

Introduction to Practice of Molecular Simulation

This page intentionally left blank

Introduction to Practice of
Molecular Simulation
Molecular Dynamics, Monte Carlo,
Brownian Dynamics,
Lattice Boltzmann, Dissipative
Particle Dynamics

Akira Satoh
Akita Prefectural University

Japan

AMSTERDAM � BOSTON � HEIDELBERG � LONDON � NEW YORK � OXFORD

PARIS � SAN DIEGO � SAN FRANCISCO � SINGAPORE � SYDNEY � TOKYO

Elsevier

32 Jamestown Road London NW1 7BY

30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

First published 2011

Copyright r 2011 Elsevier Inc. All rights reserved

No part of this publication may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or any information storage

and retrieval system, without permission in writing from the publisher. Details on how to

seek permission, further information about the Publisher’s permissions policies and our

arrangement with organizations such as the Copyright Clearance Center and the Copyright

Licensing Agency, can be found at our website: www.elsevier.com/permissions

This book and the individual contributions contained in it are protected under copyright by

the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and

experience broaden our understanding, changes in research methods, professional practices,

or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in

evaluating and using any information, methods, compounds, or experiments described

herein. In using such information or methods they should be mindful of their own safety and

the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors,

assume any liability for any injury and/or damage to persons or property as a matter of

products liability, negligence or otherwise, or from any use or operation of any methods,

products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-385148-2

For information on all Elsevier publications

visit our website at www.elsevierdirect.com

This book has been manufactured using Print On Demand technology. Each copy is

produced to order and is limited to black ink. The online version of this book will show

color figures where appropriate.

Contents

Preface ix

1 Outline of Molecular Simulation and Microsimulation Methods 1

1.1 Molecular Dynamics Method 1

1.1.1 Spherical Particle Systems 2

1.1.2 Nonspherical Particle Systems 5
1.2 Monte Carlo Method 11

1.3 Brownian Dynamics Method 15

1.4 Dissipative Particle Dynamics Method 19

1.5 Lattice Boltzmann Method 24

2 Outline of Methodology of Simulations 29

2.1 Initial Positions 29

2.1.1 Spherical Particle Systems 29

2.1.2 Nonspherical Particle Systems 32

2.2 Initial Velocities 35
2.2.1 Spherical Particle Systems 35

2.2.2 Nonspherical Particle Systems 37

2.3 Reduction Methods of Computation Time 39

2.3.1 Cutoff Distance 39

2.3.2 Cell Index Method 41

2.3.3 Verlet Neighbor List Method 42

2.4 Boundary Conditions 43

2.4.1 Periodic Boundary Condition 43
2.4.2 Lees�Edwards Boundary Condition 45

3 Practice of Molecular Dynamics Simulations 49
3.1 Diffusion Phenomena in a System of Light and Heavy Molecules 49

3.1.1 Physical Phenomena of Interest 50

3.1.2 Specification of Problems in Equations 50

3.1.3 Verlet Algorithm 51

3.1.4 Parameters for Simulations 52

3.1.5 Results of Simulations 54

3.1.6 Simulation Program 55

3.2 Behavior of Rod-like Particles in a Simple Shear Flow 63

3.2.1 Physical Phenomena of Interest 64
3.2.2 Particle Model 64

3.2.3 Equation of Motion and Molecular Dynamics Algorithm 66

3.2.4 Modeling of Steric Repulsive Interaction 69

3.2.5 Nondimensionalization of Basic Equations 72

3.2.6 Treatment of the Criteria for Particle Overlap in Simulations 74

3.2.7 Parameters for Simulations 75

3.2.8 Results of Simulations 77

3.2.9 Simulation Program 81

4 Practice of Monte Carlo Simulations 105
4.1 Orientational Phenomena of Rod-like Particles in an

Applied Magnetic Field 105

4.1.1 Physical Phenomena of Interest 105

4.1.2 Specification of Problems in Equations 106

4.1.3 Canonical Monte Carlo Algorithm 111

4.1.4 Parameters for Simulations 115

4.1.5 Results of Simulations 116

4.1.6 Simulation Program 118
4.2 Aggregation Phenomena in a Dispersion of Plate-like Particles 134

4.2.1 Physical Phenomena of Interest 134

4.2.2 Particle Model 134

4.2.3 Criterion of the Particle Overlap 136

4.2.4 Canonical Monte Carlo Algorithm 143

4.2.5 Treatment of the Criterion of the Particle Overlap in

Simulations 143

4.2.6 Particle-Fixed Coordinate System and the Absolute

Coordinate System 144

4.2.7 Attempt of Small Angular Changes in the Particle

Axis and the Magnetic Moment 145

4.2.8 Parameters for Simulations 146

4.2.9 Results of Simulations 147

4.2.10 Simulation Program 150

5 Practice of Brownian Dynamics Simulations 173

5.1 Sedimentation Phenomena of Lennard-Jones Particles 173

5.2 Specification of Problems in Equations 173

5.3 Brownian Dynamics Algorithm 174
5.4 Parameters for Simulations 176

5.5 Results of Simulations 176

5.6 Simulation Program 179

vi Contents

6 Practice of Dissipative Particle Dynamics Simulations 187

6.1 Aggregation Phenomena of Magnetic Particles 187
6.2 Specification of Problems in Equations 187

6.2.1 Kinetic Equation of Dissipative Particles 187

6.2.2 Model of Particles 189

6.2.3 Model Potential for Interactions Between Dissipative

and Magnetic Particles 190

6.2.4 Nondimensionalization of the Equation of Motion

and Related Quantities 191

6.3 Parameters for Simulations 193
6.4 Results of Simulations 194

6.5 Simulation Program 197

7 Practice of Lattice Boltzmann Simulations 219

7.1 Uniform Flow Around a Two-Dimensional Circular Cylinder 219

7.2 Specification of Problems in Equations 220

7.3 Boundary Conditions 221

7.4 Various Treatments in the Simulation Program 223

7.4.1 Definition and Evaluation of the Drag Coefficient 223

7.4.2 Choice of the Procedures by Coloring Lattice Sites 224
7.4.3 Treatment of Interactions on the Cylinder Surface 225

7.4.4 Evaluation of the Velocity and Density 225

7.5 Nondimensionalization of the Basic Equations 226

7.6 Conditions for Simulations 227

7.6.1 Initial Distribution 227

7.6.2 Parameters for Simulations 227

7.7 Results of Simulations 227

7.8 Simulation Program 231

8 Theoretical Background of Lattice Boltzmann Method 255

8.1 Equilibrium Distribution 255
8.1.1 D2Q9 Model 257

8.1.2 D3Q19 Model 264

8.2 Navier�Stokes Equation 271

8.3 Body Force 275

8.4 Boundary Conditions 277

8.4.1 Bounce-back Rule 277

8.4.2 BFL Method 279

8.4.3 YMLS Method 281
8.4.4 Other Methods 282

8.5 Force and Torque Acting on Particles 282

8.6 Nondimensionalization 283

viiContents

Appendix 1: Chapman�Enskog Expansion 285

Appendix 2: Generation of Random Numbers According to Gaussian
Distribution 291

Appendix 3: Outline of Basic Grammars of FORTRAN and C Languages 293

Appendix 4: Unit Systems of Magnetic Materials 317

How to Acquire Simulation Programs 319

References 321

viii Contents

Preface

The control of internal structure during the fabrication of materials on the nano-

scale may enable us to develop a new generation of materials. A deeper under-

standing of phenomena on the microscopic scale may lead to completely new fields

of application. As a tool for microscopic analysis, molecular simulation methods—

such as the molecular dynamics and the Monte Carlo methods—have currently

been playing an extremely important role in numerous fields, ranging from pure

science and engineering to the medical, pharmaceutical, and agricultural sciences.

The importance of these methods is expected to increase significantly with the

advance of science and technology.

Many physics textbooks address the molecular simulation method for pure liquid

or solid systems. In contrast, textbooks concerning the simulation method for sus-

pensions or dispersions are less common; this fact provided the motivation for my

previous textbook. Moreover, students or nonexperts needing to apply the molecu-

lar simulation method to a physical problem have few tools for cultivating the skill

of developing a simulation program that do not require training under a supervisor

with expertise in simulation techniques. It became clear that students and nonexpert

researchers would find useful a textbook that taught the important concepts of the

simulation technique and honed programming skills by tackling practical physical

problems with guidance from sample simulation programs. This book would need

to be written carefully; it would not simply explain a sample simulation program,

but also explains the analysis procedures and include the essence of the theory, the

specification of the basic equations, the method of nondimensionalization, and

appropriate discussion of results. A brief explanation of the essence of the grammar

of programming languages also would be useful.

In order to apply the simulation methods to more complex systems, such as

carbon-nanotubes, polymeric liquids, and DNA/protein systems, the present book

addresses a range of practical methods, including molecular dynamics and Monte

Carlo, for simulations of practical systems such as the spherocylinder and the disk-

like particle suspension. Moreover, this book discusses the dissipative particle

dynamics method and the lattice Boltzmann method, both currently being devel-

oped as simulation techniques for taking into account the multibody hydrodynamic

interaction among dispersed particles in a particle suspension or among polymers

in a polymeric liquid.

The resulting characteristics of the present book are as follows. The important

and essential background relating to the theory of each simulation technique is

explained, avoiding complex mathematical manipulation as much as possible. The

equations that are included herein are all important expressions; an understanding

of them is key to reading a specialized textbook that treats the more theoretical

aspects of the simulation methods. Much of the methodology, such as the assign-

ment of the initial position and velocity of particles, is explained in detail in order

to be useful to the reader developing a practical simulation program.

In the chapters dedicated to advancing the reader’s practical skill for developing

a simulation program, the following methodology is adopted. First, the sample

physical phenomenon is described in order to discuss the simulation method that

will be addressed in the chapter. This is followed by a series of analyses (including

the theoretical backgrounds) that are conducted mainly from the viewpoint of

developing a simulation program. Then, the assignment of the important parameters

and the assumptions that are required for conducting the simulation of the physical

problem are described. Finally, results that have been obtained from the simulation

are shown and discussed, with emphasis on the visualization of the results by snap-

shots. Each example is conducted with a sample copy of the simulation program

from which the results were obtained, together with sufficient explanatory descrip-

tions of the important features in the simulation program to aid to the reader’s

understanding.

Most of the sample simulation programs are written in the FORTRAN language,

excepting the simulation program for the Brownian dynamics method. We take

into account that some readers may be unfamiliar with programming languages,

that is, the FORTRAN or the C language; therefore, an appendix explains the

important features of these programming languages from the viewpoint of develop-

ing a scientific simulation program. These explanations are expected to signifi-

cantly reduce the reader’s effort of understanding the grammar of the programming

languages when referring to a textbook of the FORTRAN or the C language.

The present book has been written in a self-learning mode as much as possible,

and therefore readers are expected to derive the important expressions for

themselves—that is the essence of each simulation demonstration. This approach

should appeal to the reader who is more interested in the theoretical aspects of the

simulation methods.

Finally, the author strongly hopes that this book will interest many students in

molecular and microsimulation methods and direct them to the growing number of

research fields in which these simulation methods are indispensable, and that one

day they will be the preeminent researchers in those fields.

The author deeply acknowledges contribution of Dr. Geoff N. Coverdale, who

volunteered valuable assistance during the development of the manuscript. The

author also wishes to express his thanks to Ms. Aya Saitoh for her dedication and

patience during the preparation of so many digital files derived from the handwrit-

ten manuscripts.

Akira Satoh

Kisarazu City, Chiba Prefecture, Japan

December 2010

x Preface

1 Outline of Molecular Simulation
and Microsimulation Methods

In the modern nanotechnology age, microscopic analysis methods are indispensable

in order to generate new functional materials and investigate physical phenomena

on a molecular level. These methods treat the constituent species of a system, such

as molecules and fine particles. Macroscopic and microscopic quantities of interest

are derived from analyzing the behavior of these species.

These approaches, called “molecular simulation methods,” are represented by

the Monte Carlo (MC) and molecular dynamics (MD) methods [1�3]. MC methods

exhibit a powerful ability to analyze thermodynamic equilibrium, but are

unsuitable for investigating dynamic phenomena. MD methods are useful for ther-

modynamic equilibrium but are more advantageous for investigating the dynamic

properties of a system in a nonequilibrium situation. This book examines MD and

MC methods of a nonspherical particle dispersion in a three-dimensional system,

which may be directly applicable to such complicated dispersions as DNA and

polymeric liquids. This book also addresses Brownian dynamics (BD) methods

[1,4], which can simulate the Brownian motion of dispersed particles; dissipative

particle dynamics (DPD) [5�8]; and lattice Boltzmann methods [9�12], in which a

liquid system is regarded as composed of virtual fluid particles. Simulation meth-

ods using the concept of virtual fluid particles are generally used for pure liquid

systems, but are useful for simulating particle dispersions.

1.1 Molecular Dynamics Method

A spherical particle dispersion can be treated straightforwardly in simulations because

only the translational motion of particles is important, and the treatment of the rota-

tional motion is basically unnecessary. In contrast, since the translational and rota-

tional motion has to be simulated for an axisymmetric particle dispersion, MD

simulations become much more complicated in comparison with the spherical particle

system. Simulation techniques for a dispersion composed of nonspherical particles

with a general shape may be obtained by generalizing the methods employed to an

axisymmetric particle dispersion. It is, therefore, very important to understand the MD

method for the axisymmetric particle system.

Introduction to Practice of Molecular Simulation. DOI: 10.1016/B978-0-12-385148-2.00001-X

© 2011 Elsevier Inc. All rights reserved.

1.1.1 Spherical Particle Systems

The concept of the MD method is rather straightforward and logical. The motion of

molecules is generally governed by Newton’s equations of motion in classical the-

ory. In MD simulations, particle motion is simulated on a computer according to

the equations of motion. If one molecule moves solely on a classical mechanics

level, a computer is unnecessary because mathematical calculation with pencil and

paper is sufficient to solve the motion of the molecule. However, since molecules

in a real system are numerous and interact with each other, such mathematical anal-

ysis is impracticable. In this situation, therefore, computer simulations become a

powerful tool for a microscopic analysis.

If the mass of molecule i is denoted by mi, and the force acting on molecule i by

the ambient molecules and an external field denoted by fi, then the motion of a par-

ticle is described by Newton’s equation of motion:

mi

d2ri

dt2
5 f i ð1:1Þ

If a system is composed of N molecules, there are N sets of similar equations, and

the motion of N molecules interacts through forces acting among the molecules.

Differential equations such as Eq. (1.1) are unsuitable for solving the set of N

equations of motion on a computer. Computers readily solve simple equations, such

as algebraic ones, but are quite poor at intuitive solving procedures such as a trial-

and-error approach to find solutions. Hence, Eq. (1.1) will be transformed into an

algebraic equation. To do so, the second-order differential term in Eq. (1.1) must be

expressed as an algebraic expression, using the following Taylor series expansion:

xðt1 hÞ5 xðtÞ1 h
dxðtÞ
dt

1
1

2!
h2

d2xðtÞ
dt2

1
1

3!
h3

d3xðtÞ
dt3

1? ð1:2Þ

Equation (1.2) implies that x at time (t1 h) can be expressed as the sum of x

itself, the first-order differential, the second-order differential, and so on, multiplied

by a constant for each term. If x does not significantly change with time, the higher-

order differential terms can be neglected for a sufficiently small value of the time

interval h. In order to approximate the second-order differential term in Eq. (1.1) as

an algebraic expression, another form of the Taylor series expansion is necessary:

xðt2 hÞ5 xðtÞ2 h
dxðtÞ
dt

1
1

2!
h2

d2xðtÞ
dt2

2
1

3!
h3

d3xðtÞ
dt3

1? ð1:3Þ

If the first-order differential term is eliminated from Eqs. (1.2) and (1.3), the

second-order differential term can be solved as

d2xðtÞ
dt2

5
xðt1 hÞ2 2xðtÞ1 xðt2 hÞ

h2
1Oðh2Þ ð1:4Þ

2 Introduction to Practice of Molecular Simulation

The last term on the right-hand side of this equation implies the accuracy of the

approximation, and, in this case, terms higher than h2 are neglected. If the second-

order differential is approximated as

d2xðtÞ
dt2

5
xðt1 hÞ2 2xðtÞ1 xðt2 hÞ

h2
ð1:5Þ

This expression is called the “central difference approximation.” With this approxi-

mation and the notation ri5 (xi, yi, zi) for the molecular position and fi5 (fxi, fyi,

fzi) for the force acting on particle i, the equation of the x-component of Newton’s

equation of motion can be written as

xiðt1 hÞ5 2xiðtÞ2 xiðt2 hÞ1 h2

mi

fxiðtÞ ð1:6Þ

Similar equations are satisfied for the other components. Since Eq. (1.6) is a

simple algebraic equation, the molecular position at the next time step can be

evaluated using the present and previous positions and the present force. If a

system is composed of N molecules, there are 3N algebraic equations for speci-

fying the motion of molecules; these numerous equations are solved on a com-

puter, where the motion of the molecules in a system can be pursued with the

time variable. Eq. (1.6) does not require the velocity terms for determining the

molecular position at the next time step. This scheme is called the “Verlet

method” [13]. The velocity, if required, can be evaluated from the central differ-

ence approximation as

viðtÞ5
riðt1 hÞ2 riðt2 hÞ

2h
ð1:7Þ

This approximation can be derived by eliminating the second-order differential

terms in Eqs. (1.2) and (1.3). It has already been noted that the velocities are unnec-

essary for evaluating the position at the next time step; however, a scheme using the

positions and velocities simultaneously may be more desirable in order to keep the

system temperature constant. We show such a method in the following paragraphs.

If we take into account that the first- and second-order differentials of the posi-

tion are equal to the velocity and acceleration, respectively, the neglect of differen-

tial terms equal to or higher than third-order in Eq. (1.2) leads to the following

equation:

riðt1 hÞ5 riðtÞ1 hviðtÞ1
h2

2mi

f iðtÞ ð1:8Þ

This equation determines the position of the molecules, but the velocity term

arises on the right-hand side, so that another equation is necessary for specifying

3Outline of Molecular Simulation and Microsimulation Methods

the velocity. The first-order differential of the velocity is equal to the

acceleration:

viðt1 hÞ5 viðtÞ1
h

mi

f iðtÞ ð1:9Þ

In order to improve accuracy, the force term in Eq. (1.9) is slightly modified

and the following equation obtained:

viðt1 hÞ5 viðtÞ1
h

2mi

ðf iðtÞ1 f iðt1 hÞÞ ð1:10Þ

The scheme of using Eqs. (1.8) and (1.10) for determining the motion of molecules

is called the “velocity Verlet method” [14]. It is well known that the velocity Verlet

method is significantly superior in regard to the stability and accuracy of a simulation.

Consider another representative scheme. Noting that the first-order differential

of the position is the velocity and that of the velocity is the acceleration, the appli-

cation of the central difference approximation to these first-order differentials leads

to the following equations:

riðt1 hÞ5 riðtÞ1 hviðt1 h=2Þ ð1:11Þ

viðt1 h=2Þ5 viðt2 h=2Þ1 h

mi

f iðtÞ ð1:12Þ

The scheme of pursuing the positions and velocities of the molecules with

Eqs. (1.11) and (1.12) is called the “leapfrog method” [15]. This name arises from

the evaluation of the positions and forces, and then the velocities, by using time

steps in a leapfrog manner. This method is also a significantly superior scheme in

regard to stability and accuracy, comparable to the velocity Verlet method.

The MD method is applicable to both equilibrium and nonequilibrium physical

phenomena, which makes it a powerful computational tool that can be used to simu-

late many physical phenomena (if computing power is sufficient).

We show the main procedure for conducting the MD simulation using the veloc-

ity Verlet method in the following steps:

1. Specify the initial position and velocity of all molecules.

2. Calculate the forces acting on molecules.

3. Evaluate the positions of all molecules at the next time step from Eq. (1.8).

4. Evaluate the velocities of all molecules at the next time step from Eq. (1.10).

5. Repeat the procedures from step 2.

In the above procedure, the positions and velocities will be evaluated at every

time interval h in the MD simulation. The method of specifying the initial positions

and velocities will be shown in Chapter 2.

Finally, we show the method of evaluating the system averages, which are

necessary to make a comparison with experimental or theoretical values. Since

4 Introduction to Practice of Molecular Simulation

microscopic quantities such as positions and velocities are evaluated at every time

interval in MD simulations, a quantity evaluated from such microscopic values—

for example, the pressure—will differ from that measured experimentally. In order

to compare with experimental data, instant pressure is sampled at each time step,

and these values are averaged during a short sampling time to yield a macroscopic

pressure. This average can be expressed as

A5
XN
n51

An=N ð1:13Þ

in which An is the nth sampled value of an arbitrary physical quantity A, and A,

called the “time average,” is the mathematical average of N sampling data.

1.1.2 Nonspherical Particle Systems

1.1.2.1 Case of Taking into Account the Inertia Terms

For the case of nonspherical particles, we need to consider the translational motion

of the center of mass of a particle and also the rotational motion about an axis

through the center of mass. Axisymmetric particles are very useful as a particle

model for simulations, so we will focus on the axisymmetric particle model in this

section. As shown in Figure 1.1, the important rotational motion is to be treated

about the short axis line. If the particle mass is denoted by m, the inertia moment

by I, the position and velocity vectors of the center of mass of particle i by ri and

vi, respectively, the angular velocity vector about the short axis by ωi, and the force

and torque acting on the particle by fi and Ti, respectively, then the equations of

motion concerning the translational and rotational motion can be written as

(A)

ωz

φz
Δφz

e

x

y

z

(B)

(T)
ω

Figure 1.1 Linear particle and angular velocity: (A) the axisymmetric particle and (B) the

coordinate system.

5Outline of Molecular Simulation and Microsimulation Methods

m
d2ri

dt2
5 f i ð1:14Þ

I
dωi

dt
5Ti ð1:15Þ

Since the translational velocity vi is related to the position vector ri as vi5 dri/dt,

we now consider the meaning of a quantity φi, which is related to the angular

velocity ωi as ωi5 dφi/dt. It is assumed that during a short time interval Δt, φi

changes into (φi1Δφi) where Δφi is expressed as Δφi5 (Δφix, Δφiy, Δφiz). As
shown in Figure 1.1B, ωz is related to the rotational angle in the xy-plane about the

z-axis, Δφz. The other components have the same meanings, so that φi and ωi for

particle i can be related in the following expression:

Δφi 5φiðt1ΔtÞ2φiðtÞ5ΔtωiðtÞ ð1:16Þ

Is the use of the quantity φi, corresponding to ri, general? It seems to be more

direct and more intuitive to use the unit vector ei denoting the particle direction

rather than the quantity φi. The change in ei during an infinitesimal time interval,

Δei, can be written using the angular velocity ωi as

ΔeiðtÞ5 eiðt1ΔtÞ2 eiðtÞ5ΔtωiðtÞ3 eiðtÞ ð1:17Þ

From Eqs. (1.16) and (1.17), ei can be related to φi as

ΔeiðtÞ5ΔφiðtÞ3 eiðtÞ ð1:18Þ

Equation (1.17) leads to the governing equation specifying the change of the parti-

cle direction:

deiðtÞ
dt

5ωiðtÞ3 eiðtÞ ð1:19Þ

Hence, Eq. (1.15) for the angular velocity and Eq. (1.19) for the particle direction

govern the rotational motion of an axisymmetric particle.

In order to solve Eqs. (1.15) and (1.19) for the rotational motion on a computer,

these equations have to be translated into finite difference equations. To do so, as

already explained, the first- and second-order differentials have to be expressed as

algebraic expressions using the finite difference approximations based on Taylor

series expansions. General finite difference expressions are as follows:

dxðtÞ
dt

5
xðt1ΔtÞ2xðtÞ

Δt
1OðΔtÞ; dxðtÞ

dt
5

xðtÞ2 xðt2ΔtÞ
Δt

1OðΔtÞ

dxðtÞ
dt

5
xðt1ΔtÞ2xðt2ΔtÞ

2Δt
1OððΔtÞ2Þ

9>>>=
>>>;

ð1:20Þ

6 Introduction to Practice of Molecular Simulation

d2xðtÞ
dt2

5
xðt1ΔtÞ22xðtÞ1 xðt2ΔtÞ

ðΔtÞ2 1OððΔtÞ2Þ ð1:21Þ

The simplest algorithm can be obtained using the forward finite difference

approximation in Eq. (1.20) as

eiðt1ΔtÞ5 eiðtÞ1ΔtωiðtÞ3 eiðtÞ
ωiðt1ΔtÞ5ωiðtÞ1Δt

TiðtÞ
I

9>=
>; ð1:22Þ

This algorithm is quite straightforward and understandable, but in practice does not

have sufficient accuracy, since the error of the forward finite difference approxima-

tion is of the order of Δt. In order to improve the accuracy, the following algorithm

has already been presented.

If the new vector function ui(t) such as ui (t)5ωi (t)3 ei (t) is introduced,

Eq. (1.19) can be written as

deiðtÞ
dt

5 uiðtÞ ð1:23Þ

By conducting the operator 3 e from the right side on the both sides of Eq. (1.15),

the following equation is obtained:

dωiðtÞ
dt

3 eiðtÞ5 1

I
TiðtÞ3 eiðtÞ ð1:24Þ

The left-hand side of this equation leads to

dωi

dt
3 ei 5

dðωi 3 eiÞ
dt

2ωi 3
dei

dt
5

dui

dt
2ωi 3 ui ð1:25Þ

By substituting this equation into Eq. (1.24), the following equation can be obtained:

duiðtÞ
dt

5
1

I
TiðtÞ3 eiðtÞ1ωiðtÞ3 uiðtÞ5

1

I
TiðtÞ3 eiðtÞ2 ωiðtÞ

�� ��2eiðtÞ
5

1

I
TiðtÞ3 eiðtÞ1λiðtÞeiðtÞ

ð1:26Þ

In the transformation from the first to the second expressions on the right-hand

side, we have used the identity a3 (b3 c)5 (a � c)b2 (a � b)c in evaluating

ω3 (ω3 e). The quantity λi (t) in the third expression has been introduced in order

to satisfy the following relationship:

eiUui 5 eiUðωi 3 eiÞ5 0 ð1:27Þ

7Outline of Molecular Simulation and Microsimulation Methods

We have now completed the transformation of the variables from ei and ωi to ei
and ui for solving the rotational motion of particles.

According to the leapfrog algorithm [15], Eqs. (1.23) and (1.26) reduce to the

following algebraic equations:

eiðt1ΔtÞ5 eiðtÞ1Δtuiðt1Δt=2Þ ð1:28Þ

uiðt1Δt=2Þ5 uiðt2Δt=2Þ1Δt
TiðtÞ3 eiðtÞ

I
1ΔtλiðtÞeiðtÞ ð1:29Þ

Another equation is necessary for determining the value of λi (t). The velocity

ui(t) can be evaluated from the arithmetic average of ui(t1Δt/2) and ui(t1Δt/2),

and the expression is finally written using Eq. (1.29) as

uiðtÞ 5
uiðt1Δt=2Þ1 uiðt2Δt=2Þ

2

5 uiðt2Δt=2Þ1 Δt

2
U
TiðtÞ3 eiðtÞ

I
1

Δt

2
λiðtÞeiðtÞ

ð1:30Þ

Since ui(t) has to satisfy the orthogonality condition shown in Eq. (1.27), the sub-

stitution of Eq. (1.30) into Eq. (1.27) leads to the equation of λi(t) as

λiðtÞ5 2
2

Δt
UeiðtÞUuiðt2Δt=2Þ ð1:31Þ

In obtaining this expression, the identity a � (b3 a)5 0 has been used to evaluate

e � (T3 e).

Now all the equations have been derived for determining the rotational

motion of axisymmetric particles. With the value λi(t) in Eq. (1.31), ui at

(t1Δt/2) is first evaluated from Eq. (1.29), and then ei at (t1Δt) is obtained

from Eq. (1.28). This procedure shows that the solution of ui (t1Δt/2) gives

rise to the values of ei(t1Δt) and Ti(t1Δt), and these solutions lead to

ui(t1 3Δt/2), and so forth. This algorithm is therefore another example of a

leapfrog algorithm.

For the translational motion, the velocity Verlet algorithm may be used, and the

particle position ri(t1Δt) and velocity vi(t1Δt) can be evaluated as

riðt1ΔtÞ5 riðtÞ1ΔtviðtÞ1
ðΔtÞ2
2m

f iðtÞ

viðt1ΔtÞ5 viðtÞ1
Δt

2m

(
f iðtÞ1 f iðt1ΔtÞ

)
9>>>>=
>>>>;

ð1:32Þ

8 Introduction to Practice of Molecular Simulation

These equations can be derived in a straightforward manner from the finite differ-

ence approximations in Eqs. (1.20) and (1.21).

We have shown all the equations for specifying the translational and rotational

motion of axisymmetric particles for the case of taking into account the inertia

terms. The main procedure for conducting the MD simulation is as follows:

1. Specify the initial configuration and velocity of the axisymmetric particles for the transla-

tional and rotational motion.

2. Calculate the forces and torques acting on particles.

3. Evaluate the positions and velocities of the translational motion at (t1Δt) from

Eq. (1.32).

4. Evaluate λi(t) (i5 1, 2, . . ., N) from Eq. (1.31).

5. Evaluate ui (i5 1, 2, . . ., N) at (t1Δt/2) from Eq. (1.29).

6. Evaluate the unit vectors ei ði5 1; 2; . . . ;NÞ at (t1Δt) from Eq. (1.28).

7. Advance one time step to repeat the procedures from step 2.

By following this procedure, the MD method for axisymmetric particles with

the inertia terms can simulate the positions and velocities, and the directions and

angular velocities, at every time interval Δt.

1.1.2.2 Case of Neglected Inertia Terms

When treating a colloidal dispersion or a polymeric solution, the Stokesian

dynamics and BD methods are usually employed as a microscopic or mesoscopic

analysis tool. In these methods, dispersed particles or polymers are modeled as

idealized spherical or dumbbell particles, but the base liquid is usually assumed

to be a continuum medium and its effect is included in the equations of motion

of the particles or the polymers only as friction terms. If particle size approxi-

mates to or is smaller than micron-order, the inertia terms may be considered as

negligible. In this section, we treat this type of small particles and neglect the

inertia terms. For the case of axisymmetric particles moving in a quiescent fluid,

the translational and angular velocities of particle i, vi and ωi, are written as

vi 5
1

η
1

XA
eiei 1

1

YA
ðI2 eieiÞ

� �
UFi ð1:33Þ

ωi 5
1

η
1

XC
eiei 1

1

YC
ðI2 eieiÞ

� �
UTi ð1:34Þ

in which XA, YA, XC, and YC are the resistance functions specifying the particle

shape. If the long- and short-axis lengths are denoted by 2a and 2b, respectively,

and the eccentricity is denoted by s (5(a22 b2)1/2/a), the resistance functions for

the spheroidal particle are written as [16�18]

XA 5 6πaU
8

3
U

s3

22s1 ð11 s2ÞL ; YA 5 6πaU
16

3
U

s3

2s1 ð3s2 2 1ÞL ð1:35Þ

9Outline of Molecular Simulation and Microsimulation Methods

XC 5 8πa3U
4

3
U

s3ð12 s2Þ
2s2 ð12 s2ÞL ; YC 5 8πa3U

4

3
U

s3ð22 s2Þ
22s1 ð11 s2ÞL ð1:36Þ

in which L is a function of the eccentricity and is expressed as

L5 LðsÞ5 ln
11 s

12 s
ð1:37Þ

For the case of s{1, Eqs. (1.35) and (1.36) are approximated using Taylor series

expansions as

XA 5 6πa
�
12

2

5
s2 1?

