particle overlap.

In addition to particle overlap in a general configuration, we need to consider

several special cases, that is, particle overlap in a parallel or line configuration. The

latter is straightforward to analyze and therefore we address the former case.

According to the distance kij
c

�� �� ð5 rijUei
�� ��Þ between the centers of particles i and j

along the particle axis, whether or not particles i and j overlap can be determined

by the following procedures:

1. For jkijcj# l0; an overlap occurs.

2. For jkijcj. l0;
2.1. For jris 2 rj

sj$ d1 2δ; there is no overlap.

2.2. For jris 2 rj
sj, d1 2δ; an overlap occurs.

If the particle separation satisfies (jrijj22 jkijcj2)1/2$ d1 2δ, then overlap does

not occur.

The above-assessing procedures concerning particle overlap enable us to recognize

a specific configuration of the two particles in which the minimum distance can be

obtained from the line of each particle axis. The notation r
ðminÞ
i and r

ðminÞ
j is used for

expressing such positions on the axis lines. The present modified linear sphere-con-

nected model for particle i can be constructed by placing other spheres on both sides

of the sphere at r
ðminÞ
i repeatedly. According to this model, a force acting on particle i

by particle j, arising from the overlap of the steric layers, can be obtained by evaluat-

ing the interaction forces between the constituent spherical particles and then by sum-

ming these interactions. Similarly, a torque acting on particle i by particle j can be

evaluated by performing the vector product of each force vector of the constituent

spheres and the corresponding relative position vectors from the center of particle i.

3.2.5 Nondimensionalization of Basic Equations

In actual simulations, it is usual to treat a nondimensional system in which quantities

are nondimensionalized by the corresponding representative values. The present

simulation employs the following representative values for nondimensionalization:

d for distances, 1= _γ for time, _γd for velocities, _γ for angular velocities, 3πη _γd2 for
forces, πη _γd3 for torques, and so on. With these representative values, the equations

of motion in Eqs. (3.27) and (3.28) are nondimensionalized as

vjj�i 5Ujj�ðri�Þ1
Fjj�
i

XA�ðl� 1 2δ�Þ ; v\�
i 5U\�ðri�Þ1

F\�
i

YA�ðl� 1 2δ�Þ ð3:49Þ
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ω\�
i 5Ω\� 1

T\�
i

YC�ðl� 1 2δ�Þ3 2
YH�

YC� ðεUeieiÞ : E� ð3:50Þ

in which

XA� 5
XA

6πðl=21 δÞ 5
8

3
U

s3

22s1 ð11 s2ÞL

YA� 5
YA

6πðl=21 δÞ 5
16

3
U

s3

2s1 ð3s2 2 1ÞL

9>>>>=
>>>>;

ð3:51Þ

YC� 5
YC

8πðl=21 δÞ3 5
4

3
U

s3ð22 s2Þ
22s1 ð11 s2ÞL ð3:52Þ

YH� 5
YH

8πðl=21 δÞ3 5
4

3
U

s5

22s1 ð11 s2ÞL ð3:53Þ

E�5
1

2

0 1 0

1 0 0

0 0 0

2
4

3
5; Ω�5 2

1

2

0

0

1

2
4
3
5; ðεUeieiÞ : E�5

1

2

eizeix
2eizeiy
e2iy2 e2ix

2
4

3
5 ð3:54Þ

Also, Eqs. (3.37) and (3.38) can be written in nondimensionalized form as

ri
�ðt� 1Δt�Þ5 ri

�ðt�Þ1Δt�v�i ðt�Þ;
eiðt� 1Δt�Þ5 eiðt�Þ1Δt�ω\�

i ðt�Þ3 eiðt�Þ
ð3:55Þ

The forces acting on the positive and negative magnetic charges of particle i in

Eqs. (3.21) and (3.22) are nondimensionalized as

F1 �
ij 5λm

r�ij 1 ðl�0=2Þðei 2 ejÞ
r�ij 1 ðl�0=2Þðei 2 ejÞ
��� ���3 2

r�ij 1 ðl�0=2Þðei 1 ejÞ
r�ij 1 ðl�0=2Þðei 1 ejÞ
��� ���3

8><
>:

9>=
>; ð3:56Þ

F2 �
ij 5 2λm

r�ij 2 ðl�0=2Þðei 1 ejÞ
r�ij 2 ðl�0=2Þðei 1 ejÞ
��� ���3 2

r�ij 2 ðl�0=2Þðei 2 ejÞ
r�ij 2 ðl�0=2Þðei 2 ejÞ
��� ���3

8><
>:

9>=
>; ð3:57Þ

in which ql0 is the magnitude of a magnetic moment, expressed as m5 ql0, and λm
is the nondimensional parameter representing the strength of magnetic forces rela-

tive to the shear force of a simple shear flow, expressed as

λm 5
μ0m

2

12π2η _γl20d4
ð3:58Þ
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The nondimensionalization procedure generally leads to the appearance of such

nondimensional numbers; the most famous nondimensional number—the Reynolds

number, in fluid mechanics—arises from a similar nondimensional procedure.

Similarly, the torque acting on particle i by particle j in Eqs. (3.23) and (3.24) is

nondimensionalized as

T1�
ij 5

3l�0
2
λm

ei3r�ij2 ðl�0=2Þðei3ejÞ
r�ij1 ðl�0=2Þðei2ejÞ
��� ���3 2

ei3r�ij1 ðl�0=2Þðei3ejÞ
r�ij1 ðl�0=2Þðei1ejÞ
��� ���3

8><
>:

9>=
>; ð3:59Þ

T2�
ij 5

3l�0
2
λm

ei3r�ij2 ðl�0=2Þðei3ejÞ
r�ij2 ðl�0=2Þðei1ejÞ
��� ���3 2

ei3r�ij1 ðl�0=2Þðei3ejÞ
r�ij2 ðl�0=2Þðei2ejÞ
��� ���3

8><
>:

9>=
>; ð3:60Þ

The torque exerted by an applied magnetic field in Eq. (3.26) is written in non-

dimensional form:

T
ðHÞ�
i 5λHei 3 h ð3:61Þ

in which h is a unit vector denoting the magnetic field direction, expressed as

h5H/H. As before, λH is a nondimensional parameter representing the strength of

magnetic particle�field interactions relative to the torque due to the shear flow

force, expressed as

λH 5
μ0mH

πη _γd3
ð3:62Þ

The repulsive force due to the overlap of the surfactant layers in Eq. (3.42) is

nondimensionalized as

F
ðVÞ�
ij 5λV tij ln

11 2δ�

r�ij

 !
ðfor 1# r�ij # 11 2δ�Þ ð3:63Þ

in which λV is a nondimensional parameter representing the strength of such repul-

sive forces relative to the shear flow force.

We have finished nondimensionalizing almost all the quantities necessary for

simulations. The nondimensional parameters characterizing the physical phenome-

non are λm for magnetic particle�particle interactions, λH for magnetic particle�field

interactions, and λV for steric repulsive interactions.

3.2.6 Treatment of the Criteria for Particle Overlap in Simulations

In the previous subsection on the modeling of steric repulsive interactions, we pre-

sented a mathematical discussion on the assessment for the overlap of the steric

layers. In actual calculations in a simulation program, the systematic classification
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of the overlapping regimes enables us to quickly grasp a logical flow of the calcu-

lation procedures; this subject may be on a technical side rather than a mathemati-

cal one. As shown in Table 3.1, particle overlapping can be classified into four

cases: that is, a general overlap (itree5 1), a linear overlap (itree5 0), a normal

overlap (itree5 2), and a parallel overlap (itree5 3). Note that the variable names

“itree” and “ipath” are commonly used in a simulation program, so that the overlap

treatment is conducted for the cases specified by “itree” and “ipath” in a simulation

program. The important point in a simulation program is that if jkjj, jkij, then the

overlap regimes shown in Table 3.1 are easily applicable after the replacement of

indices i and j by j and i. Hence, the assumption of the condition jkjj$ jkij for start-
ing a mathematical analysis provides a relatively straightforward classification

without losing our way in a mathematical labyrinth. The classification in the sub-

stage for each case depends on which hemisphere cap of particle j overlaps with

particle i. That is, the directions of particles i and j are important for the successive

treatment of repulsive interactions. For a linear overlapping case, the calculation of

the repulsive force between only one pair of the spheres completes the overlapping

treatment. On the other hand, for the other overlapping cases, two spheres are first

placed at the nearest separation positions on each axis line, as previously explained,

in order to calculate the force and torque for this pair of spheres. Then, other

spheres are repeatedly added to the both ends of each sphere in linear formation to

form the linear sphere-connected particles i and j. Finally, the interaction forces

and torques are calculated for each pair of constituent spheres of particles i and j;

the summation of these forces and torques for each pair of spheres yields the total

force and torque acting on particle i by particle j. For example, we briefly consider

the case of itree5 1 and ipath5 1 in Table 3.1. The positions of the two spheres

are first determined on each axis line, and then the next spheres are placed at each

neighboring position in the (2ni) and (2nj) directions; the repulsive forces and tor-

ques are calculated for each pair of these constituent spheres.

3.2.7 Parameters for Simulations

We set the following initial conditions for simulations. A magnetic field is applied

in the y-axis direction, and a simple shear flow is applied in the x-direction. The

spherocylinder particles are expected to aggregate in the magnetic field direction

(y-axis direction) because they are magnetized in the particle axis direction. Hence

we employ a rectangular-parallelepiped simulation box, with its longer axis along

the field direction with a square base. We first place six rows of particles in the

x-axis direction with their particle axis pointing to the y-axis direction, then repeat

this procedure in the z-direction to obtain the initial configuration of 36 particles in

the xz-plane. Finally, we expand this configuration in the y-axis direction to obtain

the total six layers of these particles. The initial configuration of 216 particles, there-

fore, can be assigned from this procedure. A rectangular-parallelepiped simula-

tion box needs to be set, with an appropriate aspect ratio dependent upon the

particle aspect ratio. The present simulation uses a simulation box where the length

in the y-axis direction is twice the length in the x-axis direction; note that the
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Table 3.1 Regime of Overlap

ipath = 1 
(ni • nj ≥0, kj ≥0)

ipath = 1 
(ni • nj ≥0, tij • nj ≥0)

ipath = 2 
(ni • nj ≥0, tij • nj <0)

ipath = 3 
(ni • nj <0, tij • nj ≥0)

ipath = 1 
(kj ≥0)

ipath = 1 
(ni • nj ≥0)

ipath = 2 
(ni • nj <0, kj

s ≤−l0/2)
ipath = 3 
(ni • nj <0, kj

s >–l0/2)

ipath = 2 
(kj <0)

ipath = 4 
(ni • nj <0, tij • nj <0)

ipath = 2 
(ni • nj <0, kj <0)

ipath = 3 
(ni • nj <0, kj ≥0)

ipath = 4 
(ni • nj ≥0, kj <0)

1. itree = 1 

2. itree = 0 

3. itree = 2 

4. itree = 3 

Note that ni is used as ei.
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above-mentioned setting procedure is slightly different from that explained in

Section 2.1.2. In the present simulation, the particle aspect ratio rp is taken as rp5 5,

the volumetric fraction as φV5 0.05, and the thickness of a surfactant layer as

δ*5 0.15.

A shear flow and a magnetic field have a tendency to make the spherocylinder

particles incline in the flow direction and in the applied direction, respectively. The

orientational behavior of the magnetic spherocylinder particles, therefore, depends

in a complicated manner on the strength of magnetic interactions as well as the

flow shear rate. The main objective of the present simulation is to discuss the influ-

ences of magnetic particle�field, magnetic particle�particle, and steric repulsive

interactions on the behavior of spherocylinder particles in a simple shear flow.

Hence, simulations are carried out for various cases of the nondimensional para-

meters λm and λH such as λm5 0, 10, 20, and 50 and λH5 0, 10, 20, 50, and 100.

On the other hand, λV is taken to have the single value λV5 150; a larger value of

λV induces a large repulsive force at the particle overlapping.

3.2.8 Results of Simulations

Figure 3.7 shows the change in aggregate structures with time for no applied magnetic

field and no magnetic interactions between particles. The rod-like particles rotate in the

xy-plane about the z-axis because there is no applied magnetic field. Describing

in more detail, the particles incline in the flow direction (x-axis direction) during a long

period as in Figures 3.7A and C. Once particles have been kicked below the x-axis,

they quickly rotate toward the preferred direction, as shown in Figures 3.7A and C by

way of a transient snapshot shown in Figure 3.7B. This is because much larger torques

act on the rod-like particles when inclining in a direction normal to the flow.

Figure 3.8 shows a snapshot for no applied magnetic field under strong magnetic

particle�particle interactions λm5 10. The figure on the left-hand side is a general

snapshot viewed from a certain angle to grasp how nearly the particles incline in the

flow direction. The figure on the right-hand side is an oblique view for grasping the

formation of wall-like clusters along the flow direction, that is, it is viewed almost

from the negative x-axis direction. In this case, even if no magnetic field is applied,

rod-like particles seldom rotate from the situation in Figure 3.8 because magnetic

particle�particle interactions become more dominant than viscous shear forces, and

so the particles form complex three-dimensional aggregate structures. However, the

individual particles have a tendency to incline in the shear flow direction.

Figure 3.9 shows a snapshot for a strong applied magnetic field λH5 10 and no

magnetic interactions λm5 0. In this situation, the applied magnetic field makes

rod-like particles incline in the magnetic field direction. The final particle orienta-

tion is determined by the balance of the torque due to the applied field and the tor-

que due to a shear flow; in Figure 3.9 all rod-like particles tend to incline in the

same direction (the direction of the flow) because there is no disturbance due to

magnetic particle�particle interactions.

Figure 3.10 shows the result for magnetic interactions λm5 10 and for an exter-

nal magnetic field λH5 10 as in Figure 3.9. A significant difference to the case of
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Figure 3.9 is that, to a certain degree, aggregates have wall-like structures along

the flow direction. The particle aggregation is due to magnetic interactions between

particles, and the viscous forces and torques induce more complex aggregates, such

as these wall-like structures. Wall-like clusters are also observed for the case of

magnetic spherical particles in an applied magnetic field subject to a simple shear

flow. Magnetic particle�particle interactions emphasize the tendency of particles

to incline in the flow direction, which is clearly seen by comparing with the case in

Figure 3.9. Note that the particles in Figure 3.10 do not orient toward the same

preferred direction.

(A)

(B) (C)

Figure 3.7 Time change in aggregate structures for λH5 0 and λm5 0: (A) t5 t1, (B) t5 t2,

and (C) t5 t3.
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Figure 3.11 is a snapshot for a significantly strong applied magnetic field

λH5 50, but without magnetic particle�particle interactions. Since a magnetic

field is significantly strong, each particle inclines to a higher degree in the mag-

netic field direction (y-axis direction) as compared with that in Figure 3.9. On the

other hand, wall-like clusters are not formed in this case because there are no

magnetic interactions.

(A) (B)

Figure 3.8 Aggregate structures for λH5 0 and λm5 10: (A) an oblique view and (B)

viewed nearly from the negative x-axis.

(A) (B)

Figure 3.9 Aggregate structures for λH5 10 and λm5 0: (A) an oblique view and (B)

viewed nearly from the negative x-axis.
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Figure 3.12 also shows λH5 50, as in Figure 3.11, but magnetic interactions are

λm5 10 in this case. Comparison with Figure 3.10, clearly reveals that wall-like

clusters are formed along the flow direction. The detailed observation of the inter-

nal structures of wall-like clusters indicates that the rod-like particles aggregate to

(A) (B)

Figure 3.10 Aggregate structures for λH5 10 and λm5 10: (A) an oblique view and (B)

viewed nearly from the negative x-axis.

(B)(A)

Figure 3.11 Aggregate structures for λH5 50 and λm5 0: (A) an oblique view and (B)

viewed nearly from the negative x-axis.
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form wall-like structures in such a way that one cluster is placed into two parallel

clusters, with the plus magnetic charge of the center particle in contact with the

minus magnetic charges of the two neighboring particles.

The above discussion has systematically used snapshots to present the properties

of aggregates. However, this type of qualitative discussion is insufficient for an

academic paper, and the addition of quantitative discussion is necessary. For this

exercise, it would be suitable to discuss the radial, pair, and orientational distribu-

tion functions, whilst further investigation of the phenomena might necessitate

Brownian dynamics in order to include random particle motion.

3.2.9 Simulation Program

The following sample simulation program has been written for the present simula-

tion in FORTRAN. The important variables used in the simulation program are as

follows:

RX(I),RY(I),RZ(I) : (x, y, z) components of the position vector r�i of particle i

NX(I),NY(I),NZ(I) : (x, y, z) components of the unit vector ni(5 ei) of particle i

denoting the particle and magnetic moment direction

FX(I),FY(I),FZ(I) : (x, y, z) components of the force F�
i acting on particle i

TX(I),TY(I),TZ(I) : (x, y, z) components of the torque T�
i acting on particle i

XL,YL,ZL : Side lengths of the simulation box in the (x, y, z) directions

L : Length l* of the solid part of the spherocylinder particle

D : Diameter d* of the solid cylinder part of the spherocylinder

DEL : Thickness δ* of the surfactant layer
TD : Ratio 2δ*(52δ/d) of the surfactant layer thickness to the

particle radius

(A) (B)

Figure 3.12 Aggregate structures for λH5 50 and λm5 10: (A) an oblique view and (B)

viewed nearly from the negative x-axis.
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RP : Particle aspect ratio rp (5l/d)

RP1 : Particle aspect ratio rp
0(5l0/d5 rp2 1)

N : Number of particles

VDENS : Volumetric fraction of particles φV

NDENS : Number density of particles

HX,HY,HZ : (x,y,z) components of the unit vector denoting the magnetic

field direction

RAM : Nondimensional parameter λm representing the strength of

magnetic particle�particle interactions

RAH : Nondimensional parameter λH representing the strength of

magnetic particle�field interactions

RAV : Nondimensional parameter λV representing the strength of

repulsive interactions due to the overlap of steric layers

H : Time interval

RCOFF : Cutoff distance for calculations of forces and torques

XA,YA,YC,YH : Resistance functions

GAMDOT : Shear rate _γ�

MOMX(*),MOMY(*),
MOMZ(*)

: Averaged values of the particle direction at each time step

As an aid for understanding the program, comments have been added to the impor-

tant features. The line numbers shown at the beginning of each line are just for the

reader’s convenience and are unnecessary for executing the FORTRAN program.

We briefly explain quasi-random numbers, which are used in the subroutine

“INITIAL” for setting an initial configuration. A quasi-random number is generated

using an irrational. For example, if
ffiffiffi
2

p
is used, the fractional parts of

ffiffiffi
2

p
; 2

ffiffiffi
2

p
;

3
ffiffiffi
2

p
; 4

ffiffiffi
2

p
; . . . provide a sequence of quasi-random numbers ranging from zero to

unity.

0001 C*********************************************************************
0002 C*                           mdcylndr1.f                             *
0003 C*                                                                   *
0004 C*             OPEN(9, FILE='@bbb1.dat', STATUS='UNKNOWN')           *
0005 C*             OPEN(10,FILE='bbb11.dat', STATUS='UNKNOWN')           *
0006 C*             OPEN(13,FILE='bbb41.mgf', STATUS='UNKNOWN')           *
0007 C*             OPEN(21,FILE='bbb001.dat',STATUS='UNKNOWN')           *
0008 C*             OPEN(22,FILE='bbb011.dat',STATUS='UNKNOWN')           *
0009 C*             OPEN(23,FILE='bbb021.dat',STATUS='UNKNOWN')           *
0010 C*             OPEN(24,FILE='bbb031.dat',STATUS='UNKNOWN')           *
0011 C*             OPEN(25,FILE='bbb041.dat',STATUS='UNKNOWN')           *
0012 C*             OPEN(26,FILE='bbb051.dat',STATUS='UNKNOWN')           *
0013 C*             OPEN(27,FILE='bbb061.dat',STATUS='UNKNOWN')           *
0014 C*             OPEN(28,FILE='bbb071.dat',STATUS='UNKNOWN')           *
0015 C*             OPEN(29,FILE='bbb081.dat',STATUS='UNKNOWN')           *
0016 C*             OPEN(30,FILE='bbb091.dat',STATUS='UNKNOWN')           *
0017 C*                                                                   *
0018 C*        ----------   MOLECULAR DYNAMICS SIMULATIONS   ---------    *
0019 C*         THREE-DIMENSIONAL MOLECULAR DYNAMICS SIMULATIONS OF       *
0020 C*         A DISPERSION COMPOSED OF MAGNETIC SPHEROCYLINDERS         *
0021 C*         IN A SIMPLE SHEAR FLOW.                                   *
0022 C*                                                                   *
0023 C*         1. RODLIKE MODEL WITH ARBITRARY ASPECT RATIO.             *
0024 C*         2. NO HYDRODYNAMIC INTERACTIONS AMONG PARTICLES.          *
0025 C*                                                                   *
0026 C*                                    VER.1  BY A.SATOH , '08  5/23  *
0027 C*********************************************************************
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0056 C     NTIMEMX : MAXIMUM NUMBER OF TIME STEP 
0057 C
0058 C        -XL/2 < RX < XL/2 ,  -YL/2 < RY < YL/2,  -ZL/2 < RZ < ZL/2  
0059 C---------------------------------------------------------------------
0060 C                                                                     
0061       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)  
0062 C                                                 
0063       COMMON /BLOCK1/  RX   , RY   , RZ           
0064       COMMON /BLOCK2/  NX   , NY   , NZ         
0065       COMMON /BLOCK3/  FX   , FY   , FZ         
0066       COMMON /BLOCK4/  TX   , TY   , TZ         
0067       COMMON /BLOCK5/  XL   , YL   , ZL           
0068       COMMON /BLOCK6/  RP   , RP1  , D    ,  DEL  , TD  
0069       COMMON /BLOCK7/  XA   , YA   , YC   , YH 
0070       COMMON /BLOCK8/  N    , NDENS, VDENS 
0071       COMMON /BLOCK9/  H    , RCOFF, GAMDOT, DX   , CORY      
0072       COMMON /BLOCK10/ RAM  , RAH  , RAV               
0073       COMMON /BLOCK11/ HX   , HY   , HZ               
0074       COMMON /BLOCK12/ MOMX , MOMY , MOMZ                         
0075       COMMON /WORK20/  XRXI , YRYI , ZRZI , XRXJ , YRYJ , ZRZJ  
0076       COMMON /WORK21/  FXIJS, FYIJS, FZIJS, FXJIS, FYJIS, FZJIS 
0077       COMMON /WORK22/  TXIJS, TYIJS, TZIJS, TXJIS, TYJIS, TZJIS 
0078       COMMON /WORK23/  RCOFF2 , RP102 , D1    , D1SQ 
0079       COMMON /WORK24/  CF0XA  , CF0YA , CT0YC , CE0YHYC  
0080 C
0081       PARAMETER( NN=1000 , NNS=500000 , PI=3.141592653589793D0 )   
0082 C                                                               
0083       REAL*8    NDENS                                  
0084       REAL*8    RX(NN) , RY(NN) , RZ(NN) , NX(NN) , NY(NN) , NZ(NN) 
0085       REAL*8    FX(NN) , FY(NN) , FZ(NN) , TX(NN) , TY(NN) , TZ(NN) 
0086       REAL      MOMX(NNS) , MOMY(NNS) , MOMZ(NNS)                    
0087 C                                                                    
0088       REAL*8    BETA  
0089       REAL*8    RXI , RYI , RZI , NXI , NYI , NZI , FXI , FYI , FZI 
0090       REAL*8    TXI , TYI , TZI , WXI , WYI , WZI , WXIN, WYIN, WZIN
0091       REAL*8    FXIP , FYIP , FZIP , FXIN  , FYIN , FZIN        
0092       REAL*8    TXIP , TYIP , TZIP , TXIN  , TYIN , TZIN  
0093       REAL*8    OMEIPX , OMEIPY , OMEIPZ , OMEINX , OMEINY , OMEINZ 
0094       REAL*8    C1   , C2   , C3   ,  C00   
0095       REAL*8    C1X  , C1Y  , C1Z  ,  C2X  , C2Y  , C2Z   
0096       REAL*8    C3X  , C3Y  , C3Z   
0097       REAL*8    CCA1 , CCB1 , CCS1 ,  CCL1 
0098       INTEGER   NTIME , NTIMEMX , NGRAPH , DNSMPL , NP   ,  NOPT 

0028 C     N     : NUMBER OF PARTICLES                                    
0029 C     D     : DIAMETER OF SOLID HEMISPHERE PARTICLE (=1)             
0030 C     L     : LENGTH OF SOLID SPHEROCYLINDER   
0031 C     RP    : ASPECT RATIO (=L/D)  
0032 C     RP1   : ASPECT RATIO OF CYLINDER LENGTH TO D (=RP-1)    
0033 C     NDENS : NUMBER DENSITY                                        
0034 C     VDENS : VOLUMETRIC FRACTION       
0035 C     RAM   : NONDIMENSIONAL PARAMETER OF PARTICLE-PARTICLE INTERACT 
0036 C     RAH   : NONDIMENSIONAL PARAMETER OF PARTICLE-FIELD INTERACTION 
0037 C     RAV   : NONDIMENSIONAL PARAMETER OF STERIC REPULSION           
0038 C     RCOFF : CUTOFF RADIUS FOR CALCULATION OF INTERACTION ENERGIES  
0039 C     XL,YL,ZL : DIMENSIONS OF SIMULATION REGION 
0040 C     BETA  : ASPECT RATIO OF SIMULATION BOX 
0041 C     (HX,HY,HZ) : UNIT VECTOR DENOTING MAGNETIC FIELD DIRECTION  
0042 C                                                                 
0043 C     XA,YA : RESISTANCE FUNC. FOR TRANSLATIONAL MOTION          
0044 C     YC    : RESISTANCE FUNC. FOR ROTATIONAL MOTION            
0045 C     YH    : RESISTANCE FUNC. FOR SHEAR FLOW TERM           
0046 C     RX(I),RY(I),RZ(I)    : PARTICLE POSITION 
0047 C     NX(N),NY(N),NZ(N)    : DIRECTION OF PARTICLE MAJOR AXIS AND
0048 C                            MAGNETIC MOMENT            
0049 C     FX(I),FY(I),FZ(I)    : FORCES ACTING ON PARTICLE I             
0050 C     TX(I),TY(I),TZ(I)    : TORQUES ACTING ON PARTICLE I            
0051 C     MOMX(**),MOMY(**)    : MAG. MOMENT OF SYSTEM AT EACH TIME STEP 
0052 C     MOMZ(**)                                                     
0053 C                                                                    
0054 C     H       : INTERVAL OF TIME STEP FOR MOLE. DYNA. SIMULATIONS    
0055 C     GAMDOT  : SHEAR RATE (=1 FOR THIS CASE)
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0111                OPEN(27,FILE='bbb061.dat',STATUS='UNKNOWN') 
0112                OPEN(28,FILE='bbb071.dat',STATUS='UNKNOWN') 
0113                OPEN(29,FILE='bbb081.dat',STATUS='UNKNOWN') 
0114                OPEN(30,FILE='bbb091.dat',STATUS='UNKNOWN') 
0115                                                                   NP=9
0116 C                                                                     
0117 C                                                --- PARAMETER (1) ---
0118 C                    -------------------------------------------------
0119 C                       N=5**3(125), 6**3(216), 7**3(343), 8**3(512) 
0120 C                    -------------------------------------------------
0121 C                        RAH   =   0.1     1.0     10.     100.   
0122 C                        H     =  0.001   0.001   0.001   0.0001  
0123 C                            ++++++++++++++++++++++++++++++++   
0124 C                        RAM   =   0.1     1.0     10.     100.   
0125 C                        H     =  0.001   0.001   0.001   0.0001
0126 C
0127 C                        THE MINIMUM VALUE ON THE ABOVE LIST MUST BE 
0128 C                        USED FOR THE TIME INTERVAL H.
0129 C                    -------------------------------------------------
0130       N       = 216            
0131       VDENS   = 0.05D0        
0132       RAM     = 20.D0          
0133       RAH     = 10.0D0        
0134       RAV     = 150.D0        
0135       RP      = 5.D0          
0136       RP1     = RP - 1.D0     
0137 C                                                --- PARAMETER (2) ---
0138       H       = 0.0001D0                                              
0139       GAMDOT  = 1.D0                                        
0140       TD      = 0.3D0                   
0141       RCOFF   = 5.D0*RP
0142       DEL     = TD/2.D0 
0143       HX      = 0.D0 
0144       HY      = 1.D0 
0145       HZ      = 0.D0 
0146 C                                                --- PARAMETER (3) ---
0147       BETA    = 2.D0                       
0148       DX      = 0.D0  
0149       D       = 1.0D0
0150       NDENS   = (  12.D0/( PI*(3.D0*RP-1.D0) )  )*VDENS   
0151 C                                                --- PARAMETER (4) ---
0152       NTIMEMX = 200000                                                
0153       NGRAPH  = NTIMEMX/10                          
0154       NANIME  = NTIMEMX/200     
0155       DNSMPL  = 2                                                   
0156       NOPT    = 20  
0157 C                                                --- PARAMETER (5) ---
0158       CCA1    = RP/2.D0 + DEL 
0159       CCB1    = 0.5D0   + DEL
0160       CCS1    = DSQRT( CCA1**2 - CCB1**2 ) / CCA1  
0161       CCL1    = DLOG( (1.D0+CCS1)/(1.D0-CCS1) ) 
0162       XA      =  (8.D0/3.D0)*CCS1**3
0163      &                     / (  -2.D0*CCS1+(1.D0+CCS1**2)*CCL1  ) 
0164       YA      = (16.D0/3.D0)*CCS1**3  
0165      &                     / (   2.D0*CCS1+(3.D0*CCS1**2-1.D0)*CCL1  )

• The particle number N=216, volu- 
metric fraction φV =0.05, λm=20, λH= 
10, λV=150, and aspect ratio rp=5.  

• The time interval h*=0.0001, tδ=0.3, 
cutoff radius r*coff=5rp, thickness of a 
surfactant layer δ*=0.15, and magnetic 
field direction h=(0,1,0).

• BETA is used in determining the simulation region
size. NDENS is the number density of particles.   

• The main loop is finished when NTIME arrives at 200,000.
• The particle position and other data are written out at every 
NGRAPH time steps. 200 sets of data are written out for 
making an animation based on MicroAVS.    

• The resistance functions XA, YA, YC,
and YH are calculated in advance.  

0099       INTEGER   NSMPL1 , NSMPL2         
0100       INTEGER   NANIME  , NANMCTR, NOPT1 
0101 C                                                                     
0102                OPEN(9,FILE='@bbb1.dat' , STATUS='UNKNOWN') 
0103                OPEN(10,FILE='bbb11.dat', STATUS='UNKNOWN') 
0104                OPEN(13,FILE='bbb41.mgf', STATUS='UNKNOWN') 
0105                OPEN(21,FILE='bbb001.dat',STATUS='UNKNOWN') 
0106                OPEN(22,FILE='bbb011.dat',STATUS='UNKNOWN') 
0107                OPEN(23,FILE='bbb021.dat',STATUS='UNKNOWN') 
0108                OPEN(24,FILE='bbb031.dat',STATUS='UNKNOWN') 
0109                OPEN(25,FILE='bbb041.dat',STATUS='UNKNOWN') 
0110                OPEN(26,FILE='bbb051.dat',STATUS='UNKNOWN') 

• The given values and the 
magnetic moment results 
are written out in @bbb1 
and bbb11, the data for 
MicroAVS are done in 
bbb41, and the intermedi-
ate positions and 
directions are done in 
bbb001–bbb091 in the 
time sequential order.     

0166       YC      = (4.D0/3.D0)* ( CCS1**3*(2.D0-CCS1**2) )   
0167      &                     / (  -2.D0*CCS1+(1.D0+CCS1**2)*CCL1  ) 
0168       YH      = (4.D0/3.D0)*CCS1**5   
0169      &                     / (  -2.D0*CCS1+(1.D0+CCS1**2)*CCL1  ) 
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0170 C                                                --- PARAMETER (6) ---
0171       RCOFF2  = RCOFF**2
0172       RP102   = RP1/2.D0                             
0173       D1      = 1.D0+TD 
0174       D1SQ    = D1**2     
0175       CF0XA   = 1.D0/( XA*(RP+2.D0*DEL ) ) 
0176       CF0YA   = 1.D0/( YA*(RP+2.D0*DEL ) ) 
0177       CT0YC   = 1.D0/( YC*(RP+2.D0*DEL )**3 )
0178       CE0YHYC = (YH/YC)*0.5D0  
0179 C                                                                     
0180 C     ----------------------------------------------------------------
0181 C     -----------------    INITIAL CONFIGURATION    ------------------
0182 C     ----------------------------------------------------------------
0183 C                                                                     
0184 C                                          --- SET INITIAL CONFIG. ---
0185 CCC   OPEN(19,FILE='qqq091.dat',STATUS='OLD')              
0186 CCC   READ(19,472)  N , XL , YL , ZL , D , TD , RP , RP1 , DX 
0187 CCC   READ(19,474) (RX(I),I=1,N),(RY(I),I=1,N),(RZ(I),I=1,N),
0188 CCC  &             (NX(I),I=1,N),(NY(I),I=1,N),(NZ(I),I=1,N)
0189 CCC   CLOSE(19,STATUS='KEEP')                                         
0190 CCC   GOTO 7 
0191 C        
0192       CALL INITIAL( BETA )                 
0193 C                                                                     
0194     7 IF( RCOFF .GE. XL/2.D0 ) THEN 
0195         RCOFF = XL/2.D0 - 0.00001D0
0196       END IF
0197       RCOFF2 = RCOFF**2   
0198 C                                                   --- CAL FORCES ---
0199       NTIME = 0  
0200       CALL FORCECAL( NP, NTIME )
0201 C                                                                     
0202 C                                                    --- PRINT OUT ---
0203       WRITE(NP,12) N, VDENS, NDENS, RAM ,RAH ,RAV, RP, RP1, D, DEL, 
0204      &             TD, XA, YA, YC, YH, H, RCOFF, GAMDOT, BETA, 
0205      &             XL, YL, ZL    
0206       WRITE(NP,13) RP102, D1, CF0XA, CF0YA, CT0YC, CE0YHYC 
0207       WRITE(NP,14) NTIMEMX, NGRAPH, DNSMPL
0208 C                                                                     
0209 C                                               --- INITIALIZATION ---
0210       NANMCTR = 0
0211       NSMPL   = 0                                      
0212 C                                                                     
0213 C     ----------------------------------------------------------------
0214 C     ------------------    START OF MAIN LOOP    --------------------
0215 C     ----------------------------------------------------------------
0216 C                                                                     
0217       DO 1000 NTIME = 1,NTIMEMX                                       
0218 C                                                                     
0219         DX = GAMDOT*YL*H*DBLE(NTIME) 
0220         DX = DMOD( DX, XL )

• CF0XA and CF0YA are the coefficients in 
the force term in Eq. (3.49), CT0YC is the 
coefficient in the torque term in Eq. (3.50), 
and CE0YHYC is a part of the coefficient of
the shear rate in Eq. (3.50).      

• These READ statements are for continuing the sequential
simulation using the data saved previously.  

• The particle initial positions and velocities are 
assigned .  

• The forces and torques acting between particles
are calculated. 

• DX is ΔX in Fig. 2.15. 

0221 C                                                                     
0222         DO 100 I = 1,N                                                
0223 C               
0224           NXI   = NX(I)       
0225           NYI   = NY(I)       
0226           NZI   = NZ(I)      
0227           FXI   = FX(I)       
0228           FYI   = FY(I)       
0229           FZI   = FZ(I)      
0230           TXI   = TX(I)       
0231           TYI   = TY(I)       
0232           TZI   = TZ(I)      
0233 C                                     --- (1) TRANSLATIONAL MOTION ---
0234 C
0235           C00   = FXI*NXI + FYI*NYI + FZI*NZI 
0236           FXIP  = C00*NXI 
0237           FYIP  = C00*NYI 
0238           FZIP  = C00*NZI 
0239           FXIN  = FXI - FXIP 
0240           FYIN  = FYI - FYIP 

• The force acting on particle i is decomposed into one 
in the particle direction and another in the direction 
normal to the particle axis according to Eq. (3.36). 
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0241           FZIN  = FZI - FZIP 
0242 C
0243           RXI   = RX(I) + H*( CF0XA*FXIP+CF0YA*FXIN ) + RY(I)*GAMDOT*H
0244           RYI   = RY(I) + H*( CF0XA*FYIP+CF0YA*FYIN )     
0245           RZI   = RZ(I) + H*( CF0XA*FZIP+CF0YA*FZIN )     
0246           CORY  = DNINT( RYI/YL )           
0247           RXI   = RXI - CORY*DX             
0248           RX(I) = RXI - DNINT( RXI/XL )*XL    
0249           RY(I) = RYI - CORY*YL              
0250           RZ(I) = RZI - DNINT( RZI/ZL )*ZL   
0251 C           
0252 C                                        --- (2) ROTATIONAL MOTION ---
0253           C00   = TXI*NXI + TYI*NYI + TZI*NZI 
0254           TXIP  = C00*NXI 
0255           TYIP  = C00*NYI 
0256           TZIP  = C00*NZI 
0257           TXIN  = TXI - TXIP 
0258           TYIN  = TYI - TYIP 
0259           TZIN  = TZI - TZIP 
0260 C
0261           C00    = -0.5D0*NZI  
0262           OMEIPX = C00*NXI 
0263           OMEIPY = C00*NYI 
0264           OMEIPZ = C00*NZI 
0265           OMEINX =        - OMEIPX  
0266           OMEINY =        - OMEIPY  
0267           OMEINZ = -0.5D0 - OMEIPZ  
0268 C
0269           C1X   = CT0YC*TXIN  
0270           C1Y   = CT0YC*TYIN  
0271           C1Z   = CT0YC*TZIN 
0272           C2X   = -CE0YHYC* ( NZI*NXI ) 
0273           C2Y   = -CE0YHYC* (-NZI*NYI ) 
0274           C2Z   = -CE0YHYC* ( NYI**2 - NXI**2 ) 

• This is the treatment of the 
Lees–Edwards BC explained 
in Section 2.4.2.    

• The torque acting on particle i is decomposed into one about 
the particle direction and another about a line normal to the 
particle direction through its center according to Eq. (3.36).

• The angular velocity is decomposed into two
vectors in a similar way to the torque.   

• The terms of the torque and the shear 
rate are calculated in the angular  
velocity in Eq. (3.50).   

0275 C          
0276           WXIN  = OMEINX + C1X + C2X 
0277           WYIN  = OMEINY + C1Y + C2Y 
0278           WZIN  = OMEINZ + C1Z + C2Z 
0279           C3X   = WYIN*NZI - WZIN*NYI  
0280           C3Y   = WZIN*NXI - WXIN*NZI  
0281           C3Z   = WXIN*NYI - WYIN*NXI  
0282 C
0283           NXI   = NXI + H*C3X                     
0284           NYI   = NYI + H*C3Y                      
0285           NZI   = NZI + H*C3Z                  
0286           C00   = DSQRT( NXI**2 + NYI**2 + NZI**2 )          
0287           NX(I) = NXI/C00                    
0288           NY(I) = NYI/C00                     
0289           NZ(I) = NZI/C00                     
0290 C                                                                     
0291   100   CONTINUE                                                      
0292 C                                                   --- CAL FORCES ---
0293         CALL FORCECAL( NP, NTIME )
0294 C                                                                     
0295 C     ----------------------------------------------------------------
0296 C                                             --- MOMENT OF SYSTEM ---
0297         IF( MOD(NTIME,DNSMPL) .EQ. 0 ) THEN  
0298           NSMPL   = NSMPL + 1  
0299           C1 = 0.D0                          
0300           C2 = 0.D0                          
0301           C3 = 0.D0                          
0302           DO 450 J=1,N                       
0303             C1 = C1 + NX(J)                  
0304             C2 = C2 + NY(J)                  
0305             C3 = C3 + NZ(J)                  
0306   450     CONTINUE                           
0307           MOMX(NSMPL) = REAL(C1)/REAL(N)     
0308           MOMY(NSMPL) = REAL(C2)/REAL(N)     
0309           MOMZ(NSMPL) = REAL(C3)/REAL(N)     
0310         END IF 

• The angular velocity in Eq.(3.50) is calculated. 

• To evaluate the particle direction from Eq.(3.55), 
the vector product of the angular velocity and the 
particle direction is first calculated.    

• The particle direction is evaluated from Eq. (3.55). 

• The modification is made to yield the unit vector. 

• Calculation of the forces and torques. 

• To check the system convergence 
afterward, the average of the particle
direction vector is calculated.    

• The data of the particle positions and
directions are written out at every 
NGRAPH time steps for the post 
processing analysis.     

0311 C     
0312 C                                 --- DATA OUTPUT (1) FOR GRAPHICS ---
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0313         IF( MOD(NTIME,NGRAPH) .EQ. 0 ) THEN                  
0314           NOPT = NOPT + 1                                           
0315           WRITE(NOPT,472)  N , XL , YL , ZL , D , TD , RP , RP1 , DX 
0316           WRITE(NOPT,474) (RX(I),I=1,N),(RY(I),I=1,N),(RZ(I),I=1,N),
0317      &                    (NX(I),I=1,N),(NY(I),I=1,N),(NZ(I),I=1,N)
0318                                            CLOSE(NOPT,STATUS='KEEP') 
0319         END IF   
0320 C
0321 C                                --- DATA OUTPUT FOR ANIMATION (2) ---
0322         IF( MOD(NTIME,NANIME) .EQ. 0 ) THEN
0323           NANMCTR = NANMCTR + 1
0324           NOPT1   = 13   
0325           CALL DATAOPUT( NOPT1, NANMCTR, NTIMEMX, NANIME, N )  
0326         END IF   
0327 C                                                                     
0328 C                                                                     
0329  1000 CONTINUE                                                       

• The data of the particle positions and directions are written out at every
NANIME time steps for making an animation based on MicroAVS.   

0330 C                                                                     
0331 C     ----------------------------------------------------------------
0332 C     -------------------  END OF MOLECULAR DYNAMICS   ---------------
0333 C     ----------------------------------------------------------------
0334 C                                                                     
0335 C                                                --- PRINT OUT (2) ---
0336       WRITE(NP,1011)                                  
0337       NSMPL1 = 1
0338       NSMPL2 = NSMPL 
0339       CALL PRNTDATA( NSMPL1 , NSMPL2 , NP )                        
0340       WRITE(NP,1013) NSMPL1 , NSMPL2                               
0341 C                                 --- DATA OUTPUT (2) FOR GRAPHICS ---
0342       WRITE(10,1111) N, VDENS, NDENS, RAM, RAH, RAV        
0343       WRITE(10,1113) RP, RP1, D, DEL, TD, XA, YA, YC, YH   
0344       WRITE(10,1115) H, RCOFF, GAMDOT, BETA, XL, YL, ZL    
0345       WRITE(10,1117) RP102, D1, CF0XA, CF0YA, CT0YC, CE0YHYC 
0346       WRITE(10,1119) NTIMEMX, NGRAPH, DNSMPL    
0347       WRITE(10,1121) ( MOMX(I),I=NSMPL1, NSMPL2)       
0348      &              ,( MOMY(I),I=NSMPL1, NSMPL2)       
0349      &              ,( MOMZ(I),I=NSMPL1, NSMPL2)       
0350 C
0351                                            CLOSE(9, STATUS='KEEP')    
0352                                            CLOSE(10,STATUS='KEEP')    
0353                                            CLOSE(13,STATUS='KEEP')    
0354 C     -------------------------- FORMAT ------------------------------
0355    12 FORMAT(/1H ,'--------------------------------------------------'
0356      &       /1H ,'-    MOLECULAR DYNAMICS SIMULATIONS OF SPHERO-   -'
0357      &       /1H ,'-    CYLINDER PARTICLES IN A SIMPLE SHEAR FLOW   -'
0358      &       /1H ,'--------------------------------------------------'
0359      &      //1H ,'N=',I6, 2X, 'VDENS=',F7.4, 2X ,'NDENS=',F9.6   
0360      &       /1H ,'RAM=',F6.2, 2X, 'RAH=',F6.2, 2X ,'RAV=',F7.2   
0361      &       /1H ,'RP=',F5.2, 2X ,'RP1=',F5.2, 2X ,'D=',F5.2, 2X ,
0362      &            'DEL=',F5.2, 2X,'TD=',F5.2
0363      &       /1H ,'XA=',E12.4,2X,'YA=',E12.4,2X,'YC=',E12.4,2X,
0364      &            'YH=',E12.4
0365      &       /1H ,'H=',E12.4,3X,'RCOFF=',F5.2,2X,'GAMDOT=',F5.2,2X,
0366      &            'BETA=', F5.2
0367      &       /1H ,'XL=',F6.2,2X,'YL=',F6.2,2X,'ZL=',F6.2)      
0368    13 FORMAT( 1H ,'RP102=',F5.2,2X,'D1=',F5.2,2X,
0369      &            'CF0XA=',E11.3, 2X, 'CF0YA=',E11.3
0370      &       /1H ,'CT0YC=',E11.3, 2X, 'CE0YHYC=',E11.3)
0371    14 FORMAT( 1H ,'NTIMEMX=',I8, 2X,'NGRAPH=',I8,2X,'DNSMPL=',I8/)
0372   472 FORMAT( I5 , 3F9.4 , 4F8.4 , E16.8 )                       
0373   474 FORMAT( (5F16.10) )                                             
0374  1011 FORMAT(/1H ,'++++++++++++++++++++++++++++++'               
0375      &       /1H ,'       MD SIMULATIONS         '                 
0376      &       /1H ,'++++++++++++++++++++++++++++++'/)              
0377  1013 FORMAT(///1H ,18X, 'START OF MD SAMPLING STEP=',I7              
0378      &         /1H ,18X, 'END   OF MD SAMPLING STEP=',I7/)            
0379  1111 FORMAT( I5 , 2F7.4 , 3F12.5 ) 
0380  1113 FORMAT( 3F6.2 , 2F7.3 , 4E12.4 )  
0381  1115 FORMAT( E11.3 , F8.3 , 2F7.4 , 3F9.3 )            
0382  1117 FORMAT( 2F6.2 , 4E12.4 )                                    
0383  1119 FORMAT( 3I8 )                                        
0384  1121 FORMAT( (10F8.5) )                                              

• To check the system convergence 
afterward, the data of the particle 
directions are written out.
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0385                                                                   STOP
0386                                                                   END 
0387 C*********************************************************************
0388 C***************************   SUBROUTINE   **************************
0389 C*********************************************************************
0390 C                                                                     
0391 C**** SUB PRNTDATA ****                                               
0392       SUBROUTINE PRNTDATA( MCSST, MCSMX, NP )                         
0393 C                                                                     
0394       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)           
0395 C                                                                     
0396       COMMON /BLOCK12/ MOMX , MOMY , MOMZ                         
0397 C                                                                     
0398       PARAMETER( NN=1000 , NNS=500000 , PI=3.141592653589793D0 )   
0399 C                                                                     
0400       INTEGER   MCSST     , MCSMX     , NP                            
0401       REAL      MOMX(NNS) , MOMY(NNS) , MOMZ(NNS)                    
0402 C                                                                     
0403       REAL      AMOMX(10) , AMOMY(10)  , AMOMZ(10)  , C0          
0404       INTEGER   IC , IMC(0:10) , JS , JE                              
0405 C                                                                     
0406 C                                             ----- KEIKA INSATU -----
0407       IC = ( MCSMX-MCSST+1 )/50                                       
0408       DO 20 I= MCSST-1+IC , MCSMX , IC                                
0409         WRITE(NP,10) I, MOMX(I), MOMY(I), MOMZ(I)             
0410    20 CONTINUE                                                        
0411 C                                         ----- TIME STEP HEIKIN -----
0412       IC = ( MCSMX-MCSST+1 )/10                                       
0413       DO 30 I=0,10                                                    
0414         IMC(I) = MCSST - 1 + IC*I                                     
0415         IF( I .EQ. 10 ) IMC(I) =MCSMX                                 
0416    30 CONTINUE                                                        
0417 C                                                                     
0418 C                                                                     
0419       DO 35 I=1,10                                                    
0420         AMOMX( I) = 0.                                               
0421         AMOMY( I) = 0.                                               
0422         AMOMZ( I) = 0.                                               
0423    35 CONTINUE                                                        
0424 C                                                                     
0425       DO 50 I=1,10                                                    
0426         JS = IMC(I-1) + 1                                             
0427         JE = IMC(I)                                                   
0428         DO 40 J=JS,JE                                       
0429           AMOMX(I)  = AMOMX(I)  + MOMX( J)                  
0430           AMOMY(I)  = AMOMY(I)  + MOMY( J)                  
0431           AMOMZ(I)  = AMOMZ(I)  + MOMZ( J)                  
0432    40   CONTINUE                                            
0433    50 CONTINUE                                              
0434 C                                                           
0435       DO 70 I=1,10                                          
0436         C0         = REAL( IMC(I)-IMC(I-1) )                
0437         AMOMX(I)   = AMOMX(I) /C0                                   
0438         AMOMY(I)   = AMOMY(I) /C0                                   
0439         AMOMZ(I)   = AMOMZ(I) /C0                                   

• The total time steps are equally divided into 
50 blocks, and the end value of each block is 
written out.    

• The total time steps are equally divided into 
10 blocks, and the subaverages are 
calculated for each block.    

0440    70 CONTINUE                                                        
0441 C                                       ----- STEP HEIKIN INSATU -----
0442       WRITE(NP,75)                                                    
0443       DO 90 I=1,10                                                    
0444        WRITE(NP,80) I, IMC(I-1)+1, IMC(I), AMOMX(I),AMOMY(I),AMOMZ(I)
0445    90 CONTINUE                                                        
0446 C     ----------------------------------------------------------------
0447    10 FORMAT(1H ,'SMPL=',I7, 1X ,'NX=',F6.3, 1X,'NY=',F6.3, 
0448      &                                       1X,'NZ=',F6.3)
0449    75 FORMAT(//1H ,'-----------------------------------------------'  
0450      &        /1H ,'             TIME AVERAGE                      '  
0451      &        /)                                                      
0452    80 FORMAT(1H ,'I=',I2, 2X ,'SMPLMN=',I7, 2X ,'SMPLMX=',I7          
0453      &      /1H ,5X ,'NX=',F6.3, 2X,'NY=',F6.3, 2X,'NZ=',F6.3/) 
0454                                                                 RETURN
0455                                                                 END   
0456 C**** SUB INITIAL ****                                                
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0457       SUBROUTINE INITIAL( BETA )                 
0458 C                                                                     
0459       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)           
0460 C
0461       COMMON /BLOCK1/  RX   , RY   , RZ           
0462       COMMON /BLOCK2/  NX   , NY   , NZ         
0463       COMMON /BLOCK5/  XL   , YL   , ZL           
0464       COMMON /BLOCK6/  RP   , RP1  , D    ,  DEL  , TD  
0465       COMMON /BLOCK8/  N    , NDENS, VDENS 
0466       COMMON /BLOCK9/  H    , RCOFF, GAMDOT, DX   , CORY     
0467 C
0468       PARAMETER( NN=1000 , PI=3.141592653589793D0 )   
0469 C                                                          
0470       REAL*8    NDENS                                  
0471       REAL*8    RX(NN) , RY(NN) , RZ(NN) , NX(NN) , NY(NN) , NZ(NN) 
0472 C                                                                     
0473       INTEGER   Q , PTCL                                     
0474       REAL*8    A , XLUNT , YLUNT , ZLUNT,  RAN1 , RAN2 , RAN3
0475       REAL*8    C1 , C2 , C3 
0476 C                                                                     
0477       A     = 1.D0/( (BETA*NDENS)**(1./3.) ) 
0478       Q     = NINT( (REAL(N+1))**(1./3.) )           
0479       XL    = A*DBLE(Q)
0480       YL    = A*DBLE(Q)*BETA
0481       ZL    = A*DBLE(Q)
0482       XLUNT = A
0483       YLUNT = A*BETA                                        
0484       ZLUNT = A
0485 C                                                ----- POSITION ----- 
0486       RAN1  = DSQRT( 2.D0 )                                         
0487       RAN2  = DSQRT( 7.D0 )                                         
0488       RAN3  = DSQRT( 11.D0 )                                        
0489       PTCL  = 0                                                     
0490       DO 10 K=0,Q-1                                                
0491       DO 10 J=0,Q-1                                                
0492       DO 10 I=0,Q-1                                              
0493         PTCL = PTCL + 1                                              
0494         C1 = RAN1*DBLE(PTCL)            

• A subroutine for setting the 
initial positions and velocities of 
particles.  

• The volume occupied by one particle is    
βa*3 and therefore a*=1/(βn*)1/3  because 
of βa*3n*=1 (n* is the number density).
• The side lengths of the unit cell are (a*, β
a* , a*) in each direction. 

• RAN1, RAN2, and RAN3 are quasi-random numbers. 
• Q particles are located in each axis direction. 
• Each particle is moved in parallel by (XLUNT/3, YLUNT/3, 
ZLUNT/3) to remove subtle situations at outer boundary 
surfaces. Also, to remove the regularity of the initial configu-
ration, each particle is moved randomly by the maximum 
displacement (1/2)×(XLUNT/8, YLUNT/8, ZLUNT/8) using 
quasi-random numbers.
• Each particle is moved in parallel by (1/2)×(-XL, -YL, -ZL), 
so that the simulation box center is the coordinate origin.           

0495         C1 = C1 - DINT(C1)  
0496         C1 = C1 - 0.5D0                                             
0497         C2 = RAN2*DBLE(PTCL)            
0498         C2 = C2 - DINT(C2)  
0499         C2 = C2 - 0.5D0                                             
0500         C3 = RAN3*DBLE(PTCL)            
0501         C3 = C3 - DINT(C3)  
0502         C3 = C3 - 0.5D0                                             
0503         RX(PTCL) = DBLE(I)*XLUNT+XLUNT/3D0+C1*(XLUNT/8.D0)-XL/2.D0  
0504         RY(PTCL) = DBLE(J)*YLUNT+YLUNT/3D0+C2*(YLUNT/8.D0)-YL/2.D0  
0505         RZ(PTCL) = DBLE(K)*ZLUNT+ZLUNT/3D0+C3*(ZLUNT/8.D0)-ZL/2.D0  
0506    10 CONTINUE                                                        
0507       N = PTCL                                                        
0508 C                                                   ----- MOMENT -----
0509       RAN1 = DSQRT( 2.D0 )                                            
0510       RAN2 = DSQRT( 3.D0 )                                            
0511       DO 20 I=1,N                                                     
0512         C1 = RAN1*DBLE(I)                                             
0513         C1 = C1 - DINT(C1)
0514         C1 = C1 - 0.5D0                                             
0515         C1 = PI/2.D0 + (5.D0/180.D0)*PI*C1      
0516         C2 = RAN2*DBLE(I)                                             
0517         C2 = C2 - DINT(C2)
0518         C2 = C2 - 0.5D0                                             
0519         C2 = PI/2.D0 + (5.D0/180.D0)*PI*C2            
0520         NX(I) = DSIN(C1)*DCOS(C2)                  
0521         NY(I) = DSIN(C1)*DSIN(C2)                  
0522         NZ(I) = DCOS(C1)                                             
0523    20 CONTINUE                                                        
0524                                                                RETURN 
0525                                                                END    
0526 C**** SUB DATAOPUT ****                                               
0527       SUBROUTINE DATAOPUT( NOPT1, NANMCTR, NTIMEMX, NANIME, N )  
0528 C                                                                     

• The initial direction of each particle is 
randomly assigned with a certain angle 
range about the y-direction using 
quasi-random numbers.  
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0529       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)           
0530 C
0531       COMMON /BLOCK1/  RX   , RY   , RZ           
0532       COMMON /BLOCK2/  NX   , NY   , NZ         
0533       COMMON /BLOCK5/  XL   , YL   , ZL           
0534       COMMON /BLOCK6/  RP   , RP1  , D    ,  DEL  , TD  
0535       COMMON /BLOCK9/  H    , RCOFF, GAMDOT, DX   , CORY              
0536 C
0537       PARAMETER( NN=1000 , PI=3.141592653589793D0 )   
0538 C                                                               
0539       REAL*8    RX(NN) , RY(NN) , RZ(NN) , NX(NN) , NY(NN) , NZ(NN) 
0540       REAL*8    RP102 , CRADIUS , CX1 , CY1 , CZ1 , CX2 , CY2 , CZ2 
0541 C                                                                   
0542       RP102   = RP1/2.D0 
0543       CRADIUS = ( D + TD )/2.D0
0544       XL2     = XL/2.D0 
0545       YL2     = YL/2.D0 
0546       ZL2     = ZL/2.D0 
0547 C
0548       IF( NANMCTR .EQ. 1 ) THEN 
0549         WRITE(NOPT1,181) ( NTIMEMX/NANIME ) 

• A subroutine for writing out 
the data which can be used 
for making an animation 
based on the commercial 
software MicroAVS.      

• MicroAVS can make a visualiza- 
tion or animation by reading the 
data from bbb41.mgf.   

0550       END IF
0551 C
0552       IF( (NANMCTR.GE.1) .AND. (NANMCTR.LE.9) ) THEN 
0553         WRITE(NOPT1,183) NANMCTR
0554       ELSE IF( (NANMCTR.GE.10) .AND. (NANMCTR.LE.99) ) THEN 
0555         WRITE(NOPT1,184) NANMCTR
0556       ELSE IF( (NANMCTR.GE.100) .AND. (NANMCTR.LE.999) ) THEN 
0557         WRITE(NOPT1,185) NANMCTR
0558       ELSE IF( (NANMCTR.GE.1000) .AND. (NANMCTR.LE.9999) ) THEN 
0559         WRITE(NOPT1,186) NANMCTR
0560       END IF        
0561 C
0562 C     ----------------------------------------------- CYLINDER (1) ---
0563       WRITE(NOPT1,211)  N
0564       DO 250 I=1,N 
0565         CX1 = RX(I) - NX(I)*RP102
0566         CY1 = RY(I) - NY(I)*RP102
0567         CZ1 = RZ(I) - NZ(I)*RP102
0568         CX2 = RX(I) + NX(I)*RP102
0569         CY2 = RY(I) + NY(I)*RP102
0570         CZ2 = RZ(I) + NZ(I)*RP102
0571         WRITE(NOPT1,248) CX1, CY1, CZ1, CX2, CY2, CZ2, (CRADIUS+1.D-5)
0572   250 CONTINUE
0573 C  
0574 C     ------------------------------------------- SPHERE MINUS (2) ---
0575       WRITE(NOPT1,311)  N
0576       DO 350 I=1,N 
0577         CX1 = RX(I) - NX(I)*RP102
0578         CY1 = RY(I) - NY(I)*RP102
0579         CZ1 = RZ(I) - NZ(I)*RP102
0580         WRITE(NOPT1,348) CX1, CY1, CZ1, CRADIUS, 0.0, 0.8, 1.0 
0581   350 CONTINUE
0582 C  
0583 C     -------------------------------------------- SPHERE PLUS (3) ---
0584       WRITE(NOPT1,311)  N
0585       DO 450 I=1,N 
0586         CX1 = RX(I) + NX(I)*RP102
0587         CY1 = RY(I) + NY(I)*RP102
0588         CZ1 = RZ(I) + NZ(I)*RP102
0589         WRITE(NOPT1,348) CX1, CY1, CZ1, CRADIUS, 1.0, 0.0, 0.0 
0590   450 CONTINUE
0591 C  
0592 C     -------------------------------------- SIM.REGEON LINES  (4) ---
0593       WRITE(NOPT1,648)  17
0594       WRITE(NOPT1,649) -XL2, -YL2, -ZL2  
0595       WRITE(NOPT1,649)  XL2, -YL2, -ZL2  
0596       WRITE(NOPT1,649)  XL2,  YL2, -ZL2  
0597       WRITE(NOPT1,649) -XL2,  YL2, -ZL2  

• Drawing of the cylindrical part of
particles.  

• Drawing of the hemisphere of the
negative charge.   

• Drawing of the hemisphere of the
positive charge.  

• Drawing of the frame of the
simulation box.   

0598       WRITE(NOPT1,649) -XL2, -YL2, -ZL2  
0599       WRITE(NOPT1,649) -XL2, -YL2,  ZL2  
0600       WRITE(NOPT1,649)  XL2, -YL2,  ZL2  
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0601       WRITE(NOPT1,649)  XL2,  YL2,  ZL2  
0602       WRITE(NOPT1,649) -XL2,  YL2,  ZL2  
0603       WRITE(NOPT1,649) -XL2, -YL2,  ZL2  
0604       WRITE(NOPT1,649) -XL2, -YL2, -ZL2  
0605       WRITE(NOPT1,649) -XL2,  YL2, -ZL2  
0606       WRITE(NOPT1,649) -XL2,  YL2,  ZL2  
0607       WRITE(NOPT1,649)  XL2,  YL2,  ZL2  
0608       WRITE(NOPT1,649)  XL2,  YL2, -ZL2  
0609       WRITE(NOPT1,649)  XL2, -YL2, -ZL2  
0610       WRITE(NOPT1,649)  XL2, -YL2,  ZL2  
0611 C  
0612 C     ---------------------------- FORMAT ----------------------------
0613   181 FORMAT('# Micro AVS Geom:2.00'
0614      &      /'# Animation of DPD simulation results'
0615      &      /I4)
0616   183 FORMAT('step',I1)                    
0617   184 FORMAT('step',I2)                    
0618   185 FORMAT('step',I3)                    
0619   186 FORMAT('step',I4) 
0620   211 FORMAT( 'column'/'cylinder'/'dvertex'/'32'/I7 ) 
0621   248 FORMAT( 6F10.3 , F6.2 )
0622   311 FORMAT( 'sphere'/'sphere_sample'/'color'/I7 ) 
0623   348 FORMAT( 3F10.3 , F6.2 , 3F5.2 )
0624   648 FORMAT( 'polyline'/'pline_sample'/'vertex'/I3 ) 
0625   649 FORMAT( 3F10.3 )
0626                                                                RETURN 
0627                                                                END    
0628 C**** SUB FORCECAL *****                                              
0629       SUBROUTINE FORCECAL( NP, NTIME )
0630 C                                                                     
0631       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)           
0632 C 
0633       COMMON /BLOCK1/  RX   , RY   , RZ           
0634       COMMON /BLOCK2/  NX   , NY   , NZ         
0635       COMMON /BLOCK3/  FX   , FY   , FZ         
0636       COMMON /BLOCK4/  TX   , TY   , TZ         
0637       COMMON /BLOCK5/  XL   , YL   , ZL           
0638       COMMON /BLOCK6/  RP   , RP1  , D    ,  DEL  , TD  
0639       COMMON /BLOCK7/  XA   , YA   , YC   , YH 
0640       COMMON /BLOCK8/  N    , NDENS, VDENS 
0641       COMMON /BLOCK9/  H    , RCOFF, GAMDOT, DX   , CORY            
0642       COMMON /BLOCK10/ RAM  , RAH  , RAV               
0643       COMMON /BLOCK11/ HX   , HY   , HZ               
0644       COMMON /WORK20/  XRXI , YRYI , ZRZI , XRXJ , YRYJ , ZRZJ  
0645       COMMON /WORK21/  FXIJS, FYIJS, FZIJS, FXJIS, FYJIS, FZJIS 
0646       COMMON /WORK22/  TXIJS, TYIJS, TZIJS, TXJIS, TYJIS, TZJIS 
0647       COMMON /WORK23/  RCOFF2 , RP102 , D1    , D1SQ 
0648       COMMON /WORK24/  CF0XA  , CF0YA , CT0YC , CE0YHYC  
0649 C
0650       PARAMETER( NN=1000 , PI=3.141592653589793D0 )   
0651 C                                                               
0652       REAL*8    NDENS                                  
0653       REAL*8    RX(NN) , RY(NN) , RZ(NN) , NX(NN) , NY(NN) , NZ(NN) 
0654       REAL*8    FX(NN) , FY(NN) , FZ(NN) , TX(NN) , TY(NN) , TZ(NN) 
0655 C                                                                     
0656       REAL*8    RXI , RYI , RZI , RXIJ , RYIJ , RZIJ , RIJSQ , RIJ 
0657       REAL*8    RXJ , RYJ , RZJ 
0658       REAL*8    NXI , NYI , NZI , NXIJ , NYIJ , NZIJ     
0659       REAL*8    NXJ , NYJ , NZJ , NXIJ2, NYIJ2, NZIJ2            

• A subroutine for calculating the 
forces and torques acting between
particles.   

0660       REAL*8    FXI , FYI , FZI , TXI  , TYI  , TZI 
0661       REAL*8    FXIJP01 , FYIJP01, FZIJP01, FXIJP02, FYIJP02, FZIJP02
0662       REAL*8    FXIJM01 , FYIJM01, FZIJM01, FXIJM02, FYIJM02, FZIJM02
0663       REAL*8    FXIJP   , FYIJP  , FZIJP  , FXJIP  , FYJIP  , FZJIP  
0664       REAL*8    TXIJP   , TYIJP  , TZIJP  , TXJIP  , TYJIP  , TZJIP  
0665       REAL*8    FXIJM   , FYIJM  , FZIJM  , FXJIM  , FYJIM  , FZJIM  
0666       REAL*8    TXIJM   , TYIJM  , TZIJM  , TXJIM  , TYJIM  , TZJIM  
0667       REAL*8    TXIJ , TYIJ , TZIJ , TXIJ0 , TYIJ0 , TZIJ0  
0668       REAL*8    XI   , YI   , ZI   , XJ    , YJ    , ZJ   
0669       REAL*8    RRXI , RRYI , RRZI , RRXIJ , RRYIJ , RRZIJ , RRIJ  
0670       REAL*8    RRXJ , RRYJ , RRZJ , RCHKSQ, RCHKSQ2               
0671       REAL*8    RRXIC , RRYIC , RRZIC , RRXJC , RRYJC , RRZJC      
0672       REAL*8    NNXI  , NNYI  , NNZI  , NNXJ  , NNYJ  , NNZJ       
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0673       REAL*8    R11 , R12 , R21 , R22 
0674       REAL*8    KI  , KJ  , KKI , KKJ , KIS , KJS , KKIS , KKIS2 
0675       REAL*8    CKI , CKJ , CKKI, CKKJ
0676       REAL*8    KKIC, KKJC , CKKIC , CKKIC2 
0677       REAL*8    CNINJ , CRIJNI , CRIJNJ , CRIJSQ , CWIDTH     
0678       REAL*8    C01X, C01Y, C01Z 
0679       REAL*8    C11X, C11Y, C11Z, C12X, C12Y, C12Z 
0680       REAL*8    C21X, C21Y, C21Z, C22X, C22Y, C22Z 
0681       REAL*8    C1R11, C1R12, C1R21, C1R22 
0682       REAL*8    C2R11, C2R12, C2R21, C2R22 
0683       REAL*8    C00 , C11 , C12 , C21 , C22 
0684       INTEGER   ITREE , ISKIP , IPATH , ISUBTREE  
0685       LOGICAL   KEEP 
0686 C                                                
0687       DO 10 I=1,N      
0688         FX(I) =  0.D0   
0689         FY(I) =  0.D0   
0690         FZ(I) =  0.D0   
0691         TX(I) =  0.D0   
0692         TY(I) =  0.D0   
0693         TZ(I) =  0.D0   
0694    10 CONTINUE         
0695 C
0696 C     ----------------------------------------------- MAIN LOOP START
0697 C                                                            
0698       DO 2000 I=1,N-1                                        
0699 C                                                            
0700         RXI  = RX(I)                                         
0701         RYI  = RY(I)                                         
0702         RZI  = RZ(I)                                         
0703         NXI  = NX(I)                                         
0704         NYI  = NY(I)                                         
0705         NZI  = NZ(I)                                         
0706         FXI  = FX(I)                                    
0707         FYI  = FY(I)                                    
0708         FZI  = FZ(I)                                    
0709         TXI  = TX(I)                                    
0710         TYI  = TY(I)                                    
0711         TZI  = TZ(I)                                    
0712 C                   
0713       DO 1000 J=I+1,N
0714 C                       

• The treatment concerning 
particle i is conducted in the
following.    

0715         RXJ  = RX(J)                                         
0716         RYJ  = RY(J)                                         
0717         RZJ  = RZ(J) 
0718         NXJ  = NX(J)
0719         NYJ  = NY(J)
0720         NZJ  = NZ(J)
0721 C                                      
0722         RZIJ = RZI  - RZJ                           
0723         IF( RZIJ .GT. ZL/2.D0 ) THEN
0724           RZIJ = RZIJ - ZL 
0725           RZJ  = RZJ  + ZL
0726         ELSE IF( RZIJ .LT. -ZL/2.D0 ) THEN
0727           RZIJ = RZIJ + ZL 
0728           RZJ  = RZJ  - ZL
0729         END IF  
0730         IF( DABS(RZIJ) .GE. RCOFF )      GOTO 1000   
0731 C      
0732         RYIJ  = RYI  - RYJ                            
0733         CORY  = - DNINT( RYIJ/YL)          
0734         RYIJ  = RYIJ + CORY*YL      
0735         RYJ   = RYJ  - CORY*YL        

• The treatment concerning particles i and j 
is conducted in the following.   

• The treatment of the periodic BC. 

• The treatment of the Lees–Edwards BC. 

0736         IF( DABS(RYIJ) .GE. RCOFF )      GOTO 1000   
0737 C                
0738         RXIJ  = RXI  - RXJ                            
0739         RXIJ  = RXIJ + CORY*DX              
0740         RXJ   = RXJ  - CORY*DX      
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0741         IF( RXIJ .GT. XL/2.D0 ) THEN
0742           RXIJ = RXIJ - XL 
0743           RXJ  = RXJ  + XL
0744         ELSE IF( RXIJ .LT. -XL/2.D0 ) THEN
0745           RXIJ = RXIJ + XL 
0746           RXJ  = RXJ  - XL
0747         END IF  
0748         IF( DABS(RXIJ) .GE. RCOFF )      GOTO 1000   
0749 C                                                     
0750         RIJSQ= RXIJ**2 + RYIJ**2 + RZIJ**2            
0751         IF( RIJSQ .GE. RCOFF2 )          GOTO 1000    
0752         RIJ  = DSQRT(RIJSQ)                           
0753 C
0754 C       -------------------------------- START OF MAGNETIC FORCES --- 
0755         NXIJ    = NXI - NXJ
0756         NYIJ    = NYI - NYJ
0757         NZIJ    = NZI - NZJ
0758         NXIJ2   = NXI + NXJ
0759         NYIJ2   = NYI + NYJ
0760         NZIJ2   = NZI + NZJ
0761 C                                             --- MAGNETIC FORCES --- 
0762         FXIJP01 = RXIJ + RP102*NXIJ 
0763         FYIJP01 = RYIJ + RP102*NYIJ 
0764         FZIJP01 = RZIJ + RP102*NZIJ 
0765         FXIJP02 = RXIJ + RP102*NXIJ2 
0766         FYIJP02 = RYIJ + RP102*NYIJ2 
0767         FZIJP02 = RZIJ + RP102*NZIJ2 
0768         FXIJM01 = RXIJ - RP102*NXIJ2 
0769         FYIJM01 = RYIJ - RP102*NYIJ2 

• If the two particles are separated over the 
cutoff distance r*coff, the calculation of 
forces and torques is unnecessary.    

• The magnetic force acting between
particles i and j is calculated.   

• To calculate the first and second terms of 
Eq. (3.56) and also Eq. (3.57) separately, 
we calculate quantities needed in order.     

0770         FZIJM01 = RZIJ - RP102*NZIJ2 
0771         FXIJM02 = RXIJ - RP102*NXIJ 
0772         FYIJM02 = RYIJ - RP102*NYIJ 
0773         FZIJM02 = RZIJ - RP102*NZIJ 
0774 C       
0775         C2R11 =  FXIJP01**2 + FYIJP01**2 + FZIJP01**2  
0776         C2R12 =  FXIJP02**2 + FYIJP02**2 + FZIJP02**2  
0777         C2R21 =  FXIJM01**2 + FYIJM01**2 + FZIJM01**2  
0778         C2R22 =  FXIJM02**2 + FYIJM02**2 + FZIJM02**2  
0779         C1R11 = DSQRT( C2R11 ) 
0780         C1R12 = DSQRT( C2R12 ) 
0781         C1R21 = DSQRT( C2R21 ) 
0782         C1R22 = DSQRT( C2R22 ) 
0783         IF( C1R11 .GE. 1.D0 ) THEN
0784           R11 = C1R11*C2R11
0785         ELSE
0786           R11 = C1R11
0787         END IF 
0788         IF( C1R12 .GE. 1.D0 ) THEN
0789           R12 = C1R12*C2R12
0790         ELSE
0791           R12 = C1R12
0792         END IF 
0793         IF( C1R21 .GE. 1.D0 ) THEN
0794           R21 = C1R21*C2R21
0795         ELSE
0796           R21 = C1R21
0797         END IF 
0798         IF( C1R22 .GE. 1.D0 ) THEN
0799           R22 = C1R22*C2R22
0800         ELSE
0801           R22 = C1R22
0802         END IF 
0803 C

• The denominators of the first and 
second terms in Eq. (3.56) are calculated 
and saved in R11 and R12. 
• Similarly, those in Eq. (3.57) are 
calculated and saved in R21 and R22. 

0804         C11X  =    FXIJP01/R11                      
0805         C11Y  =    FYIJP01/R11                      
0806         C11Z  =    FZIJP01/R11                      
0807         C12X  =    FXIJP02/R12        
0808         C12Y  =    FYIJP02/R12        
0809         C12Z  =    FZIJP02/R12        
0810         FXIJP =    C11X - C12X               

• The first and second terms in Eq. (3.56) are calculated 
and saved in (C11X, C11Y, C11Z) and (C12X, C12Y, 
C12Z). 
• Eq. (3.56) is calculated, but λm is multiplied in the final 
stage.
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0811         FYIJP =    C11Y - C12Y                      
0812         FZIJP =    C11Z - C12Z                      
0813         C21X  =    FXIJM01/R21      
0814         C21Y  =    FYIJM01/R21      
0815         C21Z  =    FZIJM01/R21     
0816         C22X  =    FXIJM02/R22        
0817         C22Y  =    FYIJM02/R22        
0818         C22Z  =    FZIJM02/R22        
0819         FXIJM =  - C21X + C22X                
0820         FYIJM =  - C21Y + C22Y                
0821         FZIJM =  - C21Z + C22Z                
0822 C
0823         FXJIP =  - C11X + C21X              
0824         FYJIP =  - C11Y + C21Y                       

• The forces acting on the positive and negative charges 
of particle j can be obtained from the action–reaction 
law; λm is multiplied in the final stage. 

• The first and second terms in Eq. (3.57) are calculated 
and saved in （C21X, C21Y, C21Z） and （C22X, C22Y, 
C22Z）.
• Eq. (3.57) is calculated, but λm is multiplied in the final 
stage.

0825         FZJIP =  - C11Z + C21Z                         
0826         FXJIM =    C12X - C22X                        
0827         FYJIM =    C12Y - C22Y                                 
0828         FZJIM =    C12Z - C22Z                                 
0829 C 
0830         FXI   = FXI   + ( FXIJP + FXIJM )*RAM 
0831         FYI   = FYI   + ( FYIJP + FYIJM )*RAM 
0832         FZI   = FZI   + ( FZIJP + FZIJM )*RAM 
0833         FX(J) = FX(J) + ( FXJIP + FXJIM )*RAM 
0834         FY(J) = FY(J) + ( FYJIP + FYJIM )*RAM 
0835         FZ(J) = FZ(J) + ( FZJIP + FZJIM )*RAM 
0836 C                                            --- MAGNETIC TORQUES --- 
0837         TXIJP =  ( NYI*FZIJP - NZI*FYIJP ) 
0838         TYIJP =  ( NZI*FXIJP - NXI*FZIJP )          
0839         TZIJP =  ( NXI*FYIJP - NYI*FXIJP )          
0840         TXIJM = -( NYI*FZIJM - NZI*FYIJM )          
0841         TYIJM = -( NZI*FXIJM - NXI*FZIJM )          
0842         TZIJM = -( NXI*FYIJM - NYI*FXIJM )          
0843         TXI   = TXI + ( TXIJP + TXIJM )* (RP102*3.D0) * RAM    
0844         TYI   = TYI + ( TYIJP + TYIJM )* (RP102*3.D0) * RAM        
0845         TZI   = TZI + ( TZIJP + TZIJM )* (RP102*3.D0) * RAM        
0846 C
0847         TXJIP =  ( NYJ*FZJIP - NZJ*FYJIP )           
0848         TYJIP =  ( NZJ*FXJIP - NXJ*FZJIP )           
0849         TZJIP =  ( NXJ*FYJIP - NYJ*FXJIP )           
0850         TXJIM = -( NYJ*FZJIM - NZJ*FYJIM )           
0851         TYJIM = -( NZJ*FXJIM - NXJ*FZJIM )           
0852         TZJIM = -( NXJ*FYJIM - NYJ*FXJIM )           
0853         TX(J) = TX(J) + ( TXJIP + TXJIM )* (RP102*3.D0) * RAM      
0854         TY(J) = TY(J) + ( TYJIP + TYJIM )* (RP102*3.D0) * RAM      
0855         TZ(J) = TZ(J) + ( TZJIP + TZJIM )* (RP102*3.D0) * RAM      
0856 C
0857 C       ---------------------------------- END OF MAGNETIC FORCES --- 
0858 C
0859 C       ------------------------------ FORCES DUE TO STERIC INER. ---
0860 C
0861         CNINJ = NXI*NXJ +  NYI*NYJ +  NZI*NZJ      
0862         TXIJ  = RXIJ/RIJ        
0863         TYIJ  = RYIJ/RIJ        
0864         TZIJ  = RZIJ/RIJ        
0865         C11   = TXIJ*NXJ + TYIJ*NYJ + TZIJ*NZJ  
0866 C
0867         IF( DABS(CNINJ) .LT. 0.001D0 ) THEN 
0868           ITREE = 2                       
0869         ELSE IF( DABS(CNINJ) .GT. 0.999D0) THEN  
0870           IF(  DABS(C11) .GT. 0.999D0 )THEN
0871             ITREE = 0
0872           END IF
0873             ITREE = 3                       
0874         ELSE                              
0875           ITREE = 1                       
0876         END IF                            
0877 C
0878 C                                                 --------------------
0879 C                                                  ITREE=0: LINEAR  

• The regime in Table 3.1 is determined to proceed to appropri-
ate treatment, and after the calculation of the repulsive forces, 
the calculation procedure returns to the main loop. 

• The repulsive force due to the overlap 
of surfactant layers is calculated below. 
• The variable ITREE implies the 
particle overlapping regime, and the 
procedures are performed according to 
ITREE. 

• The torque acting on particle j is calculated 
from Eqs. (3.59) and (3.60).

• The torque acting on particle i is 
calculated from Eqs. (3.59) and (3.60). 

• The force exerted by particle j is saved in 
the variable of particle i . 
・Similarly, the force exerted by particle i is 
saved. 

0880 C                                                  ITREE=1: GENERAL 
0881 C                                                  ITREE=2: NORMALL 
0882 C                                                  ITREE=3: PARALLEL
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0883 C                                                 --------------------
0884 C
0885 C       ----------------------------------------------- (0) LINEAR ---
0886         IF( ITREE .EQ. 0 ) THEN
0887 C
0888           IF( CNINJ .GE. 0 ) THEN 
0889             IF( C11 .GE. 0 ) THEN
0890 C                                                          --- IPATH=1
0891               XJ   = RXJ + NXJ*RP102  
0892               YJ   = RYJ + NYJ*RP102  
0893               ZJ   = RZJ + NZJ*RP102  
0894               XI   = RXI - NXI*RP102  
0895               YI   = RYI - NYI*RP102  
0896               ZI   = RZI - NZI*RP102  
0897             ELSE 
0898 C                                                          --- IPATH=2
0899               XJ   = RXJ - NXJ*RP102  
0900               YJ   = RYJ - NYJ*RP102  
0901               ZJ   = RZJ - NZJ*RP102  
0902               XI   = RXI + NXI*RP102  
0903               YI   = RYI + NYI*RP102  
0904               ZI   = RZI + NZI*RP102 
0905             END IF           
0906           ELSE 
0907             IF( C11 .GE. 0 ) THEN
0908 C                                                          --- IPATH=3
0909               XJ   = RXJ + NXJ*RP102  
0910               YJ   = RYJ + NYJ*RP102  
0911               ZJ   = RZJ + NZJ*RP102  
0912               XI   = RXI + NXI*RP102  
0913               YI   = RYI + NYI*RP102  
0914               ZI   = RZI + NZI*RP102  
0915             ELSE 
0916 C                                                          --- IPATH=4
0917               XJ   = RXJ - NXJ*RP102  
0918               YJ   = RYJ - NYJ*RP102  
0919               ZJ   = RZJ - NZJ*RP102  
0920               XI   = RXI - NXI*RP102  
0921               YI   = RYI - NYI*RP102  
0922               ZI   = RZI - NZI*RP102  
0923             END IF          
0924           END IF            
0925 C
0926           RRIJ = DSQRT( (XI-XJ)**2 + (YI-YJ)**2 + (ZI-ZJ)**2 ) 
0927           XRXI = XI - RXI 
0928           YRYI = YI - RYI 
0929           ZRZI = ZI - RZI 
0930           XRXJ = XJ - RXJ 
0931           YRYJ = YJ - RYJ 
0932           ZRZJ = ZJ - RZJ 
0933           ISKIP = 1
0934           CALL STEFORCE( RRIJ,RAV,ISKIP,TXIJ,TYIJ,TZIJ )

• The calculation of torques is unnece- 
ssary, so ISKIP is set as ISKIP=1. 

• The positions (XI,YI,ZI) and (XJ,YJ,ZJ)    
of the magnetic charges of particles i and    
j are calculated.

• The treatment for the linear arrangement 
in Table 3.1. 

0935           FXI   = FXI   + FXIJS   
0936           FYI   = FYI   + FYIJS   
0937           FZI   = FZI   + FZIJS   
0938           FX(J) = FX(J) + FXJIS   
0939           FY(J) = FY(J) + FYJIS   
0940           FZ(J) = FZ(J) + FZJIS   
0941 C
0942           GOTO 1000
0943 C
0944         END IF  
0945 C       --------------------------------------------- END OF LINEAR --
0946 
0947         IF( (ITREE .EQ. 1) .OR. (ITREE .EQ. 2) ) THEN 
0948 C
0949           CRIJNI = NXI*RXIJ + NYI*RYIJ + NZI*RZIJ   
0950           CRIJNJ = NXJ*RXIJ + NYJ*RYIJ + NZJ*RZIJ   
0951           C00    = 1.D0 / (1.D0 - CNINJ**2)  
0952           KI     = C00*( -CRIJNI + CNINJ*CRIJNJ )   

• ki and kj are calculated 
from Eq. (3.44). 

• The repulsive forces due to the overlap of the 
steric layers are calculated in the subroutine 
STEFORCE; the results concerning particles i 
and j are saved in (FXIJS,FYIJS,FZIJS) and 
(FXJIS, FYJIS, FZJIS), respectively.

0953           KJ     = C00*(  CRIJNJ - CNINJ*CRIJNI )   
0954 C                                               --- CHECK OVERLAP ---
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0955           CRIJSQ =   (RXIJ + KI*NXI - KJ*NXJ )**2 
0956      &             + (RYIJ + KI*NYI - KJ*NYJ )**2 
0957      &             + (RZIJ + KI*NZI - KJ*NZJ )**2 
0958           IF( CRIJSQ .GE. D1SQ )  GOTO 1000
0959 C
0960           IF( DABS(KJ) .GT. DABS(KI) ) THEN 
0961             KEEP  = .TRUE. 
0962             II    = I
0963             JJ    = J
0964             RRXI  = RXI
0965             RRYI  = RYI
0966             RRZI  = RZI
0967             RRXJ  = RXJ
0968             RRYJ  = RYJ
0969             RRZJ  = RZJ
0970             RRXIJ = RXIJ
0971             RRYIJ = RYIJ
0972             RRZIJ = RZIJ
0973             NNXI  = NXI
0974             NNYI  = NYI
0975             NNZI  = NZI
0976             NNXJ  = NXJ
0977             NNYJ  = NYJ
0978             NNZJ  = NZJ
0979             KKI   = KI
0980             KKJ   = KJ
0981           ELSE 
0982             KEEP  = .FALSE.
0983             II    = J 
0984             JJ    = I
0985             RRXI  = RXJ
0986             RRYI  = RYJ
0987             RRZI  = RZJ
0988             RRXJ  = RXI
0989             RRYJ  = RYI

• The subscripts are exchanged between i 
and j so as to satisfy |kj|>|ki |. 
• As a result, the particle names i and j in 
Table 3.1 are expressed as II and JJ in the 
program.

0990             RRZJ  = RZI
0991             RRXIJ = -RXIJ
0992             RRYIJ = -RYIJ
0993             RRZIJ = -RZIJ
0994             NNXI  = NXJ
0995             NNYI  = NYJ
0996             NNZI  = NZJ
0997             NNXJ  = NXI
0998             NNYJ  = NYI
0999             NNZJ  = NZI
1000             KKI   = KJ
1001             KKJ   = KI
1002             TXIJ  = -TXIJ 
1003             TYIJ  = -TYIJ 
1004             TZIJ  = -TZIJ 
1005           END IF
1006 C                                      -------------------------------
1007 C                                      ISUBTREE=1: i(sphe,cyl)-j(sphe)
1008 C                                      ISUBTREE=2: i(cyl)     -j(cyl)
1009 C                                      -------------------------------
1010           IF( DABS(KKJ) .GE. RP102 ) THEN 
1011             ISUBTREE = 1 
1012           ELSE 
1013             ISUBTREE = 2 
1014           END IF 
1015 C
1016         END IF
1017 C                                                 --------------------
1018 C                                                  ITREE=0: LINEAR  
1019 C                                                  ITREE=1: GENERAL
1020 C                                                  ITREE=2: NORMALL
1021 C                                                  ITREE=3: PARALLEL
1022 C                                                 --------------------

• Which part of particle j has a possibility of the overlap with particle i 
is grasped; there is an overlapping possibility of the hemisphere part 
for ISUBTREE=1 and of the cylindrical part for SUBTREE=2. 

1023         IF( ITREE .EQ. 1 ) GOTO 200
1024         IF( ITREE .EQ. 2 ) GOTO 400
1025         IF( ITREE .EQ. 3 ) GOTO 600
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1026 C
1027 C       ---------------------------------------------- (1) GENERAL ---
1028 C                                                --- FOR II AND JJ ---
1029   200   CNINJ = NXI*NXJ + NYI*NYJ + NZI*NZJ
1030         IF( CNINJ .GT. 0.D0 ) THEN   
1031           IF( KKJ .GE. 0.D0 ) THEN 
1032             IPATH = 1
1033           ELSE
1034             IPATH = 4
1035           END IF
1036         ELSE
1037           IF( KKJ .GE. 0.D0 ) THEN 
1038             IPATH = 3
1039           ELSE
1040             IPATH = 2
1041           END IF
1042         END IF 
1043 C
1044         KKIS   =  CNINJ*RP102 - (RRXIJ*NNXI + RRYIJ*NNYI + RRZIJ*NNZI)

• ki
s (KKIS) is calculated from Eq. (3.46). Similarly, ki

s ′ 

(KKIS2) concerning the negative magnetic charge of 
particle j is calculated. 

• The treatment for itree=1 of the general arrangement 
in Table 3.1. 
• The treatment is conducted for the four cases 
depending on the position relationship of the positive 
and negative charges of particles i and j; IPATH is used 
for specifying the case chosen. 

1045         KKIS2  = -CNINJ*RP102 - (RRXIJ*NNXI + RRYIJ*NNYI + RRZIJ*NNZI)
1046 C
1047         C1 = RP102 - KKJ 
1048         C1 = DINT( C1 )  
1049         C2 = RP102 - DABS( KKJ ) 
1050         C2 = DINT( C2 )  
1051 C
1052         IF( IPATH .EQ. 1 ) THEN

1053 C                                                      --- PATH=1 ---
1054           C12 =-1.D0
1055           C22 =-1.D0 
1056           IF( ISUBTREE .EQ. 1 ) THEN 
1057             C11 = RP102 
1058             C21 = KKIS 
1059             IF( KKIS .GT. RP102 )   C21 = RP102  
1060             IF( KKIS .LT.-RP102 )   C21 =-RP102  
1061           ELSE 
1062             C11 = KKJ + C1   
1063             C21 = KKI + C1 
1064           END IF 
1065 C                                                      --- PATH=2 ---
1066         ELSE IF( IPATH .EQ. 2 )  THEN 
1067           C12 = 1.D0
1068           C22 =-1.D0 
1069           IF( ISUBTREE .EQ. 1 ) THEN 
1070             C11 =-RP102 
1071             C21 = KKIS2 
1072             IF( KKIS2 .GT. RP102 )  C21 = RP102  
1073             IF( KKIS2 .LT.-RP102 )  C21 =-RP102  
1074           ELSE 
1075             C11 = KKJ - C2   
1076             C21 = KKI + C2  
1077           END IF 
1078 C                                                      --- PATH=3 ---
1079         ELSE IF( IPATH .EQ. 3 )  THEN 
1080           C12 =-1.D0
1081           C22 = 1.D0 
1082           IF( ISUBTREE .EQ. 1 ) THEN 
1083             C11 = RP102 
1084             C21 = KKIS 
1085             IF( KKIS .LT. -RP102 )  C21 = -RP102  
1086             IF( KKIS .GT.  RP102 )  C21 =  RP102  
1087           ELSE 
1088             C11 = KKJ + C1   
1089             C21 = KKI - C1   
1090           END IF 
1091 C                                                      --- PATH=4 ---
1092         ELSE  
1093           C12 = 1.D0
1094           C22 = 1.D0 
1095           IF( ISUBTREE .EQ. 1 ) THEN 
1096             C11 =-RP102 
1097             C21 = KKIS2 

• The direction in which the next 
neighboring sphere is added to form 
the sphere-connected particle j is 
specified by C12; similarly, C22 is used 
for particle i. C12=1 means the particle 
axis direction. C12=–1 means the 
opposite direction to the particle axis. 

• According to the repulsive force model shown in 
Section 3.2.4, the position of the first constituent sphere 
to be placed is determined. The variables used to do so 
are C11 and C21 for particles j and i, respectively. 
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1098             IF( KKIS2 .LT. -RP102 ) C21 = -RP102  
1099             IF( KKIS2 .GT.  RP102 ) C21 =  RP102  
1100           ELSE 
1101             C11 = KKJ - C2   
1102             C21 = KKI - C2   
1103           END IF 
1104         END IF   
1105 C
1106 C
1107         JJJE = IDNINT(RP1)
1108         DO 250 JJJ= 0, JJJE 
1109 C        
1110           CKKJ = C11 + C12*DBLE(JJJ) 
1111           CKKI = C21 + C22*DBLE(JJJ) 
1112           IF( ( DABS(CKKJ) .GT. RP102+1.D-10 ) .OR. 
1113      &        ( DABS(CKKI) .GT. RP102+1.D-10 )      )    GOTO 250   
1114 C             
1115           IF( ISUBTREE .EQ. 1 ) THEN 
1116             IF( ( DABS(CKKI) .GT. RP102+1.D-10 ) .OR. 
1117      &          ( DABS(CKKJ) .GT. RP102+1.D-10 )      )  GOTO 1000   
1118           END IF 
1119 C
1120   245     XJ   = RRXJ + NNXJ*CKKJ  
1121           YJ   = RRYJ + NNYJ*CKKJ  
1122           ZJ   = RRZJ + NNZJ*CKKJ  
1123           XI   = RRXI + NNXI*CKKI  
1124           YI   = RRYI + NNYI*CKKI  
1125           ZI   = RRZI + NNZI*CKKI  
1126           RRIJ = DSQRT( (XI-XJ)**2 + (YI-YJ)**2 + (ZI-ZJ)**2 ) 
1127           IF( ISUBTREE .EQ. 1 ) THEN 
1128             IF( RRIJ .GE. D1 )  GOTO 1000 
1129           END IF 
1130           XRXI = XI - RRXI 
1131           YRYI = YI - RRYI 
1132           ZRZI = ZI - RRZI 
1133           XRXJ = XJ - RRXJ 
1134           YRYJ = YJ - RRYJ 
1135           ZRZJ = ZJ - RRZJ 
1136           TXIJ0= (XI-XJ)/RRIJ 
1137           TYIJ0= (YI-YJ)/RRIJ 
1138           TZIJ0= (ZI-ZJ)/RRIJ 
1139           ISKIP = 0
1140           CALL STEFORCE( RRIJ,RAV,ISKIP,TXIJ0,TYIJ0,TZIJ0 )
1141           IF( .NOT. KEEP ) THEN 
1142             C1    = FXIJS 
1143             C2    = FYIJS 
1144             C3    = FZIJS 
1145             FXIJS = FXJIS 
1146             FYIJS = FYJIS 
1147             FZIJS = FZJIS 
1148             FXJIS = C1 
1149             FYJIS = C2 
1150             FZJIS = C3 
1151             C1    = TXIJS 
1152             C2    = TYIJS 
1153             C3    = TZIJS 
1154             TXIJS = TXJIS 

• The posttreatment for the case of the 
particle names exchanged.  

• To evaluate the torque, the relative position 
of the sphere from the rod-like particle center 
is calculated.

• The positions of the spheres of particle i 
and j are saved in (XI,YI,ZI) and (XJ,YJ, 
ZJ), respectively.