�
; YA 5 6πa

�
12

3

10
s2 1?

�
ð1:38Þ

XC 5 8πa3
�
12

6

5
s2 1?

�
; YC 5 8πa3

�
12

9

10
s2 1?

�
ð1:39Þ

In the limit of s-0, the well-known Stokes drag formula for a spherical particle

in a quiescent fluid can be obtained from Eqs. (1.33), (1.34), (1.38), and (1.39):

vi 5
1

6πηa
Fi; ωi 5

1

8πηa3
Ti ð1:40Þ

It is possible to pursue the motion of an axisymmetric particle using Eqs. (1.33)

and (1.34), but further simplified equations can be used for the present axisymmet-

ric particle. For an axisymmetric particle, the translational motion can be decom-

posed into the motion in the long axis direction and that in a direction normal to

the particle axis. Similarly, the rotational motion can be decomposed into the rota-

tion about the particle axis and that about a line normal to the particle axis through

the mass center. If the force Fi acting on the particle is expressed as the sum of the

force Fjj
i parallel to the particle axis and the force Fi

\ normal to that axis, then

these forces can be expressed using the particle direction vector ei as

Fjj
i 5 eiðeiUFiÞ5 eieiUFi; F\

i 5Fi 2Fjj
i 5 ðI2 eieiÞUFi ð1:41Þ

With these expressions, the velocities vjji and vi
\ parallel and normal to the particle

axis, respectively, can be written from Eq. (1.33) as

vjji 5
1

ηXA
Fjj
i ; v\i 5

1

ηYA
F\
i ð1:42Þ

10 Introduction to Practice of Molecular Simulation

Similarly, the angular velocities ωjj
i and ω\

i about the long and short axes, respec-

tively, are written from Eq. (1.34) as

ωjj
i 5

1

ηXC
Tjj
i ; ω\

i 5
1

ηYC
T\
i ð1:43Þ

According to Eqs. (1.42) and (1.43), vjji , v
\
i , ω

jj
i ; and ω\

i can be evaluated from

values of Fjj
i , F

\
i , T

jj
i ; and T\

i . The translational velocity vi and angular velocity ωi

are then obtained as

vi 5 vjji 1 v\i ; ωi 5ωjj
i 1ω\

i ð1:44Þ

With the solutions of the translational and angular velocities at the time step t

shown in Eq. (1.44), the position vector ri and the particle direction vector ei at the
next time step (t1Δt) can finally be obtained as

riðt1ΔtÞ5 riðtÞ1ΔtviðtÞ ð1:45Þ

eiðt1ΔtÞ5 eiðtÞ1ΔtωiðtÞ3 eiðtÞ ð1:46Þ

Lastly, we show the main procedure for the simulation in the following steps:

1. Specify the initial configuration and velocity of all axisymmetric particles for the transla-

tional and rotational motion.

2. Calculate all the forces and torques acting on particles.

3. Evaluate Fjj
i ; F

\
i ; T

jj
i ; and T\

i (i5 1, 2, . . ., N) from Eq. (1.41) and similar equations for

the torques.

4. Calculate vjji ; v
\
i ; ω

jj
i ; and ω\

i (i5 1, 2, . . ., N) from Eqs. (1.42) and (1.43).

5. Calculate vi and ωi (i5 1, 2, . . ., N) from Eq. (1.44).

6. Calculate ri and ei (i5 1, 2, . . ., N) at the next time step (t1Δt) from Eqs. (1.45) and

(1.46).

7. Advance one time step and repeat the procedures from step 2.

1.2 Monte Carlo Method

In the MD method, the motion of molecules (particles) is simulated according to

the equations of motion and therefore it is applicable to both thermodynamic equi-

librium and nonequilibrium phenomena. In contrast, the MC method generates a

series of microscopic states under a certain stochastic law, irrespective of the equa-

tions of motion of particles. Since the MC method does not use the equations of

motion, it cannot include the concept of explicit time, and thus is only a simulation

technique for phenomena in thermodynamic equilibrium. Hence, it is unsuitable for

the MC method to deal with the dynamic properties of a system, which are depen-

dent on time. In the following paragraphs, we explain important points of the con-

cept of the MC method.

11Outline of Molecular Simulation and Microsimulation Methods

How do microscopic states arise for thermodynamic equilibrium in a practical

situation? We discuss this problem by considering a two-particle attractive system

using Figure 1.2. As shown in Figure 1.2A, if the two particles overlap, then a

repulsive force or a significant interaction energy arises. As shown in Figure 1.2B,

for the case of close proximity, the interaction energy becomes low and an attrac-

tive force acts on the particles. If the two particles are sufficiently distant, as shown

in Figure 1.2C, the interactive force is negligible and the interaction energy can be

regarded as zero. In actual phenomena, microscopic states which induce a signifi-

cantly high energy, as shown in Figure 1.2A, seldom appear, but microscopic states

which give rise to a low-energy system, as shown in Figure 1.2B, frequently arise.

However, this does not mean that only microscopic states that induce a minimum-

energy system appear. Consider the fact that oxygen and nitrogen molecules do not

gather in a limited area, but distribute uniformly in a room. It is seen from this dis-

cussion that, for thermodynamic equilibrium, microscopic states do not give rise to

a minimum of the total system energy, but to a minimum free energy of a system.

For example, in the case of a system specified by the number of particles N, tem-

perature T, and volume of the system V, microscopic states arise such that the fol-

lowing Helmholtz free energy F becomes a minimum:

F5E2 TS ð1:47Þ

in which E is the potential energy of the system, and S is the entropy. In the pre-

ceding example, the reason why oxygen or nitrogen molecules do not gather in a

limited area can be explained by taking into account the entropy term on the

right-hand side in Eq. (1.47). That is, the situation in which molecules do not

gather together and form flocks but expand to fill a room gives rise to a large

value of the entropy. Hence, according to the counterbalance relationship of the

energy and the entropy, real microscopic states arise such that the free energy of a

system is at minimum.

Next, we consider how microscopic states arise stochastically. We here treat a

system composed of N interacting spherical particles with temperature T and vol-

ume V of the system; these quantities are given values and assumed to be constant.

If the position vector of an arbitrary particle i (i5 1, 2, . . ., N) is denoted by ri,

then the total interaction energy U of the system can be expressed as a function of

the particle positions; that is, it can be expressed as U5U(r1, r2,. . .,rN). For the
present system specified by given values of N, T, and V, the appearance of a

microscopic state that the particle i (i5 1, 2, . . ., N) exits within the small range

(A) Overlapping (B) Close proximity (C) Sufficiently distant

Figure 1.2 Typical energy situations for a two particle system.

12 Introduction to Practice of Molecular Simulation

of ri B (ri1Δri) is governed by the probability density function ρ(r1, r2,. . .,rN).
This can be expressed from statistical mechanics [19,20] as

ρðr1; r2; . . . ; rNÞ5
expf2Uðr1; r2; . . . ; rNÞ=kTgÐ

V
. . .
Ð
V
expf2Uðr1; r2; . . . ; rNÞ=kTgdr1 dr2 . . . drN

ð1:48Þ

If a series of microscopic states is generated with an occurrence according to

this probability, a simulation may have physical meaning. However, this approach

is impracticable, as it is extraordinarily difficult and almost impossible to evaluate

analytically the definite integral of the denominator in Eq. (1.48). In fact, if we

were able to evaluate this integral term analytically, we would not need a computer

simulation because it would be possible to evaluate almost all physical quantities

analytically.

The “Metropolis method” [21] overcomes this difficulty for MC simulations. In

the Metropolis method, the transition probability from microscopic states i to j, pij,

is expressed as

pij 5

1 ðfor ρj=ρi $ 1Þ
ρj
ρi

ðfor ρj=ρi , 1Þ

8<
: ð1:49Þ

in which ρj and ρi are the probability density functions for microscopic states j and

i appearing, respectively. The ratio of ρj/ρi is obtained from Eq. (1.48) as

ρj
ρi

5 exp 2
1

kT
ðUj 2UiÞ

8<
:

9=
;

5 exp 2
1

kT
Uðr1j; r2j; . . . ; rNjÞ2Uðr1i; r2i; . . . ; rNiÞ� �2

4
3
5

ð1:50Þ

In the above equations, Ui and Uj are the interaction energies of microscopic

states i and j, respectively. The superscripts attached to the position vectors denote

the same meanings concerning microscopic states. Eq. (1.49) implies that, in the

transition from microscopic states i to j, new microscopic state j is adopted if the

system energy decreases, with the probability ρj/ρi (,1) if the energy increases. As

clearly demonstrated by Eq. (1.50), for ρj/ρi the denominator in Eq. (1.48) is not

required in Eq. (1.50), because ρj is divided by ρi and the term is canceled through

this operation. This is the main reason for the great success of the Metropolis

method for MC simulations. That a new microscopic state is adopted with the prob-

ability ρj/ρi, even in the case of the increase in the interaction energy, verifies the

accomplishment of the minimum free-energy condition for the system. In other

words, the adoption of microscopic states, yielding an increase in the system

energy, corresponds to an increase in the entropy.

13Outline of Molecular Simulation and Microsimulation Methods

The above discussion is directly applicable to a system composed of nonspheri-

cal particles. The situation of nonspherical particles in thermodynamic equilibrium

can be specified by the particle position of the mass center, ri(i5 1, 2, . . ., N), and
the unit vector ei(i5 1, 2, . . ., N) denoting the particle direction. The transition

probability from microscopic states i to j, pij can be written in similar form to

Eq. (1.49). The exact expression of ρj/ρi becomes

ρj
ρi

5 exp 2
1

kT
ðUj2UiÞ

8<
:

9=
;5exp 2

1

kT

(
Uðr j

1 ; r
j
2 ; r

j
N ; e

j
1 ; e

j
2 ; . . . ; e

j
NÞ

2
4

2Uðr j
1 ; r

j
2 ; r

j
N ; e

j
1 ; e

j
2 ; . . . ; e

j
NÞ
�#

ð1:51Þ

The main procedure for the MC simulation of a nonspherical particle system is

as follows:

1. Specify the initial position and direction of all particles.

2. Regard this state as microscopic state i, and calculate the interaction energy Ui.

3. Choose an arbitrary particle in order or randomly and call this particle “particle α.”
4. Make particle α move translationally using random numbers and calculate the interaction

energy Uj for this new configuration.

5. Adopt this new microscopic state for the case of Uj#Ui and go to step 7.

6. Calculate ρj/ρi in Eq. (1.51) for the case of Uj.Ui and take a random number R1 from a

uniform random number sequence distributed from zero to unity.

6.1. If R1# ρj/ρi, adopt this microscopic state j and go to step 7.

6.2. If R1. ρj/ρi, reject this microscopic state, regard previous state i as new microscopic

state j, and go to step 7.

7. Change the direction of particle α using random numbers and calculate the interaction

energy Uk for this new state.

8. If Uk#Uj, adopt this new microscopic state and repeat from step 2.

9. If Uk.Uj, calculate ρk/ρj in Eq. (1.51) and take a random number R2 from the uniform

random number sequence.

9.1. If R2# ρk/ρj, adopt this new microscopic state k and repeat from step 2.

9.2. If R2. ρk/ρj, reject this new state, regard previous state j as new microscopic state k,

and repeat from step 2.

Although the treatment of the translational and rotational changes is carried out

separately in the above algorithm, a simultaneous procedure is also possible in

such a way that the position and direction of an arbitrary particle are simulta-

neously changed, and the new microscopic state is adopted according to the condi-

tion in Eq. (1.49). However, for a strongly interacting system, the separate

treatment may be found to be more effective in many cases.

We will now briefly explain how the translational move is made using ran-

dom numbers during a simulation. If the position vector of an arbitrary particle

α in microscopic state i is denoted by rα5 (xα, yα, zα), this particle is moved

to a new position rα
0 5 (xα

0 , yα
0 , zα

0) by the following equations using random

14 Introduction to Practice of Molecular Simulation

numbers R1, R2, and R3, taken from a random number sequence ranged from

zero to unity:

xα
0 5 xα 1R1δrmax

yα
0 5 yα 1R2δrmax

zα
0 5 zα 1R3δrmax

9=
; ð1:52Þ

These equations imply that the particle is moved to an arbitrary position, deter-

mined by random numbers, within a cube centered at the particle center with side

length of 2δrmax. A series of microscopic states is generated by moving the parti-

cles according to the above-mentioned procedure.

Finally, we show the method of evaluating the average of a physical quantity in

MC simulations. These averages, called “ensemble averages,” are different from

the time averages that are obtained from MD simulations. If a physical quantity A

is a function of the microscopic states of a system, and An is the nth sampled value

of this quantity in an MC simulation, then the ensemble average hAi can be evalu-

ated from the equation

hAi5
XM
n51

An=M ð1:53Þ

in which M is the total sampling number. In actual simulations, the sampling proce-

dure is not conducted at each time step but at regular intervals. This may be more

efficient because if the data have significant correlations they are less likely to be

sampled by taking a longer interval for the sampling time. The ensemble averages

obtained in this way may be compared with experimental data.

1.3 Brownian Dynamics Method

A dispersion or suspension composed of fine particles dispersed in a base liquid is a

difficult case to be treated by simulations in terms of the MD method, because the

characteristic time of the motion of the solvent molecules is considerably different

from that of the dispersed particles. Simply speaking, if we observe such a disper-

sion based on the characteristic time of the solvent molecules, we can see only

the active motion of solvent molecules around the quiescent dispersed particles.

Clearly the MD method is quite unrealistic as a simulation technique for particle

dispersions. One approach to overcome this difficulty is to not focus on the motion

of each solvent molecule, but regard the solvent molecules as a continuum medium

and consider the motion of dispersed particles in such a medium. In this approach,

the influence of the solvent molecules is included into the equations of motion of

the particles as random forces. We can observe such random motion when pollen

moves at a liquid surface or when dispersed particles move in a functional fluid such

as a ferrofluid. The BD method simulates the random motion of dispersed particles

15Outline of Molecular Simulation and Microsimulation Methods

that is induced by the solvent molecules; thus, such particles are called “Brownian

particles.”

If a particle dispersion is so significantly dilute that each particle can be

regarded as moving independently, the motion of this Brownian particle is gov-

erned by the following Langevin equation [22]:

m
dv

dt
5 f2 ξv1 fB ð1:54Þ

This equation is valid for a spherical particle dispersion. In Eq. (1.54), m is the

mass of a spherical particle, v is the velocity vector, ξ is the friction coefficient and

is expressed as ξ5 3πηd for the particle diameter d with the viscosity η of a base

liquid, f is the force exerted by an external field, and fB (5(fx
B, fy

B, fz
B)) is the ran-

dom force due to the motion of solvent molecules. This random force has the fol-

lowing stochastic properties:

f Bx ðtÞ
	

5 f By ðtÞ
D E

5 f Bz ðtÞ
	

5 0 ð1:55Þ

f Bx ðtÞ
� �2D E

5 f By ðtÞ
n o2
� �

5 f Bz ðtÞ
� �2D E

5 2ξkTδðt2 t0Þ ð1:56Þ

in which δ(t2 t0) is the Dirac delta function. In Eq. (1.56) larger random forces act

on Brownian particles at a higher temperature because the mean square average of

each component of the random force is in proportion to the system temperature. At

a higher temperature the solvent molecules move more actively and induce larger

random forces.

In order to simulate the Brownian motion of particles, the basic equation in

Eq. (1.54) has to be transformed into an algebraic equation, as in the MD method.

If the time interval h is sufficiently short such that the change in the forces is negli-

gible, Eq. (1.54) can be regarded as a simple first-order differential equation.

Hence, Eq. (1.54) can be solved by standard textbook methods of differential equa-

tions [23], and algebraic equations can finally be obtained as

rðt1 hÞ5 rðtÞ1 m

ξ
vðtÞ 12 exp 2

ξ
m
h

� �� �

1
1

ξ
fðtÞ h2

m

ξ
12 exp 2

ξ
m
h

� �� �� �
1ΔrB

ð1:57Þ

vðt1 hÞ5 vðtÞexp 2
ξ
m
h

� �
1

1

ξ
fðtÞ 12 exp 2

ξ
m
h

� �� �
1ΔvB ð1:58Þ

in which ΔrB and ΔvB are a random displacement and velocity due to the motion

of solvent molecules. The relationship of the x-components of ΔrB and ΔvB can

16 Introduction to Practice of Molecular Simulation

be expressed as a two-dimensional normal distribution (similarly for the other com-

ponents). We do not show such an expression here [4], but instead consider a

method that is superior in regard to the extension of the BD method to the case

with multibody hydrodynamic interactions. The BD method based on Eqs. (1.57)

and (1.58) is applicable to physical phenomena in which the inertia term is a gov-

erning factor.

Since the BD method with multibody hydrodynamic interactions among the par-

ticles is very complicated, we here focus on an alternative method that treats the

friction forces between the particles and a base liquid, and the nonhydrodynamic

interactions between the particles. This simpler type of simulation method is some-

times used as a first-order approximation because of the complexity of treating

hydrodynamic interactions. A representative nonhydrodynamic force is the mag-

netic force influencing the magnetic particles in a ferrofluid.

Although the BD method based on the Ermak�McCammon analysis [24] takes

into account multibody hydrodynamic interactions among particles, we apply this

analysis method to the present dilute dispersion without hydrodynamic interactions,

and can derive the basic equation of the position vector ri(i5 1, 2,. . ., N) of

Brownian particle i as

riðt1 hÞ5 riðtÞ1
1

ξ
hf iðtÞ1ΔrBi ð1:59Þ

in which the components (ΔxBi ;ΔyBi ;ΔzBi) of the random displacement ΔrBi have

to satisfy the following stochastic properties:

ΔxBi
	

5 ΔyBi
	

5 ΔzBi
	

5 0 ð1:60Þ

ΔxBi
 �2D E

5 ΔyBi
 �2D E

5 ΔzBi
 �2D E

5
2kT

ξ
h ð1:61Þ

Equations similar to Eq. (1.59) hold for every particle in the system. Interactions

among particles arise through the force fi(i5 1, 2,. . ., N) acting on them.

If a Brownian particle exhibits magnetic properties and has, for example, a mag-

netic dipole moment at the particle center, it will have a tendency to incline in the

direction of an applied magnetic field. Hence, even in the case of spherical parti-

cles, the rotational motion is influenced by an external field, so that both the trans-

lational and the rotational motion of a particle are treated simultaneously in

simulations.

If the unit vector of the particle direction is denoted by ni, the equation of the

change in ni can be derived under the same conditions assumed in deriving

Eq. (1.59) as

niðt1 hÞ5 niðtÞ1
1

ξR
hTiðtÞ3 niðtÞ1ΔnBi ð1:62Þ

17Outline of Molecular Simulation and Microsimulation Methods

in which ξR is the friction coefficient of the rotational motion, expressed as

ξR5πηd3, and Ti is the torque acting on particle i by nonhydrodynamic forces.

Also, ΔnBi is the rotational displacement due to random forces, expressed as

ΔnBi 5ΔφB
\1n\1 1ΔφB

\2n\2 ð1:63Þ

in which n\1 and n\2 are a set of unit vectors normal to the direction of particle i,

and ΔφB
\1 and ΔφB

\2 have the following stochastic properties:

ΔφB
\1

	

5 ΔφB

\2

	

5 0 ð1:64Þ

ΔφB
\1

 �2D E
5 ΔφB

\2

 �2D E
5

2kT

ξR
h ð1:65Þ

Now consider the correspondence of quantities in the translational and rotational

motion. The velocity vi in the translational motion corresponds to the angular

velocity ωi in the rotational motion, and the position vector ri corresponds to the

quantity φi defined as dφi/dt5ωi. Obviously, due to the similarity of Eqs. (1.64)

and (1.65) to Eqs. (1.60) and (1.61), the components ΔφB
\1 and ΔφB

\2 of the vector

ΔφB have to satisfy Eqs. (1.64) and (1.65).

The basic Eqs. (1.59) and (1.62) for governing the translational and rotational

motion of particles have been derived under the assumptions that the momentum of

particles is sufficiently relaxed during the time interval h and that the force acting on

the particles is substantially constant during this infinitesimally short time. This is

the essence of the Ermak�McCammon method for BD simulations.

Next, we show the method of generating random displacements according to

Eqs. (1.60) and (1.61), but, before that, the normal probability distribution needs to

be briefly described. If the behavior of a stochastic variable is described by the nor-

mal distribution ρnormal(x) with variance σ2, ρnormal(x) is written as

ρnormalðxÞ5
1

ð2πσ2Þ1=2
expð2 x2=2σ2Þ ð1:66Þ

in which the variance σ2 is a measure of how wide the stochastic variable x is dis-

tributed around the mean value hxi, which is taken as zero for this discussion. The

variance σ2 is mathematically defined as

σ2 5 hðx2 hxiÞ2i5 hx2i2 ðhxiÞ2 ð1:67Þ

If Eq. (1.66) is applied to Eqs. (1.60) and (1.61), the random displacement ΔxBi
in the x-direction can be written in normal distribution form as

ρnormalðΔxBi Þ5
ξ

4πkTh

� �1=2

exp 2
ξ

4kTh
ΔxBi
 �2� �

ð1:68Þ

18 Introduction to Practice of Molecular Simulation

The other components also obey a normal distribution. As seen in Eq. (1.68),

larger random displacements tend to arise at a higher system temperature, which

makes sense given that solvent molecules move more actively in the higher temper-

ature case. The random displacements can therefore be generated by sampling

according to the normal distributions shown in Eq. (1.68). An example of generat-

ing random displacements is shown in Appendix A2.

The main procedure for conducting the BD simulation based on Eqs. (1.59),

(1.60), and (1.61) is:

1. Specify the initial position of all particles.

2. Calculate the forces acting on each particle.

3. Generate the random displacements ΔrBi 5 (ΔxBi , ΔyBi , ΔzBi) (i5 1, 2,. . ., N) using

uniform random numbers: for example, ΔxBi is sampled according to Eq. (1.68).

4. Calculate all the particle positions at the next time step from Eq. (1.59).

5. Return to step 2 and repeat.

The physical quantities of interest are evaluated by the time average, similar to

the molecular dynamics method.

1.4 Dissipative Particle Dynamics Method

As already pointed out, it is not realistic to use the MD method to simulate the

motion of solvent molecules and dispersed particles simultaneously, since the char-

acteristic time of solvent molecules is much shorter than that of dispersed particles.

Hence, in the BD method, the motion of solvent molecules is not treated, but a fluid

is regarded as a continuum medium. The influence of the molecular motion is com-

bined into the equations of motion of dispersed particles as stochastic random forces.

Are there any simulation methods to simulate the motion of both the solvent mole-

cules and the dispersed particles? As far as we treat the motion of real solvent mole-

cules, the development of such simulation methods may be impractical. However, if

groups or clusters of solvent molecules are regarded as virtual fluid particles, such

that the characteristic time of the motion of such fluid particles is not so different

from that of dispersed particles, then it is possible to simulate the motion of the dis-

persed and the fluid particles simultaneously. These virtual fluid particles are

expected to exchange their momentum, exhibit a random motion similar to

Brownian particles, and interact with each other by particle�particle potentials. We

call these virtual fluid particles “dissipative particles,” and the simulation technique

of treating the motion of dissipative particles instead of the solvent molecules is

called the “dissipative particle dynamics (DPD) method” [4�8].

The DPD method is principally applicable to simulations of colloidal dispersions

that take into account the multibody hydrodynamic interactions among particles.

For colloidal dispersions, the combination of the flow field solutions for a three- or

four-particle system into a simulation technique enables us to address the physical

situation of multibody hydrodynamic interactions as accurately as possible.

However, it is extraordinarily difficult to solve analytically the flow field even for

19Outline of Molecular Simulation and Microsimulation Methods

a three-particle system, so a solution for a nonspherical particle system is futile to

attempt. In contrast, the DPD method does not require this type of solution of the

flow field in conducting simulations of colloidal dispersions that take into account

multibody hydrodynamic effects. This is because they are automatically reproduced

from consideration of the interactions between the dissipative and the colloidal par-

ticles. This approach to the hydrodynamic interactions is a great advantage of the

DPD method. In addition, this method is applicable to nonspherical particle disper-

sions, and a good simulation technique for colloidal dispersions.

We will show the general categories of models employed in the modeling of a

fluid for numerical simulations before proceeding to the explanation of the DPD

method. Figure 1.3 schematically shows the classification of the modeling of a fluid.

Figure 1.3A shows a continuum medium model for a fluid. In this case, a solution of

a flow field can be obtained by solving the Navier�Stokes equations, which are the

governing equations of the motion of a fluid. Figure 1.3C shows a microscopic

model in which the solvent molecules are treated and a solution of the flow field can

be obtained by pursuing the motion of the solvent molecules: this is the MD

approach. Figure 1.3B shows a mesoscopic model in which a fluid is assumed to be

composed of virtual fluid particles: the DPD method is classified within this

category.

In the following paragraphs, we discuss the equations of motion of the dissipa-

tive particles for a system composed of dissipative particles alone, without colloidal

Figure 1.3 Modeling of a fluid: (A) the macroscopic model, (B) the mesoscopic model, and

(C) the microscopic model.

20 Introduction to Practice of Molecular Simulation

particles. For simplification’s sake, dissipative particles are simply called “parti-

cles” unless specifically identified.

In order that the solution of a flow field obtained from the particle motion

agrees with that of the Navier�Stokes equations, the equations of motion of the

particles have to be formalized in physically viable form. For example, as a physi-

cal restriction on the system behavior, the total momentum of a system should be

conserved. The forces acting on particle i possibly seem to be a conservative force

Fij
C, exerted by other particles (particle j in this case); a dissipative force Fij

D, due to

the exchange of momentum; and a random force Fij
R, inducing the random motion

of particles. With the particle mass m and the particle velocity vi, the equation of

motion can be written as

m
dvi

dt
5
X
jð6¼iÞ

FC
ij 1

X
jð6¼iÞ

FD
ij 1

X
jð6¼iÞ

FR
ij ð1:69Þ

The subscripts in Eq. (1.69), for example in Fij
C, represent the force acting on

particle i by particle j. Now, we embody specific expressions for each force. Since

Fij
C is a conservative force between particles i and j, it is assumed to be dependent

on the relative position rij (5ri2 rj) alone, not on velocities. This specific expres-

sion will be shown later. Fij
D and Fij

R have to be conserved under a Galilean trans-

formation (refer to a textbook of mechanics); thus, they must be independent of ri
and vi in a given reference frame (quantities dependent on ri and vi are not con-

served), but should be functions of the relative position vector rij and relative

velocity vector vij (5vi2 vj). Furthermore, it is physically reasonable to assume

that Fij
R is dependent only on the relative position rij, and not on the relative veloc-

ity vij. We also have to take into account that the particle motion is isotropic and

the forces between particles decrease with the particle�particle separation. The

following expressions for Fij
D and Fij

R satisfy all the above-mentioned requirements:

FD
ij 5 2γwDðrijÞðeijUvijÞeij ð1:70Þ

FR
ij 5σwRðrijÞeijζ ij ð1:71Þ

in which rij5 jrijj, and eij is the unit vector denoting the direction of a line drawn

from particles j to i, expressed as eij5 rij/rij. The ζ ij is the stochastic variable induc-
ing the random motion of particles and has the following characteristics:

hζ iji5 0; hζ ijðtÞζ i0j0 ðt0Þi5 ðδii0δjj0 1 δij0δji0 Þδðt2 t0Þ ð1:72Þ

in which δij is the Kronecker delta, and δij5 1 for i5 j and δij5 0 for the other

cases. Since this variable satisfies the equation of ζ ij5 ζ ji, the total momentum of a

system is conserved. The wD(rij) and wR(rij) are weighting functions representing

the characteristics of forces decreasing with the particle�particle separation, and γ
and σ are constants specifying the strengths of the corresponding forces. As shown

21Outline of Molecular Simulation and Microsimulation Methods

later, these constants are related to the system temperature and friction coefficients.

The Fij
D acts such that the relative motion of particles i and j relaxes, and Fij

R func-

tions such that the thermal motion is activated. Since the action�reaction law is

satisfied by Fij
R, the conservation of the total momentum is not violated by Fij

R.

By substituting Eqs. (1.70) and (1.71) into Eq. (1.69), the equation of motion of

particles can be written as

m
dvi

dt
5
X
jð6¼iÞ

FC
ij ðrijÞ2

X
jð6¼iÞ

γwDðrijÞðeijUvijÞeij 1
X
jð6¼iÞ

σwRðrijÞeijζ ij ð1:73Þ

The integral of this equation with respect to the time from t to (t1Δt) leads to

the finite difference equations specifying the motion of the simulation particles:

Δri 5 viΔt ð1:74Þ

Δvi 5
1

m

X
jð6¼iÞ

FC
ij ðrijÞ2

X
jð6¼iÞ

γwDðrijÞðeijUvijÞeij
 !

Δt1
1

m

X
jð6¼iÞ

σwRðrijÞeijΔWij

ð1:75Þ

The ΔWij has to satisfy the following stochastic properties, which can be

obtained from Eq. (1.72):

hΔWiji5 0

hΔWijΔWi0j0 i5 ðδii0δjj0 1 δij0δji0 ÞΔt

�
ð1:76Þ

If a new stochastic variable θij is introduced from ΔWij5 θij(Δt)1/2, the third term

in Eq. (1.75) can be written as

1

m

X
jð6¼iÞ

σwRðrijÞeijθij
ffiffiffiffiffiffi
Δt

p
ð1:77Þ

in which θij has to satisfy the following stochastic characteristics:

hθiji5 0

hθijθi0j0 i5 ðδii0δjj0 1 δij0δji0 Þ
�

ð1:78Þ

In simulations, values of the stochastic variable are sampled from a normal dis-

tribution with zero-mean value and unit variance or from a uniform distribution.

The constants γ and σ and the weighting functions wD(rij) and wR(rij), which

appeared in Eq. (1.75), must satisfy the following relationships:

wDðrijÞ5w2
RðrijÞ

σ2 5 2γkT

�
ð1:79Þ

22 Introduction to Practice of Molecular Simulation

The second equation is called the “fluctuation�dissipation theorem.” These rela-

tionships ensure a valid equilibrium distribution of particle velocities for thermody-

namic equilibrium.

Next, we show expressions for the conservative force Fij
C and the weighting func-

tion wR(rij). The Fij
C functions as a tool for preventing particles from significantly over-

lapping, so that the value of wR(rij) has to increase with particles i and j approaching

each other. Given this consideration, these expressions may be written as

FC
ij 5αwRðrijÞeij ð1:80Þ

wRðrijÞ5
12

rij

rc

0

for rij # rc
for rij . rc

8<
: ð1:81Þ

in which α is a constant representing the strength of a repulsive force. By substitut-

ing the above-mentioned expressions into Eq. (1.75) and taking into account

Eq. (1.77), the final expressions for the equations of motion of particles can be

obtained as

Δri 5 viΔt ð1:82Þ

Δvi 5
α
m

X
jð6¼iÞ

wRðrijÞeijΔt2
γ
m

X
jð6¼iÞ

w2
RðrijÞðeijUvijÞeijΔt

1
ð2γkTÞ1=2

m

X
jð6¼iÞ

wRðrijÞeijθij
ffiffiffiffiffiffi
Δt

p ð1:83Þ

As previously indicated, θij satisfies the stochastic characteristics in Eq. (1.78)

and is sampled from a normal distribution or from a uniform distribution. The DPD

dynamics method simulates the motion of the dissipative particles according to

Eqs. (1.82) and (1.83).

For actual simulations, we show the method of nondimensionalizing quantities.

The following representative values are used for nondimensionalization: (kT/m)1/2

for velocities, rc for distances, rc(m/kT)
1/2 for time, (1/rc

3) for number densities.

Using these representative values, Eqs. (1.82) and (1.83) are nondimensionalized as

Δr�i 5 v�i Δt� ð1:84Þ

Δv�i 5α�
X
jð6¼iÞ

wRðr�ijÞeijΔt� 2 γ�
X
jð6¼iÞ

w2
Rðr�ijÞðeijUv�ijÞeijΔt�

1 ð2γ�Þ1=2
X
jð6¼iÞ

wRðr�ijÞeijθij
ffiffiffiffiffiffiffiffi
Δt�

p ð1:85Þ

in which

wRðr�ijÞ5
12 r�ij
0

for r�ij # 1

for r�ij . 1

�
ð1:86Þ

23Outline of Molecular Simulation and Microsimulation Methods

α� 5α
rc

kT
; γ� 5 γ

rc

ðmkTÞ1=2
ð1:87Þ

Nondimensionalized quantities are distinguished by the superscript *. As seen in

Eq. (1.85), the specification of the number density n*(5nrc
3) and the number N of

particles with appropriate values of α*, γ*, and Δt* enables us to conduct DPD

simulations. If we take into account that the time is nondimensionalized by the

representative time based on the average velocity v (�(kT/m)1/2) and distance rc, the

nondimensionalized time interval Δt* has to be taken as Δt*{1.

The above-mentioned equations of motion retain a flexibility and are determined

by our approach rather than the mathematical manipulation of certain basic key

equations. These equations of motion are the revised version of the original equa-

tions, which were derived in order that the velocity distribution function of the par-

ticles converges to an equilibrium distribution for thermodynamic equilibrium.

Hence, they are not the only valid equations of motion for the DPD method, and a

new equation of motion may be proposed in order to enable us to conduct more

accurate simulations.

The main procedure for conducting the DPD simulation is quite similar to the

one we employed for BD simulations, so it is unnecessary to repeat the details

here.

1.5 Lattice Boltzmann Method

Whether or not the lattice Boltzmann method is classified into the category of

molecular simulation methods may depend on the researcher, but this method is

expected to have a sufficient feasibility as a simulation technique for polymeric

liquids and particle dispersions. We will therefore treat it in detail in this book. In

the lattice Boltzmann method [4, 9�12], a fluid is assumed to be composed of vir-

tual fluid particles, and such fluid particles move and collide with other fluid parti-

cles in a simulation region. A simulation area is regarded as a lattice system, and

fluid particles move from site to site; that is, they do not move freely in a region.

The most significant difference of this method in relation to the MD method is that

the lattice Boltzmann method treats the particle distribution function of velocities

rather than the positions and the velocities of the fluid particles.

Figure 1.4 illustrates the lattice Boltzmann method for a two-dimensional sys-

tem. Figure 1.4A shows that a simulation region is divided into a lattice system.

Figure 1.4B is a magnification of a unit square lattice cell. Virtual fluid particles,

which are regarded as groups or clusters of solvent molecules, are permitted to

move only to their neighboring sites, not to other, more distant sites. That is, the

fluid particles at site 0 are permitted to stay there or to move to sites 1, 2,. . ., 8 at

the next time step. This implies that fluid particles for moving to sites 1, 2, 3, and

4 have the velocity c5 (Δx/Δt), and those for moving to sites 5, 6, 7, and 8 have

24 Introduction to Practice of Molecular Simulation

the velocity
ffiffiffi
2

p
c, in which Δx is the lattice separation of the nearest two sites and

Δt is the time interval for simulations. Since the movement speeds of fluid parti-

cles are known as c or
ffiffiffi
2

p
c, macroscopic velocities of a fluid can be calculated by

evaluating the number of particles moving to each neighboring lattice site. In the

usual lattice Boltzmann method, we treat the particle distribution function, which is

defined as a quantity such that the above-mentioned number is divided by the vol-

ume and multiplied by the mass occupied by each lattice site. This is the concept

of the lattice Boltzmann method. The two-dimensional lattice model shown in

Figure 1.4 is called the “D2Q9” model because fluid particles have nine possibili-

ties of velocities, including the quiescent state (staying at the original site).

Next, we explain the basic equations of the particle distribution function and the

method of solving these equations. The detailed explanation will be shown in

Chapter 8; here we outline the essence of the method. The velocity vector for fluid

particles moving to their neighboring site is usually denoted by cα and, for the case

of the D2Q9 model, there are nine possibilities, such as c0, c1, c2,. . ., c8. For exam-

ple, the velocity of the movement in the left direction in Figure 1.4B is denoted by

c2, and c0 is zero vector for the quiescent state (c05 0). We consider the particle

distribution function fα(r,t) at the position r (at point 0 in Figure 1.4B) at time t in

the α-direction. Since fα(r,t) is equal to the number density of fluid particles mov-

ing in the α-direction, multiplied by the mass of a fluid particle, the summation of

the particle distribution function concerning all the directions (α5 0, 1,. . ., 8) leads
to the macroscopic density ρ(r,t):

ρðr; tÞ5
X8
α50

fαðr; tÞ ð1:88Þ

8

2

6 4

0 1

7

3 5

y

x

Δx

(A) (B)

Figure 1.4 Two-dimensional lattice model for the lattice Boltzmann method (D2Q9 model).

25Outline of Molecular Simulation and Microsimulation Methods

Similarly, the macroscopic velocity u(r,t) can be evaluated from the following

relationship of the momentum per unit volume at the position r:

ρðr; tÞuðr; tÞ5
X8
α50

fαðr; tÞ cα ð1:89Þ

In Eqs. (1.88) and (1.89), the macroscopic density ρ(r,t) and velocity u(r,t) can

be evaluated if the particle distribution function is known. Since fluid particles col-

lide with the other fluid particles at each site, the rate of the number of particles

moving to their neighboring sites changes. In the rarefied gas dynamics, the well-

known Boltzmann equation is the basic equation specifying the velocity distribu-

tion function while taking into account the collision term due to the interactions of

gaseous molecules; this collision term is a complicated integral expression. The

Boltzmann equation is quite difficult to solve analytically, so an attempt has been

made to simplify the collision term. One such simplified model is the Bhatnagar-

Gross-Krook (BGK) collision model. It is well known that the BGK Boltzmann

method gives rise to reasonably accurate solutions, although this collision model is

expressed in quite simple form. We here show the lattice Boltzmann equation

based on the BGK model. According to this model, the particle distribution func-

tion fα(r1 cαΔt,t1Δt) in the α-direction at the position (r1 cαΔt) at time

(t1Δt) can be evaluated by the following equation:

fαðr1 cαΔt; t1ΔtÞ5 fαðr; tÞ1
1

τ
f ð0Þα ðr; tÞ2 fαðr; tÞ
� � ð1:90Þ

This equation is sometimes expressed in separate expressions indicating explicitly

the two different processes of collision and transformation:

fαðr1 cαΔt; t1ΔtÞ5 ~f αðr; tÞ
~f αðr; tÞ5 fαðr; tÞ1

1

τ
f ð0Þα ðr; tÞ2 fαðr; tÞ
� �

9>=
>; ð1:91Þ

in which τ is the relaxation time (dimensionless) and f ð0Þα is the equilibrium distri-

bution, expressed for the D2Q9 model as

f ð0Þα 5 ρ wα 11 3
cαUu
c2

2
3u2

2c2
1

9

2
U
ðcαUuÞ2

c4

� �
ð1:92Þ

wα 5
4=9 for α5 0

1=9 for α5 1; 2; 3; 4
1=36 for α5 5; 6; 7; 8

cαj j5
0 for α5 0

c for α5 1; 2; 3; 4ffiffiffiffiffi
2c

p
for α5 5; 6; 7; 8

8<
:

8<
:

ð1:93Þ

26 Introduction to Practice of Molecular Simulation

In these equations ρ is the local density at the position of interest, u is the fluid

velocity (u5 juj), c5Δx/Δt, and wα is the weighting constant.

The important feature of the BGK model shown in Eq. (1.91) is that the particle

distribution function in the α-direction is independent of the other directions. The

particle distributions in the other directions indirectly influence fα(r1 cαΔt,t1Δt)

through the fluid velocity u and the density ρ. The second expression in Eq. (1.91)

implies that the particle distribution fα(r,t) at the position r changes into ~fαðr; tÞ
after the collision at the site at time t, and the first expression implies that
~fαðr; tÞ becomes the distribution fα(r1 cαΔt,t1Δt) at (r1 cαΔt) after the time

interval Δt.

The main procedure of the simulation is as follows:

1. Set appropriate fluid velocities and densities at each lattice site.

2. Calculate equilibrium particle densities fα
ð0Þ (α5 0, 1,. . ., 8) at each lattice site from

Eq. (1.92) and regard these distributions as the initial distributions, fα 5 fα
ð0Þ (α5 0, 1,. . ., 8).

3. Calculate the collision terms ~fαðr; tÞ (α5 0, 1,. . ., 8) at all sites from the second expres-

sion of Eq. (1.91).

4. Evaluate the distribution at the neighboring site in the α-direction fα(r1 cαΔt,t1Δt)

from the first expression in Eq. (1.91).

5. Calculate the macroscopic velocities and densities from Eqs. (1.88) and (1.89), and repeat

the procedures from step 3.

In addition to the above-mentioned procedures, we need to handle the treatment

at the boundaries of the simulation region. These procedures are relatively complex

and are explained in detail in Chapter 8. For example, the periodic boundary condi-

tion, which is usually used in MD simulations, may be applicable.

For the D3Q19 model shown in figure 8.3, which is applicable for three-dimen-

sional simulations, the equilibrium distribution function is written in the same

expression of Eq. (1.92), but the weighting constants are different from Eq. (1.93)

and are expressed in Eq. (8.69). The basic equations for fα(r1 cαΔt,t1Δt) are the

same as Eq. (1.90) or (1.91), and the above-mentioned simulation procedure is also

directly applicable to the D3Q19 model.

27Outline of Molecular Simulation and Microsimulation Methods

This page intentionally left blank

2 Outline of Methodology of
Simulations

In order to develop a simulation program, it is necessary to have an overview of

the general methodology, which should include the assignment of the initial config-

uration and velocities, the treatment of boundary conditions, and techniques for

reducing computation time. An appropriate initial configuration has to be set with

careful consideration given to the physical property of interest, so that the essential

phenomena can be grasped. For example, if nonspherical molecules or particles are

known to incline in a preferred direction, there may be some advantages to using a

parallelepiped rectangular simulation region rather than a cubic one. The periodic

boundary condition is a representative model to manage the boundary of a simula-

tion region. It is almost always used for systems in thermodynamic equilibrium. On

the other hand, for investigating the dynamic properties of a system, the simple

shear flow is frequently treated and in this case the Lees�Edwards boundary condi-

tion is available. Techniques for reducing computation time become very important

in large-scale three-dimensional simulations, and methods of tracking particle

neighbors, such as the cell index method, are indispensable. The more important

methods frequently employed in simulations are described in this chapter.

2.1 Initial Positions

2.1.1 Spherical Particle Systems

Setting an initial configuration of particles is an indispensable procedure for both

MD and MC methods. Although it is possible to assign randomly the initial posi-

tion of particles in a simulation region, a regular configuration, such as a simple

cubic lattice or a face-centered cubic lattice, is handled in a more straightforward

manner. The random allocation suffers from the problem of the undesirable overlap

of particles and from possible difficulties in achieving high packing fractions.

Lattice assignments are almost free from the overlap problem and can achieve high

packing fractions. However, as will be shown later, the lattice packing may be too

perfect for some simulations, requiring the adjustment of a small random perturba-

tion. In the following paragraphs, we consider a system composed of spherical par-

ticles as an example to explain the method of setting the initial configuration in a

Introduction to Practice of Molecular Simulation. DOI: 10.1016/B978-0-12-385148-2.00002-1

© 2011 Elsevier Inc. All rights reserved.

regular lattice formation for a two-dimensional configuration. We then proceed to a

three-dimensional configuration.

Figure 2.1 shows several lattice systems that may be used to assign an initial

configuration for a two-dimensional system. A basic lattice form is expanded to fill

the whole simulation region, and the particles are then located at each lattice point.

Figure 2.1A, the simplest lattice model, may be suitable for a gaseous system.

However, even if the particle�particle distance a is equal to the particle diameter,

a high packing fraction cannot be obtained by using this simple lattice model.

Hence, it is inappropriate for the simulations of a liquid or solid system. Since there

is only one particle in the unit cell shown in Figure 2.1A, a system with total parti-

cle number N (5Q2) can be generated by replicating the unit cell (Q2 1) times in

each direction to make a square simulation region of side length L5Qa. So for the

use of this lattice system as the initial configuration, the particle number N has to

(A)

y y

y

a a

a

2a

3a√

a a
x

x

x

(B)

(C)

Figure 2.1 Initial conditions for a two-dimensional system.

30 Introduction to Practice of Molecular Simulation

be taken from N5 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, and so on. The number den-

sity of particles n is given by n5N/L2, and the area fraction is given by φs5
π(d/2)2N/L2, where d is the particle diameter. In practice, the number of particles N

and the area fraction φs are first chosen; then the values of Q and L are evaluated,

from which the value of a can be determined. With these values, the initial configu-

ration of particles can be assigned according to the simple lattice system shown in

Figure 2.1A.

The lattice system shown in Figure 2.1B can yield a higher packing fraction and

therefore may be applicable for an initial configuration of a gaseous or liquid state,

but it has limited application to a solid state. Since there are two particles in the

unit cell of this lattice, a system with total particle number N5 2Q2 of particles can

be generated by replicating the unit cell (Q2 1) times in each direction. In this

case, the simulation region is also a square of side length L5Qa, and the possible

value of N is taken from 2, 8, 18, 32, 50, 72, 98, 128, 162, 200, and so on. The

number density of particles n is given by n5N/L2, and the area fraction φs

is given by φs5π(d/2)2N/L2. Figure 2.1C shows the most compact lattice for a

two-dimensional system. This lattice model may also be applicable to a solid sys-

tem. If the dark particles are assumed to constitute the unit lattice, it follows that

there are four particles in this unit lattice. Hence, by replicating the unit lattice

(Q2 1) times in each direction, the simulation region becomes a rectangle of side

lengths Lx5 31/2aQ and Ly5 2aQ, with a total number of particles N5 4Q2, where

the possible value of N is taken from 4, 16, 36, 64, 100, 144, 196, 256, 324, 400,

and so on. The particle number density n is given by n5N/LxLy, and the area

fraction φs is given by φs5π(d/2)2N/LxLy. The actual assignment of the above-

mentioned quantities for simulations is similar to that for Figure 2.1A.

Figure 2.2 shows several lattice models for a three-dimensional system.

Figure 2.2A is the simple cubic lattice model, which is suitable as an initial config-

uration mainly for a gaseous or liquid system. Since there is only one particle in

the unit cell, the number of particles in a system is given by N5Q3 by replicating

the unit cell (Q2 1) times in each direction. In this case the possible value

of N is taken from N5 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, and so on.

(A)

a a

(B)

Figure 2.2 Initial conditions for a three-dimensional system.

31Outline of Methodology of Simulations

The simulation region is a cube of side length L5Qa. The number density n and

the volumetric fraction φV are given by n5N/L3 and φV5 4π(d/2)3N/3L3, respec-
tively. The face-centered cubic lattice model shown in Figure 2.2B is one of the

close-packed lattices, and therefore may be applicable as an initial configuration of

a solid state. Since there are four particles in the unit cell, the total number of parti-

cles in the simulation region is given by N5 4Q3 by replicating the unit cell

(Q2 1) times in each direction. In this case, the total number of particles is taken

from N5 4, 32, 108, 256, 500, 864, 1372, and so on. The number density and the

volumetric fraction are given by n5N/L3 and φV5 4π(d/2)3N/3L3, respectively.
As in a two-dimensional system, for the actual assignment of the above-mentioned

quantities, the particle number N and the volumetric fraction φV are first chosen,

then Q and L are evaluated, and finally the lattice distance a is determined.

For a gaseous or liquid system, the simple lattice models shown in Figures 2.1A

and 2.2A are applicable in a straightforward manner for developing a simulation

program. In contrast, for the case of a solid system, the choice of an appropriate

lattice used for the initial configuration of particles is usually determined by the

known physical properties of the solid.

2.1.2 Nonspherical Particle Systems

The assignment of the initial configuration of particles for a spherical particle sys-

tem, explained in the previous subsection, is quite clear because only the center of

the particles needs to be considered. In this subsection we explain the method of

setting the initial configuration for a system composed of nonspherical particles,

using spherocylinders and disk-like particles as examples. For a nonspherical parti-

cle system, the orientation of the particles must be assigned in addition to their

position, so that the technique for setting the initial configuration is a little more

difficult than that for a spherical particle system. For this purpose, a versatile tech-

nique whereby a wide range of initial configurations can be assigned is desirable.

If particle�particle interactions are large enough to induce the cluster formation of

particles in a preferred direction, then an appropriately large initial configuration

has to be adopted in order for the simulation to capture such characteristic aggre-

gate structures.

We now consider the example of a system composed of spherocylinder particles

with a magnetic moment at the particle center normal to the long particle axis. The

spherocylinder is a cylinder with hemisphere caps at both the ends. An ensemble of

these particles can be expected to aggregate to form raft-like clusters with the mag-

netic moments inclining in the applied magnetic field direction. Hence, a simula-

tion region with sufficient length in the direction of the cluster formation has to be

taken in order for the simulation particles to aggregate in a reasonable manner. We

shall explain the technique for setting an initial configuration using Figure 2.3. The

spherocylinder can be characterized by the ratio of the particle length l to the diam-

eter d of the cylindrical part, known as the aspect ratio rp5 l/d. For the example

in Figure 2.3 where rp5 3, the particles are placed in contact with three and nine

rows in the x- and y-directions, respectively, leading to a configuration of 27

32 Introduction to Practice of Molecular Simulation

particles in a square region in the xy-plane. Extending this configuration to 18

layers in the z-direction yields an initial configuration of spherocylinder particles

with a simulation region (Lx, Ly, Lz)5 (3rpd, 3rpd, 6rpd) with total number of parti-

cles N5 486; if four rows are arranged in the x-direction, then a simulation region

larger than the present case can be adopted with a simulation region (Lx, Ly, Lz)5
(4rpd, 4rpd, 8rpd).

If the particle�particle distances are expanded equally in each direction to yield

a desired volumetric fraction of particles φV, then this expanded system may be

used as an initial configuration for simulations. Such an expansion with a factor α
of particle�particle distances gives rise to the system volume V5 54rp

3d3α3. The

volumetric fraction φV is related to the system volume as φV5NVp/V, in which Vp

is the volume of a spherocylinder particle, expressed as Vp5 πd3(3rp2 1)/12. From

these expressions, the expansion ratio α can be obtained as

α5
1

rp

3πð3rp 2 1Þ
4φV

� �1=3
ð2:1Þ

This initial configuration is applicable for a system in which particles are

expected to aggregate in the direction of the particle short axis, as shown in

Figure 2.4A. If particles are expected to aggregate in the direction of the particle

long axis, as shown in Figure 2.4B, it is straightforward to follow a similar proce-

dure with the spherocylinder particles aligned in the z-direction in Figure 2.3.

(A)
x

x

z

z
y

y

(B)

Figure 2.3 Initial conditions for spherocylinder particles.

33Outline of Methodology of Simulations

We now consider the method of setting an initial configuration of a disk-like par-

ticle system, in which particles are assumed to aggregate in a direction parallel to

the disk plane surface, as shown in Figure 2.5B. Capturing such clusters in simula-

tions requires a simulation region with suitable dimensions. As in the previous case

of a spherocylinder particle system, a nearly close-packed configuration is first

arranged. We here consider disk-like particles with particle aspect ratio rp
(5 d1/b1)5 3, in which the diameter of the circumference and the thickness are

denoted by d1 and b1, respectively, as shown in Figure 4.12. If three and nine parti-

cles are arranged in the x- and y-directions, respectively, the subtotal number of

N5 27 particles can be located in the xy-plane, as shown in Figure 2.5A. Extending

this configuration with 12 layers in the z-direction leads to an initial configuration of

324 particles with particle�particle contact in the simulation region of (Lx, Ly, Lz)5
(3rpb1, 3rpb1, 12rpb1). By expanding particle�particle distances equally in each

direction by the expansion factor α, the volume of a system V becomes

V5 108rp
3b1

3α3. Given the volume of a disk-like particle, Vp5 (π/4)
b1
3(rp2 1)21 (π2/8)b1

3(rp2 1)1 (π/6)b1
3, the expansion factor α can be derived as

α5
1

2rp

π
φV

6ðrp 2 1Þ2 1 3πðrp 2 1Þ1 4
� �� �1=3

ð2:2Þ

In this derivation, the relationship of φV5NVp/V has been used.

The main procedure for setting the initial configuration is summarized as

follows:

1. Consider an appropriate initial configuration, with sufficient consideration given to the

physical phenomenon of interest.

2. Set a nearly close-packed situation as an initial configuration.

3. Calculate the total number of particles N.

4. Evaluate the expansion ratio α from Eq. (2.1) or Eq. (2.2) to give rise to the desired volu-

metric fraction φV.

5. Expand particle�particle distances equally by the factor α.

(A) Aggregation in the
 short axis direction

(B) Aggregation in the
 long axis direction

Figure 2.4 Aggregation for sphero-

cylinder particles.

34 Introduction to Practice of Molecular Simulation

6. Perturb the particle positions by small distances using random numbers in order to

destroy the regularity of the initial configuration; otherwise, all particle�particle interac-

tions may be zero and therefore the particles may not move with time.

2.2 Initial Velocities

2.2.1 Spherical Particle Systems

In the MD method, the motion of particles is described by pursuing their position

and velocity over time, so these factors have to be specified as an initial condition.

If the system of interest is in thermodynamic equilibrium with temperature T, the

particle velocities are described by the following Maxwellian distribution [25]:

f ðviÞ5 m

2πkT

� �3=2
exp 2

m

2kT
v2ix 1 v2iy 1 v2iz

� 	n o
ð2:3Þ

in which k is Boltzmann’s constant, m is the mass of particles, and vi5 (vix, viy, viz)

is the velocity vector of particle i. Since the Maxwellian distribution f is the

y

y

z

(A) (B)

z

x
x

Figure 2.5 Initial conditions for disk-like particles.

35Outline of Methodology of Simulations

probability density distribution function, the probability of particle i being found in

the infinitesimal velocity range between vi and (vi1 dvi) becomes f(vi)dvi.

Characteristics of this function can be understood more straightforwardly by treat-

ing the distribution function fx as the x-velocity component. Figure 2.6 clearly

shows that a higher system temperature leads to an increase in the probability of

particles appearing with a larger velocity component vix. If we focus on the magni-

tude of the particle velocities instead of the velocity components, clearer discussion

concerning such characteristics becomes possible. The probability density distribu-

tion function χ(vi) for the speed vi5 (vix
21 viy

21 viz
2) of particle i can be derived

from Eq. (2.3) as

χðviÞ5 4π
m

2πkT

� �3=2
v2i exp 2

m

2kT
v2i

� 	
ð2:4Þ

This equation is derived, first, by a transformation from orthogonal to spherical

coordinates, that is, from (vix, viy, viz) to (vi, θ, φ) with the relationship of (vix, viy,

viz)5 (vi sin θ cos φ, vi sin θ sin φ, vi cos θ), and second, from the integral with

respect to θ and φ in the normalization equation of the Maxwellian distribution.

The integrand in the normalization equation after this integral is the distribution

function χ(vi). Figure 2.7 shows the distribution χ as a function of the particle

speed vi for several system temperatures. Figure 2.7 shows that the curve of χ has

a peak value position that moves further to the right with increasing value of the

temperature. That is, the percentage of particles with larger velocities increases

with the temperature. The particle speed vmp yielding the peak value of the distribu-

tion can be derived from Eq. (2.4) as vmp5 (2kT/m)1/2, which is called the “most

probable velocity.” This means that particles with speed vmp are likely to be the

most numerous in the system. Note that the most probable speed is larger for a

higher system temperature and a smaller mass.

For a given system temperature T, the initial velocities of particles for simula-

tions can be assigned according to the probability density function in Eq. (2.3) or

T = high

T = low

νix

fx

Figure 2.6 Velocity distributions in

equilibrium.

36 Introduction to Practice of Molecular Simulation

Eq. (2.4). The detailed explanation is given in Appendix A2, so here we only show

the final technique. With six different uniform random numbers, R1, R2,. . ., R6, the

initial velocity components (vix, viy, viz) of particle i can be set as

vix 5 22
kT

m
ln R1

0
@

1
A
1=2

cosð2πR2Þ

viy 5 22
kT

m
ln R3

0
@

1
A
1=2

cosð2πR4Þ

viz 5 22
kT

m
ln R5

0
@

1
A
1=2

cosð2πR6Þ

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð2:5Þ

Note that each particle requires a new, that is, a different, set of random numbers.

The temperature which is evaluated from the initial particle velocities assigned

by the above-mentioned method is approximately equal to the desired system tem-

perature, but may not necessarily be satisfactory. Hence, an equilibration procedure

is usually necessary before starting the main loop in an actual simulation program.

This will be explained in the next subsection.

2.2.2 Nonspherical Particle Systems

For a nonspherical particle system, the initial angular velocities need to be assigned

in addition to the translational velocities. Similar to the translational velocity v5
(vx, vy, vz) discussed above, the angular velocity ω5 (ωx, ωy, ωz) is also governed

by the Maxwellian distribution fω(ω). The expression for fω(ω) is

fωðωÞ5
I

2πkT

� �3=2
exp 2

I

2kT
ω2
x 1ω2

y 1ω2
z

� 	
 �
ð2:6Þ

χ

T = low

T = high

νiνmpνmp
Figure 2.7 Particle speed distribu-

tions in equilibrium.

37Outline of Methodology of Simulations

in which I is the inertia moment of a particle. The characteristics of the exponential

function in Eq. (2.3) or Eq. (2.6) demonstrate that the probability of particles

appearing with larger translational and angular velocities increases with the system

temperature. Similar to vmp5 (2kT/m)1/2, ωmp5 (2kT/I)1/2 is the most probable

angular velocity to yield the maximum value of the Maxwellian distribution fω.

The method for setting the initial translational velocities using uniform random

numbers, explained in the previous subsection, is applicable to the present angular

velocity case. Here, m and (vix, viy, viz) in Eq. (2.5) are replaced by I and (ωix, ωiy,

ωiz); note that new uniform random numbers need to be used.

As already mentioned, an equilibration procedure may be necessary in order

to obtain the desired system temperature T. In the example of a liquid, the tem-

perature Tcal, which is calculated from averaging the assigned velocities of parti-

cles, may differ significantly from the desired system temperature T. This may be

due to the energy exchange between the kinetic and the potential energies.

Hence, an equilibration procedure is frequently necessary before starting the main

loop in a simulation program. The temperatures calculated from the translational

and angular velocities of particles are denoted by T
ðtÞ
cal and T

ðrÞ
cal; respectively, and

written as

T
ðtÞ
cal 5

1

3N

XN
i51

mv2i
k

; T
ðrÞ
cal 5

1

3N

XN
i51

Iω2
i

k
ð2:7Þ

in which N is the total number of particles, assumed to be Nc1. T
ðtÞ
cal and T

ðrÞ
cal; cal-

culated from vi and ωi (i5 1, 2,. . ., N), are generally not equal to the desired tem-

perature T. The equilibration procedure adjusts these temperatures to T during the

simulation by using the method of scaling the translational and angular velocities

of each particle. If T
ðtÞave
cal and T

ðrÞave
cal denote the averaged values of T

ðtÞ
cal and T

ðrÞ
cal taken,

for example, over 50 time steps, then the scaling factors c
ðtÞ
0 and c

ðrÞ
0 are determined as

c
ðtÞ
0 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=T ðtÞave

cal

q
; c

ðrÞ
0 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T=T ðrÞave

cal

q
ð2:8Þ

With the scaling factors determined, the translational and angular velocities of all

particles in a system are scaled as

vi
0
5 c

ðtÞ
0 vi ; ωi

0
5 c

ðrÞ
0 ωi ði5 1; 2; . . . ;NÞ ð2:9Þ

This treatment yields the desired system temperature T. In this example the

scaling procedure would be conducted at every 50 time steps, but in practice an

appropriate time interval must be adopted for each simulation case. The above-

mentioned equilibration procedure is repeated to give rise to the desired system

temperature with sufficient accuracy. (Note that if a system has a macroscopic

velocity, i.e., if it is not in a quiescent state, the scaling procedure has to be

slightly modified.)

38 Introduction to Practice of Molecular Simulation

2.3 Reduction Methods of Computation Time

2.3.1 Cutoff Distance

Computation time is an important factor for successfully obtaining reasonable

results from molecular simulations. In some cases, due to an excessive restriction

of the required computation time, only a small or two-dimensional system is able

to be treated. The most time-consuming procedure is the calculation of interaction

energies between particles in the MC method and that of forces and torques in the

MD method. Even with the action�reaction law taken into account, the N(N2 1)/2

calculations of energies or forces are necessary per unit time step (or unit MC step)

for an N-particle system. Therefore, if it is possible to restrict the pairs of particles

for the calculation, the computation time may significantly decrease. Fortunately,

many particle�particle potentials are of short-range order, so that the potential

energy between particles rapidly decreases with the particle�particle separation

over a distance only several times the particle diameter. Therefore we may be able

to treat only interactions within this range. Although magnetic or electrostatic

forces are of long-range order, the above-mentioned concept is applicable to these

interactions if the criterion separation between particles is taken to be of sufficient

length.