1155             TYIJS = TYJIS 
1156             TZIJS = TZJIS 
1157             TXJIS = C1 
1158             TYJIS = C2 
1159             TZJIS = C3 
1160           END IF 
1161           FXI   = FXI   + FXIJS   
1162           FYI   = FYI   + FYIJS   
1163           FZI   = FZI   + FZIJS   
1164           FX(J) = FX(J) + FXJIS   
1165           FY(J) = FY(J) + FYJIS   
1166           FZ(J) = FZ(J) + FZJIS   
1167           TXI   = TXI   + TXIJS   
1168           TYI   = TYI   + TYIJS   
1169           TZI   = TZI   + TZIJS   
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1170           TX(J) = TX(J) + TXJIS   
1171           TY(J) = TY(J) + TYJIS   
1172           TZ(J) = TZ(J) + TZJIS   
1173 C  
1174   250   CONTINUE
1175 C  
1176         GOTO 1000
1177 C       ---------------------------------------------- (2) NORMAL  ---
1178 C                                                --- FOR II AND JJ ---
1179 C                                        
1180   400   IF( KKJ .GE. 0.D0 ) THEN 
1181           IPATH = 1
1182         ELSE
1183           IPATH = 2
1184         END IF
1185 C
1186         CNINJ  =  NXI*NXJ + NYI*NYJ + NZI*NZJ   
1187         KKIS   =  CNINJ*RP102 - (RRXIJ*NNXI + RRYIJ*NNYI + RRZIJ*NNZI)
1188         KKIS2  = -CNINJ*RP102 - (RRXIJ*NNXI + RRYIJ*NNYI + RRZIJ*NNZI)
1189 C
1190         C11 = KKJ  
1191         C21 = KKI  
1192         IF( IPATH .EQ. 1 )  THEN 
1193 C                                                      --- PATH=1 ---
1194           IF( ISUBTREE .EQ. 1 ) THEN 
1195             C11 = RP102 
1196             C21 = KKIS 
1197             IF( KKIS .GT. RP102 )   C21 = RP102  
1198             IF( KKIS .LT.-RP102 )   C21 =-RP102  
1199           END IF  
1200         ELSE  
1201 C                                                      --- PATH=2 ---
1202           IF( ISUBTREE .EQ. 1 ) THEN 
1203             C11 =-RP102 
1204             C21 = KKIS2 
1205             IF( KKIS2 .GT. RP102 )   C21 = RP102  
1206             IF( KKIS2 .LT.-RP102 )   C21 =-RP102  
1207           END IF  
1208         END IF  
1209 C

• ki 
s (KKIS) is calculated from Eq. (3.46). Similarly,  ki 

s‚(KKIS2) concerning 
the negative magnetic charge of particle j is calculated

• The treatment for the normal arrangement in Table 3.1.

1210         CKKJ = C11  
1211         CKKI = C21  
1212         XJ = RRXJ + CKKJ*NNXJ 
1213         YJ = RRYJ + CKKJ*NNYJ 
1214         ZJ = RRZJ + CKKJ*NNZJ 
1215         XI = RRXI + CKKI*NNXI 
1216         YI = RRYI + CKKI*NNYI 
1217         ZI = RRZI + CKKI*NNZI 
1218         RRIJ = DSQRT( (XI-XJ)**2 + (YI-YJ)**2 + (ZI-ZJ)**2 ) 
1219         IF( RRIJ .GE. D1 )  GOTO 1000 
1220 C        
1221         XRXI = XI - RRXI 
1222         YRYI = YI - RRYI 
1223         ZRZI = ZI - RRZI 
1224         XRXJ = XJ - RRXJ 
1225         YRYJ = YJ - RRYJ 
1226         ZRZJ = ZJ - RRZJ 
1227         TXIJ0= (XI-XJ)/RRIJ 
1228         TYIJ0= (YI-YJ)/RRIJ 
1229         TZIJ0= (ZI-ZJ)/RRIJ 
1230         ISKIP = 0
1231         CALL STEFORCE( RRIJ,RAV,ISKIP,TXIJ0,TYIJ0,TZIJ0 )
1232         IF( .NOT. KEEP ) THEN 
1233           C1    = FXIJS 
1234           C2    = FYIJS 
1235           C3    = FZIJS 
1236           FXIJS = FXJIS 
1237           FYIJS = FYJIS 
1238           FZIJS = FZJIS 
1239           FXJIS = C1 
1240           FYJIS = C2 

• The posttreatment for the case of the 
particle names exchanged.

• To evaluate the torque, the relative 
position of the sphere from the 
rod-like particle center is calculated. 

• The positions of the spheres of particles i and j are 
saved in (XI,YI,ZI) and (XJ,YJ,ZJ), respectively.

• According to the repulsive force model shown in 
Section 3.2.4, the position of the first constituent sphere 
to be placed is determined. The variables used to do so 
are C11 and C21 for particles j and i, respectively.
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1241           FZJIS = C3 
1242           C1    = TXIJS 
1243           C2    = TYIJS 
1244           C3    = TZIJS 
1245           TXIJS = TXJIS 
1246           TYIJS = TYJIS 
1247           TZIJS = TZJIS 
1248           TXJIS = C1 
1249           TYJIS = C2 
1250           TZJIS = C3 
1251         END IF 
1252         FXI   = FXI   + FXIJS   
1253         FYI   = FYI   + FYIJS   
1254         FZI   = FZI   + FZIJS   
1255         FX(J) = FX(J) + FXJIS   
1256         FY(J) = FY(J) + FYJIS   
1257         FZ(J) = FZ(J) + FZJIS   
1258         TXI   = TXI   + TXIJS   
1259         TYI   = TYI   + TYIJS   
1260         TZI   = TZI   + TZIJS   
1261         TX(J) = TX(J) + TXJIS   
1262         TY(J) = TY(J) + TYJIS   
1263         TZ(J) = TZ(J) + TZJIS   
1264 C  

• The treatment for the parallel arrangement in Table 3.1.

1265         GOTO 1000
1266 C       ---------------------------------------------- (3) PARALLEL --
1267 C                                                  --- FOR I AND J ---
1268 C
1269   600   CNINJ =  NXI*NXJ + NYI*NYJ + NZI*NZJ   
1270         KIS   =  CNINJ*RP102 - (RXIJ*NXI + RYIJ*NYI + RZIJ*NZI)
1271         KJS   =  CNINJ*RP102 + (RXIJ*NXJ + RYIJ*NYJ + RZIJ*NZJ)
1272 C                                               --- CHECK OVERLAP ---
1273         CWIDTH =   (RXIJ + KIS*NXI - RP102*NXJ )**2 
1274      &           + (RYIJ + KIS*NYI - RP102*NYJ )**2 
1275      &           + (RZIJ + KIS*NZI - RP102*NZJ )**2 
1276         IF( CWIDTH .GE. D1SQ )  GOTO 1000
1277 C
1278         IF( CNINJ .GE. 0.D0 ) THEN   
1279           IPATH = 1
1280         ELSE
1281           IF( KIS .LE. -RP102 ) THEN 
1282             IPATH = 2
1283           ELSE
1284             IPATH = 3
1285           END IF
1286         END IF 
1287 C
1288         KEEP  = .TRUE. 
1289         II    = I
1290         JJ    = J
1291         RRXI  = RXI
1292         RRYI  = RYI
1293         RRZI  = RZI
1294         RRXJ  = RXJ

• The square distance between particles i 
and j is calculated and saved in CWIDTH. 
In this calculation, the length of the vertical 
line drawn from the positive magnetic 
charge of particle j to the axis line of 
particle i is evaluated.

1295         RRYJ  = RYJ
1296         RRZJ  = RZJ
1297         RRXIJ = RXIJ
1298         RRYIJ = RYIJ
1299         RRZIJ = RZIJ
1300         NNXI  = NXI
1301         NNYI  = NYI
1302         NNZI  = NZI
1303         NNXJ  = NXJ
1304         NNYJ  = NYJ
1305         NNZJ  = NZJ
1306         KKIS  = KIS
1307         IF( (IPATH .EQ. 1) .AND. (KIS .GT. KJS) ) THEN 
1308           KEEP  = .FALSE. 
1309           II    = J 
1310           JJ    = I
1311           RRXI  = RXJ
1312           RRYI  = RYJ
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1313           RRZI  = RZJ
1314           RRXJ  = RXI
1315           RRYJ  = RYI
1316           RRZJ  = RZI
1317           RRXIJ = -RXIJ
1318           RRYIJ = -RYIJ
1319           RRZIJ = -RZIJ
1320           NNXI  = NXJ
1321           NNYI  = NYJ
1322           NNZI  = NZJ
1323           NNXJ  = NXI
1324           NNYJ  = NYI
1325           NNZJ  = NZI
1326           KKIS  = KJS
1327         END IF
1328 C                                                --- FOR II AND JJ ---
1329 C
1330         KKIC   = -( RRXIJ*NNXI+ RRYIJ*NNYI + RRZIJ*NNZI )  
1331         KKJC   =  ( RRXIJ*NNXJ+ RRYIJ*NNYJ + RRZIJ*NNZJ )  
1332         CKKIC  = DABS( KKIC ) 
1333         CKKIC2 = CKKIC/2.D0 
1334 C    
1335         C11 = KKJC/2.D0 
1336         C21 = KKIC/2.D0 
1337         IF( IPATH .EQ. 1 ) THEN
1338 C                                                      --- PATH=1 ---
1339           C12 = 1.D0  
1340           C22 = 1.D0  
1341           IF( CKKIC2 .GT. RP102 ) THEN
1342             C11 =  RP102  
1343             C21 = -RP102  
1344           END IF 
1345 C                                                      --- PATH=2 ---
1346         ELSE IF( IPATH .EQ. 2 )  THEN 
1347           C12 =-1.D0  
1348           C22 = 1.D0  
1349           IF( CKKIC2 .GT. RP102 ) THEN
1350             C11 = -RP102  
1351             C21 = -RP102  
1352           END IF 
1353 C                                                      --- PATH=3 ---
1354         ELSE  
1355           C12 = 1.D0  
1356           C22 =-1.D0  
1357           IF( CKKIC2 .GT. RP102 ) THEN
1358             C11 =  RP102  
1359             C21 =  RP102  
1360           END IF 
1361         END IF   
1362 C
1363         JJJE = IDNINT(RP102)
1364         DO 650 JJJ= 0, JJJE 
1365 C
1366           CKKJ = C11 + C12*DBLE(JJJ) 
1367           CKKI = C21 + C22*DBLE(JJJ) 
1368           IF( JJJ .EQ. 0 )  GOTO 645
1369           IF( ( DABS(CKKI) .GT. RP102+1.D-10)  .OR. 
1370      &        ( DABS(CKKJ) .GT. RP102+1.D-10 )      )  GOTO 1000   
1371 C
1372   645     XJ   = RRXJ + NNXJ*CKKJ  
1373           YJ   = RRYJ + NNYJ*CKKJ  
1374           ZJ   = RRZJ + NNZJ*CKKJ  

• The positions of the spheres of particles i 
and j are saved in (XI,YI,ZI) and (XJ,YJ,ZJ), 
respectively.. 

• Similarly, C22 is used for particle i. C12=1 
means the particle axis direction; C12=–1 means 
the opposite direction to the particle axis. 

• The direction in which the next neighboring 
sphere is added to form the sphere-connected 
particle j is specified by C12.

• According to the repulsive force model in Section 3.2.4, the 
position of the first sphere to be placed is determined. The 
variables used to do so are C11 and C21 for particles j and 
i, respectively. 

• The point at which the vertical line drawn from the center 
of particle j intersects the axis line of particle i is assumed to 
be denoted by ri+ki

cei, ki
c, and a similar quantity kj

c is 
evaluated. 

1375           XI   = RRXI + NNXI*CKKI  
1376           YI   = RRYI + NNYI*CKKI  
1377           ZI   = RRZI + NNZI*CKKI  
1378           RRIJ = DSQRT( (XI-XJ)**2 + (YI-YJ)**2 + (ZI-ZJ)**2 ) 
1379           IF( RRIJ .GE. D1 )  GOTO 1000 
1380           XRXI = XI - RRXI 
1381           YRYI = YI - RRYI 
1382           ZRZI = ZI - RRZI 
1383           XRXJ = XJ - RRXJ 
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1384           YRYJ = YJ - RRYJ 
1385           ZRZJ = ZJ - RRZJ 
1386           TXIJ0= (XI-XJ)/RRIJ 
1387           TYIJ0= (YI-YJ)/RRIJ 
1388           TZIJ0= (ZI-ZJ)/RRIJ 
1389           ISKIP = 0
1390           CALL STEFORCE( RRIJ,RAV,ISKIP,TXIJ0,TYIJ0,TZIJ0 )
1391           IF( .NOT. KEEP ) THEN 
1392             C1    = FXIJS 
1393             C2    = FYIJS 
1394             C3    = FZIJS 
1395             FXIJS = FXJIS 
1396             FYIJS = FYJIS 
1397             FZIJS = FZJIS 
1398             FXJIS = C1 
1399             FYJIS = C2 
1400             FZJIS = C3 
1401             C1    = TXIJS 
1402             C2    = TYIJS 
1403             C3    = TZIJS 
1404             TXIJS = TXJIS 
1405             TYIJS = TYJIS 
1406             TZIJS = TZJIS 
1407             TXJIS = C1 
1408             TYJIS = C2 
1409             TZJIS = C3 
1410           END IF 
1411           FXI   = FXI   + FXIJS   
1412           FYI   = FYI   + FYIJS   
1413           FZI   = FZI   + FZIJS   
1414           FX(J) = FX(J) + FXJIS   
1415           FY(J) = FY(J) + FYJIS   
1416           FZ(J) = FZ(J) + FZJIS   
1417           TXI   = TXI   + TXIJS   
1418           TYI   = TYI   + TYIJS   
1419           TZI   = TZI   + TZIJS   
1420           TX(J) = TX(J) + TXJIS   
1421           TY(J) = TY(J) + TYJIS   
1422           TZ(J) = TZ(J) + TZJIS   
1423 C                            --- COUNT JUST ONCE FOR CENTRAL PLACE ---
1424           IF( JJJ .EQ. 0 )  GOTO 650           
1425 C  
1426           XJ   = RRXJ - NNXJ*CKKJ  
1427           YJ   = RRYJ - NNYJ*CKKJ  
1428           ZJ   = RRZJ - NNZJ*CKKJ  
1429           XI   = RRXI - NNXI*CKKI  

• Because of the parallel arrangement, a 
similar calculation of the repulsive forces is 
carried out for the particles placed on the 
particle axis in the opposite direction. 

• The posttreatment for the case of the particle 
names exchanged.

• To evaluate the torque, the relative position of 
the sphere from the rod-like particle center is 
calculated.

1430           YI   = RRYI - NNYI*CKKI  
1431           ZI   = RRZI - NNZI*CKKI  
1432           RRIJ = DSQRT( (XI-XJ)**2 + (YI-YJ)**2 + (ZI-ZJ)**2 ) 
1433           XRXI = XI - RRXI 
1434           YRYI = YI - RRYI 
1435           ZRZI = ZI - RRZI 
1436           XRXJ = XJ - RRXJ 
1437           YRYJ = YJ - RRYJ 
1438           ZRZJ = ZJ - RRZJ 
1439           TXIJ0= (XI-XJ)/RRIJ
1440           TYIJ0= (YI-YJ)/RRIJ
1441           TZIJ0= (ZI-ZJ)/RRIJ
1442           ISKIP = 0
1443           CALL STEFORCE( RRIJ,RAV,ISKIP,TXIJ0,TYIJ0,TZIJ0 )
1444           IF( .NOT. KEEP ) THEN 
1445             C1    = FXIJS 
1446             C2    = FYIJS 
1447             C3    = FZIJS 
1448             FXIJS = FXJIS 
1449             FYIJS = FYJIS 
1450             FZIJS = FZJIS 
1451             FXJIS = C1 
1452             FYJIS = C2 
1453             FZJIS = C3 
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1454             C1    = TXIJS 
1455             C2    = TYIJS 
1456             C3    = TZIJS 
1457             TXIJS = TXJIS 
1458             TYIJS = TYJIS 
1459             TZIJS = TZJIS 
1460             TXJIS = C1 
1461             TYJIS = C2 
1462             TZJIS = C3 
1463           END IF 
1464           FXI   = FXI   + FXIJS   
1465           FYI   = FYI   + FYIJS   
1466           FZI   = FZI   + FZIJS   
1467           FX(J) = FX(J) + FXJIS   
1468           FY(J) = FY(J) + FYJIS   
1469           FZ(J) = FZ(J) + FZJIS   
1470           TXI   = TXI   + TXIJS   
1471           TYI   = TYI   + TYIJS   
1472           TZI   = TZI   + TZIJS   
1473           TX(J) = TX(J) + TXJIS   
1474           TY(J) = TY(J) + TYJIS   
1475           TZ(J) = TZ(J) + TZJIS   
1476 C  
1477   650   CONTINUE
1478 C  
1479         GOTO 1000
1480 C                                                                
1481 C       -----------------------  END OF ENERGY DUE TO STERIC INER. ---
1482 C                                                                     
1483  1000 CONTINUE                                                        
1484 C
1485       FX(I) = FXI   
1486       FY(I) = FYI   
1487       FZ(I) = FZI   
1488       TX(I) = TXI   
1489       TY(I) = TYI   
1490       TZ(I) = TZI   
1491 C                                                                     
1492  2000 CONTINUE     
1493 C
1494 C                                    --- TORQUES DUE TO MAG. FIELD ---
1495       DO 2010 I=1,N      
1496         TX(I) = TX(I) + ( NY(I)*HZ - NZ(I)*HY )*RAH  
1497         TY(I) = TY(I) + ( NZ(I)*HX - NX(I)*HZ )*RAH  
1498         TZ(I) = TZ(I) + ( NX(I)*HY - NY(I)*HX )*RAH   
1499  2010 CONTINUE         
1500                                                                 RETURN
1501                                                                 END   
1502 C**** SUB STEFORCE ****
1503       SUBROUTINE STEFORCE( RRIJ,RAV,ISKIP,TXIJ,TYIJ,TZIJ )
1504 C
1505       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)     
1506 C
1507       COMMON /WORK20/  XRXI , YRYI , ZRZI , XRXJ , YRYJ , ZRZJ  
1508       COMMON /WORK21/  FXIJS, FYIJS, FZIJS, FXJIS, FYJIS, FZJIS 
1509       COMMON /WORK22/  TXIJS, TYIJS, TZIJS, TXJIS, TYJIS, TZJIS 
1510       COMMON /WORK23/  RCOFF2 , RP102 , D1    , D1SQ 
1511 C
1512       REAL*8  FXIJ , FYIJ , FZIJ , C0 
1513 C                                             --- STERIC REPULSION ---
1514       FXIJ   = 0.D0 
1515       FYIJ   = 0.D0 
1516       FZIJ   = 0.D0 
1517 C
1518       IF( RRIJ .LT. D1 ) THEN 
1519         IF( RRIJ .LE. 1.D0 ) RRIJ = 1.0001D0 
1520         C0   = DLOG( D1 / RRIJ )           
1521         FXIJ = TXIJ*C0 
1522         FYIJ = TYIJ*C0 
1523         FZIJ = TZIJ*C0 
1524       END IF 

• A subroutine for calculating the 
repulsive forces resulting from 
the overlap of the surfactant 
layers according to Eq. (3.63).

• The torque due to the external 
magnetic field is calculated and 
added to the corresponding 
variable.
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1525 C
1526       FXIJS = FXIJ*RAV   
1527       FYIJS = FYIJ*RAV   
1528       FZIJS = FZIJ*RAV   
1529       FXJIS = - FXIJS   
1530       FYJIS = - FYIJS    
1531       FZJIS = - FZIJS    
1532       IF( ISKIP .EQ. 1 )  RETURN 
1533 C                                                      --- TORQUES ---
1534       TXIJS   =  YRYI*FZIJS - ZRZI*FYIJS     
1535       TYIJS   =  ZRZI*FXIJS - XRXI*FZIJS     
1536       TZIJS   =  XRXI*FYIJS - YRYI*FXIJS     
1537       TXJIS   =  YRYJ*FZJIS - ZRZJ*FYJIS    
1538       TYJIS   =  ZRZJ*FXJIS - XRXJ*FZJIS    
1539       TZJIS   =  XRXJ*FYJIS - YRYJ*FXJIS    
1540                                                                 RETURN
1541                                                                 END   

• The torques acting on particles i and j due 
to the repulsive forces are calculated and 
saved in (TXIJS,TYIJS,TZIJS) and (TXJIS, 
TYJIS,TZJIS), respectively. 
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4 Practice of Monte Carlo Simulations

In the present chapter we demonstrate the two examples of an Monte Carlo (MC)

simulation by considering the aggregation phenomena of magnetic particles in

an applied magnetic field. The first exercise treats a two-dimensional suspension

composed of magnetic spherocylinder particles with the purpose of discussing

the dependence of the particle behavior on the magnetic particle�particle and the

particle�field interactions. The second exercise treats a three-dimensional suspen-

sion composed of magnetic disk-like particles for discussing similar particle behav-

ior in thermodynamic equilibrium. Understanding the MC method for simulations of

these nonspherical systems is an important first step in treating a more complex sys-

tem, such as DNA, polymeric liquids, or carbon-nanotubes. The sample simulation

programs that follow each exercise have been taken from real-life academic-oriented

research projects and are therefore realistic examples for guidance in writing an aca-

demic or commercial simulation program. In both examples demonstrated here, the

canonical MC algorithm is used under the physical conditions of a given number of

particles, temperature, and volume of the system.

4.1 Orientational Phenomena of Rod-like Particles in an
Applied Magnetic Field

In the present section we consider a suspension composed of magnetic rod-like par-

ticles as a two-dimensional system that is in thermodynamic equilibrium under the

conditions of a constant number of particles, temperature, and volume. A sample

simulation program written in the FORTRAN language completes the exercise.

4.1.1 Physical Phenomena of Interest

The system, assumed to be in thermodynamic equilibrium, is composed of N ferro-

magnetic particles with diameter d and length l0 (5l1 d) that are dispersed in a

base liquid. Each magnetic rod-like particle is modeled as a spherocylinder, as

already explained in Section 3.2, with magnetic plus and minus charges at the cen-

ters of each hemisphere cap; it is therefore magnetized in the particle axis direction.

Each particle is coated with a surfactant layer for stabilization purposes. In this

type of dispersion, the aggregation phenomenon of magnetic particles is strongly

dependent on the magnetic field strength, magnetic interactions, and the number
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density. In this example we discuss the influence of these effects on particle aggre-

gation by means of a canonical MC simulation.

4.1.2 Specification of Problems in Equations

The main consideration in formulating the present problem is the interaction energy

between the particles. Similar to Section 3.2, it is necessary to take into account

magnetic interactions and steric repulsive interactions acting between particles for

the spherocylinder particle model shown in Figure 4.1A. The treatment of the steric

interactions due to particle overlap is difficult even in the present two-dimensional

case. Therefore, in evaluating the steric interactions, we employ the simple linear

sphere-connected model shown in Figure 4.1B. In this model, each constituent

sphere is covered by a uniform steric layer. Hence, a repulsive interaction energy

due to the overlap of the two steric layers can be obtained by summing all interac-

tion energies for each pair of spheres belonging to the two different rod-like parti-

cles. This is a characteristic feature of the sphere-connected model, which is

different from the model employed in Section 3.2 in that the constituent spheres

are in fixed positions in the present case.

It is difficult to treat the particle overlap in a manner that results in an efficient

simulation program, even for the two-dimensional case, and therefore considerable

effort is required to address this problem for a three-dimensional system. In many

cases, rather than directly addressing the three-dimensional system, it is more effec-

tive to first develop a two-dimensional simulation program and then extend it

to the three-dimensional case. The three-dimensional simulation program shown

in Section 3.2 has been developed using this approach from the present

two-dimensional program, which will be shown in Section 4.1.6.

We use the notation ri for the position vector of the center of particle i (i5 1,

2,. . ., N), ei for the particle axis direction vector, and 6q for the plus and minus

magnetic charges at both hemispheres. The interaction energy with an applied mag-

netic field H is expressed similar to the spherical particles as

ui 5 2μ0miUH ð4:1Þ
in which mi is the magnetic moment, expressed as mi5 qlei (5mei). Eq. (4.1)

implies that a rod-like particle tends to incline in the magnetic field direction, lead-

ing to a minimum interaction energy.

(A) (B)

d

dl l

δ

δ

Figure 4.1 Rod-like particle

model with a steric layer: (A)

the spherocylinder model and

(B) the sphere-connected model.
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We first show an expression for the interaction energy u between magnetic

charges q and q0. If the magnetic charges are separated by distance r, the interac-

tion energy is expressed as

u5
μ0qq

0

4πr
ð4:2Þ

This equation is quite well known [31]. Eq. (4.2) is applied to the present magnetic

rod-like particle shown in Figure 4.1. The interaction energy for the rod-like particles

shown in Figure 4.1B can be obtained by summing the interaction energies for the

four pairs of magnetic charges. If the position vectors of the plus and minus charges

of an arbitrary particle i are denoted by r1
i and r2

i ; respectively, they are written as

r1
i 5 ri 1 ðl=2Þei; r2

i 5 ri 2 ðl=2Þei ð4:3Þ

With this notation, the magnetic interaction energy uij between rod-like particles i

and j is expressed as

uij 5
μ0q

2

4π
1

jr1
i 2 r1

j j
2

1

jr1
i 2 r2

j j
2

1

jr2
i 2 r1

j j
1

1

jr2i 2 r2
j j

( )
ð4:4Þ

The first term on the right-hand side is an interaction energy between the plus

charges of particles i and j. The second term is an energy between the plus charge

of particle i and the minus charge of particle j. The third term is an energy between

the minus charge of particle i and the plus charge of particle j. The fourth term is

an energy between the minus charges of particles i and j. Substitution of Eq. (4.3)

into Eq. (4.4) leads to

uij5
μ0q

2

4π
1

jrij1 leij=2j
2

1

jrij1 lðei1ejÞ=2j
2

1

jrij2 lðei1ejÞ=2j
1

1

jrij2 leij=2j

� �
ð4:5Þ

in which rij5 ri2 rj and eij5 ei2 ej.

We now consider an interaction energy uij
(V) arising from the overlap of the steric

layers. For a spherical particle with diameter d covered by a uniform surfactant

layer with thickness δ, an overlap of these two particles yields a repulsive interac-

tion energy uij
(V), as already shown in Eq. (3.41):

u
ðVÞ
ij 5 kTλV 22

2rij=d

tδ
ln

d1 2δ
rij

� �
2 2

rij=d2 1

tδ

� �
ð4:6Þ

in which rij is the separation between particles i and j (center-to-center distance), tδ
is the ratio of the steric layer thickness to the particle radius expressed as tδ5 2δ/d,
λV is a nondimensional parameter representing the strength of steric repulsive inter-

actions expressed as λV5πd2ns/2, and ns is the number of surfactant molecules per
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unit area on the particle surface. If the particle separation satisfies rij, d1 2δ, the
two steric layers of particles i and j overlap. In the following, we apply this interac-

tion energy to the two spherocylinder particles shown in Figure 4.1B.

The sphere-connected model enables us to employ the evaluation approach, which

has been used for calculating magnetic interactions. That is, the net steric interaction

energy between the two rod-like particles can be obtained by summing a steric inter-

action energy for each pair of constituent spherical particles belonging to the two dif-

ferent rod-like particles. However, this approach becomes inefficient, or requires

enormous computation time, as the rod-like particle becomes longer (i.e., for an

increase in the number of spherical particles). Since the steric layer is thin compared

with the particle diameter, the pair-wise calculation of the repulsive interactions

implies that, for some calculations, the result is negligible. We therefore need to

develop an alternative technique for calculating the steric interactions. This kind of

difficulty frequently appears in developing a simulation program, so the process

of overcoming this problem provides a good opportunity for the development of a

higher-level simulation program. Therefore, in the following we discuss this problem

in more detail.

The spatial relationship of two rod-like particles i and j is a function of the parti-

cle position vectors ri and rj and the particle direction (unit) vectors ei and ej. In

practice, a two-dimensional system is considerably more straightforward than a

three-dimensional system in treating the overlap assessment. Referring to

Figure 4.2, we now discuss the overlap between particles i and j. Assessing how

the two rod-like particles overlap first requires finding the intersection point of

each particle axis. If the two axis lines intersect at the positions (ri1 kiei) and

(rj1 kjej) of particles i and j, respectively, then the unknown constants ki and kj
have to satisfy the following equation:

ri 1 kiei 5 rj 1 kjej ð4:7Þ

i

k ie
i

k
j e

j

k is e i

k
j se

j

ri rj

j
Figure 4.2 Analysis of the overlap

condition of steric layers.
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Vector product of ej (or ei) on both sides of this equation yields jkij (or jkjj):

jkij5
jrij 3 ejj
jei 3 ejj

; jkjj5
jrij 3 eij
jei 3 ejj

ð4:8Þ

These equations are valid for a nonparallel configuration. For parallel cases, the

treatment of the particle overlap is quite straightforward and will be explained

later.

Next we need to find the point (ri1 ki
sei) on the axis line of particle i, which is

the intersection point of the line drawn from the position rj
1 of the plus magnetic

charge of particle j that perpendicularly intersects the axis line of particle i. The

orthogonality condition of this vertical line and the particle direction vector ei pro-
vides the solution of the unknown constant ki

s as

ksi 5
l

2
eiUej 2 rijUei ð4:9Þ

The solution of kj
s can be obtained by exchanging the subscriptions i and j in this

equation. Similarly, if a line drawn from the position r2
j perpendicularly intersects

the axis line of particle i at the position (ri1 ki
s0ei), the above-mentioned mathemat-

ical procedure gives rise to the solution of ki
s0 as

ksi
0 5 2

l

2
eiUej 2 rijUei ð4:10Þ

The use of these intersection points enables us to calculate effectively the repul-

sive interaction energy between particles i and j arising from the overlap of the ste-

ric layers. First, the solutions of ki and kj are obtained from Eqs. (4.7) and (4.8).

From the large-or-small relationship and the positive-or-negative sign of ki and kj,

we see which sphere of particle i has a possibility of interacting with which sphere

of particle j. For example, since kj. ki. 0 in Figure 4.2, there is a possibility of

the plus magnetic charged sphere of particle j interacting with any constituent

spheres of particle i. Which sphere of particle i interacts with the plus charged

sphere of particle j can be determined by the solution ki
s in Eq. (4.9). Because

ki
s. l/2 in Figure 4.2, it has a possibility to interact with the plus magnetic charged

sphere of particle i. At this stage, we have identified the first pair of constituent

spheres of the particles i and j required for calculating the interaction energy due to

the overlap of the steric layers.

After this calculation, we shift our attention to the next neighboring constituent

spheres of each particle and calculate their interaction energy. Repeating this proce-

dure finally yields the total interaction energy due to the particle overlap of parti-

cles i and j. An important advantage of this procedure is that the nonoverlap of the

constituent spheres can be used to terminate the calculation. In other words, this

method becomes much more efficient with an increasing particle length when com-

pared to the simple calculation method, in which all possible pairs of constituent
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spheres are treated. Note that there may be situations where one constituent sphere

of particle j may interact with two constituent spheres of particle i. For example, in

Figure 4.2, this situation may arise if the two axis lines intersect under the condi-

tion of 2l/2, ki
s, l/2; in this case, the sphere of particle j is located at a position

between the two constituent spheres of particle i.

The parallel configuration and the linear configuration do not require values of

ki and kj for the calculation of the steric interaction energy. The linear configuration

satisfies the relationships of jei � ejj5 jei � tijj5 1, in which tij is the unit vector

between particles i and j, expressed as tij5 rij/rij. Only the two spheres at the end

of each particle have a possibility to overlap for the linear configuration, so that

just one calculation is sufficient for this case; these spheres can be straightfor-

wardly specified by the signs of ei � ej and ei � tij. For the parallel configuration, a

value of ki
s in Eq. (4.9) provides information as to how the two particles are shifted

in separation along the particle axis direction. The value of ki
s or kj

s indicates which

sphere of particle j interacts with which sphere of particle i in the nearest

configuration.

In the above discussion, we have explained the fundamental and mathematical

aspects of evaluating the steric interaction between the particles. The technical

aspect of this treatment, required for developing a simulation program, will be dis-

cussed in detail later in the next subsection on the MC algorithm.

Finally, we show the nondimensional expressions of the important physical

quantities. If distances and energies are nondimensionalized by the particle diame-

ter d and the thermal energy kT, respectively, Eqs. (4.1), (4.4), (4.5), and (4.6) are

nondimensionalized as

u�i 5 ui=kT 5 2ξeiUh ð4:11Þ

u�ij5uij=kT5λ0

1

jr1�
i 2r1�

j j2
1

jr1�
i 2r2�

j j2
1

jr2�
i 2r1�

j j1
1

jr2�
i 2r2�

j j

( )

ð4:12Þ

u�ij 5uij=kT

5λ0

1

jr�ij1rpeij=2j
2

1

jr�ij1rpðei1ejÞ=2j
2

1

jr�ij2rpðei1ejÞ=2j
1

1

jr�ij2rpeij=2j

8<
:

9=
;

ð4:13Þ

u
ðVÞ�
ij 5u

ðVÞ
ij =kT5λV 22

2r�ij
tδ

ln
11tδ

r�ij

 !
22

r�ij21

tδ

( )
ð4:14Þ

in which rp is the particle aspect ratio, defined as rp5 l/d. In addition, the nondi-

mensional parameters ξ and λ0 are expressed as
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ξ5μ0mH=kT ; λ0 5μ0ðqdÞ2=4πd3kT ð4:15Þ

in which h5H/H(H5 jHj) and the quantities with superscript * are dimensionless

quantities. As previously explained in Eqs. (3.62) and (3.58), the meanings of ξ
and λ0 are the strengths of magnetic particle�field and magnetic particle�particle

interactions, respectively. A slightly different nondimensional parameter λ5 rp
2λ0

is introduced for discussion.

4.1.3 Canonical Monte Carlo Algorithm

The system is in thermodynamic equilibrium, composed of N rod-like particles

with specified volume V (i.e., area in this two-dimensional case) and temperature

T, and it is appropriate to use the canonical MC algorithm for the simulation. The

total system potential energy is evaluated by summing the magnetic particle�field

and the particle�particle interaction energy together with the steric repulsive inter-

action energy due to the overlap of the steric layers. That is,

U� 5
XN
i51

u�i 1
XN
i51

XN
j51ðj.iÞ

u�ij 1 u
ðVÞ�
ij

� �
ð4:16Þ

We now consider a transition from the present microscopic state k, which has a

system potential energy Uk. A new microscopic state l is generated by selecting

one particle and moving it to a new position by using random numbers, which

yields a new system potential energy Ul. The transition probability from micro-

scopic state k to l, pkl, is given by Eq. (1.49), but in this case the probability density

ratio is

ρl
ρk

5 exp 2
1

kT
ðUl 2UkÞ

� �
5 exp 2 U�

l 2U�
k

� 	
 � ð4:17Þ

After this treatment of the translational displacement of the particle, a similar

procedure is conducted for the rotational displacement. A series of trials for the

translational and rotational displacement, when applied to all the system particles,

is called an “MC step,” which corresponds to a time step in the molecular dynam-

ics method.

From the viewpoint of developing a simulation program, we now show the

scheme for calculating the interaction energy due to the overlap of the steric layers.

Figure 4.3 shows the categories of overlap for the two particles. There are four typ-

ical overlap regimes: linear (itree5 0), general (itree5 1), perpendicular (itree5 2),

and parallel (itree5 3). Any overlap of the steric layers can be classified into one

of these four regimes. Note that the variables itree and ipath (appearing later) have

no physical meaning but are used for the sake of convenience; these variables are

used in the sample simulation program with consistent meaning. We explain the

four overlap cases in more detail in the following paragraphs.
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4.1.3.1 General Overlap Case (itree5 1)

In this case, there are four types of overlap dependent upon the location of the plus

and minus magnetic charges, which are schematically shown in Figure 4.4. In order

to treat the particle overlap consistently in a simulation program, the names of the

two particles may be exchanged in such a way so as to satisfy the relationship

jkij, jkjj. This condition is assumed to be satisfied in the following discussion.

Figures 4.4A and C show the possibility of the plus magnetic charge of particle j

overlapping with particle i. Figures 4.4B and D are for the overlap of the minus

magnetic charge of particle j with particle i.

The four types of particle overlaps in Figure 4.4 can be identified in the follow-

ing way. By reason of jkij, jkjj, the particle on the left-hand side in Figure 4.4 is

(A) (B) (C) (D)

Figure 4.3 Typical overlap regime of the steric layers: (A) linear (itree5 0), (B) general

(itree5 1), (C) perpendicular (itree5 2), and (D) parallel (itree5 3).

(A)

(ipath = 1) (ipath = 2) (ipath = 3) (ipath = 4)

i

j

i

j

i

j

i

j

(B) (C) (D)

Figure 4.4 Overlap in the general situation (itree5 1).
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particle i, and the particle on the right-hand side is particle j. For the case of

ei � ej$ 0, the overlap regime is ipath5 1 or ipath5 4, and for the case of ei � ej, 0,

it is ipath5 2 or ipath5 3. Furthermore, the sign of kj enables us to identify

whether ipath5 1 or ipath5 4 arises for the overlap, which is also applicable to the

identification of ipath5 2 or ipath5 3. For example, for the case of ei � ej$ 0 and

kj$ 0, there is a possibility of particle overlap in the situation ipath5 1.

We now discuss which constituent sphere of particle i interacts with the mag-

netic charged sphere of particle j. Since the principle is the same for all cases, we

focus on the case of ipath5 1. The value of ki
s can allow us to identify which

sphere of particle i has the possibility to interact with the plus magnetic charged

sphere of particle j. For simplification, we name the constituent spheres in the rod-

like particle in such a way that the plus magnetic charged sphere is called “subpar-

ticle 1,” the next neighboring sphere is called “subparticle 2,” and so on. For

ki
s$ l/2, subparticle 1 of particle j may overlap with subparticle 1 of particle i;

similarly, l/2. ki
s$ (l/22 d) overlaps with subparticle 1 or subparticle 2; and

(l/22 d). ki
s$ (l/22 2d) overlaps with subparticle 2 or subparticle 3. Even if the

rod-like particle is composed of numerous subparticles, the above-mentioned proce-

dure can provide us with a method to find which subparticle of particle i overlaps

with particle j.

We now consider the case in which subparticle 1 of particle j overlaps with sub-

particle 2 or 3 of particle i. The total repulsive interaction energy between particles

i and j can be obtained by calculating the interaction energy in Eq. (4.14) for this

pair of subparticles and by repeating this calculation procedure for the neighboring

subparticles for subparticle 2 of particle j and subparticle 3 or 4 (note that subparti-

cle 4 does not exist for the present three-sphere-connected model) of particle i, and

so on. The calculation procedure can be terminated when a pair of the subparticles

is found to be separated by more than the distance (d1 2δ). In the case of

Figure 4.4A, only the first two calculations are needed to obtain the total steric

repulsive interaction energy between particles i and j. This discussion clearly sug-

gests that the present method becomes much more effective for a longer rod-like

particle. In the sample simulation program shown later, the above-mentioned proce-

dures are employed for calculating the steric interaction energy together with the

variables itree and ipath with the same meaning as above.

4.1.3.2 Normal Overlap Case (itree5 2)

Figure 4.5 shows the two categories of particle overlap in a normal orientation. As

in the general overlap case, the subscripts i and j may be exchanged in order to sat-

isfy jkij, jkjj. Figure 4.5A shows an overlap between subparticle 1 of particle j and

particle i, and Figure 4.5B is for the case of the other end subparticle of particle j

overlapping with particle i. These two categories can be identified by the value of

kj; that is, there is a possibility of particle overlap in the situation ipath5 1 or

ipath5 2 for kj. 0 or kj, 0, respectively.

We treat the case ipath5 1 shown in Figure 4.5 to consider which subparticle of

particle i possibly overlaps with the subparticle of particle j. As in the general
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 overlap situation, subparticle 1 possibly overlaps with subparticle 1 of particle j for

ki
s$ l/2, subparticle 1 or 2 overlaps with particle j for l/2. ki

s$ (l/22 d), and sub-

particle 2 or 3 does so for (l/22 d). ki
s$ (l/22 2d). For the case where the rod-

like particle is composed of numerous subparticles, the above-mentioned procedure

is repeated to find a pair or two pairs of interacting subparticles.

4.1.3.3 Linear Overlap Case (itree5 0)

In the linear overlap case, there are four types of overlap possibility, as shown in

Figure 4.6. The four categories can be identified by assessing the signs of ei � ej and
ej � tij. That is, the relationship ei � ej. 0 provides an overlap for ipath5 1 or

ipath5 2, and ei � ej, 0 provides an overlap for ipath5 3 or ipath5 4. For the case

of ei � ej. 0, the sign of ej � tij can identify whether the overlap is for ipath5 1 or

ipath5 2. Subsequently, there is a possibility of particle overlap in the situation

(A)

i i

j j

(B)

(ipath = 1) (ipath = 2)

Figure 4.5 Overlap in the normal situation (itree5 2).

(A)

i

j

i

j

i

j

i

j

(B) (C) (D)

(ipath = 1) (ipath = 2) (ipath = 3) (ipath = 4)

Figure 4.6 Overlap in the linear situation (itree5 0).
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where ipath5 1 for ei � ej. 0 and ej � tij. 0, ipath5 2 for ei � ej. 0 and ej � tij, 0,

ipath5 3 for ei � ej, 0 and ej � tij. 0, and ipath5 4 for ei � ej, 0 and ej � tij, 0.

Once the type of particle overlap is identified, the pair of the overlapping subparti-

cles is readily identified in order to calculate the interaction energy.

4.1.3.4 Parallel Overlap Case (itree5 3)

For the parallel overlap case, there are three types of particle overlap, as shown in

Figure 4.7. For the case of ipath5 1 in Figure 4.7A, the relationship ki
s# kj

s needs

to be satisfied by exchanging the particle names. The overlap regime is identified

by assessing the sign of ei � ej with a value of ki
s. That is, the overlap regime is

ipath5 1 for ei � ej. 0, ipath5 2 for ei � ej, 0 and ki
s#2l/2, and ipath5 3 for

ei � ej, 0 and ki
s. 2 l/2.

We focus on the cases ipath5 2 and 3 for discussion, since the treatment for

ipath5 1 is almost the same as in the general overlap case. For ipath5 2 and 3, the

determination of the separation between the particle centers makes the subsequent

treatment more straightforward. The separation between the particle centers

along the particle axis, kij
c, is expressed as kij

c5 jkisj2 l/2 for ipath5 2, and as kij
c5

ki
s1 l/2 for ipath5 3. Because of the similarity in the treatment for ipath5 2 and 3,

we explain only the case of ipath5 2. The value of kij
c allows us to find which sub-

particle of particle i overlaps with the minus magnetic charged sphere of particle j.

There is a possibility of the overlap with subparticle 1 or 2 of particle i for

d$ kij
c. 0 and of the overlap with subparticle 2 or 3 for 2d$ kij

c. d. This

calculation procedure is repeated until the end-sphere of particle i obtains the total

steric interaction energy.

4.1.4 Parameters for Simulations

We employed the following parameters for conducting the simulations. It is pre-

sumed that the rod-like particles aggregate to form chain-like clusters along the

(ipath = 1)

i i i

j j j

ij

kc ij

kc ij

(ipath = 2) (ipath = 3)

(A) (B) (C)

Figure 4.7 Overlap in the parallel situation (itree5 3).

115Practice of Monte Carlo Simulations



 

applied field direction (i.e., y-axis direction). We therefore choose to employ a rect-

angular simulation region dependent upon the particle aspect ratio; we therefore

adopt a rectangular region having a side length in the y-direction twice that of in

the x-direction. The results shown in the next subsection were obtained under the

assumption that a rod-like particle may be represented by three spherical subparti-

cles. The area fraction φV5 0.2, the nondimensional parameter λV, representing
the strength of steric repulsive interactions, is set as λV5 150. The thickness of the

steric layer is assumed as tδ5 0.3. The maximum distance δr�max and angle δθmax

per one trial in the MC algorithm are taken as δr�max 5 0:1 and δθmax5 5�. The MC

simulations were carried out for various cases of the magnetic particle�field and

the particle�particle interactions, ξ and λ, respectively.

4.1.5 Results of Simulations

Figures 4.8�4.11 show the results relating to the aggregate structures, which were

obtained by conducting the sample simulation program shown in the next subsec-

tion. Figure 4.8 was obtained for λ05 0.75, Figure 4.9 for λ05 1.75, Figure 4.10 for

λ05 4, and Figure 4.11 for λ05 7.5. Each figure has two snapshots: one for the case

of no external field, and the other for the case of a strong applied magnetic field.

For the case of λ05 0.75, shown in Figure 4.8, the magnetic interaction between

particles is of the same order of the thermal energy and therefore no aggregates are

observed in Figures 4.8A and B. Figure 4.8A is for the case of no external field and

therefore the rod-like particles have no specifically favored directional characteristic.

On the other hand, the rod-like particles tend to incline in the magnetic field direction

in Figure 4.8B because ξ5 20 represents a significantly strong magnetic field.

(A) (B)

Figure 4.8 Snapshots of aggregate structures for λ5 3 (λ05 0.75): (A) ξ5 0 and (B) ξ5 20.
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Figure 4.9 shows snapshots for the slightly stronger interaction λ05 1.75. These

snapshots are similar to Figure 4.8, because λ05 1.75 is not significantly larger

than the thermal energy.

For the stronger case of λ05 4, shown in Figure 4.10, the magnetic interaction

between particles is now more dominant than the thermal energy, and thus signifi-

cant aggregate structures are observed. In the case of no applied magnetic field,

(A) (B)

Figure 4.9 Snapshots of aggregate structures for λ5 7 (λ05 1.75): (A) ξ5 0 and (B) ξ5 20.

(A) (B)

Figure 4.10 Snapshots of aggregate structures for λ5 16 (λ05 4): (A) ξ5 0 and (B) ξ5 20.
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shown in Figure 4.10A, loop-like clusters can be observed. Since the arrangement

of the contact of the plus and minus magnetic charged spheres gives rise to a lower

magnetic interaction energy, this type of connection is repeated and may result in

the formation of necklace-like clusters. In the case of no external magnetic field

there is no mechanism for forming chain-like clusters. In Figure 4.10B, the external

magnetic field is significantly strong in comparison to the thermal energy, and

therefore rod-like particles tend to aggregate to form chain-like clusters in the field

direction.

These characteristics exhibited by aggregate structures can be recognized more

clearly in the case of the much stronger interaction λ05 7.5 shown in Figure 4.11.

In addition to the necklace-like clusters, star-like clusters are partially observed in

Figure 4.11A. The snapshot in Figure 4.11B suggests the possibility that large-scale

network-like or thick chain-like clusters may be formed in the field direction for

stronger magnetic interaction cases.

4.1.6 Simulation Program

We now show a sample simulation program written in the FORTRAN language

employing the simulation techniques described above in the present demonstration

of the MC method.

The important variables used in the program are described below.

RX(I),RY(I) : (x,y) components of the position vector r�i of particle i
NX(I),NY(I) : (x,y) components of the unit vector ei of particle i denoting the

particle direction

(A) (B)

Figure 4.11 Snapshots of aggregate structures for λ5 30 (λ05 7.5): (A) ξ5 0 and (B) ξ5 20.
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XL,YL : Side lengths of the simulation box in the (x,y) directions

N : Number of particles

D : Particle diameter (D51 in this case)

VDENS : Area fraction of particles φV
RA : Nondimensional parameter λ representing the strength of magnetic

particle�particle interactions

KU : Nondimensional parameter ξ representing the strength of magnetic

particle�field interactions

RV : Nondimensional parameter λV representing the strength of repulsive

interactions due to the overlap of the steric layers

RCOFF : Cutoff distance for calculations of interaction energies

DELR : δr�max

DELT : δθmax

RAN(J) : Uniform random numbers ranging 0B1(J51BNRANMX)
NRAN : Number of used random numbers

E(I) : Energy of particle i interacting with other particles

MOMX(*),
MOMY(*)

: Mean value of the particle direction at each MC step

MEANENE(*) : Mean value of the system energy at each MC step

As an aid for the reader, comments have been placed beside important program-

ming features. The line numbers are added for convenience and are unnecessary

for the execution of the simulation program.

Finally, note that the cluster-moving method [4] may not be required for the

case of a rod-like particle suspension, although it is indispensable for a spherical

particle system in order to obtain physically reasonable aggregate structures in a

strongly interacting system.

0001 C********************************************************************* 
0002 C*                         mccylin3.f                                * 
0003 C*                                                                   * 
0004 C*          --------      MONTE CARLO SIMULATIONS      -------       * 
0005 C*            TWO-DIMENSIONAL MONTE CARLO SIMULATION OF              * 
0006 C*            FERROMAGNETIC COLLOIDAL DISPERSIONS COMPOSED OF        * 
0007 C*            RODLIKE PARTICLES                                      * 
0008 C*                                                                   * 
0009 C*       OPEN(9, FILE='@daa1.data', STATUS='UNKNOWN'); parameters    *
0010 C*       OPEN(10,FILE='daa11.data', STATUS='UNKNOWN'); para. & data  *
0011 C*       OPEN(21,FILE='daa001.data',STATUS='UNKNOWN'); particle pos. *
0012 C*       OPEN(22,FILE='daa011.data',STATUS='UNKNOWN'); particle pos. *
0013 C*       OPEN(23,FILE='daa021.data',STATUS='UNKNOWN'); particle pos. *
0014 C*       OPEN(24,FILE='daa031.data',STATUS='UNKNOWN'); particle pos. *
0015 C*       OPEN(25,FILE='daa041.data',STATUS='UNKNOWN'); particle pos. *
0016 C*       OPEN(26,FILE='daa051.data',STATUS='UNKNOWN'); particle pos. *
0017 C*       OPEN(27,FILE='daa061.data',STATUS='UNKNOWN'); particle pos. *
0018 C*       OPEN(28,FILE='daa071.data',STATUS='UNKNOWN'); particle pos. *
0019 C*       OPEN(29,FILE='daa081.data',STATUS='UNKNOWN'); particle pos. *
0020 C*       OPEN(30,FILE='daa091.data',STATUS='UNKNOWN'); particle pos. *
0021 C*                                                                   * 
0022 C*          1. WITHOUT CLUSTER MOVEMENT.                             * 
0023 C*          2. RODLIKE MODEL COMPOSED OF ARBITRARY NUMBER            * 
0024 C*             OF PARTICLES.                                         * 
0025 C*                                                                   * 
0026 C*                                                                   * 
0027 C*                                    VER.1  BY A.SATOH , '03 11/20  * 
0028 C********************************************************************* 
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0064 C
0065       REAL*8    RX(NN) , RY(NN) , NX(NN) , NY(NN) , E(NN)
0066       REAL*8    VDENS  , KU
0067       REAL      MOMX(NNS), MOMY(NNS), MEANENE(NNS)
0068       INTEGER   N , NPTC , NDNSMX , NPTCHF
0069 C
0070       REAL      RAN(NRANMX)
0071       INTEGER   NRAN , IX , NRANCHK
0072 C
0073       REAL*8    RXCAN  , RYCAN  , NXCAN  , NYCAN
0074       REAL*8    RXI    , RYI    , NXI    , NYI
0075       REAL*8    RXIJ   , RYIJ   , RIJ    , RIJSQ  , RCOFF2
0076       REAL*8    ECAN   , C1     , C2      , C3    , CX    , CY
0077       INTEGER   MCSMPL , MCSMPLMX , MCSMPL1 , MCSMPL2
0078       INTEGER   NGRAPH , NOPT 
0079       LOGICAL   OVRLAP
0080 C
0081                OPEN(9, FILE='@daa1.data', STATUS='UNKNOWN') 
0082                OPEN(10,FILE='daa11.data', STATUS='UNKNOWN') 
0083                OPEN(21,FILE='daa001.data',STATUS='UNKNOWN') 
0084                OPEN(22,FILE='daa011.data',STATUS='UNKNOWN') 
0085                OPEN(23,FILE='daa021.data',STATUS='UNKNOWN') 
0086                OPEN(24,FILE='daa031.data',STATUS='UNKNOWN') 
0087                OPEN(25,FILE='daa041.data',STATUS='UNKNOWN') 
0088                OPEN(26,FILE='daa051.data',STATUS='UNKNOWN') 
0089                OPEN(27,FILE='daa061.data',STATUS='UNKNOWN') 
0090                OPEN(28,FILE='daa071.data',STATUS='UNKNOWN') 
0091                OPEN(29,FILE='daa081.data',STATUS='UNKNOWN') 
0092                OPEN(30,FILE='daa091.data',STATUS='UNKNOWN') 
0093 C

0029 C      N     : NUMBER OF PARTICLES
0030 C      D     : DIAMETER OF PARTICLE ( =1 FOR THIS CASE )
0031 C      VDENS : VOLUMETRIC FRACTION OF PARTICLES
0032 C      RA    : NONDIMENSIONAL PARAMETER OF PARTICLE-PARTICLE INTERACT 
0033 C      KU    : NONDIMENSIONAL PARAMETER OF PARTICLE-FIELD INTERACTION
0034 C      RV    : NONDIMENSIONAL PARAMETER OF STERIC REPULSION
0035 C      RCOFF : CUTOFF RADIUS FOR CALCULATION OF INTERACTION ENERGIES
0036 C      XL,YL : DIMENSIONS OF SIMULATION REGION
0037 C
0038 C      RX(N),RY(N) : PARTICLE POSITION
0039 C      NX(N),NY(N) : DIRECTION OF MAGNETIC MOMENT
0040 C      E(I)        : INTERACTION ENERGY OF PARTICLE I WITH THE OTHERS
0041 C      MOMX(**),MOMY(**) : MAGNETIC MOMENT OF SYSTEM AT EACH MC STEP
0042 C      MEANENE(**)       : MEAN ENERGY OF SYSTEM AT EACH MC STEP
0043 C
0044 C      DELR   : MAXIMUM MOVEMENT DISTANCE
0045 C      DELT   : MAXIMUM MOVEMENT IN ORIENTATION
0046 C
0047 C             -XL/2 < RX(*) < XL/2 ,  -YL/2 < RY(*) < YL/2 
0048 C--------------------------------------------------------------------- 
0049 C
0050       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0051 C
0052       COMMON /BLOCK1/  RX   , RY
0053       COMMON /BLOCK2/  NX   , NY
0054       COMMON /BLOCK3/  XL   , YL
0055       COMMON /BLOCK4/  RA   , KU   , RV   , TD    ,  RP
0056       COMMON /BLOCK5/  VDENS, N    , NPTC , RCOFF ,  D   , NPTCHF
0057       COMMON /BLOCK6/  E    , ENEW , EOLD
0058       COMMON /BLOCK7/  NRAN , RAN  , IX
0059       COMMON /BLOCK8/  DELR , DELT
0060       COMMON /BLOCK9/  MOMX , MOMY , MEANENE
0061 C
0062       PARAMETER( NN=1000 , NNS=200000 )
0063       PARAMETER( NRANMX=500000 , PI=3.141592653589793D0 )
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0127 CCC   OPEN(19,FILE='daa091.dat',STATUS='OLD')
0128 CCC     READ(19,462)  N , XL, YL, D , DT , NPTC
0129 CCC     READ(19,464) (RX(I),I=1,N) , (RY(I),I=1,N) ,
0130 CCC  &               (NX(I),I=1,N) , (NY(I),I=1,N)
0131 CCC   CLOSE(19,STATUS='KEEP')
0132 CCC   GOTO 7 
0133 C
0134       CALL INITIAL( VDENS , N , NPTC )
0135 C
0136 C                                                    --- PRINT OUT --- 
0137     7 WRITE(NP,12) N, VDENS, RA, KU, RV, D, TD, XL, YL, RCOFF, 
0138      &             RP, NPTC, DELR, DELT
0139       WRITE(NP,14) MCSMPLMX, NGRAPH
0140 C
0141 C                                               --- INITIALIZATION --- 
0142 C
0143 C     ---------------------------------------------------------------- 
0144 C     -----------------    START OF MONTE CARLO PART   --------------- 
0145 C     ---------------------------------------------------------------- 
0146 C
0147 C
0148       DO 500 MCSMPL = 1 , MCSMPLMX
0149 C
0150         DO 400 I=1,N
0151 C                                ------------------- POSITION --------
0152 C                                                   --- OLD ENERGY --- 
0153           RXI = RX(I)
0154           RYI = RY(I)
0155           NXI = NX(I)
0156           NYI = NY(I)
0157           CALL ENECAL( I , RXI, RYI, NXI, NYI, RCOFF2 , ECAN, OVRLAP )
0158           EOLD = ECAN 
0159 C                                            ----------  (1) CANDIDATE
0160 C
0161           NRAN  = NRAN + 1
0162           RXCAN = RX(I) + DELR*( 1.D0 - 2.D0*DBLE(RAN(NRAN)) )
0163           RXCAN = RXCAN - DNINT(RXCAN/XL)*XL 
0164           NRAN  = NRAN + 1
0165           RYCAN = RY(I) + DELR*( 1.D0 - 2.D0*DBLE(RAN(NRAN)) )

0094                                                                   NP=9 
0095 C                                               --- PARAMETER (1) ---
0096 C                          +   N=6*6, 7*7, 8*8, ..................  +
0097       N      = 36
0098       VDENS  = 0.2D0
0099       RA     = 5.0D0
0100       KU     = 8.0D0
0101       RV     = 150.D0
0102       D      = 1.0D0
0103       TD     = 0.3D0
0104       RP     = 2.0D0
0105       NPTC   = 3
0106       RCOFF  = 5.D0*RP
0107       NPTCHF = (NPTC-1)/2
0108 C                                                --- PARAMETER (2) --- 
0109       DELR   =  0.1D0
0110       DELT   =  (5.D0/180.D0 )*PI 
0111 C                                                --- PARAMETER (3) --- 
0112       MCSMPLMX = 10000
0113       NGRAPH   = MCSMPLMX/10
0114       NOPT     = 20
0115       RCOFF2   = RCOFF**2
0116 C                                                --- PARAMETER (4) --- 
0117       IX = 0
0118       CALL RANCAL( NRANMX, IX, RAN )
0119       NRAN    = 1
0120       NRANCHK = NRANMX - 10*N
0121 C
0122 C     ---------------------------------------------------------------- 
0123 C     -----------------    INITIAL CONFIGURATION    ------------------ 
0124 C     ---------------------------------------------------------------- 
0125 C
0126 C                                          --- SET INITIAL CONFIG. ---

• The given values and subaveraged values are written out in 
@daa1.data and daa11.data; @daa1 is for confirming the values 
assigned for simulations and the results calculated, and 
daa11.data is for the postprocessing analysis.
• The particle positions and directions are written out in daa001 – 
daa091 for the postprocessing analysis.

• The particle number N = 36, area fraction φV = 0.2, λ = 5, 
ξ = 8, λV = 150, tδ = 0.3, aspect ratio rp = 2, number of 
constituent spheres forming the sphere-connected model 
NPTC, cutoff distance r*coff = 5rp, δr*max = 0.1, and δθmax = 
(5/180)π. 

• The total number of MC steps is 10,000, and the particle 
positions are written out at every NGRAPH steps for the 
postprocessing analysis.

• A sequence of uniform random numbers are 
prepared in advance and, when necessary, random 
numbers are taken out from the variable RAN(*)

• The READ statements are for continuing the 
sequential simulation using the data saved 
previously.

• The interaction energies are calculated between particle i and 
its interacting particles. 

• After particle i is slightly moved according to Eq. (1.52), the 
interaction energy is calculated for this new microscopic state.
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0190 C
0191 C                               ---------------------- MOMENT --------
0192   150     RXI = RX(I)
0193           RYI = RY(I)
0194           NXI = NX(I)
0195           NYI = NY(I)
0196 C                                                   --- OLD ENERGY --- 
0197           EOLD = ENEW 
0198 C                                            ----------  (3) CANDIDATE
0199 C
0200           NRAN  = NRAN + 1
0201           C1    = DELT*DBLE(RAN(NRAN))
0202           NRAN  = NRAN + 1
0203           C1    = DSIGN( C1 , DBLE(RAN(NRAN)-0.5) )
0204           CX    = DSIN(C1)
0205           CY    = DCOS(C1)
0206           NXCAN = NXI*CY + NYI*CX 
0207           NYCAN = NYI*CY - NXI*CX 
0208 C
0209 C                                                   --- NEW ENERGY --- 
0210           CALL ENECAL(I, RXI, RYI, NXCAN, NYCAN, RCOFF2, ECAN, OVRLAP)
0211           IF( OVRLAP ) GOTO 400
0212 C
0213 C                                 --------  (4) ENERGY HANDAN -------- 
0214 C
0215           C3 = ECAN - EOLD
0216           IF( C3 .GE. 0.D0 )THEN
0217             NRAN = NRAN + 1
0218             IF( DBLE(RAN(NRAN)) .GE. DEXP(-C3) )THEN
0219               GOTO 400
0220             END IF
0221           END IF
0222 C                                              +++++++++++++++++++++++ 
0223 C                                              CANDIDATES ARE ACCEPTED 
0224 C                                              +++++++++++++++++++++++ 
0225           NX(I) = NXCAN
0226           NY(I) = NYCAN
0227           E(I)  = ECAN
0228 C
0229 ccc                 if( i.eq.1) then
0230 ccc                   write(6,*) 'smpl,rx,ry',mcsmpl, rx(1), ry(1)
0231 ccc                 end if
0232 C
0233   400   CONTINUE
0234 C
0235 C
0236 C                              ----- MOMENT AND ENERGY OF SYSTEM ----- 
0237         C1 = 0.D0
0238         C2 = 0.D0

• The procedure after the acceptance of the new state. 

• The average of the components of the vector denoting the particle direction 
is calculated.  

• The system energy can be obtained by summing the energy of each particle. 

0166           RYCAN = RYCAN - DNINT(RYCAN/YL)*YL 
0167 C                                                   --- NEW ENERGY --- 
0168           CALL ENECAL(I, RXCAN, RYCAN, NXI, NYI, RCOFF2, ECAN, OVRLAP)
0169           IF( OVRLAP ) THEN 
0170             ENEW = EOLD
0171             GOTO 150
0172           END IF
0173 C                                          --------  (2) ENERGY HANDAN
0174 C
0175           C3 = ECAN - EOLD
0176           IF( C3 .GE. 0.D0 )THEN
0177             NRAN = NRAN + 1
0178             IF( DBLE(RAN(NRAN)) .GE. DEXP(-C3) )THEN
0179               ENEW = EOLD
0180               GOTO 150
0181             END IF
0182           END IF
0183 C                                              +++++++++++++++++++++++ 
0184 C                                              CANDIDATES ARE ACCEPTED 
0185 C                                              +++++++++++++++++++++++ 
0186           RX(I) = RXCAN
0187           RY(I) = RYCAN
0188           ENEW  = ECAN
0189           E(I)  = ECAN

• The procedure after the acceptance of the new state. 

• After the direction of particle i is 
slightly changed according to a  
similar equation to Eq. (1.52), the 
interaction energy is calculated for 
this new microscopic state.

• The adoption of the new 
state is determined according 
to the transition probability in 
Eq. (1.49). 

• The adoption of the new state is determined 
according to the transition probability in Eq. (1.49).  
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0253           WRITE(NOPT,462)  N , XL , YL , D , DT , NPTC
0254           WRITE(NOPT,464) (RX(I),I=1,N) , (RY(I),I=1,N) ,
0255      &                    (NX(I),I=1,N) , (NY(I),I=1,N)
0256                                            CLOSE(NOPT,STATUS='KEEP') 
0257         END IF
0258 C
0259 C                           --- CHECK OF THE SUM OF RANDOM NUMBERS --- 
0260 C
0261         IF( NRAN .GE. NRANCHK )THEN
0262           CALL RANCAL( NRANMX, IX, RAN )
0263           NRAN = 1
0264         END IF
0265 C
0266 C
0267   500 CONTINUE
0268 C
0269 C     ---------------------------------------------------------------- 
0270 C     --------------------  END OF MONTE CARLO PART  ----------------- 
0271 C     ---------------------------------------------------------------- 
0272 C
0273       WRITE(NP,592)
0274       MCSMPL1 = 1
0275       MCSMPL2 = MCSMPLMX 
0276       CALL PRNTDATA( MCSMPL1 , MCSMPL2 , NP )
0277       WRITE(NP,612)  MCSMPL1 , MCSMPL2
0278 C
0279 C                                 --- DATA OUTPUT FOR GRAPHICS (2) --- 
0280       WRITE(10,1012) N, VDENS, RA, KU, RV, D, TD, XL, YL
0281       WRITE(10,1013) RCOFF, RP, NPTC, DELR, DELT
0282       WRITE(10,1014) MCSMPLMX, NGRAPH
0283       WRITE(10,1016) ( MEANENE(I),I=MCSMPL1, MCSMPL2)
0284      &              ,( MOMX(I),   I=MCSMPL1, MCSMPL2)
0285      &              ,( MOMY(I),   I=MCSMPL1, MCSMPL2)
0286 C
0287                                            CLOSE(9, STATUS='KEEP')
0288                                            CLOSE(10,STATUS='KEEP')
0289 C     -------------------------- FORMAT ------------------------------ 
0290    12 FORMAT(/1H ,'--------------------------------------------------' 
0291      &       /1H ,'-              MONTE CARLO METHOD                -' 
0292      &       /1H ,'--------------------------------------------------' 
0293      &      //1H ,'N=',I4, 2X ,'VDENS=',F5.2, 2X ,
0294      &            'RA=',F5.2, 2X ,'KU=',F6.2, 2X ,'RV=',F6.2, 2X,
0295      &            'D=',F5.2, 2X ,'TD=',F5.2
0296      &       /1H ,'XL=',F6.2, 2X,'YL=',F6.2, 2X, 'RCOFF=',F6.2, 2X,
0297      &            'RP=',F7.4, 2X,'NPTC=',I3
0298      &       /1H ,'DELR=',F7.4, 2X ,'DELT=',F7.4)
0299    14 FORMAT( 1H ,'MCSMPMX=',I8, 2X, 'NGRAPH=',I8/)
0300   462 FORMAT( I5 , 4F9.4 , I5 )
0301   464 FORMAT( (8F10.5) )
0302   592 FORMAT(/1H ,'++++++++++++++++++++++++++++++'
0303      &       /1H ,'   WITHOUT CLUSTER MOVEMENT   '
0304      &       /1H ,'++++++++++++++++++++++++++++++'/)
0305   612 FORMAT(///1H ,18X, 'START OF MC SAMPLING STEP=',I7
0306      &         /1H ,18X, 'END   OF MC SAMPLING STEP=',I7/)
0307  1007 FORMAT(/1H ,'*********** NUMBER DENSITY OF CLUSTERS ***********' 
0308      &       /1H ,'Q (MEAN LENGTH OF CLUSTERS)=',F10.5, 5X ,
0309      &            'NDNSMX=',I8
0310      &      //1H ,'NDNSCLS(1), NDNSCLS(2), NDNSCLS(3), ..............' 
0311      &       /(1H , 6E13.6) )
0312  1012 FORMAT( I7 , 8F9.4 )
0313  1013 FORMAT( 2F9.5 , I4, 2F8.5 )

0239         C3 = 0.D0
0240         DO 450 J=1,N
0241           C1 = C1 + NY(J)
0242           C2 = C2 + NX(J)
0243           C3 = C3 + E(J)
0244   450   CONTINUE
0245         MOMY(MCSMPL)    = REAL(C1)/REAL(N)
0246         MOMX(MCSMPL)    = REAL(C2)/REAL(N)
0247         MEANENE(MCSMPL) = REAL(C3-KU*C1)/REAL(2*N)
0248 C
0249 C                                 --- DATA OUTPUT FOR GRAPHICS (1) --- 
0250 C
0251         IF( MOD(MCSMPL,NGRAPH) .EQ. 0 ) THEN 
0252           NOPT = NOPT + 1

• Since each interaction energy is counted twice, the magnetic 
particle–field interaction is also added twice. The system 
energy can finally be obtained by dividing the result by two.

• The number of the random numbers used is 
checked. If over NRANCHK, a uniform random 
number sequence is renewed.
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0316                                                                   STOP 
0317                                                                   END
0318 C********************************************************************* 
0319 C***************************   SUBROUTINE   ************************** 
0320 C********************************************************************* 
0321 C
0322 C**** SUB PRNTDATA ****
0323       SUBROUTINE PRNTDATA( MCSST, MCSMX, NP )
0324 C
0325       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0326 C
0327       COMMON /BLOCK9/  MOMX , MOMY , MEANENE
0328 C
0329       PARAMETER( NN=1000 , NNS=200000 )
0330       PARAMETER( NRANMX=500000 , PI=3.141592653589793D0 )
0331 C
0332       INTEGER   MCSST     , MCSMX     , NP
0333       REAL      MOMX(NNS) , MOMY(NNS) , MEANENE(NNS)
0334 C
0335       REAL      AMOMX(10)   , AMOMY(10)   , AMEANENE(10)  , C0
0336       INTEGER   IC , IMC(0:10) , JS , JE
0337 C
0338 C                                             ----- KEIKA INSATU ----- 
0339       IC = ( MCSMX-MCSST+1 )/50
0340       DO 20 I= MCSST-1+IC , MCSMX , IC
0341         WRITE(NP,10) I ,MOMX(I) ,MOMY(I) ,MEANENE(I)
0342    20 CONTINUE
0343 C                                  ----- MONTE CARLO STEP HEIKIN ----- 
0344       IC = ( MCSMX-MCSST+1 )/10
0345       DO 30 I=0,10
0346         IMC(I) = MCSST - 1 + IC*I
0347         IF( I .EQ. 10 ) IMC(I) =MCSMX
0348    30 CONTINUE
0349 C
0350 C
0351       DO 35 I=1,10
0352         AMOMY(I)    = 0.
0353         AMOMX(I)    = 0.
0354         AMEANENE(I) = 0.
0355    35 CONTINUE
0356 C
0357       DO 50 I=1,10
0358         JS = IMC(I-1) + 1
0359         JE = IMC(I)
0360         DO 40 J=JS,JE
0361           AMOMY(I)    = AMOMY(I)    + MOMY(J)
0362           AMOMX(I)    = AMOMX(I)    + MOMX(J)
0363           AMEANENE(I) = AMEANENE(I) + MEANENE(J)
0364    40   CONTINUE
0365    50 CONTINUE
0366 C
0367       DO 70 I=1,10
0368         C0          = REAL( IMC(I)-IMC(I-1) )
0369         AMOMY(I)    = AMOMY(I)   /C0
0370         AMOMX(I)    = AMOMX(I)   /C0
0371         AMEANENE(I) = AMEANENE(I)/C0
0372    70 CONTINUE
0373 C                                       ----- STEP HEIKIN INSATU ----- 
0374       WRITE(NP,75)
0375       DO 90 I=1,10
0376        WRITE(NP,80)I,IMC(I-1)+1,IMC(I),AMOMX(I),AMOMY(I),AMEANENE(I)
0377    90 CONTINUE
0378 C     ---------------------------------------------------------------- 

• The particle direction and the averaged energy 
are written out.  

0314  1014 FORMAT( 2I8 )
0315  1016 FORMAT( (5E16.9) )

0379    10 FORMAT(1H ,'MCSMPL=',I5, 3X ,'MOMENT(X)=',F7.4, 3X ,
0380      &           'MOMENT(Y)=',F7.4, 3X ,'MEAN ENERGY=',E12.5)
0381    75 FORMAT(//1H ,'-----------------------------------------------'
0382      &        /1H ,'             MONTE CARLO HEIKIN                '
0383      &        /)
0384    80 FORMAT(1H ,'I=',I2, 2X ,'SMPLMN=',I5, 2X ,'SMPLMX=',I5
0385      &      /1H ,15X ,'MOMENT(X)=',F7.4, 3X ,
0386      &                'MOMENT(Y)=',F7.4, 3X ,'MEAN ENERGY=',E12.5/)
0387                                                                 RETURN 
0388                                                                 END

• The total MC steps are equally divided into 50 
blocks, and the end value of each block is 
written out.   

• The total MC steps are equally divided into10
blocks, and the subaverages are calculated for
each block.
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0389 C**** SUB INITIAL ****
0390       SUBROUTINE INITIAL( VDENS , N , NPTC )
0391 C
0392       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0393 C
0394       COMMON /BLOCK1/  RX   , RY
0395       COMMON /BLOCK2/  NX   , NY
0396       COMMON /BLOCK3/  XL   , YL
0397 C
0398       PARAMETER( NN=1000 )
0399       PARAMETER( NRANMX=500000 , PI=3.141592653589793D0 )
0400 C
0401       REAL*8    RX(NN) , RY(NN) , NX(NN) , NY(NN) 
0402       REAL*8    VDENS
0403 C
0404       INTEGER   Q , PTCL
0405       REAL*8    A , XLUNT , YLUNT , RAN , RAN1 , RAN2 , C1 , C2 
0406 C
0407       A  = DSQRT( DBLE(NPTC)*PI/(8.D0*VDENS) ) 
0408       Q  = NINT( SQRT(REAL(N+1)) )
0409       XL = A*DBLE(Q)
0410       YL = A*DBLE(2*Q)
0411       XLUNT = A
0412       YLUNT = A*DBLE(2)
0413 C                                                ----- POSITION -----
0414       RAN1 = DSQRT( 2.D0 )
0415       RAN2 = DSQRT( 7.D0 )
0416       PTCL=0
0417       DO 10 J=0,Q-1
0418         DO 10 I=0,Q-1
0419           PTCL = PTCL + 1
0420           C1 = RAN1*DBLE(PTCL)
0421           C1 = C1 - DINT(C1)
0422           C1 = C1 - 0.5D0
0423           C2 = RAN2*DBLE(PTCL)
0424           C2 = C2 - DINT(C2)
0425           C2 = C2 - 0.5D0
0426           RX(PTCL) = DBLE(I)*XLUNT+XLUNT/2.D0+C1*(XLUNT/6.D0)-XL/2.D0
0427           RY(PTCL) = DBLE(J)*YLUNT+YLUNT/2.D0+C2*(YLUNT/6.D0)-YL/2.D0
0428    10 CONTINUE
0429       N = PTCL
0430 C                                                   ----- MOMENT ----- 
0431       RAN = DSQRT( 2.D0 )
0432       DO 20 I=1,N
0433         C1 = RAN*DBLE(I)
0434         C1 = C1 - DINT(C1)
0435         C1 = C1 - 0.5D0
0436         C1 = (5.D0/180.D0)*PI*C1
0437         NX(I) = DSIN( C1 )
0438         NY(I) = DCOS( C1 )
0439    20 CONTINUE
0440                                                                RETURN
0441                                                                END
0442 C**** SUB ENECAL *****
0443       SUBROUTINE ENECAL(I, RXI, RYI, NXI, NYI, RCOFF2 ,ECAN, OVRLAP) 
0444 C
0445       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0446 C
0447       COMMON /BLOCK1/  RX   , RY
0448       COMMON /BLOCK2/  NX   , NY
0449       COMMON /BLOCK3/  XL   , YL
0450       COMMON /BLOCK4/  RA   , KU   , RV   , TD    ,  RP
0451       COMMON /BLOCK5/  VDENS, N    , NPTC , RCOFF ,  D   , NPTCHF
0452       COMMON /BLOCK6/  E    , ENEW , EOLD
0453 C
0454       PARAMETER( NN=1000 , PI=3.141592653589793D0 )
0455 C
0456       REAL*8    RX(NN) , RY(NN) , NX(NN) , NY(NN) , E(NN)
0457       REAL*8    VDENS  , KU
0458       LOGICAL   OVRLAP
0459 C

• A subroutine for calculating the interaction
energies between particles.  

0460       REAL*8    RXI , RYI , RXJ , RYJ , RXIJ , RYIJ , RIJ , RIJSQ
0461       REAL*8    NXI , NYI , NXJ , NYJ , NXIJ , NYIJ , NXIJ2 , NYIJ2
0462       REAL*8    RRXI , RRYI , RRXJ , RRYJ , RRXIJ , RRYIJ
0463       REAL*8    NNXI , NNYI , NNXJ , NNYJ 

• A subroutine for setting the initial 
position and velocity of each particle. 

• The area occupied by one particle is 
(a*×2a*) and therefore the relationship 
between the area fraction φV and a* is 
expressed as φV =(NPTC)*π/8a*2.

• To save pseudo-random numbers, quasi-random 
numbers based on irrational numbers are used for 
randomly setting the particle direction within a 
small angle range. 

• The particles are initially set in the simple lattice unit 
formation in Figure 2.1A; the side lengths of the unit cell are 
(a*, 2a*) in each direction.
• Each particle is moved in parallel by (XLUNT/2, YLUNT/2) 
to remove subtle situations at outer boundary surfaces. Also, 
to remove the regularity of the initial configuration, each 
particle is moved randomly by the maximum displacement 
0.5×(XLUNT/6, YLUNT/6) using quasi-random numbers.
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0464       REAL*8    TXIJ , TYIJ , R00  , R01  , R10   , R11
0465       REAL*8    C11 , C12 , C21 , C22 , C31 , C32 , C41 , C42 
0466       REAL*8    C00  , C01  , C02 
0467       REAL*8    CNINJ , CNINJ2 , CRIJNI2 , CRIJNJ2 , CKI , CKJ
0468       REAL*8    KI , KJ , KKI , KKJ , KIS , KJS , KKIS , KKIS2 , KKIJC
0469       REAL*8    DSQ, RCHKSQ   , RCHKSQ2
0470       REAL*8    XI , YI , XJ  , YJ  , ENESTER
0471       INTEGER   ITREE , IPATH , II , JJ , JJS , JJE , IIDEF, IINUMBR 
0472 C
0473       OVRLAP = .FALSE. 
0474       ECAN   = - KU*NYI
0475       DSQ    = ( 1.D0 + TD )**2
0476 C
0477       DO 1000 J=1,N
0478 C
0479         IF( J .EQ. I )               GOTO 1000
0480 C
0481         RXJ = RX(J) 
0482         RYJ = RY(J) 
0483         RXIJ = RXI - RXJ
0484         RXIJ = RXIJ - DNINT(RXIJ/XL)*XL 
0485         IF( DABS(RXIJ) .GE. RCOFF )  GOTO 1000
0486         RYIJ = RYI - RYJ
0487         RYIJ = RYIJ - DNINT(RYIJ/YL)*YL 
0488         IF( DABS(RYIJ) .GE. RCOFF )  GOTO 1000
0489         RIJSQ= RXIJ**2 + RYIJ**2
0490         IF( RIJSQ .GE. RCOFF2 )      GOTO 1000
0491         RIJ  = DSQRT(RIJSQ)
0492 C
0493         IF( DABS(RXIJ) .GT. XL/2.D0 ) THEN
0494           IF( RXIJ .GT. 0.D0 ) RXJ = RXJ + XL
0495           IF( RXIJ .LE. 0.D0 ) RXJ = RXJ - XL
0496         END IF 
0497         IF( DABS(RYIJ) .GT. YL/2.D0 ) THEN
0498           IF( RYIJ .GT. 0.D0 ) RYJ = RYJ + YL
0499           IF( RYIJ .LE. 0.D0 ) RYJ = RYJ - YL
0500         END IF 
0501         NXJ   = NX(J)
0502         NYJ   = NY(J)
0503         NXIJ  = NXI - NXJ
0504         NYIJ  = NYI - NYJ

• The treatment concerning particle i.

0505         NXIJ2 = NXI + NXJ
0506         NYIJ2 = NYI + NYJ
0507 C
0508         C11 = RXIJ*NXIJ  + RYIJ*NYIJ 
0509         C21 = RXIJ*NXIJ2 + RYIJ*NYIJ2 
0510         C12 = 1.D0 - ( NXI*NXJ + NYI*NYJ )
0511         C22 = 1.D0 + ( NXI*NXJ + NYI*NYJ )
0512         C00 = RA/(RP**2)
0513         C01 = RP/RIJSQ
0514         C02 = RP**2/(2.D0*RIJSQ)
0515 C                                              --- MAGNETIC ENERGY ---
0516         R00 = RIJ*(1.D0 + C01*C11 + C02*C12)**0.5
0517         R11 = RIJ*(1.D0 - C01*C11 + C02*C12)**0.5
0518         R01 = RIJ*(1.D0 + C01*C21 + C02*C22)**0.5
0519         R10 = RIJ*(1.D0 - C01*C21 + C02*C22)**0.5
0520         IF(      (R00 .LT. 1.D0) .OR. (R11 .LT. 1.D0)
0521      &      .OR. (R01 .LT. 1.D0) .OR. (R10 .LT. 1.D0)    ) THEN
0522           OVRLAP = .TRUE.
0523           RETURN
0524         END IF 
0525 C
0526         ECAN = ECAN + C00*( 1.D0/R00 + 1.D0/R11 - 1.D0/R01 - 1.D0/R10 )
0527 C
0528 C
0529 C       ------------------------------- ENERGY DUE TO STERIC INER. ---
0530 C
0531         CNINJ = NXI*NXJ + NYI*NYJ
0532         IF( DABS(CNINJ) .LT. 0.2D0 ) THEN 
0533           ITREE = 2
0534         ELSE IF( DABS(CNINJ) .GT. 0.9999D0) THEN
0535           ITREE = 3

• The interaction energy is summed for the 
four pairs of magnetic charges.  

• The treatment of the periodic BC.
• If the two particles are separated
over the cutoff distance r*coff, the 
calculation is unnecessary.  

• The interaction energy due to 
the overlap of the steric layers 
is calculated in the following.  

• The magnetic interaction energy is 
calculated from Eq. (4.13).
• The distance between the magnetic 
charges is first calculated.

• The position of the partner particle j is
modified according to the periodic BC.
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0536         ELSE 
0537           ITREE = 1
0538         END IF
0539 C
0540         TXIJ = RXIJ/RIJ
0541         TYIJ = RYIJ/RIJ
0542         C11  = TXIJ*NXJ  + TYIJ*NYJ 
0543         IF( (DABS(CNINJ).GT.0.9999D0).AND.(DABS(C11).GT.0.9999D0) )THEN
0544           ITREE=0
0545         END IF
0546 C                                                 --------------------
0547 C                                                  ITREE=0: LINEAR
0548 C                                                  ITREE=1: GENERAL 
0549 C                                                  ITREE=2: NORMALL 
0550 C                                                  ITREE=3: PARALLEL
0551 C                                                 --------------------
0552 C
0553 C       ----------------------------------------------- (0) LINEAR ---
0554         IF( ITREE .EQ. 0 ) THEN
0555 C
0556           IF( CNINJ .GE. 0 ) THEN 
0557             IF( C11 .GE. 0 ) THEN
0558 C                                                          --- IPATH=1 
0559               XJ = RXJ + NXJ*DBLE(NPTCHF)
0560               YJ = RYJ + NYJ*DBLE(NPTCHF)
0561               XI = RXI - NXI*DBLE(NPTCHF)
0562               YI = RYI - NYI*DBLE(NPTCHF) 
0563               ECAN = ECAN +  ENESTER( XI, YI, XJ, YJ, TD, RV, OVRLAP )
0564               IF ( OVRLAP ) RETURN
0565             ELSE 
0566 C                                                          --- IPATH=2 
0567               XJ = RXJ - NXJ*DBLE(NPTCHF)

• The treatment for a linear arrangement 
in Figure 4.6.  

0568               YJ = RYJ - NYJ*DBLE(NPTCHF)
0569               XI = RXI + NXI*DBLE(NPTCHF)
0570               YI = RYI + NYI*DBLE(NPTCHF) 
0571               ECAN = ECAN +  ENESTER( XI, YI, XJ, YJ, TD, RV, OVRLAP )
0572               IF ( OVRLAP ) RETURN
0573             END IF
0574           ELSE 
0575             IF( C11 .GE. 0 ) THEN
0576 C                                                          --- IPATH=3 
0577               XJ = RXJ + NXJ*DBLE(NPTCHF)
0578               YJ = RYJ + NYJ*DBLE(NPTCHF)
0579               XI = RXI + NXI*DBLE(NPTCHF)
0580               YI = RYI + NYI*DBLE(NPTCHF) 
0581               ECAN = ECAN +  ENESTER( XI, YI, XJ, YJ, TD, RV, OVRLAP )
0582               IF ( OVRLAP ) RETURN
0583             ELSE 
0584 C                                                          --- IPATH=4 
0585               XJ = RXJ - NXJ*DBLE(NPTCHF)
0586               YJ = RYJ - NYJ*DBLE(NPTCHF)
0587               XI = RXI - NXI*DBLE(NPTCHF)
0588               YI = RYI - NYI*DBLE(NPTCHF) 
0589               ECAN = ECAN +  ENESTER( XI, YI, XJ, YJ, TD, RV, OVRLAP )
0590               IF ( OVRLAP ) RETURN
0591             END IF
0592           END IF 
0593 C
0594           GOTO 1000
0595 C
0596         END IF
0597 C       --------------------------------------------- END OF LINEAR --
0598
0599         IF( (ITREE .EQ. 1) .OR. (ITREE .EQ. 2) ) THEN 
0600 C

• The position (XI,YI) and (XJ,YJ) of the spheres of 
particles i and j are calculated.  

0601           CNINJ2  = NXJ*NYI  - NYJ*NXI
0602           CRIJNI2 = RXIJ*NYI - RYIJ*NXI 
0603           CRIJNJ2 = RXIJ*NYJ - RYIJ*NXJ 
0604           CKJ     = DABS( CRIJNI2/CNINJ2 ) 
0605           CKI     = DABS( CRIJNJ2/CNINJ2 ) 

• The absolute values (CKI, CKJ) of (ki, k j) 
are calculated from Eq. (4.8).  

0606 C
0607           C11 = RXIJ + CKI*NXI - CKJ*NXJ
0608           C12 = RYIJ + CKI*NYI - CKJ*NYJ
0609           C21 = RXIJ - CKI*NXI - CKJ*NXJ
0610           C22 = RYIJ - CKI*NYI - CKJ*NYJ

• The regime shown in Figure 4.3 is determined to proceed to the 
appropriate treatment, and after the calculation of the interaction 
energy, the calculation procedure returns to the main program.
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0611           C31 = RXIJ + CKI*NXI + CKJ*NXJ
0612           C32 = RYIJ + CKI*NYI + CKJ*NYJ
0613           C41 = RXIJ - CKI*NXI + CKJ*NXJ
0614           C42 = RYIJ - CKI*NYI + CKJ*NYJ
0615           C00 = 1.0D-8
0616           IF( (DABS(C11).LT. C00) .AND. (DABS(C12).LT. C00) )THEN
0617             KI =  CKI
0618             KJ =  CKJ
0619             GOTO 110
0620           END IF 
0621           IF( (DABS(C21).LT. C00) .AND. (DABS(C22).LT. C00) )THEN
0622             KI = -CKI
0623             KJ =  CKJ
0624             GOTO 110
0625           END IF 
0626           IF( (DABS(C31).LT. C00) .AND. (DABS(C32).LT. C00) )THEN
0627             KI =  CKI
0628             KJ = -CKJ
0629             GOTO 110
0630           END IF 

• The final results of ki and k j are obtained by
checking the sign of ki and k j.  

0631           IF( (DABS(C41).LT. C00) .AND. (DABS(C42).LT. C00) )THEN
0632             KI = -CKI
0633             KJ = -CKJ
0634             GOTO 110
0635           END IF 
0636 C
0637   110     IF( CKJ .GT. CKI ) THEN 
0638             II    = I
0639             JJ    = J
0640             RRXI  = RXI
0641             RRYI  = RYI
0642             RRXJ  = RXJ
0643             RRYJ  = RYJ
0644             RRXIJ = RXIJ
0645             RRYIJ = RYIJ
0646             NNXI  = NXI
0647             NNYI  = NYI
0648             NNXJ  = NXJ
0649             NNYJ  = NYJ
0650             KKI   = KI
0651             KKJ   = KJ
0652           ELSE 
0653             II    = J 
0654             JJ    = I
0655             RRXI  = RXJ
0656             RRYI  = RYJ
0657             RRXJ  = RXI
0658             RRYJ  = RYI
0659             RRXIJ = -RXIJ
0660             RRYIJ = -RYIJ
0661             NNXI  = NXJ
0662             NNYI  = NYJ
0663             NNXJ  = NXI
0664             NNYJ  = NYI
0665             KKI   = KJ
0666             KKJ   = KI
0667           END IF
0668 C
0669         END IF
0670 C                                                 --------------------
0671 C                                                  ITREE=0: LINEAR
0672 C                                                  ITREE=1: GENERAL
0673 C                                                  ITREE=2: NORMALL
0674 C                                                  ITREE=3: PARALLEL
0675 C                                                 --------------------
0676         IF( ITREE .EQ. 1 ) GOTO 200
0677         IF( ITREE .EQ. 2 ) GOTO 400
0678         IF( ITREE .EQ. 3 ) GOTO 600
0679 C
0680 C       ---------------------------------------------- (1) GENERAL ---
0681   200   CNINJ = NXI*NXJ + NYI*NYJ
0682         IF( CNINJ .GT. 0.D0 ) THEN
0683           IF( KKJ .GE. 0.D0 ) THEN 
0684             IPATH = 1
0685           ELSE

• The treatment for a general arrangement in 
Figure 4.4. 

• The subscripts are exchanged between i and
j so as to satisfy |kj |>|ki |. 
• As a result, the particle names i and j in 
Figure 4.2 are expressed as II and JJ in the 
program. 
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0686             IPATH = 4
0687           END IF
0688         ELSE
0689           IF( KKJ .GE. 0.D0 ) THEN 
0690             IPATH = 3
0691           ELSE
0692             IPATH = 2
0693           END IF
0694         END IF 
0695 C
0696         KKIS  =   CNINJ*DBLE(NPTCHF)  - ( RRXIJ*NNXI + RRYIJ*NNYI ) 
0697         KKIS2 = - CNINJ*DBLE(NPTCHF)  - ( RRXIJ*NNXI + RRYIJ*NNYI ) 
0698         RCHKSQ =( RRXIJ + KKIS *NNXI - NNXJ*DBLE(NPTCHF) )**2
0699      &         +( RRYIJ + KKIS *NNYI - NNYJ*DBLE(NPTCHF) )**2
0700         RCHKSQ2=( RRXIJ + KKIS2*NNXI + NNXJ*DBLE(NPTCHF) )**2
0701      &         +( RRYIJ + KKIS2*NNYI + NNYJ*DBLE(NPTCHF) )**2
0702 C
0703         IF( IPATH .EQ. 1 ) THEN
0704 C                                                      --- PATH=1 ---
0705           IF( RCHKSQ .GE. DSQ ) GOTO 1000 
0706 C
0707           IF( KKIS .GE. 0.D0 ) THEN 
0708             IKKIS = IDINT(KKIS) + 1 
0709           ELSE
0710             IKKIS = IDINT(KKIS)
0711           END IF
0712           IF( IKKIS .GT. NPTCHF )  IKKIS = NPTCHF 
0713           JJS   = NPTCHF
0714           IIDEF = NPTCHF - IKKIS
0715           JJE   = -NPTCHF + IIDEF 
0716 C
0717           DO 250 JJ= JJS, JJE, -1
0718             XJ = RRXJ + DBLE(JJ)*NNXJ 
0719             YJ = RRYJ + DBLE(JJ)*NNYJ 
0720           DO 250 II= JJ-IIDEF, JJ-IIDEF-1, -1
0721             IF( II .LT. -NPTCHF )    GOTO 250
0722             XI = RRXI + DBLE(II)*NNXI 
0723             YI = RRYI + DBLE(II)*NNYI
0724             ECAN = ECAN +  ENESTER( XI, YI, XJ, YJ, TD, RV, OVRLAP )
0725             IF ( OVRLAP ) RETURN
0726   250     CONTINUE
0727 C
0728         ELSE IF( IPATH .EQ. 2 ) THEN
0729 C                                                      --- PATH=2 ---
0730           IF( RCHKSQ2 .GE. DSQ ) GOTO 1000
0731 C
0732           IF( KKIS2 .GE. 0.D0 ) THEN 
0733             IKKIS2 = IDINT(KKIS2) + 1 
0734           ELSE
0735             IKKIS2 = IDINT(KKIS2)
0736           END IF
0737           IF( IKKIS2 .GT. NPTCHF )  IKKIS2 = NPTCHF 
0738           JJS   = NPTCHF
0739           IIDEF = NPTCHF - IKKIS2
0740           JJE   = -NPTCHF + IIDEF 
0741 C
0742           DO 252 JJ= JJS, JJE, -1
0743             JJJ= -JJ
0744             XJ = RRXJ + DBLE(JJJ)*NNXJ 
0745             YJ = RRYJ + DBLE(JJJ)*NNYJ 
0746           DO 252 II= JJ-IIDEF, JJ-IIDEF-1, -1
0747             IF( II .LT. -NPTCHF )    GOTO 252
0748             XI = RRXI + DBLE(II)*NNXI 
0749             YI = RRYI + DBLE(II)*NNYI
0750             ECAN = ECAN +  ENESTER( XI, YI, XJ, YJ, TD, RV, OVRLAP )
0751             IF ( OVRLAP ) RETURN
0752   252     CONTINUE
0753 C
0754         ELSE IF( IPATH .EQ. 3 ) THEN
0755 C                                                      --- PATH=3 ---
0756           IF( RCHKSQ .GE. DSQ ) GOTO 1000
0757 C
0758           IF( -KKIS .GE. 0.D0 ) THEN 
0759             IKKIS = IDINT(-KKIS) + 1 
0760           ELSE
0761             IKKIS = IDINT(-KKIS)

• After the assessment of the particle overlap 
regime, ki

s (KKIS) and ki
s′  (KKIS2) are calculated 

from Eqs. (4.9) and (4.10).

• The constituent spheres in the rod-like particle are 
named in such a way that the central sphere is 0, the 
neighboring spheres are 1,2,…, in the particle direction, 
and –1,–2,…, in the opposite direction.

• The center of the sphere of particle i is 
denoted by (XI,YI) and, similarly, (XJ,YJ) 
for the sphere of particle j.

• The interaction energy between the sphere 
IKKIS of particle i and the sphere JJS of 
particle j is checked.
• The two spheres of particle i are checked 
as an object interacting with the sphere of 
particle j.
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0762           END IF
0763           IF( IKKIS .GT. NPTCHF )  IKKIS = NPTCHF 
0764           JJS   = NPTCHF
0765           IIDEF = NPTCHF - IKKIS
0766           JJE   = -NPTCHF + IIDEF 
0767 C
0768           DO 254 JJ= JJS, JJE, -1
0769             XJ = RRXJ + DBLE(JJ)*NNXJ 
0770             YJ = RRYJ + DBLE(JJ)*NNYJ 
0771           DO 254 II= JJ-IIDEF, JJ-IIDEF-1, -1
0772             IF( II .LT. -NPTCHF )    GOTO 254
0773             III = -II
0774             XI = RRXI + DBLE(III)*NNXI 
0775             YI = RRYI + DBLE(III)*NNYI
0776             ECAN = ECAN +  ENESTER( XI, YI, XJ, YJ, TD, RV, OVRLAP )
0777             IF ( OVRLAP ) RETURN
0778   254     CONTINUE
0779 C
0780         ELSE IF( IPATH .EQ. 4 ) THEN
0781 C                                                      --- PATH=4 ---
0782           IF( RCHKSQ2 .GE. DSQ ) GOTO 1000
0783 C
0784           IF( -KKIS2 .GE. 0.D0 ) THEN 
0785             IKKIS2 = IDINT(-KKIS2) + 1 
0786           ELSE
0787             IKKIS2 = IDINT(-KKIS2)
0788           END IF
0789           IF( IKKIS2 .GT. NPTCHF )  IKKIS2 = NPTCHF 
0790           JJS   = NPTCHF
0791           IIDEF = NPTCHF - IKKIS2
0792           JJE   = -NPTCHF + IIDEF 
0793 C
0794           DO 256 JJ= JJS, JJE, -1
0795             JJJ = -JJ
0796             XJ = RRXJ + DBLE(JJJ)*NNXJ 
0797             YJ = RRYJ + DBLE(JJJ)*NNYJ 
0798           DO 256 II= JJ-IIDEF, JJ-IIDEF-1, -1
0799             IF( II .LT. -NPTCHF )    GOTO 256
0800             III = -II
0801             XI = RRXI + DBLE(III)*NNXI 
0802             YI = RRYI + DBLE(III)*NNYI
0803             ECAN = ECAN +  ENESTER( XI, YI, XJ, YJ, TD, RV, OVRLAP )
0804             IF ( OVRLAP ) RETURN
0805   256     CONTINUE
0806 C
0807         END IF
0808 C
0809         GOTO 1000
0810 C       ---------------------------------------------- (2) NORMAL  ---
0811 C
0812   400   IF( KKJ .GE. 0.D0 ) THEN 
0813           IPATH = 1
0814         ELSE
0815           IPATH = 2
0816         END IF
0817 C
0818         CNINJ = NXI*NXJ + NYI*NYJ
0819         KKIS  =   CNINJ*DBLE(NPTCHF) - ( RRXIJ*NNXI + RRYIJ*NNYI ) 

• The treatment for a normal arrangement in 
Figure 4.5.  

0820         KKIS2 = - CNINJ*DBLE(NPTCHF) - ( RRXIJ*NNXI + RRYIJ*NNYI ) 
0821         RCHKSQ =( RRXIJ + KKIS *NNXI - NNXJ*DBLE(NPTCHF) )**2
0822      &         +( RRYIJ + KKIS *NNYI - NNYJ*DBLE(NPTCHF) )**2
0823         RCHKSQ2=( RRXIJ + KKIS2*NNXI + NNXJ*DBLE(NPTCHF) )**2
0824      &         +( RRYIJ + KKIS2*NNYI + NNYJ*DBLE(NPTCHF) )**2
0825 C
0826         IF( IPATH .EQ. 1 ) THEN
0827           IF( RCHKSQ  .GE. DSQ ) GOTO 1000
0828         ELSE
0829           IF( RCHKSQ2 .GE. DSQ ) GOTO 1000
0830         END IF
0831 C
0832         IF( IPATH .EQ. 2 )  KKIS = KKIS2 
0833 C
0834         IF( KKIS .GE. 0.D0 ) THEN 
0835           IKKIS = IDINT(KKIS) + 1 
0836         ELSE

• The constituent spheres in the rod-like particle 
are named in such a way that the central sphere is 
0, the neighboring spheres are 1,2,…, in the 
particle direction, and –1, –2,…, in the opposite 
direction.

• After the assessment of the particle overlap
regime, ki

s (KKIS) and ki
s′  (KKIS2) are 

calculated from Eqs. (4.9) and (4.10). 
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0837           IKKIS = IDINT(KKIS)
0838         END IF
0839         IF( IKKIS .GT. NPTCHF )  IKKIS = NPTCHF + 1
0840         IIDEF = NPTCHF - IKKIS
0841 C
0842         JJJ = NPTCHF
0843         IF( IPATH .EQ. 1 ) THEN
0844           JJ = JJJ
0845         ELSE 
0846           JJ = -JJJ 
0847         END IF
0848 C
0849
0850         XJ = RRXJ + DBLE(JJ)*NNXJ 
0851         YJ = RRYJ + DBLE(JJ)*NNYJ 
0852         DO 450 II= JJJ-IIDEF, JJJ-IIDEF-1, -1
0853           IF( II .GT.  NPTCHF )    GOTO 450
0854           IF( II .LT. -NPTCHF )    GOTO 450
0855           XI = RRXI + DBLE(II)*NNXI 
0856           YI = RRYI + DBLE(II)*NNYI
0857           ECAN = ECAN +  ENESTER( XI, YI, XJ, YJ, TD, RV, OVRLAP )
0858           IF ( OVRLAP ) RETURN
0859   450   CONTINUE
0860 C
0861         GOTO 1000
0862 C       ---------------------------------------------- (3) PARALLEL --
0863 C
0864   600   CNINJ = NXI*NXJ + NYI*NYJ
0865         KIS = CNINJ*DBLE(NPTCHF) - ( RXIJ*NXI + RYIJ*NYI ) 
0866         KJS = CNINJ*DBLE(NPTCHF) + ( RXIJ*NXJ + RYIJ*NYJ ) 
0867         IF( CNINJ .GE. 0.D0 ) THEN
0868           IPATH = 1
0869         ELSE
0870           IF( KIS .LE. -DBLE(NPTCHF) ) THEN 
0871             IPATH = 2
0872           ELSE
0873             IPATH = 3
0874           END IF
0875         END IF 
0876 C
0877         II    = I
0878         JJ    = J
0879         RRXI  = RXI
0880         RRYI  = RYI
0881         RRXJ  = RXJ
0882         RRYJ  = RYJ

• The treatment for a parallel arrangement in Figure 4.7.

0883         RRXIJ = RXIJ
0884         RRYIJ = RYIJ
0885         NNXI  = NXI
0886         NNYI  = NYI
0887         NNXJ  = NXJ
0888         NNYJ  = NYJ
0889         KKIS  = KIS
0890         IF( (IPATH .EQ. 1) .AND. (KIS .GT. KJS) ) THEN 
0891           II    = J 
0892           JJ    = I
0893           RRXI  = RXJ
0894           RRYI  = RYJ
0895           RRXJ  = RXI
0896           RRYJ  = RYI
0897           RRXIJ = -RXIJ
0898           RRYIJ = -RYIJ
0899           NNXI  = NXJ
0900           NNYI  = NYJ
0901           NNXJ  = NXI
0902           NNYJ  = NYI
0903           KKIS  = KJS
0904         END IF
0905 C
0906         RCHKSQ = ( RRXIJ + KKIS *NNXI - NNXJ*DBLE(NPTCHF) )**2
0907      &          +( RRYIJ + KKIS *NNYI - NNYJ*DBLE(NPTCHF) )**2
0908         IF( RCHKSQ  .GE. DSQ ) GOTO 1000

• The interaction energy between the sphere IKKIS 
of particle i and the sphere JJ of particle j is treated.
• The two spheres of particle i are checked as an 
object interacting with the sphere of particle j.

• After the assessment of the particle 
overlap regime, ki

s (KIS) and kj
s (KJS) are

calculated from Eq. (4.9).

• The center of the sphere of particle
i is denoted by (XI,YI) and, similarly,
(XJ,YJ) for the sphere of particle j

• The subscripts are exchanged between i and j so 
as to satisfy kj

s > ki
s.

• As a result, the particle names i and j in Figure 4.7
are expressed as II and JJ in the program.

• The constituent spheres in the rod-like particle are 
named in such a way that the central sphere is 0, 
the neighboring spheres are 1,2,…, in the particle 
direction, and –1, –2,…, in the opposite direction.
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0910         IF( IPATH .EQ. 1 ) THEN
0911 C                                                      --- PATH=1 ---
0912           IF( KKIS .GE. 0.D0 ) THEN 
0913             IKKIS = IDINT(KKIS) + 1 
0914           ELSE
0915             IKKIS = IDINT(KKIS)
0916           END IF
0917           IIDEF = NPTCHF - IKKIS
0918 C
0919           XJ = RRXJ + DBLE(NPTCHF)*NNXJ 
0920           YJ = RRYJ + DBLE(NPTCHF)*NNYJ
0921           IINUMBR = NPTC + 1 - IIDEF
0922           DO 650 II= NPTCHF-IIDEF, NPTCHF-IIDEF-1, -1
0923             IF( II .LT. -NPTCHF )    GOTO 650
0924             XI = RRXI + DBLE(II)*NNXI 
0925             YI = RRYI + DBLE(II)*NNYI
0926             IINUMBR = IINUMBR - 1 
0927             ECAN = ECAN + DBLE(IINUMBR)*
0928      &                    ENESTER( XI, YI, XJ, YJ, TD, RV, OVRLAP )
0929             IF ( OVRLAP ) RETURN
0930   650     CONTINUE
0931         END IF
0932 C
0933         KKIJC = DABS( KKIS ) - DBLE(NPTCHF)
0934 C
0935         IF( IPATH .EQ. 2 ) THEN
0936 C                                                      --- PATH=2 ---
0937           IKKIJC = IDINT( KKIJC )
0938           IIDEF  = IKKIJC
0939           XJ = RRXJ - DBLE(NPTCHF)*NNXJ 
0940           YJ = RRYJ - DBLE(NPTCHF)*NNYJ 
0941           IINUMBR = NPTC + 1 - IIDEF
0942           DO 652 II= NPTCHF-IIDEF, NPTCHF-IIDEF-1, -1
0943             IF( II .LT. -NPTCHF )    GOTO 652
0944             XI = RRXI + DBLE(II)*NNXI 
0945             YI = RRYI + DBLE(II)*NNYI
0946             IINUMBR = IINUMBR - 1 
0947             ECAN = ECAN + DBLE(IINUMBR)* 
0948      &                    ENESTER( XI, YI, XJ, YJ, TD, RV, OVRLAP )
0949             IF ( OVRLAP ) RETURN
0950   652     CONTINUE
0951         END IF
0952 C
0953         KKIJC = KKIS + DBLE(NPTCHF)
0954 C
0955         IF( IPATH .EQ. 3 ) THEN
0956 C                                                      --- PATH=3 ---
0957           IKKIJC = IDINT( KKIJC ) 
0958           IIDEF  = IKKIJC
0959           XJ = RRXJ + DBLE(NPTCHF)*NNXJ 
0960           YJ = RRYJ + DBLE(NPTCHF)*NNYJ 
0961           IINUMBR = NPTC + 1 - IIDEF
0962           DO 654 II= NPTCHF-IIDEF, NPTCHF-IIDEF-1, -1
0963             IF( II .LT. -NPTCHF )    GOTO 654
0964             III = -II
0965             XI = RRXI + DBLE(III)*NNXI 
0966             YI = RRYI + DBLE(III)*NNYI
0967             IINUMBR = IINUMBR - 1 
0968             ECAN = ECAN + DBLE(IINUMBR)*
0969      &                    ENESTER( XI, YI, XJ, YJ, TD, RV, OVRLAP )
0970             IF ( OVRLAP ) RETURN
0971   654     CONTINUE
0972         END IF
0973 C
0974         GOTO 1000
0975 C
0976 C       -----------------------  END OF ENERGY DUE TO STERIC INER. ---
0977 C
0978  1000 CONTINUE
0979                                                                 RETURN 
0980                                                                 END
0981 C#### FUN ENESTER ####
0982       DOUBLE PRECISION FUNCTION ENESTER(XI, YI, XJ, YJ, TD, RV, OVRLAP)
0983 C

0909 C

0984       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)

• The interaction energy between the sphere of the 
positive magnetic charge of particle j and the sphere 
IKKIS (and (IKKIS–1)) of particle i is calculated. 
There are IINUMBER pairs of particles.

• The sphere of particle i is 
determined as an object accord-
ing to Section 4.1.3.4. There are 
IINUMBER pairs of particles 
yielding such an arrangement.

• The separation between the central
spheres of particles i and j along the
particle axis, kij

c(KKIJC), is calculated.

• The center of the sphere of particle i is denoted
by (XI,YI) and, similarly, (XJ,YJ) for particle j.
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0985 C
0986       LOGICAL   OVRLAP
0987 C
0988       RIJ = DSQRT( (XI-XJ)**2 + (YI-YJ)**2 )
0989       X   = 2.D0*(RIJ-1.D0)
0990       IF( X .LT. 0.D0 ) THEN 
0991         OVRLAP = .TRUE. 
0992         ENESTER = 1.D9
0993         RETURN
0994       END IF
0995 ccc      write(6,*)'xi,yi,xj,yj', xi,yi,xj,yj 
0996 C
0997       IF( RIJ .LE. (TD+1.D0) ) THEN 
0998         C1 = (X+2.D0)/TD
0999         C2 = DLOG( (TD+1.D0)/(X/2.D0+1.D0) )
1000         C3 = X/TD
1001         ENESTER = RV*( 2.D0 - C1*C2 - C3 )
1002         RETURN 
1003       ELSE 
1004         ENESTER = 0.D0 
1005         RETURN 
1006       END IF
1007                                                                 RETURN 
1008                                                                 END
1009 C**** SUB RANCAL ****
1010       SUBROUTINE RANCAL( N, IX, X )
1011 C
1012       DIMENSION  X(N)
1013       DATA INTEGMX/2147483647/
1014       DATA INTEGST,INTEG/584287,48828125/
1015 C
1016       AINTEGMX = REAL( INTEGMX )
1017 C
1018       IF ( IX.LT.0 ) PAUSE
1019       IF ( IX.EQ.0 ) IX = INTEGST
1020       DO 30 I=1,N
1021          IX = IX*INTEG
1022          IF (IX) 10, 20, 20
1023    10    IX   = (IX+INTEGMX)+1
1024    20    X(I) = REAL(IX)/AINTEGMX
1025    30 CONTINUE
1026       RETURN
1027       END
1028 C********************************************************************* 
1029 C   THIS SUBROUTINE IS FOR GENERATING UNIFORM RANDOM NUMBERS         * 
1030 C   (SINGLE PRECISION) FOR 64-BIT COMPUTER.                          * 
1031 C      N      : NUMBER OF RANDOM NUMBERS TO GENERATE                 * 
1032 C      IX     : INITIAL VALUE OF RANDOM NUMBERS (POSITIVE INTEGER)   * 
1033 C             : LAST GENERATED VALUE IS KEPT                         * 
1034 C      X(N)   : GENERATED RANDOM NUMBERS (0<X(N)<1)                  * 
1035 C********************************************************************* 
1036 C**** SUB RANCAL999 ****
1037 ccc   SUBROUTINE RANCAL999( N, IX, X )
1038 C
1039 ccc   IMPLICIT REAL*8 (A-H,O-Z), INTEGER*8 (I-N)
1040 C
1041 ccc   REAL      X(N)
1042 ccc   INTEGER*8 INTEGMX, INTEG64, INTEGST, INTEG
1043 C
1044 CCC   DATA INTEGMX/2147483647/
1045 ccc   DATA INTEG64/2147483648/

• A subroutine for generating a uniform
random number sequence.

• This is for a 32-bit CPU based on the
expression of two’s complement.  

1046 ccc   DATA INTEGST,INTEG/584287,48828125/
1047 C
1048 CCC   AINTEGMX = REAL( INTEGMX )
1049 ccc   AINTEGMX = REAL( INTEG64 )
1050 C
1051 ccc   IF ( IX.LT.0 ) PAUSE
1052 ccc   IF ( IX.EQ.0 ) IX = INTEGST
1053 ccc   DO 30 I=1,N
1054 ccc      IX = IX*INTEG
1055 ccc      IX = KMOD(IX,INTEG64)
1056 CCC      IF (IX) 10, 20, 20
1057 CCC10    IX   = (IX+INTEGMX)+1
1058 ccc20    X(I) = REAL(IX)/AINTEGMX
1059 ccc30 CONTINUE
1060 ccc   RETURN
1061 ccc   END

• A function subprogram for calculating the 
interaction energy due to the overlap of the 
surfactant layers according to Eq. (4.14).
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4.2 Aggregation Phenomena in a Dispersion of Plate-like
Particles

In this section, we consider aggregation phenomena in a suspension composed of

disk-like particles. As seen in the rod-like particle system, there are several obsta-

cles to developing a simulation program employing a nonspherical particle system.

That is, we need to first make a mathematical analysis of particle overlap and then

express the overlap criterion in the language of a simulation program. Hence, in

this section we show the mathematical analysis from the viewpoint of developing a

simulation program. The exercise of interest is a circular disk-like particle with a

magnetic dipole moment at the particle center. We discuss the influences of mag-

netic particle�particle interactions and the magnetic field strength on aggregation

phenomena. The subject of the present exercise is partly under our research group’s

study, and therefore the sample simulation program has an academic emphasis. The

system of interest is in thermodynamic equilibrium and has a given number of

particles, temperature, and volume; therefore, the canonical MC algorithm is

employed.

4.2.1 Physical Phenomena of Interest

It is assumed that the system composed of disk-like particles with a magnetic

moment at the particle center is in thermodynamic equilibrium. In the present exer-

cise, we discuss aggregation phenomena in this type of dispersion under the influ-

ence of an applied magnetic field by means of an MC simulation.

The main points in formalizing this demonstration are to develop the particle

model, to express the potential energy between particles, and to analyze the crite-

rion for particle overlap. We explain these important subjects in detail below.

4.2.2 Particle Model

As shown in Figure 4.12, we here employ a disk-like particle with a magnetic

moment m (along the disk surface) normal to the particle axis at the particle center

with the section shape of a spherocylinder. The central part of this disk-like particle

is a short cylinder with diameter d and thickness b1. The side of the cylinder is sur-

rounded by the semi-shape of a torus shape, resulting in a particle circumcircle

with dimension d1 (5d1 b1), as shown in Figure 4.12. The configurational state of

a single axisymmetric particle i is specified by the position of the particle center ri,

the particle direction (normal to the disk surface) ei, and the magnetic moment

direction ni where ei and ni are the unit vectors. In the MC method, knowledge of

only the position and direction of each particle is sufficient to advance an MC step,

while both the translational and angular velocities need to be treated in the MD

method. The magnetic moment is assumed to be fixed in the particle body, so that

only the rotation of the particle can provide a change in the magnetic moment

direction.

134 Introduction to Practice of Molecular Simulation



 

The interaction energy ui between the magnetic moment mi and an applied mag-

netic field H is expressed as

ui 5 2μ0miUH ð4:18Þ

in which μ0 is the permeability of free space. This expression clearly implies that

the inclination of the magnetic moment along the field direction yields a minimum

interaction energy; that is, the particle has a tendency to orient in such a way that

the magnetic moment will incline in the field direction.

The magnetic interaction energy uij between particles i and j is expressed as [31]

uij 5
μ0

4πr3ij
miUmj 2

3

r2ij
ðmiUrijÞðmjUrijÞ

( )
ð4:19Þ

in which ri is the position vector of particle i (i5 1, 2,. . ., N), rij5 ri2 rj, and

rij5 jrijj. Eq. (4.19) implies that a minimum interaction energy can be obtained

when both magnetic moments incline in the same direction along a line drawn

between the particle centers. However, note that a thermodynamic equilibrium state

will be determined by the balance of the decrease in the system energy and the

increase in the system entropy; that is, the entropy should be treated in addition to

the energy in order to discuss the thermodynamic equilibrium state. This approach

may provide an important facility to molecular simulation methods as a tool for

analyzing physical phenomena at the microscopic level. In addition to magnetic

forces, the interactions due to electric double layers and steric layers are important

considerations, but in this example we have chosen to neglect these interactions for

simplification and clarification of the method.

In our approach, by treating a nondimensional form of the system, we are able

to discuss the physical phenomenon of interest in a much more reasonable manner,

since several important factors governing the physical phenomenon appear as

explicit terms in the nondimensional equations. In the nondimensionalization pro-

cedure the representative values used are particle thickness b1 for distances and

(A) (B)

d 1 d

b1

d 1d

Figure 4.12 Particle model: (A) plane

view and (B) side view.
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thermal energy kT for energies. With these representative values, Eqs. (4.18) and

(4.19) are written as

u�i 5 ui=kT 5 2 ξniUh ð4:20Þ

u�ij 5 uij=kT 5λ
1

r�3ij
niUnj 2 3ðniUtijÞðnjUtijÞ

 � ð4:21Þ

in which ni5mi/m, m5 jmij, h5H/H, H5 jHj, tij5 rij/rij, and the superscript *

implies nondimensionalized quantities; ni and h are the unit vectors denoting the

magnetic moment direction and the magnetic field direction, respectively. The pro-

cedure gives rise to the nondimensional parameters ξ and λ that are defined as

ξ5μ0mH=kT ; λ5μ0m
2=4πb31kT ð4:22Þ

This is a typical example of the nondimensionalizing procedure giving rise to

the appearance of nondimensional parameters or nondimensional numbers. In the

present exercise, the physical phenomenon is governed by the magnetic particle�
field interactions, the particle�particle interactions, and the random forces and

torques acting on each particle. It is therefore reasonable that the ratios of these

factors appear in the basic equations as nondimensional parameters ξ and λ in

Eq. (4.22). These parameters imply the strengths of the magnetic particle�field

and the particle�particle interactions relative to the thermal energy, respectively.

4.2.3 Criterion of the Particle Overlap

Assessing the overlap of the two disk-like particles shown in Figure 4.12 is signifi-

cantly different from that of a pair of spherical particles. Both the torus parts may

overlap, or the torus part and the disk part may overlap. Taking into account all the

possible overlap regimes during a simulation requires probing into the essence of

the overlap and then making a systematic analysis based on the insight gained from

a careful investigation of the problem. This is usually undertaken in advance as

part of the preparation required in writing a computer simulation program. In the

previous case of the spherocylinder, systematic analysis on the particle overlap cri-

terion was achieved by viewing a pair from such a direction that the planes includ-

ing the corresponding particles are seen to be parallel. For our disk-like particle, a

systematic analysis may be possible by focusing on the line of intersection gener-

ated by the two corresponding planes. Hence, we first consider the case of nonpar-

allel planes, in which the intersection line can certainly be defined. The use of the

maximum section circle of diameter d1 of the disk-like particle enables us to indi-

cate the typical overlap patterns schematically in Figure 4.13. Figure 4.13A is for

the case of the intersection line penetrating each particle (circle), Figures 4.13B

and C are for the intersection line penetrating only one particle, and Figure 4.13D

is for the intersection line located outside both particles. Since the present disk-like

particles have a definite thickness, the above-mentioned regimes of the particle
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overlap need to be slightly modified. That is, in each regime, the particle overlap is

assessed by calculating the minimum separation between the two particles. We dis-

cuss this method of assessing an overlap in detail below.

Advancing our analysis, we now consider the configuration of particles i and j

shown in Figure 4.14, with the notion ri for the particle center position, the unit

vector ei for denoting the particle direction (normal to the disk surface), the point

Si for the intersection point of the vertical line drawn from ri to the intersection

line, the position vector ri
s for point Si, and the unit vector ei

s for denoting the direc-

tion of ðris 2 riÞ; with similar notation for particle j. In addition, the notation tij
s is

used as the unit vector denoting the direction of the line drawn from points Sj to Si.

In the following paragraphs, these quantities are first evaluated for a pair of parti-

cles and then they are used to discuss the criterion for particle overlap.

(A) (B)

(C) (D)

Figure 4.13 Overlap of circular disk-like particles with infinitesimal thin thickness.
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Figure 4.14 Analysis of circles with

radius r0 (5d/2).
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The unit vector tij
s along the intersection line is normal to both the vectors ei and

ej, so that tsij can be expressed from the formula of vector product as

tsij 5 ej 3 ei=jej 3 eij ð4:23Þ

in which tsij is necessarily taken from Sj toward Si. Since ei
s is normal to both ei and

tsij and, similarly, esj is normal to ej and tsij; the use of the vector tsij provides the

solutions of esi and esj as

esi 5 2ei 3 tsij; esj 5 ej 3 tsij ð4:24Þ

In the particle configuration shown in Figure 4.14, it is clear that the unit vectors

esi and esj in Eq. (4.24) point toward the intersection line from the center of each

particle. In certain situations, however, these vectors may point in the opposite

direction. The treatment of ensuring that esi and esj point toward the intersection line

will be discussed in detail in Section 4.2.5. If the distance between the center of

particle i and point Si is denoted by ksi (similarly, ksj for particle j), and the separa-

tion between points Si and Sj is denoted by ksij; the expression of point Si in the two

different forms yields the following equation:

ri 1 ksi e
s
i 5 rj 1 ksj e

s
j 1 ksijt

s
ij ð4:25Þ

The left- and right-hand sides in this equation are related to the same position vector

ri
s; which is traced from the center of particles i and j, respectively. With the orthog-

onality condition of the unit vectors, Eq. (4.25) provides the following expressions:

ksi 5 2
ejUrij
ejUesi

; ksj 5
eiUrij
eiUesj

; ksij 5 rijUtsij ð4:26Þ

Another preliminary discussion is necessary before proceeding to the analysis of

the particle overlap. Figure 4.15 shows the possibility of the torus part of particle j

overlapping with the disk surface part of particle i, where the angle between the

two planes including each particle is denoted by θ0. A line is drawn from the near-

est point Qj at the torus center circle of particle j so that it is perpendicular to the

plane of particle i, and this line will intersect the plane at a point denoted by Qi(j),

as shown in Figure 4.15. The length of the vertical line ki(j)
Q can be straightforwardly

obtained from a simple geometric relationship as

kQiðjÞ 5 ðksj 2 d=2ÞjesjUeij ð4:27Þ

The position vector rQiðjÞ of point Qi(j) can therefore be written as

rQiðjÞ 5 rj 1 ðd=2Þ esj 2 k
Q
iðjÞei ð4:28Þ
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Note that Eqs. (4.27) and (4.28) are valid for kj
S$ d/2, as shown in Figure 4.15.

In the case of kj
S, d/2, the following expressions are used instead of Eqs. (4.27)

and (4.28):

kQiðjÞ 5 ðd=22 kj
sÞjesjUeij ð4:29Þ

rQiðjÞ 5 rj 1 ðd=2Þ ej
s 1 k

Q
iðjÞei ð4:30Þ

We have now completed the preparatory analysis and are able to begin discus-

sion of the particle overlap conditions. For simplicity, the condition kSi # kSj is

assumed to be satisfied in the following. It is reasonable to discuss the particle

overlap condition for the three different cases with regard to the directions of ei
and ej:

1. Case of ei 6¼ 6ej (general overlap).

2. Case of ei56ej and ei � rij5 0 (two particles being in the same plane).

3. Case of ei56ej and ei � rij 6¼ 0 (two particles being in the two parallel planes).

The procedure for assessing the particle overlap with regard to particles i and j

is as follows:

1. For ei56ej and ei � rij5 0 (both particles being in one plane).

1.1. For jri2 rjj$ d1, no overlap.

1.2. For jri2 rjj, d1, an overlap.

2. For ei56ej and ei � rij 6¼ 0 (particles i and j being in two parallel planes).

2.1. For jei � rijj$ b1, no overlap.

2.2. For jei � rijj, b1, a possibility of overlap.

e js

Q
j

e is

S
j

Sj

Qj

Qi( j )

kj
s |ej

s • ei
s|

k js  
|e

js 
• 

e i
|

θ 0

kj
s

(A) (B) (C)

kQ
i( j )

Q
i(

j)
 (

rQ i(
j)
)

Figure 4.15 Analysis of the overlap of the flat part of particle i and the circumference of

particle j: (A) plane view, (B) side view, and (C) vector expression.
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The line drawn between ri and rj is projected onto each plane. The projected lines

will intersect the corresponding torus center circles at points Pi and Pj, respectively.

Then the unit vector ei
p denoting the direction from the particle center to point Pi

(similarly e
p
j ) can be expressed as

e
p
j 5

ðei 3 rijÞ3 ei

jðei 3 rijÞ3 eij
5

rij 2 ðeiUrijÞei
jrij 2 ðeiUrijÞeij

; e
p
i 5 2e

p
j ð4:31Þ

r
p
ij 5 rij 2 ðeiUrijÞei ð4:32Þ

With these vectors,
2.2.1. For jrpijj, d; an overlap.

2.2.2. For jrpijj$ d1; no overlap.

2.2.3. For jrpijj$ d and jðri 1 ðd=2Þepi Þ2 ðrj 1 ðd=2Þepj Þj, b1; an overlap.

2.2.4. For jrpijj$ d and jðri 1 ðd=2Þepi Þ2 ðrj 1 ðd=2Þepj Þj$ b1; no overlap.

3. For ei 6¼ 6ej (general overlap situations)

3.1. For ksj . d=2;
3.1.1. For kiðjÞQ $ b1; no overlap irrespective of values of jriðjÞQ 2 rij:
3.1.2. For kiðjÞQ , b1; a possibility of overlap.

a. For jriðjÞQ 2 rij, d=2; an overlap.

b. For jriðjÞQ 2 rij$ d=2; a possibility of overlap.

b.1. For rij
ðminÞ $ b1; no overlap.

b.2. For rij
ðminÞ , b1; an overlap.

3.2. For ksi , d=2 and ksj # d=2; depending on the value of rij
ðminÞ (defined later)

3.2.1. For jriðjÞQ 2 rij, d=2; an overlap.

3.2.2. For jriðjÞQ 2 rij$ d=2; a possibility of overlap.

a. For rij
ðminÞ $ b1; no overlap.

b. For rij
ðminÞ , b1; an overlap.

The above-mentioned analysis has effectively generated an algorithm for asses-

sing the particle overlap. Notice that the algorithm has been organized from the

viewpoint of developing a simulation program, so it can be readily translated into a

programming language.

Figure 4.16 shows a method of evaluating the minimum distance rij
ðminÞ; which

has already been used in the analysis but not yet given an exact definition. The par-

ticle coordinate system XYZ is fixed at the center of the torus circle of particle i,

Y

(A) (B)

Xα

β

θ 0

Figure 4.16 Evaluation of the

minimum distance of particles i and

j using the particle-fixed coordinate

system XYZ: (A) plane view and

(B) side view.
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and the center of particle j is assumed to be expressed as (x0,y0,z0) in this coordi-

nate system, where the X-axis is taken parallel to the intersection line. The angle

between the two planes that include particles i and j is denoted by the angle θ0, as
shown in Figure 4.16B. An arbitrary position vector x15 (x1,y1,z1) on the torus cen-

ter circle line of particle i is taken in the counterclockwise direction by the angle α.
Similarly, an arbitrary position vector x25 (x2,y2,z2) on the torus center circle line

of particle j is taken in a similar way by the angle β, as shown in Figure 4.16A.

Then x1 and x2 are expressed as

x1 5 ðr0 cos α; r0 sin α; 0Þ ð4:33Þ

x2 5 ðr0 cos β1 x0; r0 sin β cos θ0 1 y0; r0 sin β sin θ0 1 z0Þ ð4:34Þ

in which r05 d/2. The square separation between x1 and x2 is a function of the

angles α and β, expressed as

gðα;βÞ 5 ðx2 2 x1Þ2 1 ðy2 2 y1Þ2 1 ðz2 2 z1Þ2
5 ðr0 cos β1 x0 2 r0 cos αÞ2 1 ðr0 sin β cos θ0 1 y0 2 r0 sin αÞ2
1 ðr0 sin β sin θ0 1 z0Þ2

ð4:35Þ

Certain values of α and β give rise to a minimum value of g(α, β). It is clear that
the positions x1 and x2 on the different torus center circles specified by the angles α
and β that minimize the function g yield their minimum separation distance. The

values of α and β to satisfy a minimum g(α, β) can be obtained by solving the equa-

tions of @g/@α5 @g/@β5 0. The equation @g/@α5 0 yields the following

relationship:

tan α5
y2

x2
ð4:36Þ

Furthermore, the expression @g/@β5 0 gives rise to the following relationship:

tan β5
y0 2 y1

x0 2 x1
cos θ0 1

z0

x0 2 x1
sin θ0 ð4:37Þ

The solutions of α and β can be obtained by solving Eqs. (4.36) and (4.37).

However, because of the difficulty of an analytical approach, we here employ

Newton’s iteration method [33] for numerically solving these equations. From the

particle configuration in Figure 4.16, we reasonably expect that Newton’s iteration

method will effectively provide a converged solution after several iterations,

because g(α, β) has a relatively simple form. We show the algorithm of Newton’s

iteration method in the following steps:

1. Suppose a starting value βn, around an expected solution, for β.
2. Calculate (x2,y2,z2).
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3. Calculate ðx1; y1; z1Þ5 r0x2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 1 y22

p
; r0y2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 1 y22

p
; 0

� �
from Eqs. (4.36) and

(4.33).

4. Evaluate f(βn) from Eq. (4.37).

f ðβnÞ5 tan βn 2
y0 2 y1

x0 2 x1
cos θ0 2

z0

x0 2 x1
sin θ0 ð4:38Þ

5. Evaluate the derivative of f(β) with respect to β.

f 0ðβnÞ5
1

cos2βn

2
cosθ0

ðx02x1Þ2
2
@y1
@β

ðx02x1Þ1
@x1
@β

ðy02y1Þ
� �

2z0 sinθ0
@x1=@β
ðx02x1Þ2

ð4:39Þ

in which

@x1
@β

5 r0U

@x2
@β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 1 y22

p
2 x2

@x2
@β

1 y2
@y2
@β

0
@

1
Ax2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 1 y22

p
x22 1 y22

@y1
@β

5 r0U

@y2
@β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 1 y22

p
2 x2

@x2
@β

1 y2
@y2
@β

0
@

1
Ay2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 1 y22

p
x22 1 y22

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð4:40Þ

The right-hand sides are evaluated by setting β5 βn.

6. Evaluate the next approximation βn11 from Newton’s method:

βn11 5βn 2
f ðβnÞðx0 2 x1Þ2
f 0ðβnÞðx0 2 x1Þ2

ð4:41Þ

7. Go to step 8 in the case of sufficiently convergence such as jβn112βnj, ε (ε is infini-

tesimal small), otherwise repeat from step 2 by regarding βn11 as βn.

8. Calculate αn11 from Eq. (4.36) with the converged value of βn11, and evaluate g(αn11,

βn1 1) from Eq. (4.35), yielding the desired minimum distance rij
ðminÞ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðαn11;βn11Þ

p
:

We here employ a value satisfying x25 x0/2 as a starting value of β. With this

value, β can be obtained from Eq. (4.34) as β5 cos21(2x0/2r0): although there are

two solutions of the equation of cos β5 2x0/2r0, such a solution as satisfying

z2, z0 is adopted for β. This solution β provides the values of y2 and z2 from

Eq. (4.34).
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4.2.4 Canonical Monte Carlo Algorithm

As already indicated, we consider a system composed of N magnetic particles in an

applied magnetic field in thermodynamic equilibrium. The canonical MC method

is therefore adopted for a given system temperature T, volume V, and number of

particles N. The system potential energy U* can be expressed as the summation

of the magnetic particle�particle interaction energy uij
� and the magnetic particle�

field interaction energy ui
� as

U� 5
XN
i51

u�i 1
XN
i51

XN
j51ðj. iÞ

u�ij ð4:42Þ

in which ui
� and uij

� have already been shown in Eqs. (4.20) and (4.21).

The canonical MC algorithm has been explained in Chapter 1 for a nonspherical

particle system. According to Eq. (1.52), an arbitrary particle is translated into an

adjacent position using random numbers. If the energy U* decreases, the movement

is accepted, but if it increases, it is employed according to the probability shown in

Eq. (1.49). The rotational movement is first attempted and then accepted or rejected

in a similar procedure. Although the simultaneous attempt of the translational and

rotational movements is possible, the above-mentioned separate attempts will

become more effective in the case of a strongly interacting system.

4.2.5 Treatment of the Criterion of the Particle Overlap in Simulations

The criterion of the particle overlap has already been discussed in detail from a

mathematical point of view. In this subsection, we address important points to be

noted with regard to the actual treatment of particle overlap in the simulation.

1. Exchange of the particle names i and j:

The particle subscriptions i and j are exchanged in such a way to satisfy ki
s # kj

s: That
is, in the case of ki

s . kj
s; the subscriptions i and j are replaced with j and i, respectively;

therefore the criterion for particle overlap in Section 4.2.3 is directly applicable.

2. Reversal of the directions of the unit vectors ei and ej:

As shown in Figures (4.14) and (4.15), the unit vectors ei and ej are temporarily

reversed in such a way that the angle θ0 will satisfy 0# θ0#π/2. In the case of

rji � ei$ 0, ei is unchanged, otherwise ei is temporarily reversed in direction as

ei -2ei. For this new ei, ej is unchanged for ei � ej$ 0; otherwise ej is temporarily

reversed for the successive procedure. These treatments confirm that θ0 becomes an

acute angle, as shown in Figure 4.14. Note that the exchange of the subscriptions i

and j may be necessary in the following procedures.

3. Reversal of the direction of the unit vector tij
s:

The unit vector tij
s is taken in the direction from point Sj to Si. For tij

s evaluated from

Eq. (4.23), if tij
sUrij $ 0; tij

s is unchanged, otherwise tij
s is temporarily reversed as

tij
s-2tij

s: This treatment ensures that tij
s is from point Sj toward point Si even if parti-

cle j is on the left-hand side.

4. Reversal of the unit vectors ei and ej:

With the unit vectors ei
s and ej

s evaluated from Eq. (4.24), the solutions ki
s and kj

s can

be obtained from Eq. (4.26). However, note that the definition of these unit vectors
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pointing toward the intersection line from each particle center is not necessarily satis-

fied but depends on the interaction position. In other words, since the sign of ki
s or kj

s

is not necessarily positive, ei
s or ej

s may be reversed in this situation. In the case of

ksi $ 0; esi is unchanged, and in the case of ksi , 0; esi is reversed as ei
s-2 ei

s; making

ki
s positive. Similar treatment is made for kj

s and ej
s:

These procedures ensure that the previous algorithm for assessing the particle

overlap and Newton’s iteration method for finding the minimum separation are

directly applicable without any changes.

4.2.6 Particle-Fixed Coordinate System and the Absolute Coordinate
System

We here explain the particle-fixed coordinate system and the absolute coordinate

system, which are necessary for a rotation of the particle and a rotation of the mag-

netic moment. As previously defined, we use the notation e for the particle direc-

tion and n for the magnetic moment direction, as shown in Figure 4.17. We call the

coordinate system fixed at the particle the “particle-fixed coordinate system,” sim-

ply expressed as the XYZ-coordinate system, centered at the particle center with the

Z-axis along the particle axis direction. On the other hand, the coordinate system

fixed, for example, on the computational cell is called the “absolute coordinate sys-

tem,” simply expressed as the xyz-coordinate system. Note that each particle has its

own particle-fixed coordinate system centered at its particle center.

We briefly consider the rotation of the xyz-coordinate system about the z-axis by

an angle φ, and then the rotation of the rotated xyz-coordinate system about the

y-axis by an angle θ to generate the XYZ-coordinate system. For these rotations,

the rotational matrix R can be written as

R 5
cos θ 0 2sin θ
0 1 0

sin θ 0 cos θ

0
@

1
A cos φ sin φ 0

2sin φ cos φ 0

0 0 1

0
@

1
A

5
cos θ cos φ cos θ sin φ 2sin θ
2sin φ cos φ 0

sin θ cos φ sin θ sin φ cos θ

0
@

1
A

ð4:43Þ

x

(A) (B)
X

y

Y

z

Y

Xn

Z

e

φ

φ

θ

θ

ψ

Figure 4.17 Particle-fixed coordi-

nate system and absolute coordinate

system.
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This rotational matrix will allow us to express the relationship between an arbi-

trary position ab 5 ðabx ; aby ; abz Þ in the XYZ-coordinate system and a5 (ax,ay,az) in

the xyz-coordinate system as

ab 5RUa ð4:44Þ

The inverse matrix R21 of R is equal to the transpose matrix Rt of R, so that a can

be obtained from ab as

a5R21Uab ð4:45Þ

Thus, the particle direction e and the magnetic moment direction n of an arbitrary

particle can be expressed as

e5R21Ueb; n5R21Unb ð4:46Þ

Since the XYZ-coordinate system is adopted so that the Z-axis is pointing in the

particle direction, the unit vector eb satisfies eb5 (0, 0, 1). This gives rise to the

particle direction e in the xyz-coordinate system expressed as e5 (ex,ey,ez)5
(sin θ cos φ, sin θ sin φ, cos θ). If necessary, known values of (ex,ey,ez) yield

the sine and cosine functions of θ and φ as cos θ5 ez, sin θ5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 e2z

p
;

cos φ5 ex/sin θ, and sin φ5 ey/sin θ, in which it is noted that θ is defined in the

range of 0# θ#π/2. Several special features arising from this definition of range

will be explained later.

We briefly explain the method for expressing the magnetic moment direction n.

As shown in Figure 4.17B, the direction of the magnetic moment can be specified

by an angle ψ in the counterclockwise direction from the X-axis in the

XYZ-coordinate system. That is, the magnetic moment direction nb is expressed as

nb5 (cos ψ, sin ψ, 0), so that the vector n in the xyz-coordinate system can be

obtained from Eq. (4.46) as n5R21 � nb.

4.2.7 Attempt of Small Angular Changes in the Particle Axis and the
Magnetic Moment

In MC simulations, an attempt is made to move each particle in translation and

rotation with small displacements using uniform random numbers. Since the

attempt of the translational movement is similar to that for a spherical particle sys-

tem, we here show the method of rotating the particle direction and the magnetic

moment direction.

We first consider the rotation of the particle direction. As shown previously, the

particle direction (θ, φ) of an arbitrary particle is assumed to be made as (θ1Δθ,
φ1Δφ), with the small change (Δθ, Δφ). Special treatment will be necessary if

(θ1Δθ) or (φ1Δφ) is then larger than π/2 for θ or 2π for φ and also if smaller

than zero for θ or φ, because the angles θ and φ are defined within the ranges of

0# θ#π/2 and 0#φ, 2π.
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1. For the case of θ1Δθ, 0:

We make a modification such that θ052(θ1Δθ), φ0 5φ1Δφ1π, and ψ0 5ψ1π,
and use these values (θ0, φ0, ψ0) for the rotational movement. Note that (φ0 2 2π) needs
to be adopted as φ0 if φ0 $ 2π since φ0 is defined in the range of 0#φ0 , 2π. Similar

treatment is required for ψ0.
2. For the case of θ1Δθ$π/2:

We make a modification such that θ0 5π2 (θ1Δθ), φ0 5φ1Δφ1 π, and

ψ0 5 2π2ψ. If φ0 or ψ0 is outside the range of 0#φ0, ψ0 , 2π, the above-mentioned

treatment is applicable.

3. For the case of 0# θ1Δθ,π/2:
In this case, a special modification is unnecessary and (θ0, φ0, ψ0) are merely expressed

as θ0 5 θ1Δθ, φ0 5φ1Δφ, and ψ0 5ψ, except that φ0 is modified as in the previous

case if φ0 is outside the defined range.

For the above-modified θ0, φ0, and ψ0, the rotational displacement is attempted and

determined by the MC assessing procedure.

We next consider the rotation of the magnetic moment. The angle ψ specifying

the direction is slightly displaced as (ψ1Δψ). Since ψ is defined in the range of

0#ψ, 2π, ψ0 is modified such that ψ0 5ψ1Δψ2 2π for ψ1Δψ$ 2π,
ψ0 5ψ1Δψ1 2π for ψ1Δψ, 0 and ψ0 5ψ1Δψ for the other cases. With this

modified ψ0, the magnetic moment direction n0b is specified as n0b5 (cos ψ0, sin ψ0, 0)
in the XYZ-coordinate system, and therefore the vector n0 in the xyz-coordinate system
can be obtained as n0 5R21 � n0b from Eq. (4.46). The magnetic interaction energies

are calculated for the new magnetic moment direction, and the MC procedure

determines whether this new state is accepted or rejected.

4.2.8 Parameters for Simulations

4.2.8.1 Initial Conditions

The assignment of an initial configuration of the circular disk-like particles

explained in Section 2.1.2 is applied to the present system with different number of

particles. As shown in Figure 2.5, four disk-like particles are located linearly along

the x-axis, with the particles aligning in the y-direction. This stack of 4 particles is

repeatedly placed in the y-direction, giving rise to 48 disk-like particles in the xy-

plane at this stage. These particles are expanded in the z-direction to total 6 layers,

giving a final sum of 288 particles placed in the simulation region. In this contact

configuration, the size of the simulation region (Lx,Ly,Lz) is (4rpb1, 12b1, 6rpb1).

The expansion of the distance between each pair of particles by α times each side

length yields the desired volumetric fraction of particles φV. The relationship

between α and φV can be expressed as

α5
π

24r2pφV

6ðrp 2 1Þ2 1 3πðrp 2 1Þ1 4

 �" #1

3

ð4:47Þ
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This configuration is perfectly regular, and therefore each particle is given a

small translational displacement in order for the initial configuration to be able to

transform to an equilibrium state straightforwardly. Then the direction of each par-

ticle is assigned as ei5 (0, 1, 0) (i5 1, 2,. . ., N).
Finally the direction of the magnetic moment is set to be arbitrary using random

numbers. Thus, setting the ψ in the XY-plane gives rise to nb5 ðnbx ; nby ; 0Þ5 (cos ψ,
sin ψ, 0) and Eq. (4.46) finally yields the direction n in the xyz-coordinate system.

4.2.8.2 Assignment of Parameters

The simulations were conducted for the particle number N5 288 and the volumet-

ric fraction ranging φV5 0.05B0.3. An external magnetic field is applied in the

z-direction as h5 (0, 0, 1). We here employ the cutoff distance r�coff 5 5d�1 for

calculating magnetic interaction energies; an academic study may require a longer

cutoff distance because magnetic energies are of long-range order. The nondimen-

sional parameters ξ and λ representing the strengths of magnetic particle�field and

particle�particle interactions are taken as ξ5 0, 1, 10, and 30 and λ5 0, 1, 10, 30,

and 60. Note that the situation where ξc1 or λc1 means that the magnetic field

or the magnetic particle�particle interaction is more dominant than the Brownian

motion, respectively. The total number of MC steps Nmcsmplemx is usually taken as

Nmcsmplemx5 100,000�1,000,000, but the present exercise is only for the purpose

of demonstration and therefore we employ a smaller value Nmcsmplemx5 100,000.

4.2.9 Results of Simulations

Figures 4.18�4.21 show the snapshots of the aggregate structures, which were

obtained using the sample simulation program presented in the next subsection.

Figure 4.18 is for no magnetic interactions between particles, that is, λ5 0, and

(A) (B)

Figure 4.18 Aggregate structures for λ5 0: (A) ξ5 0 and (B) ξ5 30.
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Figures 4.19�4.21 are for the magnetic field strength ξ5 0 (i.e., no field), 10, and

30, respectively.

For the case of λ5 0 in Figure 4.18, no aggregates are formed because magnetic

particle�particle interactions are absent. In addition, since an external magnetic

field is also absent in Figure 4.18A, the particles do not show a specifically favored

direction in their orientational characteristics. On the other hand, the application of

a strong magnetic field, as shown in Figure 4.17B, makes the magnetic moment of

each particle incline almost in the field direction (i.e., z-direction), resulting in the

particle direction significantly fixed in the xy-plane.

(A) (B)

Figure 4.19 Aggregate structures for ξ5 0: (A) λ5 10 and (B) λ5 30.

(A) (B)

Figure 4.20 Aggregate structures for ξ5 10: (A) λ5 10 and (B) λ5 30.
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Figure 4.19 is for no applied magnetic field ξ5 0, so that the particles have

no tendency to incline in a specifically favored direction. In the case of λ5 10

shown in Figure 4.19A, short aggregates are found but are not significant. On the

other hand, for the case of λ5 30 shown in Figure 4.19B, the disk-like particles

aggregate to form column-like clusters in the particle direction (i.e., in the direc-

tion normal to the disk surface); each cluster inclines in its favored direction.

This is because the magnetic particle�particle interaction is much more dominant

than the Brownian motion. A careful observation of the column-like clusters indi-

cates that the disk-like particles in the column-like cluster have their magnetic

moments alternating in direction with the neighboring particles. This is because

this type of internal structure gives rise to a minimum interaction energy for the

magnetic particle�particle interaction. In the case of an external magnetic field

of ξ5 10, shown in Figure 4.20B, the characteristic of the internal structure is

the same as in Figure 4.19B because the magnetic interaction of λ5 30 is much

more dominant than the applied magnetic field strength ξ5 10; that is, the

magnetic particle�particle interaction tends to determine the internal structures of

column-like clusters.

In contrast, for the strong applied magnetic field ξ5 30 shown in Figure 4.21A,

column-like clusters obtained in Figure 4.20B are not formed, but the magnetic

moment of each particle tends to incline toward the field direction and the particles

move singly without forming clusters. The field strength ξ5 30 implies that an

applied magnetic field significantly governs the aggregation process, so that the

snapshot in Figure 4.21A is not essentially different from that in Figure 4.18B. A

stronger interaction λ5 60 shown in Figure 4.21B recovers the formation of the

column-like clusters that were seen in Figure 4.20B; in this case, the magnetic

interactions significantly govern the aggregation process as compared with the

external magnetic field. These discussions demonstrate that the internal structures

(A) (B)

Figure 4.21 Aggregate structures for ξ5 30: (A) λ5 30 and (B) λ5 60.
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of the aggregates are dependent on which factor is more dominant among the

Brownian motion, the magnetic particle�particle interaction, and the magnetic

field strength.

4.2.10 Simulation Program

We now present the sample simulation program, written in FORTRAN, for simulat-

ing the present physical phenomenon. The important variables used in the program

are explained as follows:

RX(I),RY(I),RZ(I) : (x,y,z) components of the position vector r�i of particle i
EX(I),EY(I),EZ(I) : (x,y,z) components of the unit vector ei of particle i

denoting the particle direction

NX(I),NY(I),NZ(I) : (x,y,z) components of the unit vector ni of particle i

denoting the magnetic moment direction

XL,YL,ZL : Side lengths of the simulation box in the (x,y,z) directions

N : Number of particles

D1 : Diameter of the circular disk-like particle d�1
D : Diameter of the cylinder part of the circular disk-like

particle d*

RP : Particle aspect ratio d�1ð5d1=b1Þ
VP : Volume of the disk-like particle

VDENS : Volumetric fraction φV

HX,HY,HZ : (x,y,z) components of the unit vector h denoting the field

direction

RA : Nondimensional parameter λ representing the strength of

magnetic particle�particle interactions

KU : Nondimensional parameter ξ representing the strength of

magnetic particle�field interactions

RCOFF : Cutoff distance for calculations of interaction energies

DELR : Maximum displacement in the translational movement

DELT : Maximum angle in the rotational movement

RAN(J) : Uniform random numbers ranging 0B1

(J51BNRANMX)
NRAN : Number of used random numbers

E(I) : Energy of particle i interacting with other particles

MOMX(*),. . .,MOMZ(*) : Mean value of the particle direction at each MC step

MEANENE(*) : Mean value of the system energy at each MC step

Brief comments have been added to the important features of the program in

order to clarify the meaning for the reader. Note that the line numbers are merely

for convenience and are unnecessary for the execution of the program.

The use of quasi-random numbers for saving the pseudo-random numbers

RAN(*) has already been explained in Section 3.2.9.
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0001 C********************************************************************* 
0002 C*                                                                   * 
0003 C*       mcdisk3.f                                                   * 
0004 C*                                                                   * 
0005 C*          OPEN(9, FILE='@aaa1.dat', STATUS='UNKNOWN')              * 
0006 C*          OPEN(10,FILE='aaa11.dat', STATUS='UNKNOWN')              * 
0007 C*          OPEN(13,FILE='aaa41.mgf', STATUS='UNKNOWN')              * 
0008 C*          OPEN(21,FILE='aaa001.dat',STATUS='UNKNOWN')              * 
0009 C*          OPEN(22,FILE='aaa011.dat',STATUS='UNKNOWN')              * 
0010 C*          OPEN(23,FILE='aaa021.dat',STATUS='UNKNOWN')              * 
0011 C*          OPEN(24,FILE='aaa031.dat',STATUS='UNKNOWN')              * 
0012 C*          OPEN(25,FILE='aaa041.dat',STATUS='UNKNOWN')              * 
0013 C*          OPEN(26,FILE='aaa051.dat',STATUS='UNKNOWN')              * 
0014 C*          OPEN(27,FILE='aaa061.dat',STATUS='UNKNOWN')              * 
0015 C*          OPEN(28,FILE='aaa071.dat',STATUS='UNKNOWN')              * 
0016 C*          OPEN(29,FILE='aaa081.dat',STATUS='UNKNOWN')              * 
0017 C*          OPEN(30,FILE='aaa091.dat',STATUS='UNKNOWN')              * 
0018 C*                                                                   * 
0019 C*       --------      MONTE CARLO SIMULATIONS      --------         * 
0020 C*         THREE-DIMENSIONAL MONTE CARLO SIMULATION OF               * 
0021 C*         MAGNETIC COLLOIDAL DISPERSIONS COMPOSED OF                * 
0022 C*         MAGNETIC DISK-LIKE PARTICLES                              * 
0023 C*                                                                   * 
0024 C*       1. A PARTICLE IS MODELED AS A CIRCULAR DISK-LIKE PARTICLE.  * 
0025 C*       2. THE CLUSTER-MOVING METHOD IS NOT USED.                   * 
0026 C*       3. A STERIC LAYER IS NOT TAKEN INTO ACCOUNT.                * 
0027 C*                                                                   * 
0028 C*                                      VER.1  BY A.SATOH , '08 5/2  * 
0029 C********************************************************************* 
0030 C      N     : NUMBER OF PARTICLES (N=INIPX*INIPY*INIPZ)
0031 C      D1    : DIAMETER OF OUTER CIRCLE OF A DISK-LIKE PARTICLE
0032 C      D     : DIAMETER OF THE PART OF CYLINDER 
0033 C      B1    : THICKNESS OF PARTICLE (=1 FOR THIS CASE)
0034 C      RP    : ASPECT RATIO (=D1/B1) (=D1 FOR THIS CASE)
0035 C      VP    : VOLUME OF THE PARTICLE 
0036 C      NDENS : NUMBER DENSITY
0037 C      VDENS : VOLUMETRIC FRACTION
0038 C      IPTCLMDL : =1 FOR DIPOLE IN THE CENTER, =2 FOR TWO POINT CHARGES
0039 C      RA    : NONDIMENSIONAL PARAMETER OF PARTICLE-PARTICLE INTERACT
0040 C      RA0   : =RA/RP**3 FOR IPTCLMDL=1, =RA/RP FOR IPTCLMDL=2
0041 C      KU    : NONDIMENSIONAL PARAMETER OF PARTICLE-FIELD INTERACTION
0042 C      HX,HY,HZ : MAGNETIC FIELD DIRECTION (UNIT VECTOR)
0043 C      RCOFF : CUTOFF RADIUS FOR CALCULATION OF INTERACTION ENERGIES
0044 C      XL,YL,ZL : DIMENSIONS OF SIMULATION REGION
0045 C                 (XL,YL,ZL)=(INIPX*RP, INIPY, INIPZ*RP) *ALPHA
0046 C        (1) RP=3 
0047 C            INITREE=1 : (INIPX,INIPY,INIPZ)=( 3, 9,12), N= 324 
0048 C            INITREE=2 : (INIPX,INIPY,INIPZ)=( 4,12, 6), N= 288 
0049 C        (2) RP=4 
0050 C            INITREE=3 : (INIPX,INIPY,INIPZ)=( ?, ?, ?), N= ?
0051 C            INITREE=4 : (INIPX,INIPY,INIPZ)=( ?, ?, ?), N= ?
0052 C        (3) RP=5 
0053 C            INITREE=5 : (INIPX,INIPY,INIPZ)=( ?, ?, ?), N= ?
0054 C            INITREE=6 : (INIPX,INIPY,INIPZ)=( ?, ?, ?), N= ?
0055 C      RX(N),RY(N),RZ(N)    : PARTICLE POSITION
0056 C      EX(N),EY(N),EZ(N)    : DIRECTION OF RODLIKE PARTICLE
0057 C      NX(N),NY(N),NZ(N)    : DIRECTION OF MAGNETIC MOMENT
0058 C      E(I)        : INTERACTION ENERGY OF PARTICLE I WITH THE OTHERS
0059 C      MOMX(**),MOMY(**)    : MAG. MOMENT OF SYSTEM AT EACH TIME STEP
0060 C      MOMZ(**)
0061 C      MEANENE(**)       : MEAN ENERGY OF SYSTEM AT EACH MC STEP
0062 C      ETHETA(N),EPHI(N) : ANGLES DENOTING THE PARTICLE DIRECTION
0063 C      NPSI(N)           : ANGLE DENOTING THE MAG.MOM. DIRECTION
0064 C      RMAT(3,3,N)       : ROTATIONAL MATRIX
0065 C      NXB(N), NYB(N)    : DIREC. OF MAG. MOM. IN THE BODY-FIXED AXIS
0066 C                          SYSTEM
0067 C
0068 C      DELR   : MAXIMUM MOVEMENT DISTANCE
0069 C      DELT   : MAXIMUM MOVEMENT IN ORIENTATION
0070 C
0071 C              0 < RX < XL ,  0 < RY < YL ,  0 < RZ < ZL 
0072 C---------------------------------------------------------------------
0073       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0074 C
0075       COMMON /BLOCK1/  RX   , RY    , RZ
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0076       COMMON /BLOCK2/  NX   , NY    , NZ
0077       COMMON /BLOCK3/  N    , NDENS , VDENS
0078       COMMON /BLOCK4/  D    , D1    , RP    ,  VP   , IPTCLMDL 
0079       COMMON /BLOCK5/  XL , YL , ZL , INIPX , INIPY , INIPZ , INITREE
0080       COMMON /BLOCK6/  RA   , RA0  , KU  , HX  , HY  , HZ
0081       COMMON /BLOCK7/  E    , ENEW , EOLD
0082       COMMON /BLOCK8/  RCOFF, DELR , DELT
0083       COMMON /BLOCK10/ MOMX , MOMY , MOMZ , MEANENE
0084       COMMON /BLOCK11/ EX   , EY   , EZ
0085       COMMON /BLOCK12/ NXB  , NYB
0086       COMMON /BLOCK13/ ETHETA , EPHI , NPSI  , RMAT
0087       COMMON /BLOCK30/ NRAN   , RAN  , IX
0088 C
0089       PARAMETER( NN=1360  , NNS=200000 )
0090       PARAMETER( NRANMX=1000000 , PI=3.141592653589793D0 )
0091 C
0092       REAL*8    KU     , NDENS  , VDENS
0093       REAL*8    RX(NN) , RY(NN) , RZ(NN) 
0094       REAL*8    NX(NN) , NY(NN) , NZ(NN) , E(NN)
0095       REAL*8    EX(NN) , EY(NN) , EZ(NN) 
0096       REAL*8    NXB(NN), NYB(NN)
0097       REAL*8    ETHETA(NN), EPHI(NN) , NPSI(NN)  , RMAT(3,3,NN)
0098       REAL      MOMX(NNS), MOMY(NNS) , MOMZ(NNS) , MEANENE(NNS)
0099 C
0100       REAL      RAN(NRANMX)
0101       INTEGER   NRAN , IX , NRANCHK
0102 C
0103       REAL*8    RXCAN , RYCAN , RZCAN
0104       REAL*8    NXCAN , NYCAN , NZCAN
0105       REAL*8    EXCAN , EYCAN , EZCAN
0106       REAL*8    RXI   , RYI   , RZI   , NXI   , NYI   , NZI
0107       REAL*8    EXI   , EYI   , EZI
0108       REAL*8    RXIJ  , RYIJ  , RZIJ  , RIJ   , RIJSQ , RCOFF2
0109       REAL*8    NXBI  , NYBI  ,  NXBC , NYBC  , NXC   , NYC  , NZC 
0110       REAL*8    ETHETAI, EPHII, NPSII, ETHETAC, EPHIC, NPSIC
0111       REAL*8    RMATC(3,3)
0112       REAL*8    ECAN  , C1    , C2    , C3    , C4 
0113       REAL*8    CX    , CY    , CZ
0114       INTEGER   MCSMPL , MCSMPLMX , MCSMPL1 , MCSMPL2 , NSMPL
0115       INTEGER   NGRAPH , NOPT     , DN      , DNSMPL
0116       INTEGER   ITHETA , IPHAI    , IT , IP
0117       INTEGER   NANIME , NANMCTR , NOPT1 
0118       LOGICAL   OVRLAP
0119 C
0120                OPEN(9,FILE='@baba1.dat' , STATUS='UNKNOWN') 
0121                OPEN(10,FILE='baba11.dat', STATUS='UNKNOWN') 
0122                OPEN(13,FILE='baba41.mgf', STATUS='UNKNOWN') 
0123                OPEN(21,FILE='baba001.dat',STATUS='UNKNOWN') 
0124                OPEN(22,FILE='baba011.dat',STATUS='UNKNOWN') 
0125                OPEN(23,FILE='baba021.dat',STATUS='UNKNOWN') 
0126                OPEN(24,FILE='baba031.dat',STATUS='UNKNOWN') 
0127                OPEN(25,FILE='baba041.dat',STATUS='UNKNOWN') 
0128                OPEN(26,FILE='baba051.dat',STATUS='UNKNOWN') 
0129                OPEN(27,FILE='baba061.dat',STATUS='UNKNOWN') 
0130                OPEN(28,FILE='baba071.dat',STATUS='UNKNOWN') 
0131                OPEN(29,FILE='baba081.dat',STATUS='UNKNOWN') 
0132                OPEN(30,FILE='baba091.dat',STATUS='UNKNOWN') 
0133                                                                   NP=9 
0134 C
0135 C                                               --- PARAMETER (1) ---
0136 C                    -------------------------------------------------
0137 C                     BE CAREFUL IN SETTING N, INIPX, ..., INITREE !!!
0138 C                    -------------------------------------------------
0139       IPTCLMDL=  1 
0140       VDENS   =  0.1D0
0141       KU      = 10.0D0
0142       RA      = 10.0D0
0143       INITREE =  2
0144       N       =  288
0145 CCC   INITREE =  1
0146 CCC   N       =  324
0147 C                                                --- PARAMETER (2) --- 
0148       HX      = 0.D0 
0149       HY      = 0.D0 
0150       HZ      = 1.D0 
0151       RP      = 3.D0

• The cutoff distance r*coff=5rp, the volume of the particle
VP, and the number density NDENS.   

• The given values are 
written out in @baba1, 
sampled magnetic 
moment directions are 
done in baba11, and 
data for MicroAVS are 
done in baba41. The 
particle positions and 
directions are written 
out in baba001 – 
baba091.

• The number of particles N=288, volumetric fraction φV= 
0.1, λ=10, and ξ=10. The size of the simulation region is 
varied using INITREE.
• The aspect ratio rp=3 and the field direction h=(0,0,1).
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0152       D1      = RP
0153       D       = D1 - 1.D0 
0154       RCOFF   = 5.D0*D1
0155       VP      = (PI/24.D0)*(6.D0*(RP-1.D0)**2+3.D0*PI*(RP-1.D0)+4.D0) 
0156       NDENS   = VDENS/VP
0157       IF( IPTCLMDL .EQ. 1 )  RA0 = RA/RP**3 
0158       IF( IPTCLMDL .EQ. 2 )  RA0 = RA/RP
0159 C                                                --- PARAMETER (3) --- 
0160       DELR    =  0.2D0
0161       DELT    =  (5.D0/180.D0 )*PI 
0162 C                                                --- PARAMETER (4) --- 
0163 CCC   MCSMPLMX= 100000
0164       MCSMPLMX= 10000
0165       NGRAPH  = MCSMPLMX/10
0166       NANIME  = MCSMPLMX/200
0167       DN      = 10
0168       DNSMPL  = 10
0169       NOPT    = 20
0170       RCOFF2  = RCOFF**2
0171 C                                                --- PARAMETER (5) --- 
0172       IX = 0
0173       CALL RANCAL( NRANMX, IX, RAN )
0174       NRAN    = 1
0175       NRANCHK = NRANMX - 12*N
0176 C
0177 C     ---------------------------------------------------------------- 
0178 C     -----------------    INITIAL CONFIGURATION    ------------------ 
0179 C     ---------------------------------------------------------------- 
0180 C
0181 C                                          --- SET INITIAL CONFIG. ---
0182 CCC   OPEN(19,FILE='aaba091.dat',STATUS='OLD') 
0183 CCC   READ(19,472)  N , XL , YL , ZL , D , D1 , RP
0184 CCC   READ(19,473) (RX(I) ,I=1,N), (RY(I) ,I=1,N), (RZ(I) ,I=1,N)
0185 CCC   READ(19,474) (NX(I) ,I=1,N), (NY(I) ,I=1,N), (NZ(I) ,I=1,N), 
0186 CCC  &             (EX(I) ,I=1,N), (EY(I) ,I=1,N), (EZ(I) ,I=1,N), 
0187 CCC  &             (NXB(I),I=1,N), (NYB(I),I=1,N)
0188 CCC   READ(19,473) (ETHETA(I),I=1,N), (EPHI(I),I=1,N), (NPSI(I),I=1,N) 
0189 CCC   READ(19,474) (  ( (RMAT(II,JJ,I),II=1,3), JJ=1,3 ), I=1,N  )

• The maximum displacements in the MC method are
δr *max=0.2 and δθmax=(5/180)π.

0190 CCC   CLOSE(19,STATUS='KEEP')
0191 CCC   GOTO 7 
0192 C
0193       CALL INITIAL
0194 C
0195     7 IF( XL .LE. YL ) THEN 
0196         IF( RCOFF .GE. XL/2.D0 ) THEN 
0197           RCOFF = XL/2.D0 - 0.00001D0
0198         END IF
0199       ELSE 
0200         IF( RCOFF .GE. YL/2.D0 ) THEN 
0201           RCOFF = YL/2.D0 - 0.00001D0
0202         END IF
0203       END IF 
0204       RCOFF2 = RCOFF**2
0205       CRAD   = ( XL*YL*ZL/DBLE(N*N) ) / ( 4.D0*PI*DR )
0206 C
0207 C
0208 C     ----------------------------------------------- PRINT OUT (1)---
0209       WRITE(NP,12) IPTCLMDL, N, VDENS, NDENS, RA, RA0, KU, RP, 
0210      &             D, D1, XL, YL, ZL, RCOFF, DELR, DELT 
0211       WRITE(NP,14) MCSMPLMX, NGRAPH, DN, DNSMPL 
0212       WRITE(NP,15) HX, HY, HZ
0213 C
0214 C
0215       NANMCTR = 0
0216       NSMPL   = 0
0217 C     ---------------------------------------------------------------- 
0218 C     ---------------    START OF MONTE CARLO PROGRAM    ------------- 
0219 C     ---------------------------------------------------------------- 
0220 C
0221       DO 1000 MCSMPL = 1 , MCSMPLMX
0222 C
0223         DO 400 I=1,N
0224 C                                +++++++++++++++++++ POSITION ++++++++
0225 C                                                   --- OLD ENERGY --- 
0226           RXI = RX(I)

• These READ statements are for continuing the sequential 
simulation using the data saved previously.  

• The initial positions and directions 
of particles are assigned. 

• RCOFF has to be taken shorter than
XL/2 and YL/2. 

• The treatment concerning particle i.

• The total number of MC steps is MCSMPLMX=10000 and 
sampling is carried out at every DNSMPL steps.
• The particle positions are written out at every NGRAPH steps. 
200 sets of data are written out for making an animation.

• A sequence of uniform random numbers is prepared 
in advance. When necessary, random numbers are 
taken out from the variable RAN(*)

153Practice of Monte Carlo Simulations



 

0227           RYI = RY(I)
0228           RZI = RZ(I)
0229           NXI = NX(I)
0230           NYI = NY(I)
0231           NZI = NZ(I)
0232           EXI = EX(I)
0233           EYI = EY(I)
0234           EZI = EZ(I)
0235           ITREE = 0
0236           CALL ENECAL( I, RXI, RYI, RZI, EXI, EYI, EZI, NXI, NYI, NZI,
0237      &                              RCOFF2, EOLD, OVRLAP, ITREE, J )
0238 C
0239 C                                            ----------  (1) CANDIDATE
0240           NRAN  = NRAN + 1
0241           RXCAN = RX(I) + DELR*( 1.D0 - 2.D0*DBLE(RAN(NRAN)) )
0242           IF( RXCAN .GE. XL ) THEN 
0243             RXCAN = RXCAN - XL 
0244           ELSE IF( RXCAN .LT. 0.D0 ) THEN 
0245             RXCAN = RXCAN + XL
0246           END IF
0247           NRAN  = NRAN + 1
0248           RYCAN = RY(I) + DELR*( 1.D0 - 2.D0*DBLE(RAN(NRAN)) )
0249           IF( RYCAN .GE. YL ) THEN 
0250             RYCAN = RYCAN - YL 
0251           ELSE IF( RYCAN .LT. 0.D0 ) THEN 
0252             RYCAN = RYCAN + YL

• The interaction energies between particle i and its interacting particles.

• Particle i is slightly moved according to
Eq. (1.52). 

• The treatment of the periodic BC.

0253           END IF
0254           NRAN  = NRAN + 1
0255           RZCAN = RZ(I) + DELR*( 1.D0 - 2.D0*DBLE(RAN(NRAN)) )
0256           IF( RZCAN .GE. ZL ) THEN 
0257             RZCAN = RZCAN - ZL 
0258           ELSE IF( RZCAN .LT. 0.D0 ) THEN 
0259             RZCAN = RZCAN + ZL
0260           END IF
0261 C                                                   --- NEW ENERGY --- 
0262           ITREE = 0
0263           CALL ENECAL( I , RXCAN, RYCAN, RZCAN, EXI, EYI, EZI,
0264      &                 NXI, NYI, NZI, RCOFF2, ECAN, OVRLAP, ITREE, J )
0265 C
0266           IF( OVRLAP ) THEN 
0267             GOTO 150
0268           END IF 
0269 C                                          --------  (2) ENERGY HANDAN
0270           C3 = ECAN - EOLD
0271           IF( C3 .GE. 0.D0 )THEN
0272             NRAN = NRAN + 1
0273             IF( DBLE(RAN(NRAN)) .GE. DEXP(-C3) )THEN
0274               GOTO 150
0275             END IF
0276           END IF
0277 C                                              +++++++++++++++++++++++ 
0278 C                                              CANDIDATES ARE ACCEPTED 
0279 C                                              +++++++++++++++++++++++ 
0280           RX(I) = RXCAN
0281           RY(I) = RYCAN
0282           RZ(I) = RZCAN
0283           EOLD  = ECAN
0284           E(I)  = ECAN
0285 C
0286 C                             ++++++++++++++++++++++ ROTATION ++++++++
0287   150     RXI = RX(I)
0288           RYI = RY(I)
0289           RZI = RZ(I)
0290           EXI = EX(I)
0291           EYI = EY(I)
0292           EZI = EZ(I)
0293           NXI = NX(I)
0294           NYI = NY(I)
0295           NZI = NZ(I)
0296           NXBI= NXB(I)
0297           NYBI= NYB(I)
0298           ETHETAI = ETHETA(I)
0299           EPHII   = EPHI(I)
0300           NPSII   = NPSI(I)
0301 C

• The procedure after the acceptance of the new state. 

•The procedure for the rotation. 

• The interaction energies are calculated for 
this new state after the movement of particle i.

• The adoption of the new state is determined according 
to the transition probability in Eq. (1.49).

• The particle direction is described by the 
zenithal and azimuthal angles ETHETAI and 
EPHII. The magnetic moment direction is 
described by the angle NPSII taken counter 
clockwise from the X-axis about the Z-axis.
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0302           NPSIC = NPSII
0303           NXBC  = NXBI 
0304           NYBC  = NYBI 
0305 C                                            ----------  (3) CANDIDATE
0306           NRAN  = NRAN + 1
0307           C1    = DELT*DBLE(RAN(NRAN))
0308           NRAN  = NRAN + 1
0309           C1    = DSIGN( C1 , DBLE(RAN(NRAN)-0.5) )
0310           ETHETAC = ETHETAI + C1
0311           NRAN  = NRAN + 1
0312           C1    = DELT*DBLE(RAN(NRAN))
0313           NRAN  = NRAN + 1
0314           C1    = DSIGN( C1 , DBLE(RAN(NRAN)-0.5) )
0315           EPHIC = EPHII + C1
0316 C
0317           IF( ETHETAC .LT. 0.D0 ) THEN
0318             ETHETAC = DABS( ETHETAC )
0319             EPHIC   = EPHIC + PI
0320             IF( EPHIC .GE. 2.D0*PI ) EPHIC = EPHIC - 2.D0*PI
0321             NPSIC   = NPSII + PI
0322             IF( NPSIC .GE. 2.D0*PI ) NPSIC = NPSIC - 2.D0*PI
0323             NXBC = -NXBI 
0324             NYBC = -NYBI
0325           ELSE IF ( ETHETAC .GT. PI/2.D0 ) THEN 
0326             ETHETAC = PI - ETHETAC 
0327             EPHIC   = EPHIC + PI
0328             IF( EPHIC .GE. 2.D0*PI ) EPHIC = EPHIC - 2.D0*PI
0329             NPSIC   = 2.D0*PI - NPSIC 
0330           ELSE
0331             IF( EPHIC .GE. 2.D0*PI ) EPHIC = EPHIC - 2.D0*PI
0332             IF( EPHIC .LT. 0.D0 )    EPHIC = EPHIC + 2.D0*PI
0333           END IF 
0334 C                                                   --- RMATC(3,3) ---
0335           C11 = DCOS( ETHETAC )
0336           C12 = DSIN( ETHETAC )
0337           C21 = DCOS( EPHIC )
0338           C22 = DSIN( EPHIC )
0339           RMATC(1,1) =  C11*C21 
0340           RMATC(2,1) =  C11*C22 
0341           RMATC(3,1) = -C12 
0342           RMATC(1,2) = -C22 
0343           RMATC(2,2) =  C21 
0344           RMATC(3,2) =  0.D0
0345           RMATC(1,3) =  C12*C21 
0346           RMATC(2,3) =  C12*C22 
0347           RMATC(3,3) =  C11 
0348 C
0349           EXC = RMATC(1,3) 
0350           EYC = RMATC(2,3) 
0351           EZC = RMATC(3,3) 
0352           NXC = NXBC*RMATC(1,1) + NYBC*RMATC(1,2)
0353           NYC = NXBC*RMATC(2,1) + NYBC*RMATC(2,2)
0354           NZC = NXBC*RMATC(3,1) + NYBC*RMATC(3,2)
0355 C                                                   --- NEW ENERGY --- 
0356           ITREE = 0
0357           CALL ENECAL( I , RXI, RYI, RZI, EXC, EYC, EZC,
0358      &                 NXC, NYC, NZC, RCOFF2, ECAN, OVRLAP, ITREE, J )
0359 C
0360           IF( OVRLAP ) THEN 
0361             GOTO 250
0362           END IF 
0363 C                                 --------  (4) ENERGY HANDAN -------- 
0364 C
0365           C3 = ECAN - EOLD
0366           IF( C3 .GE. 0.D0 )THEN
0367             NRAN = NRAN + 1
0368             IF( DBLE(RAN(NRAN)) .GE. DEXP(-C3) )THEN
0369               GOTO 250
0370             END IF
0371           END IF
0372 C                                              +++++++++++++++++++++++ 
0373 C                                              CANDIDATES ARE ACCEPTED 
0374 C                                              +++++++++++++++++++++++ 
0375           EX(I)   = EXC
0376           EY(I)   = EYC

• The treatment shown in Section 4.2.7. 

• The interaction energies are calculated 
for the new direction of particle i. 

• The procedure after the acceptance of the new state. 

• The zenithal and azimuthal 
angles are slightly changed using 
random numbers to change the 
particle direction; the new angles 
are saved in ETHETAC and 
EPHIC. 

• The rotational matrix R–1 

(RMATC) is evaluated for the 
particle direction.  

• The particle direction e and the 
magnetic moment direction n are 
calculated from Eq. (4.46).   

• The adoption of the new state is determined 
according to the transition probability in Eq. (1.49).  
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0377           EZ(I)   = EZC
0378           NX(I)   = NXC
0379           NY(I)   = NYC
0380           NZ(I)   = NZC
0381           NXB(I)  = NXBC 
0382           NYB(I)  = NYBC 
0383           ETHETA(I) = ETHETAC 
0384           EPHI(I) = EPHIC 
0385           NPSI(I) = NPSIC 
0386           DO 110 II=1,3
0387           DO 110 JJ=1,3
0388             RMAT(II,JJ,I) = RMATC(II,JJ)
0389   110     CONTINUE
0390           EOLD  = ECAN
0391           E(I)  = ECAN
0392 C
0393 C                               ++++++++++++++++++++++ MOMENT ++++++++
0394   250     RXI = RX(I)
0395           RYI = RY(I)
0396           RZI = RZ(I)
0397           NXI = NX(I)
0398           NYI = NY(I)
0399           NZI = NZ(I)
0400           EXI = EX(I)
0401           EYI = EY(I)
0402           EZI = EZ(I)
0403           NXBI= NXB(I)
0404           NYBI= NYB(I)
0405           ETHETAI = ETHETA(I)
0406           EPHII   = EPHI(I)
0407           NPSII   = NPSI(I)
0408 C                                            ----------  (5) CANDIDATE
0409           NRAN  = NRAN + 1
0410           C1    = DELT*DBLE(RAN(NRAN))
0411           NRAN  = NRAN + 1
0412           C1    = DSIGN( C1 , DBLE(RAN(NRAN)-0.5) )
0413           NPSIC = NPSII + C1
0414 C
0415           IF( NPSIC .GE. 2.D0*PI ) THEN
0416             NPSIC = NPSIC - 2.D0*PI
0417           ELSE IF ( NPSIC .LT. 0.D0 ) THEN 
0418             NPSIC = NPSIC + 2.D0*PI
0419           END IF 
0420 C
0421           NXBC = DCOS( NPSIC ) 
0422           NYBC = DSIN( NPSIC ) 
0423           NXC  = RMAT(1,1,I)*NXBC + RMAT(1,2,I)*NYBC 
0424           NYC  = RMAT(2,1,I)*NXBC + RMAT(2,2,I)*NYBC 
0425           NZC  = RMAT(3,1,I)*NXBC + RMAT(3,2,I)*NYBC 
0426 C
0427 C                                                   --- NEW ENERGY --- 
0428           ITREE = 1
0429           CALL ENECAL( I , RXI, RYI, RZI, EXI, EYI, EZI,
0430      &                 NXC, NYC, NZC, RCOFF2, ECAN, OVRLAP, ITREE, J )
0431 C
0432 CCC       IF( OVRLAP ) THEN 
0433 CCC         GOTO 400
0434 CCC       END IF 
0435 C
0436 C                                 --------  (6) ENERGY HANDAN -------- 
0437           C3 = ECAN - EOLD
0438           IF( C3 .GE. 0.D0 )THEN
0439             NRAN = NRAN + 1
0440             IF( DBLE(RAN(NRAN)) .GE. DEXP(-C3) )THEN
0441               GOTO 400

• The attempt for changing the magnetic 
moment direction.  

• nb = (NXBC,NYBC,0)and
n = R–1 • nb. 

• The interaction energies are calculated for this 
new state of particle i. 

• The procedure after the acceptance of the new state.

0442             END IF
0443           END IF
0444 C                                              +++++++++++++++++++++++ 
0445 C                                              CANDIDATES ARE ACCEPTED 
0446 C                                              +++++++++++++++++++++++ 
0447           NX(I)  = NXC
0448           NY(I)  = NYC
0449           NZ(I)  = NZC
0450           NXB(I) = NXBC
0451           NYB(I) = NYBC

• The particle direction, magnetic moment 
direction, and zenithal and azimuthal angles 
are renewed.
• The rotational matrix is renewed.
• The interaction energy of particle i is saved 
in E(I).  

• The particle direction is described by the 
zenithal and azimuthal angles ETHETAI and 
EPHII. The magnetic moment direction is 
described by the angle NPSII.  

• The magnetic moment direction 
is slightly changed using ran- 
dom numbers; this new angle is 
saved in NPSIC.  

• The new magnetic moment direction is 
evaluated from Eq. (4.46). The rotational 
matrix is unchanged, still valid. 

• The adoption of the new state is determined 
according to the transition probability in Eq. (1.49). 

156 Introduction to Practice of Molecular Simulation



 

0452           NPSI(I)= NPSIC 
0453           E(I)   = ECAN
0454 C
0455 C
0456   400   CONTINUE
0457 C
0458 C       --------------------------------------------------------------
0459 C
0460 C                              ----- MOMENT AND ENERGY OF SYSTEM -----
0461         IF( MOD(MCSMPL,DNSMPL) .EQ. 0 ) THEN
0462           NSMPL   = NSMPL + 1
0463           C1 = 0.D0
0464           C2 = 0.D0
0465           C3 = 0.D0
0466           C4 = 0.D0
0467           DO 420 J=1,N
0468             C1 = C1 + NX(J)
0469             C2 = C2 + NY(J)
0470             C3 = C3 + NZ(J)
0471             C4 = C4 + E(J)
0472   420     CONTINUE
0473           MOMX(NSMPL)    = REAL(C1)/REAL(N)
0474           MOMY(NSMPL)    = REAL(C2)/REAL(N)
0475           MOMZ(NSMPL)    = REAL(C3)/REAL(N)
0476           MEANENE(NSMPL) = REAL( C4-KU*(C1*HX+C2*HY+C3*HZ) )/REAL(2*N) 
0477         END IF 
0478 C
0479         IF( MOD(MCSMPL,NGRAPH) .EQ. 0 ) THEN 
0480           NOPT = NOPT + 1
0481           WRITE(NOPT,472)  N , XL , YL , ZL , D , D1 , RP
0482           WRITE(NOPT,473) (RX(I),I=1,N),(RY(I),I=1,N),(RZ(I),I=1,N)
0483           WRITE(NOPT,474) (NX(I),I=1,N),(NY(I),I=1,N),(NZ(I),I=1,N), 
0484      &                    (EX(I),I=1,N),(EY(I),I=1,N),(EZ(I),I=1,N), 
0485      &                    (NXB(I),I=1,N),(NYB(I),I=1,N)
0486           WRITE(NOPT,473) (ETHETA(I),I=1,N), (EPHI(I),I=1,N), 
0487      &                    (NPSI(I),I=1,N) 
0488           WRITE(NOPT,474) (  ( (RMAT(II,JJ,I),II=1,3), JJ=1,3 ),
0489      &                                                     I=1,N  )
0490                                            CLOSE(NOPT,STATUS='KEEP') 
0491         END IF
0492 C
0493 C                                --- DATA OUTPUT FOR ANIMATION (2) ---
0494         IF( MOD(MCSMPL,NANIME) .EQ. 0 ) THEN
0495           NANMCTR = NANMCTR + 1
0496           NOPT1   = 13
0497           CALL ANIMEDAT( NOPT1, NANMCTR, MCSMPLMX, NANIME, N )
0498         END IF
0499 C
0500 C                           --- CHECK OF THE SUM OF RANDOM NUMBERS --- 
0501 C
0502         IF( NRAN .GE. NRANCHK )THEN
0503           CALL RANCAL( NRANMX, IX, RAN )
0504           NRAN = 1
0505         END IF
0506 C                                                --- NORMALIZATION --- 
0507         IF( MOD(MCSMPL,DN) .EQ. 0 ) THEN 
0508           DO 490 I=1,N 
0509             C1 = DSQRT( NX(I)**2 + NY(I)**2 + NZ(I)**2 )
0510             NX(I)  = NX(I)/C1 
0511             NY(I)  = NY(I)/C1 
0512             NZ(I)  = NZ(I)/C1 
0513             C1 = DSQRT( EX(I)**2 + EY(I)**2 + EZ(I)**2 )
0514             EX(I)  = EX(I)/C1 
0515             EY(I)  = EY(I)/C1 
0516             EZ(I)  = EZ(I)/C1 
0517             C1 = DSQRT( NXB(I)**2 + NYB(I)**2 )
0518             NXB(I) = NXB(I)/C1 
0519             NYB(I) = NYB(I)/C1 
0520   490     CONTINUE
0521         END IF
0522 C
0523 C
0524  1000 CONTINUE
0525 C

• To check the system convergence afterward, 
the average of the particle direction vector is 
calculated. 

• The data of the particle positions and 
directions are written out at every NGRAPH 
MC steps for the postprocessing analysis.

• The data of the particle positions and 
directions are written out at every NANIME 
MC steps for making an animation.

• The number of the used random numbers 
is checked. If over NRANCHK, a uniform 
random number sequence is renewed.

• Each unit vector is 
modified at every DN steps 
so as to yield unit length.
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0526 C     ---------------------------------------------------------------- 
0527 C     -------------------  END OF MONTE CARLO PROGRAM  --------------- 
0528 C     ---------------------------------------------------------------- 
0529 C
0530 C                                                --- PRINT OUT (2) ---
0531       WRITE(NP,1002)
0532       MCSMPL1 = 1
0533 CCC   MCSMPL2 = MCSMPLMX 
0534       MCSMPL2 = NSMPL 
0535       CALL PRNTDATA( MCSMPL1 , MCSMPL2 , NP )
0536       WRITE(NP,1004)  MCSMPL1 , MCSMPL2
0537 C
0538 C                                 --- DATA OUTPUT FOR GRAPHICS (3) --- 
0539       WRITE(10,1012) IPTCLMDL, N, VDENS, NDENS, RA, RA0, KU
0540       WRITE(10,1014) RP, D, D1, XL, YL, ZL, RCOFF
0541       WRITE(10,1016) DELR, DELT 
0542       WRITE(10,1017) HX, HY, HZ
0543       WRITE(10,1018) MCSMPLMX, NGRAPH, DN, DNSMPL 
0544       WRITE(10,1022) MCSMPL1, MCSMPL2 
0545       WRITE(10,1024) ( MEANENE(I),I=MCSMPL1, MCSMPL2)
0546      &              ,( MOMX(I),   I=MCSMPL1, MCSMPL2)
0547      &              ,( MOMY(I),   I=MCSMPL1, MCSMPL2)
0548 C
0549                                            CLOSE(9, STATUS='KEEP')
0550                                            CLOSE(10,STATUS='KEEP')
0551                                            CLOSE(13,STATUS='KEEP')
0552 C     -------------------------- FORMAT ------------------------------ 
0553    12 FORMAT(/1H ,'--------------------------------------------------' 
0554      &       /1H ,'-              MONTE CARLO METHOD                -' 
0555      &       /1H ,'--------------------------------------------------' 
0556      &      //1H ,'IPTCLMDL=',I4
0557      &       /1H ,'N=',I4, 2X, 'VDENS=',F4.2, 2X ,'NDENS=',F7.4 
0558      &       /1H ,'RA=',F6.2, 2X, 'RA0=',F9.2, 2X ,'KU=',F6.2, 2X ,
0559      &            'RP=', F7.4
0560      &       /1H ,'D=',F5.2, 2X ,'D1=',F5.2, 2X,
0561      &            'XL=',F6.2, 2X,'YL=',F6.2, 2X, 'ZL=',F6.2, 2X,
0562      &            'RCOFF=',F6.2
0563      &       /1H ,'DELR=',F7.4, 2X ,'DELT=',F7.4)
0564    14 FORMAT( 1H ,'MCSMPLMX=',I8, 2X,'NGRAPH=',I8, 2X,'DN=',I4, 2X,
0565      &            'DNSMPL=',I4/)
0566    15 FORMAT( 1H ,'(HX,HY,HZ)=', 3F5.1 ) 
0567   472 FORMAT( I5 , 3F9.4 , 3F8.4 )
0568   473 FORMAT( (5F16.10) )
0569   474 FORMAT( (11F7.3) )
0570  1002 FORMAT(/1H ,'++++++++++++++++++++++++++++++'
0571      &       /1H ,'     WITHOUT CLUSTER MOVEMENT   '
0572      &       /1H ,'++++++++++++++++++++++++++++++'/)
0573  1004 FORMAT(///1H ,18X, 'START OF MC SAMPLING STEP=',I9
0574      &         /1H ,18X, 'END   OF MC SAMPLING STEP=',I9/)
0575  1012 FORMAT( I2 , I5 , 2F9.4 , 4F9.3 )
0576  1014 FORMAT( 3F7.2 , 3F9.3 , F9.3 )
0577  1016 FORMAT( 2F9.5 )
0578  1017 FORMAT( 3F7.2 )
0579  1018 FORMAT( 6I9 )
0580  1020 FORMAT( 2F7.3 , I4 , F7.3 , E12.4 )
0581  1022 FORMAT( 2I9 )
0582  1024 FORMAT( (7E11.4) )
0583  1367 FORMAT( 3I9, 2F9.4 )
0584  1368 FORMAT( I6 , F8.4 , 3F10.5 )
0585  1392 FORMAT( 2I9 )
0586  1394 FORMAT( (7E11.4) )
0587  1501 FORMAT( I8 ) 
0588  1502 FORMAT( (10F8.3) )
0589  1511 FORMAT( I8 ) 
0590  1513 FORMAT( (10I8) ) 
0591  1515 FORMAT( (10F8.3) ) 
0592  1521 FORMAT( I8 )
0593  1523 FORMAT( 2I8 )
0594  1525 FORMAT( (10F8.3) )
0595  1541 FORMAT( I8 )
0596  1543 FORMAT( (10I8) )
0597  1545 FORMAT( (10F8.3) )
0598                                                                   STOP 
0599                                                                   END

• To check the system convergence 
afterward, the data of the particle 
directions and interaction energies 
are written out.
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0600 C********************************************************************* 
0601 C***************************   SUBROUTINE   ************************** 
0602 C********************************************************************* 
0603 C
0604 C**** SUB PRNTDATA ****
0605       SUBROUTINE PRNTDATA( MCSST, MCSMX, NP )
0606 C
0607       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0608 C
0609       COMMON /BLOCK10/ MOMX , MOMY , MOMZ , MEANENE
0610 C
0611       PARAMETER( NN=1360  , NNS=200000 )
0612       PARAMETER( NRANMX=1000000 , PI=3.141592653589793D0 )
0613 C
0614       INTEGER   MCSST     , MCSMX     , NP
0615       REAL      MOMX(NNS) , MOMY(NNS) , MOMZ(NNS) , MEANENE(NNS)
0616 C
0617       REAL      AMOMX(10) , AMOMY(10) , AMOMZ(10) , AMEANENE(10) , C0
0618       INTEGER   IC , IMC(0:10) , JS , JE
0619 C
0620 C                                             ----- KEIKA INSATU ----- 
0621       IC = ( MCSMX-MCSST+1 )/50
0622       DO 20 I= MCSST-1+IC , MCSMX , IC
0623         WRITE(NP,10) I, MOMX(I), MOMY(I), MOMZ(I), MEANENE(I)
0624    20 CONTINUE
0625 C                                  ----- MONTE CARLO STEP HEIKIN ----- 
0626       IC = ( MCSMX-MCSST+1 )/10
0627       DO 30 I=0,10
0628         IMC(I) = MCSST - 1 + IC*I
0629         IF( I .EQ. 10 ) IMC(I) =MCSMX
0630    30 CONTINUE
0631 C
0632 C
0633       DO 35 I=1,10
0634         AMOMX(I)    = 0.
0635         AMOMY(I)    = 0.
0636         AMOMZ(I)    = 0.
0637         AMEANENE(I) = 0.
0638    35 CONTINUE
0639 C
0640       DO 50 I=1,10
0641         JS = IMC(I-1) + 1
0642         JE = IMC(I)
0643         DO 40 J=JS,JE
0644           AMOMX(I)    = AMOMX(I)    + MOMX(J)
0645           AMOMY(I)    = AMOMY(I)    + MOMY(J)
0646           AMOMZ(I)    = AMOMZ(I)    + MOMZ(J)
0647           AMEANENE(I) = AMEANENE(I) + MEANENE(J)
0648    40   CONTINUE
0649    50 CONTINUE
0650 C
0651       DO 70 I=1,10
0652         C0          = REAL( IMC(I)-IMC(I-1) )
0653         AMOMX(I)    = AMOMX(I)   /C0
0654         AMOMY(I)    = AMOMY(I)   /C0
0655         AMOMZ(I)    = AMOMZ(I)   /C0
0656         AMEANENE(I) = AMEANENE(I)/C0
0657    70 CONTINUE
0658 C                                       ----- STEP HEIKIN INSATU ----- 
0659       WRITE(NP,75)
0660       DO 90 I=1,10
0661        WRITE(NP,80)I,IMC(I-1)+1,IMC(I),AMOMX(I),AMOMY(I),AMOMZ(I),
0662      &                                 AMEANENE(I)
0663    90 CONTINUE
0664 C     ---------------------------------------------------------------- 
0665    10 FORMAT(1H ,'MCSMPL=',I8, 2X ,'MOMENT(X)=',F7.4, 2X ,
0666      &           'MOMENT(Y)=',F7.4, 2X ,'MOMENT(Z)=',F7.4
0667      &      /1H , 53X , 'MEAN ENERGY=',E12.5)
0668    75 FORMAT(//1H ,'-----------------------------------------------'
0669      &        /1H ,'             MONTE CARLO HEIKIN                '
0670      &        /)
0671    80 FORMAT(1H ,'I=',I2, 2X ,'SMPLMN=',I8, 2X ,'SMPLMX=',I8
0672      &      /1H ,15X ,'MOMENT(X)=',F7.4, 2X ,
0673      &                'MOMENT(Y)=',F7.4, 2X ,'MOMENT(Z)=',F7.4
0674      &      /1H ,53X, 'MEAN ENERGY=',E12.5/)

• The total MC steps are equally divided into 50 
blocks, and the end value of each block is 
written out.