2.3.1.1 Spherical Particle Systems

An important concept in simulation methodology is that a significant limitation on

the computation of interaction energies or forces between particles leads to an

extraordinary reduction of the simulation time. To understand this concept, we con-

sider the interaction energies between particles or potential curves. For example,

the Lennard-Jones potential ULJ is expressed as

ULJ 5 4ε
σ
r

� 	12

2
σ
r

� 	6

 �

ð2:10Þ

This potential is usually used as a model potential for rare gases such as Ar

molecule; σ is the quantity corresponding to the particle diameter, and r is the

separation between particles (molecules). Figure 2.8 shows the curve of the

Lennard-Jones potential, in which ULJ and r are nondimensionalized by ε and σ.
Figure 2.8 illustrates a steep potential barrier in the range of r & σ, which induces

such a significant repulsive interaction that particles are prevented from signifi-

cantly overlapping, and an attractive interaction in the range of r * σ, which

rapidly decreases to zero. These characteristics of the potential curve indicate that

the interaction energy after a distance of approximately r5 3σ can be assumed to

be negligible. Hence, particle interaction energies or forces do not need to be calcu-

lated in the range of r. 3σ in actual simulations. The distance for cutting off the

calculation of energies or forces is known as the cutoff distance or cutoff radius,

denoted by rcoff in this book.

39Outline of Methodology of Simulations

2.3.1.2 Nonspherical Particle Systems

The above cutoff procedure is directly applicable to a nonspherical particle system

using the cutoff radius rcoff based on the particle center-to-center distance. That is,

the calculation of energies or forces is unnecessary for rij$ rcoff in simulations. For

example, this applies to the case of rod-like particles that have a magnetic dipole

moment at their particle center, as shown in Figure 2.9A. Unfortunately, the

method is not suitable for the case of rod-like particles with plus and minus (NS)

magnetic charges at the centers of hemisphere caps, as shown in Figure 2.9B. For

this case, the most direct criterion is to calculate the distance between each pair of

magnetic charges of the two interacting spherocylinder particles and compare this

separation with a suitable cutoff radius rcoff. This will require the distances of the

four pairs of magnetic charges to be calculated. However, with prior knowledge of

the arrangement of the two spherocylinder particles, it is possible to determine cer-

tain cases where we may know, without calculating the distances for all the four

pairs of charges, that there are only two pairs of the distances satisfying the rela-

tionship of rij# rcoff. Referring to Figure 2.10, if the center-to-center distance

between particles i and j is denoted by rij and the distance between the magnetic

charges in the particle is denoted by l, then the following three cases have to be

considered for this assessment:

1. For rij$ rcoff1 l

No interactions.

2. For rcoff1 l. rij. rcoff
A possibility of two pairs of interactions at the most.

3. For rij# rcoff
A possibility of all four pairs of interactions.

Figure 2.10A corresponds to case 1, in which the distance for any pair is beyond

the cutoff radius. Figure 2.10B corresponds to case 2, in which there is a possibility

of a certain magnetic charge interacting with both the magnetic charges in the other

0 1 2 3 4
–2

–1

0

1

2

3

4

6

U
LJ

/ε

√2σ r/σ Figure 2.8 Lennard-Jones potential.

40 Introduction to Practice of Molecular Simulation

particle within the cutoff radius. Figure 2.10C corresponds to case 3, in which the

two particles are proximate enough to give rise to a possibility of four pairs of

magnetic charges being within the cutoff range. Hence, if case 1 holds, the calcula-

tion of energies or forces between particles is unnecessary, and for case 2, if two

pairs of magnetic charges are found to be within the cutoff range, the further calcu-

lation of energies or forces is unnecessary.

Finally, it should be noted that the introduction of the cutoff radius by itself

does not necessarily lead to a significant reduction in the computational time, since

the N(N2 1)/2 calculations have to be conducted in order to evaluate the distances

between particles. Hence, the following cell index method, or the Verlet neighbor

list method, is used with the cutoff method to accomplish a significant reduction in

the computation time.

2.3.2 Cell Index Method

If in some way we had already determined the names of the particles within the

cutoff range from each particle, the calculation of the particle�particle distances

for all pairs of particles at each time step would be unnecessary. Several meth-

ods have been developed for grasping such particle names. We first explain

the cell index method [27,28] in this subsection. In order for the reader to

understand the method straightforwardly, we treat a two-dimensional system

composed of the spherocylinder particles shown in Figure 2.9A. With reference

(A) No interactions (C) Possibility of four pairs
 of interactions

(B) Possibility of two pairs of
 interactions

Figure 2.10 Check for interactions in the criterion of the particle distance rij.

(A) The model with a magnetic
 dipole at the center

(B) The model with magnetic charges at the
 centers of both the hemisphere caps

Figure 2.9 Treatment of the cutoff distance for different rod-like particle models.

41Outline of Methodology of Simulations

to Figure 2.11, the simulation region with dimensions of (Lx, Ly) is divided into

(Qx, Qy) equal parts in each direction (Qx5Qy5 6) in order to divide the whole

region into small cells. Each cell has the dimensions of (Lx/Qx, Ly/Qy), in which

(Qx, Qy) are maximized to satisfy the relationships Lx/Qx$ rcoff and Ly/

Qy$ rcoff. Since each side of a small cell is longer than the cutoff distance rcoff,

the particles locating, for example, in the 15th cell in Figure 2.11, have a possi-

bility to interact with those in their own cell 15 and those belonging to the

neighboring cells, that is, in the 8th, 9th, 10th, 14th, 16th, 20th, 21st, and 22nd

cells. Particles in other cells are beyond the cutoff area, so they are not used to

calculate the distances between particles. Each cell needs to memorize the

names of the particles which belong to it. As shown in Figure 2.11, the cell

index method provides a significant reduction in the computation time for large

values of (Qx, Qy). For the case of the particles shown in Figure 2.9B, the

method is simply applied if the values of (Qx, Qy) are adopted in such a way to

satisfy the relationships of Lx/Qx$ rcoff1 l and Ly/Qy$ rcoff1 l.

2.3.3 Verlet Neighbor List Method

In the Verlet neighbor list method [29], a distance rl, which is longer than the cut-

off radius, is adopted, and each particle grasps the names of the particles within

range of rl from its center. Referring to Figure 2.12, it is clear that particles

within range of r, rcoff are certainly within range of r, rl. Hence, if the list of

particles within range of r, rl is renewed with such frequency that the particles

outside the range of r5 rl cannot attain to the cutoff area, then it is sufficient to

calculate the distances between the particle of interest and its neighboring parti-

cles being within range of r# rl. If rl is sufficiently short compared with the

dimensions of a simulation region, and the information concerning the names of

the neighboring particles is renewed, for example, at every 10 time steps, then a

significant reduction in the computation time can be expected. The Verlet neigh-

bor list method is applicable to the MD method as well as to the MC method.

Note that the cutoff distance is usually taken as rcoff, L/2 (L is the side length of

a simulation region).

31 32 33 34 35 36

25 26 27 28 29 30

19 20 21 22 23 24

13
Ly

Lx

14 15 16 17 18

7 8 9 10 11 12

1 2 3 4 5 6
Figure 2.11 Cell index method for grasping neighboring

particles.

42 Introduction to Practice of Molecular Simulation

2.4 Boundary Conditions

2.4.1 Periodic Boundary Condition

Fortunately, a system of one-mol-order size, being composed of about 63 1023 par-

ticles, never needs to be directly treated in molecular simulations for thermody-

namic equilibrium (actually, it is impossible). The use of the periodic boundary

condition, explained below, enables us to treat only a relatively small system of

about 100�10,000 particles in order to obtain such reasonable results as to explain

the corresponding experimental data accurately.

Figure 2.13 schematically illustrates the concept of the periodic boundary condition

for a two-dimensional system composed of spherocylinder particles. The central

square is a simulation region and the surrounding squares are virtual simulation boxes,

which are made by replicating the main simulation box. As Figure 2.13 shows, the ori-

gin of the xy-coordinate system is taken at the center of the simulation region, and the

dimensions of the simulation region in the x- and y-directions are denoted by Lx and

Ly. The two specific procedures are necessary in treating the periodic boundary condi-

tion, that is, first the treatment of outgoing particles crossing the boundary surfaces of

the simulation region and second the calculation of interaction energies or forces with

virtual particles being in the replicated simulation boxes.

As shown in Figure 2.13, a particle crossing and exiting the left boundary sur-

face has to enter from the right virtual box. This treatment can be expressed using

the FORTRAN language as

IF(RXI.GE.LX/2.D0) THEN

RXI5RXI2LX

ELSE IF(RXI.LT.2LX/2.D0) THEN

RXI5RXI1LX

END IF

rl

rcoff

Figure 2.12 Verlet neighbor list method.

43Outline of Methodology of Simulations

The rounding-up function DNINT can yield a simple one-line expression as

RXI5RXI2DNINT(RXI/LX)*LX

Note that the position of particle i is denoted by (RXI, RYI). Similar procedures

have to be conducted for the case of the y- and z-directions.

When the interaction energy or force of particle i with other particles, for exam-

ple, particle j, is calculated, an appropriate particle j has to be chosen as an object

from real and virtual particles j. This may be done in such a way that the distance

between particle i and particle j is minimal. This treatment can be expressed using

the FORTRAN language as

IF(RXIJ.GT.LX/2.D0) THEN

RXIJ5RXIJ2LX

ELSE IF (RXIJ.LT.2LX/2.D0) THEN

RXIJ5RXIJ1LX

END IF

The rounding-up function DNINT gives rise to a simple one-line expression as

RXIJ5RXIJ2DNINT(RXIJ/LX)*LX

in which RXIJ5RXI2RXJ, expressing the relative position of particles i to j.

Similar procedures have to be conducted for the y- and z-directions. The above-

mentioned procedures are applicable directly to a system composed of rod-like par-

ticles, such as that shown in Figure 2.9A, in which the interaction energies or

forces are dependent only on the particle center-to-center distance. If we treat the

pairs of magnetic charges instead of particle center-to-center interactions, the

Ly

Lx

y

x

Figure 2.13 Periodic boundary

condition.

44 Introduction to Practice of Molecular Simulation

above-mentioned procedures are also applicable, but in this case RXIJ and similar

variables have to be taken as the distances between magnetic charges.

2.4.2 Lees�Edwards Boundary Condition

The periodic boundary condition is quite useful for molecular simulations of a sys-

tem in thermodynamic equilibrium, but is this boundary condition still available for

nonequilibrium situations? In treating the dynamic properties of a system in non-

equilibrium, the most basic and important flow is a simple shear flow, as shown in

Figure 2.14. The velocity profile, linearly varying from 2U at the lower surface to

U at the upper one, can be generated by sliding the lower and upper walls in the

left and right directions with the velocity U, respectively. This flow field is called

the “simple shear flow.” In generating such a simple shear flow in actual molecular

simulations, the upper and lower replicated simulation boxes, shown in

Figure 2.13, are made to slide in different directions with a certain constant speed.

This sliding periodic boundary condition is called the “Lees�Edwards boundary

condition” [30]. Figure 2.15 schematically depicts the concept of this boundary

condition; the replicated boxes in the upper and lower layers slide in each direction

by the distance ΔX. If particles move out of the simulation box by crossing the

boundary surface normal to the x-axis, as shown in Figure 2.15, they are made to

come into the simulation box through the opposite boundary surface, which is

exactly the same procedure as the periodic boundary condition. The important

treatment in the Lees�Edwards boundary condition concerns the particles crossing

the boundary surfaces normal to the y-axis. The same treatment of the periodic

boundary condition is applied to the y-coordinate of such particles, but the

x-coordinate should be shifted from x to (x2ΔX) in the case of Figure 2.15. In

addition, the x-component vx of these particles needs to be modified to (vx2U),

but the y-component vy can be used without modification. The above-mentioned

procedures concerning x and vx can be expressed using the FORTRAN language as

IF (RYI.GE.LY/2.D0) THEN

RXI5RXI2DX

RXI5RXI2DNINT(RXI/LX)*LX

VXI5VXI2U

ELSE (RYI.LT.2LY/2.D0) THEN

RXI5RXI1DX

RXI5RXI2DNINT(RXI/LX)*LX

VXI5VXI1U

END IF

A slightly simplified expression can be written as

CORY5DNINT(RYI/LY)

RXI5RXI2CORY*DX

RXI5RXI2DNINT(RXI/LX)*LX

VXI5VXI2CORY*U

45Outline of Methodology of Simulations

The y- and z-coordinates are treated as in the periodic boundary condition, and the

modification of vy and vz is unnecessary.

For the case of evaluating interaction energies or forces, the similar procedures

have to be conducted for the particles interacting with virtual particles which are in

the replicated simulation boxes in the upper or lower layers. This treatment can be

expressed using the FORTRAN language as

IF (RYJI.GE.LY/2.D0) THEN

RYJI5RYJI2LY

RXJI5RXJI2DX

RXJI5RXJI2DNINT(RXJI/LX)*LX

ELSE IF (RYJI.LT.2LY/2.D0) THEN

y

x

Lx

ΔX

Figure 2.15 Lees�Edwards boundary condition.

U

U Figure 2.14 Simple shear flow.

46 Introduction to Practice of Molecular Simulation

RYJI5RYJI1LY

RXJI5RXJI1DX

RXJI5RXJI2DNINT(RXJI/LX)*LX

END IF

A slightly simplified expression can be written as

CORY5DNINT(RYJI/LY)

RYJI5RYJI2CORY*LY

RXJI5RXJI2CORY*DX

RXJI5RXJI2DNINT(RXJI/LX)*LX

The relative position RZJI in the z-direction is treated according to the periodic

boundary condition.

The above-mentioned procedures are valid for the particle model shown in

Figure 2.9A and also apply to the model shown in Figure 2.9B by focusing on the

interactions between magnetic charges instead of the particle centers.

47Outline of Methodology of Simulations

This page intentionally left blank

3 Practice of Molecular Dynamics
Simulations

In the present and subsequent chapters, we consider examples of physical phenom-

ena in order to explain a series of important procedures employed in conducting

molecular simulations. In particular, we discuss the formalization of a problem and

the method for nondimensionalizing quantities, and we make several analyses

indispensable for developing a simulation program. These techniques are demon-

strated in a sample simulation program with explanatory remarks included to

clarify important features.

In this chapter, we consider two different physical phenomena as examples for

the practice of molecular dynamics simulations. The first example discusses a diffu-

sion problem with two kinds of molecules initially immersed in a small region in

thermodynamic equilibrium. The simulation then follows the particle diffusion after

the wall surrounding the region has been removed. For this case the Verlet algorithm

is used for simulating the particle motion. The second example discusses the prob-

lem of the behavior of axisymmetric particles (spherocylinders in this case) in a sim-

ple shear flow. This case is an example of a more advanced type of molecular

dynamics (MD) simulation where the translational and rotational motion of the parti-

cles is simulated simultaneously; therefore this exercise is considerably more

advanced. The techniques demonstrated in this example are fundamental to many

practical applications and may offer many valuable suggestions in developing a sim-

ulation program for systems such as DNA or polymer solutions.

3.1 Diffusion Phenomena in a System of Light and
Heavy Molecules

In this section we demonstrate a MD simulation employing only the translational

motion of spherical molecules. A spherical molecule system is a basic form

employed in molecular simulations, and the diffusion problem in this system is a

useful example because almost all the important methodology for developing a

simulation program is included in this exercise. A system composed of two kinds

of molecules has been chosen because the extra complexity renders the example

more useful and practical.

Introduction to Practice of Molecular Simulation. DOI: 10.1016/B978-0-12-385148-2.00003-3

© 2011 Elsevier Inc. All rights reserved.

3.1.1 Physical Phenomena of Interest

The two kinds of molecules, that is, the NA light molecules with mass m and NB

heavy molecules with mass M, are placed in a two-dimensional square cell with

side length L in equilibrium with temperature T. Both kinds of molecules have the

same diameter σ, and the interaction between molecules is assumed to be expressed

by the Lennard-Jones potential. At the moment the wall surrounding the square

retaining cell is removed, these molecules start to diffuse into the larger surround-

ing area. In this example, we will consider how this physical phenomenon depends

on the system temperature and the mass ratio.

3.1.2 Specification of Problems in Equations

The starting point for the formalization of a problem is the development of the

governing equation—in this case, the equation of motion of the molecules. The

equation of motion of an arbitrary light molecule i and arbitrary heavy molecule

j are written from Newton’s equation of motion, respectively, as

m
d2ri

dt2
5 f i 5

XN
p51

f ip ð3:1Þ

M
d2rj

dt2
5 f j 5

XN
p51

f jp ð3:2Þ

in which N5NA1NB, fip is the force exerted by molecule p on molecule i, and fi
is the total force acting on molecule i from all the other molecules irrespective of

the type of molecule. This notation is similarly applicable to a heavy molecule j.

The force acting between molecules can be derived from the Lennard-Jones poten-

tial. With the aid of the basic formulae of vector analysis, the force f is derived

from a potential U as

f5 2rU5 2 i
@U

@x
1 j

@U

@y
1 k

@U

@z

� �
ð3:3Þ

The notation r on the right-hand side is the nabla operator, which is defined

by the last expression on the right-hand side, and (i, j, k) are the unit vectors

in the (x, y, z) directions, respectively. Equation (3.3) implies that the force acts

in the direction of the interaction energy decreasing at the maximum. By substi-

tuting Eq. (2.10) into Eq. (3.3), the force fqp exerted by molecule p on molecule

q can be derived as

fqp 5 24ε 2
σ
rqp

� �12
2

σ
rqp

� �6
()

rqp

r2qp
ð3:4Þ

50 Introduction to Practice of Molecular Simulation

in which rqp is the relative position vector of molecule q to molecule p, expressed

as rqp5 rq2 rp, and rqp5 jrqpj.
In practice, simulations usually treat a nondimensional system, in which the

governing equations and all physical quantities are nondimensionalized by certain

representative values. Therefore, in the following paragraphs, we show the method

of nondimensionalizing the equations.

For a Lennard-Jones system, the following representative values are generally

used for nondimensionalizing quantities: σ for distances, ε for energies, (ε/m)1/2 for
velocities, σ(m/ε)1/2 for time, ε/σ for forces, ε/k for temperatures, 1/σ3 for number

densities, and m/σ3 for densities. Nondimensional quantities are expressed as the

original quantities with superscript *. Each quantity is expressed as a nondimen-

sional quantity multiplied by the corresponding representative value. The substitu-

tion of these quantities into the original dimensional equation yields the desired

nondimensional equation. These procedures give rise to the nondimensional form

of Eqs. (3.1) and (3.2) expressed, respectively, as

d2r�i
dt�2

5 f�i 5
XN
p51

f�ip ð3:5Þ

K
d2r�j
dt�2

5 f�j 5
XN
p51

f�jp ð3:6Þ

in which the force is nondimensionalized from Eq. (3.4) as

f�qp 5 24 2
1

r�qp

 !12

2
1

r�qp

 !6
8<
:

9=
; r�qp

ðr�qpÞ2
ð3:7Þ

The parameter K, appearing in Eq. (3.6), is a nondimensional parameter expressing

the mass ratio K5M/m, which arises due to the mass m being used as the represen-

tative mass. As in this example, it is usual for several additional nondimensional

parameters to arise when equations and quantities are nondimensionalized. In order

to compare the simulation with experimental results, appropriate values of these

nondimensional parameters need to be adopted.

3.1.3 Verlet Algorithm

In this example we employ the Verlet algorithm in order to simulate the motion

of the molecules. Referring to Eq. (1.6), the algebraic equations according to

the Verlet algorithm can be expressed concerning a light molecule i and heavy

molecule j as

r�i ðt� 1 h�Þ5 2r�i ðt�Þ2 r�i ðt� 2 h�Þ1 h�2f�i ðt�Þ ð3:8Þ

51Practice of Molecular Dynamics Simulations

r�j ðt� 1 h�Þ5 2r�j ðt�Þ2 r�j ðt� 2 h�Þ1 h�2

K
f�j ðt�Þ ð3:9Þ

As these equations indicate, in order to execute a simulation program, the

Verlet algorithm needs the information of all the molecular positions at t*5 0 and

the first time step t*5 h*. If the initial positions and velocities of molecules and the

system temperature T are assigned at t*5 0, then the molecular positions at t*5 h*

may be evaluated from Eqs. (3.10) and (3.11).

For the given values of the molecular position r�i ð0Þ and velocity v�i ð0Þ at t*5 0,

the position r�i ðh�Þ at t*5 h* can be evaluated from Eq. (1.8) as

r�i ðh�Þ5 r�i ð0Þ1 h�v�i ð0Þ1
h�2

2
f�i ð0Þ ð3:10Þ

Similarly, the equation for a heavy molecule j can be obtained as

r�j ðh�Þ5 r�j ð0Þ1 h�v�j ð0Þ1
h�2

2K
f�j ð0Þ ð3:11Þ

Hence, if the initial position and velocity at t*5 0 are assigned, the position at

the next time step can be evaluated from Eqs. (3.10) and (3.11), and the simulation

can commence according to Eqs. (3.8) and (3.9).

3.1.4 Parameters for Simulations

In addition to the above assignment of the initial positions and velocities, it is

necessary to assign the number of molecules N, the system temperature T*, and the

mass ratio K. Setting these parameters corresponds to the specification of the physi-

cal system of interest. Moreover, an appropriate time interval h* and the total num-

ber of time steps needed for one simulation run must also be carefully specified in

order to conduct a simulation successfully without serious problems, such as a

system divergence. Additionally, other specifications may be necessary to assist the

postprocessing analysis and visualization. For example, in making an animation, it

may be necessary to write out various types of data at specific time steps.

The initial positions are usually assigned by a method employing uniform ran-

dom numbers. The Maxwellian distribution function, which is the velocity distribu-

tion for thermodynamic equilibrium, can be written in nondimensional form for a

two-dimensional system from Eq. (2.3) as

f �ðv�j Þ5
K

2πT�

� �
exp 2

K

2T� ðv�2jx 1 v�2jy Þ
� �

ð3:12Þ

This equation is for a heavy molecule j, but it also holds for a light molecule i

by replacing subscript i and K by j and unity, respectively. The method of assigning

52 Introduction to Practice of Molecular Simulation

the initial velocities according to this normal distribution function is explained

in Appendix A2. Since the number of degrees of freedom for a two-dimensional

system is different from that for a three-dimensional system, the relationship

between the average velocity and the specified temperature has a slightly different

expression from that in Eq. (2.7). If the square mean velocities of a light molecule i

and heavy molecule j are denoted by v�2i and v�2j ; respectively, these quantities are

related to the system temperature by

T� 5
v�2i
2

5K
v�2j
2

ð3:13Þ

The number of light molecules NA is taken to be equal to that of heavy molecules

NB where NA5NB5 20 in this exercise. Note that in practice a personal computer

can easily handle a much larger system, such as NA5 1000 or 10,000. Generally

speaking, it is desirable to run a set of simulations where each parameter is given at

least three different values in order to grasp how it may influence the simulation

results. If there are many parameters governing a phenomenon, it is advisable that

important parameters are taken in several different cases, with a typical value set

assigned to the other parameters. In the present exercise, therefore, the temperature

T* and mass ratio K are taken as T*5 1.5, 5, and 10, and K5 2, 5, and 10, respec-

tively. The number density n*(5nσ2) is taken only for the single case of n*5 0.1.

Finally, we discuss an appropriate value for the time interval, which has to be

carefully determined because it has a significant influence on both the accuracy of

the results and the stability of a simulation. If the mean speed of molecule i is

assumed to be equal to the root mean square of velocity, the mean distance of

travel for the translational motion during the time interval h is expected as hðv2i Þ1=2.
This distance is required to be much shorter than the characteristic distance of

the Lennard-Jones potential. Referring to Figure 2.8, this can be expressed mathe-

matically as

hðv2i Þ1=2{0:13σ ð3:14Þ

Using Eq. (3.13) and expressing the average velocity as a function of T*, it follows

that Eq. (3.14) can be written in nondimensional form as

h�{0:1=
ffiffiffiffiffiffiffiffi
2T�

p
ð3:15Þ

As is clearly shown in Eq. (3.15), a shorter time interval is required for a higher

temperature; for example, h* is taken as h*5 0.005, 0.001, and 0.0005 for T*5 1,

5, and 10, respectively. Unless the time interval is sufficiently short, molecules will

have a tendency to overlap in a manner that is physically unreasonable, which will

induce divergence of the system. After determining an appropriate value of the

time interval, one can determine the length of a simulation run, that is, the total

number of time steps. For example, if T* and h* are adopted as T*5 10 and

53Practice of Molecular Dynamics Simulations

h*5 0.0005, the mean travel distance of molecules per unit time step h*(2T*)1/2 is

approximately equal to 0.002. Hence, if the total number of time steps is set to be

50,000, the paths of the molecules will be of sufficient length to examine the diffu-

sion phenomenon.

3.1.5 Results of Simulations

We show some results of the snapshots of molecules in Figures 3.1 and 3.2, which

were obtained by conducting the simulation program that is shown in the next sub-

section. The figures were obtained for a molecular mass ratio of K5 2 and 10,

respectively. Each figure shows two snapshots at t*5 8 for the two cases of the

temperature T*5 1.5 and 5. These figures clearly show that both species of mole-

cules move more actively and diffuse further in the higher-temperature case. If the

snapshots for the same temperature are compared, the diffusion of heavy molecules

is less active, and this situation is more significant for the larger mass ratio.

The sequence of snapshots in Figure 3.3 shows how molecules diffuse from the

center toward the outer simulation boundaries with time for K5 10 and T*5 5.

This sequence clearly shows that light molecules start to diffuse from the central

area in the outward directions more significantly than heavy molecules.

These results indicate the main qualitative features of the diffusion phenomenon

of light and heavy molecules. However, the above discussion is too simple from an

academic point of view, therefore quantitative considerations and discussion based

on the theoretical background are indispensable. How can we theoretically explain

the qualitative features that both the light and heavy molecules diffuse more signifi-

cantly for a higher temperature, and also that heavy molecules are less able to

move for larger values of the mass ratio? This may be explained theoretically by

considering that Eq. (3.13) implies the mean velocity is larger for a higher

(A) (B)

Figure 3.1 Diffusion phenomena of molecules for the mass ratio K5 2: (A) T*5 1.5 and

(B) T*5 5 (white and black molecules denote light and heavy molecules, respectively).

54 Introduction to Practice of Molecular Simulation

temperature and that the mean velocity of the heavier molecules is smaller for a

larger mass ratio. This may be one of the key theoretical considerations in fully

understanding the present simulation results. In academic simulations, such theoret-

ical considerations are conducted in more complex form by combining different

threads in order to form a uniformed conclusion about the results. These sophisti-

cated considerations help one to avoid presenting erroneous simulation results,

which sometimes happens, for a variety of reasons. Although we here show only

the results in the form of snapshots, academic research would require comprehen-

sive quantitative results that might include the change in the internal structures and

analysis of the transport coefficients. Furthermore, it will usually be necessary to

check the influence of the time interval and the size of a system on the results.

3.1.6 Simulation Program

We here show a sample simulation program to simulate the present diffusion phe-

nomenon. The program is written in the FORTRAN language. Since the main pro-

gram is usually written in order to clarify a flow of procedure in a straightforward

way, the assignment of the initial positions and velocities is treated in a subroutine

subprogram. The reader is advised to develop a simulation program with a clear

logical flow, thereby simplifying the debugging of a program under development

and making it, on completion, a straightforward and useful resource.

For these reasons, the important variables in a program need to be explained in

comments at the beginning of the program and each subroutine. These comments

provide the user an image of a specific physical meaning from the variable name.

In scientific numerical simulations, double-precision variables are usually used for

real-type variables, but higher is sometimes more desirable in certain cases, such as

solving the problem of an inverse matrix. The following simple simulation program

(A) (B)

Figure 3.2 Diffusion phenomena of molecules for the mass ratio K5 10: (A) T*5 1.5 and

(B) T*5 5 (white and black molecules denote light and heavy molecules, respectively).

55Practice of Molecular Dynamics Simulations

has been developed according to these guidelines. The important variables are

shown below to help the reader better understand the program.

RX(I),RY(I) : (x, y) coordinates of the position vector r�i of molecule i

RX0(I),RY0(I) : Position vector r�i at the previous time step

FX(I),FY(I) : Force f�i acting on molecule i

N : Number of molecules in the system

NA,NB : Numbers of light and heavy molecules, respectively

K : Mass ratio K5M/m

T : Desired temperature T*

H : Time interval h*

NDENS : Number density of molecules

L : Side length of the square simulation region

(A) (B)

(C) (D)

Figure 3.3 Movement of molecules with time for the mass ratio K5 10 and the temperature

T*5 5: (A) t*5 0, (B) t*5 6, (C) t*5 12, and (D) t*5 18.

56 Introduction to Practice of Molecular Simulation

RAN(J) : Uniform random numbers ranging 0B1(J51BNRANMX)
NRAN : Number of used random numbers

Several remarks are attached to the more important statements in the program

for the benefit of the reader. Note that the line numbers are for the sake of conve-

nience only and are not necessary during the execution of a simulation program.

0001 C***
0002 C* diffuse.f *
0003 C* *
0004 C* MOLECULAR DYNAMICS METHOD FOR MOLECULAR DIFFUSION PROBLEM *
0005 C* --- TWO-DIMENSIONAL CASE --- *
0006 C* *
0007 C* OPEN(9,FILE= '@aaa1.data',STATUS='UNKNOWN') *
0008 C* OPEN(21,FILE='aaa001.data',STATUS='UNKNOWN') ; POSITION DATA *
0009 C* OPEN(22,FILE='aaa011.data',STATUS='UNKNOWN') ; POSITION DATA *
0010 C* OPEN(23,FILE='aaa021.data',STATUS='UNKNOWN') ; POSITION DATA *
0011 C* OPEN(24,FILE='aaa031.data',STATUS='UNKNOWN') ; POSITION DATA *
0012 C* OPEN(25,FILE='aaa041.data',STATUS='UNKNOWN') ; POSITION DATA *
0013 C* *
0014 C* *
0015 C* VER.4 , BY A.SATOH , '04 3/13 *
0016 C***
0017 C
0018 C RX(I) , RY(I) : POSITION OF I-TH MOLECULE
0019 C RX0(I),RY0(I) : POSITION OF I-TH MOLECULE AT PREVIOUS TIME
0020 C FX(I) , FY(I) : FORCE ACTING ON I-TH MOLECULE
0021 C T : TEMPERATURE
0022 C K : MASS RATIO = MB/MA
0023 C NDENS : NUMBER DENSITY OF MOLECULES
0024 C H : TIME DIFFERENCE
0025 C RC : CUTOFF RADIUS FOR FORCE
0026 C L : MAGNITUDE OF CAGE
0027 C NA : NUMBER OF MOLECULES OF SPECIES A
0028 C NB : NUMBER OF MOLECULES OF SPECIES B
0029 C N : TOTAL NUMBER OF MOLECULES
0030 C -L/2 < RX(I) < L/2 , -L/2 < RY(I) < L/2
0031 C---
0032 C
0033 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0034 C
0035 COMMON /BLOCK1/ RX0 , RY0 , RX , RY
0036 COMMON /BLOCK2/ FX , FY
0037 COMMON /BLOCK3/ VELX, VELY
0038 COMMON /BLOCK4/ H , RC , L , T , K , NDENS
0039 COMMON /BLOCK5/ NRAN , RAN , IX
0040 C
0041 PARAMETER(NN=80, NRANMX=50000)
0042 PARAMETER(PI=3.141592653589793D0)
0043 C
0044 REAL*8 RX0(NN), RY0(NN), RX(NN) , RY(NN)
0045 REAL*8 FX(NN) , FY(NN) , VELX(NN), VELY(NN)
0046 REAL*8 H , RC , L , T , K , NDENS
0047 C
0048 REAL RAN(NRANMX)
0049 INTEGER NRAN , IX
0050 C
0051 REAL*8 RXI, RYI, TIME, HSQ, CC0, CC1
0052 INTEGER N, NA, NB
0053 INTEGER SWITCH, NTIME, NTIMEMX
0054 INTEGER NP, NOPT, NGRAPH, NPRINT
0055 C
0056 OPEN(9,FILE= '@aaa1.data',STATUS='UNKNOWN')
0057 OPEN(21,FILE='aaa001.data',STATUS='UNKNOWN')
0058 OPEN(22,FILE='aaa011.data',STATUS='UNKNOWN')
0059 OPEN(23,FILE='aaa021.data',STATUS='UNKNOWN')

• The given values and intermediate
results are written out in @aaa1.data
and the molecular positions are done in
aaa001 to aaa041.

57Practice of Molecular Dynamics Simulations

0064 T = 5.0D0
0065 K = 10.D0
0066 NA = 20
0067 NB = NA
0068 H = 0.001D0
0069 RC = 3.D0
0070 N = NA + NB
0071 NDENS = 0.1D0
0072 L = DSQRT(DBLE(N)/NDENS)
0073 HSQ = H*H
0074 C ----- PARAMETER (2) -----
0075 NTIMEMX= 10000
0076 NPRINT = 1000
0077 NGRAPH = 2000
0078 NOPT = 20
0079 C ----- PARAMETER (3) -----
0080 IX = 0
0081 CALL RANCAL(NRANMX,IX,RAN)
0082 NRAN = 1
0083 C
0084 C --
0085 C ----------------- INITIAL CONFIGURATION ------------------
0086 C --
0087 C
0088 C --- SET INITIAL POSITIONS ---
0089 CALL INIPOSIT(N , L)
0090 C --- SET INITIAL VELOCITY ---
0091 CALL INIVEL(N, NA, NB, T, K, PI)
0092 C --- EVALUATE STARTING VALUE R1 ---
0093 DO 10 I=1,N
0094 RX(I) = RX0(I)
0095 RY(I) = RY0(I)
0096 10 CONTINUE
0097 C --- FORCE CAL. ---
0098 SWITCH = 0
0099 CALL FORCE(N, L, RC, SWITCH)
0100 C --- CAL PREVIOUS POSITION ---
0101 CALL POSITR1(N, NA, H, K)
0102 C
0103 C --- PRINT OUT CONSTANTS ---
0104 WRITE(NP,5) T , K , NDENS , NA , NB , L , H , RC
0105 C --- PRINT OUT INITIAL CONFIGURATION ---
0106 CALL PRINTOUT(N, NA, TIME, NP)
0107 C --- INITIALIZATION ---
0108 TIME = 0.D0
0109 C ---
0110 C ------------------ START OF MAIN LOOP -------------------
0111 C ---
0112 C
0113 SWITCH = 10
0114 C
0115 DO 100 NTIME=1, NTIMEMX
0116 C
0117 CALL FORCE(N, L, RC,SWITCH)
0118 CC0 = 1.D0/K
0119 CC1 = 1.D0
0120 C
0121 DO 50 I=1,N
0122 C
0123 IF (I .EQ. NA+1) CC1 = CC0
0124 RXI = 2.D0*RX(I) - RX0(I) + FX(I)*HSQ*CC1
0125 RYI = 2.D0*RY(I) - RY0(I) + FY(I)*HSQ*CC1
0126 RX0(I) = RX(I)

• The periodic BC is used for SWITCH=0 but not
for the other cases.

0127 RY0(I) = RY(I)
0128 RX(I) = RXI
0129 RY(I) = RYI
0130 C
0131 50 CONTINUE

0060 OPEN(24,FILE='aaa031.data',STATUS='UNKNOWN')
0061 OPEN(25,FILE='aaa041.data',STATUS='UNKNOWN')
0062 NP=9
0063 C ----- PARAMETER (1) -----

• Temperature T* = 5, mass ratio K = 10, numbers of
light and heavy molecules NA = NB = 20, time interval
h* = 0.001, cutoff distance r*coff = 3, number density n*
= 0.1, and simulation region size L* = (N/n*)1/2.

• The total number of time steps is 10,000, and the molecular positions
are written out at every 2000 time steps for the postprocessing analysis.

• A sequence of uniform random numbers is prepared
in advance and when necessary, random numbers are
taken out from the variable RAN(*).

• The molecular positions are calculated at the
next time step from Eqs. (3.10) and (3.11) in
the subroutine POSITR1.

• The forces acting on each particle are calculated
in the subroutine FORCE.
• The molecular positions are calculated from Eqs.
(3.8) and (3.9). The previous molecular positions
are saved in RX0(*) and RY0(*), and the present
are saved in RX(*) and RY(*).

• The molecular positions are written out at every NPRINT
time steps for subsequently checking the reliability of results.

58 Introduction to Practice of Molecular Simulation

0137 C --- DATA OUTPUT FOR GRAPH ---
0138 IF (MOD(NTIME,NGRAPH) .EQ. 0) THEN
0139 NOPT = NOPT + 1
0140 WRITE(NOPT,56) N, NA, NB, L, REAL(H)*REAL(NTIME)
0141 C
0142 DO 60 I =1,N
0143 IF(I .LE. NA) THEN
0144 R = 1.D0
0145 ELSE
0146 R = 1.5D0
0147 END IF
0148 WRITE(NOPT,58) I, R, RX(I), RY(I)
0149 60 CONTINUE
0150 CLOSE(NOPT, STATUS='KEEP')
0151 END IF
0152 C
0153 C
0154 100 CONTINUE
0155 C
0156 C ---
0157 C --------------------- END OF MAIN LOOP --------------------
0158 C ---
0159 CLOSE(NP, STATUS='KEEP')
0160 C
0161 C ------------------------- FORMAT -------------------------------
0162 5 FORMAT(/1H ,'---'
0163 & /1H ,' MOLECULAR DYNAMICS SIMULATION '
0164 & /1H ,'FOR TWO-DIMENSIONAL MOLECULAR DIFFUSION PROBLEM '
0165 & /1H ,'---'
0166 & /1H ,'TEMPERATURE=',F6.2 ,2X, 'MASS RATIO=',F6.2 ,2X,
0167 & 'NDENS=',F6.3
0168 & /1H ,'NUMBER OF MOLECULES OF SPECIES A=',I4
0169 & /1H ,'NUMBER OF MOLECULES OF SPECIES B=',I4
0170 & /1H ,'MAGNITUDE OF CAGE=',F7.2 ,2X, 'TIME DIFF.=',
0171 & F8.5 ,2X, 'CUTOFF RADIUS=',F6.2/)
0172 56 FORMAT(3I6, 2E13.8)
0173 58 FORMAT(I5, F8.3 , 2E26.18)
0174 STOP
0175 END
0176 C***
0177 C********************* SUBROUTINE *****************************
0178 C***
0179 C
0180 C**** SUB PRINTOUT *****
0181 SUBROUTINE PRINTOUT(N, NA, TIME, NP)
0182 C
0183 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0184 C
0185 COMMON /BLOCK1/ RX0, RY0, RX, RY
0186 C
0187 PARAMETER(NN=80)
0188 C
0189 REAL*8 RX0(NN), RY0(NN), RX(NN), RY(NN), TIME
0190 INTEGER N, NA, NP
0191 C
0192 WRITE(NP,2) TIME
0193 2 FORMAT(/1H ,'--------------- TIME=',E13.5/)
0194 WRITE(NP,*)
0195 WRITE(NP,*)'MOLECULES OF SPECIES A'
0196 WRITE(NP,*)
0197 DO 10 I=1,NA
0198 WRITE(NP,5) I, RX(I), RY(I)
0199 5 FORMAT(1H ,'I=',I3 ,5X, 'RX=',F8.2 ,5X, 'RY=',F8.2)
0200 10 CONTINUE
0201 WRITE(NP,*)

0132 C --- PRINT OUT DATA ---
0133 IF (MOD(NTIME,NPRINT) .EQ. 0) THEN
0134 TIME = H*DBLE(NTIME)
0135 CALL PRINTOUT(N, NA, TIME, NP)
0136 END IF

• The molecular positions are written out at every
NGRAPH time steps for the postprocessing analysis.

• The positions of light molecules are
first written out and followed by those
of the heavy molecules.

59Practice of Molecular Dynamics Simulations

0207 WRITE(NP,*)
0208 RETURN
0209 END
0210 C**** SUB INIPOSIT *****
0211 SUBROUTINE INIPOSIT(N, L)
0212 C
0213 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0214 C
0215 COMMON /BLOCK1/ RX0, RY0, RX, RY
0216 COMMON /BLOCK5/ NRAN , RAN , IX
0217 C
0218 PARAMETER(NN=80, NRANMX=50000)
0219 C
0220 REAL*8 RX0(NN), RY0(NN), RX(NN), RY(NN), L
0221 REAL*8 RXIJ , RYIJ , RIJSQ , CRX0 , CRY0
0222 REAL RAN(NRANMX)
0223 INTEGER N, NRAN
0224 C
0225 DO 10 I=1,N
0226 2 NRAN = NRAN + 1
0227 CRX0 = L*(DBLE(RAN(NRAN))-0.5D0)
0228 NRAN = NRAN + 1
0229 CRY0 = L*(DBLE(RAN(NRAN))-0.5D0)
0230 IF(I .NE. 1) THEN
0231 DO 5 J=1,I-1
0232 RXIJ = CRX0 - RX0(J)
0233 RYIJ = CRY0 - RY0(J)
0234 RXIJ = RXIJ - DNINT(RXIJ/L)*L
0235 RYIJ = RYIJ - DNINT(RYIJ/L)*L
0236 RIJSQ = RXIJ*RXIJ + RYIJ*RYIJ
0237 IF (RIJSQ .LT. 1.D0) GOTO 2
0238 5 CONTINUE
0239 END IF
0240 RX0(I) = CRX0
0241 RY0(I) = CRY0
0242 C
0243 10 CONTINUE
0244 RETURN
0245 END
0246 C**** SUB INIVEL ****
0247 SUBROUTINE INIVEL(N, NA, NB, T, K, PI)
0248 C
0249 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0250 C
0251 COMMON /BLOCK3/ VELX , VELY
0252 COMMON /BLOCK5/ NRAN , RAN , IX

• A subroutine for setting the
initial molecular velocities.

• A subroutine for setting the
initial molecular positions.

• Dissimilar to the regular configuration
explained in Section 2.1, the initial
molecular positions are assigned using
random numbers. If r*ij <1, such molecu-
lar positions are not employed because
of an extraordinary overlap.

0253 C
0254 PARAMETER(NN=80, NRANMX=50000)
0255 C
0256 INTEGER N, NA, NB, NRAN
0257 REAL*8 VELX(NN) , VELY(NN) , T , K , PI
0258 REAL RAN(NRANMX)
0259 REAL*8 MOMXA, MOMYA, MOMXB, MOMYB
0260 REAL*8 CC0, CC1, CC10, CC11
0261 C
0262 CC0 = 1.D0/K
0263 CC1 = 1.D0
0264 C
0265 DO 10 I=1,N
0266 IF (I .EQ. NA+1) CC1 = CC0
0267 NRAN = NRAN + 1
0268 CC10 = DSQRT(-2.D0*T*CC1*DLOG(DBLE(RAN(NRAN))))
0269 NRAN = NRAN + 1
0270 CC11 = 2.D0*PI*DBLE(RAN(NRAN))
0271 VELX(I) = CC10*DCOS(CC11)
0272 VELY(I) = CC10*DSIN(CC11)

0202 WRITE(NP,*)'MOLECULES OF SPECIES B'
0203 WRITE(NP,*)
0204 DO 20 I=NA+1,N
0205 WRITE(NP,5) I,RX(I),RY(I)
0206 20 CONTINUE

• The initial velocities are set
according to Eq. (2.5) based on
Eq. (3.12) using random numbers.

60 Introduction to Practice of Molecular Simulation

0278 MOMYB = 0.D0
0279 C
0280 DO 20 I=1,N
0281 IF (I .LE. NA) THEN
0282 MOMXA = MOMXA + VELX(I)
0283 MOMYA = MOMYA + VELY(I)
0284 ELSE
0285 MOMXB = MOMXB + VELX(I)
0286 MOMYB = MOMYB + VELY(I)
0287 END IF
0288 20 CONTINUE
0289 C
0290 MOMXA = MOMXA/DBLE(NA)
0291 MOMYA = MOMYA/DBLE(NA)
0292 MOMXB = MOMXB/DBLE(NB)
0293 MOMYB = MOMYB/DBLE(NB)
0294 C
0295 C --- CORRECT VELOCITIES TO SATISFY ---
0296 C --- ZERO TOTAL MOMENTUM ---
0297 C
0298 CC10 = MOMXA
0299 CC11 = MOMYA
0300 DO 30 I=1,N
0301 IF (I .EQ. NA+1) THEN
0302 CC10 = MOMXB
0303 CC11 = MOMYB
0304 END IF
0305 VELX(I) = VELX(I)-CC10
0306 VELY(I) = VELY(I)-CC11
0307 30 CONTINUE
0308 RETURN
0309 END
0310 C**** SUB FORCE ****
0311 SUBROUTINE FORCE(N, L, RC, SWITCH)
0312 C
0313 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0314 C
0315 COMMON /BLOCK1/ RX0, RY0, RX, RY

• A subroutine for calculating the
forces acting on molecules.

0316 COMMON /BLOCK2/ FX , FY
0317 C
0318 PARAMETER(NN=80)
0319 C
0320 INTEGER N, SWITCH
0321 REAL*8 RX0(NN), RY0(NN), RX(NN), RY(NN)
0322 REAL*8 FX(NN) , FY(NN)
0323 REAL*8 L, RC
0324 REAL*8 RXI, RYI, RXIJ, RYIJ, RIJSQ
0325 REAL*8 FXI, FYI, FXIJ, FYIJ, FIJ
0326 REAL*8 RCSQ, LINV
0327 REAL*8 SR2, SR6, SR12
0328 C
0329 RCSQ = RC*RC
0330 LINV = 1.D0/L
0331 C
0332 DO 5 I=1,N
0333 FX(I) = 0.D0
0334 FY(I) = 0.D0
0335 5 CONTINUE
0336 C
0337 DO 20 I=1,N-1
0338 C --- FOR I-TH MOLECULE ---
0339 RXI = RX(I)
0340 RYI = RY(I)
0341 FXI = FX(I)
0342 FYI = FY(I)

• The action–reaction law enables us to calculate
the forces of only pairs of particles satisfying j > i.

0273 10 CONTINUE
0274 C --- SET TOTAL MOMENTUM ZERO ---
0275 MOMXA = 0.D0
0276 MOMYA = 0.D0
0277 MOMXB = 0.D0

• To make the system momentum
zero, the total momentum is first
calculated for each light and heavy
molecule.

• The extra momentum permol-
ecule is calculated from the
total momentum.

• The total momentum is forced to
be zero by subtracting the extra
momentum per molecule from the
velocity components of each
molecule.

• The force variables are initialized
as zero before proceeding to the
main loop.

61Practice of Molecular Dynamics Simulations

0346 RXIJ = RXI - RX(J)
0347 RYIJ = RYI - RY(J)
0348 IF (SWITCH .EQ. 0) THEN
0349 RXIJ = RXIJ-DNINT(RXIJ*LINV)*L
0350 RYIJ = RYIJ-DNINT(RYIJ*LINV)*L
0351 END IF
0352 IF (DABS(RXIJ) .GT. RC) GOTO 10
0353 IF (DABS(RYIJ) .GT. RC) GOTO 10
0354 RIJSQ = RXIJ*RXIJ + RYIJ*RYIJ
0355 IF (RIJSQ .GT. RCSQ) GOTO 10
0356 C
0357 SR2 = 1.D0/RIJSQ
0358 SR6 = SR2**3
0359 SR12 = SR6**2
0360 FIJ = (2.D0*SR12-SR6)/RIJSQ
0361 FXIJ = FIJ*RXIJ
0362 FYIJ = FIJ*RYIJ
0363 FXI = FXI + FXIJ
0364 FYI = FYI + FYIJ
0365 FX(J) = FX(J) - FXIJ
0366 FY(J) = FY(J) - FYIJ
0367 10 CONTINUE
0368 C
0369 FX(I) = FXI
0370 FY(I) = FYI
0371 C
0372 20 CONTINUE
0373 C
0374 DO 30 I=1,N
0375 FX(I) = FX(I)*24.D0
0376 FY(I) = FY(I)*24.D0
0377 30 CONTINUE
0378 RETURN
0379 END
0380 C**** SUB POSITR1 ****
0381 SUBROUTINE POSITR1(N, NA, H, K)
0382 C
0383 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0384 C
0385 COMMON /BLOCK1/ RX0 , RY0, RX, RY
0386 COMMON /BLOCK2/ FX , FY
0387 COMMON /BLOCK3/ VELX, VELY
0388 C
0389 PARAMETER(NN=80)
0390 C
0391 REAL*8 RX0(NN), RY0(NN), RX(NN) , RY(NN)
0392 REAL*8 FX(NN) , FY(NN) , VELX(NN), VELY(NN)
0393 REAL*8 H , K
0394 REAL*8 HSQ2, CC0, CC1
0395 INTEGER NA , N
0396 C
0397 HSQ2 = H*H/2.D0
0398 CC0 = 1.D0/K
0399 CC1 = 1.D0
0400 C
0401 DO 10 I=1,N
0402 IF(I .EQ. NA+1) CC1 = CC0
0403 RX(I) = RX0(I) + H*VELX(I) + HSQ2*FX(I)*CC1
0404 RY(I) = RY0(I) + H*VELY(I) + HSQ2*FY(I)*CC1
0405 10 CONTINUE
0406 RETURN
0407 END
0408 C**** SUB RANCAL ****
0409 SUBROUTINE RANCAL(N, IX, X)
0410 C
0411 DIMENSION X(N)
0412 DATA INTEGMX/2147483647/
0413 DATA INTEGST,INTEG/584287,48828125/

0343 C
0344 DO 10 J=I+1,N
0345 C --- FOR I-TH AND J-TH ---

• The periodic BC is used for
SWITCH = 0.
• The particles separating over the
cutoff distance r*coff are passed
without calculation of forces.

• The forces between molecules
are calculated from Eq. (3.7).

• The factor 24 in Eq. (3.7) will be
multiplied later.

• The action–reaction law can
provide the force FX(J) and FY(J)
as (–FXIJ) and (–FYIJ).

• The starting value of the
molecular positions is calculated
from Eqs. (3.10) and (3.11).

• A subroutine for generating a
niform random number sequence.

62 Introduction to Practice of Molecular Simulation

0414 C
0415 AINTEGMX = REAL(INTEGMX)
0416 C
0417 IF (IX.LT.0) PAUSE
0418 IF (IX.EQ.0) IX = INTEGST
0419 DO 30 I=1,N
0420 IX = IX*INTEG
0421 IF (IX) 10, 20, 20
0422 10 IX = (IX+INTEGMX)+1
0423 20 X(I) = REAL(IX)/AINTEGMX
0424 30 CONTINUE
0425 RETURN
0426 END
0427 C***
0428 C THIS SUBROUTINE IS FOR GENERATING UNIFORM RANDOM NUMBERS *
0429 C (SINGLE PRECISION) FOR 64-BIT COMPUTER. *
0430 C N : NUMBER OF RANDOM NUMBERS TO GENERATE *
0431 C IX : INITIAL VALUE OF RANDOM NUMBERS (POSITIVE INTEGER) *
0432 C : LAST GENERATED VALUE IS KEPT *
0433 C X(N) : GENERATED RANDOM NUMBERS (0<X(N)<1) *
0434 C***
0435 C**** SUB RANCAL ****
0436 ccc SUBROUTINE RANCAL(N, IX, X)
0437 C
0438 ccc IMPLICIT REAL*8(A-H,O-Z),INTEGER*8 (I-N)
0439 C
0440 ccc REAL X(N)
0441 ccc INTEGER*8 INTEGMX, INTEG64, INTEGST, INTEG
0442 C
0443 CCC DATA INTEGMX/2147483647/
0444 ccc DATA INTEG64/2147483648/
0445 ccc DATA INTEGST,INTEG/584287,48828125/
0446 C
0447 CCC AINTEGMX = REAL(INTEGMX)
0448 ccc AINTEGMX = REAL(INTEG64)
0449 C
0450 ccc IF (IX.LT.0) PAUSE
0451 ccc IF (IX.EQ.0) IX = INTEGST
0452 ccc DO 30 I=1,N
0453 ccc IX = IX*INTEG
0454 ccc IX = KMOD(IX,INTEG64)
0455 CCC IF (IX) 10, 20, 20
0456 CCC10 IX = (IX+INTEGMX)+1
0457 ccc20 X(I) = REAL(IX)/AINTEGMX
0458 ccc30 CONTINUE
0459 ccc RETURN
0460 ccc END

• This is for a 32-bit CPU based on
the expression of two’s comple-
ment.

• This is also a random number
generating subroutine for a 64-bit
CPU based on the expression of
two’s complement.

3.2 Behavior of Rod-like Particles in a Simple Shear Flow

In the present section, we consider the behavior of axisymmetric particles, known

as spherocylinders, in a simple shear flow as the second demonstration of the MD

method. MD simulations for rod-like particles are much more complex than those

for a spherical particle system, since the translational and rotational motion of rod-

like particles must be treated simultaneously. Hence, this exercise is of a consider-

ably high level and may be applicable to a range of academic research fields. The

present simulation method for a spherocylinder particle system is expected to offer

many important suggestions in developing practical simulation programs, such as

for the adsorption phenomenon between carbon-nanotubes and nonspherical

molecules.

63Practice of Molecular Dynamics Simulations

3.2.1 Physical Phenomena of Interest

The dispersion of interest in this exercise is composed of spherocylinder particles

with mass m and inertia moment I, and it is subjected to a simple shear flow. The

spherocylinder particle has a positive and negative magnetic charges (NS poles) at

each center of the hemisphere cap situated at both ends of the cylindrical body.

This magnetic particle is coated with a steric (surfactant) layer, which acts to pre-

vent the particles from aggregating and thus sedimentation in the gravitational

field. In this exercise we consider how such a dispersion behaves under the circum-

stance of an applied magnetic field in addition to the simple shear flow.

The main subjects for the formalization of this problem are explained in the fol-

lowing subsections. Essentially, they are the modeling of the particles, the formal-

ization of the equation of motion, the derivation of forces and torques acting on

particles, and the nondimensionalization of quantities.

3.2.2 Particle Model

As shown in Figure 3.4, a magnetic rod-like particle is modeled as a spherocylin-

der, with the magnetic charges 6q at the center of each hemisphere cap, which has

a length l0 and a cylindrical diameter d of the cylindrical part. The particle is cov-

ered with a uniform steric (surfactant) layer with thickness δ, and the overlap of

these steric layers induces a repulsive interaction between the particles. In the fol-

lowing we show magnetic forces and torques acting on the magnetic particles.

If a magnetic charge q and a magnetic dipole moment m are acted upon by a

uniform applied magnetic field H, then the force F acting on the charge and the

torque T acting on the dipole moment may be found from a standard textbook on

magnetic material engineering as

F5μ0qH; T5μ0m3H ð3:16Þ

The magnetic field H(ind) at an arbitrary relative position r (r5 jrj) induced by

the magnetic charge q is expressed as

HðindÞ 5
q

4πr2
U
r

r
ð3:17Þ

Note that in this book we employ such a unit system concerning magnetic prop-

erties that the magnetization corresponds to the magnetic field, that is,

l0

l

δ

d

Figure 3.4 Particle model.

64 Introduction to Practice of Molecular Simulation

B5μ0(H1M); the correspondence table between two representative unit systems

is shown in Appendix A4. With these basic formulae, we derive the magnetic force

and torque acting on the spherocylinder particle shown in Figure 3.4.

If the position vector of the center of particle i is denoted by ri and the particle

direction by ei, then the position vectors ri
1 and ri

2 of the magnetic charges q and

2 q can be expressed as

r1
i 5 ri 1 ðl0=2Þei; r2

i 5 ri 2 ðl0=2Þei ð3:18Þ

The magnetic field H1
ij at the position ri

1 induced by particle j can be written

from Eq. (3.17) as

H1
ij 5

q

4π
U

r1
i 2 r1

j

r1
i 2 r1

j

��� ���3 2
q

4π
U

r1
i 2 r2

j

r1
i 2 r2

j

��� ���3

5
q

4π

rij 1
l0

2
ðei 2 ejÞ

rij 1
l0

2
ðei 2 ejÞ

����
����
3
2

rij 1
l0

2
ðei 1 ejÞ

rij 1
l0

2
ðei 1 ejÞ

����
����
3

8>>><
>>>:

9>>>=
>>>;

ð3:19Þ

Similarly, H2
ij at ri

2 induced by particle j is written as

H2
ij 5

q

4π
rij 2 ðl0=2Þðei 1 ejÞ
jrij 2 ðl0=2Þðei 1 ejÞj3

2
rij 2 ðl0=2Þðei 2 ejÞ
jrij 2 ðl0=2Þðei 2 ejÞj3

� �
ð3:20Þ

in which rij5 ri2 rj. Hence, the magnetic forces acting on the positive and nega-

tive magnetic charges of particle i, F1
ij and F2

ij ; by the magnetic charges of parti-

cle j, are finally written as

F1
ij 5μ0qH

1
ij 5

μ0q
2

4π
rij 1 ðl0=2Þðei 2 ejÞ
jrij 1 ðl0=2Þðei 2 ejÞj3

2
rij 1 ðl0=2Þðei 1 ejÞ
jrij 1 ðl0=2Þðei 1 ejÞj3

� �
ð3:21Þ

F2
ij 5 2 μ0qH

2
ij 5 2

μ0q
2

4π
rij 2 ðl0=2Þðei 1 ejÞ
jrij 2 ðl0=2Þðei 1 ejÞj3

2
rij 2 ðl0=2Þðei 2 ejÞ
jrij 2 ðl0=2Þðei 2 ejÞj3

� �
ð3:22Þ

Similarly, the magnetic torque about the particle axis of particle i, T1
ij ; due to the

force acting on the positive charge by the magnetic charges of particle j, is obtained as

T1
ij 5

l0

2
ei3F1

ij 5
μ0q

2l0

8π

ei3rij1
l0

2
ð2ei3ejÞ

rij1
l0

2
ðei2ejÞ

����
����
3

2
ei3rij1

l0

2
ðei3ejÞ

rij1
l0

2
ðei1ejÞ

����
����
3

8>>><
>>>:

9>>>=
>>>;

ð3:23Þ

65Practice of Molecular Dynamics Simulations

Also, such a torque T2
ij due to the force acting on the negative charge is as

follows:

T2
ij 52

l0

2
ei3F2

ij 5
μ0q

2l0

8π

ei3rij2
l0

2
ðei3ejÞ

rij2
l0

2
ðei1ejÞ

����
����
3
2
ei3rij2

l0

2
ð2ei3ejÞ

rij2
l0

2
ðei2ejÞ

����
����
3

8>>><
>>>:

9>>>=
>>>;
ð3:24Þ

From these equations, the total magnetic force and torque acting on particle i by

particle j are written as

F
ðmÞ
ij 5F1

ij 1F2
ij ; T

ðmÞ
ij 5T1

ij 1T2
ij ð3:25Þ

It is noted that F
ðmÞ
ji 5 2F

ðmÞ
ij due to the action�reaction law.

A uniform applied magnetic field does not induce a force acting on a particle

because there is no field gradient, but it does induce torque. Similar to the above

derivation, the torque due to an applied magnetic field can be derived as

T
ðHÞ
i 5

l0

2
ei 3μ0qH2

l0

2
ei 3 ð2μ0qHÞ5μ0ðl0qeiÞ3H ð3:26Þ

Since the force and torque due to the overlap of the steric layers cannot be

derived straightforwardly, we will discuss this interaction in detail later.

3.2.3 Equation of Motion and Molecular Dynamics Algorithm

The spherocylinder particle is axisymmetric and therefore we can employ the method

shown in Section 1.1.2 for simulating the motion of particles. However, several modi-

fications are necessary because we consider the behavior of the particles in a simple

shear flow, not in a quiescent flow. If the particles are smaller than micron order, the

inertia terms are negligible, which means that we can use the equations shown in

Section 1.1.2. The equations of motion under the circumstance of a simple shear flow

can be obtained by adding new terms due to the flow into Eqs. (1.42) and (1.43) as

vjji 5UjjðriÞ1
1

ηXA
Fjj
i ; vi

\ 5U\ðriÞ1
1

ηYA
Fi

\ ð3:27Þ

ωjj
i 5Ωjj 1

1

ηXC
Tjj
i ; ωi

\ 5Ω\ 1
1

ηYC
Ti

\ 2
YH

YC
ðεUeieiÞ : E ð3:28Þ

in which an arbitrary vector is decomposed into the two vectors parallel and normal

to the particle axis. These vectors are denoted by superscripts jj and \, respec-

tively: for example, vi 5 vjji 1 vi
\: We here treat only the angular velocity ωi

\ and

neglect ωjj
i because the rotational motion about the particle axis does not affect the

66 Introduction to Practice of Molecular Simulation

particle orientation and the magnetic interactions. The velocity field U(r) for a sim-

ple shear flow is defined as

UðrÞ5 _γ
0 1 0

0 0 0

0 0 0

2
4

3
5 x

y

z

2
4
3
5 ð3:29Þ

in which r is the position vector from the origin of the coordinate system,

expressed as r5 (x, y, z). In this flow case, the rotational angular velocity Ω and

the rate-of-strain tensor E are derived from the definitions as

Ω5
1

2
r3UðrÞ5 2

_γ
2

0

0

1

2
4
3
5; E5

1

2
ðrU1 ðrUÞtÞ5 _γ

2

0 1 0

1 0 0

0 0 0

2
4

3
5 ð3:30Þ

in which the superscript t denotes a transposed tensor, and _γ is the shear rate and a

constant representing the strength of a shear flow. Also, ε appeared as the last term

in the second equation of Eq. (3.28) is a third-rank tensor called “Eddington’s epsi-

lon.” The ijk-component of this tensor, εijk, is expressed as

εijk 5
1 for ði; j; kÞ5 ðx; y; zÞ; ðy; z; xÞ; ðz; x; yÞ
21 for ði; j; kÞ5 ðz; y; xÞ; ðy; x; zÞ; ðx; z; yÞ
0 for the other cases

8<
:

9=
; ð3:31Þ

With these characteristics of εijk and E in Eq. (3.30), the last term of the second

equation in Eq. (3.28) can be simplified to

2
YH

YC
ðεUeieiÞ : E5 2

YH

YC
U
_γ
2

eizeix
2eizeiy

eiy
2 2 eix

2

2
4

3
5 ð3:32Þ

In obtaining Eq. (3.32), the following simple formulae have been used:

ab5

axbx axby axbz
aybx ayby aybz
azbx azby azbz

2
4

3
5 ð3:33Þ

A :B 5AxxBxx 1AxyByx 1AxzBzx 1AyxBxy 1AyyByy 1AyzBzy

1AzxBxz 1AzyByz 1AzzBzz
ð3:34Þ

ðεUabÞ : A5
azðbxAxy 1 byAyy 1 bzAzyÞ2 ayðbxAxz 1 byAyz 1 bzAzzÞ
axðbxAxz 1 byAyz 1 bzAzzÞ2 azðbxAxx 1 byAyx 1 bzAzxÞ
ayðbxAxx 1 byAyx 1 bzAzxÞ2 axðbxAxy 1 byAyy 1 bzAzyÞ

2
4

3
5 ð3:35Þ

67Practice of Molecular Dynamics Simulations

in which a and b are arbitrary one-rank tensors, A and B are arbitrary two-rank

tensors, and ε is the three-rank tensor previously defined.