• The total MC steps are equally divided into 10 
blocks, and the subaverages are calculated for 
each block. 
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0675                                                                 RETURN 
0676                                                                 END
0677 C**** SUB ANIMEDAT ****
0678       SUBROUTINE ANIMEDAT( NOPT1, NANMCTR, MCSMPLMX, NANIME, N )
0679 C
0680       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0681 C
0682       COMMON /BLOCK1/  RX   , RY   , RZ
0683       COMMON /BLOCK2/  NX   , NY   , NZ
0684       COMMON /BLOCK4/  D    , D1    , RP    ,  VP   , IPTCLMDL 
0685       COMMON /BLOCK5/  XL , YL , ZL , INIPX , INIPY , INIPZ , INITREE
0686       COMMON /BLOCK11/ EX   , EY   , EZ
0687 C
0688       PARAMETER( NN=1360 , PI=3.141592653589793D0 )
0689 C
0690       REAL*8    RX(NN) , RY(NN) , RZ(NN) 
0691       REAL*8    NX(NN) , NY(NN) , NZ(NN) 
0692       REAL*8    EX(NN) , EY(NN) , EZ(NN) 
0693       REAL*8    D02 , D102 , CX1 , CY1 , CZ1 , CX2 , CY2 , CZ2
0694       REAL*8    CNX(50) , CNY(50) , CNZ(50) 
0695 C
0696       D02     = D/2.D0 
0697       D102    = D1/2.D0 
0698 C
0699       IF( NANMCTR .EQ. 1 ) THEN 
0700         WRITE(NOPT1,181) (MCSMPLMX/NANIME) 
0701       END IF
0702 C
0703       IF( (NANMCTR.GE.1) .AND. (NANMCTR.LE.9) ) THEN 
0704         WRITE(NOPT1,183) NANMCTR
0705       ELSE IF( (NANMCTR.GE.10) .AND. (NANMCTR.LE.99) ) THEN 
0706         WRITE(NOPT1,184) NANMCTR
0707       ELSE IF( (NANMCTR.GE.100) .AND. (NANMCTR.LE.999) ) THEN 
0708         WRITE(NOPT1,185) NANMCTR
0709       ELSE IF( (NANMCTR.GE.1000) .AND. (NANMCTR.LE.9999) ) THEN 
0710         WRITE(NOPT1,186) NANMCTR
0711       END IF
0712 C
0713 C     ----------------------------------------------- CYLINDER (1) ---
0714       WRITE(NOPT1,211)  N
0715       DO 250 I=1,N 
0716         CX1 = RX(I) - EX(I)*0.5D0
0717         CY1 = RY(I) - EY(I)*0.5D0
0718         CZ1 = RZ(I) - EZ(I)*0.5D0
0719         CX2 = RX(I) + EX(I)*0.5D0
0720         CY2 = RY(I) + EY(I)*0.5D0
0721         CZ2 = RZ(I) + EZ(I)*0.5D0
0722         WRITE(NOPT1,248) CX1,CY1,CZ1, CX2,CY2,CZ2, D02, 1.0, 0.0, 0.0
0723   250 CONTINUE
0724 C
0725 C     ------------------------------------------------- SPHERE (1) ---
0726 C                                       --- FOR MAKING OUTER SHAPE ---
0727       WRITE(NOPT1,311)  N*16
0728       DO 350 I=1,N 
0729         CNX(1) = NX(I) 
0730         CNY(1) = NY(I) 
0731         CNZ(1) = NZ(I) 
0732 C
0733         C1X    = EY(I)*NZ(I) - EZ(I)*NY(I)
0734         C1Y    = EZ(I)*NX(I) - EX(I)*NZ(I)
0735         C1Z    = EX(I)*NY(I) - EY(I)*NX(I)
0736         C1     = DSQRT( C1X**2 + C1Y**2 + C1Z**2 )
0737         CNX(2) = C1X/C1
0738         CNY(2) = C1Y/C1
0739         CNZ(2) = C1Z/C1
0740         CNX(3) = - CNX(2)
0741         CNY(3) = - CNY(2)
0742         CNZ(3) = - CNZ(2)
0743 C
0744         CNX(4) =  ( CNX(1) + CNX(2) )/1.4142D0 
0745         CNY(4) =  ( CNY(1) + CNY(2) )/1.4142D0
0746         CNZ(4) =  ( CNZ(1) + CNZ(2) )/1.4142D0
0747         CNX(5) =  ( CNX(1) + CNX(3) )/1.4142D0
0748         CNY(5) =  ( CNY(1) + CNY(3) )/1.4142D0
0749         CNZ(5) =  ( CNZ(1) + CNZ(3) )/1.4142D0

• Drawing of the cylindrical part. 

• A subroutine for writing out the data, 
which can be directly used for making an 
animation based on MicroAVS. 

• MicroAVS can make a visua- 
lization or animation by reading 
the data file baba41.mgf. 

• Drawing of the disk-like particle in 
Figure 4.12 by having the short cylinder 
surrounded by numerous spheres.
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0750 C
0751         CNX(6) =  ( CNX(1) + CNX(4) )/1.8478D0 
0752         CNY(6) =  ( CNY(1) + CNY(4) )/1.8478D0 
0753         CNZ(6) =  ( CNZ(1) + CNZ(4) )/1.8478D0 
0754         CNX(7) =  ( CNX(2) + CNX(4) )/1.8478D0 
0755         CNY(7) =  ( CNY(2) + CNY(4) )/1.8478D0 
0756         CNZ(7) =  ( CNZ(2) + CNZ(4) )/1.8478D0 
0757         CNX(8) =  ( CNX(1) + CNX(5) )/1.8478D0 
0758         CNY(8) =  ( CNY(1) + CNY(5) )/1.8478D0 
0759         CNZ(8) =  ( CNZ(1) + CNZ(5) )/1.8478D0 
0760         CNX(9) =  ( CNX(3) + CNX(5) )/1.8478D0 
0761         CNY(9) =  ( CNY(3) + CNY(5) )/1.8478D0 
0762         CNZ(9) =  ( CNZ(3) + CNZ(5) )/1.8478D0 
0763 C
0764         CNX(10) = - CNX(1)
0765         CNY(10) = - CNY(1)
0766         CNZ(10) = - CNZ(1)
0767         CNX(11) = - CNX(4)
0768         CNY(11) = - CNY(4)
0769         CNZ(11) = - CNZ(4)
0770         CNX(12) = - CNX(5)
0771         CNY(12) = - CNY(5)
0772         CNZ(12) = - CNZ(5)
0773         CNX(13) = - CNX(6)
0774         CNY(13) = - CNY(6)
0775         CNZ(13) = - CNZ(6)
0776         CNX(14) = - CNX(7)
0777         CNY(14) = - CNY(7)
0778         CNZ(14) = - CNZ(7)
0779         CNX(15) = - CNX(8)
0780         CNY(15) = - CNY(8)
0781         CNZ(15) = - CNZ(8)
0782         CNX(16) = - CNX(9)
0783         CNY(16) = - CNY(9)
0784         CNZ(16) = - CNZ(9)
0785 C
0786         DO 340 J=1,16
0787           CX1 = RX(I) + CNX(J)*D02
0788           CY1 = RY(I) + CNY(J)*D02
0789           CZ1 = RZ(I) + CNZ(J)*D02
0790           WRITE(NOPT1,348) CX1, CY1, CZ1, 0.499 , 1.0, 0.2, 0.2 
0791   340   CONTINUE 
0792 C
0793   350 CONTINUE
0794 C
0795 C     ------------------------------------------------- SPHERE (2) ---
0796 C                                               --- FOR MAG MOMENT ---
0797       WRITE(NOPT1,311)  N
0798       DO 450 I=1,N 
0799         CX1 = RX(I) + NX(I)*D102
0800         CY1 = RY(I) + NY(I)*D102
0801         CZ1 = RZ(I) + NZ(I)*D102
0802         WRITE(NOPT1,348) CX1, CY1, CZ1, 0.12 , 0.0, 0.8, 1.0 
0803   450 CONTINUE
0804 C
0805 C     -------------------------------------- SIM.REGEON LINES  (3) ---
0806       WRITE(NOPT1,648)  17
0807       WRITE(NOPT1,649)  0. ,  0. ,  0. 
0808       WRITE(NOPT1,649)  XL ,  0. ,  0.
0809       WRITE(NOPT1,649)  XL ,  YL ,  0.
0810       WRITE(NOPT1,649)  0. ,  YL ,  0.
0811       WRITE(NOPT1,649)  0. ,  0. ,  0.
0812       WRITE(NOPT1,649)  0. ,  0. ,  ZL
0813       WRITE(NOPT1,649)  XL ,  0. ,  ZL
0814       WRITE(NOPT1,649)  XL ,  YL ,  ZL
0815       WRITE(NOPT1,649)  0. ,  YL ,  ZL
0816       WRITE(NOPT1,649)  0. ,  0. ,  ZL
0817       WRITE(NOPT1,649)  0. ,  0. ,  0.
0818       WRITE(NOPT1,649)  0. ,  YL ,  0.
0819       WRITE(NOPT1,649)  0. ,  YL ,  ZL

• Drawing the frame of the simulation 
box. 

0820       WRITE(NOPT1,649)  XL ,  YL ,  ZL
0821       WRITE(NOPT1,649)  XL ,  YL ,  0.
0822       WRITE(NOPT1,649)  XL ,  0. ,  0.
0823       WRITE(NOPT1,649)  XL ,  0. ,  ZL
0824 C

• The magnetic moment direction is 
described by adding a small sphere to 
the surface of the torus part. 
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0825 C     ---------------------------- FORMAT ----------------------------
0826   181 FORMAT('# Micro AVS Geom:2.00'
0827      &      /'# Animation of MC simulation results'
0828      &      /I4)
0829   183 FORMAT('step',I1)
0830   184 FORMAT('step',I2)
0831   185 FORMAT('step',I3)
0832   186 FORMAT('step',I4) 
0833   211 FORMAT( 'column'/'cylinder'/'dvertex_and_color'/'32'/I7 ) 
0834   248 FORMAT( 6F10.3 , F6.2 , 3F4.1)
0835   311 FORMAT( 'sphere'/'sphere_sample'/'color'/I7 ) 
0836   348 FORMAT( 3F10.3 , F6.2 , 3F5.2 )
0837   648 FORMAT( 'polyline'/'pline_sample'/'vertex'/I3 ) 
0838   649 FORMAT( 3F10.3 )
0839                                                                RETURN 
0840                                                                END
0841 C**** SUB INITIAL ****
0842       SUBROUTINE INITIAL
0843 C
0844       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0845 C
0846       COMMON /BLOCK1/  RX   , RY   , RZ
0847       COMMON /BLOCK2/  NX   , NY   , NZ
0848       COMMON /BLOCK3/  N    , NDENS, VDENS
0849       COMMON /BLOCK4/  D    , D1    , RP    ,  VP   , IPTCLMDL 
0850       COMMON /BLOCK5/  XL , YL , ZL , INIPX , INIPY , INIPZ , INITREE
0851       COMMON /BLOCK11/ EX   , EY   , EZ
0852       COMMON /BLOCK12/ NXB  , NYB
0853       COMMON /BLOCK13/ ETHETA , EPHI , NPSI , RMAT
0854 C
0855       PARAMETER( NN=1360 , PI=3.141592653589793D0 )
0856 C
0857       REAL*8    NDENS
0858       REAL*8    RX(NN) , RY(NN) , RZ(NN) , NX(NN) , NY(NN) , NZ(NN)
0859       REAL*8    EX(NN) , EY(NN) , EZ(NN) 
0860       REAL*8    NXB(NN), NYB(NN)
0861       REAL*8    ETHETA(NN), EPHI(NN) , NPSI(NN) , RMAT(3,3,NN)
0862 C
0863       INTEGER   PTCL , ICNTR
0864       REAL*8    XLUNT , YLUNT , ZLUNT,  RAN1 , RAN2 , RAN3 
0865       REAL*8    VDENSMX , CRATIO , C0 , C1 , C2 , C3
0866 C
0867       IF( INITREE .EQ. 1 ) THEN
0868         INIPX =  3
0869         INIPY =  9 
0870         INIPZ = 12
0871         N     = 324
0872       ELSE IF( INITREE .EQ. 2 ) THEN
0873         INIPX =  4
0874         INIPY = 12 
0875         INIPZ =  6
0876         N     = 288 
0877       ELSE
0878         WRITE(6,*) '******************** SUB-INITIAL IS STOPPED *****' 
0879         STOP
0880       END IF 
0881 C     ----------------------------------------------------------------
0882 C
0883       VMN     = DBLE( INIPX*INIPY*INIPZ )*RP**2
0884       CRATIO  = (  ( DBLE(N)*VP )/( VMN*VDENS )  )**(1./3.)
0885       XLUNT   = RP
0886       YLUNT   = 1.D0
0887       ZLUNT   = RP
0888       XLUNT   = XLUNT*CRATIO
0889       YLUNT   = YLUNT*CRATIO
0890       ZLUNT   = ZLUNT*CRATIO
0891       XL      = XLUNT*DBLE(INIPX)
0892       YL      = YLUNT*DBLE(INIPY)
0893       ZL      = ZLUNT*DBLE(INIPZ)
0894 C                                                 ----- POSITION ----- 

• A subroutine for setting the 
initial position and direction of 
each particle. 

• (INIPX, INIPY, INIPZ) particles are 
placed in the x-, y-, and z-directions, 
respectively.

• The volumetric fraction φV satisfies φV=VP×N/(α3×Vmn), 
so that α can be obtained as α=(VP×N/(φV×Vmn))1/3, in 
which VMN=Vmn and CRATIO=α.
• As shown in Figure 2.5, VMN is the minimum volume for 
a contact arrangement of the particles.
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0895       RAN1 = DSQRT( 2.D0 )
0896       RAN2 = DSQRT( 7.D0 )
0897       RAN3 = DSQRT( 11.D0 ) 
0898       C0   = 1.D-4
0899       PTCL = 0
0900       DO 10 K=0, INIPZ-1
0901       DO 10 J=0, INIPY-1
0902       DO 10 I=0, INIPX-1
0903         PTCL = PTCL + 1
0904         C1 = RAN1*DBLE(PTCL)
0905         C1 = C1 - DINT(C1)
0906         C1 = C1 - 0.5D0
0907         C2 = RAN2*DBLE(PTCL)
0908         C2 = C2 - DINT(C2)
0909         C2 = C2 - 0.5D0
0910         C3 = RAN3*DBLE(PTCL)
0911         C3 = C3 - DINT(C3)
0912         C3 = C3 - 0.5D0
0913         RX(PTCL) = DBLE(I)*XLUNT + C1*C0 + C0
0914         RY(PTCL) = DBLE(J)*YLUNT + C2*C0 + C0
0915         RZ(PTCL) = DBLE(K)*ZLUNT + C3*C0 + C0
0916    10 CONTINUE
0917       N = PTCL 
0918 C                                                ----- DIRECTION -----
0919       RAN1 = DSQRT( 2.D0 )
0920       RAN2 = DSQRT( 3.D0 )
0921       DO 80 I=1,N
0922         C1 = PI/2.D0
0923         C2 = PI/2.D0
0924         EX(I) = DSIN(C1)*DCOS(C2)
0925         EY(I) = DSIN(C1)*DSIN(C2)
0926         EZ(I) = DCOS(C1)
0927 C
0928         ETHETA(I)   = C1
0929         EPHI(I)     = C2
0930         RMAT(1,1,I) =  DCOS(C1)*DCOS(C2)
0931         RMAT(2,1,I) =  DCOS(C1)*DSIN(C2)
0932         RMAT(3,1,I) = -DSIN(C1)
0933         RMAT(1,2,I) = -DSIN(C2)
0934         RMAT(2,2,I) =  DCOS(C2)
0935         RMAT(3,2,I) =  0.D0
0936         RMAT(1,3,I) =  DSIN(C1)*DCOS(C2)
0937         RMAT(2,3,I) =  DSIN(C1)*DSIN(C2)
0938         RMAT(3,3,I) =  DCOS(C1)
0939    80 CONTINUE
0940 C                                                   ----- MOMENT -----
0941       RAN1 = DSQRT( 2.D0 )
0942       DO 90 I=1,N
0943         C1      = RAN1*DBLE(I)
0944         C1      = C1 - DINT(C1)
0945         NPSI(I) = 2.D0*PI*C1 

• (XLUNT, YLUNT, ZLUNT) are the distances between 
the neighboring particles in each axis direction. 

• All the particles are set so as to point in  
the y-direction.

0946         NXB(I)  = DCOS(NPSI(I))
0947         NYB(I)  = DSIN(NPSI(I)) 
0948         NX(I)   = RMAT(1,1,I)*NXB(I) + RMAT(1,2,I)*NYB(I) 
0949         NY(I)   = RMAT(2,1,I)*NXB(I) + RMAT(2,2,I)*NYB(I) 
0950         NZ(I)   = RMAT(3,1,I)*NXB(I) + RMAT(3,2,I)*NYB(I) 
0951    90 CONTINUE
0952                                                                RETURN 
0953                                                                END
0954 C**** SUB ENECAL *****
0955       SUBROUTINE ENECAL( I, RXI, RYI, RZI, EXI, EYI, EZI, NXI, NYI, 
0956      &                   NZI, RCOFF2, ECAN, OVRLAP, ISTREET, JPTCL0 )
0957 C
0958       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0959 C
0960       COMMON /BLOCK1/  RX   , RY   , RZ
0961       COMMON /BLOCK2/  NX   , NY   , NZ
0962       COMMON /BLOCK3/  N    , NDENS, VDENS
0963       COMMON /BLOCK4/  D    , D1    , RP    ,  VP   , IPTCLMDL 
0964       COMMON /BLOCK5/  XL , YL , ZL , INIPX , INIPY , INIPZ , INITREE
0965       COMMON /BLOCK6/  RA   , RA0  , KU  ,  HX , HY , HZ
0966       COMMON /BLOCK7/  E    , ENEW , EOLD
0967       COMMON /BLOCK8/  RCOFF, DELR , DELT
0968       COMMON /BLOCK11/ EX   , EY   , EZ
0969       COMMON /BLOCK12/ NXB  , NYB

• RAN1, RAN2, and RAN3 are quasi-random numbers. 
• (INIPX, INIPY, INIPZ) particles are placed in each 
direction.
• Each particle is moved in parallel by the distance C0 to 
remove subtle situations at outer boundary surfaces. Also, 
to remove the regularity of the initial configuration, each 
particle is moved randomly by (C1*C0, C2*C0, C3*C0) in 
each direction. 

• The rotational matrix R–1 (=RMAT) can be 
evaluated as a transpose matrix in Eq. (4.43) 
using the particle direction data. 

• The magnetic moment direction is 
randomly assigned using quasi-random 
numbers. 

• A subroutine for calculating the 
interaction energies between particles. 
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0970       COMMON /BLOCK13/ ETHETA , EPHI , NPSI , RMAT
0971 C
0972       PARAMETER( NN=1360 , PI=3.141592653589793D0 )
0973 C
0974       REAL*8    NDENS  , KU
0975       REAL*8    RX(NN) , RY(NN) , RZ(NN) 
0976       REAL*8    NX(NN) , NY(NN) , NZ(NN) , E(NN)
0977       REAL*8    EX(NN) , EY(NN) , EZ(NN) 
0978       REAL*8    NXB(NN), NYB(NN)
0979       REAL*8    ETHETA(NN), EPHI(NN) , NPSI(NN) , RMAT(3,3,NN)
0980       LOGICAL   OVRLAP
0981 C
0982       REAL*8    RXI  , RYI  , RZI  , RXJ  , RYJ  , RZJ 
0983       REAL*8    RXIP , RYIP , RZIP , RXJP , RYJP , RZJP 
0984       REAL*8    RXIJ , RYIJ , RZIJ , RXJI , RYJI , RZJI
0985       REAL*8    RXIJQ, RYIJQ, RZIJQ
0986       REAL*8    NXI  , NYI  , NZI  , NXJ  , NYJ  , NZJ 
0987       REAL*8    NXIJ , NYIJ  , NZIJ
0988       REAL*8    NXIJ2, NYIJ2 , NZIJ2
0989       REAL*8    TXIJ , TYIJ , TZIJ , TXIJS, TYIJS, TZIJS
0990       REAL*8    EXI  , EYI  , EZI  , EXJ  , EYJ  , EZJ 
0991       REAL*8    EXIP , EYIP , EZIP , EXJP , EYJP , EZJP 
0992       REAL*8    EXIS , EYIS , EZIS , EXJS , EYJS , EZJS 
0993       REAL*8    KIS  , KJS  , KIJS , KIJQ
0994       REAL*8    RRXI  , RRYI  , RRZI  , RRXJ  , RRYJ  , RRZJ 
0995       REAL*8    RRXIJ , RRYIJ , RRZIJ , RRXJI , RRYJI , RRZJI 
0996       REAL*8    TTXIJ , TTYIJ , TTZIJ , TTXIJS, TTYIJS, TTZIJS 
0997       REAL*8    EEXI  , EEYI  , EEZI  , EEXJ  , EEYJ  , EEZJ
0998       REAL*8    EEXIS , EEYIS , EEZIS , EEXJS , EEYJS , EEZJS 
0999       REAL*8    KKIS  , KKJS  , KKIJS 
1000       REAL*8    RIJ   , RIJSQ , RIJ3  , R00 , R01 , R10 , R11 
1001       REAL*8    RIJMN , RIJMNFUN 
1002       REAL*8    ECAN , RCOFF2 , RCHKSQ , RCHKSQ2 
1003       REAL*8    DSQ , D1  , D1SQ , D02 , CHCK0 , CHCK1
1004       REAL*8    C0  , C1  , C2   , C00 , C01 , C02 , C03 
1005       REAL*8    C11 , C21 , C12  , C22
1006       REAL*8    C1X , C1Y , C1Z  , C1SQ 
1007       REAL*8    CEIEJ , CEIRIJ , CEJEIX , CEJEIY  , CEJEIZ
1008       INTEGER   ITREE , IPATH  , JPTCL 
1009 C
1010       OVRLAP  = .FALSE. 
1011       ECAN    = - KU*( NXI*HX + NYI*HY + NZI*HZ )
1012       D1SQ    = D1**2
1013       DSQ     = D**2
1014       D02     = D/2.D0
1015 C
1016 C     ----------------------------------------------- MAIN LOOP START
1017 C
1018       DO 1000 JPTCL=1,N 
1019 C
1020         J = JPTCL 
1021         IF( J .EQ. I )               GOTO 1000
1022 C
1023         RXJ = RX(J) 
1024         RYJ = RY(J) 
1025         RZJ = RZ(J) 
1026 c
1027         RXIJ = RXI - RXJ
1028         IF( RXIJ .GT. XL/2.D0 ) THEN
1029           RXIJ = RXIJ - XL 
1030           RXJ  = RXJ  + XL
1031         ELSE IF( RXIJ .LT. -XL/2.D0 ) THEN
1032           RXIJ = RXIJ + XL 
1033           RXJ  = RXJ  - XL
1034         END IF
1035         IF( DABS(RXIJ) .GE. RCOFF )  GOTO 1000
1036 C
1037         RYIJ = RYI - RYJ
1038         IF( RYIJ .GT. YL/2.D0 ) THEN
1039           RYIJ = RYIJ - YL 
1040           RYJ  = RYJ  + YL
1041         ELSE IF( RYIJ .LT. -YL/2.D0 ) THEN
1042           RYIJ = RYIJ + YL 
1043           RYJ  = RYJ  - YL
1044         END IF

• The treatment concerning particle i. 

• The treatment concerning particles i 
and j.  

• The treatment of the periodic BC.
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1045         IF( DABS(RYIJ) .GE. RCOFF )  GOTO 1000
1046 C
1047         RZIJ = RZI - RZJ
1048         IF( RZIJ .GT. ZL/2.D0 ) THEN
1049           RZIJ = RZIJ - ZL 
1050           RZJ  = RZJ  + ZL
1051         ELSE IF( RZIJ .LT. -ZL/2.D0 ) THEN
1052           RZIJ = RZIJ + ZL 
1053           RZJ  = RZJ  - ZL
1054         END IF
1055         IF( DABS(RZIJ) .GE. RCOFF )  GOTO 1000
1056 C
1057         RIJSQ= RXIJ**2 + RYIJ**2 + RZIJ**2
1058         IF( RIJSQ .GE. RCOFF2 )      GOTO 1000
1059         IF( RIJSQ .LT. 1.D0 ) THEN 
1060           OVRLAP = .TRUE. 
1061           RETURN
1062         END IF
1063 C
1064         RIJ  = DSQRT(RIJSQ)
1065 C
1066 C       --------------------------------- START OF MAGNETIC ENERGY ---
1067         IF( IPTCLMDL .EQ. 1 ) THEN 
1068 C
1069           NXJ  = NX(J)
1070           NYJ  = NY(J)
1071           NZJ  = NZ(J)

• The magnetic interaction energies are 
calculated.  

1072           EXJ  = EX(J)
1073           EYJ  = EY(J)
1074           EZJ  = EZ(J)
1075           RXJI = -RXIJ 
1076           RYJI = -RYIJ 
1077           RZJI = -RZIJ 
1078 C
1079           C00  = NXI*NXJ  + NYI*NYJ  + NZI*NZJ 
1080           C01  = NXI*RXIJ + NYI*RYIJ + NZI*RZIJ 
1081           C02  = NXJ*RXIJ + NYJ*RYIJ + NZJ*RZIJ 
1082           RIJ3 = RIJ*RIJSQ 
1083 C
1084           C1   = (RA/RIJ3)*( C00 - 3.D0*C01*C02/RIJSQ )
1085 C 
1086           ECAN = ECAN + C1
1087 C
1088         ELSE IF( IPTCLMDL .EQ. 2 ) THEN 
1089 C
1090           NXJ   = NX(J)
1091           NYJ   = NY(J)
1092           NZJ   = NZ(J)
1093           NXIJ  = NXI - NXJ 
1094           NYIJ  = NYI - NYJ 
1095           NZIJ  = NZI - NZJ 
1096           NXIJ2 = NXI + NXJ 
1097           NYIJ2 = NYI + NYJ 
1098           NZIJ2 = NZI + NZJ 
1099           EXJ   = EX(J)
1100           EYJ   = EY(J)
1101           EZJ   = EZ(J)
1102           RXJI  = -RXIJ 
1103           RYJI  = -RYIJ 
1104           RZJI  = -RZIJ 
1105 C
1106           C11  = RXIJ*NXIJ  + RYIJ*NYIJ  + RZIJ*NZIJ
1107           C21  = RXIJ*NXIJ2 + RYIJ*NYIJ2 + RZIJ*NZIJ2
1108           C12  = 1.D0 - ( NXI*NXJ + NYI*NYJ + NZI*NZJ )
1109           C22  = 1.D0 + ( NXI*NXJ + NYI*NYJ + NZI*NZJ )
1110           C01  = D/RIJSQ
1111           C02  = D**2/(2.D0*RIJSQ) 
1112 C
1113           R00  = RIJ*( 1.D0 + C01*C11 + C02*C12 )**0.5 
1114           R11  = RIJ*( 1.D0 - C01*C11 + C02*C12 )**0.5 
1115           R01  = RIJ*( 1.D0 + C01*C21 + C02*C22 )**0.5 
1116           R10  = RIJ*( 1.D0 - C01*C21 + C02*C22 )**0.5 
1117           IF( (R00 .LT. 1.D0) .OR. (R11 .LT. 1.D0 ) .OR.
1118      &        (R01 .LT. 1.D0) .OR. (R10 .LT. 1.D0 )      ) THEN 
1119             OVRLAP = .TRUE. 

• If the two particles are separated over 
the cutoff distance r*coff, the calculation 
is unnecessary.

• The treatment for the particle model 
with a magnetic dipole at the particle 
center.

• The treatment for the particle model with 
a plus and a minus magnetic charge at 
the torus part; this model is not used in 
the present exercise. 
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1120             RETURN 
1121           END IF
1122 C
1123           ECAN = ECAN 
1124      &            + RA*( 1.D0/R00 + 1.D0/R11 - 1.D0/R01 - 1.D0/R10 )
1125 C
1126         END IF 
1127 C       ----------------------------------- END OF MAGNETIC ENERGY ---
1128 C
1129         IF( ISTREET .EQ. 1 )  GOTO 1000
1130 C
1131         IF( RIJ .GE. D1 ) THEN 
1132           OVRLAP = .FALSE.
1133           GOTO 1000
1134         END IF 

• The assessment of the overlap 
between particles i and j.  

1135 C
1136 C       --------------------------------------------------------------
1137 C       ---------    CHECK THE OVERLAP OF PARTICLES I AND J    -------
1138 C       --------------------------------------------------------------
1139 C
1140         CEIEJ = EXI*EXJ +  EYI*EYJ +  EZI*EZJ
1141         TXIJ  = RXIJ/RIJ
1142         TYIJ  = RYIJ/RIJ
1143         TZIJ  = RZIJ/RIJ
1144         C11   = TXIJ*EXI + TYIJ*EYI + TZIJ*EZI
1145 C
1146         IF( DABS(CEIEJ) .GT. 0.999D0) THEN
1147           IF(  DABS(C11) .LT. 0.001D0 )THEN
1148             ITREE = 2
1149           ELSE
1150             ITREE = 3
1151           END IF
1152         ELSE
1153           ITREE = 1
1154         END IF
1155 C                                              -----------------------
1156 C                                               ITREE=1: GENERAL 
1157 C                                               ITREE=2: ONE PLANE 
1158 C                                               ITREE=3: TWO PARALLEL
1159 C                                                        PLANES
1160 C                                              -----------------------
1161 C
1162 C       ---------------------------------------------- (1) ITREE=2 ---
1163 C
1164         IF( ITREE .EQ. 2 ) THEN 
1165           IF( RIJ .GE. D1 ) THEN 
1166             OVRLAP = .FALSE. 
1167             GOTO 1000 
1168           ELSE
1169             OVRLAP = .TRUE.
1170             RETURN
1171           END IF 
1172         END IF
1173 C
1174 C       ---------------------------------------------- (2) ITREE=3 ---
1175 C
1176         IF( ITREE .EQ. 3 ) THEN 
1177 C
1178           CEIRIJ = EXI*RXIJ + EYI*RYIJ + EZI*RZIJ 
1179           IF( DABS(CEIRIJ) .GE. 1.D0 ) THEN
1180             OVRLAP = .FALSE.
1181             GOTO 1000
1182           END IF
1183 C
1184           RXIP = RXIJ - CEIRIJ*EXI 
1185           RYIP = RYIJ - CEIRIJ*EYI 
1186           RZIP = RZIJ - CEIRIJ*EZI 
1187           C0   = DSQRT( RXIP**2 + RYIP**2 + RZIP**2 ) 
1188           IF( C0 .LE. D ) THEN
1189             OVRLAP = .TRUE.
1190             RETURN 
1191           ELSE IF( C0 .GE. D1 ) THEN 
1192             OVRLAP = .FALSE. 
1193             GOTO 1000
1194           END IF

• The treatment for a one-plane arrangement (ITREE=2).

• The treatment for a parallel arrangement (ITREE=3). 

• rij
p in Eq. (4.32) is evaluated. 

• An overlap in the case of 2.2.1 in Section 4.2.3. 

• No overlap in the case of 2.2.2 in Section 4.2.3. 

• The regime of particle overlap is 
assessed. There are three regimes: a 
general arrangement (ITREE=1), a 
one-plane arrangement (ITREE=2), and 
a parallel arrangement (ITREE=3). 

• The occurrence of a particle 
overlap can be assessed by only the 
particle–particle distance.

• No overlap if the condition (2.1) in 
Section 4.2.3 is satisfied.  
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1195           EXJP = RXIP/C0
1196           EYJP = RYIP/C0
1197           EZJP = RZIP/C0
1198           EXIP = -EXJP
1199           EYIP = -EYJP
1200           EZIP = -EZJP
1201           C1X  = RXI + D02*EXIP - ( RXJ + D02*EXJP )
1202           C1Y  = RYI + D02*EYIP - ( RYJ + D02*EYJP )
1203           C1Z  = RZI + D02*EZIP - ( RZJ + D02*EZJP )
1204           C1SQ = C1X**2 + C1Y**2 + C1Z**2 
1205           IF( C1SQ .LT. 1.D0 ) THEN
1206             OVRLAP = .TRUE.
1207             RETURN
1208           ELSE 
1209             OVRLAP = .FALSE.
1210             GOTO 1000
1211           END IF 
1212 C
1213         END IF 
1214 C
1215 C       ----------------------------------------------------- TIJS ---
1216         CEJEIX = EYJ*EZI - EZJ*EYI 
1217         CEJEIY = EZJ*EXI - EXJ*EZI 
1218         CEJEIZ = EXJ*EYI - EYJ*EXI 
1219         C1     = DSQRT( CEJEIX**2 + CEJEIY**2 + CEJEIZ**2 )
1220         TXIJS  = CEJEIX / C1
1221         TYIJS  = CEJEIY / C1
1222         TZIJS  = CEJEIZ / C1
1223 C
1224 C       ------------------------------------------------ EIS , EJS ---
1225         EXIS = -( EYI*TZIJS - EZI*TYIJS )
1226         EYIS = -( EZI*TXIJS - EXI*TZIJS )
1227         EZIS = -( EXI*TYIJS - EYI*TXIJS )
1228         EXJS =  ( EYJ*TZIJS - EZJ*TYIJS )
1229         EYJS =  ( EZJ*TXIJS - EXJ*TZIJS )
1230         EZJS =  ( EXJ*TYIJS - EYJ*TXIJS )
1231 C
1232 C       ------------------------------------------------ KIS , KJS ---
1233         KIS  = -(EXJ*RXIJ + EYJ*RYIJ + EZJ*RZIJ)/
1234      &          (EXJ*EXIS + EYJ*EYIS + EZJ*EZIS)
1235         KJS  =  (EXI*RXIJ + EYI*RYIJ + EZI*RZIJ)/
1236      &          (EXI*EXJS + EYI*EYJS + EZI*EZJS)
1237         KIJS = RXIJ*TXIJS  + RYIJ*TYIJS + RZIJ*TZIJS
1238 C
1239 C       ------------------------- REPLACEMENT OF PARTICLES I AND J ---
1240         IF( DABS(KJS) .GE. DABS(KIS) ) THEN 
1241           II    = I
1242           JJ    = J
1243           RRXI  = RXI
1244           RRYI  = RYI
1245           RRZI  = RZI
1246           RRXJ  = RXJ
1247           RRYJ  = RYJ
1248           RRZJ  = RZJ
1249           RRXIJ = RXIJ
1250           RRYIJ = RYIJ
1251           RRZIJ = RZIJ
1252           RRXJI = RXJI
1253           RRYJI = RYJI
1254           RRZJI = RZJI
1255           TTXIJ = TXIJ 
1256           TTYIJ = TYIJ 
1257           TTZIJ = TZIJ 
1258           TTXIJS= TXIJS
1259           TTYIJS= TYIJS
1260           TTZIJS= TZIJS

• No overlap in the case of 2.2.4 in Section 4.2.3.  

• An overlap in the case of 2.2.3 in Section 4.2.3. 

• tij
s (=(TXIJS,TYIJS,TZIJS)) in Eq.

(4.23) is evaluated.   

• ei
s and ej

s in Eq. (4.24) are evaluated.  

• ki
s, kj

s, and kij
s in Eq. (4.26) are

evaluated.  

1261           EEXI  = EXI
1262           EEYI  = EYI
1263           EEZI  = EZI
1264           EEXJ  = EXJ
1265           EEYJ  = EYJ
1266           EEZJ  = EZJ
1267           EEXIS = EXIS
1268           EEYIS = EYIS
1269           EEZIS = EZIS

• Treatment (1) shown in Section 4.2.5. The 
subscripts are exchanged between i and j so 
as to satisfy |kj

s|>|ki
s|.

• As a result, the particle names i and j are 
expressed as II and JJ in the program.
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1270           EEXJS = EXJS
1271           EEYJS = EYJS
1272           EEZJS = EZJS
1273           KKIS  = KIS
1274           KKJS  = KJS
1275           KKIJS = KIJS
1276         ELSE 
1277           II    = J 
1278           JJ    = I
1279           RRXI  = RXJ
1280           RRYI  = RYJ
1281           RRZI  = RZJ
1282           RRXJ  = RXI
1283           RRYJ  = RYI
1284           RRZJ  = RZI
1285           RRXIJ = -RXIJ
1286           RRYIJ = -RYIJ
1287           RRZIJ = -RZIJ
1288           RRXJI = -RXJI
1289           RRYJI = -RYJI
1290           RRZJI = -RZJI
1291           TTXIJ = -TXIJ
1292           TTYIJ = -TYIJ 
1293           TTZIJ = -TZIJ 
1294           TTXIJS= -TXIJS
1295           TTYIJS= -TYIJS
1296           TTZIJS= -TZIJS
1297           EEXI  = EXJ
1298           EEYI  = EYJ
1299           EEZI  = EZJ
1300           EEXJ  = EXI
1301           EEYJ  = EYI
1302           EEZJ  = EZI
1303           EEXIS = EXJS
1304           EEYIS = EYJS
1305           EEZIS = EZJS
1306           EEXJS = EXIS
1307           EEYJS = EYIS
1308           EEZJS = EZIS
1309           KKIS  = KJS
1310           KKJS  = KIS
1311           KKIJS = KIJS
1312         END IF
1313 C
1314 C       ------------------- REPLACEMENT OF DIRECTIONS OF EI AND EJ ---
1315         CHCK0 = RRXJI*EEXI + RRYJI*EEYI + RRZJI*EEZI 
1316         IF( CHCK0 .LT. 0.D0 ) THEN 
1317           EEXI   = -EEXI 
1318           EEYI   = -EEYI 
1319           EEZI   = -EEZI 
1320         END IF
1321 C
1322         CEIEJ = EEXI*EEXJ + EEYI*EEYJ + EEZI*EEZJ
1323         IF( CEIEJ .LT. 0.D0 ) THEN 
1324           EEXJ   = -EEXJ 
1325           EEYJ   = -EEYJ 
1326           EEZJ   = -EEZJ 
1327           CEIEJ  = -CEIEJ 
1328         END IF
1329 C
1330 C       ------------------------- REPLACEMENT OF DIRECTION OF TIJS ---
1331         CHCK0 = TTXIJS*RRXIJ + TTYIJS*RRYIJ + TTZIJS*RRZIJ
1332         IF( CHCK0 .LT. 0.D0 ) THEN 
1333           TTXIJS = -TTXIJS
1334           TTYIJS = -TTYIJS
1335           TTZIJS = -TTZIJS
1336         END IF
1337 C
1338 C       -------- REPLACEMENT OF DIRECTIONS OF EIS,EJS,KIS,KJS,KIJS ---
1339         IF( KKIS .LT. 0.D0 ) THEN 
1340           KKIS  = -KKIS 
1341           EEXIS = -EEXIS 
1342           EEYIS = -EEYIS 
1343           EEZIS = -EEZIS 
1344         END IF 

• Treatment (3) shown in Section 4.2.5. 

• Treatment (2) shown in Section 4.2.5. 

• Treatment (4) shown in Section 4.2.5. 
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1345         IF( KKJS .LT. 0.D0 ) THEN 
1346           KKJS  = -KKJS 
1347           EEXJS = -EEXJS 
1348           EEYJS = -EEYJS 
1349           EEZJS = -EEZJS 
1350         END IF 
1351         IF( KKIJS .LT. 0.D0 ) THEN 
1352           KKIJS = -KKIJS 
1353         END IF 
1354 C
1355 C
1356 C       ---------------------------------------------- (3) ITREE=1 ---
1357 C
1358         IF( ITREE .EQ. 1 ) THEN 
1359 C
1360 C
1361           KIJQ = DABS( EEXJS*EEXI + EEYJS*EEYI + EEZJS*EEZI )
1362           IF( KKJS .GE. D02 ) THEN 
1363             KIJQ  = ( KKJS - D02 )*KIJQ
1364             RXIJQ = RRXJ + D02*EEXJS - KIJQ*EEXI
1365             RYIJQ = RRYJ + D02*EEYJS - KIJQ*EEYI
1366             RZIJQ = RRZJ + D02*EEZJS - KIJQ*EEZI
1367             IPATH = 1 
1368           ELSE 
1369             KIJQ  = ( D02 - KKJS )*KIJQ
1370             RXIJQ = RRXJ + D02*EEXJS + KIJQ*EEXI
1371             RYIJQ = RRYJ + D02*EEYJS + KIJQ*EEYI
1372             RZIJQ = RRZJ + D02*EEZJS + KIJQ*EEZI
1373             IPATH = 2 
1374           END IF 
1375           CHCK1   = DSQRT( (RXIJQ-RRXI)**2 + (RYIJQ-RRYI)**2 
1376      &                                     + (RZIJQ-RRZI)**2 ) 
1377           IF( CHCK1 .LE. D02 ) THEN 
1378 C                                           --- (3)-1 INNER CIRCLE ---
1379             IF( IPATH .EQ. 2 ) THEN 
1380               OVRLAP = .TRUE.
1381               RETURN
1382             ELSE IF( IPATH .EQ. 1 ) THEN 
1383               IF( KIJQ .LT. 1.D0 ) THEN 
1384                 OVRLAP = .TRUE. 
1385                 RETURN
1386               ELSE 

• The treatment for a general arrangement (ITREE=1). 

• An overlap in the case of 3.2.1 in 
Section 4.2.3. 

• An overlap in the case of 3.1.2.a in
Section 4.2.3.

1387                 OVRLAP = .FALSE.
1388                 GOTO 1000
1389               END IF
1390             END IF 
1391           ELSE
1392 C                                           --- (3)-2 OUTER CIRCLE ---
1393             IF( IPATH .EQ. 1 ) THEN 
1394 C                                              --- (3)-2-1 IPATH=1 ---
1395               IF( KIJQ .GE. 1.D0 ) THEN 
1396                 OVRLAP = .FALSE.
1397                 GOTO 1000
1398               ELSE
1399                 RIJMN = RIJMNFUN( EEXI, EEYI, EEZI, EEXJ, EEYJ, EEZJ,
1400      &                  EEXIS, EEYIS, EEZIS, EEXJS, EEYJS, EEZJS,
1401      &                  KKIS, KKJS, KKIJS, RRXIJ, RRYIJ, RRZIJ, D )
1402                 IF( RIJMN .GE. 1.D0 ) THEN 
1403                   OVRLAP = .FALSE.
1404                   GOTO 1000
1405                 ELSE
1406                   OVRLAP = .TRUE.
1407                   RETURN
1408                 END IF
1409               END IF 
1410             ELSE IF( IPATH .EQ. 2 ) THEN 
1411 C                                                --- (3)-2-2 IPATH=2 --
1412               RIJMN = RIJMNFUN( EEXI, EEYI, EEZI, EEXJ, EEYJ, EEZJ,
1413      &                EEXIS, EEYIS, EEZIS, EEXJS, EEYJS, EEZJS,
1414      &                KKIS, KKJS, KKIJS, RRXIJ, RRYIJ, RRZIJ, D )
1415               IF( RIJMN .GE. 1.D0 ) THEN 
1416                 OVRLAP = .FALSE.
1417                 GOTO 1000
1418               ELSE

• No overlap in the case of 3.1.1 in
Section 4.2.3.  

• No overlap in the case of 3.1.1 in
Section 4.2.3.  

• No overlap in the case of 3.1.2.b.1
in Section 4.2.3. 

• An overlap in the case of 3.1.2.b.2
in Section 4.2.3. 

• No overlap in the case of 3.2.2.a in 
Section 4.2.3. 

• kQ
i(j) in Eq. (4.27) and rQ

i(j) in 
Eq. (4.28) are evaluated. 
IPATH=1 means kj

s ≥d/2.

• kQ
i(j) in Eq. (4.29) and rQ

i(j) in 
Eq. (4.30) are evaluated. 
IPATH=2 means kj

s <d/2.
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1419                 OVRLAP = .TRUE.
1420                 RETURN
1421               END IF
1422 C
1423             END IF
1424 C
1425           END IF
1426 C
1427 C
1428         END IF
1429 C
1430 C
1431  1000 CONTINUE
1432                                                                 RETURN 
1433                                                                 END
1434 C#### FUN RIJMNFUN ####
1435       DOUBLE PRECISION FUNCTION RIJMNFUN( EXI, EYI, EZI, EXJ,EYJ,EZJ, 
1436      &                           EXIS, EYIS, EZIS, EXJS, EYJS, EZJS, 
1437      &                           KIS, KJS, KIJS, RXIJ, RYIJ, RZIJ, D )
1438 C
1439       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
1440 C
1441       PARAMETER( PI=3.141592653589793D0 )
1442 C
1443       REAL*8    KIS, KJS, KIJS
1444 C
1445       REAL*8    X0 , Y0 , Z0 , X1 , Y1 , Z1 , X2 , Y2 , Z2 
1446       REAL*8    D02 , CS , SN , BETAN1 , BETAN2  , BETAN , DBETAN
1447       REAL*8    FBETAN , FPBETAN , GAB , GABMN
1448       REAL*8    DX1DB  , DY1DB   , DX2DB , DY2DB 
1449       REAL*8    CX0X1  , CX0X1SQ , CY0CY1

• An overlap in the case of 3.2.2.b in
Section 4.2.3.

1450       REAL*8    SNBETA , CSBETA  , CR2 , CRSQ  , CHCK0 , DDEG 
1451       REAL*8    DELX , DELY , DELZ , C0 , C1 , C2
1452       INTEGER   ICTR
1453 C
1454       DDEG  = 10.D0 * (PI/180.D0)
1455       D02   = D/2.D0 
1456       CS    = EXI*EXJ + EYI*EYJ + EZI*EZJ 
1457       SN    = DSQRT( 1.D0 - CS**2 )
1458       X0    = KIJS
1459       CHCK0 = EXIS*EXJ + EYIS*EYJ + EZIS*EZJ
1460       IF( CHCK0 .LE. 0.D0 ) THEN 
1461         DELX =  EXIS 
1462         DELY =  EYIS 
1463         DELZ =  EZIS 
1464       ELSE
1465         DELX = -EXIS 
1466         DELY = -EYIS 
1467         DELZ = -EZIS 
1468       END IF
1469       Y0 = -( RXIJ*DELX + RYIJ*DELY + RZIJ*DELZ ) 
1470       Z0 = KJS*DABS( EXJS*EXI + EYJS*EYI + EZJS*EZI ) 
1471 C 
1472 C                                  --- FOR THE CASE OF COS(BETA)=0 ---
1473 C                                  -   VALID ONLY FOR OUTER CIRCLE   -
1474       IF( DABS(X0) .LE. 0.05D0 ) THEN
1475         X2 =  X0
1476         Y2 =  Y0 - D02*CS
1477         Z2 =  Z0 - D02*SN 
1478         X1 =  0.D0
1479         Z1 =  0.D0 
1480         IF( Y2 .GE. 0.D0 ) THEN 
1481           Y1 =  D02
1482         ELSE 
1483           Y1 = -D02
1484         END IF
1485         GAB = (X2-X1)**2 + (Y2-Y1)**2 + (Z2-Z1)**2 
1486         RIJMNFUN = DSQRT( GAB )
1487         RETURN 
1488       END IF
1489 C 
1490       X2     = X0 / 2.D0
1491       C1     = 1.0D0
1492       C2     =  -X0/D 
1493       IF( DABS(C2) .GE. 1.D0 )  C2 = DSIGN( C1, C2 ) 

• CS=cos(θ0) and SN=sin(θ0).
• x0=(x0, y0, z0) is evaluated.

• A function subprogram for 
evaluating rij

(min) by means of 
Newton’s method.

• The case of x0=(0, y0, z0) and 
|rQ

i(j)–ri|≥d/2 enables us to 
conduct simple treatment.

• A starting value of x2 is given. It 
is first assumed that X2=X0/2, 
yielding a starting value of β= 
BETAN. 
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1494       BETAN1 = DACOS( C2 )
1495       BETAN2 = 2.D0*PI - BETAN1
1496       C1     = DSIN(BETAN1)
1497       C2     = DSIN(BETAN2)
1498       IF( C1 .GE. C2 ) THEN 
1499         BETAN = BETAN2
1500       ELSE 
1501         BETAN = BETAN1
1502       END IF 
1503 C
1504 C     -------------------------------- START OF NEWTON PROCEDURE -----
1505 C
1506       GABMN  = 1.D5
1507       ICTR   = 0
1508    10 ICTR   = ICTR + 1
1509       SNBETA = DSIN( BETAN ) 
1510       CSBETA = DCOS( BETAN )
1511       X2     = D02*CSBETA    + X0
1512       Y2     = D02*SNBETA*CS + Y0

• The minimum value of g(α,β) is
saved in GABMN.   

• x2=(X2,Y2,Z2) is calculated using BETAN
which is an expected value of the solution β.

1513       Z2     = D02*SNBETA*SN + Z0 
1514 C
1515       CR2    = X2**2 + Y2**2
1516       CRSQ   = DSQRT( CR2 ) 
1517       X1     = (X2/CRSQ)*D02
1518       Y1     = (Y2/CRSQ)*D02
1519       Z1     = 0.D0
1520       C1     = (X2-X1)**2 + (Y2-Y1)**2 + (Z2-Z1)**2 
1521       IF( C1 .LT. GABMN ) GABMN = C1 
1522 C
1523       CX0X1   = X0 - X1 
1524       CX0X1SQ = CX0X1**2
1525       CY0Y1   = Y0 - Y1 
1526       FBETAN  = CX0X1*( CX0X1*SNBETA/CSBETA - CS*CY0Y1 - SN*Z0 )
1527 C
1528       DX2DB   = -D02*SNBETA
1529       DY2DB   =  D02*CSBETA*CS
1530       C0      =  X2*DX2DB + Y2*DY2DB
1531       C1      =  CRSQ/CR2 
1532       C2      =  C0/(CRSQ*CR2)
1533       DX1DB   =  ( C1*DX2DB - C2*X2 )*D02
1534       DY1DB   =  ( C1*DY2DB - C2*Y2 )*D02
1535       CY0Y1   =  Y0 - Y1 
1536       FPBETAN =  CX0X1SQ/CSBETA**2 - CS*( -DY1DB*CX0X1 + DX1DB*CY0Y1 )
1537      &                             - Z0*SN*DX1DB
1538 C
1539       BETAN1 = BETAN - FBETAN/FPBETAN
1540 C                                                    --- JUDGEMENT ---
1541       DBETAN = DABS(BETAN1-BETAN)
1542       IF( DBETAN .GT. 0.01D0 ) THEN 
1543         IF( DBETAN .GT. DDEG ) THEN
1544           BETAN = DSIGN( DDEG, (BETAN1-BETAN) ) + BETAN
1545         ELSE 
1546           BETAN = BETAN1
1547         ENDIF 
1548         IF( ICTR .GT. 10 )  GOTO 900
1549         GOTO 10 
1550       END IF 
1551 C
1552   900 GAB = (X2-X1)**2 + (Y2-Y1)**2 + (Z2-Z1)**2 
1553       IF( GAB .GT. GABMN )  GAB = GABMN 
1554       RIJMNFUN = DSQRT( GAB ) 
1555                                                                 RETURN
1556                                                                 END
1557 C*********************************************************************
1558 C   THIS SUBROUTINE IS FOR GENERATING UNIFORM RANDOM NUMBERS         *
1559 C   (SINGLE PRECISION) FOR 32-BIT COMPUTER.                          *
1560 C      N      : NUMBER OF RANDOM NUMBERS TO GENERATE                 *
1561 C      IX     : INITIAL VALUE OF RANDOM NUMBERS (POSITIVE INTEGER)   *
1562 C             : LAST GENERATED VALUE IS KEPT                         *
1563 C      X(N)   : GENERATED RANDOM NUMBERS (0<X(N)<1)                  *
1564 C*********************************************************************
1565 C**** SUB RANCAL ****
1566       SUBROUTINE RANCAL( N, IX, X )
1567 C
1568       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
1569 C

• (x0–x1)
2f(βn)=FBETAN is evaluated. 

• ∂x2/∂β=DX2DB and ∂y2/∂β=DY2DB.
• ∂x1/∂β=DX1DB and ∂y1/∂β=DY1DB.

• (x0–x1)
2f ′(βn)=FPBETAN is evaluated. 

• βx+1=BETAN1 is evaluated from
Eq. (4.41).

• A subroutine for generating a uniform
random number sequence.

• The start of the iteration 
procedure of Newton’s method.

• x1=(X1,Y1,Z1) is calculated from 
procedure 3 of Newton’s method in 
Section 4.2.3.
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1570       REAL      X(N)
1571       INTEGER   INTEGMX, INTEGST, INTEG
1572 C
1573       DATA INTEGMX/2147483647/
1574       DATA INTEGST,INTEG/584287,48828125/
1575 C

• This is for a 32-bit CPU based on the
expression of two’s complement.   

1576       AINTEGMX = REAL( INTEGMX )
1577 C
1578       IF ( IX.LT.0 ) STOP
1579       IF ( IX.EQ.0 ) IX = INTEGST
1580       DO 30 I=1,N
1581          IX = IX*INTEG
1582          IF (IX .LT. 0 )  IX   = (IX+INTEGMX)+1
1583          X(I) = REAL(IX)/AINTEGMX
1584    30 CONTINUE
1585       RETURN
1586       END
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5 Practice of Brownian Dynamics
Simulations

In the previous chapters, we have shown how the MD method and MC method are

applied in a practical simulation. In the present and successive chapters, we follow

the same approach and demonstrate the microsimulation methods required for the

application of the Brownian Dynamics (BD) method, the DPD method, and the lat-

tice Boltzmann method. These further methods are very useful as simulation tools

for a colloidal dispersion or a suspension composed of dispersed particles. These

simulation methods have many applications in the pharmaceutical field, as well as

in science and engineering.

The exercise in the present chapter is for a BD simulation to discuss how

Lennard-Jones particles sediment in the gravitational field for cases when the

Brownian motion is expected to be significant. This example of a physical phenom-

enon becomes attractive as a research subject when the particle aggregation is

strongly related to the sedimentation. The sample simulation program is written in

the C programming language.

5.1 Sedimentation Phenomena of Lennard-Jones Particles

We consider a thermodynamic equilibrium state of N Brownian particles with mass

m dispersed in a base liquid contained in a rectangular parallelepiped box. For sim-

plification, the Brownian particles are assumed to be the Lennard-Jones particle,

where the particle�particle interactions can be expressed as a Lennard-Jones poten-

tial. The objective of the present practice is to discuss how the Brownian particles

in thermodynamic equilibrium sediment after the gravitational field is switched on.

The system temperature, gravitational force, and particle�particle interactions are

expected to significantly influence the sedimentation phenomenon.

5.2 Specification of Problems in Equations

Since the particles sediment under the effect of the Brownian motion in a gravitational

field, we are required to use the BD method, explained in Section 1.3, in order to sim-

ulate this phenomenon. In contrast to a magnetic particle system in which the particle

rotation is restricted by an external magnetic field, the Lennard-Jones particles are

only influenced by the isotropic force due to the Lennard-Jones potential. We
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therefore only need to treat the translational motion of the Brownian particles. The

particles hydrodynamically interact through their ambient fluid, but it is difficult to

take into account these multibody hydrodynamic interactions, even for the relatively

simple spherical particle system. It is still more so for a nonspherical particle system,

such as a rod-like or disk-like particle suspension. The difficulty of treating multibody

hydrodynamic interactions forces us to take into account only the friction term as a

first approximation, even in the case of a nondilute suspension. In the present exercise,

we therefore take into account the nonhydrodynamic interaction but neglect the multi-

body hydrodynamic interaction among the particles.

If the position vector of an arbitrary particle i is denoted by ri, the velocity by

vi, the nonhydrodynamic force by fi, and the random force by fi
B, then the equation

of motion of particle i is expressed as [1,4]

m
d2ri

dt2
5 f i 2 ξvi 1 fBi ð5:1Þ

in which ξ is the friction coefficient, expressed as ξ5 3πηd (η is the liquid viscos-

ity) under the assumption that the Lennard-Jones particles are spherical with diame-

ter d. The random force fi
B5 (fix

B, fiy
B, fiz

B) must satisfy the following stochastic

properties:

f Bix ðtÞ
� �

5 f Biy ðtÞ
D E

5 f Biz ðtÞ
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5 0 ð5:2Þ

f Bix ðtÞ
� �2D E
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5 2ξkTδðt2 t0Þ ð5:3Þ

The force fij acting on particle i by particle j due to the Lennard-Jones potential

is expressed as

f ij 5 24ε 2
d

rij

� 	12
2

d

rij

� 	6
( )

rij

r2ij
ð5:4Þ

in which rij is the position vector of particle i relative to particle j, expressed as

rij5 ri2 rj, and rij is the magnitude of rij, that is, rij5 jrijj. The total force acting on

particle i, fi, can be obtained by summing fij from the contributions of all the ambient

particles.

The method of nondimensionalizing quantities is described in the next section.

5.3 Brownian Dynamics Algorithm

As explained in Section 1.3, the Ermak�McCammon method [24] enables us to

transform the equation of motion in Eq. (5.1) into Eq. (1.59). We here show the non-

dimensional expressions in the following. It may be inappropriate to use the
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representative values usually employed for the Lennard-Jones system, because we

consider a dispersion of fine particles—which are regarded as a Lennard-Jones parti-

cle performing Brownian motion—and not a pure molecular system. We therefore

use the following representative values: the particle diameter d for distances; mg/

(3πηd) for the velocities, which is obtained by equating the friction force to the grav-
itational force; and the gravitational force mg for forces. With these representative

values, the equation of an arbitrary particle i is written in nondimensional form as

r�i ðt� 1 h�Þ5 r�i ðt�Þ1 h�f�i ðt�Þ1ΔrB�i ð5:5Þ
in which the components ðΔxB�i ;ΔyB�i ;ΔzB�i Þ of the random displacement ΔrB�i
must satisfy the following stochastic characteristics:
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5 2RBh
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in which RB is a nondimensional parameter representing the strength of the random

force relative to the gravitational force, expressed as RB5 kT/(mgd). The gravita-

tional force fi
(g) acting on particle i and the force fij

(LJ) due to the Lennard-Jones

interaction are expressed in nondimensional form as

f
ðgÞ�
i 5 ĝ ð5:8Þ
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in which RLJ is a nondimensional parameter presenting the strength of the force due

to the Lennard-Jones potential relative to the gravitational force, expressed as

RLJ5 ε/(mgd), and ĝ is the unit vector, denoting the gravitational direction. The con-

sideration of these forces provides the nondimensional force fi
* acting on particle i as

f�i 5 f
ðgÞ�
i 1

X
jð6¼iÞ

f
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Since the particles sediment in the gravitational field direction, assumed to be the

negative direction of the y-axis, the periodic boundary condition is not applicable

at the sedimentation surface, but it is applicable to the boundary surfaces normal to

the x- and z-directions. On the sedimentation surface, the elastic reflection condi-

tion is here employed for the boundary in order to ensure that a particle cannot

cross the boundary surface. In the concrete treatment of a reflecting particle, the

velocity component parallel to the boundary surface is unchanged, but the velocity

component normal to the boundary surface is reversed in direction.
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The main procedure of the BD simulation is summarized as follows. First,

we set the number of particles N, the size of simulation region (Lx
*,Ly

*,Lz
*), and the

volumetric fraction φV. Then, the assignment of the initial position of the particles

enables us to begin the main loop in a simulation program. The particles are simu-

lated according to the basic equations shown in Eq. (5.5) together with generating

the random displacements of the particles based on the stochastic properties in

Eqs. (5.6) and (5.7); these random displacements are sampled from the normal dis-

tribution specified by Eqs. (5.6) and (5.7). In order that we may discuss quantita-

tively the particle sedimentation phenomenon, the time variation in the local

densities is evaluated for each thin-sliced volume along the y-direction. The pair

correlation function is usually employed for an accurate quantitative discussion of

the internal particle structure of a system, but we here focus only on the method of

snapshots and employ the local number density.

5.4 Parameters for Simulations

In conducting the following BD simulations, the number of particles is taken as

N5 108, and the volumetric fraction is taken as φV5 0.1 to give a number density

n*5 6φV/π. The face-centered cubic lattice system shown in Figure 2.2B is

employed as an initial configuration of particles, yielding the lattice constant

a*5 (4/n*)1/3 and Q5 (N/4)1/3; the replication of the unit cell (Q2 1) times in each

direction generates the particle configuration for the whole simulation region. The

dimensions of the region are therefore (Lx
*,Ly

*,Lz
*)5 (Qa*,Qa*,Qa*). An appropriate

time interval h* has to be chosen with sufficient consideration. Setting an unreason-

ably large time interval is likely to induce a serious particle overlap problem, which

will result in the instability of the system. Choice of the appropriate time interval is

strongly dependent on the nondimensional parameters RLJ and RB. The larger these

quantities, the smaller the time interval (i.e., h*{1). In the present demonstration,

h*5 0.00005 was adopted for the case of RLJ5RB5 1. The simulations were car-

ried out for various cases of RLJ and RB, where we have used RLJ5 1 and 5 and

also RB5 0.1, 1, and 5.

5.5 Results of Simulations

Figures 5.1�5.3 show the snapshots of the Lennard-Jones particles in the sedimenta-

tion process under the influence of the gravitational field, which were obtained by con-

ducting the sample simulation program explained in the next section. The snapshots in

Figures 5.1 and 5.2 were obtained for different cases of RB after the particle distribu-

tion attains to a steady state (in the macroscopical meaning). Those in Figure 5.3 are

from the visualization of the sedimentation process with advancing time.

Figure 5.1A clearly shows that the particles have sedimented on the base surface

area under the gravitational field. This is because the value of the nondimensional

parameter RB5 0.1 implies a significant influence of the gravitational force over

the random Brownian force. On the other hand, in the case of RLJ5 5 in
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 Figure 5.2A, the Lennard-Jones interactions significantly affect the sedimentation

process, exhibiting characteristic aggregates formed differently from those in

Figure 5.1A. For the case of the influence of the random force being equal to

that of the gravitational force in Figure 5.2B, the particles have almost

completely sedimented on the base area, but the internal structure seems to be

considerably different from that found in Figure 5.1A. This is an example where

the use of quantitative results from the pair correlation function would be

required for a deeper discussion. In the case of RB5 5 shown in Figures 5.1

and 5.2, the particles actively exhibit the Brownian motion without sedimenting

on the base surface area; however, the particles tend to aggregate to form clus-

ters with increasing values of RLJ even in the case of RB5 5. From these snap-

shots, we may conclude that the gravitational force mainly governs the

sedimentation process, and the Lennard-Jones interactions between particles

mainly determine the internal structures of the aggregates formed during the

sedimentation process. As already pointed out, a higher-level academic study

(A)

(C)

(B)

Figure 5.1 Snapshots in a steady state for RLJ5 1: (A) RB5 0.1, (B) RB5 1, and (C) RB5 5.
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 would require quantitative results, such as the pair correlation function, in addi-

tion to the qualitative results visualized here.

Figure 5.3 shows how the particles sediment with time, that is, the particle sedi-

mentation process for the case of RLJ5 1 and RB5 0.1: Figures 5.3A�C are for

nondimensional time t*5 1, 4, and 8, respectively. In this case of RB5 0.1, the

gravitational force is much more dominant than the random force (i.e., the

Brownian motion), so that the particles sediment, attain at the bottom surface, and

form layer structures from the base with time.

Figure 5.4 shows the results of the local number density of particles n* at the posi-

tion y* of each sliced layer taken from the base surface in the opposite direction to the

gravitational field. Note that the nondimensional time is used, and the data or subaver-

aged values were calculated at every certain number of time steps. This

figure demonstrates quantitative characteristics of the sedimentation process with

time, which clearly suggests the layered structures of sedimented particles indicated

previously.

(A)

(C)

(B)

Figure 5.2 Snapshots in a steady state for RLJ5 5: (A) RB5 0.1, (B) RB5 1, and (C) RB5 5.
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 5.6 Simulation Program

We show a sample simulation program for the example of the present sedimenta-

tion phenomenon in the following. The program is written in the C language.

To aid the reader’s understanding, the important variables used in the program

are shown as follows:

RX[i],RY[i],RZ[i] : (x,y,z) components of the position vector r�i of particle i
FX[i],FY[i],FZ[i] : (x,y,z) components of the force f�i acting on particle i

RXB[i],RYB[i],
RZB[i]

: (x,y,z) components of the random displacements ΔrB�i of

particle i

XL,YL,ZL : Side lengths of the simulation box in the (x,y,z) directions

h : Time interval h*

ndens0 : Initial number density of particles

phaiv0 : Initial volumetric fraction of particles

(A)

(C)

(B)

Figure 5.3 Time change of aggregate structures for RLJ5 1 and RB5 0.1: (A) t*5 1, (B)

t*5 4, and (C) t*5 8.
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RLJ,RB : Nondimensional parameters RLJ and RB

n : Number of particles

RAN[j] : Uniform random numbers ranging 0B1(j51BNRANMX)
NRAN : Number of used random numbers

Note that the line numbers are added for convenience and are grammatically

unnecessary.

In the following program, several explanatory comments have been added to the

important features to assist the reader’s understanding.

0001 /*--------------------------------------------------------------------*/
0002 /*                            bdsedim1.c                              */
0003 /*                                                                    */
0004 /*     ----------------------------------------------------------     */
0005 /*     -  Brownian dynamics simulation of the sedimentation of  -     */
0006 /*     -  spherical particles in gravity field.                 -     */
0007 /*     ----------------------------------------------------------     */
0008 /*                                                                    */
0009 /*        np1    = fopen("@eaa1.data",  "w"); parameters              */
0010 /*        np2    = fopen("eaa11.data",  "w"); parameters              */
0011 /*        np[1]  = fopen("eaa001.data", "w"); particle position       */
0012 /*        np[2]  = fopen("eaa011.data", "w"); particle position       */
0013 /*        np[3]  = fopen("eaa021.data", "w"); particle position       */
0014 /*        np[4]  = fopen("eaa031.data", "w"); particle position       */
0015 /*        np[5]  = fopen("eaa041.data", "w"); particle position       */
0016 /*        np[6]  = fopen("eaa051.data", "w"); particle position       */
0017 /*        np[7]  = fopen("eaa061.data", "w"); particle position       */
0018 /*        np[8]  = fopen("eaa071.data", "w"); particle position       */
0019 /*        np[9]  = fopen("eaa081.data", "w"); particle position       */
0020 /*        np[10] = fopen("eaa091.data", "w"); particle position       */
0021 /*                                                                    */
0022 /*        1. Lennard-Jones particle system.                           */
0023 /*                                                                    */
0024 /*                                                                    */
0025 /*                                       Ver.2 by A.Satoh , '04 3/10  */
0026 /*--------------------------------------------------------------------*/
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Figure 5.4 Time change in the local number density distribution for RLJ5 1 and RB5 0.1.

180 Introduction to Practice of Molecular Simulation



 

0064     double  cndns[NN] ;
0065     double  dtsmpl ; 
0066     FILE    *fopen(), *np[11], *np1, *np2 ; 
0067
0068     double  rcoff , rcoff2 , rxi , ryi , rzi ;
0069     int     ntime , ntimemx , ntimemx1 , nsmpl , inp , ngraph ;
0070     int     i, j , nranchk ; 
0071
0072                np1    = fopen("@eaa1.data",  "w"); 
0073                np2    = fopen("eaa11.data",  "w"); 
0074                np[1]  = fopen("eaa001.data", "w"); 
0075                np[2]  = fopen("eaa011.data", "w"); 
0076                np[3]  = fopen("eaa021.data", "w"); 
0077                np[4]  = fopen("eaa031.data", "w"); 
0078                np[5]  = fopen("eaa041.data", "w"); 
0079                np[6]  = fopen("eaa051.data", "w"); 
0080                np[7]  = fopen("eaa061.data", "w"); 
0081                np[8]  = fopen("eaa071.data", "w"); 
0082                np[9]  = fopen("eaa081.data", "w"); 
0083                np[10] = fopen("eaa091.data", "w"); 
0084
0085                                                /*--- parameter (1) ---*/
0086             /*++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
0087             /*  n=32, 108, 256, 500, 864, 1372, 2048 must be chosen.  */
0088             /*++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
0089     n      = 108   ;
0090     rcoff  = 2.5   ;
0091     h      = 0.00005 ;
0092     rcoff2 = rcoff*rcoff ;
0093                                                /*--- parameter (2) ---*/
0094     RB     = 1.0   ;
0095     RLJ    = 1.0   ;  RG     = 1.0   ;
0096     phaiv0 = 0.1   ;
0097     ndens0 = phaiv0*6./PI ;
0098     nychk  = 40    ;
0099                                                /*--- parameter (3) ---*/
0100     ntimemx = 200000 ;
0101     dnsmpl  = 200    ;
0102     dtsmpl  = (double)dnsmpl*h ;
0103     ntimemx1= ntimemx/10 ;
0104     ngraph  = ntimemx/10 ; 
0105     inp     = 0 ; 
0106                                                /*--- parameter (4) ---*/
0107     IX      = 0 ;

• The particle number N=108, cutoff distance
r*coff=2.5, and time interval h*=0.00005.  

0027 /*                                                                    */
0028 /*    RX[i],RY[i],RZ[i]    : particle position                        */
0029 /*    RXB[i],RYB[i],RZB[i] : random displace. due to Brownian motion  */
0030 /*    FX[i],FY[i],FZ[i]    : forces acting on particle i              */
0031 /*    XL, YL, ZL  : size of simulation box along each axis            */
0032 /*    h           : time interval                                     */
0033 /*    ndens0      : number density                                    */
0034 /*    phaiv0      : volumetric fraction                               */
0035 /*    RB, RG, RLJ : nondimensional parameters                         */
0036 /*    ychk[*]     : is used to calculate number density distribution  */
0037 /*    dnsmpl,dtsmpl : data is sub-averaged using dnsmpl-data          */
0038 /*                  : through dtsmpl-time                             */
0039 /*    ndens[*][+] : number density distribution                       */
0040 /*    ntimemx     : maximum number of time step                       */
0041 /*                                                                    */
0042 /*              0<RX[i]<XL  ,  0<RY[i]<YL  ,  0<RZ[i]<ZL              */
0043 /*--------------------------------------------------------------------*/
0044 #include <stdio.h>
0045 #include <math.h> 
0046 #define  PI      3.141592653589793 
0047 #define  NN      501
0048 #define  NS      2001
0049 #define  NRANMX  2001
0050     double  RX[NN] , RY[NN] , RZ[NN]  ; 
0051     double  RXB[NN], RYB[NN], RZB[NN] ; 
0052     double  FX[NN] , FY[NN] , FZ[NN]  ; 
0053     double  XL, YL, ZL  ;
0054     double  RB, RG, RLJ ;
0055     float   RAN[NRANMX] ;
0056     int     NRAN, IX ;
0057
0058 /*-------------------------------------------------- main function ---*/
0059 main()
0060   { 
0061     int     n , nychk , dnsmpl ;
0062     double  h , ndens0, phaiv0 ;
0063     double  ndens[NN][NS], ychk[NN] ;

• The given values and results are written 
out in @eaa1.data and eaa11.data.
• @eaa1 is for confirming the values set 
for starting a simulation, and eaa11 is for 
the postprocessing analysis.

• The total number of time steps is 200,000 and data are
sampled at every 200 time steps. The equilibration 
procedure is conducted until ntimemx1 steps. The 
particle positions are written out at every ngraph steps for 
the postprocessing analysis.

• The particle position data are 
written out in eaa001–eaa091 
for the postprocessing analysis.

• RB=1, RLJ=1, volumetric fraction φV=0.1, and 
number density n*=6φV/π. The simulation box is 
sliced into nychk equal pieces in the y-direction.
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0127     fprintf(np1,"                                                 \n") ;
0128     fprintf(np1,"        +++ Lennard-Jones particles system +++   \n") ;
0129     fprintf(np1,"n=%4d ndens=%8.3f phaiv0=%6.3f rcoff=%6.3f h=%10.8f\n",
0130                  n, ndens0, phaiv0, rcoff, h ) ;
0131     fprintf(np1,"XL=%6.3f YL=%6.3f ZL=%6.3f\n", XL, YL, ZL) ;
0132     fprintf(np1,"RB=%12.4e  RG=%12.4e  RLJ=%12.4e\n", RB, RG, RLJ) ; 
0133     fprintf(np1,"ntimemx=%8d  nychk=%4d  dnsmple=%8d  dtsmpl=%12.4e\n",
0134                  ntimemx, nychk, dnsmpl, dtsmpl); 
0135     fprintf(np1,"-------------------------------------------------\n"); 
0136
0137                                               /*--- initialization ---*/
0138     for( i=1 ; i <= nychk ; i++ ) {
0139         cndns[i] = 0. ;
0140     } 
0141     nsmpl = 0 ;
0142
0143     /*----------------------------------------------------------------*/
0144     /*----------------------    equilibration   ----------------------*/
0145     /*----------------------------------------------------------------*/
0146
0147     for ( ntime = 1 ; ntime <= ntimemx1 ; ntime++ ) {
0148
0149       for ( i=1 ; i<=n ; i++ ) {
0150
0151         rxi = RX[i] + h*FX[i] + RXB[i] ; 
0152         ryi = RY[i] + h*FY[i] + RYB[i] ; 
0153         rzi = RZ[i] + h*FZ[i] + RZB[i] ; 
0154         rxi += - rint( rxi/XL - 0.5 )*XL ;
0155         rzi += - rint( rzi/ZL - 0.5 )*ZL ;
0156         if( ryi < 0. ) ryi = - ryi ;
0157         if( ryi > YL ) ryi = YL - ( ryi - YL ) ;
0158
0159         RX[i] = rxi ;
0160         RY[i] = ryi ;
0161         RZ[i] = rzi ;
0162       }
0163
0164       forcecal( n, rcoff, rcoff2 ) ;
0165       randisp( n , h ) ;
0166                                 /*--- check of random numbers used ---*/
0167       if ( NRAN >= nranchk ) {
0168           rancal() ; NRAN = 1 ; 
0169       }
0170     } 
0171
0172     /*----------------------------------------------------------------*/
0173     /*------------------    start of main loop    --------------------*/
0174     /*----------------------------------------------------------------*/
0175
0176     for ( ntime = 1 ; ntime <= ntimemx ; ntime++ ) {
0177
0178       for ( i=1 ; i<=n ; i++ ) {
0179
0180         FY[i] = FY[i] - RG ;
0181
0182         rxi = RX[i] + h*FX[i] + RXB[i] ; 
0183         ryi = RY[i] + h*FY[i] + RYB[i] ; 
0184         rzi = RZ[i] + h*FZ[i] + RZB[i] ; 
0185         rxi += - rint( rxi/XL - 0.5 )*XL ;
0186         rzi += - rint( rzi/ZL - 0.5 )*ZL ;
0187         if( ryi < 0. ) ryi = - ryi ;
0188         if( ryi > YL ) ryi = YL - ( ryi - YL ) ;

• The variables are initialized for saving the
local number densities afterward.

• The equilibration procedure
is conducted below.

0108     rancal() ;
0109     NRAN    = 1 ;
0110     nranchk = NRANMX - 6*n ;
0111
0112     /*----------------------------------------------------------------*/
0113     /*-----------------    initial configuration    ------------------*/
0114     /*----------------------------------------------------------------*/
0115                                        /*--- set initial positions ---*/
0116     iniposit( n, ndens0 ) ; YL = XL ; ZL = XL ;
0117                                  /*--- set grid for num.dens.dist. ---*/
0118     gridcal( nychk, ychk ) ;
0119                                             /*--- calculate energy ---*/
0120     forcecal( n, rcoff, rcoff2 ) ;
0121                                      /*--- cal random displacement ---*/
0122     randisp( n , h ) ;
0123
0124                                          /*--- print out constants ---*/
0125     fprintf(np1,"-------------------------------------------------\n") ;
0126     fprintf(np1,"              Brownian dynamics method           \n") ;

• A sequence of uniform random numbers is prepared in 
advance. When necessary, random numbers are taken 
out from the variable RAN[*].

• The particle positions at the next time step 
are calculated from Eq. (5.5).
• The periodic BC is used for the x- and 
z-directions.

• The elastic collision model at the 
boundary surface is used for the 
y-direction.

• The forces acting on particles are calculated in the 
function forcecal. The random displacements are 
generated in the function randisp.

• The number of the used random numbers is 
checked. If over nranchk, a uniform random number 
sequence is renewed.

• The particle positions at the next time step 
are evaluated according to Eq. (5.5).
• The periodic BC is used for the x- and 
z-directions.
• The elastic collision model at the boundary 
surface is used for the y-direction.
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0190         RX[i] = rxi ;
0191         RY[i] = ryi ;
0192         RZ[i] = rzi ;
0193       }
0194                                                    /*--- cal force ---*/
0195       forcecal( n , rcoff, rcoff2 ) ;
0196                                      /*--- cal random displacement ---*/
0197       randisp( n , h ) ;
0198
0199       /*--------------------------------------------------------------*/
0200
0201                                  /*--- cal distri. of num. density ---*/
0202       ndnscal( n, nychk, ychk, cndns ) ;
0203
0204       if( (ntime % dnsmpl) == 0 ) {
0205         nsmpl += 1 ;
0206         for ( j=1 ; j<=nychk ; j++ ) {
0207           cndns[j] /= (double)dnsmpl ;
0208           ndens[j][nsmpl] = cndns[j] / (XL*ZL*ychk[1] ) ;
0209           cndns[j] = 0. ;
0210         }
0211       }
0212                                /*--- data output for graphics (1) ---*/
0213       if( (ntime % ngraph) == 0 ) {
0214         inp += 1 ;
0215           fprintf(np[inp],"%6d%10.3f%10.3f%10.3f\n", n, XL, YL, ZL ) ;
0216         for (i=1 ; i<=n ; i++ ) { 
0217           fprintf(np[inp],"%18.10e%18.10e%18.10e\n",
0218                                                RX[i], RY[i], RZ[i] ) ;
0219         }
0220         fclose(np[inp]) ;
0221       }
0222                                /*--- check of random numbers used ---*/
0223       if ( NRAN >= nranchk ) {
0224         rancal() ; NRAN = 1 ;
0225       } 
0226     }
0227
0228     /*---------------------------------------------------------------*/
0229     /*---------------------   end of main loop   --------------------*/
0230     /*---------------------------------------------------------------*/
0231
0232                                                   /*--- print out ---*/
0233     fprintf(np1,"nsmpl=%8d dnsmpl=%8d dtsmpl=%12.4e\n", 
0234                                          nsmpl, dnsmpl, dtsmpl) ; 
0235     for ( i= nsmpl/10 ; i<= nsmpl ; i += nsmpl/10 ) { 
0236       fprintf(np1,"i=%8d time=%12.4e\n", 
0237                                     i, dtsmpl*(double)i - dtsmpl/2. ) ;
0238       fprintf(np1,"ndens(1), ndens(2), ndens(3),...,ndens(nychk)\n") ;
0239       for ( j=1 ; j<=nychk ; j += 10 ) {
0240         fprintf(np1,
0241           "%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f\n",
0242           ndens[j][i]  , ndens[j+1][i], ndens[j+2][i], ndens[j+3][i],
0243           ndens[j+4][i], ndens[j+5][i], ndens[j+6][i], ndens[j+7][i],
0244           ndens[j+8][i], ndens[j+9][i] ) ;
0245       }
0246     }
0247                                              /*--- data output (2)---*/
0248     fprintf(np2,"%4d%8.5f%8.5f%8.4f%14.6e%14.6e%14.6e%14.6e\n",
0249                           n, ndens0, phaiv0, rcoff, h, XL, YL, ZL ) ; 
0250     fprintf(np2,"%14.6e%14.6e%14.6e\n", RB, RG, RLJ ) ; 
0251     fprintf(np2,"%8d%8d\n", ntimemx, nychk) ;
0252                                              /*--- data output (3)---*/ 

• The forces acting on particles are calculated in the function forcecal.
The random displacements are generated in the function randisp.  

• The particle position data are written out at every ngraph time
steps for the postprocessing analysis. 

0189

0253     fprintf(np2,"%8d%8d%14.6e\n", nsmpl, dnsmpl, dtsmpl) ; 
0254     for ( i= 1 ; i<=nsmpl ; i++ ) {
0255       fprintf(np2,"%8d%14.6e\n", i, dtsmpl*(double)i-dtsmpl/2) ;
0256       for ( j=1 ; j<=nychk ; j += 5 ) {
0257         fprintf(np2,"%12.4e%12.4e%12.4e%12.4e%12.4e\n",
0258             ndens[j][i], ndens[j+1][i], ndens[j+2][i], ndens[j+3][i],
0259             ndens[j+4][i] ) ;
0260       }
0261     }
0262                fclose (np1) ;
0263                fclose (np2) ;
0264   }
0265 /*--------------------------------------------------------------------*/
0266 /*-------------------------- functions -------------------------------*/
0267 /*--------------------------------------------------------------------*/
0268 /*+++ fun iniposit +++*/

• The value divided by the sampling number 
yields its average value, and then the average 
value divided by the volume of one sliced piece 
gives rise to the number density ndens[*]

• The number of the used random numbers is checked. If over 
nranchk, a uniform random number sequence is renewed.
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0269     iniposit( n , ndens )
0270
0271     double  ndens ;
0272     int     n ; 
0273     {
0274       double  rxi, ryi, rzi, rx0, ry0, rz0 , c0 ;
0275       int     q , k , ix , iy , iz , iface ; 
0276                                                        /*--- start ---*/
0277       c0 =  pow( (4./ndens), (1./3.) ) ;
0278       q  =  rint(  pow( (double)(n/4), (1./3.) )  ) ;
0279       XL =  c0*(double)q ;
0280                                        /*--- set initial positions ---*/
0281       k  =  0 ;
0282       for (iface=1 ; iface<=4 ; iface++ ) {
0283
0284         if( iface ==1 ) {
0285           rx0 = 0.0001 ; ry0 = 0.0001 ; rz0 = 0.0001 ;
0286         } else if( iface == 2 ) {
0287           rx0 = c0/2.  ; ry0 = c0/2.  ; rz0 = 0.0001 ;
0288         } else if( iface == 3 ) {
0289           rx0 = c0/2.  ; ry0 = 0.0001 ; rz0 = c0/2.  ;
0290         } else {
0291           rx0 = 0.0001 ; ry0 = c0/2.  ; rz0 = c0/2.  ;
0292         }
0293
0294         for ( iz=0 ; iz <= q-1 ; iz++ ) {
0295           rzi = (double)iz*c0 + rz0 ;
0296           if( rzi >= XL )  break ;
0297           for ( iy=0 ; iy <= q-1 ; iy++ ) {
0298             ryi = (double)iy*c0 + ry0 ;
0299             if( ryi >= XL )  break ;
0300             for ( ix=0 ; ix <= q-1 ; ix++ ) {
0301               rxi = (double)ix*c0 + rx0 ;
0302               if( rxi >= XL )  break ; 
0303
0304               k += 1 ;
0305               RX[k] = rxi ;  RY[k] = ryi ; RZ[k] = rzi ;
0306             }
0307           }
0308         }
0309       }
0310     }
0311 /*+++ fun gridcal +++*/
0312     gridcal( nychk, ychk ) 
0313
0314     int     nychk ;
0315     double  ychk[NN] ;

• A function for setting the initial 
particle positions. 

0316     {
0317       double  c1 ; 
0318       int     i ;
0319
0320       c1 = YL/(double)nychk ;
0321       for ( i=1 ; i<= nychk ; i++ ) {
0322         ychk[i] = c1 * (double)i ; 
0323       }
0324     }
0325 /*+++ ndnscal +++*/
0326     ndnscal( n, nychk, ychk, cndns ) 
0327
0328     int     n , nychk ;
0329     double  ychk[NN], cndns[NN] ;
0330     {
0331       int   i, j ;
0332
0333       for ( i=1 ; i<=n     ; i++ ) {
0334         for ( j=1 ; j<=nychk ; j++ ) {
0335           if( ychk[j] >= RY[i] ) { 
0336             cndns[j] += 1. ;
0337             goto L2 ;
0338           } 
0339         }
0340         cndns[nychk] += 1. ;
0341  L2:    continue ;
0342       }
0343     }
0344 /*+++ forcecal +++*/
0345     forcecal( n, rcoff, rcoff2 )
0346
0347     double  rcoff, rcoff2 ;
0348     int     n ;
0349     { 

• A function for calculating the
forces acting on particles.

• n*=4/a*3, a*=(4/n*)1/3, and 
Q=(N/4)1/3. a* and Q are 
saved in the variables c0 and 
q, respectively.

• The particles are placed in the 
face-centered cubic lattice formation 
shown in Figure 2.2(B).
• The four ways of setting provides this 
initial formation of particles.
• Each particle is moved in parallel by a 
small distance 0.0001 to remove subtle 
situations at outer boundary surfaces.

• In order to evaluate the local 
number densities, the simulation 
box is divided into equal volumes 
sliced in the y-direction.
• The y-axis side length of each 
volume is YL/nychk, in which 
nychk is the number of the sliced 
volumes.

• The number of the particles 
belonging to each volume is 
calculated in order to evaluate the 
local number density.
• The later procedure of dividing 
cndns[*] by the volume, leading to 
the number density of particles.
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0350       double  rxi  , ryi  , rzi  , rxij , ryij , rzij , rijsq ;
0351       double  fxi  , fyi  , fzi  , fxij , fyij , fzij , fij   ;
0352       double  sr2  , sr6  , sr12 ;
0353       int     i , j ;
0354
0355       for ( i=1 ; i<=n ; i++ ) {
0356         FX[i] = 0. ; FY[i] = 0. ; FZ[i] = 0. ;
0357       }
0358
0359       for ( i=1 ; i<=n-1 ; i++ ) {
0360
0361         rxi = RX[i] ; ryi = RY[i] ; rzi = RZ[i] ;
0362         fxi = FX[i] ; fyi = FY[i] ; fzi = FZ[i] ;
0363
0364         for ( j=i+1 ; j<=n ; j++ ) {
0365
0366           rxij  = rxi  - RX[j] ;
0367           rxij += - rint(rxij/XL)*XL ;
0368           if( fabs(rxij) >= rcoff )  goto L10 ;
0369           ryij  = ryi  - RY[j] ;
0370 /*        ryij += - rint(ryij/YL)*YL ;    */
0371           if( fabs(ryij) >= rcoff )  goto L10 ;
0372           rzij  = rzi  - RZ[j] ;
0373           rzij += - rint(rzij/ZL)*ZL ;
0374           if( fabs(rzij) >= rcoff )  goto L10 ;
0375
0376           rijsq= rxij*rxij + ryij*ryij + rzij*rzij ;
0377           if( rijsq >= rcoff2 )      goto L10 ;
0378

• The variables for saving forces are
initialized.   

0379           sr2  = 1./rijsq ; sr6 = sr2*sr2*sr2 ; sr12 = sr6*sr6 ;
0380           fij  = ( 2.*sr12 - sr6 )/rijsq ;
0381           fxij = fij*rxij ;
0382           fyij = fij*ryij ;
0383           fzij = fij*rzij ;
0384           fxi += fxij ;
0385           fyi += fyij ;
0386           fzi += fzij ;
0387
0388           FX[j] += - fxij ;
0389           FY[j] += - fyij ;
0390           FZ[j] += - fzij ;
0391
0392  L10:     continue ;   
0393         }
0394
0395         FX[i] = fxi ;
0396         FY[i] = fyi ;
0397         FZ[i] = fzi ;
0398
0399       }
0400
0401       for( i=1 ; i<= n ; i++ ) {
0402         FX[i] *= RLJ*24. ;
0403         FY[i] *= RLJ*24. ;
0404         FZ[i] *= RLJ*24. ;
0405       }
0406     } 
0407 /*+++ randisp +++*/
0408     randisp( n , h )
0409
0410     int     n ;
0411     double  h ;
0412     {
0413       double  ran1, ran2 ;
0414       int     i , j ;
0415
0416       for ( i=1 ; i<= n ; i++ ) {
0417                                                /*--- random disp x ---*/
0418         NRAN += 1 ;
0419         ran1 = (double)( RAN[NRAN] ) ;
0420         NRAN += 1 ;
0421         ran2 = (double)( RAN[NRAN] ) ;
0422         RXB[i] = pow( -2.*(2.*h*RB)*log(ran1) , 0.5 ) * cos(2.*PI*ran2);
0423                                                /*--- random disp y ---*/
0424         NRAN += 1 ;
0425         ran1 = (double)( RAN[NRAN] ) ;

• The consideration of the action– 
reaction law enables us to calculate 
only the pairs of particles satisfying 
i<j.

• The treatment of the periodic BC.
• If the two particles are separated 
over the cutoff distance r *coff, the 
calculation is unnecessary.

• The forces acting on particles are 
calculated according to Eq. (5.9); 
the constant 24 is multiplied in the 
later procedure.
• The action–reaction law can 
provide the force acting on particle j 
as (−fxij), (−fyij), and (−fzij).

• The random displacements can be 
generated from Eq. (A2.3) with the 
variance of the right-hand side term 
in Eq. (5.7).
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0426         NRAN += 1 ;
0427         ran2 = (double)( RAN[NRAN] ) ;
0428         RYB[i] = pow( -2.*(2.*h*RB)*log(ran1) , 0.5 ) * cos(2.*PI*ran2);
0429                                                /*--- random disp z ---*/
0430         NRAN += 1 ;
0431         ran1 = (double)( RAN[NRAN] ) ;
0432         NRAN += 1 ;
0433         ran2 = (double)( RAN[NRAN] ) ;
0434         RZB[i] = pow( -2.*(2.*h*RB)*log(ran1) , 0.5 ) * cos(2.*PI*ran2);
0435       }
0436     }
0437 /*--- rancal ---*/
0438     rancal()
0439
0440     {
0441       float   aintegmx ;
0442       int     integmx, integst, integ ; 
0443       int     i ; 
0444
0445       integmx = 2147483647 ;
0446       integst = 584287     ;
0447       integ   = 48828125   ; 
0448
0449       aintegmx = (float)integmx ;
0450
0451       if ( IX == 0 ) IX = integst ; 
0452       for (i=1 ; i<NRANMX ; i++ ) {
0453         IX *= integ ; 
0454         if (IX < 0 )  IX = (IX+integmx)+1 ;
0455         RAN[i] = (float)IX/aintegmx ;
0456       } 
0457     }

• A function for generating a uniform
random number sequence.  

• This is for a 32-bit CPU based on the
expression of two’s complement. 
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6 Practice of Dissipative Particle
Dynamics Simulations

In this chapter we consider an alternative microsimulation method called the dissi-

pative particle dynamics (DPD) method,” which is also available for simulating a

particle suspension system. In the DPD method [4�8], the fluid is assumed to be

composed of virtual fluid particles called “dissipative particles,” and therefore the

solution of a flow field can be obtained from the motion of the dissipative particles

in a way similar to the MD method. A significant advantage of this method is that

when it is applied to the simulation of a particle suspension, the multibody hydro-

dynamic interaction is taken into account without introducing a special technique.

This characteristic of the DPD method provides it with a great potential as a simu-

lation tool for particle suspensions; the present method is thus available for various

fields of scientific research, including the pharmaceutical sciences and specialized

engineering fields. The sample simulation program is written in the FORTRAN

programming language.

6.1 Aggregation Phenomena of Magnetic Particles

For our example, a system composed of N magnetic particles with mass m dis-

persed in a base liquid is assumed to be in thermodynamic equilibrium. The main

objective of the present exercise is to discuss the feasibility of the DPD method for

successfully capturing the aggregate formations of the magnetic particles, which

are dependent on the strength of magnetic particle�particle interactions. It is

important to note that in the present demonstration we assume the applied magnetic

field to be very strong, so that we only need to consider the translational motion of

magnetic particles. The rotational motion may be neglected.

6.2 Specification of Problems in Equations

6.2.1 Kinetic Equation of Dissipative Particles

A ferromagnetic colloidal suspension is composed of ferromagnetic particles and

the molecules of a base liquid. If a base liquid is regarded as being composed of

dissipative particles, the motion of magnetic particles is governed by the interaction

with both the other magnetic particles and the ambient dissipative particles. In the

following, we show the kinetic equation for the dissipative particles.

Introduction to Practice of Molecular Simulation. DOI: 10.1016/B978-0-12-385148-2.00006-9
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Three kinds of forces act on dissipative particle i: a repulsive conservative force

Fij
C, exerted by the other particles; a dissipative force Fij

D, providing a viscous drag

to the system; and a random or stochastic force Fij
R, inducing the thermal motion of

particles. The force acting on the dissipative particles by magnetic particles is not

taken into account in this subsection, since that force will be addressed later. The

equation of motion of particle i is therefore written as

md

dvi

dt
5

X
jð6¼iÞ

FC
ij 1

X
jð6¼iÞ

FD
ij 1

X
jð6¼iÞ

FR
ij ð6:1Þ

in which

FD
ij 5 2γwDðrijÞðeijUvijÞeij; FR

ij 5σwRðrijÞeijζ ij; FC
ij 5αwRðrijÞeij ð6:2Þ

In these equations, md is the mass of particle i, and vi is the velocity. Regarding the

use of subscripts, as an example, Fij
C is the force acting on particle i by particle j.

Moreover, α, γ, and σ are constants representing the strengths of the repulsive, the

dissipative, and the random forces, respectively. The weight functions wD(rij) and

wR(rij) are introduced such that the interparticle force decreases with increasing

particle�particle separation. The expression for wR(rij) is written as

wRðrijÞ5
12

rij

dc
for rij # dc

0 for rij . dc

8<
: ð6:3Þ

The weight functions wD(rij) and wR(rij), as well as γ and σ, must satisfy the

following relationships, respectively:

wDðrijÞ5w2
RðrijÞ; σ2 5 2γkT ð6:4Þ

In the above equations, dc is the apparent diameter of dissipative particles, rij is the

relative position (rij5 jrijj), given by rij5 ri2 rj; eij is the unit vector denoting the

direction of particle i relative to particle j, expressed as eij5 rij/rij; vij is the relative

velocity, expressed as vij5 vi2 vj; k is Boltzmann’s constant; and T is the liquid tem-

perature. Also, ζ ij is a random variable inducing the random motion of the particles.

If Eq. (6.1) is integrated with respect to time over a small time interval Δt from

t to t1Δt, then the finite difference equations governing the particle motion in

simulations can be obtained as

Δri 5 viΔt ð6:5Þ

Δvi 5
α
md

X
jð6¼iÞ

wRðrijÞeijΔt2
γ
md

X
jð6¼iÞ

w2
RðrijÞðeijUvijÞeijΔt

1
ð2γkTÞ1=2

md

X
jð6¼iÞ

wRðrijÞeijθij
ffiffiffiffiffiffi
Δt

p ð6:6Þ
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in which θij is the stochastic variable that must satisfy the following stochastic

properties:

hθiji5 0; hθijθi0j0 i5 ðδii0δjj0 1 δij0δji0 Þ ð6:7Þ

in which δij is the Kronecker delta. During the simulation, the stochastic variable

θij is sampled from a uniform or normal distribution with zero average value and

unit variance.

6.2.2 Model of Particles

A magnetic particle is idealized as a spherical particle with a central point dipole

and is coated with a uniform steric layer (or surfactant layer). Using the notation ds
for the diameter of the particle, δ for the thickness of the steric layer, and d

(5ds1 2δ) for the diameter, including the steric layer, then the magnetic interaction

energy between particles i and j, uij
(m), and the particle�field interaction energy,

ui
(H), and the interaction energy arising due to the overlap of the steric layers, uij

(V),

are expressed, respectively, as [31]

u
ðmÞ
ij 5

μ0

4πr3ij
miUmj 2 3ðmiUtijÞðmjUtijÞ

� � ð6:8Þ

u
ðHÞ
i 5 2μ0miUH ð6:9Þ

u
ðVÞ
ij 5 kTλV 22

2rij=ds
tδ

ln
d

rij

� �
2 2

rij=ds 2 1

tδ

� �
ð6:10Þ

in which μ0 is the permeability of free space, mi is the magnetic moment

(m05 jmij), tij is the unit vector given by rij/rij, rij5 ri2 rj, rij5 jrijj, H is the

applied magnetic field (H5 jHj), and tδ is the ratio of the thickness of the steric

layer δ to the radius of the solid part of the particle, equal to 2δ/ds. The nondimen-

sional parameter λV, appearing in Eq. (6.10), represents the strength of the steric

particle�particle interaction relative to the thermal energy, expressed as

λV5πds
2ns/2, in which ns is the number of surfactant molecules per unit area on

the particle surface.

From Eqs. (6.8) and (6.10), the forces acting on particle i are derived as

F
ðmÞ
ij 5 2

3μ0

4πr4ij
2ðmiUmjÞtij 1 5ðmiUtijÞðmjUtijÞtij 2 ðmjUtijÞmi 1 ðmiUtijÞmj

� �	 

ð6:11Þ

F
ðVÞ
ij 5

kTλV

δ
U
rij

rij
ln

d

rij

� �
ðds # dij # dÞ ð6:12Þ

189Practice of Dissipative Particle Dynamics Simulations



 

In addition to these forces, the forces due to dissipative particles have to be

taken into account, but are not treated here, since they will be addressed in the fol-

lowing subsection.

The motion of magnetic particles is specified by Newton’s equations and are

discretized in time to obtain the finite difference equations governing the particle

motion in simulations:

Δri 5 viΔt ð6:13Þ

Δvi 5
X
jð6¼iÞ

FijΔt=mm ð6:14Þ

in which mm is the mass of magnetic particles and Fij5Fij
(m)1Fij

(V).

6.2.3 Model Potential for Interactions Between Dissipative and
Magnetic Particles

Each colloidal particle is modeled as a group of dissipative particles. In the ordi-

nary application of the method, the interaction of a magnetic particle with the

ambient dissipative particles is treated as the interaction between the ambient dissi-

pative particles and the constituent dissipative particles of the magnetic particle.

However, in a real dispersion, the interaction between colloidal particles and the

solvent molecules should depend on the characteristics of the dispersion of interest.

Such interactions are strongly dependent on the ratio of the mass and the diameter

of the colloidal particles to that of solvent molecules together with the properties of

the interaction potential.

Therefore, instead of regarding a colloidal particle as a group of dissipative par-

ticles, it may be possible to use a model potential to describe the interaction

between the magnetic and the ambient dissipative particles.

The simplest potential model may be the hard sphere potential, in which magnetic

particles are regarded as a hard sphere and dissipative particles are elastically

reflected on the contact with a magnetic particle. Another simple potential model

may be the Lennard-Jones potential. Although the present exercise adopts the latter

model potential and attempts to discuss its validity, the simple form of the Lennard-

Jones potential based on each particle center may cause a nonphysical overlap.

Hence, as shown in Figure 6.1, we consider an inscribed sphere with the same diam-

eter as the dissipative particles, which is located on the line connecting each center

of dissipative and magnetic particle. The Lennard-Jones potential is then employed

using the inscribed particle and dissipative particles such that the interaction energy

uip for dissipative particle p and magnetic particle i is expressed as

uip 5 4ε
dc

rip
0

� �m

2
dc

rip
0

� �n� �
ð6:15Þ
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in which ε is a constant representing the strength of such an interaction,

rip
0 5 ri

0 2 rp, rip
0 5 jrip0j, ri is the position vector of the center of magnetic particle

i, rp is similarly the position vector of dissipative particle p, and ri
0 is the position

vector of the inscribed sphere. The expression for ri
0 is written as

ri
0
5 ri 2 ðd2 dc=2Þr̂ip ð6:16Þ

in which r̂ip 5 rip=rip; rip5 ri2 rp, and rip5 jripj. If we set m5 12 and n5 6 in

Eq. (6.15), the model potential leads to the well-known Lennard-Jones 12�6 poten-

tial, and this potential is employed in the present simulation.

From the expression of the interaction energy in Eq. (6.15), the force acting on

dissipative particle p by magnetic particle i, Fip
(int) is derived as

F
ðintÞ
ip 5 4nε

m

n

dc

rip
0

� �m

2
dc

rip
0

� �n� �
r̂ip

rip
0 ð6:17Þ

6.2.4 Nondimensionalization of the Equation of Motion and Related
Quantities

For the nondimensionalization of each quantity, the following representative values

are used: d for distances, mm for masses, kT for energies, (kT/mm)
1/2 for velocities,

d(mm/kT)
1/2 for time, kT/d for forces, and so forth. With these representative values,

Eqs. (6.5) and (6.6) are nondimensionalized as

Δri
� 5 vi

�Δt� ð6:18Þ

Magnetic
particle

Dissipative
particle

rp

ri

rip

ri
′

Figure 6.1 Model of the interaction

between magnetic and dissipative

particles.
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Δv�i 5
1

md
�d�c

α� X
jð6¼iÞ

wRðrij�ÞeijΔt� 2
1

ðmd
�Þ1=2d�c

γ�
X
jð6¼iÞ

w2
Rðrij�ÞðeijUvij�ÞeijΔt�

2
1

ðmd
�Þ3=4d�1=2c

ð2γ�Þ1=2
X
jð6¼iÞ

wRðrij�Þeijθij
ffiffiffiffiffiffiffiffi
Δt�

p
2

1

md
�
X
k

F
ðintÞ�
ki Δt�

ð6:19Þ

in which

wRðrij�Þ5 12 r�ij=d
�
c for rij

�=d�c # 1

0 for rij
�=d�c . 1

�
ð6:20Þ

α� 5α
dc

kT
; γ� 5 γ

dc

ðmdkTÞ1=2
ð6:21Þ

In the above equations, the superscript � indicates the nondimensionalized quanti-

ties. Note that Eq. (6.19) includes the forces due to the interaction with magnetic

particles, described in Section. 6.2.3.

Similarly, the nondimensional form of Eqs. (6.13), (6.14), (6.11), and (6.12) are

expressed as

Δri
� 5 vi

�Δt� ð6:22Þ

Δv�i 5
X
jð6¼iÞ

F�
ijΔt� 1

X
p

F
ðintÞ�
ip Δt� ð6:23Þ

F
ðmÞ�
ij 5 23λ

1

r4�ij
2ðniUnjÞtij 1 5ðniUtijÞðnjUtijÞtij 2 ðnjUtijÞni 1 ðniUtijÞnj

� �	 

ð6:24Þ

F
ðVÞ�
ij 5λV

1

t�δ
Utij ln

1

rij�

� �
ðds� # rij

� # 1Þ ð6:25Þ

in which Fij
�5Fij

(m)�1Fij
(V)�, ni is the unit vector denoting the direction of the

magnetic moment mi, expressed as ni5mi/m0 (m05 jmij). The nondimensional

parameter λ in Eq. (6.24) is the strength of magnetic particle interactions relative

to the thermal energy, expressed as λ5μ0m0
2/4πd3kT. A slightly different parame-

ter λs5 (d/ds)
3λ (5μ0m0

2/4πds
3kT), which is defined based on the diameter of the

solid part, will be useful in order to compare the present results with the previous

MC and BD simulations.

The expression of the force between a dissipative and a magnetic particle is

written in nondimensional form as
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Fip
�
5λε

m

n

dc
�

rip
0�

� �m

2
dc
�

rip
0�

� �n� �
r̂ip

rip
0�=d�c

ð6:26Þ

in which λε is a nondimensional parameter representing the strength of the interac-

tion, expressed as λε5 4nε/(kTdc
�).

In the present simulation we consider a two-dimensional system in thermody-

namic equilibrium, and therefore the relationship between the system temperature

and the mean kinetic energy of one dissipative particle is expressed from the equi-

partition law of energies as

1

2
mdv

2
d 5 2

kT

2
ð6:27Þ

From this equation, the mean square velocity of dissipative particles v�2d is

written as

v�2d 5 2=m�
d ð6:28Þ

Similarly, the mean square velocity of magnetic particles v�2m is expressed as

v�2m 5 2 ð6:29Þ

The number density of dissipative particles is nondimensionalized as

n�d 5 ndd
2 5 ndd

2
c ðd=dcÞ2 5 n̂�d=d

�2
c ð6:30Þ

In addition to nd
�, the nondimensional density n̂�d based on the diameter of dis-

sipative particles may be useful for quantifying the packing characteristics of

the dissipative particles. The nondimensional number density of magnetic particles

is expressed as n�m 5 nmd
2.

6.3 Parameters for Simulations

In this chapter, we are considering a two-dimensional dispersion composed of fer-

romagnetic particles in order to investigate the validity of using the method for this

type of problem. The equations of motion of a dissipative particle include many

indefinite factors, so we have chosen to focus on a simplified case in which the

external magnetic field is strong enough that we may neglect the rotational motion

of magnetic particles. In this situation, each magnetic moment will point along the

magnetic field direction. Also, we will only focus on the one specific model poten-

tial of (m,n)5 (12,6). Representative parameters used for the present simulations

are γ�5 10, α�5 γ�/10, md
�5 0.01, dc

�5 0.4, λε5 10, n̂�d 5 1, and Δt�5 0.0001.
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Eq. (6.19) shows that the displacement distance of a dissipative particle per unit

time step becomes greater with decreasing values of md
� and dc

�, and for this reason

the time interval Δt� will be adjusted in proportion to the product of md
� and dc

�. In
this way, a smaller value of the time interval is employed as the value of md

�dc
�

decreases. The total number of simulation steps, Ntimemx, is expected to be suffi-

cient when the condition of Δt�Ntimemx5 100 is satisfied.

6.4 Results of Simulations

We treat a multiparticle system with the number density of nm
� C0.4, composed of

81 magnetic particles, to investigate the influence of the mass of dissipative parti-

cles on the aggregate structures. Figure 6.2 illustrates the results for aggregate

structures in thermodynamic equilibrium for two cases of magnetic particle�
particle interactions, λs5 10 and 3. Unless specifically noted, all simulation results

were obtained for the case of dc
�5 0.4 using the other representative values of the

parameters given in Section 6.3. Figures 6.2A and B are for a value of the mass of

dissipative particles, md
�5 0.05. Figures 6.2C and D are for md

�5 0.01.

Figures 6.2E and F are for md
�5 0.005. Figures 6.2A, C, and E were obtained for

λs5 10. Figures 6.2B, D, and F are for λs5 3. In the figures, small and large cir-

cles indicate the dissipative and magnetic particles, respectively.

Since the magnetic particle�particle interaction is much more dominant than

the thermal energy for λs5 10, magnetic particles tend to aggregate to form chain-

like clusters along the magnetic field direction, which was clearly shown in the

(A)

(B)

(C)

(D)

(E)

(F)

Figure 6.2 Influence of the particle mass md
� on the aggregate structures for dc

�5 0.4: (A) for

md
�5 0.05 and λs5 10, (B) for md

�5 0.05 and λs5 3, (C) for md
�5 0.01 and λs5 10, (D) for

md
�5 0.01 and λs5 3, (E) for md

�5 0.005 and λs5 10, and (F) for md
�5 0.005 and λs5 3.
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previous MC simulations. As shown in Figures 6.2A, C, and E, the present DPD

simulation results also reproduce this type of cluster formation well. However, the

aggregate structures seem to be strongly dependent on the mass of the dissipative

particles. That is, although only thin chain-like clusters are formed for the case of a

relatively large mass, such as md
�5 0.05, magnetic particles form thicker chain-like

clusters with decreasing values of the particle mass.

Now, we consider why much thicker chain-like clusters tend to form with

decreasing mass of the dissipative particles. If the mass of dissipative particles is

small, the magnetic particles should move easily by separating the ambient dissipa-

tive particles so they can force a path and approach each other. The thin chain-like

clusters shown in Figure 6.2A, therefore, have a sufficient probability to aggregate

to form the thicker chain-like clusters shown in Figure 6.2E. On the other hand,

Eq. (6.28) shows that dissipative particles with smaller mass move with larger aver-

age velocity for a given system temperature. Hence, although a chain-like cluster

can thicken to a certain degree, after that further growth is limited by the Brownian

motion of the magnetic particles due to the influence of the active motion of dissi-

pative particles. Since the magnetic particle�particle interaction is of a slightly

larger order than the thermal energy for the case of λs5 3, significant aggregates

should not be formed. However, the present DPD simulations exhibit significant

cluster formation with decreasing mass of dissipative particles; such unexpected

aggregate formation is significant for md
�5 0.005, and we also find that relatively

long chain-like clusters are formed even for the case of md
�5 0.05. In order to

explain these results, the first consideration must be that we do not use an equation

of motion which can simulate the rotational motion of the magnetic particles,

although the transnational motion is taken into account in the present exercise.

Another consideration must be the model potential we have employed for the inter-

action between the magnetic and the dissipative particles.

For reference, the aggregate structures for dc
�5 0.2 are shown in Figure 6.3

under the same conditions as in Figure 6.2 except for the particle diameter. We

here focus on the differences between the aggregate structures in Figures 6.2 and

6.3 without addressing the features of each aggregate structure in detail. The aggre-

gates in Figure 6.3 have a more compact or denser internal structure, and it appears

that large clusters are formed to a certain degree but do not grow any further. It

seems as if the Brownian motion of the magnetic particles due to the interaction

with the dissipative particles is not significant. The snapshot in Figure 6.3F also

shows aggregates with a dense internal structure, and the effect of the particle

Brownian motion does not appear significantly in the formation of these internal

structures.

Finally, we consider what the appropriate mass of a dissipative particle should

be for obtaining physically reasonable results. As pointed out previously, dissipa-

tive particles are virtual and regarded as groups or clusters of the real solvent mole-

cules, so that it seems to be reasonable for the mass density of dissipative particles

to be taken as roughly equal to the mass density of the base liquid of the dispersion

system, which one must consider for evaluating physical quantities experimentally.

In the present demonstration, for example, we consider a ferromagnetic colloidal
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dispersion in which metallic ferromagnetic fine particles are assumed to be dis-

persed into a base liquid, such as kerosene or water. In this case, if the ratio of the

mass density of magnetic particles to dissipative ones is regarded as 5�8, then the

ratio of mass is 0.013�0.008 for dc
�5 0.4, and 0.0016�0.001 for dc

�5 0.2. Hence,

it is for the case of dc
�5 0.4 and md

�5 0.01 that physically reasonable aggregate

structures can be regarded as being reproduced. This consideration is verified by

comparing it with the results obtained by MC and BD simulations.

In addition to the previous discussion, it may be necessary to verify that the

aggregate formation is truly induced by the magnetic interaction between magnetic

particles in a physically reasonable manner and not by certain false mechanisms

arising from the improper interaction between dissipative and magnetic particles.

Figure 6.4A and B show the results that were obtained for the strength of magnetic

interaction λs5 0 by using the aggregate structures in Figures 6.2C and 6.3C as an

initial configuration. Since the snapshot in Figure 6.4B from an initial configuration

in Figure 6.3C for dc
�5 0.2 and md

�5 0.01 exhibits the formation of large aggre-

gates, we may conclude that this case does not give rise to physically reasonable

results. In contrast, for the case of an initial configuration in Figure 6.2C for

dc
�5 0.4 and md

�5 0.01, Figure 6.4A shows that the thick chain-like clusters,

formed in the field direction, are dissociated sufficiently. However, a large aggre-

gate (i.e., not chain-like) still remains, although the internal structure of this aggre-

gate is considerably looser. The dissociation of the chain-like clusters indicates that

the Brownian motion has been sufficiently effective. On the other hand, this type

of loose aggregate structure of magnetic particles may be the result of employing a

kinetic equation without including the rotational motion, as adopted here, or from

(A)

(B)

(C)

(D)

(E)

(F)

Figure 6.3 Influence of the particle mass md
� on aggregate structures for dc

�5 0.2: (A) for

md
�5 0.05 and λs5 10, (B) for md

�5 0.05 and λs5 3, (C) for md
�5 0.01 and λs5 10, (D) for

md
�5 0.01 and λs5 3, (E) for md

�5 0.005 and λs5 10, and (F) for md
�5 0.005 and λs5 3.
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employing the model potential for the interaction between dissipative and magnetic

particles.

6.5 Simulation Program

A sample simulation program is shown below for conducting the simulation of the

present exercise: the program is written in FORTRAN.

The important variables used in the program are explained as follow:

RX(I),RY(I) : (x,y) coordinates of the position vector r�i of magnetic

particle i

NX(I),NY(I) : (x,y) coordinates of the magnetic moment direction n�i
VX(I),VY(I) : (x,y) coordinates of the velocity v�i of magnetic particle i

FX(I),FY(I) : (x,y) coordinates of the magnetic force F�
i acting on

magnetic particle i

FXMD(I),FYMD(I) : (x,y) coordinates of the force acting on magnetic particle i

by dissipative particles

N,NDENS,VDENS : Number of particles N, number density n�, volumetric

fraction φV
� concerning magnetic particles

D,DS,DEL : Diameter, the diameter of solid part, the thickness of the

steric layer of magnetic particles

(XL,YL) : Side lengths of the simulation box in the (x,y) directions

RAS,RA,RV,RE : Nondimensional parameters λs, λ, λV, and λε
OVRLAP(I) : OVERLAP(I)5.TRUE. in the case of an extraordinary

overlap of magnetic particles

RXD(I),RYD(I) : Position vector r�i of dissipative particle i

VXD(I),VYD(I) : Velocity vector v�i of dissipative particle i
FDXD(I),FDYD(I) : Dissipative force FD�

i acting on dissipative particle i

FCXD(I),FCYD(I) : Conservative force FC�
i acting on dissipative particle i

FRXD(I),FRYD(I) : Random force FR�
i acting on dissipative particle i

(A) (B)

Figure 6.4 Snapshots for λs5 0 for the two initial configurations: Figures 6.2C and 6.3C

were used as an initial configuration for (A) and (B), respectively.
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FXDM(I),FYDM(I) : Force acting on dissipative particle i by magnetic particles

ND,MD,DC,VDENSD : Number of particles, mass md
�, diameter dc

�, volumetric

fraction concerning dissipative particles

NDENSD,NDENSDH : Number densities of dissipative particles n�d, n̂
�
d

TMX(I),TABLE(�,I) : Names of cells to which dissipative particles interacting

with the magnetic particle of interest belong

VTMX(I), VTABLE(#) : Names of magnetic particles interacting with the magnetic

particle of interest

VPLACE(I) : Information starts to appear from the position VPLACE(I)
in the variable VTABLE(I)concerning magnetic particles

interacting with magnetic particle i

TMXD(GRP),
TABLED(�,GRP))

: Cell index method for dissipative particles

GRPX(I),GRPY(I) : Name of cell to which dissipative particle i belongs is saved

ALP,GAM : Parameters α� and γ� representing the strengths of

repulsive and dissipative forces acting between dissipative

particles, respectively

As an aid to understanding the program, explanatory comments have been added

to important features. The line numbers are only for the reader’s convenience, and

unnecessary for executing a FORTRAN program.

0001 C*********************************************************************
0002 C*                          dpdmag3.f                                *
0003 C*                                                                   *
0004 C*       OPEN(9, FILE='@daa1.data', STATUS='UNKNOWN'); parameters    *
0005 C*       OPEN(10,FILE='daa11.data', STATUS='UNKNOWN'); para. & data  *
0006 C*       OPEN(11,FILE='daa21.mgf' , STATUS='UNKNOWN'); anime data    *
0007 C*       OPEN(21,FILE='daa001.data',STATUS='UNKNOWN'); particle pos. *
0008 C*       OPEN(22,FILE='daa011.data',STATUS='UNKNOWN'); particle pos. *
0009 C*       OPEN(23,FILE='daa021.data',STATUS='UNKNOWN'); particle pos. *
0010 C*       OPEN(24,FILE='daa031.data',STATUS='UNKNOWN'); particle pos. *
0011 C*       OPEN(25,FILE='daa041.data',STATUS='UNKNOWN'); particle pos. *
0012 C*       OPEN(26,FILE='daa051.data',STATUS='UNKNOWN'); particle pos. *
0013 C*       OPEN(27,FILE='daa061.data',STATUS='UNKNOWN'); particle pos. *
0014 C*       OPEN(28,FILE='daa071.data',STATUS='UNKNOWN'); particle pos. *
0015 C*       OPEN(29,FILE='daa081.data',STATUS='UNKNOWN'); particle pos. *
0016 C*       OPEN(30,FILE='daa091.data',STATUS='UNKNOWN'); particle pos. *
0017 C*                                                                   *
0018 C*    ----------  DPD SIMULATION OF MAGNETIC PARTICLES  ----------   *
0019 C*        TWO-DIMENSIONAL DPD SIMULATION OF MAGNETIC SPHERICAL       *
0020 C*        PARTICLES IN DISSIPATIVE PARTICLES                         *
0021 C*                                                                   *
0022 C*          1. FOR A STRONG MAGNETIC FIELD CASE (Y-DIRECTION).       *
0023 C*          2. FERROMAGNETIC SPHERICAL PARTICLES WITH STERIC LAYER.  *
0024 C*          3. LENNARD-JONES MODEL FOR INTERACTIONS BETWEEN          *
0025 C*             MAGNETIC AND DISSIPATIVE PARTICLES.                   *
0026 C*          4. NNN SHOULD BE SUFFICIENTLY LARGE (NNN=10000)          *
0027 C*          5. OVRLAP(*) IS INTRODUCED.                              *
0028 C*                                                                   *
0029 C*                                        VER.1 BY A.SATOH, '09  4/5 *
0030 C*********************************************************************
0031 C 
0032 C     N     : NUMBER OF MAGNETIC PARTICLES (M. PTCL.)         
0033 C     D     : DIAMETER OF PARTICLE INCLUDING SURFACTANT LAYER
0034 C             ( =1 FOR THIS CASE )                
0035 C     DS    : DIAMETER OF SOLID PARTICLE WITHOUT STERIC LAYER
0036 C     DEL   : THICKNESS OF STERIC LAYER 
0037 C     TD    : DIMENSIONLESS THICKNESS OF STERIC LAYER BASED ON RADIUS
0038 C     NDENS : NUMBER DENSITY OF M. PTCL     
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0056 C     VELTHRYD    : AVERAGE OF (VX**2+VY**2) (DESIRED) FOR D-PTCL 
0057 C     NVELSC      : VELOCITIES OF M-PTCL ARE SCALED EVERY NVELSC
0058 C                   TIME STEP TO SATISFY THE DESIRED VELOCITY 
0059 C     NVELSCD     : VELOCITIES OF D-PTCL ARE SCALED EVERY NVELSCD
0060 C                   TIME STEP TO SATISFY THE DESIRED VELOCITY 
0061 C         
0062 C     RX(N),RY(N) : PARTICLE POSITION  
0063 C     NX(N),NY(N) : DIRECTION OF MAGNETIC MOMENT                 
0064 C     VX(N),VY(N) : PARTICLE VELOCITY  
0065 C     FX(N),FY(N) : PARTICLE FORCE DUE TO MAGNETIC FORCES  
0066 C     FXMD(N),FYMD(N) : PARTICLE FORCE BY D. PTCL. ON M. PTCL.  
0067 C     TMX(I)     : TOTAL NUMBER OF INDEX CELLS OF D. PTCL. WHICH MAY 
0068 C                  INTERACT WITH M. PTCL. I      
0069 C     TABLE(*,I) : NAME OF INDEX CELLS WHICH MAY INTERACT WITH M. PTCL.
0070 C     VTMX(I)    : TOTAL NUMBER OF NEIGHBORING M.PTCL. WHICH MAY 
0071 C                  INTERACT WITH M.PTCL. WITHIN THE CUTOFF RANGE 
0072 C     VTABLE(NNN): NAME OF M.PTCL. IS SAVED IN ORDER (VERLET METHOD)
0073 C     VPLACE(I)  : THE FIRST PTCL., WHICH INTERACTS WITH PTCL. I, 
0074 C                  APPEARS AT VPLACE(I) IN THE TABLE OF VTABLE(**)
0075 C     VRADIUS    : CUTOFF RADIUS FOR VERLET METHOD 
0076 C     NVTABLE    : VERLET TABLE IS RENEWED EVERY NVTABLE TIME STEP
0077 C
0078 C     OVRLAP(*)  : OVRLAP(I)=.TRUE. FOR OVERLAPING  
0079 C
0080 C     ND      : NUMBER OF DISSIPATIVE PARTICLES (D.PTCL.) 
0081 C     MD      : MASS OF D.PTCL.
0082 C     DC      : DIAMETER OF D.PTCL.        
0083 C     RCOFFD  : CUTOFF DISTANCE FOR INTERACTIONS BETWEEN D. PTCL.
0084 C     ALP     : COEFFICIENT REPRESENTING REPULSIVE FORCE OF D.PTCL.
0085 C     GAM     : COEFFICIENT REPRESENTING DISSIPATIVE FORCE OF D.PTCL.
0086 C                                        
0087 C     RXD(ND),RYD(ND)   : POSITIONS OF D.PTCL. 
0088 C     VXD(ND),VYD(ND)   : VELOCITIES OF D.PTCL.                 
0089 C     FCXD(ND),FCYD(ND) : CONSERVATIVE FORCES ACTING ON A PARTICLE
0090 C     FDXD(ND),FDYD(ND) : DISSIPATIVE FORCES  ACTING ON A PARTICLE
0091 C     FRXD(ND),FRYD(ND) : RANDOM FORCES ACTING ON A PARTICLE
0092 C     FXDM(ND),FYDM(ND) : PARTICLE FORCE BY M. PTCL. ON D. PTCL.  
0093 C     NDENSDH : NUMBER DENSITY WITH HAT    
0094 C     NDENSD  : NUMBER DENSITY OF D.PTCL.   
0095 C     VDENSD  : VOLUMETRIC FRACTION OF D.PTCL.   
0096 C
0097 C     GRPX(ND),GRPY(ND)  : GROUP TO WHICH D.PTCL. I BELONGS    
0098 C     PXD          : NUMBER OF CUT-OFF CELLS IN EACH DIRECTION       
0099 C     TMXD(GRP)    : TOTAL NUMBER OF PTCL. BELONGING TO GROUP(GRP)  
0100 C     TABLED(*,GRP): NAME OF PTCL. BELONGING TO GROUP(GRP)           
0101 C     GRPLXD(PXD)  : IS USED FOR DETERMINE THE CELL TO WHICH A       
0102 C                    PARTICLE IS BELONG                              
0103 C                                                                    
0104 C     RAN(NRANMX)  : RANDOM NUMBERS BETWEEN  0  AND  1               
0105 C
0106 C               -XL/2 <RX(I) <XL/2 , -YL/2 <RY(I)< YL/2               
0107 C---------------------------------------------------------------------
0108       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)     
0109 C      
0110       COMMON /BLOCK1/  RX , RY                     

0039 C     VDENS : VOLUMETRIC FRACTION OF PARTICLES                       
0040 C     RA    : NONDIMENSIONAL PARAMETER OF PARTICLE-PARTICLE INTERACT 
0041 C     RAS   : NONDIMENSIONAL PARAMETER OF PARTICLE-PARTICLE INTERACT 
0042 C             BASED ON THE DIAMETER OF THE SOLID PART
0043 C     KU    : NONDIMENSIONAL PARAMETER OF PARTICLE-FIELD INTERACTION  
0044 C     RV    : NONDIMENSIONAL PARAMETER OF STERIC REPULSION (=120)  
0045 C     RVS   : NONDIMENSIONAL PARAMETER OF STERIC REPULSION 
0046 C             BASED ON THE DIAMETER OF THE SOLID PART (=150) 
0047 C     RE    : NONDIMENSIONAL PARAMETER OF M.PTCL.-D.PTCL INTERACTION 
0048 C     RCOFF    :CUTOFF RADIUS FOR CALCULATION OF MAG. FORCES    
0049 C     RCOFFMD  :CUTOFF RADIUS FOR FORCES BETWEEN M.PTCL. AND D.PTCL.
0050 C     RCOFFDDM :CUTOFF RADIUS FOR FORCES BETWEEN P.PTCL. AND VIRTUAL
0051 C               PTCL. INSIDE M.PTCL.
0052 C     XL,YL : DIMENSIONS OF SIMULATION REGION                         
0053 C     H     : TIME INTERVAL FOR DPD SIMULATIONS 
0054 C     (HX,HY,HZ)  : APPLIED MAGNETIC FIELD (UNIT VECTOR)       
0055 C     VELTHRY     : AVERAGE OF (VX**2+VY**2) (DESIRED) FOR M-PTCL 
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0111       COMMON /BLOCK2/  VX , VY  
0112       COMMON /BLOCK3/  NX , NY                   
0113       COMMON /BLOCK5/  FX , FY  
0114       COMMON /BLOCK7/  N  , NDENS , VDENS , D , DS , DEL , TD
0115       COMMON /BLOCK8/  RA , RV , RE 
0116       COMMON /BLOCK9/  TMX  , TABLE 
0117       COMMON /BLOCK10/ VTMX , VTABLE , VPLACE , NVTABLE , VRADIUS
0118       COMMON /BLOCK11/ FXMD , FYMD , RCOFFMD , RCOFFDDM 
0119       COMMON /BLOCK13/ OVRLAP             
0120       COMMON /BLOCK15/ H , XL , YL , RCOFF
0121       COMMON /BLOCK16/ VELTHRY, VELTHRYD, NVELSC, NVELSCD  
0122 C                                                    
0123       COMMON /BLOCK21/ RXD  , RYD              
0124       COMMON /BLOCK22/ VXD  , VYD               
0125       COMMON /BLOCK23/ FCXD , FCYD           
0126       COMMON /BLOCK24/ FDXD , FDYD         
0127       COMMON /BLOCK25/ FRXD , FRYD  
0128       COMMON /BLOCK26/ ND   , NDENSDH , NDENSD , VDENSD , MD    
0129       COMMON /BLOCK27/ DC   , ALP , GAM , RCOFFD
0130       COMMON /BLOCK28/ GRPX , GRPY                 
0131       COMMON /BLOCK29/ TMXD , TABLED                          
0132       COMMON /BLOCK30/ PXD  , GRPLXD , PXYD                   
0133       COMMON /BLOCK31/ FXDM , FYDM
0134 C
0135       COMMON /BLOCK35/ NRAN , RAN , IX    
0136 C                                                                     
0137       INTEGER    TT, PPXD, PPXYD, TTD                
0138       PARAMETER( NN=100 , NNN=10000 , TT=500  ) 
0139       PARAMETER( NRANMX=100000000 )       
0140       PARAMETER( PI=3.141592653589793D0 )            
0141       PARAMETER( NND=50000 , PPXD=500 , PPXYD=250000 , TTD=20 ) 
0142 C
0143       REAL*8     RX(NN)   , RY(NN)  , VX(NN)   , VY(NN)       
0144       REAL*8     FX(NN)   , FY(NN)  , NX(NN)   , NY(NN)        
0145       REAL*8     NDENS 
0146       REAL*8     FXMD(NN) , FYMD(NN) 
0147       INTEGER    TMX(NN)  , TABLE(TT,NN) 
0148       INTEGER    VTMX(NN) , VTABLE(NNN) , VPLACE(NN)
0149       LOGICAL    OVRLAP(NN) 
0150 C
0151       REAL*8     RXD(NND) , RYD(NND)  , VXD(NND)  , VYD(NND)      
0152       REAL*8     FCXD(NND), FCYD(NND) , FDXD(NND) , FDYD(NND)   
0153       REAL*8     FRXD(NND), FRYD(NND) , FXDM(NND) , FYDM(NND) 
0154       REAL*8     NDENSDH  , NDENSD    , MD  
0155       REAL*8     GRPLXD(PPXD)
0156       INTEGER    GRPX(NND), GRPY(NND)            
0157       INTEGER    TMXD(PPXYD), TABLED(TTD,PPXYD) , PXD , PXYD   
0158 C
0159       REAL*8     VELTHRY, VELTHRYD 
0160       INTEGER    NVELSC, NVELSCD  
0161 C      
0162       REAL       RAN(NRANMX)                                
0163       INTEGER    NRAN  , IX  ,  NRANCHK                   
0164 C
0165       REAL*8     RXI   , RYI  , RXID  , RYID  , RCOFF2, HSQ2  , H2 
0166       REAL*8     VXI   , VYI  , VXID  , VYID  , VELAV , VELAVD
0167       REAL*8     VELMX , VELDMX
0168       REAL*8     EVELX, EVELY, EVELSQ, EVELXD, EVELYD, EVELSQD   
0169       INTEGER    NTIME , NTIMEMX , NGRAPH , NANIME , NANMCTR  
0170       INTEGER    NVELAV, NVELAVD , NP , NOPT                  
0171       INTEGER    TMX00 , TMXD00  , VTABLE00        
0172 C                                                             
0173                OPEN(9, FILE='@acka1.data' ,STATUS='UNKNOWN')  
0174                OPEN(10,FILE='acka11.data' ,STATUS='UNKNOWN')  
0175                OPEN(11,FILE='acka21.mgf'  ,STATUS='UNKNOWN')  
0176                OPEN(21,FILE='acka001.data',STATUS='UNKNOWN')  
0177                OPEN(22,FILE='acka011.data',STATUS='UNKNOWN')  
0178                OPEN(23,FILE='acka021.data',STATUS='UNKNOWN')  
0179                OPEN(24,FILE='acka031.data',STATUS='UNKNOWN')  
0180                OPEN(25,FILE='acka041.data',STATUS='UNKNOWN')  
0181                OPEN(26,FILE='acka051.data',STATUS='UNKNOWN')  
0182                OPEN(27,FILE='acka061.data',STATUS='UNKNOWN')  

• The given values are 
written out in @acka1 
and acka11.
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0221       NTIMEMX = 100000         
0222       NGRAPH  = NTIMEMX/10      
0223       NANIME  = NTIMEMX/200     
0224       NVTABLE = INT( 0.0001D0/H )
0225       IF( NVTABLE .LE. 0 ) NVTABLE = 1  
0226 C                                                --- PARAMETER (4) ---
0227       NVELSC  = INT( 0.1D0 /H + 0.001D0)  
0228       NVELSCD = INT( 0.01D0/H + 0.001D0)  
0229       VELTHRY = 2.D0**0.5         
0230       VELTHRYD= (2.D0/MD)**0.5    
0231       IF( NVELSC  .LE. 0 )  NVELSC  = 1   
0232       IF( NVELSCD .LE. 0 )  NVELSCD = 1   
0233 C                                                --- PARAMETER (5) ---
0234       IX      = 0                                                     
0235       CALL RANCAL( NRANMX, IX, RAN )                                  
0236       NRAN    = 1                         
0237 C                                                                     
0238 C     ----------------------------------------------------------------
0239 C     -----------------    INITIAL CONFIGURATION    ------------------
0240 C     ----------------------------------------------------------------
0241 C                                  --- SET INITIAL POSIT. AND VEL. ---
0242 CCC   OPEN(19,FILE='acka091.data',STATUS='OLD')           
0243 CCC     READ(19,592)  N , XL, YL                   
0244 CCC     READ(19,594) (RX(I),I=1,N) , (RY(I),I=1,N) ,    
0245 CCC  &               (VX(I),I=1,N) , (VY(I),I=1,N) ,     
0246 CCC  &               (NX(I),I=1,N) , (NY(I),I=1,N)      
0247 CCC     READ(19,596)  ND                   
0248 CCC     READ(19,598) (RXD(I),I=1,ND) , (RYD(I),I=1,ND) ,  
0249 CCC  &               (VXD(I),I=1,ND) , (VYD(I),I=1,ND)    
0250 CCC   CLOSE(19,STATUS='KEEP')                           
0251 CCC   GOTO 7 
0252 C                                                       

• The data table in the Verlet neighbor list method 
is renewed at every NVTABLE time steps. The 
velocity scaling of magnetic and dissipative 
particles is carried out at every NVELSC and 
NVELSCD, respectively. The theoretical 
averaged velocities of magnetic and dissipative 
particles are denoted by VELTHRY and 
VELTHRYD, respectively. 

• Pseudo-random numbers are saved in the variable RAN(*).

• The initial positions of 
magnetic and dissipative 
particles are assigned in the 
subroutines INIPOSIT and 
INIPOSID. Similarly, the initial 
velocities are set in INIVEL 
and INIVELD.

0183                OPEN(28,FILE='acka071.data',STATUS='UNKNOWN')  
0184                OPEN(29,FILE='acka081.data',STATUS='UNKNOWN')  
0185                OPEN(30,FILE='acka091.data',STATUS='UNKNOWN')  
0186                                                                  NP=9 
0187 C                               ++++++++++++++++++++++++++++++++++++++
0188 C                                N=25, 36, 49, 64, 81, 100, 121, ...
0189 C                                H=0.001 FOR RAS=10  
0190 C                               ++++++++++++++++++++++++++++++++++++++
0191 C                                                --- PARAMETER (1) ---
0192       N       = 81
0193       VDENS   = 0.3D0           
0194       NDENS   = VDENS*(4.D0/PI) 
0195       RAS     = 10.D0 
0196       RV      = 120.D0
0197       RE      = 10.D0
0198       D       = 1.D0
0199       TD      = 0.3D0
0200       DEL     = TD/2.D0  
0201       DS      = 1.D0 - TD 
0202       RCOFF   = 8.D0 
0203       VRADIUS = RCOFF*1.3D0       
0204       RCOFF2  = RCOFF**2 
0205       VELMX   = 2.D0*5.5D0**2
0206       RA      = RAS*DS**3 
0207 C                                                --- PARAMETER (2) ---
0208       NDENSDH = 1.0D0
0209       DC      = 0.4D0
0210       NDENSD  = NDENSDH/DC**2 
0211       VDENSD  = NDENSDH*PI/4.D0 
0212       GAM     = 10.D0 
0213       ALP     = GAM/10.D0 
0214       MD      = 0.05D0
0215       RCOFFD  = DC
0216       RCOFFDDM= 3.D0*DC  
0217       RCOFFMD = 0.5D0 + RCOFFDDM - DC/2.D0 
0218       VELDMX  = (2.D0/MD)*5.5D0**2
0219 C                                                --- PARAMETER (3) ---
0220       H       = 0.001D0       

• The positions and velocities of particles are written out in 
acka001 to acka091, and the data for MicroAVS are written 
out in acka21.

Concerning magnetic particles:
• The number of particles N=81, volumetric fraction φ*V=0.3, 
λs=10, λV=120 and λε=10. The particle diameter d*=1, the 
surfactant layer thickness δ*=0.15 and tδ=0.3. 
• The cutoff distance r*coff=8, rl* is used for the Verlet 
neighbor list method (see Figure 2.12). 

Concerning dissipative particles:
• The number density  =1, diameter d*c=0.4 and mass 
m*d=0.05. γ*=10, α*=γ*/10, and cutoff distance d*c. 
• The cutoff distance between magnetic and dissipative 
particles is denoted by RCOFFMD.
• The maximum velocity is assumed to be VELDMX.

・The number of the total time steps is 100,000. The particle 
positions are written out at every NGRAPH time steps, and 
200 sets of data are written out for making an animation. 

• Time interval h*=0.001.

 *ˆdn

0253       CALL INIPOSIT( N , VDENS , NDENS, PI , VRADIUS )  

201Practice of Dissipative Particle Dynamics Simulations



 

0254       CALL INIPOSID( DC , RCOFFD , N )                  
0255       CALL INIVEL( N , PI , VELMX )                     
0256       CALL INIVELD( ND , MD , PI , VELDMX )             
0257 C                          --- (A1) GENERATE GRID FOR INDEX METHOD ---
0258     7 CALL GRIDGENE( XL , RCOFFD )        
0259 C                           --- (A2) GROUP TO WHICH D.PTCL. BELONG ---
0260       CALL GROUP( ND )                                           
0261 C                                 --- (A3) SET UP TABLE FOR D.PTCL.---
0262       CALL TABLECAL( ND , PXD )                                
0263 C                           --- (B1) SET UP VERLET TABLE OF D.PTCL ---
0264 C                           -        FOR M. PTCL.                    -
0265       CALL VTABLEDP( N , RCOFFD , RCOFFMD , XL , YL , DC )      
0266 C                           --- (B2) SET UP VERLET TABLE OF M.PTCL ---
0267 C                           -        FOR M. PTCL.                    -
0268       CALL VTABLEMA( N , XL , YL )                      
0269 C                                                   --- FORCE CAL. ---
0270       CALL FORCEMAG( RCOFF2 , NTIME )   
0271       CALL FORCEDPD( PI )               
0272       CALL FORCEINT( N , ND , RE , DC ) 
0273 C                                                                     
0274 C                                          --- PRINT OUT CONSTANTS ---
0275       WRITE(NP,10) N, VDENS, NDENS, RAS, RA, RV, RE, D, TD, DEL, DS, 

• Cells are set for using the cell index method.

• The name of the cell to which each dissipative particle 
belongs is grasped. Also, the name of dissipative particles 
belonging to each cell is grasped.

• The names of the cells interacting with each magnetic 
particle are grasped.

• The names of magnetic particles 
interacting with each magnetic particle 
are grasped in VTABLEMA.

0276      &             RCOFF, VRADIUS, RCOFFMD, RCOFFDDM, XL, YL, H
0277       WRITE(NP,12) ND, NDENSDH, DC, NDENSD, VDENSD, MD, ALP, GAM,
0278      &             RCOFFD
0279       WRITE(NP,14) H, NTIMEMX, NGRAPH, NVTABLE 
0280 C                                                  
0281 C                                               --- INITIALIZATION ---
0282       NVELAV  = 0  
0283       VELAV   = 0.D0  
0284       NVELAVD = 0  
0285       VELAVD  = 0.D0  
0286       NOPT    = 20
0287       NRANCHK = NRANMX - ND*ND             
0288       NANMCTR = 0
0289 C
0290       EVELX   = 0.D0       
0291       EVELY   = 0.D0       
0292       EVELSQ  = 0.D0       
0293       EVELXD  = 0.D0       
0294       EVELYD  = 0.D0       
0295       EVELSQD = 0.D0       
0296 C
0297 C     ----------------------------------------------------------------
0298 C     -------------------    START OF MAIN LOOP    -------------------
0299 C     ----------------------------------------------------------------
0300 C                                                                     
0301       DO 1000 NTIME = 1,NTIMEMX                                       
0302 C                                                
0303 C                                      --------- (1) D. PTCL. CASE ---
0304         DO 100 I = 1,ND                                               
0305 C                                                                     
0306           RXID   = RXD(I) + VXD(I)*H             
0307           RYID   = RYD(I) + VYD(I)*H             
0308           RXID   = RXID   - DNINT( RXID/XL )*XL    
0309           RYID   = RYID   - DNINT( RYID/YL )*YL   
0310           RXD(I) = RXID  
0311           RYD(I) = RYID           
0312 C                                                   --- VELOCITIES ---
0313           VXID   = VXD(I) + FCXD(I) + FDXD(I) + FRXD(I) + FXDM(I)*H/MD
0314           VYID   = VYD(I) + FCYD(I) + FDYD(I) + FRYD(I) + FYDM(I)*H/MD
0315           VXD(I) = VXID    
0316           VYD(I) = VYID      
0317           C1     = VXID**2 + VYID**2 
0318           IF( C1 .GT. VELDMX ) THEN
0319             C1 = DSQRT( VELDMX/C1 )
0320             VXD(I) = VXID*C1 
0321             VYD(I) = VYID*C1 
0322           END IF 

• The forces acting on magnetic and dissipative 
particles are calculated in the subroutines 
FORCEMAG and FORCEDPD, respectively. 
The forces acting between magnetic and 
dissipative particles are calculated in 
FORCEINT.

• The positions of dissipative particles at the next 
time step are evaluated according to Eq. (6.18).

• The velocities of dissipative particles at the next 
time step are evaluated according to Eq. (6.19).

• The velocity of each particle is modified so as to be 
smaller than the maximum value.

• The treatment of the periodic BC.

0323 C          
0324           IF( NTIME .GT. NTIMEMX/2 ) VELAVD=VELAVD+VXD(I)**2+VYD(I)**2 
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0325 C                                                                     
0326   100   CONTINUE        
0327 C
0328         IF( NTIME .GT. NTIMEMX/2 )   NVELAVD = NVELAVD + 1 
0329 C                                      --------- (2) M. PTCL. CASE ---
0330         HSQ2 = H*H/2.D0
0331         H2   = H/2.D0 
0332         DO 200 I = 1,N 
0333 ccc                 RXI    = RX(I) + VX(I)*H + ( FX(I)+FXMD(I) )*HSQ2
0334 ccc                 RYI    = RY(I) + VY(I)*H + ( FY(I)+FYMD(I) )*HSQ2
0335           RXI    = RX(I) + VX(I)*H  
0336           RYI    = RY(I) + VY(I)*H  
0337           C1     = VX(I)**2 + VY(I)**2 
0338           IF( C1 .GT. VELMX ) THEN
0339             C1   = DSQRT( VELMX/C1 )
0340             VXI  = VX(I)*C1 
0341             VYI  = VY(I)*C1
0342             RXI  = RX(I) + VXI*H  
0343             RYI  = RY(I) + VYI*H  
0344           END IF 
0345           RXI    = RXI - DNINT( RXI/XL )*XL    
0346           RYI    = RYI - DNINT( RYI/YL )*YL    
0347           RX(I)  = RXI                              
0348           RY(I)  = RYI                              
0349 C                                              --- PART (1) OF VEL ---
0350          IF( OVRLAP(I) ) THEN 
0351            VXI   = VX(I) +   FX(I) * H 
0352            VYI   = VY(I) +   FY(I) * H 
0353          ELSE 
0354            VXI   = VX(I) + ( FX(I)+FXMD(I) )*H 
0355            VYI   = VY(I) + ( FY(I)+FYMD(I) )*H 
0356          END IF
0357          VX(I) = VXI                              
0358          VY(I) = VYI            
0359          C1    = VXI**2 + VYI**2 
0360          IF( C1 .GT. VELMX ) THEN
0361            C1 = DSQRT( VELMX/C1 )
0362            VX(I) = VXI*C1 
0363            VY(I) = VYI*C1 
0364          END IF 
0365   200   CONTINUE     
0366 C                                             --- RENEW TABLE DATA ---
0367         CALL GROUP( ND )                                           
0368         CALL TABLECAL( ND , PXD )                                
0369         CALL VTABLEDP( N , RCOFFD , RCOFFMD , XL , YL , DC )      
0370         IF( MOD(NTIME,NVTABLE) .EQ. 0 ) THEN 
0371           CALL VTABLEMA( N , XL , YL )                      
0372         END IF 
0373 C                                                   --- FORCE CAL. ---
0374         CALL FORCEMAG( RCOFF2 , NTIME )  
0375         CALL FORCEDPD( PI )               
0376         CALL FORCEINT( N , ND , RE , DC ) 
0377 C                                                     --- SAMPLING ---
0378         DO 220 I = 1,N                                                
0379           IF( NTIME .GT. NTIMEMX/2 )  VELAV = VELAV+VX(I)**2+VY(I)**2 
0380   220   CONTINUE     
0381 C
0382         IF( NTIME .GT. NTIMEMX/2 )    NVELAV = NVELAV + 1 
0383 C                            
0384 C       ------------------------------------- FOR VELOCITY SCALING --- 
0385         DO 255 I = 1, N                                                

• The positions of magnetic particles at the next 
time step are evaluated according to Eq. (6.22).

• The treatment in the case of the solid parts 
of the two magnetic particles overlapping.

• The velocities of magnetic particles at the next 
time step are evaluated according to Eq.  (6.23).

• The velocity of each particle is modified so as 
to be smaller than the maximum value.

• The treatment of the periodic BC.

• The information in the cell index table and in 
the Verlet neighbor list table is renewed.

• The forces acting between magnetic 
particles, between dissipative particles, 
and between magnetic and dissipative 
particles are calculated.

• The velocities are sampled for 
scaling the particle velocities 
afterward.

0386           EVELX   = EVELX  + VX(I)                                     
0387           EVELY   = EVELY  + VY(I)                                     
0388           EVELSQ  = EVELSQ + VX(I)**2 + VY(I)**2         
0389   255   CONTINUE                                                       
0390         DO 260 I = 1, ND                                         
0391           EVELXD  = EVELXD  + VXD(I)                            
0392           EVELYD  = EVELYD  + VYD(I)                         
0393           EVELSQD = EVELSQD + VXD(I)**2 + VYD(I)**2         
0394   260   CONTINUE                                                       
0395 C                                         --- MAG VELOCITY SCALING --- 
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0396         IF( MOD(NTIME,NVELSC) .EQ. 0 ) THEN                           
0397           EVELX  = EVELX /DBLE(N*NVELSC)                               
0398           EVELY  = EVELY /DBLE(N*NVELSC)                               
0399           EVELSQ = EVELSQ/DBLE(N*NVELSC)                               
0400           CALL SCALEVEL( N, VX, VY, VELTHRY, EVELX, EVELY, EVELSQ )   
0401           EVELX  = 0.D0                                                
0402           EVELY  = 0.D0                                                
0403           EVELSQ = 0.D0                                                
0404         END IF                               
0405 C                                         --- DPD VELOCITY SCALING --- 
0406         IF( MOD(NTIME,NVELSCD) .EQ. 0 ) THEN   
0407           EVELXD  = EVELXD /DBLE(ND*NVELSCD)   
0408           EVELYD  = EVELYD /DBLE(ND*NVELSCD)   
0409           EVELSQD = EVELSQD/DBLE(ND*NVELSCD)   
0410           CALL SCALEVEL( ND,VXD,VYD,VELTHRYD,EVELXD,EVELYD,EVELSQD )
0411           EVELXD  = 0.D0                        
0412           EVELYD  = 0.D0                        
0413           EVELSQD = 0.D0                        
0414         END IF                                 
0415 C
0416 C       -------------------------------------------------------------- 
0417 C                            
0418 C                                 --- DATA OUTPUT FOR GRAPHICS (1) ---
0419         IF( MOD(NTIME,NGRAPH) .EQ. 0 ) THEN                  
0420           NOPT = NOPT + 1  
0421           WRITE(NOPT,592)  N , XL, YL                   
0422           WRITE(NOPT,594) (RX(I),I=1,N) , (RY(I),I=1,N) ,    
0423      &                    (VX(I),I=1,N) , (VY(I),I=1,N) ,     
0424      &                    (NX(I),I=1,N) , (NY(I),I=1,N)      
0425           WRITE(NOPT,596)  ND                   
0426           WRITE(NOPT,598) (RXD(I),I=1,ND) , (RYD(I),I=1,ND) ,  
0427      &                    (VXD(I),I=1,ND) , (VYD(I),I=1,ND)    
0428           CLOSE(NOPT,STATUS='KEEP')     
0429         END IF                                                       
0430 C                                --- DATA OUTPUT (2) FOR ANIMATION ---
0431         IF( MOD(NTIME,NANIME) .EQ. 0 ) THEN
0432           NANMCTR = NANMCTR + 1  
0433 C
0434           IF( NANMCTR .EQ. 1 ) THEN 
0435             WRITE(11,381) (NTIMEMX/NANIME) 
0436           END IF
0437 C
0438           IF( (NANMCTR.GE.1) .AND. (NANMCTR.LE.9) ) THEN 
0439             WRITE(11,383) NANMCTR
0440           ELSE IF( (NANMCTR.GE.10) .AND. (NANMCTR.LE.99) ) THEN 

• The velocities of magnetic particles are scaled so as 
to yield the desired system temperature.

• The velocities of dissipative particles are scaled so 
as to yield the desired system temperature.

• The data are written out for making an 
animation based on the commercial 
software MicroAVS.

• The number of the used random numbers is 
checked. If over NRANCHK, a uniform random 
number sequence is renewed.

0441             WRITE(11,384) NANMCTR
0442           ELSE IF( (NANMCTR.GE.100) .AND. (NANMCTR.LE.999) ) THEN 
0443             WRITE(11,385) NANMCTR
0444           ELSE IF( (NANMCTR.GE.1000) .AND. (NANMCTR.LE.9999) ) THEN 
0445             WRITE(11,386) NANMCTR
0446           END IF        
0447 C
0448           WRITE(11,388) ( N+ND )
0449 C
0450           DO 400 I=1,N 
0451             WRITE(11,398) RX(I) ,RY(I) ,0.0, D/2.D0,  1.0, 0.0, 0.0 
0452   400     CONTINUE
0453           DO 410 I=1,ND 
0454             WRITE(11,398) RXD(I),RYD(I),0.0, DC/2.D0, 0.0, 0.8, 1.0 
0455   410     CONTINUE
0456         END IF
0457 C                                                            
0458 C                                    --- CHECK RANDOM NUMBERS USED ---
0459         IF( NRAN .GT. NRANCHK ) THEN                 
0460           CALL RANCAL( NRANMX, IX, RAN )                          
0461           NRAN    = 1     
0462         END IF                     
0463 C                                                                     
0464 C                                                                     
0465  1000 CONTINUE                                                        
0466 C                                                                     
0467 C     ----------------------------------------------------------------
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0468 C     ----------------------   END OF MAIN LOOP   --------------------
0469 C     ----------------------------------------------------------------
0470 C                                                                     
0471       VELAV  =  VELAV /DBLE(NVELAV*N)    
0472       VELAVD =  VELAVD/DBLE(NVELAVD*ND)  
0473 C
0474       TMX00  = 0
0475       TMXD00 = 0
0476       DO 1006 I=1,N
0477         IF( TMX(I)  .GT. TMX00  ) TMX00  = TMX(I)
0478  1006 CONTINUE 
0479       DO 1007 I=1,PXYD
0480         IF( TMXD(I) .GT. TMXD00 ) TMXD00 = TMXD(I)
0481  1007 CONTINUE 
0482       VTABLE00 = VPLACE(N) + VTMX(N) - 1
0483 C
0484 C                                              ---- PRINT OUT (1) ----
0485       WRITE(NP,1011) TMX00 , TMXD00 , VTABLE00 ,  
0486      &               REAL(TMX00)/REAL(TT) , REAL(TMXD00)/REAL(TTD) ,  
0487      &               REAL(VTABLE00)/REAL(NNN) , REAL(PXYD)/REAL(PPXYD)
0488       WRITE(NP,1013) PXD   , PXYD              
0489       WRITE(NP,1014) DSQRT(VELAV)      , DSQRT(VELAVD) , 
0490      &               DSQRT(VELAV/2.D0) , DSQRT(VELAVD*MD/2.D0)
0491 C                                                                     
0492 C                               ---- DATA OUTPUT FOR GRAPHICS (1) ----
0493       WRITE(10,1210) N, VDENS, NDENS, RAS, RA, RV, RE, D, TD, DEL, DS 
0494       WRITE(10,1211) RCOFF, VRADIUS, RCOFFMD, RCOFFDDM, XL, YL, H
0495       WRITE(10,1213) ND, NDENSDH, DC, NDENSD, VDENSD, MD, ALP, GAM,
0496      &               RCOFFD
0497       WRITE(10,1214) H, NTIMEMX, NGRAPH, NVTABLE 
0498 C  
0499                                   CLOSE( 9,STATUS='KEEP')             
0500                                   CLOSE(10,STATUS='KEEP')             
0501                                   CLOSE(11,STATUS='KEEP')             
0502 C                                                                     
0503 C     ------------------------- FORMAT -------------------------------
0504    10 FORMAT(/1H ,'--------------------------------------------------'
0505      &       /1H ,'      DPD SIMULATION OF MAGNETIC PARTICLES        '
0506      &       /1H ,'      IN DISSIPATIVE PARTICLES IN EQUILIBRIUM     '
0507      &       /1H ,'     +++ TWO-DIMENSIONAL EQUILIBRIUM CASE +++     '
0508      &       /1H ,'--------------------------------------------------'
0509      &      //1H ,'N=',I3 ,2X, 'VDENS=', F6.3, 2X, 'NDENS=',F6.3 ,2X,
0510      &            'RAS=', F7.3, 2X, 'RA=', F7.3, 2X, 'RV=', F8.2
0511      &       /1H ,'RE=', F7.3, 2X, 'D=', F3.1, 2X, 'TD=', F4.2, 2X,
0512      &            'DEL=', F5.3, 2X, 'DS=', F5.2
0513      &       /1H ,'RCOFF=',F6.2, 2X, 'VRADIUS=',F6.2, 2X, 'RCOFFMD=',
0514      &             F5.2, 2X, 'RCOFFDDM=', F5.2
0515      &       /1H ,'XL=', F6.2, 2X, 'YL=', F6.2, 2X, 'H=', E9.2)
0516    12 FORMAT(/1H ,'ND=',I4, 2X, 'NDENSDH=', F6.3, 2X, 'DC=', F6.2, 2X,
0517      &            'NDENSD=', F6.2, 2X, 'VDENSD=', F6.2, 2X, 'MD=',F5.3
0518      &       /1H ,'ALP=', F6.2, 2X, 'GAM=', F6.2, 2X, 'RCOFFD=', F6.2)
0519    14 FORMAT(/1H ,'H=', E9.2, 2X, 'NTIMEMX=', I8, 2X, 'NGRAPH=',I7,
0520      &             2X, 'NVTABLE=', I4/) 
0521   381 FORMAT('# Micro AVS Geom:2.00'
0522      &      /'# Animation of DPD simulation results'/I4)
0523   383 FORMAT('step',I1)                    
0524   384 FORMAT('step',I2)                    
0525   385 FORMAT('step',I3)                    
0526   386 FORMAT('step',I4) 
0527   388 FORMAT( 'sphere'/'sphere_sample'/'color'/I7 ) 
0528   398 FORMAT( 3F10.4 , F6.2 , 3F5.2 )
0529   592 FORMAT( I8, 2F12.6 )
0530   594 FORMAT( (5E16.8) )
0531   596 FORMAT( I8 ) 
0532   598 FORMAT( (5E16.8) )
0533  1011 FORMAT(/1H ,'TMX00=',I5, 2X, 'TMXD00=',I5, 2X, 'VTABLE00=',I5
0534      &       /1H ,'REAL(TMX00)/REAL(TT)=',F5.3, 2X,
0535      &            'REAL(TMXD00)/REAL(TTD)=',F5.3 
0536      &       /1H ,'REAL(VTABLE00)/REAL(NNN)=',F5.3, 2X,   
0537      &            'REAL(PXYD)/REAL(PPXYD)=',F5.3)
0538  1013 FORMAT(1H ,'PXD=', I5, 2X, 'PXYD=', I6/) 
0539  1014 FORMAT(1H ,'VELAV=', F9.4, 2X, 'VELAVD=', F9.4   
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0540      &      /1H ,'VELAV/THEORY=', F9.4, 2X, 'VELAVD/THEORY=', F9.4) 
0541  1210 FORMAT( I4 , 2F6.3 , 3F8.3 , 5F7.3 )
0542  1211 FORMAT( 6F8.3 , E11.3 )
0543  1213 FORMAT( I4 , F6.3 , 7F8.3 )
0544  1214 FORMAT( E11.3 , 3I8 ) 
0545                                                                   STOP
0546                                                                   END 
0547 C*********************************************************************
0548 C***************************   SUBROUTINE   **************************
0549 C*********************************************************************
0550 C                                                                     

• A subroutine for setting the 
initial positions of magnetic 
particles.

• φV=(π/4)/a*2, a*=(π/(4φV))1/2 and Q=N1/2 . The 
values of a* and Q are saved in A and Q, 
respectively.

• RAN1 and RAN2 are quasi-random numbers.
• Each particle is moved in parallel by the distance (0.1, 0.1) to 
remove subtle situations at the outer boundary surfaces. Also, to 
remove the regularity of the initial configuration, each particle is 
moved randomly by the maximum displacement (1/2)×(0.091, 
0.091) using quasi-random numbers.

0551 C**** SUB INIPOSIT ****                                               
0552       SUBROUTINE INIPOSIT( N , VDENS , NDENS , PI , VRADIUS )  
0553 C                                                                     
0554       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)           
0555 C                                                                     
0556       COMMON /BLOCK1/  RX , RY                     
0557       COMMON /BLOCK3/  NX , NY                   
0558       COMMON /BLOCK15/ H  , XL , YL , RCOFF
0559 C                                                                     
0560       PARAMETER( NN=100 )            
0561 C                                                                     
0562       REAL*8    RX(NN) , RY(NN) , NX(NN) , NY(NN) , NDENS     
0563       REAL*8    A , RAN , C1 
0564       INTEGER   Q , PTCL                                     
0565 C                                                                     
0566       A  = DSQRT( PI/(4.D0*VDENS) ) 
0567       Q  = NINT( SQRT(REAL(N+1)) )                                  
0568       XL = A*DBLE(Q)
0569       YL = XL 
0570 C                                                 ----- POSITION -----
0571       RAN1 = DSQRT(2.D0)
0572       RAN2 = DSQRT(3.D0)
0573       PTCL = 0                                                        
0574       DO 10 J=0,Q-1                                                
0575       DO 10 I=0,Q-1                                              
0576         PTCL = PTCL + 1                                              
0577         C1 = RAN1*DBLE(PTCL) 
0578         C1 = C1 - DINT(C1)  
0579         C1 = C1 - 0.5D0 
0580         C2 = RAN2*DBLE(PTCL) 
0581         C2 = C2 - DINT(C2)  
0582         C2 = C2 - 0.5D0 
0583         RX(PTCL) = DBLE(I)*A - XL/2.D0 + 0.1D0 + C1*0.091D0   
0584         RY(PTCL) = DBLE(J)*A - YL/2.D0 + 0.1D0 + C2*0.091D0  
0585    10 CONTINUE                                                        
0586       N = PTCL                                                        
0587 C                                                   ----- MOMENT -----
0588       DO 20 I=1,N                                                     
0589         NX(I) = 0.D0                                
0590         NY(I) = 1.D0                                
0591    20 CONTINUE 
0592 C
0593       IF( VRADIUS .GT. XL/2.D0 ) THEN 
0594         VRADIUS = XL/2.D0 
0595         RCOFF   = XL/2.D0 
0596       END IF                
0597                                                                RETURN 
0598                                                                END    
0599 C**** SUB INIPOSID *****                                              
0600       SUBROUTINE INIPOSID( DC , RCOFFD , N )        
0601 C                                                                     
0602       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)           
0603 C                                                                     
0604       COMMON /BLOCK1/  RX , RY                     
0605       COMMON /BLOCK15/ H  , XL , YL , RCOFF

• Additionally each particle is moved in parallel by (1/2)×(–XL, –YL) so that the 
center of the simulation box is the origin of the coordinate system.

• The direction of each magnetic moment is set in the y-direction.

• A subroutine for setting the 
initial positions of dissipative 
particles.

0606       COMMON /BLOCK21/ RXD , RYD              
0607       COMMON /BLOCK26/ ND  , NDENSDH , NDENSD , VDENSD , MD    
0608 C                                                                     
0609       PARAMETER( NN=100 , NND=50000 ) 
0610 C                                                                     
0611       REAL*8    RX(NN) , RY(NN) , RXD(NND), RYD(NND) 
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• n*d=1/b*2 and b*=(1/n*d)1/2. Particles are placed 
in each axis direction.

• Each particle is moved in parallel by 
(1/2)×(–XL,–YL), so that the center of 
the simulation box is the origin of the 
coordinate system.

• The dissipative particles are 
not placed if the separation 
between magnetic and 
dissipative particles is shorter 
than RCOFFMN.

• A subroutine for setting the initial 
velocities of magnetic particles. 

0612       REAL*8    NDENSDH, NDENSD , MD , B , RSQCHK , RXID , RYID
0613       REAL*8    RXI , RYI , RXIJ , RYIJ , RIJSQ, RCOFFMN, RCOFFMN2 
0614       INTEGER   P   , PTCL     
0615 C                              
0616       B  = DSQRT( 1.D0/NDENSD ) 
0617       P  = INT( XL/B )
0618       RSQCHK   = (0.5D0 + DC/2.D0)**2                               
0619       RCOFFMN  = 0.5D0 + ( DC/2.D0 )*0.3D0 
0620       RCOFFMN2 = RCOFFMN**2 
0621 C                                             ------- POSITION (1) ---
0622       PTCL=0                                                          
0623       DO 120 IY=0,P-1                                                
0624         RYID = DBLE(IY)*B - YL/2.D0 + 0.0001D0 
0625         IF( RYID .GE. YL/2.D0 )   GOTO 120         
0626       DO 100 IX=0,P-1                                            
0627         RXID = DBLE(IX)*B - XL/2.D0 + 0.0001D0 
0628         IF( RXID .GE. XL/2.D0 )   GOTO 100         
0629 C                                --- REMOVE OVERLAP WITH MAG.PTCL. ---
0630         DO 50 I=1,N   
0631           RXI = RX(I) 
0632           RYI = RY(I) 
0633           RXIJ = RXID - RXI                                         
0634           RXIJ = RXIJ - DNINT(RXIJ/XL)*XL                             
0635           IF( DABS(RXIJ) .GT. RCOFFMN )    GOTO 50 
0636           RYIJ = RYID - RYI                                         
0637           RYIJ = RYIJ - DNINT(RYIJ/YL)*YL                             
0638           IF( DABS(RYIJ) .GT. RCOFFMN )    GOTO 50 
0639           RIJSQ= RXIJ**2 + RYIJ**2
0640           IF( RIJSQ .LT. RCOFFMN2 )        GOTO 100
0641    50   CONTINUE             
0642 C
0643         PTCL = PTCL + 1                                              
0644         RXD(PTCL) =  RXID                    
0645         RYD(PTCL) =  RYID                    
0646   100 CONTINUE
0647   120 CONTINUE
0648       ND = PTCL 
0649                                                                 RETURN
0650                                                                 END   
0651 C**** SUB INIVEL *****                             
0652       SUBROUTINE INIVEL( N , PI , VELMX )                      
0653 C
0654       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)   
0655 C
0656       COMMON /BLOCK2/  VX   , VY                   
0657       COMMON /BLOCK35/ NRAN , RAN , IX    
0658 C                                                  
0659       PARAMETER( NN=100 , NRANMX=100000000 ) 
0660 C                                                  

• The initial velocities are assigned 
according to Eq. (A2.3).

• The initial velocities are modified so as 
to be smaller than the maximum velocity.

0661       REAL*8  VX(NN) , VY(NN) , MOMX , MOMY , CC1 , CC2         
0662       REAL    RAN(NRANMX)                      
0663 C                                             
0664       DO 10 I=1,N                             
0665         NRAN = NRAN + 1                                               
0666         CC1 = DSQRT(  -2.D0*(1.D0)*DLOG( DBLE(RAN(NRAN)) )  ) 
0667         NRAN = NRAN + 1                                      
0668         CC2 = 2.D0*PI*DBLE(RAN(NRAN))                   
0669         VX(I) = CC1*DCOS(CC2)        
0670 C                              
0671         NRAN = NRAN + 1                                               
0672         CC1 = DSQRT(  -2.D0*(1.D0)*DLOG( DBLE(RAN(NRAN)) )  ) 
0673         NRAN = NRAN + 1                                      
0674         CC2 = 2.D0*PI*DBLE(RAN(NRAN))                   
0675         VY(I) = CC1*DSIN(CC2)                         
0676 C
0677         C1   = VX(I)**2 + VY(I)**2 
0678         IF( C1 .GT. VELMX ) THEN
0679           C1 = DSQRT( VELMX/C1 )
0680           VX(I) = VX(I)*C1 
0681           VY(I) = VY(I)*C1 
0682         END IF 
0683    10 CONTINUE                                                        
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• The velocities are modified so as to yield 
zero total system momentum. 

• A subroutine for setting the initial 
velocities of dissipative particles. 

0684 C                                      --- SET TOTAL MOMENTUM ZERO ---
0685       MOMX = 0.D0                                   
0686       MOMY = 0.D0                                   
0687       DO 20 I=1,N                                    
0688         MOMX = MOMX + VX(I)                    
0689         MOMY = MOMY + VY(I)                    
0690    20 CONTINUE                                       
0691       MOMX = MOMX/DBLE(N)                         
0692       MOMY = MOMY/DBLE(N)                         
0693 C                               --- CORRECT VELOCITIES TO SATISFY  ---
0694 C                               ---    ZERO TOTAL MOMENTUM         ---
0695       DO 30 I=1,N                     
0696         VX(I) = VX(I) - MOMX        
0697         VY(I) = VY(I) - MOMY        
0698    30 CONTINUE                        
0699                                                                 RETURN
0700                                                                 END   
0701 C**** SUB INIVELD *****                            
0702       SUBROUTINE INIVELD( ND , MD , PI , VELDMX )                
0703 C
0704       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)   
0705 C
0706       COMMON /BLOCK22/ VXD  , VYD                   
0707       COMMON /BLOCK35/ NRAN , RAN  , IX    
0708 C                                                  
0709       PARAMETER( NND=50000 , NRANMX=100000000 ) 
0710 C                                                  
0711       REAL*8  VXD(NND), VYD(NND) , MD , MOMX , MOMY , CC1 , CC2  
0712       REAL    RAN(NRANMX)                      
0713 C                                             
0714       DO 10 I=1,ND                             
0715         NRAN = NRAN + 1                            

• The initial velocities are assigned 
according to Eq. (A2.3).

• The initial velocities are modified so as 
to be smaller than the maximum velocity.  

• The velocities are modified so as to yield 
zero total system momentum.

0716         CC1  = DSQRT(  -2.D0*(1.D0/MD)*DLOG( DBLE(RAN(NRAN)) )  ) 
0717         NRAN = NRAN + 1                                      
0718         CC2  = 2.D0*PI*DBLE(RAN(NRAN))                   
0719         VXD(I) = CC1*DCOS(CC2)        
0720 C                              
0721         NRAN = NRAN + 1                                           
0722         CC1  = DSQRT(  -2.D0*(1.D0/MD)*DLOG( DBLE(RAN(NRAN)) )  ) 
0723         NRAN = NRAN + 1                                      
0724         CC2  = 2.D0*PI*DBLE(RAN(NRAN))                   
0725         VYD(I) = CC1*DSIN(CC2)                         
0726 C
0727         C1     = VXD(I)**2 + VYD(I)**2 
0728         IF( C1 .GT. VELDMX ) THEN
0729           C1 = DSQRT( VELDMX/C1 )
0730           VXD(I) = VXD(I)*C1 
0731           VYD(I) = VYD(I)*C1 
0732         END IF 
0733    10 CONTINUE                                                        
0734 C                                      --- SET TOTAL MOMENTUM ZERO ---
0735       MOMX = 0.D0                                   
0736       MOMY = 0.D0                                   
0737       DO 20 I=1,ND                                    
0738         MOMX = MOMX + VXD(I)                    
0739         MOMY = MOMY + VYD(I)                    
0740    20 CONTINUE                                       
0741       MOMX = MOMX/DBLE(ND)                         
0742       MOMY = MOMY/DBLE(ND)                         
0743 C                               --- CORRECT VELOCITIES TO SATISFY  ---
0744 C                               ---    ZERO TOTAL MOMENTUM         ---
0745       DO 30 I=1,ND                     
0746         VXD(I) = VXD(I) - MOMX        
0747         VYD(I) = VYD(I) - MOMY        
0748    30 CONTINUE                        
0749                                                                 RETURN
0750                                                                 END   
0751 C**** SUB SCALEVEL ****                                                
0752       SUBROUTINE SCALEVEL( N, VX, VY, VELTHRY, VELX, VELY, VELSQ )   
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• A subroutine for scaling the velocities 
(common for both magnetic and dissipative 
particles).

• The velocities are modified so as to yield 
zero total momentum.

0753 C                                                                     
0754       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)           
0755 C                                                                      
0756       REAL*8   VX(N), VY(N)                             
0757 C                            --- ZERO TOTAL MOMENTUM FOR EACH AXIS --- 
0758       DO 10 I = 1,N                                                    
0759         VX(I) = VX(I) - VELX                                          
0760         VY(I) = VY(I) - VELY                                          
0761    10 CONTINUE                                                         
0762 C                                --- CORRECT VELOCITIES TO SATISFY --- 
0763 C                                -   SPECIFIED TEMPERATURE           - 
0764       C1 = VELTHRY/DSQRT( VELSQ - VELX**2 - VELY**2 )                
0765       DO 50 I = 1,N                                                    
0766           VXI   = VX(I)                                                
0767           VYI   = VY(I)                                                
0768           VX(I) = VXI*C1                                               
0769           VY(I) = VYI*C1                                               
0770    50 CONTINUE                                                         

• The velocities are modified so as to yield 
the desired system temperature.

• A subroutine for generating cells for 
the cell index method in the case of 
dissipative particles. 

0771                                                                RETURN 
0772                                                                END    
0773 C**** SUB GRIDGENE ****                            
0774       SUBROUTINE GRIDGENE( XL , RCOFFD )        
0775 C
0776       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)   
0777 C                                                  
0778       COMMON /BLOCK30/ PXD  , GRPLXD , PXYD                   
0779 C                                                  
0780       INTEGER    PPXD               
0781       PARAMETER( PPXD=500 ) 
0782 C 
0783       REAL*8   GRPLXD(PPXD) , C0 
0784       INTEGER  PXD , PXYD 
0785 C                                                  
0786       PXD  = INT( XL/RCOFFD )                       
0787       PXYD = PXD**2                                
0788       C0   = XL/DBLE(PXD)                          
0789       DO 10 I=1,PXD                                
0790         GRPLXD(I) = C0*DBLE(I) - XL/2.D0                    
0791    10 CONTINUE                                     
0792                                                                RETURN 
0793                                                                END    
0794 C**** SUB GROUP *****                                                 
0795       SUBROUTINE GROUP( ND )                                          
0796 C                                                    
0797       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)     
0798 C                                                    
0799       COMMON /BLOCK21/ RXD  , RYD              
0800       COMMON /BLOCK28/ GRPX , GRPY                 
0801       COMMON /BLOCK30/ PXD  , GRPLXD , PXYD                   
0802 C
0803       INTEGER    PPXD, PPXYD, TTD                
0804       PARAMETER( NND=50000 , PPXD=500 , PPXYD=250000 , TTD=20 ) 
0805 C
0806       REAL*8   RXD(NND) , RYD(NND) 
0807       REAL*8   GRPLXD(PPXD)
0808       INTEGER  GRPX(NND), GRPY(NND) , PXD , PXYD   
0809 C                                                                     
0810       DO 100 I=1,ND                                                   
0811 C                                                       --- X AXIS ---
0812         DO 10 J=1,PXD                                                 
0813           IF( GRPLXD(J) .GT. RXD(I) ) THEN                            
0814             GRPX(I) = J                                               
0815             GOTO 15                                                   
0816           END IF                                                      
0817    10   CONTINUE                                                      
0818         GRPX(I) = PXD                                                 
0819 C                                                       --- Y AXIS ---
0820    15   DO 20 J=1,PXD                                    
0821           IF( GRPLXD(J) .GT. RYD(I) ) THEN                            
0822             GRPY(I) = J                                               
0823             GOTO 100                                                  
0824           END IF                                                      

• The cells are made by dividing the 
simulation box into PXD equal cells in 
each axis-direction. The position of the 
x-coordinate (equal to y-coordinate) is 
saved in GRPLXD.

• A subroutine for grasping the name of 
the cell to which each dissipative 
particle belongs.

• If particle i belongs to the cell which is 
assumed to be the (GRPX(I)-th, GRPY(I)-th) 
cell in x- and y-directions, the name of the cell 
is GP=GRPX(I)+(GRPY(I)−1)*PXD.
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• A subroutine for grasping the names
of dissipative particles belonging to 
each cell.

0826         GRPY(I) = PXD                                                 
0827 C                                                                     
0828   100 CONTINUE                                                        
0829                                                                 RETURN
0830                                                                 END   
0831 C**** SUB TABLECAL *****                                              
0832       SUBROUTINE TABLECAL( ND , PXD )                                
0833 C                                                                     
0834       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)     
0835 C      
0836       COMMON /BLOCK28/ GRPX , GRPY                 
0837       COMMON /BLOCK29/ TMXD , TABLED                          
0838 C
0839       INTEGER    PPXD, PPXYD, TTD                
0840       PARAMETER( NND=50000 , PPXD=500 , PPXYD=250000 , TTD=20 ) 
0841 C 
0842       INTEGER  GRPX(NND), GRPY(NND)            
0843       INTEGER  TMXD(PPXYD), TABLED(TTD,PPXYD) , PXD , GX , GY , GP
0844 C                                                                     
0845       DO 10 GY=1,PXD                                                  
0846       DO 10 GX=1,PXD                                                  
0847         GP = GX + (GY-1)*PXD                             
0848         TMXD(GP)     = 0                                              
0849         TABLED(1,GP) = 0                                              
0850    10 CONTINUE                                                        
0851 C                                                                     
0852       DO 20 I=1,ND                                                    
0853         GX = GRPX(I)                                                  
0854         GY = GRPY(I)                                                  
0855         GP = GX + (GY-1)*PXD                                   
0856         TMXD(GP) = TMXD(GP) + 1                                       
0857         TABLED( TMXD(GP),GP ) = I                                     
0858    20 CONTINUE                                                        
0859                                                                 RETURN
0860                                                                 END  
0861 C**** SUB VTABLEDP *****                                              
0862       SUBROUTINE VTABLEDP( N , RCOFFD , RCOFFMD , XL , YL , DC )      
0863 C                                                   
0864       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)     
0865 C      
0866       COMMON /BLOCK1/  RX  , RY
0867       COMMON /BLOCK9/  TMX , TABLE
0868       COMMON /BLOCK30/ PXD , GRPLXD , PXYD                   
0869 C
0870       INTEGER    TT, PPXD              
0871       PARAMETER( NN=100 , NNN=10000 , TT=500 , PPXD=500 ) 
0872 C 
0873       INTEGER  TMX(NN), TABLE(TT,NN) , PXD , PXYD 
0874       REAL*8   RX(NN) , RY(NN) , GRPLXD(PPXD)
0875       REAL*8   RXI, RYI, RX1, RY1, RX2, RY2, XI, YI, CL, MODX, MODY
0876       REAL*8   RSQCHK  , RSQCHK2 , RRISQ , RCHK 
0877       INTEGER  GPX1 , GPX2 , GPY1 , GPY2 , GP
0878 C
0879       CL      = GRPLXD(2) - GRPLXD(1)
0880       RCHK    = RCOFFMD + (CL/2.D0)*1.415D0 

• A subroutine for grasping the cells in 
which dissipative particles possibly 
interact with magnetic particles.

• If particle i belongs to the cell which is assumed to 
be the (GX-th, GY-th) cell in the x- and y-directions, 
the name of the cell is GP=GX+(GY−1)*PXD.
・The name of particle i is therefore saved in the 
variable in TABLED(*,GP) concerning cell GP.

0825    20   CONTINUE                                                      

0881       RSQCHK  = RCHK**2  
0882       RSQCHK2 = ( 0.5D0-DC/2.D0-(CL/2.D0)*1.415D0 )**2 
0883       DO 10 I=1,N                                                     
0884         TMX(I)     = 0                                                
0885         TABLE(1,I) = 0                                                
0886    10 CONTINUE                                                        
0887 C      
0888       DO 200 I=1,N
0889         RXI = RX(I) 
0890         RYI = RY(I) 
0891         RX1 = RXI - RCHK  
0892         RY1 = RYI - RCHK  
0893         RX2 = RXI + RCHK  
0894         RY2 = RYI + RCHK  
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0895         GPX1 = INT( (RX1+XL/2.D0)/CL ) - 1
0896         GPX2 = INT( (RX2+XL/2.D0)/CL ) + 2
0897         GPY1 = INT( (RY1+YL/2.D0)/CL ) - 1
0898         GPY2 = INT( (RY2+YL/2.D0)/CL ) + 2
0899 C
0900         DO 150 IY0 = GPY1, GPY2
0901           IY   = IY0
0902           MODY = 0.D0 
0903           IF( IY0 .LE. 0 ) THEN
0904             IY   =  IY0 + PXD 
0905             MODY = -YL
0906           END IF 
0907           IF( IY0 .GT. PXD ) THEN 
0908             IY   =  IY0 - PXD 
0909             MODY =  YL
0910           END IF 
0911           YI = GRPLXD(IY) - CL/2.D0 + MODY
0912 C
0913         DO 140 IX0 = GPX1, GPX2
0914           IX   = IX0
0915           MODX = 0.D0 
0916           IF( IX0 .LE. 0 ) THEN
0917             IX   =  IX0 + PXD 
0918             MODX = -XL
0919           END IF 
0920           IF( IX0 .GT. PXD ) THEN 
0921             IX   =  IX0 - PXD 
0922             MODX =  XL
0923           END IF 
0924           XI = GRPLXD(IX) - CL/2.D0 + MODX
0925 C
0926           GP   = IX + PXD*(IY-1) 
0927           RRISQ= (XI-RXI)**2 + (YI-RYI)**2
0928           IF( RRISQ .GE. RSQCHK )  GOTO 140 
0929           IF( RRISQ .LE. RSQCHK2 ) GOTO 140 
0930 C         
0931           TMX(I) = TMX(I) + 1                                         
0932           TABLE( TMX(I),I) = GP                                       
0933   140   CONTINUE                                                      
0934   150   CONTINUE                                                      
0935   200 CONTINUE                                                        

• If the distance between magnetic 
particle i and a cell is shorter than 
RSQCHK, the cell is regarded as a 
possible interacting cell.

• The treatment of the periodic BC.

• The dissipative particles only in the 
neighboring cells possibly interact 
with magnetic particle i.

0936                                                                 RETURN
0937                                                                 END   
0938 C**** SUB VTABLEMA *****                                              
0939       SUBROUTINE VTABLEMA( N , XL , YL )                      
0940 C                                                   
0941       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)     
0942 C      
0943       COMMON /BLOCK1/  RX , RY
0944       COMMON /BLOCK10/ VTMX , VTABLE , VPLACE , NVTABLE , VRADIUS
0945 C
0946       PARAMETER( NN=100 , NNN=10000 ) 
0947 C
0948       REAL*8   RX(NN)   , RY(NN)        
0949       INTEGER  VTMX(NN) , VTABLE(NNN) , VPLACE(NN) , N2
0950       REAL*8   RXI , RYI , RXIJ , RYIJ , RIJ2 , VRADIUS2 
0951 C
0952       VRADIUS2 = VRADIUS**2 
0953       N2       = N**2 
0954       IF( N2 .GT. NNN )  N2 = NNN 
0955       DO 10 I=1,N                                                     
0956         VTMX(I)   = 0                                                 
0957         VPLACE(I) = 0                                                 
0958    10 CONTINUE                                                        
0959       DO 15 I=1,N2                                               
0960         VTABLE(I) = 0                                                 
0961    15 CONTINUE                                                        
0962 C
0963 C                            
0964       DO 200 I=1,N
0965 C
0966         RXI   = RX(I) 

• The number of the magnetic particles 
interacting with particle i is saved in 
VTMX(I), and the names of the 
interacting particles are saved in 
VTABLE(*). The name of the particle 
interacting with particle i first appears 
in the VPLACE(I)-th position of the 
variable VTABLE(*).

• A subroutine for grasping the names of 
magnetic particles interacting with 
magnetic particle themselves according 
to the Verlet neighbor list method.

211Practice of Dissipative Particle Dynamics Simulations



 

0967         RYI   = RY(I)
0968         IF( I .EQ. 1 ) THEN 
0969           VPLACE(I) = 1
0970         ELSE    
0971           VPLACE(I) = VPLACE(I-1) + VTMX(I-1)
0972         END IF 
0973 C
0974       DO 150 J=1,N  
0975 C
0976         IF( J.EQ.I )                       GOTO 150 
0977         RXIJ = RXI  - RX(J)                                          
0978         RXIJ = RXIJ - DNINT(RXIJ/XL)*XL                              
0979         IF( DABS(RXIJ) .GE. VRADIUS )      GOTO 150                 
0980         RYIJ = RYI  - RY(J)                                          
0981         RYIJ = RYIJ - DNINT(RYIJ/YL)*YL                              
0982         IF( DABS(RYIJ) .GE. VRADIUS )      GOTO 150                 
0983 C                                                            
0984         RIJ2 = RXIJ*RXIJ + RYIJ*RYIJ           
0985         IF( RIJ2 .GE. VRADIUS2 )           GOTO 150           
0986 C         
0987         VTMX(I) = VTMX(I) + 1
0988         VTABLE( VPLACE(I) + VTMX(I) - 1 ) = J 
0989 C         
0990   150 CONTINUE                                                       

• If the distance between 
magnetic particles is within 
VRADIUS, the names of the 
magnetic particles are saved 
in VTABLE(*).

• The treatment for the periodic 
BC.

0991   200 CONTINUE                                                        
0992                                                                 RETURN
0993                                                                 END   
0994 C**** SUB FORCEMAG *****                                              
0995       SUBROUTINE FORCEMAG( RCOFF2 , NTIME ) 
0996 C       
0997       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)     
0998 C      
0999       COMMON /BLOCK1/  RX , RY                     
1000       COMMON /BLOCK2/  VX , VY  
1001       COMMON /BLOCK3/  NX , NY                   
1002       COMMON /BLOCK5/  FX , FY  
1003       COMMON /BLOCK7/  N  , NDENS , VDENS , D , DS , DEL , TD
1004       COMMON /BLOCK8/  RA , RV , RE 
1005       COMMON /BLOCK10/ VTMX , VTABLE , VPLACE , NVTABLE , VRADIUS
1006       COMMON /BLOCK13/ OVRLAP 
1007       COMMON /BLOCK15/ H , XL , YL , RCOFF
1008 C                                                    
1009       INTEGER    TT            
1010       PARAMETER( NN=100 , NNN=10000 , TT=500 ) 
1011 C 
1012       REAL*8   RX(NN)   , RY(NN)   , VX(NN)   , VY(NN)        
1013       REAL*8   FX(NN)   , FY(NN)   , NX(NN)   , NY(NN)        
1014       REAL*8   NDENS          
1015       LOGICAL  OVRLAP(NN)    
1016       INTEGER  VTMX(NN) , VTABLE(NNN) , VPLACE(NN)
1017 C
1018       REAL*8   RXI , RYI , RXIJ , RYIJ  
1019       REAL*8   NXI , NYI , NXJ  , NYJ   
1020       REAL*8   FXI , FYI , FXIJ , FYIJ  
1021       REAL*8   TXIJ , TYIJ , RIJ , RIJ2 , RIJ4 , RIJORGN 
1022       REAL*8   RA3, RMN, RMN2   
1023       REAL*8   C0 , C1 , C2 , C3  
1024       INTEGER  IVPLACE 
1025 C 
1026       RA3  = 3.D0*RA
1027       RMN  = DS
1028       RMN2 = RMN**2
1029       DO 10 I=1,N                                                     
1030         FX(I) = 0.D0                                                  
1031         FY(I) = 0.D0    

• Whether or not an overlap of the solid 
parts of the two magnetic particles 
appears is described by the logical 
variable OVRLAP(*).

• A subroutine for calculating 
the magnetic forces acting on 
magnetic particles.

1032         OVRLAP(I) = .FALSE.     
1033    10 CONTINUE         
1034 C        
1035 C                                                                     
1036       DO 100 I=1,N                                                   
1037 C                                                                     
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1038         RXI = RX(I)                                                   
1039         RYI = RY(I)   
1040         NXI = NX(I)                                                   
1041         NYI = NY(I)                                                   
1042         FXI = FX(I)                                                   
1043         FYI = FY(I)                                                   
1044 C                 
1045         IF( VTMX(I) .EQ. 0 )               GOTO 100

• The name of the particles 
interacting with particle i first 
appears in the VPLACE(I)-th 
position of the variable  
VTABLE(*). The number of the 
magnetic particles interacting 
with particle i is VTMX(I).

1046 C
1047         IVPLACE = VPLACE(I)                  
1048         DO 50 JJ=1, VTMX(I)       
1049 C
1050           J    = VTABLE( IVPLACE + JJ - 1 ) 
1051           IF( J.EQ.I )                     GOTO 50 
1052           RXIJ = RXI  - RX(J)                                         
1053           RXIJ = RXIJ - DNINT(RXIJ/XL)*XL                             
1054           IF( DABS(RXIJ) .GE. RCOFF )      GOTO 50                    
1055           RYIJ = RYI  - RY(J)                                         
1056           RYIJ = RYIJ - DNINT(RYIJ/YL)*YL                             
1057           IF( DABS(RYIJ) .GE. RCOFF )      GOTO 50                    
1058 C                                                           
1059           RIJ2  = RXIJ*RXIJ + RYIJ*RYIJ           
1060           IF( RIJ2 .GE. RCOFF2 )           GOTO 50           
1061           RIJ      = DSQRT(RIJ2)    
1062           RIJORGN  = RIJ    
1063 C
1064           IF( RIJ2 .LT. RMN2 ) THEN  
1065             RXIJ = RMN*RXIJ/RIJ 
1066             RYIJ = RMN*RYIJ/RIJ 
1067             RIJ  = RMN       
1068             RIJ2 = RMN2         
1069             OVRLAP(I) = .TRUE.     
1070             OVRLAP(J) = .TRUE.     
1071           END IF                
1072           RIJ4 = RIJ2**2        
1073           TXIJ = RXIJ/RIJ                                       
1074           TYIJ = RYIJ/RIJ                                       
1075           NXJ = NX(J)                                           
1076           NYJ = NY(J)                                           
1077 C                         
1078           C1   = NXI*NXJ   + NYI*NYJ        
1079           C2   = NXI*TXIJ  + NYI*TYIJ       
1080           C3   = NXJ*TXIJ  + NYJ*TYIJ       
1081 C                                               --- MAGNETIC FORCE ---
1082           FXIJ = - ( RA3/RIJ4) * (  ( - C1 + 5.D0*C2*C3 )*TXIJ 
1083      &                                        - ( C3*NXI + C2*NXJ )  )
1084           FYIJ = - ( RA3/RIJ4) * (  ( - C1 + 5.D0*C2*C3 )*TYIJ 
1085      &                                        - ( C3*NYI + C2*NYJ )  )
1086 C                                             --- STERIC REPULSION ---
1087           IF( RIJORGN .LT. 1.D0 ) THEN 
1088              C0   = DLOG( 1.D0 / RIJORGN )  
1089              FXIJ = FXIJ + RV*TXIJ*C0/DEL
1090              FYIJ = FYIJ + RV*TYIJ*C0/DEL
1091           END IF 
1092 C
1093           FXI   = FXI   + FXIJ                                        
1094           FYI   = FYI   + FYIJ                                        
1095 C                                                                     
1096    50   CONTINUE                                                      
1097 C                                                                     
1098         FX(I) = FXI                                                   
1099         FY(I) = FYI                                                   
1100 C                                                                     

•The repulsive force arising from the 
overlap of the surfactant layers is 
calculated according to Eq.  (6.25). 

• The magnetic forces acting on 
particles are calculated according to 
Eq. (6.24).

• If the solid particles overlap, 
OVRLAP(I)=OVRLAP(J)=.TRUE. 
are set.

• The treatment for the periodic BC.