The quantities used to determine the translational and angular velocities from

Eqs. (3.27) and (3.28) can be obtained from the force Fi and torque Ti acting on

particle i and also from the particle direction ei as

Fjj
i 5 ðFiUeiÞei; Fi

\ 5Fi 2Fjj
i ; Tjj

i 5 ðTiUeiÞei;
Ti

\ 5Ti 2Tjj
i ; Ωjj

i 5 ðΩiUeiÞei; Ωi
\ 5Ωi 2Ωjj

i

�
ð3:36Þ

With the solutions of vi(t) and ωi(t), the particle position ri(t1Δt) and the particle

direction ei(t1Δt) at the next time step can be evaluated from Eqs. (1.45) and

(1.46). That is,

riðt1ΔtÞ5 riðtÞ1ΔtviðtÞ ð3:37Þ

eiðt1ΔtÞ5 eiðtÞ1Δtωi
\ðtÞ3 eiðtÞ ð3:38Þ

Finally, we discuss the resistance functions XA, YA, XC, YC, and YH [4,16�18].

There would be no difficulties for simulations if the solutions of these resistance

functions were known for a spherocylinder particle. However, the solutions are

known only for a cylindrical particle with sufficiently large aspect ratio, or for the

spherical particle explained before. These solutions are for a solid particle, but in

our case we are considering a solid particle coated with a soft steric layer, and the

resistance functions have not yet been solved for this case.

Hence, in conducting MD simulations for the present particle dispersion, we

have several options for overcoming the problem for the resistance functions. The

first option is to tackle the difficult mathematical problem of solving these resis-

tance functions. The second option is to apply the known solutions of a solid sphe-

roidal particle as the first approximation. The third option is to introduce the

modeling of the spherocylinder particle in order for the known solutions to be

applied more accurately. Here we adopt the second option, that is, the solutions

shown in Eqs. (1.35) and (1.36) for a solid spheroid are used for the resistance

functions for the spherocylinder shown in Figure 3.4. In addition, the resistance

function YH can be written as

YH 5 8πa3U
4

3
U

s5

22s1 ð11 s2ÞL ð3:39Þ

In the limiting case of s{1, this can be approximated as

YH 5 8πa3
1

2
s2 2

1

5
s4 1?

� �
ð3:40Þ

in which a, b, and s are assumed to be expressed as a5 l/21 δ, b5 d/21 δ, and

s5

ffi
ðl=21 δÞ2 2 ðd=21 δÞ2

q
=ðl=21 δÞ; respectively.

68 Introduction to Practice of Molecular Simulation

3.2.4 Modeling of Steric Repulsive Interaction

If the two spherocylinder particles coated with a surfactant layer, shown in

Figure 3.4, overlap, how should we write this repulsive interaction as a mathemati-

cal expression? To answer this question, we first need to analyze the behavior of

the surfactant molecules in detail in such a situation. However, it may be possible

to develop a physically acceptable model as a first approximation by combining

the known solutions in a sophisticated manner. For a spherical particle system, an

expression for the repulsive interaction has already been obtained. Hence, the

extension of this potential to the present spherocylinder particle system enables us

to overcome the problem of the unknown potential for a spherocylinder coated

with a soft surfactant layer.

We consider a spherical particle modeled as a solid sphere of diameter d coated

by a uniform surfactant layer of thickness δ. An interaction energy arising from the

overlap of these two particles has already been derived from the entropy calculation

as [31,32]

u
ðVÞ
ij 5

πd2nskT
2

22
rij

δ

� 	
ln

d1 2δ
rij

� �
2

rij 2 d

δ

� �
ð3:41Þ

in which ns is the number of surfactant molecules per unit area on the particle sur-

face, k is Boltzmann’s constant, and T is the system temperature. The force acting

on particle i, F
ðVÞ
ij ; by particle j due to the overlap can be obtained from this equa-

tion as

F
ðVÞ
ij 5 2

@

@ri
u
ðVÞ
ij 5 2

@

@rij
u
ðVÞ
ij 5

πd2nskT
2δ

tij ln
d12δ
rij

� �
ðfor d# rij#d12δÞ

ð3:42Þ

in which tij (5rij/rij) is the unit vector. It is shown in Eq. (3.42) that this repulsive

force acts along a line drawn between the two particles.

We now idealize the spherocylinder particle in order to apply Eq. (3.42). The

most feasible model is a linear sphere-connected model shown in Figure 3.5. In

this model, solid spheres are linearly connected in contact and covered by a uni-

form surfactant layer of thickness δ. If the constituent spherical particles are located
at each fixed position in the rod-like particle, this model does not necessarily yield

Figure 3.5 Sphere-connected model for

calculating repulsive interactions.

69Practice of Molecular Dynamics Simulations

a maximum repulsive interaction energy at a position where the maximum energy

is provided from the overlap of the original spherocylinder particles. In order to

overcome this shortcoming, the above model must be slightly modified to yield a

maximum repulsive energy at a position of minimum separation between the two

spherocylinder particles. To do so, two spheres are first located at the positions in

each spherocylinder, where a maximum repulsive energy is yielded, and then other

spheres are linearly added on each side of these two spheres on the original particle

to produce a modified sphere-connected model. This is the particle model we use

for evaluating interaction energies due to particle overlap.

In the following paragraphs, we show a method for calculating the force and tor-

que acting between particles i and j based on the above-mentioned sphere-

connected model. An important task for evaluating such a force and torque is to

find the positions along each particle axis at which the separation between the two

spherocylinder particles is minimized for the given position and orientation of these

two particles. Hence, we focus on a method for finding this minimum separation,

including a way of assessing the particle overlap.

The notation ri is used for the center of spherocylinder particle i shown in

Figure 3.4; similarly, rj is used for particle j. Figure 3.6 demonstrates that there is a

view angle from which the two particles can be seen as existing in two parallel

planes. In Figure 3.6, two points Pi and Pj are taken on each particle axis line such

that the line drawn between these points is normal to the two parallel planes.

Consideration of the two points Pi and Pj enables us to make a systematic and

sophisticated assessment of the particle overlap. If the points Pi and Pj are denoted

by (ri1 kiei) and (rj1 kjej), respectively, the line PiPj has to satisfy the following

equation from the orthogonality condition:

eiUfðri 1 kieiÞ2 ðrj 1 kjejÞg5 0; ejUfðri 1 kieiÞ2 ðrj 1 kjejÞg5 0 ð3:43Þ

The solutions of ki and kj satisfying this relationship leads to the determination

of the specific positions of Pi and Pj. Equation (3.43) yields the final results as

ki
kj

 �
5

1

12 ðeiUejÞ2
21 eiUej

2eiUej 1

 �
eiUrij
eiUrij

 �
ð3:44Þ

This equation has been derived under the assumption of ei � ej 6¼ 61. This condition

is necessary for the existence of the solution because ei � ej 5 61 implies a parallel

see

Pi (ri + kiei)

Pj (rj + kjej)
Figure 3.6 Assessment of the

particle overlap.

70 Introduction to Practice of Molecular Simulation

or line configuration of the particles. If the line PiPj is longer than (d1 2δ), there
is no particle overlap. Hence, we first consider the general case under the assump-

tions that ei � ej 6¼61 and the line PiPj is shorter than (d1 2δ).
There are three cases of overlap for the two spherocylinder particles: that is,

hemisphere�hemisphere, hemisphere�cylinder, and cylinder�cylinder overlap.

We first consider a cylinder�cylinder overlap between particles i and j. The condi-

tion for this overlap is derived as

jðri 1 kieiÞ2 ðrj 1 kjejÞj, d1 2δ; jkij, l0=2; jkjj, l0=2 ð3:45Þ

Next, we consider the criterion for the overlap between the cylindrical part of

particle i and the hemisphere cap of particle j. In this case, the conditions of

jkij, l0/2 and jkjj$ l0/2 are satisfied. A vertical line is drawn from the center of the

hemisphere to the axis line of particle i, and the intersection point on this axis line

of particle i is denoted by Qi(j), which is expressed as (ri1 ki
sei) with an unknown

constant ki
s. The determination of ki

s yields explicit specification of the position

Qi(j). If the center of hemisphere of particle j is denoted by rj
s (similarly ri

s for parti-

cle i), then ki
s is solved from the orthogonality condition of (ri1 ki

sei2 rj
s) and ei:

ki
s 5 eiUðrjs 2 riÞ ð3:46Þ

The use of this solution of ki
s gives rise to the criterion condition for the overlap

between the cylindrical part of particle i and the hemisphere cap of particle j as

ki
sj j# l0=2; ðri 1 ki

seiÞ2 rj
s

�� ��, d1 2δ ð3:47Þ

Finally, the overlap between the hemisphere caps between particles i and j arises

when the following condition is satisfied:

ki
sj j. l0=2; ri

s 2 rj
s

�� ��, d1 2δ ð3:48Þ

The above-mentioned criterion conditions are summarized as follows:

1. For j(ri1 kiei)2 (rj1 kjej)j$ d1 2δ, there is no overlap.

2. For j(ri1 kiei)2 (rj1 kjej)j, d1 2δ, there is a possibility of overlap.

2.1. For jkij# l0/2 and jkjj# l0/2, an overlap occurs.

2.2. For jkij# l0/2 and jkjj. l0/2 and jkisj, l0=2; there is a possibility of overlap between

the cylinder part of particle i and the hemisphere cap of particle j.

2.2.1. jðri 1 ki
seiÞ2 rj

sj$ d1 2δ; there is no overlap.

2.2.2. jðri 1 ki
seiÞ2 rj

sj, d1 2δ; an overlap occurs.

2.3. For jkij# l0/2 and jkjj. l0/2 and jkisj$ l0=2; there is a possibility of overlap between

the hemisphere caps between particles i and j.

2.3.1. For jris 2 rj
sj$ d1 2δ; there is no overlap.

2.3.2. For jris 2 rj
sj, d1 2δ; an overlap occurs.

2.4. For jkjj. jkij. l0/2 and jkisj, l0=2; there is a possibility of overlap between the cyl-

inder part of particle i and the hemisphere cap of particle j.

2.4.1. For jðri 1 ki
seiÞ2 rj

sj$ d1 2δ; there is no overlap.

2.4.2. For jðri 1 ki
seiÞ2 rj

sj, d1 2δ; an overlap occurs.

71Practice of Molecular Dynamics Simulations

2.5. For jkjj. jkij. l0/2 and jkisj$ l0=2; there is a possibility of overlap between the

hemisphere caps between particles i and j.

2.5.1. For jris 2 rj
sj$ d1 2δ; there is no overlap.

2.5.2. For jris 2 rj
sj, d1 2δ; an overlap occurs.

These overlap criteria have been shown under the assumption of jkjj. jkij.
However, the above description is sufficient on the analysis level, because the

exchange of subscripts i and j in a simulation program reduces to the same criterion

procedure for particle overlap.

In addition to particle overlap in a general configuration, we need to consider

several special cases, that is, particle overlap in a parallel or line configuration. The

latter is straightforward to analyze and therefore we address the former case.

According to the distance kij
c

�� �� ð5 rijUei
�� ��Þ between the centers of particles i and j

along the particle axis, whether or not particles i and j overlap can be determined

by the following procedures:

1. For jkijcj# l0; an overlap occurs.

2. For jkijcj. l0;
2.1. For jris 2 rj

sj$ d1 2δ; there is no overlap.

2.2. For jris 2 rj
sj, d1 2δ; an overlap occurs.

If the particle separation satisfies (jrijj22 jkijcj2)1/2$ d1 2δ, then overlap does

not occur.

The above-assessing procedures concerning particle overlap enable us to recognize

a specific configuration of the two particles in which the minimum distance can be

obtained from the line of each particle axis. The notation r
ðminÞ
i and r

ðminÞ
j is used for

expressing such positions on the axis lines. The present modified linear sphere-con-

nected model for particle i can be constructed by placing other spheres on both sides

of the sphere at r
ðminÞ
i repeatedly. According to this model, a force acting on particle i

by particle j, arising from the overlap of the steric layers, can be obtained by evaluat-

ing the interaction forces between the constituent spherical particles and then by sum-

ming these interactions. Similarly, a torque acting on particle i by particle j can be

evaluated by performing the vector product of each force vector of the constituent

spheres and the corresponding relative position vectors from the center of particle i.

3.2.5 Nondimensionalization of Basic Equations

In actual simulations, it is usual to treat a nondimensional system in which quantities

are nondimensionalized by the corresponding representative values. The present

simulation employs the following representative values for nondimensionalization:

d for distances, 1= _γ for time, _γd for velocities, _γ for angular velocities, 3πη _γd2 for
forces, πη _γd3 for torques, and so on. With these representative values, the equations

of motion in Eqs. (3.27) and (3.28) are nondimensionalized as

vjj�i 5Ujj�ðri�Þ1
Fjj�
i

XA�ðl� 1 2δ�Þ ; v\�
i 5U\�ðri�Þ1

F\�
i

YA�ðl� 1 2δ�Þ ð3:49Þ

72 Introduction to Practice of Molecular Simulation

ω\�
i 5Ω\� 1

T\�
i

YC�ðl� 1 2δ�Þ3 2
YH�

YC� ðεUeieiÞ : E� ð3:50Þ

in which

XA� 5
XA

6πðl=21 δÞ 5
8

3
U

s3

22s1 ð11 s2ÞL

YA� 5
YA

6πðl=21 δÞ 5
16

3
U

s3

2s1 ð3s2 2 1ÞL

9>>>>=
>>>>;

ð3:51Þ

YC� 5
YC

8πðl=21 δÞ3 5
4

3
U

s3ð22 s2Þ
22s1 ð11 s2ÞL ð3:52Þ

YH� 5
YH

8πðl=21 δÞ3 5
4

3
U

s5

22s1 ð11 s2ÞL ð3:53Þ

E�5
1

2

0 1 0

1 0 0

0 0 0

2
4

3
5; Ω�5 2

1

2

0

0

1

2
4
3
5; ðεUeieiÞ : E�5

1

2

eizeix
2eizeiy
e2iy2 e2ix

2
4

3
5 ð3:54Þ

Also, Eqs. (3.37) and (3.38) can be written in nondimensionalized form as

ri
�ðt� 1Δt�Þ5 ri

�ðt�Þ1Δt�v�i ðt�Þ;
eiðt� 1Δt�Þ5 eiðt�Þ1Δt�ω\�

i ðt�Þ3 eiðt�Þ
ð3:55Þ

The forces acting on the positive and negative magnetic charges of particle i in

Eqs. (3.21) and (3.22) are nondimensionalized as

F1 �
ij 5λm

r�ij 1 ðl�0=2Þðei 2 ejÞ
r�ij 1 ðl�0=2Þðei 2 ejÞ
��� ���3 2

r�ij 1 ðl�0=2Þðei 1 ejÞ
r�ij 1 ðl�0=2Þðei 1 ejÞ
��� ���3

8><
>:

9>=
>; ð3:56Þ

F2 �
ij 5 2λm

r�ij 2 ðl�0=2Þðei 1 ejÞ
r�ij 2 ðl�0=2Þðei 1 ejÞ
��� ���3 2

r�ij 2 ðl�0=2Þðei 2 ejÞ
r�ij 2 ðl�0=2Þðei 2 ejÞ
��� ���3

8><
>:

9>=
>; ð3:57Þ

in which ql0 is the magnitude of a magnetic moment, expressed as m5 ql0, and λm
is the nondimensional parameter representing the strength of magnetic forces rela-

tive to the shear force of a simple shear flow, expressed as

λm 5
μ0m

2

12π2η _γl20d4
ð3:58Þ

73Practice of Molecular Dynamics Simulations

The nondimensionalization procedure generally leads to the appearance of such

nondimensional numbers; the most famous nondimensional number—the Reynolds

number, in fluid mechanics—arises from a similar nondimensional procedure.

Similarly, the torque acting on particle i by particle j in Eqs. (3.23) and (3.24) is

nondimensionalized as

T1�
ij 5

3l�0
2
λm

ei3r�ij2 ðl�0=2Þðei3ejÞ
r�ij1 ðl�0=2Þðei2ejÞ
��� ���3 2

ei3r�ij1 ðl�0=2Þðei3ejÞ
r�ij1 ðl�0=2Þðei1ejÞ
��� ���3

8><
>:

9>=
>; ð3:59Þ

T2�
ij 5

3l�0
2
λm

ei3r�ij2 ðl�0=2Þðei3ejÞ
r�ij2 ðl�0=2Þðei1ejÞ
��� ���3 2

ei3r�ij1 ðl�0=2Þðei3ejÞ
r�ij2 ðl�0=2Þðei2ejÞ
��� ���3

8><
>:

9>=
>; ð3:60Þ

The torque exerted by an applied magnetic field in Eq. (3.26) is written in non-

dimensional form:

T
ðHÞ�
i 5λHei 3 h ð3:61Þ

in which h is a unit vector denoting the magnetic field direction, expressed as

h5H/H. As before, λH is a nondimensional parameter representing the strength of

magnetic particle�field interactions relative to the torque due to the shear flow

force, expressed as

λH 5
μ0mH

πη _γd3
ð3:62Þ

The repulsive force due to the overlap of the surfactant layers in Eq. (3.42) is

nondimensionalized as

F
ðVÞ�
ij 5λV tij ln

11 2δ�

r�ij

 !
ðfor 1# r�ij # 11 2δ�Þ ð3:63Þ

in which λV is a nondimensional parameter representing the strength of such repul-

sive forces relative to the shear flow force.

We have finished nondimensionalizing almost all the quantities necessary for

simulations. The nondimensional parameters characterizing the physical phenome-

non are λm for magnetic particle�particle interactions, λH for magnetic particle�field

interactions, and λV for steric repulsive interactions.

3.2.6 Treatment of the Criteria for Particle Overlap in Simulations

In the previous subsection on the modeling of steric repulsive interactions, we pre-

sented a mathematical discussion on the assessment for the overlap of the steric

layers. In actual calculations in a simulation program, the systematic classification

74 Introduction to Practice of Molecular Simulation

of the overlapping regimes enables us to quickly grasp a logical flow of the calcu-

lation procedures; this subject may be on a technical side rather than a mathemati-

cal one. As shown in Table 3.1, particle overlapping can be classified into four

cases: that is, a general overlap (itree5 1), a linear overlap (itree5 0), a normal

overlap (itree5 2), and a parallel overlap (itree5 3). Note that the variable names

“itree” and “ipath” are commonly used in a simulation program, so that the overlap

treatment is conducted for the cases specified by “itree” and “ipath” in a simulation

program. The important point in a simulation program is that if jkjj, jkij, then the

overlap regimes shown in Table 3.1 are easily applicable after the replacement of

indices i and j by j and i. Hence, the assumption of the condition jkjj$ jkij for start-
ing a mathematical analysis provides a relatively straightforward classification

without losing our way in a mathematical labyrinth. The classification in the sub-

stage for each case depends on which hemisphere cap of particle j overlaps with

particle i. That is, the directions of particles i and j are important for the successive

treatment of repulsive interactions. For a linear overlapping case, the calculation of

the repulsive force between only one pair of the spheres completes the overlapping

treatment. On the other hand, for the other overlapping cases, two spheres are first

placed at the nearest separation positions on each axis line, as previously explained,

in order to calculate the force and torque for this pair of spheres. Then, other

spheres are repeatedly added to the both ends of each sphere in linear formation to

form the linear sphere-connected particles i and j. Finally, the interaction forces

and torques are calculated for each pair of constituent spheres of particles i and j;

the summation of these forces and torques for each pair of spheres yields the total

force and torque acting on particle i by particle j. For example, we briefly consider

the case of itree5 1 and ipath5 1 in Table 3.1. The positions of the two spheres

are first determined on each axis line, and then the next spheres are placed at each

neighboring position in the (2ni) and (2nj) directions; the repulsive forces and tor-

ques are calculated for each pair of these constituent spheres.

3.2.7 Parameters for Simulations

We set the following initial conditions for simulations. A magnetic field is applied

in the y-axis direction, and a simple shear flow is applied in the x-direction. The

spherocylinder particles are expected to aggregate in the magnetic field direction

(y-axis direction) because they are magnetized in the particle axis direction. Hence

we employ a rectangular-parallelepiped simulation box, with its longer axis along

the field direction with a square base. We first place six rows of particles in the

x-axis direction with their particle axis pointing to the y-axis direction, then repeat

this procedure in the z-direction to obtain the initial configuration of 36 particles in

the xz-plane. Finally, we expand this configuration in the y-axis direction to obtain

the total six layers of these particles. The initial configuration of 216 particles, there-

fore, can be assigned from this procedure. A rectangular-parallelepiped simula-

tion box needs to be set, with an appropriate aspect ratio dependent upon the

particle aspect ratio. The present simulation uses a simulation box where the length

in the y-axis direction is twice the length in the x-axis direction; note that the

75Practice of Molecular Dynamics Simulations

Table 3.1 Regime of Overlap

ipath = 1
(ni • nj ≥0, kj ≥0)

ipath = 1
(ni • nj ≥0, tij • nj ≥0)

ipath = 2
(ni • nj ≥0, tij • nj <0)

ipath = 3
(ni • nj <0, tij • nj ≥0)

ipath = 1
(kj ≥0)

ipath = 1
(ni • nj ≥0)

ipath = 2
(ni • nj <0, kj

s ≤−l0/2)
ipath = 3
(ni • nj <0, kj

s >–l0/2)

ipath = 2
(kj <0)

ipath = 4
(ni • nj <0, tij • nj <0)

ipath = 2
(ni • nj <0, kj <0)

ipath = 3
(ni • nj <0, kj ≥0)

ipath = 4
(ni • nj ≥0, kj <0)

1. itree = 1

2. itree = 0

3. itree = 2

4. itree = 3

Note that ni is used as ei.

76 Introduction to Practice of Molecular Simulation

above-mentioned setting procedure is slightly different from that explained in

Section 2.1.2. In the present simulation, the particle aspect ratio rp is taken as rp5 5,

the volumetric fraction as φV5 0.05, and the thickness of a surfactant layer as

δ*5 0.15.

A shear flow and a magnetic field have a tendency to make the spherocylinder

particles incline in the flow direction and in the applied direction, respectively. The

orientational behavior of the magnetic spherocylinder particles, therefore, depends

in a complicated manner on the strength of magnetic interactions as well as the

flow shear rate. The main objective of the present simulation is to discuss the influ-

ences of magnetic particle�field, magnetic particle�particle, and steric repulsive

interactions on the behavior of spherocylinder particles in a simple shear flow.

Hence, simulations are carried out for various cases of the nondimensional para-

meters λm and λH such as λm5 0, 10, 20, and 50 and λH5 0, 10, 20, 50, and 100.

On the other hand, λV is taken to have the single value λV5 150; a larger value of

λV induces a large repulsive force at the particle overlapping.

3.2.8 Results of Simulations

Figure 3.7 shows the change in aggregate structures with time for no applied magnetic

field and no magnetic interactions between particles. The rod-like particles rotate in the

xy-plane about the z-axis because there is no applied magnetic field. Describing

in more detail, the particles incline in the flow direction (x-axis direction) during a long

period as in Figures 3.7A and C. Once particles have been kicked below the x-axis,

they quickly rotate toward the preferred direction, as shown in Figures 3.7A and C by

way of a transient snapshot shown in Figure 3.7B. This is because much larger torques

act on the rod-like particles when inclining in a direction normal to the flow.

Figure 3.8 shows a snapshot for no applied magnetic field under strong magnetic

particle�particle interactions λm5 10. The figure on the left-hand side is a general

snapshot viewed from a certain angle to grasp how nearly the particles incline in the

flow direction. The figure on the right-hand side is an oblique view for grasping the

formation of wall-like clusters along the flow direction, that is, it is viewed almost

from the negative x-axis direction. In this case, even if no magnetic field is applied,

rod-like particles seldom rotate from the situation in Figure 3.8 because magnetic

particle�particle interactions become more dominant than viscous shear forces, and

so the particles form complex three-dimensional aggregate structures. However, the

individual particles have a tendency to incline in the shear flow direction.

Figure 3.9 shows a snapshot for a strong applied magnetic field λH5 10 and no

magnetic interactions λm5 0. In this situation, the applied magnetic field makes

rod-like particles incline in the magnetic field direction. The final particle orienta-

tion is determined by the balance of the torque due to the applied field and the tor-

que due to a shear flow; in Figure 3.9 all rod-like particles tend to incline in the

same direction (the direction of the flow) because there is no disturbance due to

magnetic particle�particle interactions.

Figure 3.10 shows the result for magnetic interactions λm5 10 and for an exter-

nal magnetic field λH5 10 as in Figure 3.9. A significant difference to the case of

77Practice of Molecular Dynamics Simulations

Figure 3.9 is that, to a certain degree, aggregates have wall-like structures along

the flow direction. The particle aggregation is due to magnetic interactions between

particles, and the viscous forces and torques induce more complex aggregates, such

as these wall-like structures. Wall-like clusters are also observed for the case of

magnetic spherical particles in an applied magnetic field subject to a simple shear

flow. Magnetic particle�particle interactions emphasize the tendency of particles

to incline in the flow direction, which is clearly seen by comparing with the case in

Figure 3.9. Note that the particles in Figure 3.10 do not orient toward the same

preferred direction.

(A)

(B) (C)

Figure 3.7 Time change in aggregate structures for λH5 0 and λm5 0: (A) t5 t1, (B) t5 t2,

and (C) t5 t3.

78 Introduction to Practice of Molecular Simulation

Figure 3.11 is a snapshot for a significantly strong applied magnetic field

λH5 50, but without magnetic particle�particle interactions. Since a magnetic

field is significantly strong, each particle inclines to a higher degree in the mag-

netic field direction (y-axis direction) as compared with that in Figure 3.9. On the

other hand, wall-like clusters are not formed in this case because there are no

magnetic interactions.

(A) (B)

Figure 3.8 Aggregate structures for λH5 0 and λm5 10: (A) an oblique view and (B)

viewed nearly from the negative x-axis.

(A) (B)

Figure 3.9 Aggregate structures for λH5 10 and λm5 0: (A) an oblique view and (B)

viewed nearly from the negative x-axis.

79Practice of Molecular Dynamics Simulations

Figure 3.12 also shows λH5 50, as in Figure 3.11, but magnetic interactions are

λm5 10 in this case. Comparison with Figure 3.10, clearly reveals that wall-like

clusters are formed along the flow direction. The detailed observation of the inter-

nal structures of wall-like clusters indicates that the rod-like particles aggregate to

(A) (B)

Figure 3.10 Aggregate structures for λH5 10 and λm5 10: (A) an oblique view and (B)

viewed nearly from the negative x-axis.

(B)(A)

Figure 3.11 Aggregate structures for λH5 50 and λm5 0: (A) an oblique view and (B)

viewed nearly from the negative x-axis.

80 Introduction to Practice of Molecular Simulation

form wall-like structures in such a way that one cluster is placed into two parallel

clusters, with the plus magnetic charge of the center particle in contact with the

minus magnetic charges of the two neighboring particles.

The above discussion has systematically used snapshots to present the properties

of aggregates. However, this type of qualitative discussion is insufficient for an

academic paper, and the addition of quantitative discussion is necessary. For this

exercise, it would be suitable to discuss the radial, pair, and orientational distribu-

tion functions, whilst further investigation of the phenomena might necessitate

Brownian dynamics in order to include random particle motion.

3.2.9 Simulation Program

The following sample simulation program has been written for the present simula-

tion in FORTRAN. The important variables used in the simulation program are as

follows:

RX(I),RY(I),RZ(I) : (x, y, z) components of the position vector r�i of particle i

NX(I),NY(I),NZ(I) : (x, y, z) components of the unit vector ni(5 ei) of particle i

denoting the particle and magnetic moment direction

FX(I),FY(I),FZ(I) : (x, y, z) components of the force F�
i acting on particle i

TX(I),TY(I),TZ(I) : (x, y, z) components of the torque T�
i acting on particle i

XL,YL,ZL : Side lengths of the simulation box in the (x, y, z) directions

L : Length l* of the solid part of the spherocylinder particle

D : Diameter d* of the solid cylinder part of the spherocylinder

DEL : Thickness δ* of the surfactant layer
TD : Ratio 2δ*(52δ/d) of the surfactant layer thickness to the

particle radius

(A) (B)

Figure 3.12 Aggregate structures for λH5 50 and λm5 10: (A) an oblique view and (B)

viewed nearly from the negative x-axis.

81Practice of Molecular Dynamics Simulations

RP : Particle aspect ratio rp (5l/d)

RP1 : Particle aspect ratio rp
0(5l0/d5 rp2 1)

N : Number of particles

VDENS : Volumetric fraction of particles φV

NDENS : Number density of particles

HX,HY,HZ : (x,y,z) components of the unit vector denoting the magnetic

field direction

RAM : Nondimensional parameter λm representing the strength of

magnetic particle�particle interactions

RAH : Nondimensional parameter λH representing the strength of

magnetic particle�field interactions

RAV : Nondimensional parameter λV representing the strength of

repulsive interactions due to the overlap of steric layers

H : Time interval

RCOFF : Cutoff distance for calculations of forces and torques

XA,YA,YC,YH : Resistance functions

GAMDOT : Shear rate _γ�

MOMX(*),MOMY(*),
MOMZ(*)

: Averaged values of the particle direction at each time step

As an aid for understanding the program, comments have been added to the impor-

tant features. The line numbers shown at the beginning of each line are just for the

reader’s convenience and are unnecessary for executing the FORTRAN program.

We briefly explain quasi-random numbers, which are used in the subroutine

“INITIAL” for setting an initial configuration. A quasi-random number is generated

using an irrational. For example, if
ffiffiffi
2

p
is used, the fractional parts of

ffiffiffi
2

p
; 2

ffiffiffi
2

p
;

3
ffiffiffi
2

p
; 4

ffiffiffi
2

p
; . . . provide a sequence of quasi-random numbers ranging from zero to

unity.

0001 C***
0002 C* mdcylndr1.f *
0003 C* *
0004 C* OPEN(9, FILE='@bbb1.dat', STATUS='UNKNOWN') *
0005 C* OPEN(10,FILE='bbb11.dat', STATUS='UNKNOWN') *
0006 C* OPEN(13,FILE='bbb41.mgf', STATUS='UNKNOWN') *
0007 C* OPEN(21,FILE='bbb001.dat',STATUS='UNKNOWN') *
0008 C* OPEN(22,FILE='bbb011.dat',STATUS='UNKNOWN') *
0009 C* OPEN(23,FILE='bbb021.dat',STATUS='UNKNOWN') *
0010 C* OPEN(24,FILE='bbb031.dat',STATUS='UNKNOWN') *
0011 C* OPEN(25,FILE='bbb041.dat',STATUS='UNKNOWN') *
0012 C* OPEN(26,FILE='bbb051.dat',STATUS='UNKNOWN') *
0013 C* OPEN(27,FILE='bbb061.dat',STATUS='UNKNOWN') *
0014 C* OPEN(28,FILE='bbb071.dat',STATUS='UNKNOWN') *
0015 C* OPEN(29,FILE='bbb081.dat',STATUS='UNKNOWN') *
0016 C* OPEN(30,FILE='bbb091.dat',STATUS='UNKNOWN') *
0017 C* *
0018 C* ---------- MOLECULAR DYNAMICS SIMULATIONS --------- *
0019 C* THREE-DIMENSIONAL MOLECULAR DYNAMICS SIMULATIONS OF *
0020 C* A DISPERSION COMPOSED OF MAGNETIC SPHEROCYLINDERS *
0021 C* IN A SIMPLE SHEAR FLOW. *
0022 C* *
0023 C* 1. RODLIKE MODEL WITH ARBITRARY ASPECT RATIO. *
0024 C* 2. NO HYDRODYNAMIC INTERACTIONS AMONG PARTICLES. *
0025 C* *
0026 C* VER.1 BY A.SATOH , '08 5/23 *
0027 C***

82 Introduction to Practice of Molecular Simulation

0056 C NTIMEMX : MAXIMUM NUMBER OF TIME STEP
0057 C
0058 C -XL/2 < RX < XL/2 , -YL/2 < RY < YL/2, -ZL/2 < RZ < ZL/2
0059 C---
0060 C
0061 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0062 C
0063 COMMON /BLOCK1/ RX , RY , RZ
0064 COMMON /BLOCK2/ NX , NY , NZ
0065 COMMON /BLOCK3/ FX , FY , FZ
0066 COMMON /BLOCK4/ TX , TY , TZ
0067 COMMON /BLOCK5/ XL , YL , ZL
0068 COMMON /BLOCK6/ RP , RP1 , D , DEL , TD
0069 COMMON /BLOCK7/ XA , YA , YC , YH
0070 COMMON /BLOCK8/ N , NDENS, VDENS
0071 COMMON /BLOCK9/ H , RCOFF, GAMDOT, DX , CORY
0072 COMMON /BLOCK10/ RAM , RAH , RAV
0073 COMMON /BLOCK11/ HX , HY , HZ
0074 COMMON /BLOCK12/ MOMX , MOMY , MOMZ
0075 COMMON /WORK20/ XRXI , YRYI , ZRZI , XRXJ , YRYJ , ZRZJ
0076 COMMON /WORK21/ FXIJS, FYIJS, FZIJS, FXJIS, FYJIS, FZJIS
0077 COMMON /WORK22/ TXIJS, TYIJS, TZIJS, TXJIS, TYJIS, TZJIS
0078 COMMON /WORK23/ RCOFF2 , RP102 , D1 , D1SQ
0079 COMMON /WORK24/ CF0XA , CF0YA , CT0YC , CE0YHYC
0080 C
0081 PARAMETER(NN=1000 , NNS=500000 , PI=3.141592653589793D0)
0082 C
0083 REAL*8 NDENS
0084 REAL*8 RX(NN) , RY(NN) , RZ(NN) , NX(NN) , NY(NN) , NZ(NN)
0085 REAL*8 FX(NN) , FY(NN) , FZ(NN) , TX(NN) , TY(NN) , TZ(NN)
0086 REAL MOMX(NNS) , MOMY(NNS) , MOMZ(NNS)
0087 C
0088 REAL*8 BETA
0089 REAL*8 RXI , RYI , RZI , NXI , NYI , NZI , FXI , FYI , FZI
0090 REAL*8 TXI , TYI , TZI , WXI , WYI , WZI , WXIN, WYIN, WZIN
0091 REAL*8 FXIP , FYIP , FZIP , FXIN , FYIN , FZIN
0092 REAL*8 TXIP , TYIP , TZIP , TXIN , TYIN , TZIN
0093 REAL*8 OMEIPX , OMEIPY , OMEIPZ , OMEINX , OMEINY , OMEINZ
0094 REAL*8 C1 , C2 , C3 , C00
0095 REAL*8 C1X , C1Y , C1Z , C2X , C2Y , C2Z
0096 REAL*8 C3X , C3Y , C3Z
0097 REAL*8 CCA1 , CCB1 , CCS1 , CCL1
0098 INTEGER NTIME , NTIMEMX , NGRAPH , DNSMPL , NP , NOPT

0028 C N : NUMBER OF PARTICLES
0029 C D : DIAMETER OF SOLID HEMISPHERE PARTICLE (=1)
0030 C L : LENGTH OF SOLID SPHEROCYLINDER
0031 C RP : ASPECT RATIO (=L/D)
0032 C RP1 : ASPECT RATIO OF CYLINDER LENGTH TO D (=RP-1)
0033 C NDENS : NUMBER DENSITY
0034 C VDENS : VOLUMETRIC FRACTION
0035 C RAM : NONDIMENSIONAL PARAMETER OF PARTICLE-PARTICLE INTERACT
0036 C RAH : NONDIMENSIONAL PARAMETER OF PARTICLE-FIELD INTERACTION
0037 C RAV : NONDIMENSIONAL PARAMETER OF STERIC REPULSION
0038 C RCOFF : CUTOFF RADIUS FOR CALCULATION OF INTERACTION ENERGIES
0039 C XL,YL,ZL : DIMENSIONS OF SIMULATION REGION
0040 C BETA : ASPECT RATIO OF SIMULATION BOX
0041 C (HX,HY,HZ) : UNIT VECTOR DENOTING MAGNETIC FIELD DIRECTION
0042 C
0043 C XA,YA : RESISTANCE FUNC. FOR TRANSLATIONAL MOTION
0044 C YC : RESISTANCE FUNC. FOR ROTATIONAL MOTION
0045 C YH : RESISTANCE FUNC. FOR SHEAR FLOW TERM
0046 C RX(I),RY(I),RZ(I) : PARTICLE POSITION
0047 C NX(N),NY(N),NZ(N) : DIRECTION OF PARTICLE MAJOR AXIS AND
0048 C MAGNETIC MOMENT
0049 C FX(I),FY(I),FZ(I) : FORCES ACTING ON PARTICLE I
0050 C TX(I),TY(I),TZ(I) : TORQUES ACTING ON PARTICLE I
0051 C MOMX(**),MOMY(**) : MAG. MOMENT OF SYSTEM AT EACH TIME STEP
0052 C MOMZ(**)
0053 C
0054 C H : INTERVAL OF TIME STEP FOR MOLE. DYNA. SIMULATIONS
0055 C GAMDOT : SHEAR RATE (=1 FOR THIS CASE)

83Practice of Molecular Dynamics Simulations

0111 OPEN(27,FILE='bbb061.dat',STATUS='UNKNOWN')
0112 OPEN(28,FILE='bbb071.dat',STATUS='UNKNOWN')
0113 OPEN(29,FILE='bbb081.dat',STATUS='UNKNOWN')
0114 OPEN(30,FILE='bbb091.dat',STATUS='UNKNOWN')
0115 NP=9
0116 C
0117 C --- PARAMETER (1) ---
0118 C ---
0119 C N=5**3(125), 6**3(216), 7**3(343), 8**3(512)
0120 C ---
0121 C RAH = 0.1 1.0 10. 100.
0122 C H = 0.001 0.001 0.001 0.0001
0123 C ++++++++++++++++++++++++++++++++
0124 C RAM = 0.1 1.0 10. 100.
0125 C H = 0.001 0.001 0.001 0.0001
0126 C
0127 C THE MINIMUM VALUE ON THE ABOVE LIST MUST BE
0128 C USED FOR THE TIME INTERVAL H.
0129 C ---
0130 N = 216
0131 VDENS = 0.05D0
0132 RAM = 20.D0
0133 RAH = 10.0D0
0134 RAV = 150.D0
0135 RP = 5.D0
0136 RP1 = RP - 1.D0
0137 C --- PARAMETER (2) ---
0138 H = 0.0001D0
0139 GAMDOT = 1.D0
0140 TD = 0.3D0
0141 RCOFF = 5.D0*RP
0142 DEL = TD/2.D0
0143 HX = 0.D0
0144 HY = 1.D0
0145 HZ = 0.D0
0146 C --- PARAMETER (3) ---
0147 BETA = 2.D0
0148 DX = 0.D0
0149 D = 1.0D0
0150 NDENS = (12.D0/(PI*(3.D0*RP-1.D0)))*VDENS
0151 C --- PARAMETER (4) ---
0152 NTIMEMX = 200000
0153 NGRAPH = NTIMEMX/10
0154 NANIME = NTIMEMX/200
0155 DNSMPL = 2
0156 NOPT = 20
0157 C --- PARAMETER (5) ---
0158 CCA1 = RP/2.D0 + DEL
0159 CCB1 = 0.5D0 + DEL
0160 CCS1 = DSQRT(CCA1**2 - CCB1**2) / CCA1
0161 CCL1 = DLOG((1.D0+CCS1)/(1.D0-CCS1))
0162 XA = (8.D0/3.D0)*CCS1**3
0163 & / (-2.D0*CCS1+(1.D0+CCS1**2)*CCL1)
0164 YA = (16.D0/3.D0)*CCS1**3
0165 & / (2.D0*CCS1+(3.D0*CCS1**2-1.D0)*CCL1)

• The particle number N=216, volu-
metric fraction φV =0.05, λm=20, λH=
10, λV=150, and aspect ratio rp=5.

• The time interval h*=0.0001, tδ=0.3,
cutoff radius r*coff=5rp, thickness of a
surfactant layer δ*=0.15, and magnetic
field direction h=(0,1,0).

• BETA is used in determining the simulation region
size. NDENS is the number density of particles.

• The main loop is finished when NTIME arrives at 200,000.
• The particle position and other data are written out at every
NGRAPH time steps. 200 sets of data are written out for
making an animation based on MicroAVS.

• The resistance functions XA, YA, YC,
and YH are calculated in advance.

0099 INTEGER NSMPL1 , NSMPL2
0100 INTEGER NANIME , NANMCTR, NOPT1
0101 C
0102 OPEN(9,FILE='@bbb1.dat' , STATUS='UNKNOWN')
0103 OPEN(10,FILE='bbb11.dat', STATUS='UNKNOWN')
0104 OPEN(13,FILE='bbb41.mgf', STATUS='UNKNOWN')
0105 OPEN(21,FILE='bbb001.dat',STATUS='UNKNOWN')
0106 OPEN(22,FILE='bbb011.dat',STATUS='UNKNOWN')
0107 OPEN(23,FILE='bbb021.dat',STATUS='UNKNOWN')
0108 OPEN(24,FILE='bbb031.dat',STATUS='UNKNOWN')
0109 OPEN(25,FILE='bbb041.dat',STATUS='UNKNOWN')
0110 OPEN(26,FILE='bbb051.dat',STATUS='UNKNOWN')

• The given values and the
magnetic moment results
are written out in @bbb1
and bbb11, the data for
MicroAVS are done in
bbb41, and the intermedi-
ate positions and
directions are done in
bbb001–bbb091 in the
time sequential order.

0166 YC = (4.D0/3.D0)* (CCS1**3*(2.D0-CCS1**2))
0167 & / (-2.D0*CCS1+(1.D0+CCS1**2)*CCL1)
0168 YH = (4.D0/3.D0)*CCS1**5
0169 & / (-2.D0*CCS1+(1.D0+CCS1**2)*CCL1)

84 Introduction to Practice of Molecular Simulation

0170 C --- PARAMETER (6) ---
0171 RCOFF2 = RCOFF**2
0172 RP102 = RP1/2.D0
0173 D1 = 1.D0+TD
0174 D1SQ = D1**2
0175 CF0XA = 1.D0/(XA*(RP+2.D0*DEL))
0176 CF0YA = 1.D0/(YA*(RP+2.D0*DEL))
0177 CT0YC = 1.D0/(YC*(RP+2.D0*DEL)**3)
0178 CE0YHYC = (YH/YC)*0.5D0
0179 C
0180 C --
0181 C ----------------- INITIAL CONFIGURATION ------------------
0182 C --
0183 C
0184 C --- SET INITIAL CONFIG. ---
0185 CCC OPEN(19,FILE='qqq091.dat',STATUS='OLD')
0186 CCC READ(19,472) N , XL , YL , ZL , D , TD , RP , RP1 , DX
0187 CCC READ(19,474) (RX(I),I=1,N),(RY(I),I=1,N),(RZ(I),I=1,N),
0188 CCC & (NX(I),I=1,N),(NY(I),I=1,N),(NZ(I),I=1,N)
0189 CCC CLOSE(19,STATUS='KEEP')
0190 CCC GOTO 7
0191 C
0192 CALL INITIAL(BETA)
0193 C
0194 7 IF(RCOFF .GE. XL/2.D0) THEN
0195 RCOFF = XL/2.D0 - 0.00001D0
0196 END IF
0197 RCOFF2 = RCOFF**2
0198 C --- CAL FORCES ---
0199 NTIME = 0
0200 CALL FORCECAL(NP, NTIME)
0201 C
0202 C --- PRINT OUT ---
0203 WRITE(NP,12) N, VDENS, NDENS, RAM ,RAH ,RAV, RP, RP1, D, DEL,
0204 & TD, XA, YA, YC, YH, H, RCOFF, GAMDOT, BETA,
0205 & XL, YL, ZL
0206 WRITE(NP,13) RP102, D1, CF0XA, CF0YA, CT0YC, CE0YHYC
0207 WRITE(NP,14) NTIMEMX, NGRAPH, DNSMPL
0208 C
0209 C --- INITIALIZATION ---
0210 NANMCTR = 0
0211 NSMPL = 0
0212 C
0213 C --
0214 C ------------------ START OF MAIN LOOP --------------------
0215 C --
0216 C
0217 DO 1000 NTIME = 1,NTIMEMX
0218 C
0219 DX = GAMDOT*YL*H*DBLE(NTIME)
0220 DX = DMOD(DX, XL)

• CF0XA and CF0YA are the coefficients in
the force term in Eq. (3.49), CT0YC is the
coefficient in the torque term in Eq. (3.50),
and CE0YHYC is a part of the coefficient of
the shear rate in Eq. (3.50).

• These READ statements are for continuing the sequential
simulation using the data saved previously.

• The particle initial positions and velocities are
assigned .

• The forces and torques acting between particles
are calculated.

• DX is ΔX in Fig. 2.15.

0221 C
0222 DO 100 I = 1,N
0223 C
0224 NXI = NX(I)
0225 NYI = NY(I)
0226 NZI = NZ(I)
0227 FXI = FX(I)
0228 FYI = FY(I)
0229 FZI = FZ(I)
0230 TXI = TX(I)
0231 TYI = TY(I)
0232 TZI = TZ(I)
0233 C --- (1) TRANSLATIONAL MOTION ---
0234 C
0235 C00 = FXI*NXI + FYI*NYI + FZI*NZI
0236 FXIP = C00*NXI
0237 FYIP = C00*NYI
0238 FZIP = C00*NZI
0239 FXIN = FXI - FXIP
0240 FYIN = FYI - FYIP

• The force acting on particle i is decomposed into one
in the particle direction and another in the direction
normal to the particle axis according to Eq. (3.36).

85Practice of Molecular Dynamics Simulations

0241 FZIN = FZI - FZIP
0242 C
0243 RXI = RX(I) + H*(CF0XA*FXIP+CF0YA*FXIN) + RY(I)*GAMDOT*H
0244 RYI = RY(I) + H*(CF0XA*FYIP+CF0YA*FYIN)
0245 RZI = RZ(I) + H*(CF0XA*FZIP+CF0YA*FZIN)
0246 CORY = DNINT(RYI/YL)
0247 RXI = RXI - CORY*DX
0248 RX(I) = RXI - DNINT(RXI/XL)*XL
0249 RY(I) = RYI - CORY*YL
0250 RZ(I) = RZI - DNINT(RZI/ZL)*ZL
0251 C
0252 C --- (2) ROTATIONAL MOTION ---
0253 C00 = TXI*NXI + TYI*NYI + TZI*NZI
0254 TXIP = C00*NXI
0255 TYIP = C00*NYI
0256 TZIP = C00*NZI
0257 TXIN = TXI - TXIP
0258 TYIN = TYI - TYIP
0259 TZIN = TZI - TZIP
0260 C
0261 C00 = -0.5D0*NZI
0262 OMEIPX = C00*NXI
0263 OMEIPY = C00*NYI
0264 OMEIPZ = C00*NZI
0265 OMEINX = - OMEIPX
0266 OMEINY = - OMEIPY
0267 OMEINZ = -0.5D0 - OMEIPZ
0268 C
0269 C1X = CT0YC*TXIN
0270 C1Y = CT0YC*TYIN
0271 C1Z = CT0YC*TZIN
0272 C2X = -CE0YHYC* (NZI*NXI)
0273 C2Y = -CE0YHYC* (-NZI*NYI)
0274 C2Z = -CE0YHYC* (NYI**2 - NXI**2)

• This is the treatment of the
Lees–Edwards BC explained
in Section 2.4.2.

• The torque acting on particle i is decomposed into one about
the particle direction and another about a line normal to the
particle direction through its center according to Eq. (3.36).

• The angular velocity is decomposed into two
vectors in a similar way to the torque.

• The terms of the torque and the shear
rate are calculated in the angular
velocity in Eq. (3.50).

0275 C
0276 WXIN = OMEINX + C1X + C2X
0277 WYIN = OMEINY + C1Y + C2Y
0278 WZIN = OMEINZ + C1Z + C2Z
0279 C3X = WYIN*NZI - WZIN*NYI
0280 C3Y = WZIN*NXI - WXIN*NZI
0281 C3Z = WXIN*NYI - WYIN*NXI
0282 C
0283 NXI = NXI + H*C3X
0284 NYI = NYI + H*C3Y
0285 NZI = NZI + H*C3Z
0286 C00 = DSQRT(NXI**2 + NYI**2 + NZI**2)
0287 NX(I) = NXI/C00
0288 NY(I) = NYI/C00
0289 NZ(I) = NZI/C00
0290 C
0291 100 CONTINUE
0292 C --- CAL FORCES ---
0293 CALL FORCECAL(NP, NTIME)
0294 C
0295 C --
0296 C --- MOMENT OF SYSTEM ---
0297 IF(MOD(NTIME,DNSMPL) .EQ. 0) THEN
0298 NSMPL = NSMPL + 1
0299 C1 = 0.D0
0300 C2 = 0.D0
0301 C3 = 0.D0
0302 DO 450 J=1,N
0303 C1 = C1 + NX(J)
0304 C2 = C2 + NY(J)
0305 C3 = C3 + NZ(J)
0306 450 CONTINUE
0307 MOMX(NSMPL) = REAL(C1)/REAL(N)
0308 MOMY(NSMPL) = REAL(C2)/REAL(N)
0309 MOMZ(NSMPL) = REAL(C3)/REAL(N)
0310 END IF

• The angular velocity in Eq.(3.50) is calculated.

• To evaluate the particle direction from Eq.(3.55),
the vector product of the angular velocity and the
particle direction is first calculated.

• The particle direction is evaluated from Eq. (3.55).

• The modification is made to yield the unit vector.

• Calculation of the forces and torques.

• To check the system convergence
afterward, the average of the particle
direction vector is calculated.

• The data of the particle positions and
directions are written out at every
NGRAPH time steps for the post
processing analysis.

0311 C
0312 C --- DATA OUTPUT (1) FOR GRAPHICS ---

86 Introduction to Practice of Molecular Simulation

0313 IF(MOD(NTIME,NGRAPH) .EQ. 0) THEN
0314 NOPT = NOPT + 1
0315 WRITE(NOPT,472) N , XL , YL , ZL , D , TD , RP , RP1 , DX
0316 WRITE(NOPT,474) (RX(I),I=1,N),(RY(I),I=1,N),(RZ(I),I=1,N),
0317 & (NX(I),I=1,N),(NY(I),I=1,N),(NZ(I),I=1,N)
0318 CLOSE(NOPT,STATUS='KEEP')
0319 END IF
0320 C
0321 C --- DATA OUTPUT FOR ANIMATION (2) ---
0322 IF(MOD(NTIME,NANIME) .EQ. 0) THEN
0323 NANMCTR = NANMCTR + 1
0324 NOPT1 = 13
0325 CALL DATAOPUT(NOPT1, NANMCTR, NTIMEMX, NANIME, N)
0326 END IF
0327 C
0328 C
0329 1000 CONTINUE

• The data of the particle positions and directions are written out at every
NANIME time steps for making an animation based on MicroAVS.

0330 C
0331 C --
0332 C ------------------- END OF MOLECULAR DYNAMICS ---------------
0333 C --
0334 C
0335 C --- PRINT OUT (2) ---
0336 WRITE(NP,1011)
0337 NSMPL1 = 1
0338 NSMPL2 = NSMPL
0339 CALL PRNTDATA(NSMPL1 , NSMPL2 , NP)
0340 WRITE(NP,1013) NSMPL1 , NSMPL2
0341 C --- DATA OUTPUT (2) FOR GRAPHICS ---
0342 WRITE(10,1111) N, VDENS, NDENS, RAM, RAH, RAV
0343 WRITE(10,1113) RP, RP1, D, DEL, TD, XA, YA, YC, YH
0344 WRITE(10,1115) H, RCOFF, GAMDOT, BETA, XL, YL, ZL
0345 WRITE(10,1117) RP102, D1, CF0XA, CF0YA, CT0YC, CE0YHYC
0346 WRITE(10,1119) NTIMEMX, NGRAPH, DNSMPL
0347 WRITE(10,1121) (MOMX(I),I=NSMPL1, NSMPL2)
0348 & ,(MOMY(I),I=NSMPL1, NSMPL2)
0349 & ,(MOMZ(I),I=NSMPL1, NSMPL2)
0350 C
0351 CLOSE(9, STATUS='KEEP')
0352 CLOSE(10,STATUS='KEEP')
0353 CLOSE(13,STATUS='KEEP')
0354 C -------------------------- FORMAT ------------------------------
0355 12 FORMAT(/1H ,'--'
0356 & /1H ,'- MOLECULAR DYNAMICS SIMULATIONS OF SPHERO- -'
0357 & /1H ,'- CYLINDER PARTICLES IN A SIMPLE SHEAR FLOW -'
0358 & /1H ,'--'
0359 & //1H ,'N=',I6, 2X, 'VDENS=',F7.4, 2X ,'NDENS=',F9.6
0360 & /1H ,'RAM=',F6.2, 2X, 'RAH=',F6.2, 2X ,'RAV=',F7.2
0361 & /1H ,'RP=',F5.2, 2X ,'RP1=',F5.2, 2X ,'D=',F5.2, 2X ,
0362 & 'DEL=',F5.2, 2X,'TD=',F5.2
0363 & /1H ,'XA=',E12.4,2X,'YA=',E12.4,2X,'YC=',E12.4,2X,
0364 & 'YH=',E12.4
0365 & /1H ,'H=',E12.4,3X,'RCOFF=',F5.2,2X,'GAMDOT=',F5.2,2X,
0366 & 'BETA=', F5.2
0367 & /1H ,'XL=',F6.2,2X,'YL=',F6.2,2X,'ZL=',F6.2)
0368 13 FORMAT(1H ,'RP102=',F5.2,2X,'D1=',F5.2,2X,
0369 & 'CF0XA=',E11.3, 2X, 'CF0YA=',E11.3
0370 & /1H ,'CT0YC=',E11.3, 2X, 'CE0YHYC=',E11.3)
0371 14 FORMAT(1H ,'NTIMEMX=',I8, 2X,'NGRAPH=',I8,2X,'DNSMPL=',I8/)
0372 472 FORMAT(I5 , 3F9.4 , 4F8.4 , E16.8)
0373 474 FORMAT((5F16.10))
0374 1011 FORMAT(/1H ,'++++++++++++++++++++++++++++++'
0375 & /1H ,' MD SIMULATIONS '
0376 & /1H ,'++++++++++++++++++++++++++++++'/)
0377 1013 FORMAT(///1H ,18X, 'START OF MD SAMPLING STEP=',I7
0378 & /1H ,18X, 'END OF MD SAMPLING STEP=',I7/)
0379 1111 FORMAT(I5 , 2F7.4 , 3F12.5)
0380 1113 FORMAT(3F6.2 , 2F7.3 , 4E12.4)
0381 1115 FORMAT(E11.3 , F8.3 , 2F7.4 , 3F9.3)
0382 1117 FORMAT(2F6.2 , 4E12.4)
0383 1119 FORMAT(3I8)
0384 1121 FORMAT((10F8.5))

• To check the system convergence
afterward, the data of the particle
directions are written out.

87Practice of Molecular Dynamics Simulations

0385 STOP
0386 END
0387 C***
0388 C*************************** SUBROUTINE **************************
0389 C***
0390 C
0391 C**** SUB PRNTDATA ****
0392 SUBROUTINE PRNTDATA(MCSST, MCSMX, NP)
0393 C
0394 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0395 C
0396 COMMON /BLOCK12/ MOMX , MOMY , MOMZ
0397 C
0398 PARAMETER(NN=1000 , NNS=500000 , PI=3.141592653589793D0)
0399 C
0400 INTEGER MCSST , MCSMX , NP
0401 REAL MOMX(NNS) , MOMY(NNS) , MOMZ(NNS)
0402 C
0403 REAL AMOMX(10) , AMOMY(10) , AMOMZ(10) , C0
0404 INTEGER IC , IMC(0:10) , JS , JE
0405 C
0406 C ----- KEIKA INSATU -----
0407 IC = (MCSMX-MCSST+1)/50
0408 DO 20 I= MCSST-1+IC , MCSMX , IC
0409 WRITE(NP,10) I, MOMX(I), MOMY(I), MOMZ(I)
0410 20 CONTINUE
0411 C ----- TIME STEP HEIKIN -----
0412 IC = (MCSMX-MCSST+1)/10
0413 DO 30 I=0,10
0414 IMC(I) = MCSST - 1 + IC*I
0415 IF(I .EQ. 10) IMC(I) =MCSMX
0416 30 CONTINUE
0417 C
0418 C
0419 DO 35 I=1,10
0420 AMOMX(I) = 0.
0421 AMOMY(I) = 0.
0422 AMOMZ(I) = 0.
0423 35 CONTINUE
0424 C
0425 DO 50 I=1,10
0426 JS = IMC(I-1) + 1
0427 JE = IMC(I)
0428 DO 40 J=JS,JE
0429 AMOMX(I) = AMOMX(I) + MOMX(J)
0430 AMOMY(I) = AMOMY(I) + MOMY(J)
0431 AMOMZ(I) = AMOMZ(I) + MOMZ(J)
0432 40 CONTINUE
0433 50 CONTINUE
0434 C
0435 DO 70 I=1,10
0436 C0 = REAL(IMC(I)-IMC(I-1))
0437 AMOMX(I) = AMOMX(I) /C0
0438 AMOMY(I) = AMOMY(I) /C0
0439 AMOMZ(I) = AMOMZ(I) /C0

• The total time steps are equally divided into
50 blocks, and the end value of each block is
written out.

• The total time steps are equally divided into
10 blocks, and the subaverages are
calculated for each block.

0440 70 CONTINUE
0441 C ----- STEP HEIKIN INSATU -----
0442 WRITE(NP,75)
0443 DO 90 I=1,10
0444 WRITE(NP,80) I, IMC(I-1)+1, IMC(I), AMOMX(I),AMOMY(I),AMOMZ(I)
0445 90 CONTINUE
0446 C --
0447 10 FORMAT(1H ,'SMPL=',I7, 1X ,'NX=',F6.3, 1X,'NY=',F6.3,
0448 & 1X,'NZ=',F6.3)
0449 75 FORMAT(//1H ,'---'
0450 & /1H ,' TIME AVERAGE '
0451 & /)
0452 80 FORMAT(1H ,'I=',I2, 2X ,'SMPLMN=',I7, 2X ,'SMPLMX=',I7
0453 & /1H ,5X ,'NX=',F6.3, 2X,'NY=',F6.3, 2X,'NZ=',F6.3/)
0454 RETURN
0455 END
0456 C**** SUB INITIAL ****

88 Introduction to Practice of Molecular Simulation

0457 SUBROUTINE INITIAL(BETA)
0458 C
0459 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0460 C
0461 COMMON /BLOCK1/ RX , RY , RZ
0462 COMMON /BLOCK2/ NX , NY , NZ
0463 COMMON /BLOCK5/ XL , YL , ZL
0464 COMMON /BLOCK6/ RP , RP1 , D , DEL , TD
0465 COMMON /BLOCK8/ N , NDENS, VDENS
0466 COMMON /BLOCK9/ H , RCOFF, GAMDOT, DX , CORY
0467 C
0468 PARAMETER(NN=1000 , PI=3.141592653589793D0)
0469 C
0470 REAL*8 NDENS
0471 REAL*8 RX(NN) , RY(NN) , RZ(NN) , NX(NN) , NY(NN) , NZ(NN)
0472 C
0473 INTEGER Q , PTCL
0474 REAL*8 A , XLUNT , YLUNT , ZLUNT, RAN1 , RAN2 , RAN3
0475 REAL*8 C1 , C2 , C3
0476 C
0477 A = 1.D0/((BETA*NDENS)**(1./3.))
0478 Q = NINT((REAL(N+1))**(1./3.))
0479 XL = A*DBLE(Q)
0480 YL = A*DBLE(Q)*BETA
0481 ZL = A*DBLE(Q)
0482 XLUNT = A
0483 YLUNT = A*BETA
0484 ZLUNT = A
0485 C ----- POSITION -----
0486 RAN1 = DSQRT(2.D0)
0487 RAN2 = DSQRT(7.D0)
0488 RAN3 = DSQRT(11.D0)
0489 PTCL = 0
0490 DO 10 K=0,Q-1
0491 DO 10 J=0,Q-1
0492 DO 10 I=0,Q-1
0493 PTCL = PTCL + 1
0494 C1 = RAN1*DBLE(PTCL)

• A subroutine for setting the
initial positions and velocities of
particles.

• The volume occupied by one particle is
βa*3 and therefore a*=1/(βn*)1/3 because
of βa*3n*=1 (n* is the number density).
• The side lengths of the unit cell are (a*, β
a* , a*) in each direction.

• RAN1, RAN2, and RAN3 are quasi-random numbers.
• Q particles are located in each axis direction.
• Each particle is moved in parallel by (XLUNT/3, YLUNT/3,
ZLUNT/3) to remove subtle situations at outer boundary
surfaces. Also, to remove the regularity of the initial configu-
ration, each particle is moved randomly by the maximum
displacement (1/2)×(XLUNT/8, YLUNT/8, ZLUNT/8) using
quasi-random numbers.
• Each particle is moved in parallel by (1/2)×(-XL, -YL, -ZL),
so that the simulation box center is the coordinate origin.