1101   100 CONTINUE     
1102                                                                 RETURN
1103                                                                 END 
1104 C**** SUB FORCEDPD *****                                              
1105       SUBROUTINE FORCEDPD( PI )               
1106 C                                                                     
1107       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)     
1108 C     

• A subroutine for calculating the 
forces acting between dissipative 
particles.
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1109       COMMON /BLOCK15/ H , XL , YL , RCOFF
1110       COMMON /BLOCK21/ RXD  , RYD              
1111       COMMON /BLOCK22/ VXD  , VYD               
1112       COMMON /BLOCK23/ FCXD , FCYD           
1113       COMMON /BLOCK24/ FDXD , FDYD         
1114       COMMON /BLOCK25/ FRXD , FRYD  
1115       COMMON /BLOCK26/ ND   , NDENSDH , NDENSD , VDENSD , MD    
1116       COMMON /BLOCK27/ DC   , ALP , GAM , RCOFFD
1117       COMMON /BLOCK28/ GRPX , GRPY                 
1118       COMMON /BLOCK29/ TMXD , TABLED                          
1119       COMMON /BLOCK30/ PXD  , GRPLXD , PXYD                   
1120       COMMON /BLOCK35/ NRAN , RAN    , IX    
1121 C    
1122       INTEGER    PPXD, PPXYD, TTD                
1123       PARAMETER( NND=50000 , PPXD=500 , PPXYD=250000 , TTD=20 ) 
1124       PARAMETER( NRANMX=100000000 )          
1125 C 
1126       REAL*8   RXD(NND) , RYD(NND)  , VXD(NND) , VYD(NND)      
1127       REAL*8   FCXD(NND), FCYD(NND) , FDXD(NND), FDYD(NND)   
1128       REAL*8   FRXD(NND), FRYD(NND)    
1129       REAL*8   NDENSDH  , NDENSD   , MD  
1130       REAL*8   GRPLXD(PPXD)
1131       INTEGER  GRPX(NND), GRPY(NND)            
1132       INTEGER  TMXD(PPXYD), TABLED(TTD,PPXYD) , PXD , PXYD   
1133 C      
1134       REAL     RAN(NRANMX)                                
1135       INTEGER  NRAN  , IX  ,  NRANCHK                   
1136 C
1137       REAL*8   RXI  , RYI  , RXIJ , RYIJ , RIJSQ , RIJ
1138       REAL*8   VXI  , VYI  , VXIJ , VYIJ     
1139       REAL*8   FCXI , FCYI , FCXIJ, FCYIJ   
1140       REAL*8   FDXI , FDYI , FDXIJ, FDYIJ   
1141       REAL*8   FRXI , FRYI , FRXIJ, FRYIJ   
1142       REAL*8   FXIJ , FYIJ    
1143       REAL*8   EXIJ , EYIJ    
1144       REAL*8   WR   , WR2  , TTAIJ , RAN1 , RAN2 , RCOFFD2 
1145       REAL*8   MODX , MODY , C1  
1146       INTEGER  GX   , GY   , GRP  
1147 C                                    
1148       RCOFFD2 = RCOFFD**2            
1149       DO 10 I=1,ND                
1150         FCXD(I) = 0.D0       
1151         FCYD(I) = 0.D0   
1152         FDXD(I) = 0.D0   
1153         FDYD(I) = 0.D0   
1154         FRXD(I) = 0.D0   
1155         FRYD(I) = 0.D0   

• The conservative force, i.e., the first term 
on the right-hand side of Eq. (6.19), is 
saved in FCXD(*) and FCYD(*). Similarly, 
the dissipative term, i.e., the second term, 
is saved in FDXD(*) and FDYD(*). The 
random term, i.e., the third term, is saved in 
FRXD(*) and FRYD(*).1156    10 CONTINUE          

1157 C                       
1158       DO 500 I=1,ND      
1159 C                       
1160         RXI  = RXD(I)   
1161         RYI  = RYD(I)   
1162         VXI  = VXD(I)   
1163         VYI  = VYD(I)   
1164         FCXI = FCXD(I)  
1165         FCYI = FCYD(I)  
1166         FDXI = FDXD(I)  
1167         FDYI = FDYD(I)  
1168         FRXI = FRXD(I)  
1169         FRYI = FRYD(I)  
1170 C                                            +++ NEIGHBORING GROUP +++
1171         DO 300 JJ=-1,1                                                
1172           GY = GRPY(I) + JJ                                           
1173           IF( GY .EQ. 0 ) THEN                                        
1174             GY   = PXD                                                
1175             MODY = -YL   
1176             GOTO 150                                                  
1177           END IF                                                    
1178           IF( GY .EQ. PXD+1 ) THEN                                    

• The name of the cell in which the 
particles possibly interact with particle i of 
interest is GRP=GX+(GY−1)*PXD.
• (MODX, MODY) are used in treating the 
periodic BC.

1179             GY   = 1                                                  
1180             MODY = YL                                                 
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1181             GOTO 150                                                  
1182           END IF                                                      
1183           MODY =0.D0                                                  
1184 C                                                                     
1185   150   DO 300 II=-1,1                                                
1186           GX = GRPX(I) + II                                         
1187           IF( GX .EQ. 0 ) THEN                                      
1188             GX   = PXD                                                
1189             MODX =-XL                                                
1190             GOTO 160                                                
1191           END IF                                                    
1192           IF( GX .EQ. PXD+1 ) THEN                                    
1193             GX   = 1                                                
1194             MODX = XL                                                
1195             GOTO 160                                                
1196           END IF                                                    
1197           MODX =0.D0                                                
1198 C                                                                     
1199   160     GRP = GX + (GY-1)*PXD                          
1200           IF( TMXD(GRP) .EQ. 0 )          GOTO 300                   
1201 C                                                       +++ ENERGY +++
1202           DO 200 JJJ=1,TMXD(GRP)                     
1203 C                                                    
1204             J = TABLED(JJJ,GRP)                      
1205             IF( J .LE. I )                GOTO 200   
1206 C                                                    
1207             RXIJ  = RXI - (RXD(J) + MODX)            
1208             IF( DABS(RXIJ) .GE. RCOFFD )  GOTO 200   
1209             RYIJ  = RYI - (RYD(J) + MODY)            
1210             IF( DABS(RYIJ) .GE. RCOFFD )  GOTO 200   

• The treatment of the periodic BC.
• If the two particles are separated 
over the cutoff distance RCOFFD, 
the calculation is unnecessary.1211             RIJSQ = RXIJ**2 + RYIJ**2                

1212             IF( RIJSQ .GE. RCOFFD2 )      GOTO 200   
1213             RIJ   = DSQRT(RIJSQ)
1214             VXIJ  = VXI - VXD(J)
1215             VYIJ  = VYI - VYD(J)
1216 C                                                                     
1217             EXIJ  = RXIJ/RIJ
1218             EYIJ  = RYIJ/RIJ
1219             IF(RIJ .LE. DC ) THEN 
1220               WR  = 1.D0 - RIJ/DC 
1221               WR2 = WR*WR 
1222             ELSE 
1223               WR  = 0.D0 
1224               WR2 = 0.D0 
1225             END IF 
1226 C                                                           --- FC ---
1227             FCXIJ  = WR*EXIJ
1228             FCYIJ  = WR*EYIJ
1229             FCXI   = FCXI    + FCXIJ
1230             FCYI   = FCYI    + FCYIJ
1231             FCXD(J)= FCXD(J) - FCXIJ
1232             FCYD(J)= FCYD(J) - FCYIJ
1233 C                                                           --- FD ---
1234             C1     = EXIJ*VXIJ + EYIJ*VYIJ 
1235             FDXIJ  = - WR2*C1*EXIJ
1236             FDYIJ  = - WR2*C1*EYIJ
1237             FDXI   = FDXI    + FDXIJ
1238             FDYI   = FDYI    + FDYIJ

• The calculation of the first 
conservative force in Eq. (6.19).

• The calculation of the second 
dissipative force in Eq. (6.19).

• The action–reaction law can 
provide the force acting on particle 
j as (−FCXIJ) and (−FCYIJ).

1239             FDXD(J)= FDXD(J) - FDXIJ
1240             FDYD(J)= FDYD(J) - FDYIJ
1241 C                                                           --- FR ---
1242             NRAN  = NRAN + 1
1243             RAN1  = DBLE(RAN(NRAN))
1244             IF( RAN1 .LE. 0.D0 ) RAN1 = 0.99999D0 
1245             NRAN  = NRAN + 1
1246             RAN2  = DBLE(RAN(NRAN))
1247             TTAIJ = DSQRT(-2.D0*DLOG(RAN1))*DCOS(2.D0*PI*RAN2)

• The calculation of the third 
random force in Eq. (6.19).

1248 CCC         IF( DABS(TTAIJ) .GT. 6.D0 ) TTAIJ = DSIGN( 6.D0, TTAIJ ) 
1249 C
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1250             FRXIJ  = WR*EXIJ*TTAIJ   
1251             FRYIJ  = WR*EYIJ*TTAIJ   
1252             FRXI   = FRXI    + FRXIJ
1253             FRYI   = FRYI    + FRYIJ
1254             FRXD(J)= FRXD(J) - FRXIJ
1255             FRYD(J)= FRYD(J) - FRYIJ
1256 C
1257   200     CONTINUE                                                    
1258 C
1259   300   CONTINUE                                                      
1260 C        
1261         FCXD(I) = FCXI             
1262         FCYD(I) = FCYI             
1263         FDXD(I) = FDXI             
1264         FDYD(I) = FDYI             
1265         FRXD(I) = FRXI             

• TTAIJ means θij. 

1266         FRYD(I) = FRYI             
1267 C                                                                     
1268   500 CONTINUE                                 
1269 C                                              
1270       DO 520 I=1,ND                             
1271         FCXD(I) = FCXD(I)*H*ALP/(MD*DC)                    
1272         FCYD(I) = FCYD(I)*H*ALP/(MD*DC)                    
1273         FDXD(I) = FDXD(I)*H*GAM/(DC*MD**0.5)                    
1274         FDYD(I) = FDYD(I)*H*GAM/(DC*MD**0.5)                   
1275         FRXD(I) = FRXD(I)*(H*2.D0*GAM)**0.5/(MD**0.75*DC*0.5)      
1276         FRYD(I) = FRYD(I)*(H*2.D0*GAM)**0.5/(MD**0.75*DC*0.5)  
1277   520 CONTINUE                                 
1278                                                                 RETURN
1279                                                                 END   
1280 C**** SUB FORCEINT *****                                              
1281       SUBROUTINE FORCEINT( N , ND , RE , DC ) 
1282 C       
1283       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)     
1284 C      
1285       COMMON /BLOCK1/  RX , RY                     
1286       COMMON /BLOCK9/  TMX  , TABLE 
1287       COMMON /BLOCK11/ FXMD , FYMD , RCOFFMD , RCOFFDDM 
1288       COMMON /BLOCK15/ H , XL , YL , RCOFF
1289       COMMON /BLOCK21/ RXD  , RYD       
1290       COMMON /BLOCK29/ TMXD , TABLED                          
1291       COMMON /BLOCK31/ FXDM , FYDM
1292 C
1293       INTEGER    TT, PPXD, PPXYD, TTD                
1294       PARAMETER( NN=100 , NNN=10000 , TT=500  ) 
1295       PARAMETER( NND=50000 , PPXD=500 , PPXYD=250000 , TTD=20 ) 
1296 C
1297       REAL*8   RX(NN)   , RY(NN)   , FXMD(NN) , FYMD(NN) 
1298       REAL*8   RXD(NND) , RYD(NND) , FXDM(NND), FYDM(NND) 
1299       INTEGER  TMX(NN)  , TABLE(TT,NN) 
1300       INTEGER  TMXD(PPXYD), TABLED(TTD,PPXYD)   
1301 C
1302       REAL*8   RCOFFMD2    , FCOFFDDM    , RCOFFMN    , RCOFFMN2 
1303       REAL*8   RXI  , RYI  , RXIJ , RYIJ , RZIJ , RIJ , RIJ2
1304       REAL*8   RXID , RYID , RRIJ , TXIJ , TYIJ                   
1305       REAL*8   FIJ  , FXIJ , FYIJ , SR2  , SR4    
1306       INTEGER  GP          
1307 C        
1308       RCOFFMD2 = RCOFFMD**2 
1309       FCOFFDDM = 2.D0*(DC/RCOFFDDM)**12 - (DC/RCOFFDDM)**6   
1310       RCOFFMN  = 0.5D0 + ( DC/2.D0 )*0.3D0 
1311       RCOFFMN2 = RCOFFMN**2 
1312       DO 10 I=1,N                                                     
1313         FXMD(I) = 0.D0                                          
1314         FYMD(I) = 0.D0                                         
1315    10 CONTINUE             
1316       DO 12 I=1,ND                                                    
1317         FXDM(I) = 0.D0                                    
1318         FYDM(I) = 0.D0                                      
1319    12 CONTINUE             
1320 C        

• The force acting on magnetic 
particle i by dissipative particles 
is saved in FXMD(I) and FYMD(I). 
The force acting on dissipative 
particle i by magnetic particles is 
saved in FXDM(I) and FYDM(I).

• A subroutine for calculating 
the forces between magnetic 
and dissipative particles.
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1321 C                       
1322       DO 200 I=1,N  
1323         RXI = RX(I) 
1324         RYI = RY(I) 
1325         IF( TMX(I) .EQ. 0 )                    GOTO 200
1326 C        
1327         DO 150 J=1, TMX(I)
1328           GP = TABLE(J,I)
1329           IF( TMXD(GP) .EQ. 0 )                GOTO 150 
1330 C            
1331           DO 120 K=1, TMXD(GP) 
1332             II   = TABLED(K,GP)
1333             RXID = RXD(II)   
1334             RYID = RYD(II)  
1335 C
1336             RXIJ = RXI - RXID             
1337             RXIJ = RXIJ - DNINT(RXIJ/XL)*XL                    
1338             IF( DABS(RXIJ) .GE. RCOFFMD )      GOTO 120        
1339             RYIJ = RYI - RYID             
1340             RYIJ = RYIJ - DNINT(RYIJ/YL)*YL                    
1341             IF( DABS(RYIJ) .GE. RCOFFMD )      GOTO 120         
1342             RIJ2 = RXIJ**2 + RYIJ**2                      
1343             IF( RIJ2 .GT. RCOFFMD2 )           GOTO 120 
1344             IF( RIJ2 .LT. RCOFFMN2 )  RIJ2 = RCOFFMN2  
1345 C            
1346             RIJ  = DSQRT( RIJ2 )
1347             TXIJ = RXIJ/RIJ
1348             TYIJ = RYIJ/RIJ
1349             RRIJ = RIJ - 0.5D0 + DC/2.D0 
1350             SR1  = (DC/RRIJ) 
1351             SR2  = (DC/RRIJ)**2 
1352             SR4  = SR2*SR2 
1353             SR6  = SR2*SR4 
1354             SR12 = SR6*SR6 
1355             FIJ  = (RE*DC/RRIJ)*( 2.D0*SR12 - SR6 - FCOFFDDM )  
1356             FXIJ = FIJ*TXIJ 
1357             FYIJ = FIJ*TYIJ 
1358 C            
1359             FXMD(I)  = FXMD(I)  + FXIJ 
1360             FYMD(I)  = FYMD(I)  + FYIJ 
1361             FXDM(II) = FXDM(II) - FXIJ 
1362             FYDM(II) = FYDM(II) - FYIJ 
1363 C            
1364   120     CONTINUE
1365   150   CONTINUE
1366   200 CONTINUE
1367                                                                 RETURN
1368                                                                 END 
1369 C*********************************************************************
1370 C   THIS SUBROUTINE IS FOR GENERATING UNIFORM RANDOM NUMBERS         *
1371 C   (SINGLE PRECISION) FOR 32-BIT COMPUTER.                          *
1372 C      N      : NUMBER OF RANDOM NUMBERS TO GENERATE                 *
1373 C      IX     : INITIAL VALUE OF RANDOM NUMBERS (POSITIVE INTEGER)   *
1374 C             : LAST GENERATED VALUE IS KEPT                         *
1375 C      X(N)   : GENERATED RANDOM NUMBERS (0<X(N)<1)                  *

• The forces are calculated according to Eq. (6.26).

• If the magnetic particle and 
the dissipative particle are 
separated over RCOFFMD, 
the force is regarded to be 
zero. If the two particles 
significantly overlap, the 
separation is regarded as 
RCOFFMN in order to 
prevent the system from 
diverging.

• The name of the cell in 
which the dissipative  
particles possibly interact 
with magnetic particle i is GP. 
The names of such dissipa-
tive particles are read from 
the variable TABLED (*,GP).

1376 C*********************************************************************
1377 C**** SUB RANCAL ****                                                 
1378       SUBROUTINE RANCAL( N, IX, X )                                   
1379 C
1380       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)     
1381 C                                                                     
1382       REAL      X(N)
1383       INTEGER   INTEGMX, INTEGST, INTEG  
1384 C                     
1385       DATA INTEGMX/2147483647/                                        
1386       DATA INTEGST,INTEG/584287,48828125/                             
1387 C                                                                     
1388       AINTEGMX = REAL( INTEGMX )                                      
1389 C                                                                     
1390       IF ( IX.LT.0 ) STOP                                            

• This is for a 32-bit CPU based on the 
expression of two’s complement.

• A subroutine for generating a uniform 
random number sequence.
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1391       IF ( IX.EQ.0 ) IX = INTEGST                                     
1392       DO 30 I=1,N                                                     
1393          IX = IX*INTEG
1394          IF (IX .LT. 0 )  IX   = (IX+INTEGMX)+1       
1395          X(I) = REAL(IX)/AINTEGMX                                     
1396    30 CONTINUE                                                        
1397       RETURN                                                          
1398       END   
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7 Practice of Lattice Boltzmann
Simulations

In this chapter, we consider the lattice Boltzmann method, which is generally used

as a simulation technique for a pure liquid system but has a different approach to

the molecular simulation and microsimulation methods. The lattice Boltzmann

method is also a potential simulation technique for taking into account multibody

hydrodynamic interactions among particles in a particle suspension or polymers in

a polymeric liquid. Therefore, the lattice Boltzmann method may be a promising

simulation tool in various fields in science and engineering.

In treating fluid properties, such as the flow field, the lattice Boltzmann method

employs an abstract approach that makes use of the particle distribution function,

whereas the usual fluid simulation method deals with quantities that are intuitively

understandable, such as velocities and pressures. The reader may therefore find that

the basic principle behind the lattice Boltzmann method is slightly more difficult to

understand. However, once mastered, the concept of the particle distribution func-

tion and the theoretical background of this simulation method will enable a

research scientist to apply the lattice Boltzmann method to various types of flow

problems in a relatively straightforward manner.

The present exercise addresses a uniform flow around a circular cylinder, which

will be a foundation for applying the lattice Boltzmann method to flow problems in

a particle dispersion or a polymeric liquid. The validity of the solution obtained by

this method can be evaluated by comparing it with that obtained by a fully devel-

oped simulation method, such as the finite difference method. The sample simula-

tion program has been developed from the viewpoint of applying it to a particle

suspension; it may thus be very valuable in a practical context.

7.1 Uniform Flow Around a Two-Dimensional Circular
Cylinder

We here consider solving the problem of uniform flow past a circular cylinder by

means of the lattice Boltzmann method. In a certain limited range of the Reynolds

number, a pair of vortices appears behind the cylinder. The formation of these vor-

tices is very sensitive to the type of boundary model used for the interaction

between the cylinder and the neighboring virtual fluid particles.
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7.2 Specification of Problems in Equations

The important task in the formalization of the present problem is the treatment of

the boundary condition between the cylinder and the virtual fluid particles in the

neighboring lattice sites in addition to the outer boundary conditions.

We consider a uniform flow past a two-dimensional circular cylinder in the

x-direction, as shown in Figure 7.1. The present flow problem is treated as a two-

dimensional flow, so we use the D2Q9 lattice model, as explained in Section 1.5.

The simulation region is divided into the lattice system shown in Figure 7.2. The

two-dimensional circular cylinder with diameter D is fixed at the origin of the coor-

dinate system. Numbering the velocity direction α in the unit cell is as shown in

Figure 1.5B, and α is taken as α5 0,1,2,. . .,8. If r is the position vector of an arbi-

trary lattice point and fα(r,t) is the particle distribution function at time t, the func-

tion after the time interval Δt, fα(r1 cαΔt, t1Δt), can be evaluated from

Eq. (1.91) as

y

x

l0

–h0 h0

–l0
Figure 7.1 Uniform flow past a circular

cylinder.

y

x

l0

–h0 h0

–l0
Figure 7.2 Simulation region made up

of square lattices.
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fαðr1 cαΔt; t1ΔtÞ5 ~f αðr; tÞ
~f αðr; tÞ5 fαðr; tÞ1

1

τ
ff ð0Þα ðr; tÞ2 fαðr; tÞg

9>=
>; ð7:1Þ

in which τ is the relaxation time, f ð0Þα is the thermodynamic equilibrium distribution

function, and cα is the lattice velocity in the α-direction. With the notation u for

the macroscopic velocity and ρ for the density, the equilibrium distribution function

is written as

f ð0Þα 5 ρwα 11 3
cαUu
c2

2
3u2

2c2
1

9

2
U
ðcαUuÞ2

c4

� �
ð7:2Þ

in which wα is a weighting constant. For the case of the D2Q9 model, these terms

are written as

wα 5
4=9 for α5 0

1=9 for α5 1; 2; 3; 4
1=36 for α5 5; 6; 7; 8

jcαj5
0 for α5 0

c for α5 1; 2; 3; 4ffiffiffiffiffi
2c

p
for α5 5; 6; 7; 8

8<
:

8<
: ð7:3Þ

In these expressions, c is the velocity of the movement for the shortest lattice dis-

tance, expressed as c5Δx/Δt, in which Δx is the shortest distance between two

neighboring sites. The lattice velocities given in Eq. (7.3) guarantee that the fluid

particles can move from site to site during the time interval Δt. If the particle dis-

tributions fα (α5 0,1,2,. . .,8) are known for all the directions, the macroscopic

density and momentum can be evaluated from Eqs. (1.88) and (1.89). That is,

ρðr; tÞ5
X8
α50

fαðr; tÞ; ρðr; tÞuðr; tÞ5
X8
α50

fαðr; tÞcα ð7:4Þ

In the present case, a uniform flow is generated by employing a thermodynamic

equilibrium distribution with a given uniform velocity at the upstream boundary

surface at x5 2h0. In order to ensure that we obtain reasonable solutions for the

present flow problem, we must give careful attention to the interaction between

the cylinder and the neighboring lattice sites, and to the outer boundary condition.

In the next section we consider the treatment of the boundary conditions.

7.3 Boundary Conditions

We are now ready to formalize the boundary conditions that complement the basic

equations explained previously. The boundary surfaces to be treated are the upstream

and downstream boundaries, both outer side boundaries, and the cylinder surface

boundary. Among these boundary surfaces, the boundary between the cylinder
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and its neighboring lattice points is the most important and complex. In the following

paragraphs, the boundary conditions relating to the cylinder surface are treated first.

We first explain the Yu�Mei�Luo�Shyy (YMLS) model [34] using Figure 7.3.

The particle distribution function in the α-direction is considered (α5 2 in

Figure 7.3). In Figure 7.3, rw is the point at the cylinder surface, rp is the neighbor-

ing point inside the cylinder, rl is the neighboring site in the liquid area, and rl0 is

the next neighboring point. Since the next point of rl in the direction of α5 1

is inside the cylinder, f2(rl,t1Δt) cannot be obtained from Eq. (7.1). That is,

f2(rl,t1Δt) is dependent on the particle distribution function at the cylinder surface

rw, and not on that at rp. If the particle distribution function at rw, f2(rw,t1Δt) is

known, f2(rl,t1Δt) at rl can be evaluated from the linear interpolation method using

those at rl0 and rw as

f2ðrl; t1ΔtÞ5 Δw

11Δw

f2ðrl0 ; t1ΔtÞ1 1

11Δw

f2ðrw; t1ΔtÞ ð7:5Þ

in which Δw5 jrl2 rwj/jrl2 rpj. Figure 7.3 shows the treatment for the direction

of α5 2 (in the opposite direction to α5 1), and Eq. (7.5) is simply applied to the

direction α5 2; in which the connecting line in the opposite direction (α5 1)

crosses the cylinder surface. In order to evaluate f2(rl,t1Δt) from Eq. (7.5),

f2(rw,t1Δt) at the surface is necessary, and this method uses the following

equation:

f2ðrw; t1ΔtÞ5 ð12ΔwÞ ~f 1ðrl0 ; tÞ1Δw
~f 1ðrl; tÞ ð7:6Þ

This expression means that the particle distribution function on the right-hand side,

which is obtained from the linear interpolation method, becomes that in the oppo-

site direction at the next time step. The linear YMLS method [34] uses the linear

interpolation procedure with Eqs. (7.5) and (7.6) to obtain f2(rl,t1Δt). In this

method, only two lattice points are used for the interpolation procedure, so it is

suitable for many particle dispersions in which a near-contact situation of particles

frequently arises.

In addition to the present YMLS boundary model, for the purpose of study, we will

employ three other methods explained in Chapter 8: the historical bounce-back rule

[35,36] in Eq. (8.106); the quadratic YMLS method, based on the quadratic curve with

the additional point rlv (Eq. (8.121)); and the Bouzidi�Firdaouss�Lallemand (BFL)

r l″ r l ′ r l rw rp

Figure 7.3 Boundary condition on the

material surface.
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model [37] in Eqs. (8.113) and (8.116), or in Eqs. (8.117) and (8.118), which uses the

slightly different interpolation scheme. The two different procedures are adopted for

Δw# 1/2 andΔw. 1/2 in order not to lose the accuracy of the interpolation.

Next, we specify the treatment at the upstream and downstream surfaces. At the

upstream surface, the equilibrium distribution with a given uniform velocity U is

specified. On the other hand, the extrapolation condition, which is widely used in

numerical analysis methods, may be employed at the downstream boundary sur-

face. As will be shown in Chapter 8, the extrapolation method regards the last three

values at rN2 2, rN2 1, and rN as having a linear relationship, expressed as

fαðrN ; t1ΔtÞ5 2fαðrN2 1; t1ΔtÞ2 fαðrN2 2; t1ΔtÞ ð7:7Þ

in which α is the direction leaving the outer boundary toward the inside of the

simulation region.

Similarly, the zero-gradient condition may be applicable, and in this condition

the differential away from the boundary is regarded as zero:

fαðrN ; t1ΔtÞ5 fαðrN2 1; t1ΔtÞ ð7:8Þ

This condition is inferior to the previous extrapolation in accuracy but superior on

the point of divergence. In addition, the uniform flow condition is employed, in

which a uniform flow is assumed outside the simulation region.

Finally, the outer side boundary surfaces of the simulation region are specified.

If the simulation region is sufficiently large compared with the cylinder diameter,

the periodic boundary condition, which is generally used in molecular simulations,

is applicable. With this condition, the particle distribution function at the upper

surface in Figure 7.1, fα(x,y,t) jupper (α5 0,1,. . .,8), is regarded as equal to

fα(x,y,t) jlower at the lower surface. Also, the equilibrium distribution in Eq. (7.2) and

the bounce-back rule may be applied at both side boundaries. However, these bound-

ary models may cause significant distortion of the flow field, unless a sufficiently

large simulation region is employed. The most effective method for removing the

influences of the outer boundary surfaces is expected to be the extrapolation condi-

tion. Hence, we next discuss the relative accuracy of the uniform flow condition

(i.e., the equilibrium distribution condition), the extrapolation condition, and the

zero-gradient condition.

7.4 Various Treatments in the Simulation Program

7.4.1 Definition and Evaluation of the Drag Coefficient

The cylinder located in the fluid acts as a resistance to the smooth fluid flow. The

drag coefficient CD for a uniform flow past a two-dimensional circular cylinder can

be evaluated using the force F per unit length in the flow direction exerted by the

ambient fluid, defined as
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CD 5
F

ρU2D=2
ð7:9Þ

in which ρ is the density of the fluid, U is the uniform flow velocity, and D is the

cylinder diameter.

We now show the method of evaluating F. It is assumed that the point r
cyl
l is the

nearest neighbor site in the liquid to the cylinder surface, and the neighbor lattice

point from the site in the α-direction is inside the cylinder. The momentum toward

the cylinder surface from r
cyl
l at time t is cαcyl

l

~fαcyl

l

ðrcyll ; tÞΔxΔy; and that after the

collision with the cylinder surface at (t1Δt) is 2 cαcyl

l

fαcyl

l

ðrcyll ; t1ΔtÞΔxΔy: The
change in the momentum during the time interval Δt is equal to the impulse

Fαcyl

l

Δt: Hence, Fαcyl

l

Δt can be obtained as

Fαcyl

l

5 cαcyl

l

~f αcyl

l

ðrcyll ; tÞΔxΔy1 cαcyl

l

fαcyl

l

ðrcyll ; t1ΔtÞΔxΔy
n o

=Δt ð7:10Þ

The force acting on the cylinder by the fluid F can be evaluated by summing the

contributions from the neighbor lattice sites interacting with the cylinder as

F5
X
l

X
αcyl

l

Fαcyl

l

ð7:11Þ

In the present flow, the absolute value of F5 jFj is used to calculate the drag co-

efficient in Eq. (7.9).

The flow field and the drag coefficient have already been obtained theoretically

and numerically as a function of the Reynolds number Re for a uniform flow past a

cylinder, so the accuracy of the present results can be evaluated by comparison

with such theoretical and numerical solutions. The Reynolds number Re is defined

as Re5DU/ν, in which the kinematic viscosity ν is expressed in Eq. (8.94) for the

D2Q9 model. That is,

ν5
Δtc2

3
ðτ2 1=2Þ ð7:12Þ

7.4.2 Choice of the Procedures by Coloring Lattice Sites

All the lattice points can be classified into one of several groups. That is, the group

is composed of (1) lattice points at the upstream and downstream boundary surfaces,

(2) lattice points at the outer side boundary surfaces, (3) lattice points interacting

with the cylinder, (4) lattice points inside the cylinder, and (5) all other usual lattice

points. In the simulation program, this discrimination is expressed using the function

“color.” The following values are given to color(i) in the sample program:

color(i)5 0 : all the lattice points in the simulation region not included below

color(i)5 1 : lattice points at the upstream boundary (both end points are included)
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color(i)5 2 : lattice points at the downstream boundary (both end points are included)

color(i)5 3 : lattice points at the outer upper boundary surfaces (neither end point is

included)

color(i)5 4 : lattice points at the outer lower boundary surfaces (neither end point is

included)

color(i)5 5 : lattice points interacting with the cylinder

color(i)5 6 : lattice points inside the cylinder, interacting with the neighboring outside

points

color(i)5 7 : lattice points inside the cylinder, not interacting with the neighboring

outside points

In the present study, since the cylinder is fixed and does not move, the above

checking procedure is only required once before starting the main loop in the pro-

gram. The introduction of the color variable is useful to make the logical flow clear

in the program, which is important in developing a simulation program. Moreover,

this approach is directly applicable when the dispersed particles move with time, so

that the checking procedure must be regularly undertaken until the end of the

simulation.

7.4.3 Treatment of Interactions on the Cylinder Surface

In order to use the above-mentioned boundary conditions at the cylinder surface,

the quantity Δw5 jrl2 rwj/jrl2 rpj must be evaluated. Since the point rw is at the

cylinder surface, the following equation has to be satisfied:

jð12ΔwÞðrl 2 rpÞ1 rp 2 rcylj5Rcyl ð7:13Þ

in which Rcyl is the cylinder radius (Rcyl5D/2), and rcyl is the cylinder position

vector (rcyl5 0 in the present exercise). Equation (7.13) reduces to an easily solved

quadratic equation:

Δw 5
ðr̂l2 2 r̂pUr̂lÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr̂l2 2 r̂pUr̂lÞ2 2 ðr̂l 2 r̂pÞ2ðr̂l2 2R2

cylÞ
q

ðr̂l 2 r̂pÞ2
ð7:14Þ

in which the notation of r̂l 5 rl 2 rcyl and r̂p 5 rp 2 rcyl is used for simplification.

In simulations, the value of Δw for all pairs of the two interacting points on either

side of the cylinder surface is calculated and saved.

7.4.4 Evaluation of the Velocity and Density

In order to employ the equilibrium distribution function, the macroscopic velocity

u and density ρ at an arbitrary lattice point must be evaluated. The definition of the

lattice velocities and the coordinate system are shown in Figure 1.4 and Figure 7.1,

respectively. First, the density ρ(r,t) at an arbitrary point r is evaluated from
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Eq. (7.4), and then the velocity u5 (ux,uy) is calculated from the following

equations:

ρðr; tÞuxðr; tÞ5 cðf1ðr; tÞ2 f2ðr; tÞÞ1
ffiffiffi
2

p
c

ffiffiffi
2

p

2
f5ðr; tÞ2

ffiffiffi
2

p

2
f6ðr; tÞ

0
@

1
A

1
ffiffiffi
2

p
c

ffiffiffi
2

p

2
f7ðr; tÞ2

ffiffiffi
2

p

2
f8ðr; tÞ

0
@

1
A

5 cðf1ðr; tÞ2 f2ðr; tÞ1 f5ðr; tÞ2 f6ðr; tÞ1 f7ðr; tÞ2 f8ðr; tÞÞ
ð7:15Þ

ρðr; tÞuyðr; tÞ5 cðf3ðr; tÞ2 f4ðr; tÞ1 f5ðr; tÞ2 f6ðr; tÞ2 f7ðr; tÞ1 f8ðr; tÞÞ ð7:16Þ

7.5 Nondimensionalization of the Basic Equations

In simulations, it is usual practice for each quantity to be nondimensionalized and

for the nondimensionalized equations to be treated. Since this has been explained

in Section 8.6, we briefly show the nondimensionalized results. Here time is nondi-

mensionalized by Δt, velocities by c (5Δx/Δt), and the particle distribution func-

tion by ρ0, so that the basic equation (7.1) is expressed in nondimensional form as

fα
�ðr� 1 cα

�; t� 1 1Þ5 ~f α
�ðr�; t�Þ

~f α
�ðr�; t�Þ5 fα

�ðr�; t�Þ1 1

τ
f ð0Þ�α ðr�; t�Þ2 fα

�ðr�; t�Þ� �
9>=
>; ð7:17Þ

in which

f ð0Þ
�

α 5wαρ
�

11 3c�αUu
� 1

9

2
cα
�Uu�

� �2
2

3

2
u�2

� �
ð7:18Þ

cα
�		 		5 0 for α5 0

1 for α5 1; 2; 3; 4ffiffiffi
2

p
for α5 5; 6; 7; 8

8<
: ð7:19Þ

In these equations, wα has already been shown in Eq. (7.3), and τ is originally a

nondimensional quantity. Note that the relationship c*5 1 has been taken into

account in the above derivations. The nondimensional expressions of Eq. (7.4) are:

ρ�ðr�; t�Þ5
X8
α50

f �α ðr�; t�Þ; ρ�ðr�; t�Þu�ðr�; t�Þ5
X8
α50

f �α ðr�; t�Þc�α ð7:20Þ
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Since the velocities of fluid particles are nondimensionalized by the lattice speed c,

the nondimensional speed of sound c�s is expressed as c�s 5 1=
ffiffiffi
3

p
in Eq. (8.46).

Hence, it should be noted that one needs to treat flow problems for a macroscopic

velocity u* of u*{1, unless the density significantly varies in the simulation

region. The nondimensional kinematic viscosity, which is necessary for evaluating

the Reynolds number, is expressed as ν*5 (2τ2 1)/6.

7.6 Conditions for Simulations

7.6.1 Initial Distribution

As an initial distribution, the equilibrium distribution with a uniform velocity U

and density ρ0 is used here for the inner simulation region, as well as for the

entrance boundary surface. It is possible to use an equilibrium distribution with

zero velocity, but this may induce a divergence of the system with time. It is

important to discuss the validity of the various initial conditions adopted in order to

clarify the characteristics of the simulation program.

7.6.2 Parameters for Simulations

The solution of the flow field and the drag coefficient for the case of a uniform

flow past a two-dimensional circular cylinder has already been solved theoretically

for Re & 1 and numerically for Re * 1. Since a pair of stable vortices appears

behind the cylinder in the range of 7 & Re & 40, it is quite reasonable to focus on

a pair of vortices for 7 & Re & 40; these vortices are very sensitive to the type of

surface model employed. Hence, the present simulations have been conducted

within the range of 1#Re# 20. The Reynolds number can be expressed as

Re5U*D*/((2τ2 1)/6), so that in order to take a large Reynolds number, the relax-

ation time τ is chosen as τC1/2. The uniform velocity U* cannot be large due to

the restriction of the use of a slow uniform velocity compared with the speed of

sound. From these considerations, the uniform flow velocity is taken as

U*5 0.005�0.01 and the relaxation time as τ5 0.515�0.8. The cylinder diameter

D* is D*5 3�20, and the size of the simulation region is taken as

2h0
*5 4D*�14D*and 2l0

*5 3D*�11D*. The influence of the boundary model will

appear to be more significant for a smaller simulation region.

7.7 Results of Simulations

It is known that the flow field for outer flow problems is significantly distorted

unless a sufficiently large simulation region is used. The results for a relatively small

simulation region (2h0
*,2l0

*)5 (7D*,6D*) are shown in Figure 7.4 for Re5 20.

Figures 7.4A and B depict the uniform flow condition and the zero-gradient
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 condition, respectively, and Figure 7.4C shows the Navier�Stokes solution. The his-

torical bounce-back rule has been used for the treatment of the interactions with the

cylinder. In the case of Re5 20, the length of the pair of vortices is approximately

the same as the cylinder diameter, and the formation of these vortices is quite sensi-

tive to the outer boundary condition that has been adopted. The result in Figure 7.4C

is the numerical solution obtained by the ordinary finite difference method, and it

can be regarded as an exact solution. As shown in Figure 7.4A, for the uniform flow

condition (the equilibrium distribution case), the pair of vortices behind the cylinder

is significantly distorted and shortened, and the fluid flows along and does not tend

to cross the outer side boundary surfaces. This is quite understandable in this case,

because a uniform flow is assumed just outside the boundary surfaces; therefore, the

flow crossing the boundaries does not tend to arise. The pair of distorted vortices is

due to a similar reason—the flow crossing the downstream boundary surface is

(A) (B)

(C)

Figure 7.4 Dependence of the flow field on the outer boundary conditions for Re5 20; the

bounce-back rule is used for the cylinder surface: (A) uniform flow condition, (B) zero-gradient

condition, and (C) numerical solution of Navier�Stokes equation.
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 significantly distorted. These results clearly show that a uniform flow condition has

the tendency to distort the flow field significantly unless a sufficiently large simula-

tion region is used, although this condition is found to exhibit less divergence in the

calculation procedures during a simulation run. In contrast, the result for the zero-

gradient condition shown in Figure 7.4B is in agreement with the Navier�Stokes

solution, but the pair of vortices is significantly distorted. As discussed in the follow-

ing, this is again due to the use of a small simulation region. For the extrapolation

boundary condition, it was found that stable solutions could not be obtained because

the flow field diverged during the advance of the time steps.

Figure 7.5 shows the influence of the size of the simulation region on the forma-

tion of a pair of vortices for the three cases of (2h0
*,2l0

*)5 (6D*,5D*), (9D*,7D*),

and (14D*,11D*), which correspond to Figure 7.5A�C, respectively. The bounce-

back rule has been used for the collision with the cylinder, and the zero-gradient

(A) (B)

(C)

Figure 7.5 Dependence of the flow field on the size of the simulation region (Re5 20,

the bounce-back method): (A) (2h0
*,2l0

*)5 (6D*,5D*); (B) (2h0
*,2l0

*)5 (9D*,7D*); and (C)

(2h0
*, 2l0

*)5 (14D*,11D*).
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condition has been used for the boundaries of the simulation box. The Reynolds

number Re is 20, as in the previous case. For the case of our smallest simulation

region, shown in Figure 7.5A, the pair of vortices unreasonably lengthens in the

downstream area due to the significantly small region used. The results obtained by

the lattice Boltzmann method tend to approach the Navier�Stokes solution shown

in Figure 7.4C with the size of the simulation region, and the flow field is in agree-

ment with the exact solution. This clearly demonstrates the importance of grasping

the influence of this effect by investigating several cases with different size simula-

tion regions.

Figure 7.6 shows the influence of the boundary model employed at the cylinder

surface on the formation of the pair of vortices. Figure 7.6A�D illustrate the

bounce-back rule, the linear YMLS method, the liner BFL method, and the

Navier�Stokes solution. These results were obtained for Re5 20, the simulation

region (2h0
*,2l0

*)5 (14D*,11D*), and the zero-gradient condition for the outer

boundary surfaces. The quadratic YMLS and BFL methods give rise to a diver-

gence of the flow field. As clearly seen in Figure 7.6, no significant difference can

be observed among these flow fields, and these three boundary models show agree-

ment concerning the formation of the pair of vortices behind the cylinder.

Qualitative and quantitative agreement with the exact solution was also confirmed

(A) (B)

(C) (D)

Figure 7.6 Dependence of the flow field on the surface models on the cylinder surface

(Re5 20, the zero-gradient condition): (A) bounce-back rule, (B) linear YMLS method, (C) linear

BFL method, and (D) numerical solution of Navier�Stokes equation.
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concerning the drag coefficient and the velocity distributions, although not shown

here. In particular, agreement for the linear YMLS method is good, which may

indicate there is some advantage to be found in the application of this

boundary method for particle dispersions. As previously discussed, this is because

the method that uses the fewer lattice points in the interpolation scheme is the most

desirable.

7.8 Simulation Program

The following list is an example simulation program written in FORTRAN for the

case discussed in this chapter, and it explains the significance of the important vari-

ables used in the program:

RX(I,J),RY(I,J) : (x,y) components of the position r�i;j of lattice site (i,j)
(I50,1,. . .,PX; J50,1,. . .,PY)

VX(I,J),VY(I,J) : Macroscopic velocity u�i;j at lattice site (i,j)
RHO(I,J) : Macroscopic density at lattice site (i,j)

F(I,J,K) : Particle distribution function (K50,1,. . .,8)at lattice site
(i,j)

FTILD(I,J,K) : Particle distribution function after the collision at lattice (i,j)

W(K) : Weighting constant wα

CVEL(2,K) : Lattice velocity cα (CVEL(1,K)is x-component, and CVEL
(2,K) is y-component)

XL,YL : Dimensions of the simulation region in the (x,y) directions

DNS0 : Density of an inflow fluid

DCYL : Diameter of the cylinder

UVELX : Uniform flow velocity U*

RE : Reynolds number Re

TAU : Relaxation time τ
RXCYL,RYCYL : Center of the cylinder (equal to the origin in this practice)

ICYL,JCYL : Lattice site (in the (x,y) direction) representing the cylinder

center

COLOR(ITH) : Color function representing the type of lattice site (i,j)

(ITH5(11PX)*J1I11)
TBLNAM(II) : Save the name of lattice sites interacting with the cylinder

POSINTBL(ITH) : Save the order in which each lattice site appears in TBLNAM
TBLPOS(II) : Save the order in which quantities relate to lattice site

TBLNAM(II) appear in the variable TBLDW
TBLNUM(II) : Save the number of velocities interacting with the cylinder

concerning lattice site TBLNAM(II)
TBLDW(III) : Save the value of Δw

TBLAL(III) : Save the name of the lattice directions α interacting with the

cylinder

In order to assist the reader in understanding the program, explanatory state-

ments have been added to the important features.
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0001 C*********************************************************************
0002 C*                         LBcyl5.f                                  *
0003 C*                                                                   *
0004 C*     OPEN(9, FILE='@bbba1.dat' ,STATUS='UNKNOWN'); para, results   *
0005 C*     OPEN(11,FILE='bbba11.dat' ,STATUS='UNKNOWN'); parameters      *
0006 C*     OPEN(12,FILE='bbba21.dat' ,STATUS='UNKNOWN'); VEL data        *
0007 C*     OPEN(21,FILE='bbba001.dat',STATUS='UNKNOWN'); VEL field       *
0008 C*     OPEN(22,FILE='bbba011.dat',STATUS='UNKNOWN'); VEL field       *
0009 C*     OPEN(23,FILE='bbba021.dat',STATUS='UNKNOWN'); VEL field       *
0010 C*     OPEN(24,FILE='bbba031.dat',STATUS='UNKNOWN'); VEL field       *
0011 C*     OPEN(25,FILE='bbba041.dat',STATUS='UNKNOWN'); VEL field       *
0012 C*     OPEN(26,FILE='bbba051.dat',STATUS='UNKNOWN'); VEL field       *
0013 C*     OPEN(27,FILE='bbba061.dat',STATUS='UNKNOWN'); VEL field       *
0014 C*     OPEN(28,FILE='bbba071.dat',STATUS='UNKNOWN'); VEL field       *
0015 C*     OPEN(29,FILE='bbba081.dat',STATUS='UNKNOWN'); VEL field       *
0016 C*     OPEN(30,FILE='bbba091.dat',STATUS='UNKNOWN'); VEL field       *
0017 C*     OPEN(41,FILE='avsvel1.fld',STATUS='UNKNOWN'); MicroAVS fld    *
0018 C*     OPEN(42,FILE='avsvel1.dat',STATUS='UNKNOWN'); MicroAVS data   *
0019 C*                                                                   *
0020 C*     -----  LATTICE BOLTZMANN SIMULATION OF A FLOW PAST   -----    *
0021 C*            A CIRCULAR CYLINDER IN A TWO-DIMENSIONAL SYSTEM        *
0022 C*                                                                   *
0023 C*     VER.1:                                                        *
0024 C*       1. D2Q9 MODEL IS USED                                       *
0025 C*       2. EQUILIBRIUM BC WITH GIVEN UNIFORM VEL. IS USED FOR       *
0026 C*          UPSTREAM BC                                              *
0027 C*       3. THREE FOLLOWING BC'S ARE USED FOR BOTH SIDES BC OF CYL   *
0028 C*          (1) EXTRAPOLATION BC    (ITREESID=1)                     *
0029 C*          (2) DEF=0               (ITREESID=2)                     *
0030 C*          (3A) UIFORM FLOW (Const)(ITREESID=3)                     *
0031 C*          (3B) UIFORM FLOW (DEF=0)(ITREESID=4)                     *
0032 C*          (3C) UIFORM FLOW (Extra)(ITREESID=5)                     *
0033 C*       4. THREE FOLLOWING BC'S ARE USED FOR DOWNSTREAM BC          *
0034 C*          (1)  EXTRAPOLATION BC   (ITREEDWN=1)                     *
0035 C*          (2)  DEF=0              (ITREEDWN=2)                     *
0036 C*          (3A) UIFORM FLOW (Const)(ITREEDWN=3)                     *
0037 C*          (3B) UIFORM FLOW (DEF=0)(ITREEDWN=4)                     *
0038 C*          (3C) UIFORM FLOW (Extra)(ITREEDWN=5)                     *
0039 C*       5. THREE FOLLOWING BC'S ARE USED FOR COLLISION BETWEEN      *
0040 C*          SITES AND CYLINDER                                       *
0041 C*          (1)  BOUNCE-BACK             (ITREECYL=1)                *
0042 C*          (2A) YMLS METHOD(Quadratic)  (ITREECYL=2)                *
0043 C*          (2B) YMLS METHOD(Liner)      (ITREECYL=3)                *
0044 C*          (3A) BFL METHOD(Quadratic)   (ITREECYL=4)                *
0045 C*          (3B) BFL METHOD(Linear)      (ITREECYL=5)                *
0046 C*                                                                   *
0047 C*                                       VER.1 BY A.SATOH, '08  7/4  *
0048 C*********************************************************************
0049 C     ---- THE FOLLOWING NOTATIONS ARE USED FOR LATTICE BOLTZMANN --- 
0050 C     F(I,J,K)     : DENSITY DISTRIBUTION FUNCTION
0051 C                    I=0,1,2,...,PX : J=0,1,2,...PY : K=0,1,...,8
0052 C     FTILD(I,J,K) : DENSITY DISTRIBUTION FUNCTION BEFORE TRAVEL
0053 C     CVEL(2,K)    : C_ALPHA 
0054 C                    C_0=(0,0) 
0055 C                    C_1=(1,0), C_2=(-1, 0), C_3=(0, 1), C_4=( 0,-1)
0056 C                    C_5=(1,1), C_6=(-1,-1), C_7=(1,-1), C_8=(-1, 1)
0057 C     W(K)         : WEIGHT CONSTANTS 
0058 C                    W(0)=4/9, W(ALPHA)=1/9  (ALPHA=1,2,3,4), 
0059 C                              W(ALPHA)=1/36 (ALPHA=5,6,7,8)
0060 C     ALPHAMX      : =8 FOR D2Q9 
0061 C     IINC(2,K)    : INCREMENT IN EACH DIRECTION FOR TRANSFER 
0062 C                    FOR ALPHA DIRECTION 
0063 C                    (E.X., IINC(1,1)=1, IINC(2,1)=0) 
0064 C     ANTIALPH(K)  : NAME OF THE OPPOSITE DIRECTION SITE FOR ALPHA 
0065 C                    (E.X., ANTIALPH(1)=2)
0066 C     RHO(I,J)     : DENSITY AT (I,J)
0067 C     RX(I,J),RY(I,J) : LATTICE POSITION
0068 C     VX(I,J),VY(I,J) : VELOCITY COMPONENTS IN X- AND Y-DIRECTIONS
0069 C     DNS0     : MEAN DENSITY (CONSTANT FOR NON-COMPRESSIVE FLOW)
0070 C     PX,PY    : NUMBER OF CELLS IN EACH DIRECTION (EVEN VALUES) 
0071 C     PXY      : = (PX+1)*(PY+1)
0072 C     XL,YL    : LENGTHS OF SIMULATION REGION IN EACH DIRECTION
0073 C     TAU      : NON-DIMENSIONAL RELAXATION TIME 
0074 C     DX       : UNIT LENGTH (=1) 
0075 C     DT       : TIME INTERVAL(=1)
0076 C     CLAT     : LATTICE VELOCITY (=1)
0077 C     (UVELX,UVELY) : UNIFORM VELOCITY COMPONENTS 
0078 C
0079 C     ------  THE FOLLOWING NOTATIONS ARE USED FOR THE CYLINDER ------
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0082 C     ICYL , JCYL  : SITE POSITION OF CYLINDER 
0083 C     COLOR(PXY)   : COLOR FOR DISTINGUISHING PROCEDURES FOR EACH SITE
0084 C     POSINTBL(PXY): POSITION OF THE SITE IN TBLNAM(*) FOR EACH SITE
0085 C     TBLNAM(NTBL) : NAMES OF INTERACTING SITES WITH CYLINDER 
0086 C     TBLNUM(NTBL) : NUMBERS OF INTERACTING ALPHA-VELS FOR EACH SITE
0087 C     TBLPOS(NTBL) : POSITION OF THE SITE APPEARING IN TBLDW(*) AND 
0088 C                    TBLAL(*)
0089 C     TBLDW(NTBLDW): VALUES OF DW ARE SAVED IN TBLDW(*) FOR EACH SITE 
0090 C     TBLAL(NTBLDW): VALUES OF ALPHA-VEL ARE SAVED FOR EACH SITE
0091 C     TBLNAMIN(NTBLNAMI) : THE NAMES OF SITES INSIDE CYLINDER
0092 C
0093 C     ------------------ CONCERNING DRAG COEFFICIENT -----------------
0094 C     CD          : DRAG COEFFICIENT
0095 C     CDFORCE(NSMPLCD) : FORCE IS SAVED FOR EACH TIME STEP
0096 C     CDFORCE0    : COEFFICIENT (U**2)D/2 IS USED FOR CAL. CD
0097 C     NSMPLCD     : TOTAL SAMPLING NUMBER 
0098 C     RE          : REYNOLDS NUMBER
0099 C                   U=0.005 D=20 TAU=0.80  Re=  1
0100 C                   U=0.005 D=20 TAU=0.60  Re=  3
0101 C                   U=0.005 D=20 TAU=0.55  Re=  6
0102 C                   U=0.005 D=20 TAU=0.53  Re= 10
0103 C                   U=0.005 D=20 TAU=0.52  Re= 15
0104 C                   U=0.005 D=20 TAU=0.515 Re= 20
0105 C                   U=0.005 D=20 TAU=0.51  Re= 30
0106 C
0107 C       +++  -XL1<RX(I)<XL2 , -YL1<RY(I)<YL2 , -ZL1<RZ(I)<ZL2  +++
0108 C---------------------------------------------------------------------
0109       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0110 C
0111       COMMON /BLOCK1/  F    , FTILD
0112       COMMON /BLOCK2/  CVEL , W  , IINC , ANTIALPH, ALPHAMX
0113       COMMON /BLOCK3/  RHO  , RX , RY  , VX  , VY
0114       COMMON /BLOCK4/  DNS0 , TAU , DX , DT , CLAT 
0115       COMMON /BLOCK5/  XL , YL , XL1 , YL1 , XL2 , YL2 , PX , PY , PXY
0116       COMMON /BLOCK6/  UVELX , UVELY
0117 C 
0118       COMMON /BLOCK14/ RXCYL , RYCYL , ICYL , JCYL , DCYL
0119       COMMON /BLOCK15/ COLOR    , POSINTBL
0120       COMMON /BLOCK16/ TBLNAM   , TBLNUM  , TBLPOS  , NTBL 
0121       COMMON /BLOCK17/ TBLDW    , TBLAL   , NTBLDW
0122       COMMON /BLOCK18/ TBLNAMIN , NTBLNAMI
0123 C 
0124       COMMON /BLOCK21/ CD , CDFORCE0 , CDFORCE , RE , NSMPLCD
0125 C
0126 C     -----------------------------
0127       INTEGER    PP , QQ , KK
0128       PARAMETER( PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0 )
0129 C
0130       REAL*8    F(0:PP,0:QQ,0:KK), FTILD(0:PP,0:QQ,0:KK) 
0131       REAL*8    CVEL(2,0:KK)     , W(0:KK) 
0132       REAL*8    RHO(0:PP,0:QQ)
0133       REAL*8    RX( 0:PP,0:QQ)   , RY(0:PP,0:QQ) 
0134       REAL*8    VX( 0:PP,0:QQ)   , VY(0:PP,0:QQ) 
0135       INTEGER   ALPHAMX , IINC(2,0:KK) , ANTIALPH(0:KK) 
0136       INTEGER   PX , PY ,  PXY
0137 C     -----------------------------
0138       INTEGER    PPXY 
0139       PARAMETER( PPXY=150000 , NNTBL=2200 , NNTBL2=4400 , NNTBL3=4400 )
0140 C
0141       REAL*8    TBLDW(NNTBL2)
0142       INTEGER   COLOR(PPXY)   , POSINTBL(PPXY)
0143       INTEGER   TBLNAM(NNTBL) , TBLNUM(NNTBL) , TBLPOS(NNTBL) , NTBL
0144       INTEGER   TBLAL(NNTBL2) , NTBLDW 
0145       INTEGER   TBLNAMIN(NNTBL3) , NTBLNAMI
0146 C     -----------------------------
0147       INTEGER    NNCD 
0148       PARAMETER( NNCD=1000000 )
0149 C
0150       REAL*8    CDFORCE(NNCD)
0151 C     -----------------------------
0152       REAL*8    VXSUM(0:PP,0:QQ), VYSUM(0:PP,0:QQ), RHOSUM(0:PP,0:QQ)
0153       REAL*8    H , DCYL2SQ , CD99 , C1 
0154       INTEGER   NTIMEMX , NGRAPH  , NANIME , NOPT, NSMPLCD, NDUM
0155       INTEGER   NTHROW  , NSMPLVEL, NANMCTR, NSMPL1
0156       INTEGER   ITREECYL, ITREESID, ITREEDWN

0080 C     DCYL         : DIAMETER OF CYLINDER
0081 C     RXCYL,RYCYL  : POSITION OF CYLINDER(=(0,0) FOR THE PRESENT CASE)

• The given values are written out in @bbbd1 
and bbbd11, and the velocities are written 
out in bbbd21.
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0157 C
0158                OPEN(9,FILE='@bbbd1.dat'  ,STATUS='UNKNOWN')
0159                OPEN(11,FILE='bbbd11.dat' ,STATUS='UNKNOWN')
0160                OPEN(12,FILE='bbbd21.dat' ,STATUS='UNKNOWN')
0161                OPEN(21,FILE='bbbd001.dat',STATUS='UNKNOWN')
0162                OPEN(22,FILE='bbbd011.dat',STATUS='UNKNOWN')
0163                OPEN(23,FILE='bbbd021.dat',STATUS='UNKNOWN')
0164                OPEN(24,FILE='bbbd031.dat',STATUS='UNKNOWN')
0165                OPEN(25,FILE='bbbd041.dat',STATUS='UNKNOWN')
0166                OPEN(26,FILE='bbbd051.dat',STATUS='UNKNOWN')
0167                OPEN(27,FILE='bbbd061.dat',STATUS='UNKNOWN')
0168                OPEN(28,FILE='bbbd071.dat',STATUS='UNKNOWN')
0169                OPEN(29,FILE='bbbd081.dat',STATUS='UNKNOWN')
0170                OPEN(30,FILE='bbbd091.dat',STATUS='UNKNOWN')
0171                OPEN(41,FILE='avsvel1.fld',STATUS='UNKNOWN')
0172                OPEN(42,FILE='avsvel1.dat',STATUS='UNKNOWN')
0173                                                                  NP=9 
0174 C                                                --- PARAMETER (1) ---
0175 C                                ++ PX=140, PY=120 ; PX=280, PY=220 ++
0176 C                                ++ PX=180, PY=140 ; PX=320, PY=260 ++
0177 C                                ++ PX=220, PY=180 ; PX=340, PY=280 ++
0178     AU      = 0.515D0
0179     UVELX   = 0.005D0
0180     UVELY   = 0.0D0
0181     PX      = 140
0182     PY      = 120 
0183 C                                                --- PARAMETER (2) ---
0184       ALPHAMX =  8 
0185       XL      = DBLE(PX)
0186       YL      = DBLE(PY) 
0187       XL1     = XL/2.D0
0188       YL1     = YL/2.D0
0189       XL2     = XL - XL1

• τ=0.515 and U*=0.005. The numbers of the lattice points in the x- and 
y-directions are (PX, PY), respectively. α=0,…,8. The size of the 
simulation box is (XL,YL) in each direction.

• The name of the first lattice point is 0, so that the total 
number of the lattice points is PXY=(PX+1)×(PY+1).
• The cylinder diameter centered at the origin is DCYL= 
20, and its center is therefore (RXCYL,RYCYL)=(0,0).    

0190       YL2     = YL - YL1
0191       DNS0    =  1.D0 
0192       DX      =  1.D0 
0193       DT      =  1.D0 
0194       CLAT    =  1.D0
0195       PXY     = (PX+1)*(PY+1) 
0196 C                                                --- PARAMETER (2) ---
0197       DCYL    = 20.D0 - 0.0001D0 
0198       DCYL2SQ = DCYL**2 / 4.D0
0199       RXCYL   = 0.D0 
0200       RYCYL   = 0.D0 
0201 C                                                --- PARAMETER (4) ---
0202 C                      ++ (1)  BOUNCE-BACK             (ITREECYL=1) ++
0203 C                      ++ (2A) YMLS METHOD(Quadratic)  (ITREECYL=2) ++
0204 C                      ++ (2B) YMLS METHOD(Liner)      (ITREECYL=3) ++
0205 C                      ++ (3A) BFL METHOD(Quadratic)   (ITREECYL=4) ++
0206 C                      ++ (3B) BFL METHOD(Linear)      (ITREECYL=5) ++
0207 C                            ++ (1) EXTRAPOLATION BC   (ITREESID=1) ++
0208 C                            ++ (2) DEF=0              (ITREESID=2) ++
0209 C                            ++ (3A) UIFORM FLOW(Const)(ITREESID=3) ++
0210 C                            ++ (3B) UIFORM FLOW(DEF=0)(ITREESID=4) ++
0211 C                            ++ (3C) UIFORM FLOW(Extra)(ITREESID=5) ++
0212 C                           ++ (1) EXTRAPOLATION BC    (ITREEDWN=1) ++
0213 C                           ++ (2) DEF=0               (ITREEDWN=2) ++
0214 C                           ++ (3A) UIFORM FLOW(Const) (ITREEDWN=3) ++
0215 C                           ++ (3B) UIFORM FLOW(DEF=0) (ITREEDWN=4) ++
0216 C                           ++ (3C) UIFORM FLOW(Extra) (ITREEDWN=5) ++
0217       ITREECYL= 1 
0218       ITREESID= 2
0219       ITREEDWN= 2
0220 C
0221       NTIMEMX = 200000
0222       NGRAPH  = NTIMEMX/10
0223       NANIME  = NTIMEMX/10
0224       NOPT    = 20
0225 C                                                --- PARAMETER (5) ---
0226 C                                                -  NSMPLCD FOR CD   -
0227 C                                                -  NSMPL1 FOR VEL   -
0228       NSMPLCD =  NTIMEMX
0229       NSMPL1  =  5
0230       NTHROW  =  NTIMEMX/10
0231 C                                                --- PARAMETER (6) ---
0232       CDFORCE0= (DNS0*(UVELX)**2)*DCYL /2.D0
0233       RE      = UVELX*DCYL/( (2.D0*TAU - 1.D0 )/6.D0 )
0234 C
0235 C     ----------------------------------------------------------------
0236 C     ---------------------    INITIAL SETTING    --------------------

• 10 sets of data are written out for making
an animation based on MicroAVS.

• The velocities and positions of 
the lattice points are assigned.

• The velocities and 
densities are written 
out in bbbd001 to 
bbbd091, and the 
data are written out 
in avsvel1 for Micro- 
AVS.

• The boundary condition is adopted according to the values of 
ITREECYL, ITREESID, and ITREEDWN.
• The total number of time steps is NTIMEMX= 200000. The 
velocity field data are written out at every NGRAPH time steps.

234 Introduction to Practice of Molecular Simulation



 

0237 C     ----------------------------------------------------------------
0238 C                    --- SET C_VEL(2,8),W(8),IINC(2,8),ANTIALPH(8) ---
0239       CALL INICVEL
0240 C                         --- SET LATTICE POSITION RX(*,*),RY(*,*) ---
0241       CALL INILAT
0242 C                                  --- SET INITIAL POSIT. AND VEL. ---
0243 C
0244 CCC   OPEN(19,FILE='bbbd091.dat',STATUS='OLD')
0245 CCC     READ(19,201) PX, PY, ALPHAMX 
0246 CCC     READ(19,202) (  ( ( F(I,J,K),K=0,ALPHAMX ),J=0,PY ), I=0,PX  )
0247 CCC     READ(19,204) ( (RX( I,J),J=0,PY),I=0,PX )
0248 CCC     READ(19,204) ( (RY( I,J),J=0,PY),I=0,PX )
0249 CCC     READ(19,206) ( (VX( I,J),J=0,PY),I=0,PX )
0250 CCC     READ(19,206) ( (VY( I,J),J=0,PY),I=0,PX )
0251 CCC     READ(19,208) ( (RHO(I,J),J=0,PY),I=0,PX )
0252 CCC   CLOSE(19,STATUS='KEEP')
0253 CCC   GOTO 7 
0254 C                                  --- SET INITIAL DENSITY F(*,*,8)---
0255       CALL INIDIST( DNS0 , ALPHAMX )
0256 C                                      --- SET COLOR FOR EACH SITE ---
0257 C                                      -  COLOR, POSINTBL, TBLNAMIN  -
0258     7 CALL INICOLOR( PX , PY , DCYL2SQ )
0259 C                              --- MAKE TABLE OF INTERACTING SITES ---
0260 C                              -   WITH CYLINDER                     -
0261       CALL MAKETBLE( DCYL2SQ , NTBL , NTBLDW )
0262 C
0263 C                                      --- SET ZERO VEL INSIDE CYL ---
0264       DO 9 J=0, PY
0265       DO 8 I=0, PX
0266         ITH = (PX+1)*J + (I+1)
0267         IF( (COLOR(ITH).EQ.6) .OR. (COLOR(ITH).EQ.7) ) THEN
0268           VX( I,J) = 0.D0
0269           VY( I,J) = 0.D0
0270           RHO(I,J) = DNS0
0271         END IF
0272     8 CONTINUE
0273     9 CONTINUE
0274 C     ---------------------------------------- PRINT OUT CONSTANTS ---
0275       WRITE(NP,10) DNS0, TAU, DX, DT, CLAT, ALPHAMX 
0276       WRITE(NP,11) PX, PY, PXY, XL, YL, XL1, YL1, XL2, YL2,
0277      &             UVELX, UVELY
0278       WRITE(NP,13) DCYL, ITREECYL, ITREESID, ITREEDWN 
0279       WRITE(NP,14) NTIMEMX, NGRAPH, NANIME, NSMPLCD, NTHROW, NSMPL1
0280       WRITE(NP,15) CDFORCE0, RE 
0281 C     --------------------------------------------- INITIALIZATION ---
0282 C
0283 C                                                --- INITIALIZE(1) ---
0284       NSMPLCD  = 0
0285       DO 20 I=1, NTIMEMX
0286         CDFORCE(I) = 0.D0
0287    20 CONTINUE
0288 C                                                --- INITIALIZE(2) ---
0289       DO 30 J=0, PY
0290       DO 25 I=0, PX
0291         VXSUM( I,J) = 0.D0
0292         VYSUM( I,J) = 0.D0
0293         RHOSUM(I,J) = 0.D0
0294    25 CONTINUE
0295    30 CONTINUE
0296       NSMPLVEL = 0
0297 C                                                --- INITIALIZE(3) ---
0298       NANMCTR  = 0
0299 C
0300 C     ----------------------------------------------------------------
0301 C     -------------------    START OF MAIN LOOP    -------------------
0302 C     ----------------------------------------------------------------
0303 C
0304       DO 1000 NTIME = 1,NTIMEMX
0305 C
0306 C                                   --- CAL. VEL AT EACH LAT. POS. ---
0307 C                                   -   VX(*,*),VY(*,*),RHO(*,*)     -
0308         CALL VELCAL( COLOR , ITREESID , ITREEDWN, NTIME )
0309 C                            --- COLLISION PROCEDURE FTILD(*,*,8)  ---
0310         CALL COLLPROC( COLOR , ALPHAMX )
0311 C                       --- PROPAGATION PROCEDURE,FORCE EVALUATION ---
0312 C                       -                      F(*,*,8) WITHOUT BC   -
0313         NSMPLCD = NSMPLCD + 1 
0314         CALL MOVEPROC( PX , PY , ANTIALPH , RHO , DNS0 , ITREECYL ) 
0315 C                                     --- BOUNDARY CONDITION PROC. ---

• The lattice points interacting with
the cylinder are checked.   

• The velocities at the lattice points inside the cylinder
are set to be zero.  

• The initial values of the distribution function are 
assigned, and the values of the variable color 
in Section 7.4.2 are evaluated. This procedure 
is conducted only once because of the 
cylinder being fixed.

• The following procedure is conducted in the main 
loop: (1) the velocities at each lattice point are 
evaluated in VELCAL, (2) the collision treatment is 
carried out in COLLPROC, (3) the transfer of the 
distribution function is conducted in MOVEPROC, 
and (4) the BC treatment is conducted in BCPROC.
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0316 C                                     -          FX(*,*,8) FOR BC    -
0317         CALL BCPROC( PX , PY , DNS0 , ALPHAMX , ITREESID ,
0318      &                                                ITREEDWN ) 
0319 C
0320 C                                 --- DATA OUTPUT (1) FOR GRAPHICS ---
0321 C
0322         IF( MOD(NTIME,NGRAPH) .EQ. 0 ) THEN
0323 C
0324           CALL VELCAL( COLOR , ITREESID , ITREEDWN , NTIME )
0325 C
0326           NOPT = NOPT + 1 
0327           WRITE(NOPT,201) PX, PY, ALPHAMX 
0328           WRITE(NOPT,202) (   (  ( F(I,J,K),K=0,ALPHAMX ),J=0,PY  ),
0329      &                                                    I=0,PX   )
0330           WRITE(NOPT,204) ( (RX( I,J),J=0,PY),I=0,PX )
0331           WRITE(NOPT,204) ( (RY( I,J),J=0,PY),I=0,PX )
0332           WRITE(NOPT,206) ( (VX( I,J),J=0,PY),I=0,PX )
0333           WRITE(NOPT,206) ( (VY( I,J),J=0,PY),I=0,PX )
0334           WRITE(NOPT,208) ( (RHO(I,J),J=0,PY),I=0,PX )
0335 C
0336           CLOSE(NOPT,STATUS='KEEP')
0337         END IF
0338 C                                --- DATA OUTPUT (2) FOR ANIMATION ---
0339 C
0340         IF( MOD(NTIME,NANIME) .EQ. 0 ) THEN
0341 C
0342           CALL VELCAL( COLOR , ITREESID , ITREEDWN , NTIME )
0343 C
0344           NANMCTR = NANMCTR + 1 
0345           CALL GRAPHVEL( NANMCTR ) 
0346 C
0347         END IF 
0348 C
0349 C                                     --- DATA BETWEEN NTIME=0 AND ---
0350 C                                     --- =NTHROW ARE THROWN AWAY. ---
0351         IF( NTIME .LT. NTHROW ) GOTO 1000
0352 C
0353 C       --------------------------------------------------------------
0354         IF( NTIME .EQ. NTHROW ) THEN
0355 C                                                   +++ INITIALIZE +++
0356           NSMPLCD = 0 
0357           DO 302 I=1, NTIMEMX
0358             CDFORCE(I) = 0.D0
0359   302     CONTINUE
0360 C
0361           DO 310 J=0, PY
0362           DO 305 I=0, PX
0363             VXSUM( I,J) = 0.D0
0364             VYSUM( I,J) = 0.D0
0365             RHOSUM(I,J) = 0..D0
0366   305     CONTINUE
0367   310     CONTINUE
0368           NSMPLVEL     = 0
0369 C
0370           GOTO 1000
0371         END IF
0372 C                                       --- CAL. SUM OF VELOCITIES ---
0373 C
0374         IF( MOD(NTIME,NSMPL1) .EQ. 0 )THEN 
0375           NSMPLVEL = NSMPLVEL + 1
0376           CALL VELCAL( COLOR , ITREESID , ITREEDWN , NTIME )
0377 C
0378           DO 500 J=0, PY 

• The velocity data, etc., are written out at every
NANIME time steps for making an animation.   

0379           DO 490 I=0, PX 
0380             VXSUM( I,J) = VXSUM( I,J) + VX( I,J) 
0381             VYSUM( I,J) = VYSUM( I,J) + VY( I,J) 
0382             RHOSUM(I,J) = RHOSUM(I,J) + RHO(I,J) 
0383   490     CONTINUE
0384   500     CONTINUE
0385         END IF
0386 C
0387 C
0388  1000 CONTINUE
0389 C
0390 C     ----------------------------------------------------------------
0391 C     ---------------------- END OF MAIN LOOP ------------------------
0392 C     ----------------------------------------------------------------
0393 C
0394 C                                                      --- CAL. CD ---
0395       C1 = 0.D0 
0396       DO 1100 I=1, NSMPLCD 

• The velocity data, etc., are 
written out at every NGRAPH 
time steps for the post 
processing analysis.    

• In order to evaluate average values, the 
velocity data, etc., are sampled at every 
NSMPL1 time steps.    
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0397         C1 = C1 + CDFORCE(I) 
0398  1100 CONTINUE 
0399       CD   = ( C1/DBLE(NSMPLCD) ) / CDFORCE0 
0400       CD99 =    CDFORCE( NSMPLCD ) / CDFORCE0 
0401 C
0402 C                         --- CAL AVE. AND PRINT OUT CONSTANTS (1) ---
0403       CALL AVECAL( NP, NSMPLVEL, VXSUM, VYSUM, RHOSUM, 
0404      &                                         PX, PY, ALPHAMX )
0405 C
0406 C                                              --- DATA OUTPUT (3) ---
0407       WRITE(11,1101) DNS0, TAU, DX, DT, CLAT, ALPHAMX 
0408       WRITE(11,1103) PX, PY, PXY, XL, YL, XL1, XL2, YL1, YL2 
0409       WRITE(11,1105) UVELX, UVELY
0410       WRITE(11,1107) DCYL, ITREECYL, ITREESID, ITREEDWN
0411       WRITE(11,1109) NTIMEMX, NGRAPH, NANIME, NSMPLCD, NTHROW, NSMPL1 
0412       WRITE(11,1111) CD, RE
0413 C                                              --- DATA OUTPUT (4) ---
0414       WRITE(12,1121) PX, PY
0415       WRITE(12,1123) (  ( VXSUM( I,J),J=0,PY ), I=0,PX   )
0416       WRITE(12,1123) (  ( VYSUM( I,J),J=0,PY ), I=0,PX   )
0417       WRITE(12,1125) (  ( RHOSUM(I,J),J=0,PY ), I=0,PX   )
0418 C
0419 C                                                --- PRINT OUT (2) ---
0420       WRITE(NP,1131) CD99 , CD , RE
0421 C                                              --- DATA OUTPUT (5) ---
0422       WRITE(12,1133) CD , RE , NSMPLCD 
0423       WRITE(12,1135) ( CDFORCE(I), I=1, NSMPLCD ) 
0424 C
0425                                   CLOSE( 9,STATUS='KEEP')
0426                                   CLOSE(11,STATUS='KEEP')
0427                                   CLOSE(12,STATUS='KEEP')
0428                                   CLOSE(41,STATUS='KEEP')
0429                                   CLOSE(42,STATUS='KEEP')
0430 C
0431 C     ------------------------- FORMAT -------------------------------
0432 C
0433    10 FORMAT(/1H ,'--------------------------------------------------'
0434      &       /1H ,1X,'LATTICE BOLTZMANN SIMULATION OF',
0435      &               ' A FLOW AROUND A CYLINDER'
0436      &       /1H ,10X,' +++ TWO-DIMENSIONAL FLOW +++'
0437      &       /1H ,'--------------------------------------------------'
0438      &      //1H ,'DNS0=', F6.3, 2X, 'TAU=',F6.4,
0439      &             2X, 'DX=', F6.2, 2X, 'DT=', F6.2, 2X, 'CLAT=',
0440      &             F6.3
0441      &       /1H , 'ALPHAMX=', I3)

• The drag coefficient is calculated. 

0442    11 FORMAT(1H ,'PX=', I3, 1X, 'PY=', I3, 1X, 'PXY=', I6, 1X, 
0443      &           'XL=', F6.2, 1X, 'YL=', F6.2, 1X, 'XL1=', F6.2, 1X,
0444      &           'YL1=',F6.2
0445      &      /1H ,'XL2=', F6.2, 1X, 'YL2=', F6.2, 2X,
0446      &           'UVELX=', F6.2, 2X, 'UVELY=',F6.2) 
0447    13 FORMAT(1H ,'DCYL=', F7.3, 2X,'ITREECYL=',I3, 2X,'ITREESID=',I3, 
0448      &            2X,'ITREEDWN=',I3) 
0449    14 FORMAT(1H ,'NTIMEMX=', I8, 2X, 'NGRAPH=', I8, 2X, 'NANIME=', I8
0450      &      /1H ,'NSMPLCD=',I8, 2X, 'NTHROW=',I8, 2X, 'NSMPL1=',I8) 
0451    15 FORMAT(1H ,'CDFORCE0=', F9.4, 2X, 'RE=', F9.3) 
0452   201 FORMAT( 3I9 ) 
0453   202 FORMAT( (6E13.6) ) 
0454   204 FORMAT( (6E13.6) ) 
0455   206 FORMAT( (6E13.6) ) 
0456   208 FORMAT( (6E13.6) )
0457  1101 FORMAT( 5F9.4, I8 )
0458  1103 FORMAT( 3I8, 6F9.3 )
0459  1105 FORMAT( 2F11.5 )
0460  1107 FORMAT( F6.2 , 3I3 )
0461  1109 FORMAT( 6I10 )
0462  1111 FORMAT( 2F12.6 )
0463  1121 FORMAT( 2I10  )
0464  1123 FORMAT( ( 8E10.3 ) ) 
0465  1125 FORMAT( ( 8E10.3 ) ) 
0466  1131 FORMAT(/1H ,'CD99=', F10.5, 3X, 'CD=', F10.5, 3X, 'RE=', F10.5) 
0467  1133 FORMAT( 2F10.4 , I9 )
0468  1135 FORMAT( ( 7E11.4 ) )
0469                                                                   STOP
0470                                                                   END 
0471 C*********************************************************************
0472 C************************  SUBROUTINE  *******************************
0473 C*********************************************************************
0474 C
0475 C**** SUB AVECAL *****
0476       SUBROUTINE AVECAL( NP, NSMPLVEL, VXSUM, VYSUM, RHOSUM, 
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0477      &                                        PX, PY, ALPHAMX )
0478 C
0479       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0480 C
0481       INTEGER   PP , QQ , KK
0482       PARAMETER( PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0 )
0483 C 
0484       INTEGER   PX , PY , ALPHAMX 
0485       REAL*8    VXSUM(0:PP,0:QQ), VYSUM(0:PP,0:QQ), RHOSUM(0:PP,0:QQ)
0486 C
0487 C                                           --- CAL VELOCITY FIELD ---
0488       DO 1010 J=0, PY
0489       DO 1008 I=0, PX
0490         VXSUM( I,J) = VXSUM( I,J) / DBLE(NSMPLVEL) 
0491         VYSUM( I,J) = VYSUM( I,J) / DBLE(NSMPLVEL) 
0492         RHOSUM(I,J) = RHOSUM(I,J) / DBLE(NSMPLVEL) 
0493  1008 CONTINUE 
0494  1010 CONTINUE 
0495 C                                 --- PRINT OUT (2) VELOCITY FIELD ---
0496 C                                                           +++ VX +++
0497       WRITE(NP,1021) 
0498       DO 1030 I=0, PX
0499       DO 1029 J=0, PY, 17
0500         WRITE(NP,1026) VXSUM(I,J   ),VXSUM(I,J+ 1),VXSUM(I,J+ 2),
0501      &                 VXSUM(I,J+ 3),VXSUM(I,J+ 4),VXSUM(I,J+ 5),
0502      &                 VXSUM(I,J+ 6),VXSUM(I,J+ 7),VXSUM(I,J+ 8),
0503      &                 VXSUM(I,J+ 9),VXSUM(I,J+10),VXSUM(I,J+11), 
0504      &                 VXSUM(I,J+12),VXSUM(I,J+13),VXSUM(I,J+14), 

• The velocity field is calculated
by an averaging procedure. 

0505      &                 VXSUM(I,J+15),VXSUM(I,J+16)
0506  1029 CONTINUE 
0507  1030 CONTINUE 
0508 C                                                           +++ VY +++
0509       WRITE(NP,1041) 
0510       DO 1050 I=0, PX
0511       DO 1049 J=0, PY, 17
0512         WRITE(NP,1026) VYSUM(I,J   ),VYSUM(I,J+ 1),VYSUM(I,J+ 2),
0513      &                 VYSUM(I,J+ 3),VYSUM(I,J+ 4),VYSUM(I,J+ 5),
0514      &                 VYSUM(I,J+ 6),VYSUM(I,J+ 7),VYSUM(I,J+ 8),
0515      &                 VYSUM(I,J+ 9),VYSUM(I,J+10),VYSUM(I,J+11), 
0516      &                 VYSUM(I,J+12),VYSUM(I,J+13),VYSUM(I,J+14), 
0517      &                 VYSUM(I,J+15),VYSUM(I,J+16)
0518  1049 CONTINUE 
0519  1050 CONTINUE 
0520 C                                                          +++ RHO +++
0521       WRITE(NP,1061) 
0522       DO 1070 I=0, PX
0523       DO 1069 J=0, PY, 17
0524         WRITE(NP,1062) RHOSUM(I,J   ),RHOSUM(I,J+ 1),RHOSUM(I,J+ 2),
0525      &                 RHOSUM(I,J+ 3),RHOSUM(I,J+ 4),RHOSUM(I,J+ 5),
0526      &                 RHOSUM(I,J+ 6),RHOSUM(I,J+ 7),RHOSUM(I,J+ 8),
0527      &                 RHOSUM(I,J+ 9),RHOSUM(I,J+10),RHOSUM(I,J+11), 
0528      &                 RHOSUM(I,J+12),RHOSUM(I,J+13),RHOSUM(I,J+14), 
0529      &                 RHOSUM(I,J+15),RHOSUM(I,J+16)
0530  1069 CONTINUE 
0531  1070 CONTINUE 
0532 C
0533  1021 FORMAT(/1H ,' VX1, VX2, VX3, VX4, VX5, VX6,...')
0534  1026 FORMAT( (7E11.4) )
0535  1041 FORMAT(/1H ,' VY1, VY2, VY3, VY4, VY5, VY6,...')
0536  1061 FORMAT(/1H ,' RHO1, RHO2, RHO3, RHO4, RHO5, RHO6,...')
0537  1062 FORMAT( (6E13.6) )
0538                                                                 RETURN
0539                                                                 END
0540 C**** SUB INICVEL *****
0541       SUBROUTINE INICVEL
0542 C
0543       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0544 C
0545       COMMON /BLOCK2/  CVEL , W  , IINC , ANTIALPH, ALPHAMX
0546 C
0547       INTEGER    PP , QQ , KK
0548       PARAMETER( PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0 )
0549 C 
0550       REAL*8    CVEL(2,0:KK) , W(0:KK) 
0551       INTEGER   ALPHAMX , IINC(2,0:KK) , ANTIALPH(0:KK) 
0552 C
0553       CVEL(1,0) =  0.D0 
0554       CVEL(2,0) =  0.D0 
0555       CVEL(1,1) =  1.D0 
0556       CVEL(2,1) =  0.D0 
0557       CVEL(1,2) = -1.D0 

• A subroutine for setting the lattice velocities, etc. 

• The lattice velocity cα is set.  
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0558       CVEL(2,2) =  0.D0 
0559       CVEL(1,3) =  0.D0 
0560       CVEL(2,3) =  1.D0 
0561       CVEL(1,4) =  0.D0 
0562       CVEL(2,4) = -1.D0 
0563       CVEL(1,5) =  1.D0 
0564       CVEL(2,5) =  1.D0 
0565       CVEL(1,6) = -1.D0 
0566       CVEL(2,6) = -1.D0 
0567       CVEL(1,7) =  1.D0 
0568       CVEL(2,7) = -1.D0 
0569       CVEL(1,8) = -1.D0 
0570       CVEL(2,8) =  1.D0 
0571 C
0572       W(0) = 4.D0/9.D0
0573       W(1) = 1.D0/9.D0
0574       W(2) = W(1) 
0575       W(3) = W(1) 
0576       W(4) = W(1) 
0577       W(5) = 1.D0/36.D0
0578       W(6) = W(5) 
0579       W(7) = W(5) 
0580       W(8) = W(5) 
0581 C
0582       IINC(1,1) =  1 
0583       IINC(2,1) =  0 
0584       IINC(1,2) = -IINC(1,1)
0585       IINC(2,2) = -IINC(2,1)
0586       IINC(1,3) =  0 
0587       IINC(2,3) =  1 
0588       IINC(1,4) = -IINC(1,3) 
0589       IINC(2,4) = -IINC(2,3)
0590       IINC(1,5) =  1 
0591       IINC(2,5) =  1 
0592       IINC(1,6) = -IINC(1,5)
0593       IINC(2,6) = -IINC(2,5)
0594       IINC(1,7) =  1 
0595       IINC(2,7) = -1 
0596       IINC(1,8) = -IINC(1,7)
0597       IINC(2,8) = -IINC(2,7)
0598 C
0599       ANTIALPH(1) = 2
0600       ANTIALPH(2) = 1
0601       ANTIALPH(3) = 4
0602       ANTIALPH(4) = 3
0603       ANTIALPH(5) = 6
0604       ANTIALPH(6) = 5
0605       ANTIALPH(7) = 8
0606       ANTIALPH(8) = 7
0607                                                                 RETURN
0608                                                                 END
0609 C**** SUB INILAT *****
0610       SUBROUTINE INILAT
0611 C
0612       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0613 C
0614       COMMON /BLOCK3/  RHO  , RX , RY  , VX  , VY
0615       COMMON /BLOCK5/  XL , YL , XL1 , YL1 , XL2 , YL2 , PX , PY , PXY
0616 C
0617       INTEGER    PP , QQ , KK
0618       PARAMETER( PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0 )
0619 C 
0620       REAL*8    RHO(0:PP,0:QQ)
0621       REAL*8    RX( 0:PP,0:QQ)   , RY(0:PP,0:QQ) 
0622       REAL*8    VX( 0:PP,0:QQ)   , VY(0:PP,0:QQ) 
0623       INTEGER   PX , PY , PXY
0624 C
0625       C1 = XL/DBLE(PX)
0626       C2 = YL/DBLE(PY)
0627       DO 100 J=0, PY
0628       DO  90 I=0, PX
0629         RX(I,J) = DBLE(I)*C1 - XL1
0630         RY(I,J) = DBLE(J)*C1 - YL1

• The weighting coefficient wα is set. 

• IINC is used for describing the 
relationship between the lattice point 
and the α-direction. For example, the 
neighboring site in the α-direction of α
=1 is arrived at by moving (+1,0) in the 
x- and y-direction from the site of 
interest. In this case, the movement is 
described as IINC(1,1)=1 and 
IINC(2,1)=0.

• The opposite direction of the
α-direction is saved in ATIALPH(*).  

• A subroutine for setting the lattice positions. 

• (PX+1,PY+1) lattice points are set in
the x- and y-direction.   

0631    90 CONTINUE
0632   100 CONTINUE
0633                                                                 RETURN
0634                                                                 END
0635 C**** SUB INIDIST *****
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0639 C
0640       COMMON /BLOCK1/  F  , FTILD
0641       COMMON /BLOCK5/  XL , YL , XL1 , YL1 , XL2 , YL2 , PX , PY , PXY
0642       COMMON /BLOCK6/  UVELX , UVELY
0643 C
0644       INTEGER    PP , QQ , KK
0645       PARAMETER( PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0 )
0646 C 
0647       REAL*8    F(0:PP,0:QQ,0:KK), FTILD(0:PP,0:QQ,0:KK) 
0648       INTEGER   PX , PY , PXY , ALPHAMX
0649 C
0650       REAL*8    FEQ, CDNS0
0651 C
0652       CDNS0 = DNS0 
0653 C
0654       DO 110 J=0, PY
0655       DO 100 I=0, PX
0656         DO 10  K=0, ALPHAMX
0657           IF( I.EQ.0 ) THEN 
0658             F(I,J,K)= FEQ( UVELX, UVELY, K, CDNS0 )
0659           ELSE
0660 CCC         F(I,J,K)= FEQ( 0.D0 , 0.D0 , K, CDNS0 )
0661             F(I,J,K)= FEQ( UVELX, UVELY, K, CDNS0 )
0662           END IF
0663    10   CONTINUE
0664   100 CONTINUE
0665   110 CONTINUE
0666                                                                 RETURN
0667                                                                 END
0668 C**** SUB INICOLOR ****
0669       SUBROUTINE INICOLOR( PX , PY , DCYL2SQ )
0670 C                                     --------------------------------
0671 C                                      0 : USUAL TREATMENT
0672 C                                      1 : TREATMENT AT Bupstream
0673 C                                      2 : TREATMENT AT Bdownstream
0674 C                                      3 : TREATMENT AT Bupper_side
0675 C                                      4 : TREATMENT AT Blower_side
0676 C                                      5 : TREATMENT AT Bcyl_surface
0677 C                                      6 : NO BC TREAT. INSIDE PTCL,
0678 C                                          BUT INTERACTING OUTER SITES
0679 C                                      7 : NO BC TREAT. INSIDE PTCL,
0680 C                                          NOT INTERACTING OUTER SITES
0681 C                                     --------------------------------
0682       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0683 C
0684       COMMON /BLOCK3/  RHO  , RX , RY  , VX  , VY
0685 C 
0686       COMMON /BLOCK14/ RXCYL , RYCYL , ICYL , JCYL , DCYL
0687       COMMON /BLOCK15/ COLOR    , POSINTBL
0688       COMMON /BLOCK18/ TBLNAMIN , NTBLNAMI
0689 C 
0690 C     -----------------------------
0691       INTEGER    PP , QQ , KK
0692       PARAMETER( PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0 )
0693 C

• An equilibrium distribution 
with the uniform velocity U is 
used as an initial distribution.

• A subroutine for 
evaluating the values of 
the variable color
explained in Section 
7.4.2.

0694       REAL*8    RHO(0:PP,0:QQ)
0695       REAL*8    RX( 0:PP,0:QQ)   , RY(0:PP,0:QQ) 
0696       REAL*8    VX( 0:PP,0:QQ)   , VY(0:PP,0:QQ) 
0697       INTEGER   PX , PY , PXY
0698 C     -----------------------------
0699       INTEGER    PPXY 
0700       PARAMETER( PPXY=150000 , NNTBL=2200 , NNTBL2=4400 , NNTBL3=4400 )
0701 C
0702       INTEGER   COLOR(PPXY )     , POSINTBL(PPXY)
0703       INTEGER   TBLNAMIN(NNTBL3) , NTBLNAMI
0704 C     -----------------------------
0705       REAL*8    RJDG1 , RJDG2 , RJDG2SQ , RXI , RYI , C1 
0706       REAL*8    RXIJ  , RYIJ  , RIJSQ 
0707       INTEGER   ISITE, IC1, IS, IE, JS, JE 
0708 C
0709       DO 120 J=0, PY
0710       DO 100 I=0, PX
0711         ISITE  = (PX+1)*J + (I+1) 
0712 C
0713         POSINTBL( ISITE ) = 0
0714 C

0636       SUBROUTINE INIDIST( DNS0 , ALPHAMX )
0637 C
0638       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N) • A subroutine for setting the initial

value of the distribution functions.  
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0715         IF(      I.EQ.0  ) THEN 
0716                                 COLOR(ISITE) = 1
0717         ELSE IF( I.EQ.PX ) THEN 
0718                                 COLOR(ISITE) = 2
0719         ELSE IF( J.EQ.PY ) THEN 
0720                                 COLOR(ISITE) = 3
0721         ELSE IF( J.EQ.0  ) THEN 
0722                                 COLOR(ISITE) = 4
0723         ELSE
0724                                 COLOR(ISITE) = 0
0725         END IF 
0726   100 CONTINUE
0727   120 CONTINUE
0728 C               --- FOR SPECIAL TREATMENT OF SITES INSIDE CYLINDER ---
0729       DO 150 I=1, PX
0730         IF( RX(I,0) .GE. RXCYL ) THEN 
0731           ICYL = I
0732           GOTO 170 
0733         END IF 
0734   150 CONTINUE 
0735       ICYL = PX
0736 C
0737   170 DO 160 J=1, PY
0738         IF( RY(0,J) .GE. RYCYL ) THEN 
0739           JCYL = J
0740           GOTO 180 
0741         END IF 
0742   160 CONTINUE 
0743       JCYL = PY
0744 C
0745   180 C1    = (DCYL/2.D0+0.01D0) / ( RX(2,0)-RX(1,0) ) 
0746 CCC   IC1   = IDINT(C1)
0747       IC1   = IDINT(C1) + 2
0748       IS    = ICYL - IC1 - 1 
0749       IE    = ICYL + IC1
0750       JS    = JCYL - IC1 - 1 
0751       JE    = JCYL + IC1
0752       RJDG1   = (DCYL/2.D0) + 3.D0*( RX(2,0)-RX(1,0) ) 
0753       RJDG2   = RJDG1
0754       RJDG2SQ = RJDG2**2
0755 C
0756       NTBLNAMI = 0

• The values shown in Section 
7.4.2 are assigned to the 
lattice sites next to each 
boundary surface.     

• The treatment concerning the
sites related to the cylinder.  

• The sites to be checked are 
limited to the neighboring 
sites around the cylinder to a 
certain degree.

0757       DO 220 J=JS, JE
0758       DO 200 I=IS, IE
0759 C 
0760         RXI = RX(I,J)
0761         RYI = RY(I,J)
0762 C
0763         ISITE  = (PX+1)*J + (I+1) 
0764         RXIJ   = RXI - RXCYL
0765         IF( DABS(RXIJ) .GE. RJDG1 )  GOTO 200
0766         RYIJ   = RYI - RYCYL
0767         IF( DABS(RYIJ) .GE. RJDG1 )  GOTO 200
0768         RIJSQ  = RXIJ**2 + RYIJ**2 
0769         IF( RIJSQ .GE. RJDG2SQ )     GOTO 200
0770 C 
0771         IF( RIJSQ .LE. DCYL2SQ ) THEN
0772           COLOR(ISITE) = 7
0773           NTBLNAMI = NTBLNAMI +1
0774           TBLNAMIN(NTBLNAMI) = ISITE
0775         END IF 
0776 C
0777   200 CONTINUE
0778   220 CONTINUE
0779                                                                RETURN 
0780                                                                END
0781 C**** SUB MAKETBLE ****
0782       SUBROUTINE MAKETBLE( DCYL2SQ , NTBL , NTBLDW ) 
0783 C
0784       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0785 C
0786       COMMON /BLOCK3/  RHO  , RX , RY  , VX  , VY
0787       COMMON /BLOCK5/  XL , YL , XL1 , YL1 , XL2 , YL2 , PX , PY , PXY
0788 C 
0789       COMMON /BLOCK14/ RXCYL , RYCYL , ICYL , JCYL , DCYL
0790       COMMON /BLOCK15/ COLOR , POSINTBL
0791 C 
0792 C     -----------------------------
0793       INTEGER    PP , QQ , KK
0794       PARAMETER( PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0 )
0795 C

• color(*)=7 is set for the site
inside the cylinder.   

• A subroutine for making a 
list of the lattice sites 
interacting with the cylinder.
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0796       REAL*8    RHO(0:PP,0:QQ)
0797       REAL*8    RX( 0:PP,0:QQ)   , RY(0:PP,0:QQ) 
0798       REAL*8    VX( 0:PP,0:QQ)   , VY(0:PP,0:QQ) 
0799       INTEGER   PX , PY ,  PXY
0800 C     -----------------------------
0801       INTEGER    PPXY 
0802       PARAMETER( PPXY=150000 , NNTBL=2200 , NNTBL2=4400 , NNTBL3=4400 )
0803 C
0804       INTEGER   COLOR(PPXY)   , POSINTBL(PPXY)
0805 C     -----------------------------
0806       REAL*8    C1 , RXI , RYI
0807       REAL*8    RJDG1 , RJDG2 , RJDG2SQ
0808       INTEGER   IS , IE , JS , JE , IC1 , ISITE 
0809 CCC   INTEGER   JJ , JJ2 , II , II2 , IALPHA(0:8) , NIALPHA
0810       INTEGER   IALPHA(0:8) , NIALPHA
0811 C
0812 C                  --- CYLINDER POSITION IS (ICYL,JCYL) IN LATTICE ---
0813       NTBL  = 0
0814       NTBLDW= 0
0815 C                    --- CHECK WHETHER OR NOT SITES ARE INSIDE CYL ---
0816 C 
0817    40 C1    = (DCYL/2.D0+0.01D0) / ( RX(2,0)-RX(1,0) ) 
0818 CCC   IC1   = IDINT(C1)
0819       IC1   = IDINT(C1) + 2
0820       IS    = ICYL - IC1 - 1 
0821       IE    = ICYL + IC1
0822       JS    = JCYL - IC1 - 1 
0823       JE    = JCYL + IC1
0824 C
0825       RJDG1   = (DCYL/2.D0) + 3.D0*( RX(2,0)-RX(1,0) )
0826       RJDG2   = RJDG1
0827       RJDG2SQ = RJDG2**2
0828 C
0829 C
0830       DO 220 J=JS, JE
0831       DO 200 I=IS, IE
0832 C
0833         RXI = RX(I,J)
0834         RYI = RY(I,J)
0835 C       --------------------------------- FOR THE MOST OUTER SITES --- 
0836         IF(      (I.EQ.IS) .AND. (J.EQ.JS) ) THEN 
0837 C                                            +++AT LEFT-DOWN CORNER+++
0838           IALPHA(1) = 5
0839           NIALPHA   = 1
0840           CALL INTERACT( I, J, RXI, RYI, RXCYL, RYCYL, NIALPHA, IALPHA,
0841      &                   RJDG2SQ , DCYL2SQ )
0842         ELSE IF( (I.EQ.IE) .AND. (J.EQ.JS) ) THEN 
0843 C                                           +++AT RIGHT-DOWN CORNER+++
0844           IALPHA(1) = 8
0845           NIALPHA   = 1
0846           CALL INTERACT( I, J, RXI, RYI, RXCYL, RYCYL, NIALPHA, IALPHA,
0847      &                   RJDG2SQ , DCYL2SQ )
0848         ELSE IF( (I.EQ.IS) .AND. (J.EQ.JE) ) THEN 
0849 C                                              +++AT LEFT-UP CORNER+++
0850           IALPHA(1) = 7
0851           NIALPHA   = 1
0852           CALL INTERACT( I, J, RXI, RYI, RXCYL, RYCYL, NIALPHA, IALPHA,
0853      &                   RJDG2SQ , DCYL2SQ )
0854         ELSE IF( (I.EQ.IE) .AND. (J.EQ.JE) ) THEN 
0855 C                                             +++AT RIGHT-UP CORNER+++
0856           IALPHA(1) = 6
0857           NIALPHA   = 1
0858           CALL INTERACT( I, J, RXI, RYI, RXCYL, RYCYL, NIALPHA, IALPHA,
0859      &                   RJDG2SQ , DCYL2SQ )
0860 C
0861 C      ------- FOR OUTER CIRCUMFERENCE SITES OF CHECKING RECTANGLE ---
0862 C
0863         ELSE IF ( J.EQ.JS ) THEN 
0864 C                                            +++ALONG X-AXIS (DOWN)+++
0865           IALPHA(1) = 3
0866           IALPHA(2) = 5
0867           IALPHA(3) = 8
0868           NIALPHA   = 3
0869 C
0870           CALL INTERACT( I, J, RXI, RYI, RXCYL, RYCYL, NIALPHA, IALPHA,
0871      &                   RJDG2SQ , DCYL2SQ )
0872         ELSE IF ( I.EQ.IS ) THEN 
0873 C                                         +++ ALONG Y-AXIS (LEFT)  +++

• The sites to be checked are 
limited to the neighboring 
sites around the cylinder to a 
certain degree.     

• The treatment for the four corner sites of
the outermost rectangle.   

• For the left-down site.  

• For the right-down site. 

• For the left-up site. 

• For the right-up site. 

• The treatment for the sites on the outermost
rectangle, except the four corner sites.  

• For the sites on the bottom
line along the x-axis.  
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0874           IALPHA(1) = 1
0875           IALPHA(2) = 5
0876           IALPHA(3) = 7
0877           NIALPHA   = 3
0878 C
0879           CALL INTERACT( I, J, RXI, RYI, RXCYL, RYCYL, NIALPHA, IALPHA,
0880      &                   RJDG2SQ , DCYL2SQ )
0881         ELSE IF ( I.EQ.IE ) THEN 
0882 C                                         +++ ALONG Y-AXIS (RIGHT) +++

• For the sites on the left line
along the y-axis.   

0883           IALPHA(1) = 2
0884           IALPHA(2) = 6
0885           IALPHA(3) = 8
0886           NIALPHA   = 3
0887 C
0888           CALL INTERACT( I, J, RXI, RYI, RXCYL, RYCYL, NIALPHA, IALPHA,
0889      &                   RJDG2SQ , DCYL2SQ )
0890         ELSE IF ( J.EQ.JE ) THEN 
0891 C                                         +++ ALONG X-AXIS (UP)    +++
0892           IALPHA(1) = 4
0893           IALPHA(2) = 6
0894           IALPHA(3) = 7
0895           NIALPHA   = 3
0896 C
0897           CALL INTERACT( I, J, RXI, RYI, RXCYL, RYCYL, NIALPHA, IALPHA,
0898      &                   RJDG2SQ , DCYL2SQ )
0899 C 
0900 C       ------------------- FOR INNER SITES  OF CHECKING RECTANGLE --- 
0901         ELSE 
0902 C
0903           IALPHA(1) = 1
0904           IALPHA(2) = 2
0905           IALPHA(3) = 3
0906           IALPHA(4) = 4
0907           IALPHA(5) = 5
0908           IALPHA(6) = 6
0909           IALPHA(7) = 7
0910           IALPHA(8) = 8
0911           NIALPHA   = 8
0912 C
0913           CALL INTERACT( I,J, RXI,RYI, RXCYL,RYCYL, NIALPHA,IALPHA,
0914      &                   RJDG2SQ , DCYL2SQ )
0915 C
0916         END IF 
0917 C
0918   200 CONTINUE
0919   220 CONTINUE
0920                                                                RETURN 
0921                                                                END
0922 C**** SUB INTERACT *****
0923       SUBROUTINE INTERACT( I, J, RXI, RYI, RXCYL , RYCYL ,
0924      &                           NIALPHA, IALPHA, RJDG2SQ, DCYL2SQ ) 
0925 C
0926       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0927 C
0928       COMMON /BLOCK2/  CVEL , W  , IINC , ANTIALPH, ALPHAMX
0929       COMMON /BLOCK3/  RHO  , RX , RY  , VX  , VY
0930       COMMON /BLOCK5/  XL , YL , XL1 , YL1 , XL2 , YL2 , PX , PY , PXY
0931 C 
0932       COMMON /BLOCK15/ COLOR    , POSINTBL
0933       COMMON /BLOCK16/ TBLNAM   , TBLNUM  , TBLPOS  , NTBL 
0934       COMMON /BLOCK17/ TBLDW    , TBLAL   , NTBLDW
0935 C 
0936 C     -----------------------------
0937       INTEGER    PP , QQ , KK
0938       PARAMETER( PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0 )
0939 C
0940       REAL*8    CVEL(2,0:KK)     , W(0:KK) 
0941       REAL*8    RHO(0:PP,0:QQ)
0942       REAL*8    RX( 0:PP,0:QQ)   , RY(0:PP,0:QQ) 
0943       REAL*8    VX( 0:PP,0:QQ)   , VY(0:PP,0:QQ) 
0944       INTEGER   ALPHAMX , IINC(2,0:KK) , ANTIALPH(0:KK) 
0945       INTEGER   PX , PY ,  PXY   , NIALPHA , IALPHA(0:8)

• For the sites on the right line
along the y-axis.   

• For the sites on the top line
along the x-axis.   

• For the sites inside the
outermost rectangle.   

• A subroutine for 
assessing whether or 
not the neighboring site 
is inside the cylinder.   

0946 C     -----------------------------
0947       INTEGER    PPXY 
0948       PARAMETER( PPXY=150000 , NNTBL=2200 , NNTBL2=4400 , NNTBL3=4400 )
0949 C
0950       REAL*8    TBLDW(NNTBL2)
0951       INTEGER   COLOR(PPXY)   , POSINTBL(PPXY)
0952       INTEGER   TBLNAM(NNTBL) , TBLNUM(NNTBL) , TBLPOS(NNTBL) , NTBL 
0953       INTEGER   TBLAL(NNTBL2) , NTBLDW 
0954 C     -----------------------------
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0955 C
0956       INTEGER   ISITE, ISITE1, IPATH, IALPHA0 
0957       INTEGER   IX1 , IY1 , JJJ
0958       REAL*8    RXI , RYI , RXIJ , RYIJ , RIJSQ
0959       REAL*8    RXI1, RYI1, RXIJ1, RYIJ1, RIJSQ1 , RJDG2SQ
0960       REAL*8    RXCYL, RYCYL , DCYL2SQ
0961       REAL*8    C01 , C1 , C2 , C3 , CDW 
0962 C
0963 C
0964       ISITE  = (PX+1)*J + (I+1)
0965       RXIJ   = RXI - RXCYL
0966       RYIJ   = RYI - RYCYL
0967       RIJSQ  = RXIJ**2 + RYIJ**2 
0968       IF( RIJSQ .GE. RJDG2SQ ) THEN 
0969         COLOR(ISITE) = 0
0970         RETURN 
0971       END IF 
0972       IF( RIJSQ .LE. DCYL2SQ ) RETURN
0973 C 
0974       IPATH = 0 
0975       DO 200 JJJ = 1, NIALPHA 
0976 C                                       --- (I,J)      : ORIGINAL  ---
0977 C                                       --- ISITE      : ORIGINAL  ---
0978 C                                       --- (RXI,RYI)  : ORIGINAL  ---
0979 C                                       --- (IX1,IY1)  : CANDIDATE ---
0980 C                                       --- ISITE1     : CANDITATE ---
0981 C                                       --- (RXI1,RYI1): CANDIDATE ---
0982 C                                       --- (RXCYL,RYCYL): CYLINDER---
0983         IALPHA0= IALPHA(JJJ)
0984         IX1    = I + IINC(1,IALPHA0) 
0985         IY1    = J + IINC(2,IALPHA0) 
0986         RXI1   = RX(IX1,IY1)
0987         RYI1   = RY(IX1,IY1)
0988         RXIJ1  = RXI1 - RXCYL 
0989         RYIJ1  = RYI1 - RYCYL 
0990         RIJSQ1 = RXIJ1**2 + RYIJ1**2
0991 C 
0992         IF( RIJSQ1 .LE. DCYL2SQ ) THEN
0993           IPATH = IPATH + 1
0994           IF( IPATH .EQ. 1 ) THEN 
0995             NTBL = NTBL + 1
0996             TBLNAM(NTBL) = ISITE
0997             COLOR(ISITE) = 5
0998             POSINTBL(ISITE) = NTBL
0999           END IF 
1000 C                                --- FOR OUTSIDE SITES OF CYLINDER ---
1001           C01 = RXIJ*RXIJ1 + RYIJ*RYIJ1
1002           C1  = RIJSQ + RIJSQ1 - 2.D0*C01
1003           C2  = -RIJSQ + C01
1004           C3  = RIJSQ - DCYL2SQ
1005           CDW = ( - C2 - DSQRT( C2**2 - C1*C3 ) ) / C1
1006 C
1007           NTBLDW = NTBLDW + 1 
1008           TBLDW( NTBLDW ) = CDW 

• The sites being far over the 
RJDG2SQ distance (note the square) 
have no interaction with the cylinder.   

• If the neighboring site is inside the cylinder, then 
the variable color is set to be 5 for this site, its site 
name is saved in TBLNAM, and the order of the 
site appearing in TBLNAM is saved in POSINTBL.

•  Δw =CDW is calculated from Eq. (7.14). The direction 
of the neighboring site inside the cylinder is saved in 
TBLAL, and the value of Δw  is saved in TBLDW.    

•  The order of the quantities, 
related to the site of interest, 
first appearing in TBLAL and 
TBLDW, is saved in TBLPOS.

1009           TBLAL( NTBLDW ) = IALPHA0 
1010           IF( IPATH .EQ. 1 )  TBLPOS(NTBL) = NTBLDW
1011 C
1012 C                                 --- FOR INSIDE SITES OF CYLINDER ---
1013           ISITE1 = (PX+1)*IY1 + (IX1+1) 
1014           COLOR(ISITE1) = 6
1015         END IF 
1016 C
1017   200 CONTINUE
1018 C
1019       IF( IPATH .GE. 1 ) THEN
1020         TBLNUM(NTBL) = IPATH
1021       ELSE
1022         COLOR(ISITE) = 0
1023       END IF 
1024                                                                 RETURN 
1025                                                                 END
1026 C**** SUB VELCAL *****
1027       SUBROUTINE VELCAL( COLOR , ITREESID , ITREEDWN , NTIME )
1028 C
1029       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
1030 C
1031       COMMON /BLOCK1/  F    , FTILD
1032       COMMON /BLOCK3/  RHO  , RX , RY  , VX  , VY
1033       COMMON /BLOCK4/  DNS0 , TAU , DX , DT , CLAT 
1034       COMMON /BLOCK5/  XL , YL , XL1 , YL1 , XL2 , YL2 , PX , PY , PXY
1035       COMMON /BLOCK6/  UVELX , UVELY

•  The number of the sites, inside the cylinder, interacting
with the site of interest is saved in TBLNUM.   

• A subroutine for calculating the veloci- 
ties and densities at each lattice site.  
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1036 C 
1037 C     -----------------------------
1038       INTEGER    PP , QQ , KK
1039       PARAMETER( PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0 )
1040 C
1041       REAL*8    F(0:PP,0:QQ,0:KK), FTILD(0:PP,0:QQ,0:KK) 
1042       REAL*8    RHO(0:PP,0:QQ)
1043       REAL*8    RX( 0:PP,0:QQ)   , RY(0:PP,0:QQ) 
1044       REAL*8    VX( 0:PP,0:QQ)   , VY(0:PP,0:QQ) 
1045       INTEGER   PX , PY ,  PXY
1046 C     -----------------------------
1047       INTEGER    PPXY 
1048       PARAMETER( PPXY=150000 , NNTBL=2200 , NNTBL2=4400 , NNTBL3=4400 )
1049 C
1050       INTEGER   COLOR(PPXY)
1051 C     -----------------------------
1052       REAL*8    VX0, VY0, RHO0
1053       INTEGER   ITH, ICLR
1054 C                                                    --- Bupstream ---
1055       DO 50 J=0, PY
1056         VX(  0, J) = UVELX
1057         VY(  0, J) = UVELY
1058         RHO( 0, J) = DNS0 
1059    50 CONTINUE 
1060 C                                                  --- INSIDE AREA ---
1061       DO 100 I=1, PX
1062       DO  90 J=0, PY
1063         ITH  = ( PX+1 )*J + ( I+1 )
1064         ICLR = COLOR(ITH)
1065         IF( (ICLR .EQ. 6) .OR. (ICLR .EQ. 7) ) GOTO 90 
1066 C
1067         VX0  = F(I,J,1) - F(I,J,2) + F(I,J,5) - F(I,J,6)
1068      &                             + F(I,J,7) - F(I,J,8) 
1069         VY0  = F(I,J,3) - F(I,J,4) + F(I,J,5) - F(I,J,6)
1070      &                             + F(I,J,8) - F(I,J,7) 
1071         RHO0 = F(I,J,0) + F(I,J,1) + F(I,J,2) + F(I,J,3) + F(I,J,4)

• A uniform flow is set at the
upstream boundary surface.

• The local velocities and 
densities are calculated 
inside the cylinder from Eq.
(7.20).

1072      &                  + F(I,J,5) + F(I,J,6) + F(I,J,7) + F(I,J,8) 
1073         VX( I,J) = VX0 /RHO0 
1074         VY( I,J) = VY0 /RHO0
1075         RHO(I,J) = RHO0 
1076         IF(  (ICLR.EQ.1) .OR. (ICLR.EQ.2) .OR. (ICLR.EQ.3) .OR.
1077      &       (ICLR.EQ.4)  ) THEN 
1078           IF( RHO(I,J) .LT. DNS0 )  RHO(I,J) = DNS0
1079         END IF
1080    90 CONTINUE 
1081   100 CONTINUE 
1082 C                                                        --- Bside ---
1083       IF( (ITREESID.EQ.3).OR.(ITREESID.EQ.4).OR.(ITREESID.EQ.5) ) THEN
1084         DO 120 I=1, PX-1
1085           IF( ITREESID.EQ.3 ) THEN 
1086             VX( I,PY) = UVELX
1087             VY( I,PY) = UVELY
1088             RHO(I,PY) = DNS0
1089             VX( I, 0) = UVELX
1090             VY( I, 0) = UVELY
1091             RHO(I, 0) = DNS0
1092           ELSE IF( ITREESID.EQ.4 ) THEN 
1093             VX( I,PY) = VX( I,PY-1)
1094             VY( I,PY) = VY( I,PY-1)
1095             RHO(I,PY) = RHO(I,PY-1)
1096             IF( RHO(I,PY) .LT. DNS0 )  RHO(I,PY) = DNS0
1097             VX( I, 0) = VX( I,1)
1098             VY( I, 0) = VY( I,1)
1099             RHO(I, 0) = RHO(I,1)
1100             IF( RHO(I, 0) .LT. DNS0 )  RHO(I, 0) = DNS0
1101           ELSE IF( ITREESID.EQ.5 ) THEN 
1102             VX( I,PY) = 2.D0*VX( I,PY-1) - VX( I,PY-2)
1103             VY( I,PY) = 2.D0*VY( I,PY-1) - VY( I,PY-2)
1104             RHO(I,PY) = 2.D0*RHO(I,PY-1) - RHO(I,PY-2)
1105             IF( RHO(I,PY) .LT. DNS0 )  RHO(I,PY) = DNS0
1106             VX( I, 0) = 2.D0*VX( I,1) - VX( I,2)
1107             VY( I, 0) = 2.D0*VY( I,1) - VY( I,2)
1108             RHO(I, 0) = 2.D0*RHO(I,1) - RHO(I,2)
1109             IF( RHO(I, 0) .LT. DNS0 )  RHO(I, 0) = DNS0
1110           END IF
1111   120   CONTINUE 
1112       END IF
1113 C                                                  --- Bdownstream ---
1114       IF( (ITREEDWN.EQ.3).OR.(ITREEDWN.EQ.4).OR.(ITREEDWN.EQ.5) ) THEN

• The treatment at the side boundary surfaces. 

• (1) The equilibrium distribution. 

• (2) The zero-gradient condition
(Eq. (7.8)).   

• (3) The extrapolation 
condition (Eq. (7.7)). 

• The treatment at the downstream boundary surface. 

• The densities are assumed to 
be not smaller than the given 
density at the outer boundary 
surfaces.
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1115         DO 140 J=1, PY-1
1116           IF( ITREEDWN.EQ.3 ) THEN 
1117             VX( PX,J) = UVELX
1118             VY( PX,J) = UVELY
1119             RHO(PX,J) = DNS0
1120           ELSE IF( ITREEDWN.EQ.4 ) THEN 
1121             VX( PX,J) = VX( PX-1,J)
1122             VY( PX,J) = VY( PX-1,J)
1123             RHO(PX,J) = RHO(PX-1,J)
1124             IF( RHO(PX,J) .LT. DNS0 )  RHO(PX,J) = DNS0
1125           ELSE IF( ITREEDWN.EQ.5 ) THEN 
1126             VX( PX,J) = 2.D0*VX( PX-1,J) - VX( PX-2,J)
1127             VY( PX,J) = 2.D0*VY( PX-1,J) - VY( PX-2,J)
1128             RHO(PX,J) = 2.D0*RHO(PX-1,J) - RHO(PX-2,J)
1129             IF( RHO(PX,J) .LT. DNS0 )  RHO(PX,J) = DNS0
1130           END IF
1131   140   CONTINUE 
1132 C                                                        ++ Corners ++
1133         IF( ITREEDWN.EQ.3 ) THEN 
1134           VX( PX,PY) = UVELX

• (1) The equilibrium distribution. 

• (2) The zero-gradient condition
(Eq. (7.8)).   

• (3) The extrapolation
condition (Eq. (7.7)).  

1135           VY( PX,PY) = UVELY
1136           RHO(PX,PY) = DNS0
1137           VX( PX, 0) = UVELX
1138           VY( PX, 0) = UVELY
1139           RHO(PX, 0) = DNS0
1140         ELSE IF( ITREEDWN.EQ.4 ) THEN 
1141           VX( PX,PY) = VX( PX-1,PY-1)
1142           VY( PX,PY) = VY( PX-1,PY-1)
1143           RHO(PX,PY) = RHO(PX-1,PY-1)
1144           IF( RHO(PX,PY) .LT. DNS0 )  RHO(PX,PY) = DNS0
1145           VX( PX, 0) = VX( PX-1,1)
1146           VY( PX, 0) = VY( PX-1,1)
1147           RHO(PX, 0) = RHO(PX-1,1)
1148           IF( RHO(PX, 0) .LT. DNS0 )  RHO(PX, 0) = DNS0
1149         ELSE IF( ITREEDWN.EQ.5 ) THEN 
1150           VX( PX,PY) = 2.D0*VX( PX-1,PY-1) - VX( PX-2,PY-2)
1151           VY( PX,PY) = 2.D0*VY( PX-1,PY-1) - VY( PX-2,PY-2)
1152           RHO(PX,PY) = 2.D0*RHO(PX-1,PY-1) - RHO(PX-2,PY-2)
1153           IF( RHO(PX,PY) .LT. DNS0 )  RHO(PX,PY) = DNS0
1154           VX( PX, 0) = 2.D0*VX( PX-1,1) - VX( PX-2,2)
1155           VY( PX, 0) = 2.D0*VY( PX-1,1) - VY( PX-2,2)
1156           RHO(PX, 0) = 2.D0*RHO(PX-1,1) - RHO(PX-2,2)
1157           IF( RHO(PX, 0) .LT. DNS0 )  RHO(PX, 0) = DNS0
1158         END IF
1159       END IF
1160                                                                 RETURN
1161                                                                 END
1162 C**** SUB COLLPROC *****
1163       SUBROUTINE COLLPROC( COLOR , ALPHAMX )
1164 C                                    --------- COLLISION PROCEDURE ---
1165       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
1166 C
1167       COMMON /BLOCK1/  F    , FTILD
1168       COMMON /BLOCK3/  RHO  , RX , RY  , VX  , VY
1169       COMMON /BLOCK4/  DNS0 , TAU , DX , DT , CLAT 
1170       COMMON /BLOCK5/  XL , YL , XL1 , YL1 , XL2 , YL2 , PX , PY , PXY
1171 C 
1172 C     -----------------------------
1173       INTEGER    PP , QQ , KK
1174       PARAMETER( PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0 )
1175 C
1176       REAL*8    F(0:PP,0:QQ,0:KK), FTILD(0:PP,0:QQ,0:KK) 
1177       REAL*8    RHO(0:PP,0:QQ)
1178       REAL*8    RX( 0:PP,0:QQ)   , RY(0:PP,0:QQ) 
1179       REAL*8    VX( 0:PP,0:QQ)   , VY(0:PP,0:QQ) 
1180       INTEGER   ALPHAMX , PX , PY ,  PXY
1181 C     -----------------------------
1182       INTEGER    PPXY 
1183       PARAMETER( PPXY=150000 , NNTBL=2200 , NNTBL2=4400 , NNTBL3=4400 )
1184 C
1185       INTEGER   COLOR(PPXY)
1186 C     -----------------------------
1187       REAL*8    FEQ, CDNS0, UVELX0, UVELY0
1188       INTEGER   ITH, ICLR
1189 C 
1190 CCC   CDNS0 = DNS0
1191 C
1192       DO 210 I=0, PX 
1193       DO 200 J=0, PY 
1194 C

• (1) The equilibrium distribution. 

• (2) The zero-gradient condition
(Eq. (7.8)).

• (3) The extrapolation
condition (Eq. (7.7)).   

• A subroutine for treating
the collision at each site.   

• The treatment for the sites at the downstream boundary 
surface and inside the simulation region, and also for the 
sites interacting with the cylinder according to Eq. (7.17).
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1195         ITH = (PX+1)*J + (I+1)
1196         ICLR = COLOR(ITH)
1197         IF( (ICLR.EQ.6) .OR. (ICLR.EQ.7) )  GOTO 200
1198 C                          --- FOR Busual,Bdownstream,Bcyl_surface ---
1199         IF( (ICLR .EQ. 0) .OR. (ICLR .EQ. 2) .OR. (ICLR .EQ. 5) ) THEN
1200           UVELX0 = VX( I,J)
1201           UVELY0 = VY( I,J)
1202           CDNS0  = RHO(I,J)
1203           DO 100 K=0, ALPHAMX
1204             FTILD(I,J,K) = F(I,J,K) * (TAU-1.D0)/TAU 
1205      &                  +  FEQ( UVELX0, UVELY0, K, CDNS0 ) / TAU 
1206   100     CONTINUE
1207 C                                               --- FOR  Bupstream ---
1208         ELSE IF( ICLR .EQ. 1 ) THEN
1209           UVELX0 = VX( 0,J) 
1210           UVELY0 = VY( 0,J) 
1211           CDNS0  = RHO(0,J)
1212           DO 120 K=0, ALPHAMX 
1213             FTILD(0,J,K) = FEQ( UVELX0, UVELY0, K, CDNS0 )
1214   120     CONTINUE
1215 C                                             --- FOR  Bupper_side ---
1216         ELSE IF( ICLR .EQ. 3 ) THEN
1217           UVELX0 = VX( I,PY) 
1218           UVELY0 = VY( I,PY) 
1219           CDNS0  = RHO(I,PY)
1220           DO 140 K=0, ALPHAMX 
1221             FTILD(I,PY,K) = F(I,PY,K) * (TAU-1.D0)/TAU 
1222      &                   +  FEQ( UVELX0, UVELY0, K, CDNS0 ) / TAU 
1223   140     CONTINUE
1224 C                                               --- FOR Blower_side ---
1225         ELSE IF( ICLR .EQ. 4 ) THEN
1226           UVELX0 = VX( I,0) 
1227           UVELY0 = VY( I,0) 
1228           CDNS0  = RHO(I,0)
1229           DO 160 K=0, ALPHAMX 
1230             FTILD(I,0,K) = F(I,0,K) * (TAU-1.D0)/TAU 
1231      &                  +  FEQ( UVELX0, UVELY0, K, CDNS0 ) / TAU 
1232   160     CONTINUE
1233         END IF 
1234 C
1235   200 CONTINUE
1236   210 CONTINUE
1237                                                                 RETURN
1238                                                                 END
1239 C**** SUB MOVEPROC *****
1240       SUBROUTINE MOVEPROC( PX , PY , ANTIALPH , RHO , DNS0 , ITREECYL )
1241 C                                     --------- MOVEMENT PROCEDURE ---
1242       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
1243 C
1244       COMMON /BLOCK1/  F    , FTILD
1245 C 
1246       COMMON /BLOCK14/ RXCYL , RYCYL , ICYL , JCYL , DCYL
1247       COMMON /BLOCK15/ COLOR    , POSINTBL
1248       COMMON /BLOCK16/ TBLNAM   , TBLNUM  , TBLPOS  , NTBL 
1249       COMMON /BLOCK17/ TBLDW    , TBLAL   , NTBLDW
1250 C 
1251       COMMON /BLOCK21/ CD , CDFORCE0 , CDFORCE , RE , NSMPLCD
1252 C 
1253 C     -----------------------------
1254       INTEGER    PP , QQ , KK
1255       PARAMETER( PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0 ) 
1256 C
1257       REAL*8    F(0:PP,0:QQ,0:KK), FTILD(0:PP,0:QQ,0:KK) 
1258       REAL*8    RHO(0:PP,0:QQ)
1259       INTEGER   PX , PY ,  ANTIALPH(0:KK) 
1260 C     -----------------------------

• The treatment for the sites at the upstream boundary
surface. The equilibrium distribution is used.  

• The treatment for the sites at the upper side 
boundary surface. Eq. (7.17) is treated.  

• The treatment for the sites at the lower side boundary
surface. Eq. (7.17) is treated. 

• A subroutine for the transfer process of
the particle distribution function.   

1261       INTEGER    PPXY 
1262       PARAMETER( PPXY=150000 , NNTBL=2200 , NNTBL2=4400 , NNTBL3=4400 )
1263 C
1264       REAL*8    TBLDW(NNTBL2)
1265       INTEGER   COLOR(PPXY)   , POSINTBL(PPXY)
1266       INTEGER   TBLNAM(NNTBL) , TBLNUM(NNTBL) , TBLPOS(NNTBL) , NTBL 
1267       INTEGER   TBLAL(NNTBL2) , NTBLDW 
1268 C     -----------------------------
1269       INTEGER    NNCD 
1270       PARAMETER( NNCD=1000000 )
1271 C
1272       REAL*8    CDFORCE(NNCD)
1273 C     -----------------------------
1274       INTEGER   ITH , ICLR , ITBL , INUM , IPOS , IALPHA , K , KANTI 
1275       INTEGER   I1 , I2 , ID , J1 , J2 , JD , I00 , J00 
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1276       INTEGER   I11, J11, I21, I22, J21, J22
1277       REAL*8    FWALL, CDW  , C1   ,  C2
1278       REAL*8    CA11 , CA12 , CA21 , CA22 , CA23
1279       REAL*8    CB11 , CB12 , CB21 , CB22 , CB23
1280       REAL*8    CD11 , CD12 , CD21 , CD22 , CD23
1281 C
1282 C     ------------------------------------------------ 0-DIRECTION ---
1283       DO 3 I=0, PX
1284       DO 1 J=0, PY
1285         F(I,J,0)=FTILD(I,J,0)
1286     1 CONTINUE
1287     3 CONTINUE
1288 C 
1289 C     ---------------------------------- 1,2,3,4,5,6,7,8-DIRECTION ---
1290 C
1291       DO 100 K=1,8 
1292 C
1293         IF( K.EQ.1 ) THEN 
1294           I1 =  PX-1
1295           I2 =  1
1296           ID = -1
1297           J1 =  PY-1
1298           J2 =  1
1299           JD = -1 
1300         ELSE IF( K.EQ.2 ) THEN 
1301           I1 =  1
1302           I2 =  PX-1
1303           ID =  1
1304           J1 =  PY-1
1305           J2 =  1
1306           JD = -1 
1307         ELSE IF( K.EQ.3 ) THEN 
1308           I1 =  1
1309           I2 =  PX-1
1310           ID =  1
1311           J1 =  PY-1
1312           J2 =  1
1313           JD = -1 
1314         ELSE IF( K.EQ.4 ) THEN 
1315           I1 =  1
1316           I2 =  PX-1
1317           ID =  1
1318           J1 =  1
1319           J2 =  PY-1
1320           JD =  1 
1321         ELSE IF( K.EQ.5 ) THEN 
1322           I1 =  PX-1
1323           I2 =  1

• K means the α-direction. 

1324           ID = -1
1325           J1 =  PY-1
1326           J2 =  1
1327           JD = -1 
1328         ELSE IF( K.EQ.6 ) THEN 
1329           I1 =  1
1330           I2 =  PX-1
1331           ID =  1
1332           J1 =  1
1333           J2 =  PY-1
1334           JD =  1 
1335         ELSE IF( K.EQ.7 ) THEN 
1336           I1 =  PX-1
1337           I2 =  1
1338           ID = -1
1339           J1 =  1
1340           J2 =  PY-1
1341           JD =  1 
1342         ELSE IF( K.EQ.8 ) THEN 
1343           I1 =  1
1344           I2 =  PX-1
1345           ID =  1
1346           J1 =  PY-1
1347           J2 =  1
1348           JD = -1 
1349         END IF
1350 C
1351 C
1352         DO 40 I= I1, I2, ID 
1353         DO 20 J= J1, J2, JD 
1354 C
1355           ITH  = (PX+1)*J + (I+1) 
1356           ICLR = COLOR(ITH) 

• The ITH-th site is treated in
the following.   

• The sites to be treated begin 
from I1 to I2 at interval ID for 
the x-direction.

• The sites to be treated begin 
from J1 to J2 at interval JD for 
the y-direction.   
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1390 C

1392 C

1395 C

1397 C

1401 C

1357           IF( (ICLR.EQ.6) .OR. (ICLR.EQ.7) )  GOTO 20 
1358 C
1359           IF( K.EQ.1) THEN 
1360             I00 = I-1 
1361             J00 = J 
1362           ELSE IF( K.EQ.2) THEN 
1363             I00 = I+1 
1364             J00 = J 
1365           ELSE IF( K.EQ.3) THEN 
1366             I00 = I
1367             J00 = J-1 
1368           ELSE IF( K.EQ.4) THEN 
1369             I00 = I
1370             J00 = J+1 
1371           ELSE IF( K.EQ.5) THEN 
1372             I00 = I-1 
1373             J00 = J-1 
1374           ELSE IF( K.EQ.6) THEN 
1375             I00 = I+1 
1376             J00 = J+1 
1377           ELSE IF( K.EQ.7) THEN 
1378             I00 = I-1 
1379             J00 = J+1 
1380           ELSE IF( K.EQ.8) THEN 
1381             I00 = I+1 
1382             J00 = J-1 
1383           END IF
1384 C                                          ----- FOR CYL_surface -----
1385           IF( ICLR .EQ. 5 ) THEN 
1386 C

• The position (name) of the site 
in the opposite direction to the 
α-direction (K) is described as 
(I00,J00). For example, if α=2 
(K=2), such a site is I00=I+1 and 
J00=J, where (I,J) is the position 
(name) of the site of interest.       

• The treatment of the site
interacting with the cylinder.  

1387             ITBL = POSINTBL(ITH)
1388             INUM = TBLNUM(ITBL)
1389             IPOS = TBLPOS(ITBL) 

1391             DO 10 JJ=0,INUM-1

1393               IALPHA = TBLAL( IPOS+JJ )
1394               KANTI  = ANTIALPH(K)

1396               IF( IALPHA .EQ. KANTI ) THEN 

1398                 IF(  (K.EQ.1) .OR. (K.EQ.5) .OR. (K.EQ.7)  ) THEN 
1399                   CDFORCE(NSMPLCD)=CDFORCE(NSMPLCD) - FTILD(I,J,KANTI)
1400                 END IF

1402                 IF( K.EQ.1 ) THEN 
1403                   I11 = I+1
1404                   J11 = J
1405                   I21 = I+1
1406                   I22 = I+2
1407                   J21 = J
1408                   J22 = J
1409                 ELSE IF( K.EQ.2 ) THEN 
1410                   I11 = I-1
1411                   J11 = J
1412                   I21 = I-1
1413                   I22 = I-2
1414                   J21 = J
1415                   J22 = J
1416                 ELSE IF( K.EQ.3 ) THEN 
1417                   I11 = I
1418                   J11 = J+1
1419                   I21 = I
1420                   I22 = I
1421                   J21 = J+1
1422                   J22 = J+2
1423                 ELSE IF( K.EQ.4 ) THEN 
1424                   I11 = I
1425                   J11 = J-1
1426                   I21 = I
1427                   I22 = I
1428                   J21 = J-1
1429                   J22 = J-2
1430                 ELSE IF( K.EQ.5 ) THEN 
1431                   I11 = I+1
1432                   J11 = J+1
1433                   I21 = I+1 
1434                   I22 = I+2 
1435                   J21 = J+1
1436                   J22 = J+2

• (I) For IALPHA=KANTI. 

• IALPHA is the direction of the ITH-th site toward 
the neighboring site inside the cylinder, and the 
opposite direction to K is KANTI.

• The variables (I11,J11) are used in the linear 
interpolation procedure of the BFL and YMLS 
methods.
• The variables (I21,J21) and (I22,J22) are used in 
the quadratic interpolation procedure for the BFL 
and YMLS methods.

• The order of the ITH-site, in which its information is 
saved in TBLNUM and TBLPOS, is extracted from 
POSINTBL. The result is saved in ITBL.    

• INUM is the number of the interacting sites inside 
the cylinder. IPOS is the first position of such sites 
appearing in the corresponding variables.    
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1437                 ELSE IF( K.EQ.6 ) THEN 
1438                   I11 = I-1
1439                   J11 = J-1
1440                   I21 = I-1 
1441                   I22 = I-2 
1442                   J21 = J-1
1443                   J22 = J-2
1444                 ELSE IF( K.EQ.7 ) THEN 
1445                   I11 = I+1
1446                   J11 = J-1
1447                   I21 = I+1 
1448                   I22 = I+2 
1449                   J21 = J-1
1450                   J22 = J-2
1451                 ELSE IF( K.EQ.8 ) THEN 
1452                   I11 = I-1
1453                   J11 = J+1
1454                   I21 = I-1 
1455                   I22 = I-2 
1456                   J21 = J+1
1457                   J22 = J+2
1458                 END IF
1459 C
1460 C
1461                 IF( (ITREECYL.EQ.2) .OR. (ITREECYL.EQ.3) ) THEN
1462                   CDW   = TBLDW(IPOS+JJ)
1463                   FWALL =  (1.D0-CDW) * FTILD(I11,J11,KANTI)
1464      &                          + CDW * FTILD(I  ,J  ,KANTI)
1465 C 
1466                   C1     =  1.D0+CDW
1467                   C2     =  2.D0+CDW
1468                   CA11   =  CDW /C1
1469                   CA12   =  1.D0/C1
1470                   CA21   =  2.D0*CA12/C2
1471                   CA22   =  2.D0*CA12*CDW
1472                   CA23   = -CDW/C2
1473                 END IF
1474 C
1475                 IF( (ITREECYL.EQ.4) .OR. (ITREECYL.EQ.5) ) THEN
1476                   CDW    =  TBLDW(IPOS+JJ) 
1477                   C1     =  1.D0+2.D0*CDW
1478                   C2     =  1.D0-2.D0*CDW
1479                   CB11   =  C2
1480                   CB12   =  2.D0*CDW
1481                   CB21   =  CDW*C1
1482                   CB22   =  C1*C2
1483                   CB23   = -CDW*C2
1484                   CD11   =  (-C2)/(2.D0*CDW)
1485                   CD12   =  1.D0/(2.D0*CDW)
1486                   CD21   =  1.D0/CB21
1487                   CD22   =  (-C2)/CDW
1488                   CD23   =  C2/C1
1489                 END IF
1490 C
1491 C
1492                 IF(      ITREECYL .EQ. 1 ) THEN
1493 C                               +++ (1) BOUNCE-BACK  +++++++++++++++++
1494                   F(I,J,K) = FTILD(I,J,KANTI) 
1495 C
1496                 ELSE IF( ITREECYL .EQ. 2 ) THEN
1497 C                                 +++ (2A) YMLS METHOD (Quadratic) +++
1498                   F(I,J,K) = CA21*FWALL + CA22*F(I21,J21,K) 
1499      &                                  + CA23*F(I22,J22,K)
1500 C
1501                 ELSE IF( ITREECYL .EQ. 3 ) THEN
1502 C                                 +++ (2B) YMLS METHOD (Liner) +++++++
1503                   F(I,J,K) = CA11*F(I11,J11,K) + CA12*FWALL 
1504 C
1505                 ELSE IF( ITREECYL .EQ. 4 ) THEN
1506 C                                +++ (3A) BFL METHOD (Quadratic) +++++
1507                   IF( CDW .LE. 0.5D0 ) THEN 
1508 C
1509                     F(I,J,K) = CB21*FTILD(I,J,KANTI) 
1510      &                                       + CB22*FTILD(I21,J21,KANTI)
1511      &                                       + CB23*FTILD(I22,J22,KANTI)
1512                   ELSE 

• The bounce-back rule.

• The quadratic YMLS method.

• The linear YMLS
method.

• The quadratic BFL
method.

• Eq. (8.112) is evaluated.

• Eq. (8.116) is evaluated.

• CB11 and CB12 are used in the linear 
interpolation procedure of BFL in Eq. 
(8.117), and CB21, CB22, and CB23 are 
used in the quadratic interpolation 
procedure of BFL in Eq. (8.112); in 
advance, the coefficients are calculated 
and saved in these variables for the 
successive procedures. Similarly, CD11, 
CD12, …, CD23 are used in calculating 
Eqs. (8.118) and (8.116) for Δw>1/2.

• CA11 and CA12 are used in the linear 
interpolation procedure of YMLS expressed 
in Eq. (7.5), and CA21, CA22, and CA23 are 
used in the quadratic interpolation procedure 
of YMLS in Eq. (8.121); in advance, the 
coefficients are calculated and saved in these 
variables for the successive procedures.
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1513 C
1514                     F(I,J,K) = CD21*FTILD(I,J,KANTI) 
1515      &                                       + CD22*FTILD(I  ,J  ,K) 
1516      &                                       + CD23*FTILD(I21,J21,K)
1517                   END IF 
1518 C
1519                 ELSE IF( ITREECYL .EQ. 5 ) THEN 
1520 C                                +++ (3B) BFL METHOD (Linear) ++++++++
1521                   IF( CDW .LE. 0.5D0 ) THEN 
1522 C
1523                     F(I,J,K) = CB11*FTILD(I11,J11,KANTI) 
1524      &                                        + CB12*FTILD(I,J,KANTI)
1525                   ELSE 
1526 C
1527                     F(I,J,K) = CD11*FTILD(I,J,K) 
1528      &                                        + CD12*FTILD(I,J,KANTI)
1529                   END IF
1530 C
1531                 END IF 
1532 C
1533 C
1534                 IF(  (K.EQ.1) .OR. (K.EQ.5) .OR. (K.EQ.7)  ) THEN 
1535                   CDFORCE(NSMPLCD) = CDFORCE(NSMPLCD) - F(I,J,K)
1536                 ELSE IF(  (K.EQ.2) .OR. (K.EQ.6) .OR. (K.EQ.8)  ) THEN
1537                   CDFORCE(NSMPLCD) = CDFORCE(NSMPLCD) + F(I,J,K)
1538                 END IF
1539 C
1540                 GOTO 20 
1541 C
1542               ELSE IF( IALPHA .EQ. K     ) THEN 
1543 C
1544                 IF(  (K.EQ.1) .OR. (K.EQ.5) .OR. (K.EQ.7)  ) THEN 
1545                   CDFORCE(NSMPLCD) = CDFORCE(NSMPLCD) + FTILD(I,J,K)
1546                 END IF 
1547 C
1548                 F(I,J,K) = FTILD(I00, J00, K) 
1549                 GOTO 20
1550 C
1551               END IF 
1552 C
1553    10       CONTINUE
1554           END IF 
1555 C                                                ----- FOR USUAL -----
1556           F(I,J,K) = FTILD(I00, J00, K)
1557 C
1558    20   CONTINUE
1559    40   CONTINUE
1560 C
1561   100 CONTINUE
1562                                                                 RETURN
1563                                                                 END
1564 C**** SUB BCPROC *****
1565       SUBROUTINE BCPROC( PX , PY , DNS0 , ALPHAMX , ITREESID ,
1566      &                                              ITREEDWN )
1567 C                               --------- BOUNDARY CONDITION PROC. ---
1568       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
1569 C
1570       COMMON /BLOCK1/  F    , FTILD
1571       COMMON /BLOCK3/  RHO  , RX , RY  , VX  , VY
1572       COMMON /BLOCK6/  UVELX , UVELY
1573 C
1574       INTEGER    PP , QQ , KK
1575       PARAMETER( PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0 )

• The linear BFL method. 

• Eq. (8.117) is evaluated. 

• Eq. (8.118) is evaluated. 

• (II) For IALPHA=K. 

• A subroutine for treating the
boundary surfaces.   

1576 C
1577       REAL*8    F(0:PP,0:QQ,0:KK), FTILD(0:PP,0:QQ,0:KK) 
1578       REAL*8    RHO(0:PP,0:QQ)
1579       REAL*8    RX( 0:PP,0:QQ)   , RY(0:PP,0:QQ) 
1580       REAL*8    VX( 0:PP,0:QQ)   , VY(0:PP,0:QQ) 
1581       INTEGER   PX , PY , ALPHAMX
1582 C
1583       REAL*8    FEQ , CDNS0 , UVELX0 , UVELY0
1584 C
1585       CDNS0 = DNS0
1586 C
1587 C     ------------------------------------------- BC for Bupstream ---
1588       DO 100 J=0, PY
1589       DO 80 K=0, ALPHAMX
1590 C                                                 +++ UNIFORM FLOW +++
1591         F(0,J,K) = FEQ( UVELX, UVELY, K, CDNS0 )
1592 C

• I. The treatment at the upstream boundary surface.

• An equilibrium distribution is assigned.
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1593    80 CONTINUE
1594   100 CONTINUE
1595 C
1596 C     --------------------------- BC for Bupper_side & Blower_side ---
1597       DO 300 I=1, PX-1
1598       DO 280 K=0, ALPHAMX
1599         IF( ITREESID .EQ. 1 ) THEN 
1600 C                                            +++ (1) EXTRAPOLATION +++
1601           F(I,PY,K) = 2.D0*F(I,PY-1,K) - F(I,PY-2,K) 
1602           F(I, 0,K) = 2.D0*F(I,1,K)    - F(I,2,K) 
1603 C
1604         ELSE IF( ITREESID .EQ. 2 ) THEN 
1605 C                                            +++ (2) DEF=0         +++
1606           F(I,PY,K) = F(I,PY-1,K)
1607           F(I, 0,K) = F(I,1,K)
1608 C
1609         ELSE IF(  (ITREESID.EQ.3) .OR. (ITREESID.EQ.4) .OR. 
1610      &                                 (ITREESID.EQ.5)  ) THEN 
1611 C                                            +++ (3) UNIFORM FLOW  +++
1612           UVELX0 = VX( I,PY)
1613           UVELY0 = VY( I,PY)
1614           CDNS0  = RHO(I,PY)
1615           F(I,PY,K) = FEQ( UVELX0, UVELY0, K, CDNS0 )
1616 C
1617           UVELX0 = VX( I,0)
1618           UVELY0 = VY( I,0)
1619           CDNS0  = RHO(I,0)
1620           F(I, 0,K) = FEQ( UVELX0, UVELY0, K, CDNS0 )
1621 C
1622         END IF 
1623 C
1624   280 CONTINUE
1625   300 CONTINUE
1626 C
1627 C     ----------------------------------------- BC for Bdownstream ---
1628       DO 500 J=0, PY 
1629       DO 480 K=0, ALPHAMX 
1630         IF( ITREEDWN .EQ. 1 ) THEN 
1631 C                                            +++ (1) EXTRAPOLATION +++
1632           F(PX,J,K) = 2.D0*F(PX-1,J,K) - F(PX-2,J,K) 
1633 C
1634         ELSE IF( ITREEDWN .EQ. 2 ) THEN 
1635 C                                            +++ (2) DEF=0         +++
1636           F(PX,J,K) = F(PX-1,J,K)
1637 C
1638         ELSE IF(  (ITREEDWN.EQ.3) .OR. (ITREEDWN.EQ.4) .OR. 

• II. The treatment at the side boundary surfaces. 

• The extrapolation condition in
Eq. (7.7) is applied.  

• The zero-gradient condition in Eq. (7.8) is
applied.

• An equilibrium distribution with
each local velocity is assigned.  

• III. The treatment at the downstream surface.  

• The extrapolation condition in Eq. (7.7) is applied. 

• The zero-gradient condition in Eq. (7.8) is applied. 

1639      &                                 (ITREEDWN.EQ.5)  ) THEN 
1640 C                                            +++ (3) UNIFORM FLOW  +++
1641           UVELX0 = VX( PX,J)
1642           UVELY0 = VY( PX,J)
1643           CDNS0  = RHO(PX,J)
1644           F(PX,J,K) = FEQ( UVELX0, UVELY0, K, CDNS0 )
1645 C
1646         END IF 
1647   480 CONTINUE
1648   500 CONTINUE
1649 C
1650 C     -------------------------------- TWO Corners for Bdownstream ---
1651       DO 530 K=0, ALPHAMX 
1652         IF( ITREEDWN .EQ. 1 ) THEN 
1653           F(PX,PY,K) = 2.D0*F(PX-1,PY-1,K) - F(PX-2,PY-2,K) 
1654           F(PX, 0,K) = 2.D0*F(PX-1,   1,K) - F(PX-2,   2,K) 
1655         ELSE IF( ITREEDWN .EQ. 2 ) THEN 
1656           F(PX,PY,K) =      F(PX-1,PY-1,K)
1657           F(PX, 0,K) =      F(PX-1,   1,K)
1658         END IF 
1659   530 CONTINUE
1660                                                                 RETURN
1661                                                                 END
1662 C**** SUB GRAPHVEL ****
1663       SUBROUTINE  GRAPHVEL( NANMCTR ) 
1664 C
1665 CCC   IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
1666       IMPLICIT REAL (A-H,O-Z), INTEGER (I-N)
1667 C
1668       COMMON /BLOCK3/  RHO  , RX , RY  , VX  , VY
1669       COMMON /BLOCK5/  XL , YL , XL1 , YL1 , XL2 , YL2 , PX , PY , PXY
1670       COMMON /BLOCK6/  UVELX , UVELY
1671       COMMON /BLOCK14/ RXCYL , RYCYL , ICYL , JCYL , DCYL
1672 C

• An equilibrium dist. with each
local velocity is assigned.  

• IV. The treatment at both corner sites of the
downstream surface.   

• The extrapolation condition in Eq. (7.7) is applied. 

• The zero-gradient condition
in Eq. (7.8) is applied.  

• A subroutine for writing out the 
data used for making an animation
based on the commercial software
MicroAVS.   
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1673       INTEGER    PP , QQ , KK
1674       REAL*8     PI
1675       PARAMETER( PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0 )
1676 C 
1677 C     ---------------------------------
1678       REAL*8    RHO(0:PP,0:QQ)
1679       REAL*8    RX( 0:PP,0:QQ)   , RY(0:PP,0:QQ) 
1680       REAL*8    VX( 0:PP,0:QQ)   , VY(0:PP,0:QQ) 
1681       INTEGER   PX , PY ,  PXY
1682 C     ---------------------------------
1683       REAL*8    XL , YL , XL1 , YL1 , XL2 , YL2 , UVELX , UVELY
1684       REAL*8    RXCYL , RYCYL , DCYL
1685 C     ---------------------------------
1686       INTEGER    QQSQ , NNDUM
1687       PARAMETER( QQSQ=150000 , NNDUM=150000 )
1688 C
1689       REAL    DUMRX(NNDUM) ,DUMRY(NNDUM) , DUMVX(NNDUM) ,DUMVY(NNDUM) 
1690       REAL    VEL 
1691       INTEGER NDUM, ISKIP
1692 C
1693 C     ------------------------- DATA OUTPUT FOR VEL-FIELD MicroAVS ---
1694 C
1695       VEL  = REAL(  DSQRT( UVELX**2 + UVELY**2 )  )
1696 C                                      +++ MAKE MicroAVS data FILE +++
1697       WRITE(42,83) NANMCTR
1698 C
1699       II   = 0
1700       DO 100 J=0, PY, 1
1701       DO  90 I=0, PX, 1
1702         II = II + 1
1703         DUMRX(II) = REAL( RX(I,J) ) 
1704         DUMRY(II) = REAL( RY(I,J) ) 
1705         DUMVX(II) = REAL( VX(I,J) ) / VEL
1706         DUMVY(II) = REAL( VY(I,J) ) / VEL
1707         WRITE(42,85) DUMRX(II), DUMRY(II), DUMVX(II), DUMVY(II)
1708    90 CONTINUE
1709   100 CONTINUE
1710 C
1711       NDUM = II 
1712 C                                       +++ MAKE MicroAVS fld FILE +++
1713       IF( NANMCTR .EQ. 1 ) THEN 
1714         WRITE(41,181)
1715         WRITE(41,183) 
1716         WRITE(41,185) (PX+1), (PY+1)
1717         WRITE(41,187)
1718       END IF 
1719 C
1720       ISKIP = (NDUM+1)*( NANMCTR-1) + 1 
1721 C
1722       WRITE(41,188) ISKIP-1 
1723       WRITE(41,189) ISKIP 
1724       WRITE(41,191) ISKIP 
1725       WRITE(41,197)
1726 C
1727 C
1728    83 FORMAT( I5 )
1729    85 FORMAT( 4F8.3 )
1730   181 FORMAT('# AVS field file'/ '#')
1731   183 FORMAT( 'ndim=2' )
1732   185 FORMAT( 'dim1=',I4/ 'dim2=',I4)
1733   187 FORMAT( 'nspace= 2'/ 'veclen= 2'/ 'data= float'
1734      &      / 'field= uniform'/ )
1735   188 FORMAT( 'time file=./avsvel1.dat filetype=ascii '
1736      &        'skip=',I7,' close=1')
1737   189 FORMAT( 'variable 1 file=./avsvel1.dat filetype=ascii '
1738      &        'skip=',I7,' offset=2 stride=4')
1739   191 FORMAT( 'variable 2 file=./avsvel1.dat filetype=ascii '
1740      &        'skip=',I7,' offset=3 stride=4')
1741   197 FORMAT( 'EOT') 
1742                                                                 RETURN
1743                                                                 END 
1744 C#### FUN FEQ ####
1745       DOUBLE PRECISION FUNCTION FEQ( UVELX, UVELY, ALPHA, CDNS0 )
1746 C                     ----------------------------------------------- 
1747 C                         EQUILIBRIUM DISTRIBUTION FUNCTION F^(eq) 
1748 C                     ----------------------------------------------- 
1749       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
1750 C
1751       COMMON /BLOCK2/  CVEL , W  , IINC , ANTIALPH, ALPHAMX
1752 C
1753       INTEGER    PP , QQ , KK

• The equilibrium distribution function. 
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1754       PARAMETER( PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0 )
1755 C
1756       REAL*8    CVEL(2,0:KK) , W(0:KK) 
1757       INTEGER   ALPHAMX , IINC(2,0:KK) , ANTIALPH(0:KK) 
1758       INTEGER   ALPHA 
1759 C
1760       REAL*8     C0, C1, C2, C3
1761 C
1762       K   = ALPHA 
1763       C0  = W(K)*CDNS0 
1764       C1  = CVEL(1,K)*UVELX + CVEL(2,K)*UVELY 
1765       C2  = C1*C1
1766       C3  = UVELX**2 + UVELY**2
1767       FEQ = C0*( 1.D0 + 3.D0*C1 + (9.D0/2.D0)*C2 - (3.D0/2.D0)*C3 )
1768                                                                 RETURN
1769                                                                 END 

• An equilibrium distribution is assigned 
according to Eq. (7.18). 
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8 Theoretical Background of Lattice
Boltzmann Method

The lattice Boltzmann method [9�12] is a useful simulation technique for numeri-

cally solving flow problems. This method is also feasible as a simulation technique

for systems such as a suspension of solid particles or a polymeric liquid. In a multi-

component system, the motion of the suspended particles or polymers must be

solved together with the flow field of the solvent molecules. In a molecular simula-

tion of a suspension composed of solid particles in a liquid, it is very difficult to

treat the multibody hydrodynamic interactions among the suspended particles.

Hence, it is usual to model the flow field as a simple shear flow, and under this

approach only the motion of the suspended particles will be solved during the sim-

ulation. A typical simulation technique employing this concept is the Stokesian

dynamics method. On the other hand, the lattice Boltzmann method enables us to

solve the motion of suspended particles and the ambient flow field simultaneously,

so there is much of interest in this method.

In the present chapter, we turn from the practice of molecular simulations to the

theoretical background of the lattice Boltzmann method. The key equations are

almost all indicated for the successive derivation procedure such that the reader

will be able to derive all the important equations from the key expressions.

Understanding the theoretical background is essential if, for example, the reader

needs to employ a new boundary condition or develop a new version of the lattice

Boltzmann method that can take into account the random motion of the suspended

particles. For a clear, logical development, the fundamental equations for the fol-

lowing derivation may be found in Appendix A1. Note that we focus here on the

BGK lattice Boltzmann method, which is the simplest and provides a solid founda-

tion for application to various flow problems.

8.1 Equilibrium Distribution

The lattice Boltzmann method treats the particle distribution function of virtual

fluid particles, which are able to move from site to site on a lattice system. A mac-

roscopic quantity of interest, such as the fluid velocity, can be obtained from the

solution of the particle distribution function. In the case of a two-dimensional sys-

tem, such as the D2Q9 model shown in Figure 8.1, fluid particles at lattice site 0

have a possibility of moving to the neighboring lattice sites 1,. . .,8. If the quiescent
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state is included, there are nine velocities for the fluid particles moving (or not

moving) to a neighboring site; a fluid particle will arrive at its neighboring site

with a given microscopic velocity during a given time interval. We use the notation

cα for the velocity for the transfer in the α-direction (α5 0,1,2,. . .,8). The particle

distribution function fα(r,t) in the α-direction at the lattice site r at time t can be

obtained by treating the collision of the fluid particles at r and evaluating the

inflow and the outflow of fluid particles from and to the lattice site r. In the BGK

lattice Boltzmann method, the particle distribution function fα(r1 cαΔt, t1Δt) is

obtained from the following equation:

fαðr1 cαΔt; t1ΔtÞ5 ~f αðr; tÞ ð8:1Þ

~f αðr; tÞ5 fαðr; tÞ1
1

τ
f ð0Þα ðr; tÞ2 fαðr; tÞ
� � ð8:2Þ

The ~f α in Eq. (8.2) is the particle distribution function after the collision at the site r.

Eq. (8.1) implies that this distribution moves to the neighboring site (r1 cαΔt) in

the α-direction. The second term on the right-hand side in Eq. (8.2) is the collision

term, frequently denoted by the notation Ωα(r,t):

Ωαðr; tÞ5
1

τ
f ð0Þα ðr; tÞ2 fαðr; tÞ
� � ð8:3Þ

With the above particle distribution, the macroscopic fluid density ρ(r,t) and

momentum ρ(r,t)u(r,t) can be evaluated as

ρðr; tÞ5
X
α

fαðr; tÞ ð8:4Þ

ρðr; tÞuðr; tÞ5
X
α

fαðr; tÞcα ð8:5Þ

Additionally, if a system is in thermodynamic equilibrium with constant tempera-

ture T, the following equi-partition law of energies must be satisfied:

D

2
kT 5

X
α

m

2
ðcα 2 uÞ2 fα

ρ
ð8:6Þ

3

y

x
12 0

4

8

6 7

5

Figure 8.1 Lattice model for the D2Q9.
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in which D is a constant for describing the dimension with the value 2 or 3 for a

two- or three-dimensional space, respectively, and m is the mass of a fluid particle.

The thermodynamic equilibrium velocity distribution in the lattice Boltzmann

method differs from that in the MD method. This is because virtual fluid particles

in the lattice Boltzmann method are not allowed to move freely in a simula-

tion region, but are restricted to move only from site to site. The velocity c of a

molecule (a fluid particle), which moves freely in a three-dimensional space with

a uniform flow velocity u of the system, is specified by the Maxwellian distribu-

tion f (eq)(c) [25]:

f ðeqÞðcÞ5 ρ
m

2πkT

� �3=2

exp 2
m

2kT
ðc2 uÞ2

n o
ð8:7Þ

Note that this definition includes the density ρ, whereas the usual Maxwellian dis-

tribution does not include the density in its expression. The equilibrium distribution

in the lattice Boltzmann method fα
(0) may be expressed by expanding the exponen-

tial function in Eq. (8.7) in a Taylor series expansion as

f ð0Þα 5 ρwα 11 b
cαUu
c2

1 e
u2

c2
1 h

ðcαUuÞ2
c4

� �
ð8:8Þ

in which wα, b, e, and h are unknown constants to be determined later, wα is a

weighting constant, and c is the lattice speed for fluid particles moving from site to

site, expressed as c5Δx/Δt.

In the lattice Boltzmann method, the whole system space is divided into a fine

mesh that acts as the lattice system, and the fluid particles are only able to move

from lattice site to lattice site. However, any physical phenomenon should not

depend on the setting of the lattice system, and Eqs. (8.4)�(8.6) are required to

remain valid for an arbitrary rotation of the lattice. This requirement will determine

the above-mentioned unknown constants and, because the values of these unknown

constants depend on the model used, we discuss the derivation for determining the

unknown constants for the D2Q9 and D3Q19 models separately.

8.1.1 D2Q9 Model

The xy-coordinate system and the α-direction are specified as shown in Figure 8.1.

As already pointed out, the equilibrium distribution can be obtained explicitly by

determining the unknown constants wα, b, e, and h such that the terms on the right-

hand side in Eqs. (8.4)�(8.6) remain unchanged by a rotation of the whole lattice

system by an angle φ: Before we start the procedure of determining the unknown

constants, we show preliminary expressions that are useful in the following discus-

sion. Note that the relationship of the momentum flux is necessary for determining

these constants.
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As shown in Figure 8.2, the four unit vectors, which are along the plus and

minus x- and y-axes of the orthogonal coordinate system, are rotated about the z-

axis, and the new unit vectors are denoted by d1, d2, d3, and d4. These vectors are

written in component expressions as

d1 5 ðd1x; d1yÞ5 ðcos φ; sin φÞ

d2 5 ðd2x; d2yÞ5 cos φ1
π
2

0
@

1
A; sin φ1

π
2

0
@

1
A

0
@

1
A

d3 5 ðd3x; d3yÞ5 ðcosðφ1πÞ; sinðφ1πÞÞ

d4 5 ðd4x; d4yÞ5 cos φ1
3π
2

0
@

1
A; sin φ1

3π
2

0
@

1
A

0
@

1
A

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð8:9Þ

Using these expressions, we derive several useful equations for the successive deri-

vation. Although these equations can be derived from a simple transformation, as

will be shown in the next subsection for the D3Q19 model, we here show a more

sophisticated derivation based on the concept of imaginary numbers.

With the Euler formula eiθ5 cos θ1 i sin θ for imaginary numbers, the follow-

ing relationships can be obtained:

X4
k51

ðdkx1idkyÞ45
X3
k50

ei kπ
2
1φð Þn o4

5
X3
k50

eið2πk14φÞ5ei4φ
X3
k50

ei2πk54ei4φ ð8:10Þ

Similarly,

X4
k51

ðdkx 1 idkyÞ3ðdkx 2 idkyÞ5 0

X4
k51

ðdkx 1 idkyÞ2ðdkx 2 idkyÞ2 5 4

9>>>>=
>>>>;

ð8:11Þ

y

d2 d1

d3 d4

xφ

Figure 8.2 Rotation of the unit vectors.
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The corresponding real and imaginary parts on the left- and right-hand sides in

Eq. (8.10) are equal, which leads to the following equation:

X4
k51

ðd4kx 1 d4ky 2 6d2kxd
2
kyÞ5 4 cos 4φ

X4
k51

4ðd3kxdky 2 dkxd
3
kyÞ5 4 sin 4φ

9>>>>>=
>>>>>;

ð8:12Þ

These relationships have been derived by expanding the left-hand side in

Eq. (8.10). Similarly, from Eq. (8.11),

X4
k51

ðd4kx 2 d4kyÞ5 0

X4
k51

ðd3kxdky 1 dkxd
3
kyÞ5 0

X4
k51

ðd4kx 1 d4ky 1 2d2kxd
2
kyÞ5 4

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð8:13Þ

Further preliminary relationships can be derived from Eqs. (8.12) and (8.13).

From the first equation in Eq. (8.12) and the third equation in Eq. (8.13),

X4
k51

d2kxd
2
ky 5

1

2
ð12 cos 4φÞ ð8:14Þ

From the second equation in Eqs. (8.12) and (8.13),

X4
k51

d3kxdky 5
1

2
sin 4φ

X4
k51

dkxd
3
ky 5 2

1

2
sin 4φ

9>>>>>>=
>>>>>>;

ð8:15Þ

From the first and third equations in Eq. (8.13),

X4
k51

d4kx 5
X4
k51

d4ky 5 22
X4
k51

d2kxd
2
ky 5

3

2
1

1

2
cos 4φ ð8:16Þ
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From a similar derivation procedure, the terms concerning dkx or dky to the first,

second, and third powers are obtained as

X4
k51

dkx 5
X4
k51

dky 5 0

X4
k51

d2kx 5
X4
k51

d2ky 5 2;
X4
k51

dkxdky 5 0

X4
k51

d3kx 5
X4
k51

d3ky 5
X4
k51

d2kxdky 5
X4
k51

dkxd
2
ky 5 0

9>>>>>>>>>=
>>>>>>>>>;

ð8:17Þ

We have now obtained all the preliminary equations and will proceed to the deter-

mination procedures for the unknown constants wα, b, e, and h.

As shown in Figure 8.1, we consider the rotation of the D2Q9 lattice system

about the z-axis by the angle φ: We first evaluate the following quantity:

X8
α50

wαc
2
αxc

2
αy 5w1

X4
α51

c2αxc
2
αy 1w5

X8
α55

c2αxc
2
αy 5w1c

4 1

2
ð12 cos 4φÞ

1w5

ffiffiffi
2

p
c

	 
4 1
2

12 cos 4 φ1
π
4

	 
n o ð8:18Þ

With the assumption of

w1 5 4w5 ð8:19Þ

Eq. (8.18) comes to be independent of φ: That is,

X8
α50

wαc
2
αxc

2
αy 5w1c

4 ð8:20Þ

Similar manipulation gives rise to

X8
α50

wαc
3
αxcαy 5

X8
α50

wαcαxc
3
αy 5 0

X8
α50

wαc
4
αx 5

X8
α50

wαc
4
αy 5 3w1c

4

9>>>>=
>>>>;

ð8:21Þ

The above results can be written in one expression by using the Kronecker delta δij:X8
α50

wαcαicαjcαkcαl 5w1c
4ðδijδkl 1 δikδjl 1 δilδjkÞ ð8:22Þ
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Similarly,

X8
α50

wαcαx 5
X8
α50

wαcαy 5 0;
X8
α50

wαcαicαj 5 3w1c
2δij

X8
α50

wαc
2
αx 5

X8
α50

wαc
2
αy 5 3w1c

2;
X8
α50

wαcαxcαy 5 0

X8
α50

wαc
3
αx 5

X8
α50

wαc
3
αy 5

X8
α50

wαc
2
αxcαy 5

X8
α50

wαcαxc
2
αy 5 0

9>>>>>>>>>>=
>>>>>>>>>>;

ð8:23Þ

We now determine the appropriate values of the constants b, e, h, and wα for an

equilibrium distribution in Eq. (8.8). The relationships that must be satisfied for an

equilibrium state are the equation of mass in Eq. (8.4), the equation of momentum

in Eq. (8.5), and the equi-partition law of energies in Eq. (8.6). In these equations,

f ð0Þα must be used as fα. Substitution of Eq. (8.8) into the right-hand side of

Eq. (8.4) leads to

X8
α50

f ð0Þα 5
X8
α50

ρwα 11b
cαUu
c2

1e
u2

c2
1h

ðcαUuÞ2
c4

� �
5ρ wsum1wsum

u2

c2
e13w1

u2

c2
h

� �

ð8:24Þ

In deriving this equation, the following relationships have been used:

X8
α50

wαðcαUuÞ5
X8
α50

wαðcαxux1cαyuyÞ50

X8
α50

wαðcαUuÞ25
X8
α50

wαðc2αxu2x1c2αyu
2
y12uxuycαxcαyÞ53w1c

2u2

9>>>>>=
>>>>>;

ð8:25Þ

Equation (8.4) says that the quantity in Eq. (8.24) must equal the density ρ, so that

the following relationships are obtained:

wsum 5 1; wsume1 3w1h5 0 ð8:26Þ

in which wsum5w01 4w11 4w55w01 5w1.

Similarly, we obtain the following equation:

X8
α50

cαif
ð0Þ
α 5

X8
α50

ρwαcαi 11 b
cαUu
c2

1 e
u2

c2
1 h

ðcαUuÞ2
c4

� �
5 3ρw1uib ð8:27Þ

in which the following relationships have been used for the derivation.
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X8
α50

wαcαxðcαUuÞ5
X8
α50

wαðc2αxux 1 cαxcαyuyÞ5 3w1c
2ux

X8
α50

wαcαxðcαUuÞ2 5
X8
α50

wαðc3αxu2x 1 2c2αxcαyuxuy 1 cαxc
2
αyu

2
yÞ5 0

9>>>>=
>>>>;

ð8:28Þ

Since the momentum equation in Eq. (8.5) must be satisfied, b is obtained as

b5
1

3w1

ð8:29Þ

Then, we evaluate the momentum flux Πð0Þ
ij by substituting the equilibrium dis-

tribution f ð0Þα in Eq. (8.8) into this momentum flux expression:

Πð0Þ
ij 5

X8
α50

cαicαj f
ð0Þ
α 5

X8
α50

ρwαcαicαj 11 b
cαUu
c2

1 e
u2

c2
1 h

ðcαUuÞ2
c4

8<
:

9=
;

5 ρw1 3c2 11
u2

c2
e

0
@

1
Aδij 1 u2hδij

8<
:

9=
;1 2ρw1uiujh

ð8:30Þ

in which the following relationships have been used for deriving this equation:

X8
α50

wαcαxcαyðcαUuÞ5
X8
α50

wαc
2
αxðcαUuÞ5

X8
α50

wαc
2
αyðcαUuÞ5 0

X8
α50

wαcαxcαyðcαUuÞ2 5 2w1c
4uxuy

X8
α50

wαc
2
αxðcαUuÞ2 5 2w1c

4u2x 1w1c
4u2

9>>>>>>>>>=
>>>>>>>>>;

ð8:31Þ

For the case of an equilibrium state, Πð0Þ
ij can be related to the pressure p as

Πð0Þ
ij 5 pδij 1 ρuiuj ð8:32Þ

Hence, the comparison of Eq. (8.30) with Eq. (8.32) yields the following

relationships:

h5
1

2w1

; p5 3ρw1c
2 ð8:33Þ

3e1 h5 0 ð8:34Þ
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The pressure p is related to the speed of sound cs as p5 ρc2s ; so that cs can be

written as

cs 5
ffiffiffiffiffiffiffiffi
3w1

p
c ð8:35Þ

Finally, we evaluate the kinetic energy. Preliminary relationships can be derived

from Eq. (8.23) as

X8
α50

wαc
2
α 5 6w1c

2

X8
α50

wαc
2
αxðcαUuÞ5

X8
α50

wαc
2
αyðcαUuÞ5

X8
α50

wαc
2
αðcαUuÞ5 0

X8
α50

wαc
2
αðcαUuÞ2 5 4w1c

4u2;
X8
α50

wαðcαUuÞ3 5 0

9>>>>>>>>>=
>>>>>>>>>;

ð8:36Þ

Using these relationships, the right-hand side in Eq. (8.6) may be calculated as

X8
α50

m

2
ðcα 2 uÞ2 fα

ð0Þ

ρ
5

m

2

X8
α50

wαðcα2 1 u2 2 2cαUuÞ

3 11 b
cαUu
c2

1 e
u2

c2
1 h

ðcαUuÞ2
c4

� �

5
m

2
6w1 11 e

u2

c2

� �
c2 1 4w1hu

2 1wsum 11 e
u2

c2

� �
u2 1 3w1h

u4

c2
2 6w1bu

2

� �
ð8:37Þ

By taking into account Eqs. (8.26), (8.29), and (8.33), the above equation is simpli-

fied as

X8
α50

m

2
ðcα 2 uÞ2 fα

ð0Þ

ρ
5

m

2
ð6w1c

2 1 6w1u
2e1wsumu

2Þ ð8:38Þ

Hence, Eq. (8.6) reduces to

2

2
kT 5

m

2
ð6w1c

2 1 6w1u
2e1wsumu

2Þ ð8:39Þ

Since the temperature T is independent of the macroscopic velocity u, this equation

yields the final relationships:

6w1e1wsum 5 0 ð8:40Þ

3mw1c
2 5 kT ð8:41Þ
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We now have the same number of equations as the unknown constants, so that the

solutions required can be obtained in a straightforward way as

b5 3; e5 2
3

2
; h5

9

2
ð8:42Þ

wsum 5 1; w0 5
4

9
; w1 5

1

9
; w5 5

1

36
ð8:43Þ

We summarize the final results as

f ð0Þα 5 ρwα 11 3
cαUu
c2

2
3

2
U
u2

c2
1

9

2
U
ðcαUuÞ2

c4

� �
ð8:44Þ

wα 5

4=9 for α5 0

1=9 for α5 1; 2; 3; 4

1=36 for α5 5; 6; 7; 8

; cαj j5
0 for α5 0

c for α5 1; 2; 3; 4ffiffiffi
2

p
c for α5 5; 6; 7; 8

8><
>:

8><
>:

ð8:45Þ

The speed of sound cs is expressed as

cs 5 c=
ffiffiffi
3

p
ð8:46Þ

8.1.2 D3Q19 Model

In the case of the D3Q19 lattice model, the thermodynamic equilibrium distribution

can be assumed to have the form of Eq. (8.8), and therefore the unknown constants

can be derived through similar procedures to the previous D2Q9 model. Only in

this present subsection, we use the notation ~cð5Δx=ΔtÞ for the lattice speed

instead of c, since the notation c will be used for the abbreviated symbol of the

cosine function.

In order to satisfy the isotropy condition, the lattice system has to be adopted

such that it is independent of an arbitrary rotation of the lattice. In Figure 8.3, for a

rotation of the lattice system about the z-axis by an angle φ and a rotation about

the y-axis by an angle θ, the rotation matrix R is written as

R5
cos θ 0 sin θ
0 1 0

2sin θ 0 cos θ

0
@

1
A cos φ 2sin φ 0

sin φ cos φ 0

0 0 1

0
@

1
A5

Cc 2Cs S

s c 0

2Sc Ss C

0
@

1
A
ð8:47Þ
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in which the abbreviations C5 cos θ, S5 sin θ, c5 cos φ, and s5 sin φ are used

for simplification of the equations. An arbitrary component X is related to the

corresponding rotated component X0 by the expression X0 5R �X. The transferred

component dk (k5 1,2,. . .,18) of each lattice point in Figure 8.3 is obtained as

d1 5R

1

0

0

0
B@

1
CA5

Cc

s

2Sc

0
B@

1
CA; d3 5R

0

1

0

0
B@

1
CA5

2Cs

c

Ss

0
B@

1
CA; d5 5

2S

0

2C

0
B@

1
CA

d7 5

C c2 sð Þ
s1 c

2S c2 sð Þ

0
B@

1
CA; d9 5

C c1 sð Þ
s2 c

2S c1 sð Þ

0
B@

1
CA; d11 5

2Cs1 S

c

Ss1C

0
B@

1
CA

d13 5

Cs1 S

2c

2Ss1C

0
B@

1
CA; d15 5

Cc1 S

s

2Sc1C

0
B@

1
CA; d17 5

Cc2 S

s

2Sc2C

0
B@

1
CA

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ð8:48Þ

From symmetric considerations, the following relationship must be satisfied:

d2k 5 2d2k2 1 ðk51; 2; . . . ; 9Þ ð8:49Þ

The final expressions are summarized in Table 8.1.

The results in Table 8.1 give rise to those concerning cαx, cαy, and cαz, such asP18
α50

5wαcαicαjcαkcαl in Table 8.2. As seen from the result of
P18
α50

wαc
4
αi; the

z

x

y

6

2

4

5

1

3 7

9

10

8

18

1716

15
11

13

14

12

0

Figure 8.3 Lattice model for the

D3Q19.
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Table 8.1 Results of Quantities for the Successive Derivation

X6
k51

d4kx 5 24ðC2S2 1C4c2s2Þ1 2

X6
k51

d4ky 5 4ðc4 2 c2Þ1 2

X6
k51

d4kz 5 24ðC2S2 1 S4c2s2Þ1 2

X18
k57

d4kx 5 8ðC2S2 1C4c2s2Þ1 8

X18
k57

d4ky 5 2 8ðc4 2 c2Þ1 8

X18
k57

d4kz 5 8ðC2S2 1 S4c2s2Þ1 8

X6
k51

d2kxd
2
ky 5 4C2c2s2

X6
k51

d2kxd
2
kz 5 4C2S2ð12 c2s2Þ

X6
k51

d2kyd
2
kz 5 4S2c2s2

X18
k57

d2kxd
2
ky 5 28C2c2s2 1 4

X18
k57

d2kxd
2
kz 5 28C2S2ð12 c2s2Þ1 4

X18
k57

d2kyd
2
kz 5 28S2c2s2 1 4

X6
k51

d2kxdkydkz 5 2C2Scsð2c2 1 s2Þ
X6
k51

dkxd
2
kydkz 5 24CSc2s2

X6
k51

dkxdkyd
2
kz 5 2CS2csðc2 2 s2Þ

X18
k57

d2kxdkydkz 5 4C2Sðc2 2 s2Þcs
X18
k57

dkxd
2
kydkz 5 8CSc2s2

X18
k57

dkxdkyd
2
kz 5 24CS2ðc2 2 s2Þcs

X6
k51

d3kxdky 5 2C3csðc2 2 s2Þ
X6
k51

d3kxdkz 5 22C3Sð12 2c2s2Þ1 2CS3

X6
k51

d3kydkx 5 2Ccsð2c2 1 s2Þ
X6
k51

d3kydkz 5 2Scsðc2 2 s2Þ
X6
k51

d3kzdkx 5 22CS3ð12 2c2s2Þ1 2C3S

X6
k51

d3kzdky 5 22S3csðc2 2 s2Þ

X18
k57

d3kxdky 5 24C3ðc2 2 s2Þcs
X18
k57

d3kxdkz 5 4C3Sð12 2c2s2Þ2 4CS3

X18
k57

d3kydkx 5 4Cðc2 2 s2Þcs
X18
k57

d3kydkz 5 24Sðc2 2 s2Þcs
X18
k57

d3kzdkx 5 4CS3ð12 2c2s2Þ2 4C3S

X18
k57

d3kzdky 5 4S3ðc2 2 s2Þcs
X6
k51

d2kx 5
X6
k51

d2ky 5
X6
k51

d2kz 5 2

X6
k51

dkxdky 5
X6
k51

dkxdkz 5
X6
k51

dkydkz 5 0

X18
k57

d2kx 5
X18
k57

d2ky 5
X18
k57

d2kz 5 8

X18
k57

dkxdky 5
X18
k57

dkxdkz 5
X18
k57

dkydkz 5 0
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Table 8.2 Final Results of Quantities for the Successive Derivation

X18
α50

wαc
4
αx 5 ~c4ð2 4w1 1 8w7ÞðC2S2 1C4c2s2Þ1 ~c4ð2w1 1 8w7Þ

X18
α50

wαc
4
αy 5 ~c4ð4w1 2 8w7Þðc4 2 c2Þ1 ~c4ð2w1 1 8w7Þ

X18
α50

wαc
4
αz 5 ~c4ð2 4w1 1 8w7ÞðC2S2 1 S4c2s2Þ1 ~c4ð2w1 1 8w7Þ

+ w1 5 2w7

X18
α50

wαc
4
αx 5

X18
α50

wαc
4
αy 5

X18
α50

wαc
4
αz 5 6w1 ~c

4

X18
α50

wαc
2
αxc

2
αy5

X18
α50

wαc
2
αxc

2
αz5

X18
α50

wαc
2
αyc

2
αz52w1 ~c

4

X18
α50

wαc
3
αxcαy5

X18
α50

wαc
3
αxcαz5

X18
α50

wαc
3
αycαx5

X18
α50

wαc
3
αycαz5

X18
α50

wαc
3
αzcαx5

X18
α50

wαc
3
αzcαy50

X18
α50

wαc
2
αxcαycαz5

X18
α50

wαcαxc
2
αycαz5

X18
α50

wαcαxcαyc
2
αz50

X18
α50

wαc
3
αx5

X18
α50

wαc
3
αy5

X18
α50

wαc
3
αz50

X18
α50

wαc
2
αxcαy5

X18
α50

wαc
2
αxcαz5

X18
α50

wαc
2
αycαx5

X18
α50

wαc
2
αycαz5

X18
α50

wαc
2
αzcαx5

X18
α50

wαc
2
αzcαy50

X18
α50

wαcαxcαycαz50

X18
α50

wαc
2
αx 5

X18
α50

wαc
2
αy 5

X18
α50

wαc
2
αz 5 6w1 ~c

2

X18
α50

wαcαxcαy 5
X18
α50

wαcαxcαz 5
X18
α50

wαcαycαz 5 0

X18
α50

wαcαx 5
X18
α50

wαcαy 5
X18
α50

wαcαz 5 0
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relationship of w15 2w7 has to be satisfied in order for this result to be independent

of the rotational angle. Hence, the results after the arrow in Table 8.2 have taken

into account this relationship. The expressions in Table 8.2 are written in simply

unified equations as

X18
α50

wαcαicαjcαkcαl 5 2w1 ~c
4ðδijδkl 1 δikδjl 1 δilδjkÞ

X18
α50

wαcαicαjcαk 5 0

X18
α50

wαcαicαj 5 6w1 ~c
2δij;

X18
α50

wαci 5 0

9>>>>>>>>>=
>>>>>>>>>;

ð8:50Þ

We are now ready to derive the equilibrium distribution for the D3Q19 lattice

model.

As mentioned before, the relationships that the equilibrium distribution f ð0Þα
shown in Eq. (8.8) must satisfy are the mass, momentum, kinetic energy, and

momentum flux equations. The former three equations are written as

X18
α50

f ð0Þα 5 ρ ð8:51Þ

X18
α50

cαf
ð0Þ
α 5 ρu ð8:52Þ

X18
α50

m

2
ðcα 2 uÞ2 f ð0Þα

ρ
5

3

2
kT ð8:53Þ

With the results shown in Table 8.2, the following equation is obtained:

X18
α50

f ð0Þα 5
X18
α50

wαρ 11 b
cαUu

~c2
1 e

u2

~c2
1 h

ðcαUuÞ2
~c4

� �

5 ρ wsum 1
u2

~c2
ðwsume1 6w1hÞ

� �
ð8:54Þ

The comparison of this equation with Eq. (8.51) leads to

wsum 5 1; wsume1 6w1h5 0 ð8:55Þ

in which wsum5w01 6w11 12w75w01 12w1.
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In order to compare this result with the right-hand side of Eq. (8.52), the left-

hand side is evaluated using the equilibrium distribution as

X18
α50

cαif
ð0Þ
α 5

X18
α50

ρwαcαi 11 b
cαUu

~c2
1 e

u2

~c2
1 h

ðcαUuÞ2
~c4

� �
5 6bw1ρui ð8:56Þ

Hence, the comparison of the right-hand sides in Eqs. (8.56) and (8.52) gives rise

to

6w1b5 1 ð8:57Þ

Similar to the D2Q9 model, the momentum flux Πð0Þ
ij is calculated as

Πð0Þ
ij 5

X18
α50

cαicαj f
ð0Þ
α 5 6ρw1 ~c

2 11 e
u2

~c2

� �
1 2ρw1u

2h

� �
δij 1 4ρw1uiujh

ð8:58Þ

In deriving this equation, the following relationships are used:

X18
α50

wαcαxcαy 11 b
cαUu

~c2
1 e

u2

~c2
1 h

ðcαUuÞ2
~c4

8<
:

9=
;5 4w1uxuyh

X18
α50

wαc
2
αx 11 b

cαUu

~c2
1 e

u2

~c2
1 h

ðcαUuÞ2
~c4

8<
:

9=
;

5 6w1 ~c
2 11 e

u2

~c2

0
@

1
A1 2w1u

2h1 4w1u
2
xh

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

ð8:59Þ

The expression for Πð0Þ
ij as defined by Eq. (8.32) is also valid for a three-dimen-

sional system. The following relationships can therefore be obtained by comparison

with Eq. (8.58) as

p5 6ρw1 ~c
2 ð8:60Þ

4w1h5 1; 3e1 h5 0 ð8:61Þ

Hence, the speed of sound cs is expressed from p5 ρc2s as

cs 5
ffiffiffiffiffiffiffiffi
6w1

p
U ~c ð8:62Þ
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Finally, in order to compare with Eq. (8.53), the following reformation is

performed:

X18
α50

ðcα2uÞ2 f
ð0Þ
α

ρ
5
X18
α50

wαðcα2uÞ2 11b
cαUu

~c2
1e

u2

~c2
1h

ðcαUuÞ2
~c4

8<
:

9=
;

5
X18
α50

wαðc2α22cαUu1u2Þ 11b
cαUu

~c2
1e

u2

~c2
1h

ðcαUuÞ2
~c4

8<
:

9=
;

5
X18
α50

wαðc2α22cαUu1u2Þ 11e
u2

~c2

0
@

1
A

1
X18
α50

wαðc2α22cαUu1u2ÞðcαUuÞ b
~c2

1
X18
α50

wαðc2α22cαUu1u2ÞðcαUuÞ2 h
~c4

5 11e
u2

~c2

0
@

1
Að18w1 ~c

21wsumu
2Þ2 2b

~c2
X18
α50

wαðcαUuÞ2

1
h

~c4
X18
α50

wα

(
c2αðcαUuÞ21u2ðcαUuÞ2

)

518w1 ~c
21 ðwsum212w1b118w1e110w1hÞu2 ð8:63Þ

in which Eq. (8.55) and the following relationship have been used for the

derivation:

X18
α50

wαðcαUuÞ2 5 6w1 ~c
2u2

X18
α50

wαc
2
αðcαUuÞ2 5 10w1 ~c

4u2

9>>>>=
>>>>;

ð8:64Þ

Since the temperature is independent of the macroscopic velocity u, the second

term on the right-hand side in Eq. (8.63) must vanish:

wsum 2 12w1b1 18w1e1 10w1h5 0 ð8:65Þ

The comparison of Eq. (8.63) with Eq. (8.6) yields the following equation:

m

2
18w1 ~c

2 5
3

2
kT ð8:66Þ
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We now have the same number of equations as the unknown constants. The final

results for the unknown constants can be obtained from Eqs. (8.55), (8.57), (8.61),

and (8.65) and the relationships of w15 2w7 and wsum5w01 12w1, as

w0 5
1

3
; w1 5

1

18
; w7 5

1

36
; wsum 5 1

b5 3; e5 2
3

2
; h5

9

2

9>>>=
>>>;

ð8:67Þ

With the original notation c for the lattice velocity, the equilibrium distribution for

the D3Q19 model is finally written as

f ð0Þa 5 ρwα 11 3
cαUu
c2

2
3

2
U
u2

c2
1

9

2
U
ðcαUuÞ2

c4

� �
ð8:68Þ

wα 5
1=3 for α50

1=18 for α5 1; 2; . . . ; 6
1=36 for α5 7; 8; . . . ; 18

; cαj j5
0 for α5 0

c for α5 1; 2; . . . ; 6ffiffiffi
2

p
c for α5 7; 8; . . . ; 18

8<
:

8<
:

ð8:69Þ

8.2 Navier�Stokes Equation

In this section, we derive the Navier�Stokes equation from the preliminary equa-

tions derived in Appendix A1, which is the basic macroscopic equation for flow

problems. The following derivation procedure is valid for both D2Q9 and D3Q19

models, with the exception that α is taken as α5 0,1,. . .,8, the axis index i is x or y

for the former model, α is taken as α5 0,1,. . .,18, and i is x, y, or z for the latter

model.

The starting equation for the derivation procedure is Eq. (A1.27), rewritten as

@

@t
ðρuiÞ1

X
j

@

@rj
Πij1

Δt

2
ε
X
j

@

@rj

@

@t1
Πð0Þ

ij

� �
1

Δt

2

X
j

X
k

@

@rj

@

@rk
S
ð0Þ
ijk

� �
50

ð8:70Þ

Another starting equation is Eq. (A1.31), rewritten as

2
1

τΔt
f ð1Þα 52

@f ð0Þα

@ρ
U

@

@r1
UðρuÞ2

X
i

X
j

@f ð0Þα

@ðρuiÞ
U

@

@r1j
Πð0Þ

ij 1
X
i

@

@r1i
ðcαif ð0Þα Þ

ð8:71Þ
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in which

fα 5 f ð0Þα 1 εf ð1Þα 1 ε2f ð2Þα 1? ð8:72Þ

Πð0Þ
ij 5

X
α

cαicαj f
ð0Þ
α 5 pδij 1 ρuiuj 5

ρ
3
c2δij 1 ρuiuj ð8:73Þ

S
ð0Þ
ijk 5

X
α

cαicαjcαkf
ð0Þ
α ð8:74Þ

@

@t
5 ε

@

@t1
1 ε2

@

@t2
;

@

@ri
5 ε

@

@r1i
ð8:75Þ

We now begin the derivation procedure for the Navier�Stokes equation by

deriving the solution for f ð1Þα from the basic equation in Eq. (8.71). If the terms

higher than the order of (u/c)2 are neglected, the following relationships are

obtained:

f ð0Þα 5 ρwα 11 3
cαUu
c2

n o
ð8:76Þ

Πð0Þ
ij 5

ρ
3
c2δij 1 ρuiuj ð8:77Þ

@f ð0Þα

@ρ
5wα ð8:78Þ

@f ð0Þα

@ðρuiÞ
5wα

@

@ðρuiÞ
3

c2

X
j

cαjðρujÞ
( )

5wα
3

c2
cαi ð8:79Þ

@

@r1j
Πð0Þ

ij 5
c2

3
U
@ρ
@r1j

δij 1
@

@r1j
ðρuiujÞ ð8:80Þ

@

@r1i
ðcαif ð0Þα Þ5wα

@

@r1i
ðρcαiÞ1 3wα

1

c2
U

@

@r1i

X
j

ρcαicαjuj

( )
ð8:81Þ

By substituting these relationships into Eq. (8.71), the solution of f ð1Þα can finally be

obtained as

f ð1Þα 523wαΔtτ
1

c2

X
k

X
l

cαkcαl2
1

3
c2δkl

� �
@

@r1l
ðρukÞ ð8:82Þ
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With this solution, the next quantity can be evaluated:

εΠð1Þ
ij 5 ε

X
α

cαicαj f
ð1Þ
α

523Δtτ
1

c2

X
k

X
l

X
α

wαcαicαjcαkcαl

 !
@

@rl
ðρukÞ

1Δtτ
P
α
wαcαicαj

	 
 @

@r
UðρuÞ

52
Δtτc2

3

@

@rj
ðρuiÞ1

@

@ri
ðρujÞ

8<
:

9=
;

ð8:83Þ

In deriving this equation, Eqs. (8.50), (8.22), and (8.23) are used. This equation

leads to

X
j

@

@rj
ðεΠð1Þ

ij Þ52
Δtτc2

3

@2

@r2
ðρuiÞ1

@

@ri

@

@r
UðρuÞ

� �� �
ð8:84Þ

On the other hand, Πð0Þ
ij is written as

X
j

@

@rj
ðΠð0Þ

ij Þ5
X
j

@

@rj
ðpδij 1 ρuiujÞ ð8:85Þ

With the approximation of Πij � Πð0Þ
ij 1 εΠð1Þ

ij ; the following equation is obtained

from Eqs. (8.84) and (8.85):

X
j

@

@rj
Πij5

X
j

@

@rj
ðpδij1ρuiujÞ2

Δtτc2

3

@2

@r2
ðρuiÞ1

@

@ri

@

@r
UðρuÞ

� �� �
ð8:86Þ

Moreover, Eqs. (A1.11) and (A1.17) give rise to

Δt

2
ε
@

@t1
Πð0Þ

ij 5
1

6
Δtc2δijε

@ρ
@t1

52
1

6
Δtc2δij

@

@r
UðρuÞ ð8:87Þ

From this equation, the following equation can be obtained:

Δt

2
ε
X
j

@

@rj

@

@t1
Πð0Þ

ij

� �
5 2

1

6
Δtc2

@

@ri

@

@r
UðρuÞ

� �
ð8:88Þ

We next evaluate the quantity S
ð0Þ
ijk : First,

S
ð0Þ
ijk 5

X
α

cαicαjcαk f
ð0Þ
α 5

X
α

wαcαicαjcαkρ 11 3
cαUu
c2

	 

ð8:89Þ
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With this equation, the partial derivative in Eq. (8.70) is obtained as

X
j

X
k

@

@rj
U

@

@rk
S
ð0Þ
ijk

	 

5

1

3
c2
X
j

X
k

@

@rj
U

@

@rk
ðρukδij 1 ρujδik 1 ρuiδjkÞ

5
2

3
c2

@

@ri

@

@r
UðρuÞ

� �
1

1

2
U
@2

@r2
ðρuiÞ

� �
ð8:90Þ

We have now finished the preparation for deriving the Navier�Stokes equation.

If the summation of the first and second terms, and the summation of the third and

fourth terms on the left-hand side in Eq. (8.70), are denoted by A and B, respec-

tively, these quantities are evaluated as

A5
@

@t
ðρuiÞ1

X
j

@

@rj
ðpδij 1 ρuiujÞ2

Δtτc2

3

@2

@r2
ðρuiÞ1

@

@ri

@

@r
UðρuÞ

0
@

1
A

8<
:

9=
;

5
@

@t
ðρuiÞ1

X
j

@

@rj
ðρuiujÞ1

@p

@ri
2

Δtτc2

3

@2

@r2
ðρuiÞ1

@

@ri

@

@r
UðρuÞ

0
@

1
A

8<
:

9=
;

ð8:91Þ

B5
Δt

2
ε
X
j

@

@rj

@

@t1
Πð0Þ

ij

0
@

1
A1

Δt

2

X
j

X
k

@

@rj

@

@rk
S
ð0Þ
ijk

0
@

1
A

5
1

6
Δtc2

@2

@r2
ðρuiÞ1

@

@ri

@

@r
UðρuÞ

0
@

1
A

8<
:

9=
;

ð8:92Þ

By substituting Eqs. (8.91) and (8.92) into Eq. (8.70), together with the relationship

of @
@r UðρuÞ5 0 for noncompressible fluids, the Navier�Stokes equation is finally

obtained as

ρ
@u

@t
1 ðuUrÞu

� �
5 2rp1μLBr2u ð8:93Þ

in which μLB is the viscosity, expressed as

μLB 5
ρΔtc2

3
τ2

1

2

� �
; νLB 5

μLB

ρ
5

Δtc2

3
τ2

1

2

� �
ð8:94Þ

In this equation vLB is the kinematic viscosity.
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8.3 Body Force

If a body force, such as the gravitational force, acts on a fluid, how do we incorpo-

rate it into the lattice Boltzmann equation? The method can be seen in the

following:

fαðr1 cαΔt; t1ΔtÞ5 ~f αðr; tÞ
~f αðr; tÞ5 fαðr; tÞ1Ωα 1 gα

9=
; ð8:95Þ

in which

Ωα 5
1

τ
f ð0Þα ðr; tÞ2 fαðr; tÞ
� � ð8:96Þ

gα 5

0 for α5 0

3Δt

c2
wαcαUF for α 6¼ 0

8><
>:

9>=
>; ð8:97Þ

gα is a quantity that is due to the body force F per unit volume and has the follow-

ing characteristics:

X
α

gα 5 0

X
α

cαgα 5
X
α

3Δt

c2
wαðcαcαÞUF5ΔtF

9>>>=
>>>;

ð8:98Þ

In this reformation, the following relationship has been used:

X
α

wαcαcα 5 ðc2=3ÞI ð8:99Þ

in which I is the unit tensor, and Eq. (8.99) is valid for both D2Q9 and D3Q19

models. It is quite clear that the quantity gα can be expressed in the form of

Eq. (8.97), because the particle distribution tends to move in the direction of the

body force F acting. Therefore, the relationship of the form gα~cα �F can be

expected.

We will now confirm that the gα, expressed in Eq. (8.97), appears in a reason-

able form in the Navier�Stokes equation by deriving these equations starting from

Eq. (8.95), as conducted in Section 8.2. There is no new concept applied here

except for the inclusion of the new term gα into the derivation procedure shown in

Section 8.2; therefore we show only the important expressions.
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From Appendix A1, the relationships of the orders ε and ε2 are written as

@ρ
@t1

1r1UðρuÞ5 0

@

@t1
ðρuiÞ1

X
j

@

@r1j
Πð0Þ

ij 5
1

ε
Fi

@ρ
@t2

1
Δt

2
U
@2ρ
@t21

1
Δt

2

X
i

X
j

@

@r1i
U

@

@r1j
Πð0Þ

ij 1Δt
X
i

@

@t1
U

@

@r1i
ðρuiÞ5 0

9>>>>>>>>>>=
>>>>>>>>>>;
ð8:100Þ

@

@t2
ðρuiÞ1

Δt

2
U
@2

@t21
ðρuiÞ1

X
j

@

@r1j
Πð1Þ

ij 1
Δt

2

X
j

X
k

@

@r1j
U

@

@r1k
S
ð0Þ
ijk

1Δt
X
j

@

@t1
U

@

@r1j
Πð0Þ

ij 5 0

ð8:101Þ

These expressions lead to the following basic equations:

@ρ
@t

1rUðρuÞ5 0 ð8:102Þ

@

@t
ðρuiÞ1

X
j

@

@rj
Πij 1

X
j

Δt

2
U
@

@rj
ε
@

@t1
Πð0Þ

ij 1
X
k

@

@rk
S
ð0Þ
ijk

( )
5Fi ð8:103Þ

Also, f ð1Þα is written as

f ð1Þα 52 tτΔt
@f ð0Þα

@t1
1
X
i

@

@r1i
cαif

ð0Þ
α

� �8<
:

9=
;1

τ
ε
gα

523wαΔtτ
1

c2

X
k

X
l

cαkcαl 2
1

3
c2δkl

0
@

1
A @

@r1l
ðρukÞ

ð8:104Þ

Finally, using these expressions in a derivation procedure similar to that used previ-

ously, the Navier�Stokes equation is obtained as

ρ
@u

@t
1 ðuUrÞu

� �
52rp1μLBr2u1F ð8:105Þ

in which μLB has already been shown in Eq. (8.94). Eq. (8.105) clearly shows that

gα defined in Eq. (8.97) gives rise to the body force F appearing in the appropriate

form in the Navier�Stokes equation.
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8.4 Boundary Conditions

In simulations by the lattice Boltzmann method, it is very important to treat the

boundary conditions in an appropriate manner at all the simulation boundary sur-

faces. Hence, there is a lot of current interest in developing more accurate boundary

conditions, and papers addressing this problem have been appearing in academic

journals. For example, if we consider a flow inside a tube or around an obstacle, or

a suspension composed of solid particles, the treatment of the boundary condition

at the wall or particle surface is very important for obtaining reliable solutions of

the flow field. In this section, we first explain the historical bounce-back boundary

condition, and then focus on several alternative boundary conditions that have a

clearer physical and mathematical background.

8.4.1 Bounce-back Rule

We explain the historical bounce-back rule [35,36] using Figure 8.4. The lattice

position of interest in a fluid is denoted by rl, its neighboring site inside the mate-

rial by rp, and the point at the material surface on a straight line between these two

points by rw, as shown in Figure 8.4. According to the BGK lattice Boltzmann

method, the particle distribution ~f α after the collision at time t becomes that at the

neighboring site in the α-direction at time (t1Δt). The bounce-back rule employs

the following treatment of the collision at the material surface:

fαðrl; t1ΔtÞ5 ~f αðrl; tÞ2 2ρwα
uwUcα
c2s

ð8:106Þ

fαðrp; t1ΔtÞ5 ~f αðrp; tÞ1 2ρwα
uwUcα
c2s

ð8:107Þ

r l

rw

rp

Figure 8.4 Bounce-back rule for the treatment at

the material surface.
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in which α implies the opposite direction of α; α is the direction toward the object.

Eq. (8.106) means that the fluid particles at r5 rl move in the α-direction, collide
with the obstacle at the middle point of the two lattice points, and return to the

original lattice point during t and t1Δt. In this movement, if the solid surface

moves in the α-direction, the number of the particles returning after the collision

decreases, so that the second term on the right-hand side in Eq. (8.106) is necessary

to make this modification. The following consideration makes clear that the

bounce-back rule does not offer sufficient accuracy. That is, in the treatment of

Eq. (8.106), the fluid particles starting from the point rl do not collide with the

actual solid surface rw, but at the exact middle point between rl and rp, before
returning to the original site. In other words, the collision procedure is conducted

under the assumption that the surface of the obstacle is at the middle point between

two neighboring lattice sites. In order to improve this approach, various boundary

conditions have been developed. Research in this area is still a topic of interest.

Here we consider the validity of the second term on the right-hand side in

Eq. (8.106). The consideration of Eqs. (8.82), (8.72), and (A1.11) leads to

~f αðrl; tÞ5 fαðrl; tÞ1
1

τ
f ð0Þα ðrl; tÞ2 fαðrl; tÞ
� �

5 fαðrl; tÞ1ρ
wα

c2s
cαU

@uðrlÞ
@r

� �
UcαΔt

ð8:108Þ

in which a fluid has been assumed to be noncompressive. Substituting this equation

into Eq. (8.106) yields

fαðrl; t1ΔtÞ5 fαðrl; tÞ1 ρ
wα

c2s
cαU

@uðrlÞ
@r

� �
UcαΔt2 2ρwα

uwUcα
c2s

ð8:109Þ

If fα(rl,t) in Eq. (8.109) is assumed to be not far from an equilibrium state, it is

approximated from Eq. (8.68) as

fαðrl; tÞ � fαðrl; tÞ1 2ρwα
uðrlÞUcα

c2s
ð8:110Þ

Substituting this equation into Eq. (8.109) gives rise to

fαðrl;t1ΔtÞ5fαðrl; tÞ1
2ρwα

c2s
uðrlÞ1 @uðrlÞ

@r
U
Δt

2
cα

� �
2uw

 �
Ucα

� fαðrl; tÞ1
2ρwα

c2s
uðrl1cαΔt=2Þ2uw
� �

Ucα

ð8:111Þ

It is seen from Eq. (8.111) that u(rl1 (1/2)cαΔt) is equal to uw, if the medium point

(rl1 (1/2)cαΔt) is sufficiently near to the solid surface. Hence, we obtain the result

fαðrl; t1ΔtÞ5 fαðrl; tÞ: That is, the particle distribution in the direction away from
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the solid surface approximates to the equilibrium distribution and is independent

of time.

8.4.2 BFL Method

In this subsection we explain the BFL method [37]. In the bounce-back rule, the

solid surface is regarded as being at the middle point of two lattice sites, and virtual

fluid particles are reflected at this point. Hence, the exact position of the solid sur-

face is not employed in the bounce-back method. The BFL method attempts to

improve this drawback by taking into account the exact position of the solid surface

in the procedure of the collision process between virtual fluid particles and the

material. As shown in Figure 8.5, rl is the point of interest in a fluid, rp is the neigh-

boring point inside the particle, rw is the point at the solid surface on a line between

these two points, and rl0 is the next neighboring point in the direction away from the

solid surface. The exact position of the solid surface can be expressed using the

quantity Δw5 jrl2 rwj/jrl2 rpj; although the lattice separation is defined to be Δx,

we regarded Δx as unity in Sections 8.4.2 and 8.4.3 for simplicity’s sake, because

the final results derived here are unaffected even if Δx is not unity. The solid sur-

face is at the position which is away from rl in the direction toward rp determined

by Δw, as shown in Figure 8.5. The BFL method is based on an interpolation but,

so as not to lose the accuracy of the interpolation, two different procedures are

adopted for Δw# 1/2 and Δw. 1/2, although the concept of the treatment is the

same for both cases. The fundamental concept is that fluid particles move, collide

with the solid material, and return to a certain point during the time interval Δt.

Since the unit lattice length is assumed in this analysis, the transportation distance is

unity. In this collision process, the exact position of the solid surface is necessary.

In the following text, the treatment for Δw# 1/2 is discussed first.

As shown in Figure 8.5A, in the case of Δw# 1/2, the particle distribution func-

tion ~f αðrm; tÞ at rm becomes that at rl, fαðrl; t1ΔtÞ; in which the point rm is evalu-

ated such that fluid particles move in the α-direction, collide with the solid surface,

and arrive at the lattice point rl; the distance of travel for a fluid particle is just

unity. The point rm can be obtained straightforwardly as the position away from rl

r l″
(A) (B)

r l ′ r l rp

rw
rm

1–2Δw Δw

r l″ r l ′ r l rp

rw

rm

2Δw –1 1–Δw

Figure 8.5 BFL method for the treatment at the material surface.
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at the distance of (12 2Δw), shown in Figure 8.5A. Hence, the particle distribution

function ~f αðrm; tÞ is easily obtained from the quadratic extrapolation procedure as

~f αðrm; tÞ5Δwð11 2ΔwÞ ~f αðrl; tÞ1 ð12 4Δ2
wÞ ~f αðrl0 ; tÞ2Δwð12 2ΔwÞ ~f αðrlv; tÞ

ð8:112Þ

Since fluid particles collide with the solid surface, fαðrl; t1ΔtÞ can finally be

obtained as

fαðrl; t1ΔtÞ5 ~f αðrm; tÞ2 2ρwα
uwUcα
c2s

ð8:113Þ

Equation (8.112) has been obtained from the following formula of the quadratic

interpolation method. If an arbitrary function h(x) has values h(x1), h(x2), and h(x3)

for x5 x1, x2, and x3, respectively, h(x) at an arbitrary position x between x1 and x3
can be given from the quadratic interpolation as

hðxÞ5 ðx2x2Þðx2x3Þ
ðx12x2Þðx12x3Þ

hðx1Þ1
ðx2x1Þðx2x3Þ
ðx22x1Þðx22x3Þ

hðx2Þ1
ðx2x1Þðx2x2Þ
ðx32x1Þðx32x2Þ

hðx3Þ

ð8:114Þ

We now consider the treatment for Δw. 1/2. As shown in Figure 8.5B, fluid

particles leaving the lattice point rl collide with the object, and return to the posi-

tion rm between rl and rw. Hence, the following relationship is satisfied:

fαðrm; t1ΔtÞ5 ~f αðrl; tÞ2 2ρwα
uwUcα
c2s

ð8:115Þ

With this expression, the particle distribution function fαðrl; t1ΔtÞ can be evalu-

ated from the interpolation procedure based on a quadratic curve using values at

rm, rl0, and rlv:

fαðrl; t1ΔtÞ5 1

Δwð2Δw 1 1Þ
~f αðrl; tÞ1

2Δw 2 1

Δw

~f αðrl; tÞ

1
12 2Δw

11 2Δw

~f αðrl0 ; tÞ2
1

Δwð2Δw 1 1Þ 2ρwα
uwUcα
c2s

ð8:116Þ

We call the method using Eqs. (8.112), (8.113), (8.115), and (8.116) the “quadratic

BFL method.”

Instead of the quadratic interpolation procedure, the linear interpolation method

is also applicable, and in this case each procedure for Δw# 1/2 and Δw. 1/2 can

be expressed as

Δw# 1/2:

fαðrl; t1ΔtÞ5 ð12 2ΔwÞ ~f αðrl0 ; tÞ1 2Δw
~f αðrl; tÞ2 2ρwα

uwUcα
c2s

ð8:117Þ
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Δw. 1/2:

fαðrl; t1ΔtÞ5 2Δw 2 1

2Δw

~f αðrl; tÞ1
1

2Δw

~f αðrl; tÞ2
1

2Δw

2ρwα
uwUcα
c2s

ð8:118Þ

We call this scheme the “linear BFL method.”

8.4.3 YMLS Method

In this subsection, we explain the YMLS method [34] using Figure 8.6. This

method is also based on an interpolation scheme. The distribution function ~f αðrm; tÞ
at the position rm, from which fluid particles start and arrive at rw after the time

interval Δt, is used for the interpolation procedure. The particle distribution

fαðrl; t1ΔtÞ in the α-direction away from the material surface can be obtained

from the interpolation using the distribution ~f αðrm; tÞ: As shown in Figure 8.6, with

the notation of the point rp inside the material, and the points rl, rl0, and rlv on the

fluid side away from the solid surface, the particle distribution functions at the

solid surface in the α- and α-directions are written, respectively, as

fαðrw; t1ΔtÞ5 ð12ΔwÞ ~f αðrl0 ; tÞ1Δw
~f αðrl; tÞ ð8:119Þ

fαðrw; t1ΔtÞ5 fαðrw; t1ΔtÞ2 2ρwα
uwUcα
c2s

ð8:120Þ

in which Δw5 jrl2 rwj/jrl2 rpj, as previously defined. Eq. (8.119) implies that

fα(rw,t1Δt) is obtained from the interpolation procedure using ~f αðrl0 ; tÞ and
~f αðrl; tÞ; and Eq. (8.120) means that fluid particles are reflected at the solid surface.

If fαðrw; t1ΔtÞ; fαðrl0 ; t1ΔtÞ; and fαðrlv; t1ΔtÞ are used, then fαðrl; t1ΔtÞ can
be obtained from the quadratic interpolation procedure as

fαðrl; t1ΔtÞ5 2

ð11ΔwÞð21ΔwÞ
fαðrw; t1ΔtÞ1 2Δw

11Δw

fαðrl0 ; t1ΔtÞ

2
Δw

21Δw

fαðrlv; t1ΔtÞ
ð8:121Þ

This is known as the quadratic YMLS method.

r l″ r l ′ r l rw rp

Figure 8.6 YMLS method.
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The linear interpolation procedure yields the following linear YMLS method

instead of Eq. (8.121):

fαðrl; t1ΔtÞ5 Δw

11Δw

fαðrl0 ; t1ΔtÞ1 1

11Δw

fαðrw; t1ΔtÞ ð8:122Þ

in which fαðrw; t1ΔtÞ is evaluated from Eq. (8.120). In this method, fαðrl; t1ΔtÞ
can be obtained from the interpolation scheme using fαðrl0 ; t1ΔtÞ in the fluid

region and fαðrw; t1ΔtÞ at the solid surface. In the linear YMLS method, only two

lattice points are used for the interpolation procedure, so that it may be suitable for

particle dispersions in which a near-contact situation of dispersed particles

frequently arises.

8.4.4 Other Methods

As in the MD or the MC simulations, the periodic boundary condition is applicable

for the thermodynamic equilibrium case. For this case, the particle distribution

function at the point rout of the fluid particles outgoing from the simulation box,

fα(rout,t1Δt), is made to equal to that at the point rin of the incoming fluid parti-

cles, fα(rin,t1Δt).

Finally, we explain the extrapolation boundary condition, which is usually used

for numerical simulations based on the finite difference or finite element method

for a flow past an obstacle. The extrapolation boundary condition is also applicable

to lattice Boltzmann simulations, for which the distribution functions at the points

rN, rN21, rN22, which are taken from the boundary surface into the simulation

region, are assumed to be in the linear relationship

fαðrN ; t1ΔtÞ5 2fαðrN2 1; t1ΔtÞ2 fαðrN2 2; t1ΔtÞ ð8:123Þ

in which α is in the direction leaving the outer boundary toward the simulation

region. If the zero-gradient condition is applicable, then the differential away from

the boundary is regarded as zero: that is, fαðrN ; t1ΔtÞ5 fαðrN2 1; t1ΔtÞ: This
boundary condition can be used for lattice points that are physically symmetric. If

a simulation region is taken to be sufficiently large, the zero-gradient condition

may be expected to give rise to results that are reasonably accurate.

8.5 Force and Torque Acting on Particles

In the case of a suspension composed of spherical or rod-like particles, the forces

and torques acting on the suspended particles need to be evaluated in order to solve

the particle motion and the flow field around the suspended particles simulta-

neously. The momentum change of the fluid particles that collide with the particle

surface and are reflected during the time interval Δt is equal to the impulse acting

282 Introduction to Practice of Molecular Simulation



 

on the particle. Hence, the force Fα acting on the particle in the α-direction is

obtained as

Fαðt1Δt=2Þ5 cα fαðrðintÞl ; t1ΔtÞ1 ~f αðrðintÞl ; tÞ
n oΔV

Δt
ð8:124Þ

in which ΔV is the volume occupied by one lattice site. Hence, the force Fp and

torque Tp acting on the mass center of the particle are obtained from summing the

contributions from the neighboring lattice sites of the particle as

Fpðt1Δt=2Þ5
X

all r
ðintÞ
l

X
α

ΔV

Δt
fαðrðintÞl ; t1ΔtÞ1 ~f αðrðintÞl ; tÞ
n o

cα ð8:125Þ

Tpðt1Δt=2Þ5
X

all r
ðintÞ
l

X
α
ðrw 2 rcÞ3 ΔV

Δt
fαðrðintÞl ; t1ΔtÞ1 ~f αðrðintÞl ; tÞ
n o

cα

ð8:126Þ

in which rc is the position vector of the particle mass center, and rw is the position

vector at the particle surface on a line drawn in the α-direction from the lattice

point r
ðintÞ
l in the liquid region. The summation concerning α is only performed for

the directions along which the above-mentioned line crosses the particle surface.

Given the force and the torque from Eqs. (8.125) and (8.126), the translational and

angular velocities up and Ωp of an arbitrary particle p with mass Mp and inertia

moment Ip can be evaluated as

upðt1ΔtÞ5 upðtÞ1
Δt

Mp

Fpðt1Δt=2Þ

Ωpðt1ΔtÞ5ΩpðtÞ1
Δt

Ip
Tpðt1Δt=2Þ

9>>>=
>>>;

ð8:127Þ

Note that here we have treated the case of the axisymmetric particle; therefore,

only the inertia moment appears in the equation and not the inertia tensor.

8.6 Nondimensionalization

Finally, we show the usual nondimensionalization method used in lattice

Boltzmann simulations. The following representative quantities are used in nondi-

mensionalizing each quantity: Δx for distances, Δt for time, c (5Δx/Δt) for

velocities, ρ0 for the particle distribution, ρ0(Δx)2Δx/(Δt)2 for forces, (Δx)2/Δt for

kinematic viscosity, and ρ0(Δx/Δt)2 for pressures in the case of a two-dimensional

system. Nondimensional equations are obtained by expressing a dimensional quan-

tity as the product of the corresponding representative and nondimensional quantity
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—for example, fα 5 ρ0 3 f �α—and substituting such quantities into the dimensional

equations. Since the derivation procedure is quite straightforward, only the final

results are shown in the following equations:

f �α ðr� 1 c�α; t
� 1 1Þ5 ~f

�
αðr�; t�Þ ð8:128Þ

~f
�
αðr�; t�Þ5 f �α ðr�; t�Þ1

1

τ
f ð0Þ�α ðr�; t�Þ2 f �α ðr�; t�Þ
� � ð8:129Þ

in which

f ð0Þ�α ðr�; t�Þ5wαρ� 11 3c�αUu
� 1

9

2
ðc�αUu�Þ2 2

3

2
u�2

� �
ð8:130Þ

c� 5 1; c�s 5 1=
ffiffiffi
3

p
; ν� 5 ð2τ2 1Þ=6; p� 5 ρ�c�2s ð8:131Þ

In these equations, the superscript * indicates the nondimensional quantities.
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Appendix 1: Chapman�Enskog
Expansion

In this appendix, we derive the important equations which are the starting expres-

sions for deriving the Navier�Stokes equation, by means of the Chapman�Enskog

expansion [38].

The basic equations required in the derivation are as follows:

ρðr; tÞ5
X
α

fαðr; tÞ ðA1:1Þ

ρðr; tÞuðr;tÞ5
X
α

cαfαðr; tÞ ðA1:2Þ

Πij 5
X
α

cαicαjfαðr; tÞ ðA1:3Þ

fαðr1 cαΔt; t1ΔtÞ5 fαðr; tÞ1Ωαðr; tÞ ðA1:4Þ

Ωαðr; tÞ5
1

τ
f ð0Þα ðr; tÞ2 fαðr; tÞ

� � ðA1:5Þ

Note that the following derivation is valid for both D2Q9 and D3Q19 models,

except that α has to be taken as α5 0, 1, . . ., 8 and α5 0, 1, . . ., 16, respectively.
A Taylor series expansion of the left-hand side of Eq. (A1.4) gives rise to

Δt
@fα
@t

1
ðΔtÞ2
2

U
@2fα
@t2

1ΔtðcαUrÞfα 1
ðΔtÞ2
2

ðcαUrÞðcαUrÞfα

1 ðΔtÞ2ðcαUrÞ
@fα
@t

5
1

τ
ðf ð0Þα 2 fαÞ

ðA1:6Þ

The particle distribution function is expanded using the infinitesimal small quantity

ε as

fα 5 f ð0Þα 1 εf ð1Þα 1 ε2f ð2Þα 1? ðA1:7Þ



 

By substituting Eq. (A1.7) into Eqs. (A1.1) and (A1.2), the following relation-

ships are obtained:

X
α

f ð0Þα 5 ρ;
X
α

cαf
ð0Þ
α 5 ρu ðA1:8Þ

X
α

f ðnÞα 5 0;
X
α

cαf
ðnÞ
α 5 0 for n5 1; 2; . . . ðA1:9Þ

Next, we consider the Chapman�Enskog expansion. There are two characteris-

tic times employed in characterizing fluid problems: T1 relating to the fluid veloc-

ity, and T2 relating to the viscous dissipation. It is generally satisfied that T2 is

much longer than T1 (i.e., T2cT1). Hence, if the infinitesimal quantities ε and Δt

are taken as Δt/T15O(ε), T2 satisfies the relationship of Δt/T25O(ε2). On the

other hand, if the representative distance is denoted by L1, the distance Δx is gener-

ally taken such that Δx/L15O(ε). With these assumptions, the time derivative is

regarded as the summation of the time derivations due to the characteristics of

T1 and T2. That is,

@

@t
5 ε

@

@t1
1 ε2

@

@t2
ðA1:10Þ

Similarly, the position derivative @/@r is expressed, for the three-dimensional posi-

tion r5 (rx,ry,rz), as

@

@ri
5 ε

@

@r1i
ði5 x; y; zÞ ðA1:11Þ

The expressions in Eqs. (A1.10) and (A1.11) imply that the original variables

(t,r) can be transformed into the new ones (t1,t2,r1). In the usual approach, the dif-

ferentiated quantities are used for comparing the magnitudes of all the terms in an

equation. That is, the magnitudes of, for example, @g1/@t and @g2/@t are evaluated

in such a way that @g1/@t5O(ε) and @g2/@t5O(ε2), and they are compared with

each other to neglect the smaller terms such as @g2/@t5O(ε2). In contrast, accord-

ing to the Chapman�Enskog expansion, @g1/@t and @g2/@t are of the same order of

magnitude but are moderated by the infinitesimal parameter ε and written as ε @g1/
@t and ε2 @g2/@t in an equation.

We are now ready to proceed to the important equations in the derivation of the

Navier�Stokes equation by means of the Chapman�Enskog expansion. The colli-

sion term in Eq. (A1.5) has the following characteristics:

X
α

Ωα 5 0;
X
α

cαΩα 5 0 ðA1:12Þ

From Eqs. (A1.6), (A1.10) and (A1.11),
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Δt ε
@fα
@t1

1 ε2
@fα
@t2

� �
1 ðΔtÞ2 ε

2

2
U
@2fα
@t21

1ΔtεðcαUr1Þfα

1 ðΔtÞ2 ε
2

2
ðcαUr1ÞðcαUr1Þfα1 ðΔtÞ2ε2ðcαUr1Þ

@fα
@t1

1Oðε3Þ5Ωα

ðA1:13Þ

By multiplying cα on both sides of this equation,

Δt εcα
@fα
@t1

1ε2cα
@fα
@t2

� �
1ðΔtÞ2ε

2

2
cα
@2fα
@t21

1ΔtεcαðcαUr1Þfα

1ðΔtÞ2ε
2

2
cαðcαUr1ÞðcαUr1Þfα1ðΔtÞ2ε2cαðcαUr1Þ

@fα
@t1

1Oðε3Þ5cαΩα

ðA1:14Þ

Equation (A1.7) is substituted into Eq. (A1.13), the summation of α is con-

ducted on the both sides, and the terms of the order ε are collected. Then, taking

these collected terms equal to zero finally yields

X
α

Δt
@f ð0Þα

@t1
1ΔtðcαUr1Þf ð0Þα

� �
5 0 ðA1:15Þ

Similarly, from Eq. (A1.14),

X
α

Δt
@

@t1
ðcαif ð0Þα Þ1Δt

X
j

cαicαj
@

@r1j
f ð0Þα

( )
5 0 ðA1:16Þ

With Eqs. (A1.8) and (A1.3), Eqs. (A1.15) and (A1.16) become

@

@t1
ρ1r1UðρuÞ5 0 ðA1:17Þ

@

@t1
ðρuiÞ1

X
j

@

@r1j
ðΠð0Þ

ij Þ5 0 ðA1:18Þ

in which Πð0Þ
ij 5

X
α

cαicαjf
ð0Þ
α :

Returning to the substitution of Eq. (A1.7) into Eq. (A1.13), but now taking the

collected terms of the order ε2 equal to zero, the following expression is derived:

@ρ
@t2

1
Δt

2
U
@2ρ
@t21

1
Δt

2

X
i

X
j

@

@r1i
U

@

@r1j
Πð0Þ

ij 1Δt
X
i

@

@t1
U

@

@r1i
ðρuiÞ5 0

ðA1:19Þ

Similarly, returning to the derivation of Eq. (A1.16) and taking the collected terms

of the order ε2 equal to zero yields
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@

@t2
ðρuiÞ1

Δt

2
U
@2

@t21
ðρuiÞ1

X
j

@

@r1j
Πð1Þ

ij

1
Δt

2

X
j

X
k

@

@r1j
U

@

@r1k
S
ð0Þ
ijk 1Δt

X
j

@

@t1
U

@

@r1j
Πð0Þ

ij 5 0

ðA1:20Þ

in which Πð1Þ
ij 5

X
α

cαicαj f
ð1Þ
α and S

ð0Þ
ijk 5

X
α

cαicαjcαk f
ð0Þ
α :

Next, we reform Eqs. (A1.19) and (A1.20). Differentiating Eq. (A1.17) with

respect to t1 yields

@2ρ
@t21

5
@

@t1
2r1UðρuÞ
� �

5 2
@

@t1

X
i

@

@r1i
ðρuiÞ

( )
ðA1:21Þ

With this result, Eq. (A1.19) is reformed and finally obtained as

@ρ
@t2

1
Δt

2

X
i

@

@r1i

@

@t1
ðρuiÞ1

X
j

@

@r1j
Πð0Þ

ij

( )
5 0 ðA1:22Þ

With Eq. (A1.18), Eq. (A1.22) reduces to

@ρ
@t2

5 0 ðA1:23Þ

Differentiating Eq. (A1.18) with respect to t1 gives rise to

@2

@t21
ðρuiÞ5 @

@t1
2
X
j

@

@r1j
Πð0Þ

ij

)
5 2

X
j

@

@t1
U

@

@r1j
Πð0Þ

ij

(
ðA1:24Þ

By substituting this result into Eq. (A1.20), the following equation is obtained:

@

@t2
ðρuiÞ1

X
j

@

@r1j
Πð1Þ

ij 1
Δt

2

@

@t1
Πð0Þ

ij 1
X
k

@

@r1k
S
ð0Þ
ijk

( )" #
5 0 ðA1:25Þ

If Eqs. (A1.17) and (A1.23) are multiplied by ε and ε2, respectively, summing

each side of these equations, and taking into account Eq. (A1.10), the following

mass conversation law is obtained:

@ρ
@t

1rUðρuÞ5 0 ðA1:26Þ
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From a similar manipulation of Eqs. (A1.18) and (A1.25), the momentum conversa-

tion law is obtained as

@

@t
ðρuiÞ1

X
j

@

@rj
Πij 1

X
j

Δt

2
U
@

@rj
ε
@

@t1
Πð0Þ

ij 1
X
k

@

@rk
S
ð0Þ
ijk

( )
5 0 ðA1:27Þ

in which Πij � Πð0Þ
ij 1 εΠð1Þ

ij :
Finally, we derive another important equation. The variable transformation of

Eqs. (A1.10) and (A1.11) is conducted for Eq. (A1.6) to give

Δt ε
@fα
@t1

1 ε2
@fα
@t2

� �
1

ðΔtÞ2
2

ε2
@2fα
@t21

1ΔtεðcαUr1Þfα

1
ðΔtÞ2
2

ε2ðcαUr1ÞðcαUr1Þfα 1 ðΔtÞ2ε2ðcαUr1Þ
@fα
@t1

5
1

τ
ð f ð0Þα 2 fαÞ

ðA1:28Þ

Substituting Eq. (A1.7) into this equation, collecting the terms of the order ε, and
taking these collected terms equal to zero then yields

2
1

τΔt
f ð1Þα 5

@f ð0Þα

@t1
1

X
i

@

@r1i
ðcαif ð0Þα Þ ðA1:29Þ

Since f ð0Þα can be regarded as a function of the macroscopic quantities ρ and ρui,
@f ð0Þα =@t can be reformed using Eqs. (A1.17) and (A1.18) as

@f ð0Þα

@t1
5

@f ð0Þα

@ρ
U
@ρ
@t1

1
X
i

@f ð0Þα

@ðρuiÞ
U
@ðρuiÞ
@t1

5 2
@f ð0Þα

@ρ
U

@

@r1
UðρuÞ2

X
i
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ðA1:30Þ

Substituting this equation into Eq. (A1.29) yields the required equation:

2
1

τΔt
f ð1Þα 5 2
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@
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X
i

X
j
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@ðρuiÞ
U

@

@r1j
Πð0Þ

ij 1
X
i

@

@r1i
ðcαif ð0Þα Þ

ðA1:31Þ

Equations (A1.27) and (A1.31) are the basic equations for deriving the important

relationships in Chapter 8.
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Appendix 2: Generation of Random
Numbers According to Gaussian
Distribution

In order to set the initial velocities of particles in MD simulations, or to generate

random displacements in BD and DPD simulations, it is necessary to generate ran-

dom numbers according to a particular probability distribution. The probability dis-

tributions of interest here are the Gaussian distribution (also known as the normal

distribution), and the Maxwell�Boltzmann distribution (or Maxwellian distribu-

tion). For example, since the velocity of particles theoretically has the Maxwellian

velocity distribution for thermodynamic equilibrium, as explained in Section 2.2,

the initial velocity of particles in simulations must have such a velocity distribu-

tion. We show the method of setting the initial velocity of particles according to

the Maxwellian distribution in the following paragraphs.

We assume that the stochastic variable x, such as the particle velocity or a ran-

dom displacement, obeys the following normal distribution ρ(x):

ρðxÞ5 1

ð2πÞ1=2σ
exp 2

ðx2 xÞ2
2σ2

� �
ðA2:1Þ

in which σ2 is the variance and x is the average of the stochastic variable x.

In order to generate the stochastic variable x according to this normal distribution,

the following equations are used together with a uniform random number sequence

ranging from zero to unity:

x5 x1 ð22σ2 ln R1Þ1=2 cosð2πR2Þ or x5 x1 ð22σ2 ln R1Þ1=2 sinð2πR2Þ
ðA2:2Þ

According to either equation of Eq. (A2.2), the required number of values of the

stochastic variable are generated using a series of random numbers, such as R1 and

R2, taken from a uniform random number sequence. In this way, the initial veloci-

ties of particles and random displacements can be assigned. The technique in

Eq. (A2.2) is called the Box�Müller method [26].

For generating a uniform random number sequence, there is an arithmetic

method and a machine-generated method; the former is shown in the last subrou-

tine of the sample simulation program in Section 3.1.6. The arithmetic method is



 

reproducible, and the same random number sequence can be obtained at any time

in the simulations. In contrast, the machine-generated method is generally not a

reproducible sequence, and a different sequence of random numbers is generated

each time a simulation is run.

For the case of the Maxwellian velocity distribution, the velocity components of

particle i can be assigned using the random numbers R1, R2, . . ., R6 taken from a

uniform random number sequence as

vix 5 f22ðkT=mÞln R1g1=2 cosð2πR2Þ
viy 5 f22ðkT=mÞln R3g1=2 cosð2πR4Þ
viz 5 f22ðkT=mÞln R5g1=2 cosð2πR6Þ

9>=
>; ðA2:3Þ

In this way, all the initial velocity components can be assigned using random

numbers.
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Appendix 3: Outline of Basic Grammars
of FORTRAN and C Languages

We here do not aim to explain the entire grammar of the programming languages;

indeed, there is not sufficient space to do so. In each section of programming lan-

guage, the main structure of a program is first explained in order to understand the

logical framework of a program. Then, such important grammar as control state-

ments is explained. Finally, several points of interest that may be outside of the

main body of a program will be addressed. This will be followed by a short sample

program that demonstrates the essence of a research simulation program and

explains the grammar used in the program in detail. This approach is most effec-

tive, because the grammar is explained in relation to the logical flow of a simula-

tion program. The skill to develop a simulation program has a strong relationship

with the ability for embodying a logical flow using a programming language.

A3.1 FORTRAN Language

The general structure of a program written in the FORTRAN language is composed

of a main program together with subroutine subprograms or function subprograms,

as shown below.

123456789… …72

IMPLICIT REAL*8 (A-H, O-Z), INTEGER (I-N)
PARAMETER( NN=8)       
REAL*8  RX(NN), RY(NN)
REAK*8  VX(NN), VY(NN)  
INTEGER N        

STOP
END

Main program 

Description of calculation procedures 



 

SUBROUTINE INIPOSIT(N,H)

RETURN
END

SUBROUTINE INIVEL(N)

RETURN
END

REAL*8 FUNCTION PRESSURE(H)

RETURN
END

Subroutine subprogram

Function subprogram 

Subroutine subprogram

Description of calculation procedures 

Description of calculation procedures 

Description of calculation procedures 

A main program first needs to be constructed, and then subroutine or/and func-

tion subprograms necessarily follow the main program. The main program begins

with the definition of the variables and finishes with the STOP and END statements

that are placed at the end to halt the execution of the program. A subroutine or

function subprogram begins with a SUBROUTINE (name of a subroutine) or (pre-

cision) FUNCTION (name of a function) statement, respectively, and finishes with

the RETURN and END statements that signal the return to the task of the main

program. A main program must be written in such a way that the logical flow is

clear, and calculations that disturb this logical flow should be treated in subroutine

or function subprograms. In other words, when a program is constructed in such a

way that a reader is able to grasp the logical flow in a straightforward manner, it

becomes more than a hobby program—it becomes a common useful tool. This is

an important consideration for developing a simulation program with contributions

from and used by different persons in a successive research project.

In a subroutine subprogram, routine calculations are carried out. The calculation

task moves from a main program to a subroutine subprogram by calling the name of

the subroutine (the CALL statement) and returns to the main program on meeting

the RETURN statement in the subroutine. A function subprogram is quite similar to

a subroutine subprogram in that routine calculations are carried out in an area (the

subprogram) aside from the main program. The difference between the two is that in

a function subprogram the name of the function subprogram itself assumes a calcu-

lated value, and this value is passed to the main program by simply referring to the

name of the function subprogram in the main program. In other words, the name of

a function subprogram is treated as a variable in a main program: the calculation
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task moves to a function subprogram at the time of meeting its name, and returns to

the main program with a value calculated there on meeting the RETURN statement.

Hence, a CALL statement is unnecessary in order to move to a subprogram area.

These are the main points of the program structure and flow of the calculation proce-

dures. There is an important point concerning the data transfer between a main pro-

gram and a subprogram. In the FORTRAN language, information regarding the

value of variables cannot be transferred between a main program and a subprogram

unless definite descriptions are written for that purpose. There is a significant differ-

ence between the FORTRAN and the C language in this respect. We explain the

method of transferring data between a main program and a subprogram in detail

later.

As shown in the preceding example, main sentences generally have to be written

between the 7th and 72nd columns in a FORTRAN77 program. The first column is

used for defining whether or not that line is a comment line (that does not influence

calculations) by employing a C character or a blank; the sixth column is for defin-

ing whether or not the line is regarded as a continuation line from the previous line

by the “&” character or blank; and the area between the 2nd and 5th columns is

used for writing figures (or labels) of the end statements, such as the CONTINUE

statement or of an indication of the destination of the GOTO statement. Various

examples of this type of use can be seen in the sample simulation programs, and

therefore we omit such explanations here.

• This is the simplest IF statement, and
THEN is unnecessary in this case.

IF(X.GT.0.D0)A=B+10.D0

IF(X.GT.0.D0)THEN
 …
END IF

IF(X.GT.0.D0)THEN
 …
ELSE 
 …
END IF

IF(X.GT.0.D0)THEN
 …
ELSE IF(X.LE.-10.D0) THEN 
 …
ELSE
…
END IF

IF(X.GT.0.D0)THEN
 …
ELSE IF(X.LE.-10.D0) THEN 
 …
ELSE IF(X.EQ.-5.D0) THEN
…
END IF

• Execution only for X>0.

• One of separate procedures is chosen
for X>0 or X≤0.

• One of three separate procedures is
chosen for X>0 or X≤–10 or the other
cases.

• One of three separate procedures is
chosen for X>0 or X≤-10 or X=–5.
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We now explain the IF and DO statements, which are perhaps the most impor-

tant control statements for developing a calculation program. The IF statement is a

control statement to select a calculation procedure by assessing the condition. The

DO statement is a control statement to repeat a certain procedure a prescribed num-

ber of times. Typical examples of the IF statement are shown above. The IF state-

ment implies the execution of a certain procedure if a condition is satisfied;

another procedure is carried out if it is not satisfied. In the above examples, the first

IF statement is the simplest and the following examples become more complex.

Several IF statements can be combined to make a complex assessment, and such

examples may be found in the sample simulation programs. In the IF statement, LT

and LE imply , and # , respectively; GT and GE imply . and $ , respectively;

and EQ and NE imply 5 and 6¼, respectively. The statement for repeating proce-

dures is the DO statement. Several representative examples of the DO statement

are shown in the following.

    DO 30 I=N,1,-2
      …
 30 CONTINUE

    DO 90 I=-N,N+1,5
      …
 90 CONTINUE

    DO 20 I=1,N
      …
 20 CONTINUE

• The procedure starts at I=1, then is 
conducted at I=2 and continued until 
I=N.
• The procedure starts at I=N, then is 
conducted at I=N-2 and continued at 
I=N-4, N-6, ….

• The procedure starts at I=-N, then is 
conducted at I=-N+5, I=-N+10, …, 
until I becomes over N+1.

The DO statement implies that the procedure written between DO and

CONTINUE is executed until the index arrives at the required end value. In the

above example, I is the index and N is the end value of the loop. In the first exam-

ple, the index I changes in the sequence I5 1, 2,. . ., N. In the second example, the

index I changes in the sequence I5N, N2 2, N2 4,. . .; if N is even, the proce-

dures are repeated until N5 2, and if N is odd, they are repeated until N5 1. The

last example shows that a negative value, 2N, is possible as a starting value of the

index I. Either specific numbers or variables are possible for the starting and ending

values and the increment interval value of the DO loop statement. Be aware that

although REAL variables can be used as an index of the DO loop, INTEGER vari-

ables are desirable in order to remove any ambiguity in relation to the assessment

concerning the termination of the DO loop. In order to move out of the DO loop at

any time before the designed end, the GOTO statement employed with the previous

IF statement may be used. A final point to be noted relating to the DO loop is that

in the first above example, the index I does not have the figure N but (N1 1) for

the end of the procedure; thus, care should be taken in using the variable I in the

next task. Using variables in this way should be avoided in order to prevent causing

an unexpected error.
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Next, we explain several types of grammar that are relatively difficult to

understand when learning the FORTRAN language. First, we explain how to

transfer the values of variables between the main program and a subprogram. In

FORTRAN, there are two methods for the data transfer: (1) the values of vari-

ables are transferred to a subprogram through the arguments of the subprogram,

and (2) the variables to be transferred between a main program and a subpro-

gram are declared with the COMMON statements so that they can be accessed

from both the main program and the subprograms. An example of the former

method is as follows:

CALL INIVEL(N,H,T)
. . .
SUBROUTINE INIVEL(N,H,T)
. . .

In this case, the values of the variables N and H are transferred from a main

program to a subprogram, and the procedure returns to the main program with a

value of T, which was calculated in the subprogram. A big difference between

FORTRAN and the C language is that in the former language new values of N

and H, which were changed in the subprogram, are reflected in the main pro-

gram, but in the latter language this never arises unless a specific direction is

given to do so. This will be explained in detail later in the grammar of the C

language.

The second method for the data transfer is to use the COMMON statement: the

variables declared in the COMMON statements can be accessed from both the

main program and all the subprograms without any need for specific statements for

the data transfer. An example is as follows:

PARAMETER (NN5100)
COMMON /BLOCK1/ N, RX, RY
REAL*8 RX(NN), RY(NN), H
INTEGER N
. . .
CALL INIVEL(H)
. . .
STOP
END
. . .
SUBROUTINE INIVEL(H)
PARAMETER (NN5100)
COMMON /BLOCK1/ N, RX, RY
REAL*8 RX(NN), RY(NN), H
INTEGER N
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. . .
RETURN
END

In a main program, the variables, which are used in subprograms, can be defined

in the COMMON statements before the definition of other standard variables.

By defining the same variables in the COMMON statements in a subprogram,

the values saved on the variables can be referred to; also, new values may be

saved on these variables. In the above example, the values of N, RX(*), and

RY(*) are transferred using the COMMON statement, and a value of H is trans-

ferred as an argument. Note that the names of the variables in the COMMON

statements are not necessarily the same, but we recommend that the beginner

use the same names until they obtain a more complete understanding of the

language.

Another feature that the beginner may find difficult is the WRITE and

FORMAT statements. These statements are used for outputting results to a data file

and have no relation to the execution of the calculations. The following example is

for outputting the data for the purpose of confirming either the final or intervening

results of the calculation:

I53
XI55.D0
YI52.D0
PRESS5XI*YI
WRITE(NP,20) I, XI, YI,PRESS

20 FORMAT(’I5’,I3,3X,’XI5’,F7.3,2X,’YI5’,F7.3,2X,
& ’PRESSURE AT (XI,YI)5’, F10.3)

The result of the output from this FORMAT statement is as follows:

I5 3 XI5 5.000 YI5 2.000 PRESSURE AT (XI,YI)5 10.000

The above example is a part of the program for outputting the data of the vari-

able PRESS, which is obtained by multiplying XI by YI. For the case of

NP5 6, the results are output to the display of the computer, and if the OPEN

statement relates the device number (or device unit number) NP with a data

file, the result is output to the data file. For example, if “OPEN (11,

FILE5 ‘faa1.data’, STATUS5 ‘UNKNOWN’)” is declared and NP is set as

NP5 11, the data is output to the file faa1.data. Since the results shown on a

display can be seen only once, data is usually output to a data file. Inside the
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parentheses of the FORMAT statement, I3 means that the output is an integer

and is output up to three spaces (columns) to the right of the space, F7.3 means

that the output is a real number and is output using 7 spaces (columns), in

which the number is rounded to three decimal places and is written to the right

of the space; 3X means that three blank spaces are to be inserted. The reader

can see many examples of FORMAT statements in the sample simulation pro-

grams in Chapters 3�7.

A long run of the execution of a simulation program is sometimes divided into

several short runs. For this case, the intervening results are output to a data file,

and the following run is carried out to continue from the previous run using the

data saved in the file. This data may also be used for visualizing a particle configu-

ration in a form such as a snapshot. To do so, only numerical data is suitable for

the output to a data file—that is, without the specification of the names of the vari-

ables. A typical example is as follows:

. . .
WRITE(NP,50) N

50 FORMAT( I8 )
WRITE(NP,55) (RX(I),I51,N), (RY(I),I51,N)

55 FORMAT( (5E16.8) )

In the above example, the data saved in the array-type variables RX(*) and RY(*)

are output using a simple specification without using the DO statement. The speci-

fication of (5E16.8) in the FORMAT statement means that five data are output in

one line. The outer bracket ( ) is used for the repetition of the output specification

5E16.8, which means that the output data is real and is output using 16 spaces (col-

umns) in which the data is written to the right of the space with 8 decimal places.

In order to continue a separate successive run using the data which is output in the

above example, we need to use the following READ statement for reading the nec-

essary data:

READ(NP1,60) N
60 FORMAT( I8 )

READ(NP1,65) (RX(I),I51,N), (RY(I),I51,N)
65 FORMAT( (5E16.8) )

An important point is that the same FORMAT statement must be used for the

WRITE and READ statements; otherwise, the exact numerical values cannot be

read by the READ statement.

Finally, to assist the reader in understanding the grammar in more detail, we

have added explanatory remarks to the following sample program, which was made

by compressing a full simulation program.
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0001 C****************************************************************  
0002 C*              diffuse_sample.f (not complete version)              *  
0003 C*                                                                          *  
0004 C*    MOLECULAR DYNAMICS METHOD FOR MOLECULAR DIFFUSION PROBLEM   *  
0005 C*                  --- TWO-DIMENSIONAL CASE ---                       *  
0006 C*                                                                          *  
0016 C****************************************************************  
0033       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)      
0034 C                                                     
0035       COMMON /BLOCK1/ RX0 , RY0 , RX , RY         
0036       COMMON /BLOCK2/ FX  , FY                          
0040 C                                                       
0041       PARAMETER( NN=80, NRANMX=50000 )                   
0042       PARAMETER( PI=3.141592653589793D0 ) 
0043 C                                                       
0044       REAL*8  RX0(NN), RY0(NN), RX(NN)  , RY(NN)            
0045       REAL*8  FX(NN) , FY(NN) , VELX(NN), VELY(NN)           
0046       REAL*8  H , RC , L , T , K , NDENS  
0047 C                                                           
0048       REAL    RAN(NRANMX)                                 
0049       INTEGER NRAN  , IX                 
0050 C 
0051       REAL*8  RXI, RYI, TIME, HSQ, CC0, CC1                       
0052       INTEGER N, NA, NB                                    
 
 
 
 
 
 
 
 
 
0055 C 
0056                  OPEN( 9,FILE= '@aaa1.data',STATUS='UNKNOWN')   
0057                  OPEN(21,FILE='aaa001.data',STATUS='UNKNOWN')   
0058                  OPEN(22,FILE='aaa011.data',STATUS='UNKNOWN')   
 
 
 
 
 
 
0062                                                                  NP=9    
0063 C                                            ----- PARAMETER (1) -----   
0064       T   = 5.0D0                                                        
0065       K   = 10.D0                                                       
0066       NA  = 20                                                           
0072       L   = DSQRT( DBLE(N)/NDENS )                       
0073       HSQ = H*H                                      
0079 C                                            ----- PARAMETER (3) ----- 
0080       IX     = 0                                                        
0081       CALL RANCAL( NRANMX, IX, RAN )                                   
0082       NRAN   = 1                            
0083 C                                                                      
0084 C     ---------------------------------------------------------   
0085 C     ---------------    INITIAL CONFIGURATION    ---------------   
0086 C     ---------------------------------------------------------   
0087 C                                                                        
0100 C                                        --- CAL PREVIOUS POSITION ---  
0101       CALL POSITR1( N, NA, H, K )                                        
0102 C                                                                        
0103 C                                          --- PRINT OUT CONSTANTS ---   
0104       WRITE(NP,5) T , K , NDENS , NA , NB , L , H , RC              
0105 C                           --- PRINT OUT INITIAL CONFIGURATION --- 
0109 C     ---------------------------------------------------------    
0110 C     ---------------    START OF MAIN LOOP    

• IMPLICIT is the implicit data type declaration. In this case, the variables with their 
name starting with one of A~H and O~Z are regarded to be a double-precision real, 
and similarly those with one of I~N are regarded to be an integer.

• The variable defined in the COMMON 

statement can be accessed from everywhere 
without transferring them into subprograms as 
arguments. In the case of array variables, the 
dimension must be defined in the data type 
statement.

• The PARAMETER statement is frequently used for defining the variables used for 
specifying the dimensions of array variables; the change of these values in PARAMETER 
enables us to change the dimensions of the related array variables.

• REAL*8, REAL, and INTEGER are the data type declaration statements for double-
precision reals, single-precision reals, and integers, respectively. Although a computer can 
usually treat integers only between ± several ten billions, the INTEGER*8 statement 
enables one to use a much wider range of integers. Double-precision reals may be 
sufficient in scientific computations, but quad-precision reals are appropriate in some 
cases. 

• OPEN statements can relate data files to the input/output devices; CLOSE statements must be 
used together. The number 5 is the keyboard, 6 is the display, and other numbers are used for 
data files (numbers larger than 8 may be desirable). OLD in the STATUS statement implies an 
already-existed file. 

• Double-precision reals are expressed for example 5.2D0 or 
0.052D2; single-precision reals are expressed such as 5.2 
or 0.052E2. DSQRT means the square root, and * means the 
multiplication. 

• The line number is added for convenience and the first column 
starts from the position of C character. The C in the first column 
implies that the line is just a comment.

• The subroutine POSITR1 is called by the CALL statement. 

The variables necessary in the subroutine are passed as 

arguments (N, NA, H, K); the description of these variables 

has to be described in this order in the subroutine subprogram.

• The data are written out in the format expressed in the 5 

FORMAT statement; these statements should be placed before 

the STOP statement.
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0111 C     ---------------------------------------------------------    
0114 C                                                    
0115       DO 100 NTIME=1, NTIMEMX                         
0116 C                                                    
0121         DO 50 I=1,N                                  
0122 C                                                    
0123           IF ( I .EQ. NA+1 ) CC1 = CC0               
0124           RXI    = 2.D0*RX(I) - RX0(I) + FX(I)*HSQ*CC1  
0126           RX0(I) = RX(I)                             
0128           RX(I)  = RXI                               
0130 C                                                    
0131    50   CONTINUE                                     
0132 C                                              --- PRINT OUT DATA --- 
0133         IF ( MOD(NTIME,NPRINT) .EQ. 0 ) THEN           
0134           TIME = H*DBLE(NTIME)                       
0135           CALL PRINTOUT( N, NA, TIME, NP )                   
0136         END IF                                       
0141 C 
0142           DO 60 I =1,N                               
0143             IF( I .LE. NA ) THEN 
0144               R = 1.D0 
0145             ELSE 
0146               R = 1.5D0 
0147             END IF 
0148             WRITE(NOPT,58) I, R, RX(I), RY(I)            
0149    60     CONTINUE                                   
0153 C                                                    
0154   100 CONTINUE                                       
0155 C                                                    
0156 C     -------------------------------------------------------    
0157 C     ------------------   END OF MAIN LOOP   ----------------    
0158 C     -------------------------------------------------------    
0159       CLOSE(NP, STATUS='KEEP') 
0160 C                                                                        
0161 C     ---------------------- FORMAT --------------------------   
0162     5 FORMAT(/1H ,'------------------------------------------' 
0163      &       /1H ,'         MOLECULAR DYNAMICS SIMULATION         ' 
0164      &       /1H ,'FOR TWO-DIMENSIONAL MOLECULAR DIFFUSION PROBLEM' 
0165      &       /1H ,'-------------------------------------------' 
0166      &       /1H ,'TEMPERATURE=',F6.2 ,2X, 'MASS RATIO=',F6.2 ,2X, 
0167      &            'NDENS=',F6.3 
0168      &       /1H ,'NUMBER OF MOLECULES OF SPECIES A=',I4             
0169      &       /1H ,'NUMBER OF MOLECULES OF SPECIES B=',I4             
0170      &       /1H ,'MAGNITUDE OF CAGE=',F7.2 ,2X, 'TIME DIFF.=',     
0171      &            F8.5 ,2X, 'CUTOFF RADIUS=',F6.2/)                   
0172    56 FORMAT( 3I6, 2E13.8 )         
0173    58 FORMAT( I5, F8.3 , 2E26.18 )         
0174 C                                                                        
0175                                                                   STOP   
0176                                                                   END    
0177 C************************************************************   
0178 C*********************     SUBROUTINE    *********************   
0179 C************************************************************   
0180 C                                                      
0380 C**** SUB POSITR1 ****                            
0381       SUBROUTINE POSITR1( N, NA, H, K )                
0382 C                                                      
0383       IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)      
0384 C                                                 
0385       COMMON /BLOCK1/ RX0 , RY0,  RX,  RY               
0386       COMMON /BLOCK2/ FX  , FY                      
0387       COMMON /BLOCK3/ VELX, VELY                   
0388 C                                                 
0389       PARAMETER( NN=80 )                          
0390 C                                                 
0391       REAL*8  RX0(NN), RY0(NN), RX(NN)  , RY(NN)       
0392       REAL*8  FX(NN) , FY(NN) , VELX(NN), VELY(NN)     
0393       REAL*8  H , K                                   
0394       REAL*8  HSQ2, CC0, CC1                       

• The DO loop implies the iteration calculation; the 
statements between DO and CONTINUE are repeatedly 
carried out. The procedure starts at NTIME=1, and then is 
conducted at NTIME=2, 3,···, until I=NTIMEMX. DO loops 
are possible inside the DO loop.

• MOD(NTIME, NPRINT)returns the remainder after NTIME is 
divided by NPRINT. DMOD is used for such an operator of  
double-precision reals. As in this example, operators have a 
slightly different name depending on the data type of variables. 

• DBLE(*) is used for transforming an integer into a double- 
precision real. For developing a universal program, it is 
desirable that the data types be the same between the left and 
right-hand sides in the equation. INT(*) is used for transform-
ing a double-precision real into an integer.

•One of the procedures is chosen after assessing the IF 
statement. In this example, R=1.D0 if I≤NA, and R=1.5D0 if 
I>NA.

• The data file opened by the OPEN statement 
must be closed using the CLOSE statement. NP 
is the device number (name) of the I/O device, 
which is used to open the data file. KEEP is 
used in the STATUS statement in almost all 
cases. 

• The variables are described in the same order in which they 
have been written in CALL POSITR1.

• IMPLICIT, PARAMETER, and REAL*8 

statements are described in the same way as in 

the main program. The subroutine can access 

the variables in the COMMON statements, as well 

as the arguments of N, NA, H, and K; note 

that the change in these variables in the 

subroutine is reflected in the main program. 

The other variables are valid only in this 

subroutine, and never affect the main program. 

• The collection of FORMAT statements  before the STOP 
statement makes the logical structure of calculations clearer. 
• / on the first line means the insertion of one blank line; / in 
the later lines mean starting a new line. “1H  ,” means one 
blank space indent in each line. “56 FORMAT” and “58  
FORMAT” are for writing out only numerical data (or figures).
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0395       INTEGER NA  , N                                
0396 C                                                 
0397       HSQ2  = H*H/2.D0                            
0398       CC0   = 1.D0/K                              
0399       CC1   = 1.D0                                
0400 C                                                 
0401       DO 10 I=1,N                                 
0402         IF( I .EQ. NA+1 ) CC1 = CC0               
0403         RX(I) = RX0(I) + H*VELX(I) + HSQ2*FX(I)*CC1  
0404         RY(I) = RY0(I) + H*VELY(I) + HSQ2*FY(I)*CC1  
0405    10 CONTINUE                                       
0406                                                                 RETURN   
0407                                                                 END    

The use of the RETURN statement arbitrary 
times is possible in the subroutine. The END 
statement is necessary for specifying the end of 
the descriptions of the subroutine.

A3.2 C Language

Wewill explain the grammar of the C language in a way similar to our discussion of the

FORTRAN language. The main structure of a program written in the C language is

made up of the functionmain and a set of functions that correspond to subprograms in

FORTRAN. The C language has considerable flexibility in writing a program in com-

parison to FORTRAN. However, the logical structure concerning the arrangement of

main and functions has similarities to FORTRAN, and therefore it may be beneficial

for the reader to write a simulation program in a similar structure to one in FORTRAN.

We show a typical structure of a C program in the following. Note that there is

no requirement that the statements be written between 7th and 72nd columns in the

C language.

     setiniposit(n,temp) 
       double temp ; 
       int     n ; 
       {

 double rxi, ryi ; 
         int i, j ; 

       } 

Description of calculation procedures 

Function (setiniposit) 

#include <stdio.h> 
#include <math.h> 
#define PI    3.1415926535 
#define NN    20  
     double  RX[NN], RY[NN] ; 
main() 
  { 

  } 

     double rxi, ryi ; 
     int     n, i, j ; 

The function  main

Description of calculation procedures 
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     setinivel(n,press) 
       double press ; 
       int     n ; 
       {

      double vxi, vyi ; 
         int i, j ; 

       } 

Function (setinivel) 

Description of calculation procedures 

The function main is placed first, and other functions, corresponding to

subprograms in FORTRAN, follow main. The main body of the statements in

each function begins with the notation { and ends with the notation }. Since

there is no limit on the number of characters in one line, the notation ; is

used for terminating a line of statement—that is, it means the end of the line.

Except for special statements, every line must end with such a notation ;.

Because mathematical functions such as sin and sqrt are necessarily used in

scientific calculations, the statement of #include ,math.h. needs to be

declared in the first description area. Also, the statement of #include , stdio.h.
is indispensable to any program to facilitate the input or output of data to a

display or data file, and for reading data from a keyboard or data file. The

statements of #define PI 3.14. . . and #define NN 20 correspond to the

PARAMETER statement in FORTRAN. A statement beginning with the nota-

tion # is a preprocessor directive, which is a command to the compiler’s pre-

processor that treats instructions before the compilation procedure starts. The

preprocessor directive of #define NN 20 implies that the value of 20 is

assigned to the variable NN. The next statement, corresponding to the

COMMON statement in FORTRAN, is the declaration of the array-type vari-

ables RX[NN] and RY[NN] being used as global variables (which can be used

in the other function programs with no further definitions). The C language

typically uses lower-case characters, but it may be best that the names of

global variables are declared using upper case, so a programmer can be more

aware of treating the global variables. In a way similar to FORTRAN, the exe-

cution of a program starts with the function main; the procedures move to a

function when the function name is met and return to the main program

(main) after completion of the procedures in the function. As seen in this

explanation, the C language does not need the CALL statement used in the

FORTRAN language for transferring the task to another function. It employs

only the name of the function. The function main is written in a way to clar-

ify the flow of calculations, whilst any complex calculation procedure is

recommended as a separate function.

Next, we explain the most important statements for developing a program: the

if, for, do while, and switch statements. We first explain the if statement, which is
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used for choosing tasks according to certain conditions specified by the instruc-

tions. Some typical examples are as follows:

if(i= =3) x=a ; 

if( x>=0.)        z=b ;  
else if( x<-10. ) z=c ;  
else  z=d ; 

if( x>=5. ) { 
  z=a1 ; 
} 

if( x>5. ) { 
  z=a1 ; 
}else if( x<=-10. ) { 
  z=b1 ; 
}else { 
  z=c1 ; 
} 

if( (x>=-10.) && (X<=10.) ) { 
  z=a1 ; 
} else if( (x>=50.)||(x<=-50.) ){ 
  z=b1 ; 
} 

• This is the simplest if statement. 
“i=3” is expressed as “i==3” in the C
language.    

• If x≥0, z=b is set, if x<-10, z=c, and 
z=d for the other cases.

• This is a block-type if statement.  

• This is also a block-type if 
statement. One procedure is chosen 
depending on the condition; there are 
three cases x>5, x≤-10, and the 
other cases.     

• This is also a block-type if 
statement. “&&” means that if both the 
conditions are satisfied, z=a1 is 
assigned and “| |” means that if one of
the conditions at least is satisfied, 
z=b1 is assigned. 

The if statement implies that the procedure is carried out if a certain condition

specified in the if statement is satisfied; otherwise, another assessment or another

procedure (including the end of the execution of the if directive) is conducted. The

specification “, 5 ” in the condition statements represents the mathematical

meaning # , “. 5 ” means $ , “5 5 ” means 5 , and “!5 ” means 6¼. We next

explain the statements of for, while, and do while, which are used for specifying

the repeating procedures. Several typical examples follow.

for(i=1; i<=n; i++) { 
… ; 

}  

for(i=100; i>=0; i-=2) { 
… ; 

}  

 i=3 ; 
 do { 
   xnew = xold + xdef ; 
   i++ ; 
 } while( i<=n ) ; 

 i=3 ; 
 while( i<=n ) { 
   xnew = xold + xdef ; 
   i++ ; 
 } 

• The procedure starts at i=1, then is 
conducted at i=2 and continued until 
i=n.   

• The procedure starts at i=100, and is 
conducted at i=98, 96,…, while i≥0. 
“i–=2” means“i=i–2.”    

• The procedure starts at i=3 and is 
conducted at i=4,5, …, while i≤n. 
“i++” means “i=i+1” and “i––” means 
“ i=i–1.”  

• The procedure is the same as in the 
previous case, but terminating the 
procedure is assessed in a different 
position.
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The above statements correspond to the DO statement in FORTRAN. The proce-

dures specified between { and } are repeated, with the value of the index variable i

increasing or decreasing after the execution of each cycle step. The way of chang-

ing the index value is specified by the statement between ( and ) in the for state-

ment, such as “i11 ” or “i25 2”. In the case of the do while and while

statements, the way of changing the index value is specified by “i11 .” If the

statement of “i15 3” is used, the index i will change so that “i5i13.” A differ-

ence between the do while and the while statements is the position for assessing

the termination of the procedures. The procedure specified between { and } is

repeatedly carried out, whilst the condition indicated in the while statement

is satisfied.

A statement with characteristics similar to if is the switch statement. This state-

ment is quite simple to use; an example follows:

switch (itree ) {
  case 2 ;
    x = a1 ;
    y = b1 ;
    break ;
  case 3 ;
    x = a2 ;
    y = b2 ; 
    break ;
  default ;
    x = a4 ;
    y = b4 ;
    break ;
} 

• When itree=2, a series of 

statements defined in “case 2” are 

executed, and break means the exit 

from the switch statement. A similar 

procedure is carried out for “case 3.” 

In the other cases, a series of  

statements defined in default are  

executed; the break statement is 

possibly unnecessary in the default 

area.

As already pointed out, the function main and other functions correspond to a

main program and subprograms in the FORTRAN language, respectively. There

are two types of functions in the C language. That is, the first type of function cor-

responds to a function subprogram in the FORTRAN language, and therefore a

value calculated in the function is transferred through the variable (i.e., the name of

the function) in the function main. The second type of function corresponds to a

subroutine subprogram, and a value calculated there is not transferred through the

name of the function. Several examples that explain these two types of functions

are shown here:

setinivel(n,press)
   double press ;
   int     n ;
   {
      double vxi, vyi ;
      int i, j ;
       …
   }

• This is a function that returns no calculated 
values to the main function. It corresponds to 
the subroutine subprogram in FORTRAN.   
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double press(x, y)
   double x, y;
   {
      double c1, c2, cans ;
      c1=1. ; c2=2. ;
      cans = c1*x + c2*y ;
      return( cans ) ;
   }

int press(x,y)
   double x, y ;
   {
      int ic, jc, ians ;
      ians = ic*(int)x
           + jc*(int)y ;
      return( ians ) ;
   }

• This corresponds to the function subprogram 
in FORTRAN; the calculated value “cans” is 
substituted into the double-precision variable 
“press,” and the value of “press” is returned
to main.

• This also corresponds to the integer function 
subprogram in FORTRAN; the calculated 
value “ians” is substituted into the integer 
variable “press,” and the value of “press” is 
returned to main.

In the second and third examples, a value calculated in the function is transferred

to the main program main through the function name. The descriptor of the func-

tion type, such as double and integer, is, therefore, attached before the function

name. In the first example, the function does not return a calculated value to the

main program, but certain procedures are carried out in this function, so that

the declaration of the function type is unnecessary and not attached to the function

name. Note that int, float, and double imply that a variable (or data) is integer-

type, single-precision-real-type, and double-precision-real-type, respectively.

Next, we explain several important points that seem to be relatively difficult or

may be misunderstood by the beginner who is learning the grammar of the C lan-

guage. Array-type variables are defined in the declaration statements of the data

type in such a way as double a[100] or rx[20][20]. For example, in the case of a

one-dimensional array such as double a[100], it is noted that a[0], a[1], . . ., a[99]
storage spaces are prepared, but a[100] is not available. The second example of

double rx[20][20] means the declaration of a two-dimensional array variable, and

rx[0]][0], rx[0][1], rx[0][2], . . ., rx[19][19] storage spaces are prepared.
A significant difference between FORTRAN and the C language concerns the data

transfer between the function main (main program) and other functions (subpro-

grams). In FORTRAN, when one transfers data to a subprogram as arguments, one

does not take the values themselves saved in the variables but rather takes the positions

or addresses of the variables in which the data are saved. This means that the values

saved in the variables can freely be accessed from the subprogram, and also that new

data can be assigned to such variables; these new values are reflected in the main pro-

gram. This data transfer type is the “call by reference.” In the case of the C language,

the specification of variables as arguments, as in the FORTRAN language, does not

mean the transfer of the address of the variables; rather, the values themselves saved in

the variables are transferred to the function; therefore the assignment of new values to

the variables in the function is never reflected in the main program. This type of data

transfer is the “call by value.” This means that in respect to data transfer, the C lan-

guage is much safer than FORTRAN. If the data transfer is carried out by “call by ref-

erence” in a similar way to FORTRAN, then the variables of the “pointer” class must

be used in the C language. A pointer variable saves the position or address of a stan-

dard variable, and therefore it is important to declare what type of data is saved at the
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position. For example, if an integer value is to be saved in a variable, the address of

which a pointer variable “pa” saves, then the asterisk * must be attached to the pointer

variable like “*pa,” and the data type must be declared like “int *pa.” In the body of

the program, the variable “*pa” is treated as a standard integer variable. If “int *pb,

ix” is declared in the definition statement of the data types, the statement “pb5&ix” is

used in order to save the address of the integer variable “ix” in the pointer variable

“pb.” If “&” is attached to a standard variable, for example, “&ix,” it will return the

value of the address of the variable ix. Therefore, since a pointer variable—for exam-

ple, “pa”—has the information about the address of a standard variable, a value (data)

saved at the address of the standard variable can be extracted using the notation “*pa.”

We are now ready to begin the explanation of “call by reference.”

In order to return from a function with the calculated values, the information of

the addresses of the variables, in which the calculated values are saved, need to be

transferred to the function by using arguments of the pointer type. For example,

consider a sample program in which a calculation is carried out using a value saved

in the variable “h” in the function “anscal,” and the calculated data is returned to

the main program through the variable “ans.” One has to call the function using the

statement “anscal (h, &ans),” in which a value (i.e., not the pointer information)

saved in the variable “h” is transferred to the function “anscal,” and the address of

the variable “ans” can be transferred to the function using the pointer information

“&ans.” It is important that the data type of the variable “*ans” is declared in the

function “anscal,” so that the variable “*ans” can be treated as a standard variable

in the function. Several typical examples (including a bad example) follow.

• The address of “ans” is transferred to 
the function; “&ans” is the address of the 
variable “ans.” In the function, the 
pointer variable “pans” is used for 
receiving the value of “ans” in the main 
function. Since “ans” is a double-
precision real, “*pans” has to be defined 
as a double-precision-real variable.  

double h, ans ; 

x = anscal(h, &ans) ; 

anscal(h, pans)  
  double h, *pans ; 
  { 
  *pans = h*h ; 
  }

double h, ans ; 

x = anscal(h, ans) ; 

anscal(h, ans)  
  double h, ans ; 
  { 
    ans = h*h ; 
  }

double h, ans[100] ; 

x = anscal(h, ans) ; 

anscal(h, ans)  
  double h, ans[100] ; 
  { 
     for( i=0, i<=99; i++) { 
       ans[i] = h*(dble)i ; 
     } 
  }

• This is a bad example. In this case the 
values saved in “h” and “ans” are 
transferred to the function “anscal,”
but the values calculated in the function 
can never be returned (reflected) to the 
main function.

• For array variables, the data transfer to 
the function is quite similar to 
FORTRAN; the pointer variables are 
unnecessary for the data transfer for the 
case of array variables. The variable 
name itself is used as an argument in 
calling the function and also in the 
definition of the function name.         
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In the first example, the address of the variable “ans” in the main program is trans-

ferred as an argument “&ans.” This value is saved in the pointer variable “pans” in

the function; the data type of the variable “ans” is recognized in the function by

declaring “double *pans” there. Through these statements, the original value saved

in the variable “ans” in the main program is changed into a new value after this

new value is substituted into the variable “*pans” in the function. Clearly identify-

ing pointer variables from standard variables by attaching the asterisk * may signif-

icantly assist the programmer by removing the danger of mistakes arising from

substituting new values to those variables in other functions.

The second example demonstrates a bad example of programming, where new

values calculated in the function “anscal” are not transferred to the variables “h”

and “ans” in the main program, since the connection of the variables between the

main function and the function “anscal” can never be made using a statement of

the type “anscal (h, ans).” If the arguments are defined without pointer variables,

then a function that returns a calculated value to the main program may be used, as

already explained; in this case, “anscal (h, ans)” has to be changed into “double

anscal (h, ans),” and “return (ans);” is added to the line after “ans5 h*h;,” which

corresponds to a function subprogram in the FORTRAN language.

The third example demonstrates how to transfer values saved in array-type vari-

ables such as “ans.” The data transfer of array-type variables can be conducted in the

same way as for the FORTRAN language, and therefore pointer variables are unneces-

sary. That is, calling a function with the arguments that are array-type variables will

have a direct type of connection, so that new values assigned to the array-type vari-

ables in the function are reflected inmain without the need for pointer variables.

We have shown the three methods of returning calculated values from a function

back to the main function. The first method is to use pointer variables; the second is

to use array-type variables; and the third is to use a function that returns a calculated

value through the name of the function itself. In addition to these three methods is

another method that uses global variables that correspond to variables declared in

the COMMON statements in FORTRAN. The global variables have to be declared

before the “main( )” statement, and for these variables we recommend the use of

capital characters in their names, to help the programmer recognize them. An exam-

ple of using global variables is in the sample simulation program shown in

Section 5.6 as the array-type variables such as RX[NN], RY[NN], and RZ[NN].

Next, we explain the statements for inputting data, scanf and fscanf statements,

and for outputting data, printf and fprintf statements. The scanf and printf state-

ments correspond to READ(5,*) and WRITE(6,*) statements in FORTRAN; in these

statements, data are input from a keyboard and results shown on a display. In the

case of the fscanf and fprintf statements, data files are used for reading and writing

the data. If the reader understands the latter reading and writing statements, the for-

mer statements are quite straightforward to understand, so we only focus on the

explanation of the fscanf and fprintf statements. In order to use data files, pointer

variables must be connected to the data files used in a program. To do so, the fopen

statement is used, and fclose must be used to disconnect the data file used before the

end of the main program; this means that a data file connected by the fopen state-

ment should always be disconnected in a program. Some examples follow.
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main()
{

double a, b, c;
int i;
FILE *fopen(),*np1,*np2,*np[4];

np15fopen(”aaa0.data”,”r”);
np25fopen(”aaa1.data”,”w”);
np[1]5fopen(”bbb1.data”,”w”);
np[2]5fopen(”bbb2.data”,”w”);
np[3]5fopen(”bbb3.data”,”w”);

. . .
fscanf(np1,”%lf”, &c );
fprintf(np2,”a5%10.3f b5%10.3f\n”, a, b);
i52;
fprintf(np[i],”a5%10.3f b5%10.3f c5%10.3f\n”,
a,b,c);

. . .
fclose(np[1]);
fclose(np[2]);
fclose(np[3]);
fclose(np1);
fclose(np2);

As shown in the above example, a data file must be connected to the file pointer vari-

able, which is declared in the FILE statement, by using the fopen statement. After a

data file is opened (connected), data can be input from the data file by using the

fscanf (np1,. . .) statement, and also can be output by the fprintf (np2,. . .) or fprintf
(np[2],. . .). The latter example for fprintf is quite useful for outputting the particle

positions at given time step intervals, which may be used for making an animation of

the particle motion. In this case, the index “i” in “np[i]” is made to change in such a

way as i51,2,3,. . ., with advancing time for the output. The arguments “r” and “w”

in the fopen statement indicate the reading and the writing mode, respectively. A

data file opened by the fopen statement must be closed (disconnected) using the

fclose statement before the end of the program. If a data is read and saved in a stan-

dard variable “c,” the pointer information (address) of “c” is necessary as an argu-

ment in the fscanf statement. In contrast, when a data saved in the variable “a” is

output to a data file, only a value is necessary, so that the name itself is used as an

argument in the fprintf statement; the pointer information is unnecessary in this case.

Next, we explain how to describe the format to output data, using the following

example:

i53;
xi55.;
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yi52.;
press5xi*yi;
fprintf(np2,”i5%3d xi5%7.3f yi5%7.3f pressure5
%10.3f\n”, i, xi, yi, press);

The output result of the above fprintf statement is as follows:

i5 3 xi5 5.000 yi5 2.000 pressure5 10.000

The C language does not have a statement corresponding to the FORMAT state-

ment in FORTRAN. Instead, the output format for the data is specified in the

fprintf statement. In the above example, “%3d” is used for integer-type data and is

written using 3 columns (spaces) from the right. Similarly, “%7.3f” is for real-type

data and is written using 7 columns from the right with three decimal places, and

“\n” means the start of a new paragraph. If a data is output in exponential form, for

example, using “%10.2e,” this implies that a value is written using 10 columns

with 2 decimals. The reader sees many examples in the sample simulation program

shown in Section 5.6.

In order to make a visualization, such as an animation or snapshot, using the

data of the particle positions, it is necessary to write out only data (figures) in a

data file without any characters for explaining the data such as the names of vari-

ables. An example for this output is as follows:

. . .
for (i51; i,100; i11) {

fprintf(np2,”%10.4f%10.4f%10.4f\n”, rx[i], ry[i],
rz[i]);

}
. . .

In this example, the components of the particle position vector, rx[*], ry[*], and

rz[*] are output at each time step using the for loop statement; the position data of

particle 1, particle 2, and particle i are written in the first, second, and ith lines,

respectively, of the data file. In order to conduct another run using the data saved

in the above-mentioned manner, one needs to read such data from the data file in

the following way:

. . .
for (i51; i,100; i11) {

fscanf(np1,”%lf%lf%lf\n”, &rx[i], &ry[i], &rz[i]);
}

. . .
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In the above example, “rx[*], ry[*], and rz[*]” are assumed to be defined as

double-precision-real-type variables. As this example demonstrates, in the C language,

data does not need to be read using the same format description that was used in the

fprintf statement, but only described as “%lf%lf%lf/n” in the fscanf statement; this is

in contrast to FORTRAN. As already pointed out, the address of the variables—not

the name itself—is necessary in reading the data by the fscanf statement.

The C language has several characteristic concepts for using variables, such as

structure variables, which are not contained in the FORTRAN77 language. We do

not explain them in this book, because these characteristic statements are not used

in the sample simulation programs. Since imaginary variables may be useful in cer-

tain cases, the reader may find them in a textbook on the C language, if necessary.

Finally, we show some additional features of the grammar using a short sample

simulation program.

0001 /*-------------------------------------------------------------------*/
0002 /*                        alder1.c                                   */
0003 /*                                                                   */
0004 /*           -----  Hard Sphere Molecular Dynamics  -----            */
0005 /*             Simulation of phase transition for a two              */
0006 /*             dimensional system.                                   */
0021 /*-------------------------------------------------------------------*/
0042 #include <stdio.h> 
0043 #include <math.h>  
0044 #define  PI      3.141592653589793  
0045 #define  NN      201   
0046 #define  NNCOLMX 2001   
0047 #define  NRANMX  100001   
0048     double  RX[NN] , RY[NN] ;  
0049     double  VX[NN] , VY[NN] ;  
0050     double  XL, YL ; 
0051     float   RAN[NRANMX] ; 
0052     int     NRAN, IX ; 
0053  
0054 /*------------------------------------------------- main function ---*/ 
0055 main() 
0056   {  
0057     int     n, partnr[NN] ; 
0057     int     n, partnr[NN] ; 
0059     double  coltim[NN] , tstep, tij , tim, timbig ;          
0061     float   rx0[NN][NNCOLMX], ry0[NN][NNCOLMX] ;    
0062     int     i, j, k, ii, ncol , ncolmx , nbump ;        
0064     FILE    *fopen(), *np[10], *np1, *np2 ;  
0065  
0066                np1    = fopen("@baa1.data", "w");  
0068                np[1]  = fopen("baa011.data", "w");  
0069                np[2]  = fopen("baa021.data", "w");  
0076  
0077                                                /*--- parameter (1) ---*/ 
0081     n      = 36  ;                 
0082     vdens  = 0.1 ;                 
0085     ndens  = vdens*(4./PI) ; 
0086     dsq    = d*d ;                 
0087     timbig = 1.e10 ;      
0091                                                /*--- parameter (3) ---*/ 
0092     IX     = 0 ;               

• The statements enclosed by “/*” and “*/” are regarded 
as comment lines and therefore have no influence on the 
calculation. Comment lines are placed at any positions, 
which is dissimilar to FORTRAN.     

• “#include <stdio.h>” is necessary for the 
input/output of data, and “#include <math.h>” is 
necessary for the use of mathematical calculations.
• The “define” statement corresponds to the 
PARAMETER statement in FORTAN, which is useful 
for defining the size of the array-type variables.
• The variables defined using “double,” “float,”  
and “int” are regarded as global variables that can 
be accessed from any functions without any definition 
in each function.          

• In order to output the calculated data on a data file, the file has to be 
related to the pointer variable (device number) using the “fopen” 
statement; the opened file has to be closed using the “fclose” 
statement before the end of the main function. “w” and “r” are used for 
writing and reading the data, respectively.

• This is calling the function rancal(*), in which 
arguments are unnecessary because of the use of the 
global variables. This is a void function of returning no 
calculated results, which corresponds to a subroutine 
subprogram in FORTRAN.
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0123     /*----------------------    equilibration   ----------------------*/ 
0124     /*----------------------------------------------------------------*/ 
0125                                                                         
0126     for ( ncol=1 ; ncol<=ncolmx ; ncol++ ) {  
0127                                                  
0137                                            /*--- coll. for i and j ---*/ 
0140       tim   += tstep ;            
0141       nbump +=  1 ;               
0142                                    /*--- advance particle position ---*/ 
0143       for ( k=1 ; k<=n ; k++ ) {     
0144         coltim[k] += - tstep ;       
0145         RX[k]     += VX[k]*tstep ;   
0146         RY[k]     += VY[k]*tstep ;   
0147         RX[k]     += - rint( RX[k]/XL - 0.5 )*XL ; 
0148         RY[k]     += - rint( RY[k]/YL - 0.5 )*YL ; 
0149       }                                       
0156       for( k=1 ; k<=n ; k++ ) {                               
0157         if( (partnr[k] == i) || (partnr[k] == j) ) 
0158                                  collist( n, dsq, k, coltim, partnr ) ;  
0159       }                                                              
0160                                              /*--- for data output ---*/ 
0161       for( k=1 ; k<=n ; k++ ) { 
0162         rx0[k][ncol] = (float)RX[k] ;   
0163         ry0[k][ncol] = (float)RY[k] ;   
0164       }       
0165     }                                                       
0166                                                                         
0167     /*---------------------------------------------------------------*/ 
0168     /*---------------------   end of main loop   --------------------*/ 
0169     /*---------------------------------------------------------------*/ 
0170  
0171                                                   /*--- print out ---*/ 

0172     fprintf(np1,"time=%11.3e num.of coll.=%7d nbump/ncolmx=%6.3f¥n",  
0173                  tim, nbump, (float)nbump / (float)ncolmx )  ;        
0174                                                  /*--- data output ---*/ 
0175     fprintf(np2,"%4d%8.4f%8.4f%8.3f%9.3f%9.3f%8d¥n",  
0176                      n, ndens, vdens, temp, XL, YL , ncolmx ) ; 
0179                                                  /*--- data output ---*/ 

0180     for ( ii=1 ; ii<=7 ; ii++ ) {  
0181       op = 5*(ii-1) ; inp += 1 ; 
0182       for( k=1 ; k<=ncolmx ; k++ ) {    
0183         fprintf(np[inp], 

• This is not for the postprocessing analysis, just for reconfirming the validity
of results.   

• This “fprintf” statement is for the postprocessing analysis, such as making
snapshots and analyzing data; thus, only numerical values are written out.   

• The “(float)” is added just before the variable in order to change a double-
precision to a single-precision data.  

• The “tim+=tstep” implies “tim=tim+tstep.”
“rint” is a round-up function.  

• In the “if” statement, “==” means “=,” “<=” means 
“≤,” and “>=” means “≥.” Also, “||” means “OR,” and 
“&&” means “AND.”  

0093     rancal() ;     
0094     NRAN   = 1 ;               
0095                                  
0096     /*----------------------------------------------------------------*/ 
0097     /*-----------------    initial configuration    ------------------*/ 
0098     /*----------------------------------------------------------------*/ 
0099                                        /*--- set initial positions ---*/ 
0100     iniposit( n, ndens ) ;                            
0101                                       /*--- set initial velocities ---*/ 
0102     inivel( n, temp ) ;                                      
0109                                          /*--- print out constants ---*/ 
0110     fprintf(np1,"-------------------------------------------------¥n"); 
0111     fprintf(np1,"         Molecular dynamics of hard spheres      ¥n"); 
0112     fprintf(np1,"                                                 ¥n"); 
0113     fprintf(np1," n=%4d ndens=%8.3f vdens=%6.3f temp=%7.3f¥n", 
0114                   n, ndens, vdens, temp) ; 
0115     fprintf(np1," XL=%6.3f YL=%6.3f¥n", XL, YL) ;              
0116     fprintf(np1," ncolmx=%8d¥n", ncolmx) ; 
0117     fprintf(np1,"-------------------------------------------------¥n"); 
0118  
0122     /*----------------------------------------------------------------*/

• The given parameters are written out in the data file 
@baa1.data. 
• There is no statement that corresponds to the FORMAT  
statement in FORTRAN.  

• The “for” loop implies the iteration calculation. The 
procedure starts at ncol=1 and then is conducted at 
ncol=2,3,···, until ncol=ncolmx. Another “for” loop is 
possible inside the “for” loop.
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0211                                                                         
0212                      /*--- set mol. at close-packed lattice points ---*/ 
0213       a  = sqrt(  (2./sqrt(3.))/ndens  ) ;     
0214       p  = rint(  sqrt( (double)(n/4) )  ) ;   
0215       XL = sqrt(3.)*a*(double)p ;       
0217                                              
0218       ax = sqrt(3.)*a ;  ay   =  2.*a ;        
0219       kx = p ; ky = p ;                        
0223                                               
0224       for ( iface=1 ; iface<=4 ; iface++ ) {  
0225         if( iface == 1 ) {             
0226           rx0 = c1 ; ry0 = c1 ;               
0227         } else if( iface == 2 ) {     
0228           rx0 = c1 ; ry0 = a + c1 ;           
0229         } else if( iface == 3 ) {     
0230           rx0 = ax/2. + c1  ;         
0231           ry0 = a/2.  + c1  ;         
0232         } else {     
0233           rx0 = ax/2. + c1  ;         
0234           ry0 = a*3./2. + c1 ;      
0235         }                          
0236         for( j=0 ; j<=ky-1 ; j++ ) {          
0237           ryi = (double)j*ay + ry0 ;      
0238           if ( ryi >= YL )    break ; 
0239           for ( i=0 ; i<=kx-1 ; i++ ) {       
0240             rxi = (double)i*ax + rx0 ;     
0241             if ( rxi >= XL )  break ;  
0242                                        
0243             k += 1 ;                     
0244             RX[k]   =  rxi ;            
0246           }                      
0247         }                     
0248       }                          
0249     }                                   
0250 /*+++ fun inivel +++*/                        
0251     inivel( n, temp )                         
0252                                               
0253     int     n ;                               
0254     double  temp ;  
0255     { 
0256       int     i ; 
0257       double  c0 , c1 , c2 , c3 , t , vxi , vyi ; 
0258        
0259       c0 = 2.*PI ;                                    
0263       for ( i=1 ; i<=n ; i++ ) { 
0264                    
0265  L5:    NRAN += 1  ;                              

• “sqrt” means a mathematical 
function that calculates the square 
root of a value.

• The “break” statement 
enables the procedure to be 
terminated and to leave the 
calculation in the “for” or the 
“if” statement unit.  

• “log(x)” means a natural 
logarithm, “cos(x)” and 
“sin(x)” mean a cosine and a 
sine function, “fabs(x)” returns 
the absolute value of x, 
“pow(x,y)” means xy, and “m%n” 
returns the reminder. Also, 
“floor(x)” means truncation, 
“rint(x)” means rounding-up, 
and “exp(x)” is an exponential 
function. In the above functions, 
x is regarded to be a double-
precision real, and m and n are 
integer variables.

0184                 "%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f¥n", 
0185                  rx0[op+1][k],ry0[op+1][k], rx0[op+2][k],ry0[op+2][k], 
0186                  rx0[op+3][k],ry0[op+3][k], rx0[op+4][k],ry0[op+4][k], 
0187                  rx0[op+5][k],ry0[op+5][k] ) ; 
0188       } 
0189       fclose(np[inp]) ; 
0190     } 
0196                fclose (np1) ; 
0198   } 
0199    
0200 /*--------------------------------------------------------------------*/ 
0201 /*-------------------------- functions -------------------------------*/ 
0202 /*--------------------------------------------------------------------*/ 
0203 /*+++ fun iniposit +++*/ 
0204     iniposit( n, ndens )             
0205                                      
0206     double  ndens ; 
0207     int     n ;  
0208     { 
0209       double  rxi, ryi, rx0, ry0, a , ax , ay , c1 ;     
0210       int     i , j , kx , ky , k  , p , iface ;           

• The file opened by the “fopen” statement is necessarily
closed by the “fclose” statement.  

• The variables defined are valid only 
in this function, and these values have 
no influence on the main function. 
• The results calculated here are 
returned to the main program through 
the global variables.

• The arguments have to be described in the same order 
as being called in the main function.
• Even if any values are saved in “n” and “ndens,” these 
values are not reflected in the main function. 
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0266         c1    = sqrt( -t*log( (double)(RAN[NRAN]) ) ) ;  
0267         NRAN += 1 ;                             
0268         c2    = c0*(double)( RAN[NRAN] ) ;                   
0269         vxi   = c1*cos(c2) ;                          
0271                                                      
0272         if( (vxi*vxi+vyi*vyi) >= c3 )   goto L5 ;       
0273         VX[i] = vxi ;               
0275       }  
0276     }                               

• The “goto” statement tends to 
make the logical flow complex, so 
this statement should be used 
limitedly.    

In this example, the line numbers are attached for the sake of convenience—they

are not necessary in writing a program. In the C language, all variables used in a

program must be defined using the data type statement such as int, float, and

double.

A3.3 Execution Procedures of FORTRAN and C Programs

The execution of a program in the FORTRAN or the C language involves two pro-

cedures: one to make an executive-type program by compiling the program, and

another to conduct a command for running the executive-type program. When error

messages appear in compiling a program, one has to modify the program so as to

completely remove those errors. Error messages are quite useful for the beginner in

the process to learn how to develop a program, so that the reader is recommended

to spend sufficient time on tackling such problems. Note that if there are no error

messages, it does not mean that there are no bugs in the simulation program, but

just implies there are no grammatical errors. Hence, after error messages disappear

in compiling, one should check a program another 5 times. Since this kind of care-

ful verification procedure is necessary to remove fatal bugs, programmers have to

avoid employing complex logical structures in writing a program.

The sample simulation programs shown in each chapter of this book are almost

directly portable to free FORTRAN and C compilers, for example, in a free Linux

system. However, if the reader intends to conduct a large-scale simulation, it is

desirable to introduce a commercial compiler, which may offer higher performance

for the computer.

If a Linux system is installed with GNU family compilers in the FORTRAN and

C languages, typical execution procedures are as follows:

> f77 sample1.f
> ./a.out  

> cc sample1.c -lm
> ./a.out

> f77 -o sample1.out sample1.f
> ./sample1.out  

> cc -o sample1.out sample1.c -lm
> ./sample1.out  

The “a.out” is a default name of an executive-type program, but in the second

example, the name of an executive-type program is assigned to a chosen name and
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the execution is carried out using this name. Since mathematical functions are usu-

ally used in a program, the compile option “-lm” is necessary for a C program.

If you use a commercial compiler, offered by Intel or other companies, installed

on a Linux system, a typical example for the execution is as follows:

. ifort �o sample1.out sample1.f

../sample1.out

in which “ifort” is the command for starting the FORTRAN compiler. If the reader

is using a freeware, the required command may be “g77,” “f90,” “f95,” “gfortran,”

“ifc,” or “fort.”

If the reader wants more information on the compile options, “man ifort” or

“man ifc” can be used to access to the manual of the compiler. Note that since the

grammar is slightly different among different compilers, one compiler may output

error messages in compiling, but another does not. Hence, we recommend that the

reader devise a program in a general form, otherwise, a large amount of tuning

tasks may be necessary to apply it to a compiler on another computer.

If error messages are output in compiling the same programs in this book, the

following data type statement may be a reason; in this case, the reader is advised to

replace “REAL*8” with “DOUBLE PRECISION.” Also, error messages may be

resolved by reducing the size of array-type variables.
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Appendix 4: Unit Systems of Magnetic
Materials

The CGS unit system and the SI unit system, which was developed from the

MKSA unit system, are generally used in the field of magnetic materials. Although

the CGS unit system is commonly used in the commercial world, the SI unit system

is invariably used in textbooks on magnetic materials. Using quantities expressed

in different unit systems at the same time will lead to wrong expressions for physi-

cal quantities, so one must adhere to the same unit system for handling equations

or physical values of magnetic materials. Many textbooks on magnetic materials

provide tables to transform values from one unit system to another. We here sum-

marize the two unit systems based on the MKSA system. In the first unit system,

the magnetization M corresponds to the magnetic field H in units. In the second

unit system, M corresponds to the magnetic flux density B. Some typical quantities

used for magnetic materials are tabulated below.

Note that in this book we use the first unit system of M corresponding to H in

units.

B5µ0(H1M) B5µ0H1M

Magnetic field strength, H [A/m] [A/m]

Magnetization strength, M [A/m] [Wb/m2]

Magnetic flux density, B [T] (5[Wb/m2]) [T] (5[Wb/m2])

Permeability of free

space, μ0

μ05 4π3 1027 [H/m]

(5[Wb/(A �m)]

μ05 4π3 1027 [H/m]

(5[Wb/(A �m)]

Magnetic charge, q [A �m] [Wb] (5[N �m/A])

Magnetic moment, m [A �m2] [Wb �m] (5[N �m2/A])

Potential energy, U U5 2μ0m �H [J]

(5[Wb �A])
U5 2m �H [J] (5[Wb �A])

Torque, T T5μ0m3H [N �m]

(5[Wb �A])
T5m3H [N �m]

(5[Wb �A])
Magnetic field induced by

magnetic charge, H

H5 q
4πr2 U

r
r
[A/m] H5 q

4πμ0r
2 U r

r
[A/m]

Magnetic force acting between

two magnetic charges, F
F5

μ0qq
0

4πr2 U
r
r
[N]

(5[Wb �A/m])

F5 qq0

4πμ0r
2 U r

r
[N]

(5[Wb �A/m])

Magnetic interaction between

two magnetic moments, U
U5

μ0

4πr3 m1Um2 2
3
r2

�
3 ðm1UrÞðm2UrÞg
[J](5[Wb �A])

U5 1
4πμ0r

3 m1Um2 2
3
r2

�
3 ðm1UrÞðm2UrÞg
[J] (5[Wb �A])

Combined units: [H]5 [Wb/A], [T]5 [Wb/m2], [J]5 [N �m]

Equivalent units: [N]5 [Wb �A/m]



 

This page intentionally left blank



 

How to Acquire Simulation Programs

A copy of the sample simulation programs that are shown in this book can be

requested directly from the author via e-mail:

asatoh_book2010@excite.co.jp

Please note that the following information is required:

1. the purchase date,

2. the number of purchased copies,

3. the profession of the purchaser.

The sample simulation programs in this book can be used free of charge for edu-

cational purposes in an academic environment such as a university, but are not per-

mitted to be used for commercial purposes. In addition, the user takes

responsibility for all results obtained from using the sample simulation programs.

The author would deeply appreciate the report of any bugs in the programs, but

regrets that he is unable to accept any inquiries concerning the content of the simu-

lation programs.
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