0495 C1 = C1 - DINT(C1)
0496 C1 = C1 - 0.5D0
0497 C2 = RAN2*DBLE(PTCL)
0498 C2 = C2 - DINT(C2)
0499 C2 = C2 - 0.5D0
0500 C3 = RAN3*DBLE(PTCL)
0501 C3 = C3 - DINT(C3)
0502 C3 = C3 - 0.5D0
0503 RX(PTCL) = DBLE(I)*XLUNT+XLUNT/3D0+C1*(XLUNT/8.D0)-XL/2.D0
0504 RY(PTCL) = DBLE(J)*YLUNT+YLUNT/3D0+C2*(YLUNT/8.D0)-YL/2.D0
0505 RZ(PTCL) = DBLE(K)*ZLUNT+ZLUNT/3D0+C3*(ZLUNT/8.D0)-ZL/2.D0
0506 10 CONTINUE
0507 N = PTCL
0508 C ----- MOMENT -----
0509 RAN1 = DSQRT(2.D0)
0510 RAN2 = DSQRT(3.D0)
0511 DO 20 I=1,N
0512 C1 = RAN1*DBLE(I)
0513 C1 = C1 - DINT(C1)
0514 C1 = C1 - 0.5D0
0515 C1 = PI/2.D0 + (5.D0/180.D0)*PI*C1
0516 C2 = RAN2*DBLE(I)
0517 C2 = C2 - DINT(C2)
0518 C2 = C2 - 0.5D0
0519 C2 = PI/2.D0 + (5.D0/180.D0)*PI*C2
0520 NX(I) = DSIN(C1)*DCOS(C2)
0521 NY(I) = DSIN(C1)*DSIN(C2)
0522 NZ(I) = DCOS(C1)
0523 20 CONTINUE
0524 RETURN
0525 END
0526 C**** SUB DATAOPUT ****
0527 SUBROUTINE DATAOPUT(NOPT1, NANMCTR, NTIMEMX, NANIME, N)
0528 C

• The initial direction of each particle is
randomly assigned with a certain angle
range about the y-direction using
quasi-random numbers.

89Practice of Molecular Dynamics Simulations

0529 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0530 C
0531 COMMON /BLOCK1/ RX , RY , RZ
0532 COMMON /BLOCK2/ NX , NY , NZ
0533 COMMON /BLOCK5/ XL , YL , ZL
0534 COMMON /BLOCK6/ RP , RP1 , D , DEL , TD
0535 COMMON /BLOCK9/ H , RCOFF, GAMDOT, DX , CORY
0536 C
0537 PARAMETER(NN=1000 , PI=3.141592653589793D0)
0538 C
0539 REAL*8 RX(NN) , RY(NN) , RZ(NN) , NX(NN) , NY(NN) , NZ(NN)
0540 REAL*8 RP102 , CRADIUS , CX1 , CY1 , CZ1 , CX2 , CY2 , CZ2
0541 C
0542 RP102 = RP1/2.D0
0543 CRADIUS = (D + TD)/2.D0
0544 XL2 = XL/2.D0
0545 YL2 = YL/2.D0
0546 ZL2 = ZL/2.D0
0547 C
0548 IF(NANMCTR .EQ. 1) THEN
0549 WRITE(NOPT1,181) (NTIMEMX/NANIME)

• A subroutine for writing out
the data which can be used
for making an animation
based on the commercial
software MicroAVS.

• MicroAVS can make a visualiza-
tion or animation by reading the
data from bbb41.mgf.

0550 END IF
0551 C
0552 IF((NANMCTR.GE.1) .AND. (NANMCTR.LE.9)) THEN
0553 WRITE(NOPT1,183) NANMCTR
0554 ELSE IF((NANMCTR.GE.10) .AND. (NANMCTR.LE.99)) THEN
0555 WRITE(NOPT1,184) NANMCTR
0556 ELSE IF((NANMCTR.GE.100) .AND. (NANMCTR.LE.999)) THEN
0557 WRITE(NOPT1,185) NANMCTR
0558 ELSE IF((NANMCTR.GE.1000) .AND. (NANMCTR.LE.9999)) THEN
0559 WRITE(NOPT1,186) NANMCTR
0560 END IF
0561 C
0562 C --- CYLINDER (1) ---
0563 WRITE(NOPT1,211) N
0564 DO 250 I=1,N
0565 CX1 = RX(I) - NX(I)*RP102
0566 CY1 = RY(I) - NY(I)*RP102
0567 CZ1 = RZ(I) - NZ(I)*RP102
0568 CX2 = RX(I) + NX(I)*RP102
0569 CY2 = RY(I) + NY(I)*RP102
0570 CZ2 = RZ(I) + NZ(I)*RP102
0571 WRITE(NOPT1,248) CX1, CY1, CZ1, CX2, CY2, CZ2, (CRADIUS+1.D-5)
0572 250 CONTINUE
0573 C
0574 C --- SPHERE MINUS (2) ---
0575 WRITE(NOPT1,311) N
0576 DO 350 I=1,N
0577 CX1 = RX(I) - NX(I)*RP102
0578 CY1 = RY(I) - NY(I)*RP102
0579 CZ1 = RZ(I) - NZ(I)*RP102
0580 WRITE(NOPT1,348) CX1, CY1, CZ1, CRADIUS, 0.0, 0.8, 1.0
0581 350 CONTINUE
0582 C
0583 C -- SPHERE PLUS (3) ---
0584 WRITE(NOPT1,311) N
0585 DO 450 I=1,N
0586 CX1 = RX(I) + NX(I)*RP102
0587 CY1 = RY(I) + NY(I)*RP102
0588 CZ1 = RZ(I) + NZ(I)*RP102
0589 WRITE(NOPT1,348) CX1, CY1, CZ1, CRADIUS, 1.0, 0.0, 0.0
0590 450 CONTINUE
0591 C
0592 C -------------------------------------- SIM.REGEON LINES (4) ---
0593 WRITE(NOPT1,648) 17
0594 WRITE(NOPT1,649) -XL2, -YL2, -ZL2
0595 WRITE(NOPT1,649) XL2, -YL2, -ZL2
0596 WRITE(NOPT1,649) XL2, YL2, -ZL2
0597 WRITE(NOPT1,649) -XL2, YL2, -ZL2

• Drawing of the cylindrical part of
particles.

• Drawing of the hemisphere of the
negative charge.

• Drawing of the hemisphere of the
positive charge.

• Drawing of the frame of the
simulation box.

0598 WRITE(NOPT1,649) -XL2, -YL2, -ZL2
0599 WRITE(NOPT1,649) -XL2, -YL2, ZL2
0600 WRITE(NOPT1,649) XL2, -YL2, ZL2

90 Introduction to Practice of Molecular Simulation

0601 WRITE(NOPT1,649) XL2, YL2, ZL2
0602 WRITE(NOPT1,649) -XL2, YL2, ZL2
0603 WRITE(NOPT1,649) -XL2, -YL2, ZL2
0604 WRITE(NOPT1,649) -XL2, -YL2, -ZL2
0605 WRITE(NOPT1,649) -XL2, YL2, -ZL2
0606 WRITE(NOPT1,649) -XL2, YL2, ZL2
0607 WRITE(NOPT1,649) XL2, YL2, ZL2
0608 WRITE(NOPT1,649) XL2, YL2, -ZL2
0609 WRITE(NOPT1,649) XL2, -YL2, -ZL2
0610 WRITE(NOPT1,649) XL2, -YL2, ZL2
0611 C
0612 C ---------------------------- FORMAT ----------------------------
0613 181 FORMAT('# Micro AVS Geom:2.00'
0614 & /'# Animation of DPD simulation results'
0615 & /I4)
0616 183 FORMAT('step',I1)
0617 184 FORMAT('step',I2)
0618 185 FORMAT('step',I3)
0619 186 FORMAT('step',I4)
0620 211 FORMAT('column'/'cylinder'/'dvertex'/'32'/I7)
0621 248 FORMAT(6F10.3 , F6.2)
0622 311 FORMAT('sphere'/'sphere_sample'/'color'/I7)
0623 348 FORMAT(3F10.3 , F6.2 , 3F5.2)
0624 648 FORMAT('polyline'/'pline_sample'/'vertex'/I3)
0625 649 FORMAT(3F10.3)
0626 RETURN
0627 END
0628 C**** SUB FORCECAL *****
0629 SUBROUTINE FORCECAL(NP, NTIME)
0630 C
0631 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0632 C
0633 COMMON /BLOCK1/ RX , RY , RZ
0634 COMMON /BLOCK2/ NX , NY , NZ
0635 COMMON /BLOCK3/ FX , FY , FZ
0636 COMMON /BLOCK4/ TX , TY , TZ
0637 COMMON /BLOCK5/ XL , YL , ZL
0638 COMMON /BLOCK6/ RP , RP1 , D , DEL , TD
0639 COMMON /BLOCK7/ XA , YA , YC , YH
0640 COMMON /BLOCK8/ N , NDENS, VDENS
0641 COMMON /BLOCK9/ H , RCOFF, GAMDOT, DX , CORY
0642 COMMON /BLOCK10/ RAM , RAH , RAV
0643 COMMON /BLOCK11/ HX , HY , HZ
0644 COMMON /WORK20/ XRXI , YRYI , ZRZI , XRXJ , YRYJ , ZRZJ
0645 COMMON /WORK21/ FXIJS, FYIJS, FZIJS, FXJIS, FYJIS, FZJIS
0646 COMMON /WORK22/ TXIJS, TYIJS, TZIJS, TXJIS, TYJIS, TZJIS
0647 COMMON /WORK23/ RCOFF2 , RP102 , D1 , D1SQ
0648 COMMON /WORK24/ CF0XA , CF0YA , CT0YC , CE0YHYC
0649 C
0650 PARAMETER(NN=1000 , PI=3.141592653589793D0)
0651 C
0652 REAL*8 NDENS
0653 REAL*8 RX(NN) , RY(NN) , RZ(NN) , NX(NN) , NY(NN) , NZ(NN)
0654 REAL*8 FX(NN) , FY(NN) , FZ(NN) , TX(NN) , TY(NN) , TZ(NN)
0655 C
0656 REAL*8 RXI , RYI , RZI , RXIJ , RYIJ , RZIJ , RIJSQ , RIJ
0657 REAL*8 RXJ , RYJ , RZJ
0658 REAL*8 NXI , NYI , NZI , NXIJ , NYIJ , NZIJ
0659 REAL*8 NXJ , NYJ , NZJ , NXIJ2, NYIJ2, NZIJ2

• A subroutine for calculating the
forces and torques acting between
particles.

0660 REAL*8 FXI , FYI , FZI , TXI , TYI , TZI
0661 REAL*8 FXIJP01 , FYIJP01, FZIJP01, FXIJP02, FYIJP02, FZIJP02
0662 REAL*8 FXIJM01 , FYIJM01, FZIJM01, FXIJM02, FYIJM02, FZIJM02
0663 REAL*8 FXIJP , FYIJP , FZIJP , FXJIP , FYJIP , FZJIP
0664 REAL*8 TXIJP , TYIJP , TZIJP , TXJIP , TYJIP , TZJIP
0665 REAL*8 FXIJM , FYIJM , FZIJM , FXJIM , FYJIM , FZJIM
0666 REAL*8 TXIJM , TYIJM , TZIJM , TXJIM , TYJIM , TZJIM
0667 REAL*8 TXIJ , TYIJ , TZIJ , TXIJ0 , TYIJ0 , TZIJ0
0668 REAL*8 XI , YI , ZI , XJ , YJ , ZJ
0669 REAL*8 RRXI , RRYI , RRZI , RRXIJ , RRYIJ , RRZIJ , RRIJ
0670 REAL*8 RRXJ , RRYJ , RRZJ , RCHKSQ, RCHKSQ2
0671 REAL*8 RRXIC , RRYIC , RRZIC , RRXJC , RRYJC , RRZJC
0672 REAL*8 NNXI , NNYI , NNZI , NNXJ , NNYJ , NNZJ

91Practice of Molecular Dynamics Simulations

0673 REAL*8 R11 , R12 , R21 , R22
0674 REAL*8 KI , KJ , KKI , KKJ , KIS , KJS , KKIS , KKIS2
0675 REAL*8 CKI , CKJ , CKKI, CKKJ
0676 REAL*8 KKIC, KKJC , CKKIC , CKKIC2
0677 REAL*8 CNINJ , CRIJNI , CRIJNJ , CRIJSQ , CWIDTH
0678 REAL*8 C01X, C01Y, C01Z
0679 REAL*8 C11X, C11Y, C11Z, C12X, C12Y, C12Z
0680 REAL*8 C21X, C21Y, C21Z, C22X, C22Y, C22Z
0681 REAL*8 C1R11, C1R12, C1R21, C1R22
0682 REAL*8 C2R11, C2R12, C2R21, C2R22
0683 REAL*8 C00 , C11 , C12 , C21 , C22
0684 INTEGER ITREE , ISKIP , IPATH , ISUBTREE
0685 LOGICAL KEEP
0686 C
0687 DO 10 I=1,N
0688 FX(I) = 0.D0
0689 FY(I) = 0.D0
0690 FZ(I) = 0.D0
0691 TX(I) = 0.D0
0692 TY(I) = 0.D0
0693 TZ(I) = 0.D0
0694 10 CONTINUE
0695 C
0696 C --- MAIN LOOP START
0697 C
0698 DO 2000 I=1,N-1
0699 C
0700 RXI = RX(I)
0701 RYI = RY(I)
0702 RZI = RZ(I)
0703 NXI = NX(I)
0704 NYI = NY(I)
0705 NZI = NZ(I)
0706 FXI = FX(I)
0707 FYI = FY(I)
0708 FZI = FZ(I)
0709 TXI = TX(I)
0710 TYI = TY(I)
0711 TZI = TZ(I)
0712 C
0713 DO 1000 J=I+1,N
0714 C

• The treatment concerning
particle i is conducted in the
following.

0715 RXJ = RX(J)
0716 RYJ = RY(J)
0717 RZJ = RZ(J)
0718 NXJ = NX(J)
0719 NYJ = NY(J)
0720 NZJ = NZ(J)
0721 C
0722 RZIJ = RZI - RZJ
0723 IF(RZIJ .GT. ZL/2.D0) THEN
0724 RZIJ = RZIJ - ZL
0725 RZJ = RZJ + ZL
0726 ELSE IF(RZIJ .LT. -ZL/2.D0) THEN
0727 RZIJ = RZIJ + ZL
0728 RZJ = RZJ - ZL
0729 END IF
0730 IF(DABS(RZIJ) .GE. RCOFF) GOTO 1000
0731 C
0732 RYIJ = RYI - RYJ
0733 CORY = - DNINT(RYIJ/YL)
0734 RYIJ = RYIJ + CORY*YL
0735 RYJ = RYJ - CORY*YL

• The treatment concerning particles i and j
is conducted in the following.

• The treatment of the periodic BC.

• The treatment of the Lees–Edwards BC.

0736 IF(DABS(RYIJ) .GE. RCOFF) GOTO 1000
0737 C
0738 RXIJ = RXI - RXJ
0739 RXIJ = RXIJ + CORY*DX
0740 RXJ = RXJ - CORY*DX

92 Introduction to Practice of Molecular Simulation

0741 IF(RXIJ .GT. XL/2.D0) THEN
0742 RXIJ = RXIJ - XL
0743 RXJ = RXJ + XL
0744 ELSE IF(RXIJ .LT. -XL/2.D0) THEN
0745 RXIJ = RXIJ + XL
0746 RXJ = RXJ - XL
0747 END IF
0748 IF(DABS(RXIJ) .GE. RCOFF) GOTO 1000
0749 C
0750 RIJSQ= RXIJ**2 + RYIJ**2 + RZIJ**2
0751 IF(RIJSQ .GE. RCOFF2) GOTO 1000
0752 RIJ = DSQRT(RIJSQ)
0753 C
0754 C -------------------------------- START OF MAGNETIC FORCES ---
0755 NXIJ = NXI - NXJ
0756 NYIJ = NYI - NYJ
0757 NZIJ = NZI - NZJ
0758 NXIJ2 = NXI + NXJ
0759 NYIJ2 = NYI + NYJ
0760 NZIJ2 = NZI + NZJ
0761 C --- MAGNETIC FORCES ---
0762 FXIJP01 = RXIJ + RP102*NXIJ
0763 FYIJP01 = RYIJ + RP102*NYIJ
0764 FZIJP01 = RZIJ + RP102*NZIJ
0765 FXIJP02 = RXIJ + RP102*NXIJ2
0766 FYIJP02 = RYIJ + RP102*NYIJ2
0767 FZIJP02 = RZIJ + RP102*NZIJ2
0768 FXIJM01 = RXIJ - RP102*NXIJ2
0769 FYIJM01 = RYIJ - RP102*NYIJ2

• If the two particles are separated over the
cutoff distance r*coff, the calculation of
forces and torques is unnecessary.

• The magnetic force acting between
particles i and j is calculated.

• To calculate the first and second terms of
Eq. (3.56) and also Eq. (3.57) separately,
we calculate quantities needed in order.

0770 FZIJM01 = RZIJ - RP102*NZIJ2
0771 FXIJM02 = RXIJ - RP102*NXIJ
0772 FYIJM02 = RYIJ - RP102*NYIJ
0773 FZIJM02 = RZIJ - RP102*NZIJ
0774 C
0775 C2R11 = FXIJP01**2 + FYIJP01**2 + FZIJP01**2
0776 C2R12 = FXIJP02**2 + FYIJP02**2 + FZIJP02**2
0777 C2R21 = FXIJM01**2 + FYIJM01**2 + FZIJM01**2
0778 C2R22 = FXIJM02**2 + FYIJM02**2 + FZIJM02**2
0779 C1R11 = DSQRT(C2R11)
0780 C1R12 = DSQRT(C2R12)
0781 C1R21 = DSQRT(C2R21)
0782 C1R22 = DSQRT(C2R22)
0783 IF(C1R11 .GE. 1.D0) THEN
0784 R11 = C1R11*C2R11
0785 ELSE
0786 R11 = C1R11
0787 END IF
0788 IF(C1R12 .GE. 1.D0) THEN
0789 R12 = C1R12*C2R12
0790 ELSE
0791 R12 = C1R12
0792 END IF
0793 IF(C1R21 .GE. 1.D0) THEN
0794 R21 = C1R21*C2R21
0795 ELSE
0796 R21 = C1R21
0797 END IF
0798 IF(C1R22 .GE. 1.D0) THEN
0799 R22 = C1R22*C2R22
0800 ELSE
0801 R22 = C1R22
0802 END IF
0803 C

• The denominators of the first and
second terms in Eq. (3.56) are calculated
and saved in R11 and R12.
• Similarly, those in Eq. (3.57) are
calculated and saved in R21 and R22.

0804 C11X = FXIJP01/R11
0805 C11Y = FYIJP01/R11
0806 C11Z = FZIJP01/R11
0807 C12X = FXIJP02/R12
0808 C12Y = FYIJP02/R12
0809 C12Z = FZIJP02/R12
0810 FXIJP = C11X - C12X

• The first and second terms in Eq. (3.56) are calculated
and saved in (C11X, C11Y, C11Z) and (C12X, C12Y,
C12Z).
• Eq. (3.56) is calculated, but λm is multiplied in the final
stage.

93Practice of Molecular Dynamics Simulations

0811 FYIJP = C11Y - C12Y
0812 FZIJP = C11Z - C12Z
0813 C21X = FXIJM01/R21
0814 C21Y = FYIJM01/R21
0815 C21Z = FZIJM01/R21
0816 C22X = FXIJM02/R22
0817 C22Y = FYIJM02/R22
0818 C22Z = FZIJM02/R22
0819 FXIJM = - C21X + C22X
0820 FYIJM = - C21Y + C22Y
0821 FZIJM = - C21Z + C22Z
0822 C
0823 FXJIP = - C11X + C21X
0824 FYJIP = - C11Y + C21Y

• The forces acting on the positive and negative charges
of particle j can be obtained from the action–reaction
law; λm is multiplied in the final stage.

• The first and second terms in Eq. (3.57) are calculated
and saved in （C21X, C21Y, C21Z） and （C22X, C22Y,
C22Z）.
• Eq. (3.57) is calculated, but λm is multiplied in the final
stage.

0825 FZJIP = - C11Z + C21Z
0826 FXJIM = C12X - C22X
0827 FYJIM = C12Y - C22Y
0828 FZJIM = C12Z - C22Z
0829 C
0830 FXI = FXI + (FXIJP + FXIJM)*RAM
0831 FYI = FYI + (FYIJP + FYIJM)*RAM
0832 FZI = FZI + (FZIJP + FZIJM)*RAM
0833 FX(J) = FX(J) + (FXJIP + FXJIM)*RAM
0834 FY(J) = FY(J) + (FYJIP + FYJIM)*RAM
0835 FZ(J) = FZ(J) + (FZJIP + FZJIM)*RAM
0836 C --- MAGNETIC TORQUES ---
0837 TXIJP = (NYI*FZIJP - NZI*FYIJP)
0838 TYIJP = (NZI*FXIJP - NXI*FZIJP)
0839 TZIJP = (NXI*FYIJP - NYI*FXIJP)
0840 TXIJM = -(NYI*FZIJM - NZI*FYIJM)
0841 TYIJM = -(NZI*FXIJM - NXI*FZIJM)
0842 TZIJM = -(NXI*FYIJM - NYI*FXIJM)
0843 TXI = TXI + (TXIJP + TXIJM)* (RP102*3.D0) * RAM
0844 TYI = TYI + (TYIJP + TYIJM)* (RP102*3.D0) * RAM
0845 TZI = TZI + (TZIJP + TZIJM)* (RP102*3.D0) * RAM
0846 C
0847 TXJIP = (NYJ*FZJIP - NZJ*FYJIP)
0848 TYJIP = (NZJ*FXJIP - NXJ*FZJIP)
0849 TZJIP = (NXJ*FYJIP - NYJ*FXJIP)
0850 TXJIM = -(NYJ*FZJIM - NZJ*FYJIM)
0851 TYJIM = -(NZJ*FXJIM - NXJ*FZJIM)
0852 TZJIM = -(NXJ*FYJIM - NYJ*FXJIM)
0853 TX(J) = TX(J) + (TXJIP + TXJIM)* (RP102*3.D0) * RAM
0854 TY(J) = TY(J) + (TYJIP + TYJIM)* (RP102*3.D0) * RAM
0855 TZ(J) = TZ(J) + (TZJIP + TZJIM)* (RP102*3.D0) * RAM
0856 C
0857 C ---------------------------------- END OF MAGNETIC FORCES ---
0858 C
0859 C ------------------------------ FORCES DUE TO STERIC INER. ---
0860 C
0861 CNINJ = NXI*NXJ + NYI*NYJ + NZI*NZJ
0862 TXIJ = RXIJ/RIJ
0863 TYIJ = RYIJ/RIJ
0864 TZIJ = RZIJ/RIJ
0865 C11 = TXIJ*NXJ + TYIJ*NYJ + TZIJ*NZJ
0866 C
0867 IF(DABS(CNINJ) .LT. 0.001D0) THEN
0868 ITREE = 2
0869 ELSE IF(DABS(CNINJ) .GT. 0.999D0) THEN
0870 IF(DABS(C11) .GT. 0.999D0)THEN
0871 ITREE = 0
0872 END IF
0873 ITREE = 3
0874 ELSE
0875 ITREE = 1
0876 END IF
0877 C
0878 C --------------------
0879 C ITREE=0: LINEAR

• The regime in Table 3.1 is determined to proceed to appropri-
ate treatment, and after the calculation of the repulsive forces,
the calculation procedure returns to the main loop.

• The repulsive force due to the overlap
of surfactant layers is calculated below.
• The variable ITREE implies the
particle overlapping regime, and the
procedures are performed according to
ITREE.

• The torque acting on particle j is calculated
from Eqs. (3.59) and (3.60).

• The torque acting on particle i is
calculated from Eqs. (3.59) and (3.60).

• The force exerted by particle j is saved in
the variable of particle i .
・Similarly, the force exerted by particle i is
saved.

0880 C ITREE=1: GENERAL
0881 C ITREE=2: NORMALL
0882 C ITREE=3: PARALLEL

94 Introduction to Practice of Molecular Simulation

0883 C --------------------
0884 C
0885 C --- (0) LINEAR ---
0886 IF(ITREE .EQ. 0) THEN
0887 C
0888 IF(CNINJ .GE. 0) THEN
0889 IF(C11 .GE. 0) THEN
0890 C --- IPATH=1
0891 XJ = RXJ + NXJ*RP102
0892 YJ = RYJ + NYJ*RP102
0893 ZJ = RZJ + NZJ*RP102
0894 XI = RXI - NXI*RP102
0895 YI = RYI - NYI*RP102
0896 ZI = RZI - NZI*RP102
0897 ELSE
0898 C --- IPATH=2
0899 XJ = RXJ - NXJ*RP102
0900 YJ = RYJ - NYJ*RP102
0901 ZJ = RZJ - NZJ*RP102
0902 XI = RXI + NXI*RP102
0903 YI = RYI + NYI*RP102
0904 ZI = RZI + NZI*RP102
0905 END IF
0906 ELSE
0907 IF(C11 .GE. 0) THEN
0908 C --- IPATH=3
0909 XJ = RXJ + NXJ*RP102
0910 YJ = RYJ + NYJ*RP102
0911 ZJ = RZJ + NZJ*RP102
0912 XI = RXI + NXI*RP102
0913 YI = RYI + NYI*RP102
0914 ZI = RZI + NZI*RP102
0915 ELSE
0916 C --- IPATH=4
0917 XJ = RXJ - NXJ*RP102
0918 YJ = RYJ - NYJ*RP102
0919 ZJ = RZJ - NZJ*RP102
0920 XI = RXI - NXI*RP102
0921 YI = RYI - NYI*RP102
0922 ZI = RZI - NZI*RP102
0923 END IF
0924 END IF
0925 C
0926 RRIJ = DSQRT((XI-XJ)**2 + (YI-YJ)**2 + (ZI-ZJ)**2)
0927 XRXI = XI - RXI
0928 YRYI = YI - RYI
0929 ZRZI = ZI - RZI
0930 XRXJ = XJ - RXJ
0931 YRYJ = YJ - RYJ
0932 ZRZJ = ZJ - RZJ
0933 ISKIP = 1
0934 CALL STEFORCE(RRIJ,RAV,ISKIP,TXIJ,TYIJ,TZIJ)

• The calculation of torques is unnece-
ssary, so ISKIP is set as ISKIP=1.

• The positions (XI,YI,ZI) and (XJ,YJ,ZJ)
of the magnetic charges of particles i and
j are calculated.

• The treatment for the linear arrangement
in Table 3.1.

0935 FXI = FXI + FXIJS
0936 FYI = FYI + FYIJS
0937 FZI = FZI + FZIJS
0938 FX(J) = FX(J) + FXJIS
0939 FY(J) = FY(J) + FYJIS
0940 FZ(J) = FZ(J) + FZJIS
0941 C
0942 GOTO 1000
0943 C
0944 END IF
0945 C --- END OF LINEAR --
0946
0947 IF((ITREE .EQ. 1) .OR. (ITREE .EQ. 2)) THEN
0948 C
0949 CRIJNI = NXI*RXIJ + NYI*RYIJ + NZI*RZIJ
0950 CRIJNJ = NXJ*RXIJ + NYJ*RYIJ + NZJ*RZIJ
0951 C00 = 1.D0 / (1.D0 - CNINJ**2)
0952 KI = C00*(-CRIJNI + CNINJ*CRIJNJ)

• ki and kj are calculated
from Eq. (3.44).

• The repulsive forces due to the overlap of the
steric layers are calculated in the subroutine
STEFORCE; the results concerning particles i
and j are saved in (FXIJS,FYIJS,FZIJS) and
(FXJIS, FYJIS, FZJIS), respectively.

0953 KJ = C00*(CRIJNJ - CNINJ*CRIJNI)
0954 C --- CHECK OVERLAP ---

95Practice of Molecular Dynamics Simulations

0955 CRIJSQ = (RXIJ + KI*NXI - KJ*NXJ)**2
0956 & + (RYIJ + KI*NYI - KJ*NYJ)**2
0957 & + (RZIJ + KI*NZI - KJ*NZJ)**2
0958 IF(CRIJSQ .GE. D1SQ) GOTO 1000
0959 C
0960 IF(DABS(KJ) .GT. DABS(KI)) THEN
0961 KEEP = .TRUE.
0962 II = I
0963 JJ = J
0964 RRXI = RXI
0965 RRYI = RYI
0966 RRZI = RZI
0967 RRXJ = RXJ
0968 RRYJ = RYJ
0969 RRZJ = RZJ
0970 RRXIJ = RXIJ
0971 RRYIJ = RYIJ
0972 RRZIJ = RZIJ
0973 NNXI = NXI
0974 NNYI = NYI
0975 NNZI = NZI
0976 NNXJ = NXJ
0977 NNYJ = NYJ
0978 NNZJ = NZJ
0979 KKI = KI
0980 KKJ = KJ
0981 ELSE
0982 KEEP = .FALSE.
0983 II = J
0984 JJ = I
0985 RRXI = RXJ
0986 RRYI = RYJ
0987 RRZI = RZJ
0988 RRXJ = RXI
0989 RRYJ = RYI

• The subscripts are exchanged between i
and j so as to satisfy |kj|>|ki |.
• As a result, the particle names i and j in
Table 3.1 are expressed as II and JJ in the
program.

0990 RRZJ = RZI
0991 RRXIJ = -RXIJ
0992 RRYIJ = -RYIJ
0993 RRZIJ = -RZIJ
0994 NNXI = NXJ
0995 NNYI = NYJ
0996 NNZI = NZJ
0997 NNXJ = NXI
0998 NNYJ = NYI
0999 NNZJ = NZI
1000 KKI = KJ
1001 KKJ = KI
1002 TXIJ = -TXIJ
1003 TYIJ = -TYIJ
1004 TZIJ = -TZIJ
1005 END IF
1006 C -------------------------------
1007 C ISUBTREE=1: i(sphe,cyl)-j(sphe)
1008 C ISUBTREE=2: i(cyl) -j(cyl)
1009 C -------------------------------
1010 IF(DABS(KKJ) .GE. RP102) THEN
1011 ISUBTREE = 1
1012 ELSE
1013 ISUBTREE = 2
1014 END IF
1015 C
1016 END IF
1017 C --------------------
1018 C ITREE=0: LINEAR
1019 C ITREE=1: GENERAL
1020 C ITREE=2: NORMALL
1021 C ITREE=3: PARALLEL
1022 C --------------------

• Which part of particle j has a possibility of the overlap with particle i
is grasped; there is an overlapping possibility of the hemisphere part
for ISUBTREE=1 and of the cylindrical part for SUBTREE=2.

1023 IF(ITREE .EQ. 1) GOTO 200
1024 IF(ITREE .EQ. 2) GOTO 400
1025 IF(ITREE .EQ. 3) GOTO 600

96 Introduction to Practice of Molecular Simulation

1026 C
1027 C -- (1) GENERAL ---
1028 C --- FOR II AND JJ ---
1029 200 CNINJ = NXI*NXJ + NYI*NYJ + NZI*NZJ
1030 IF(CNINJ .GT. 0.D0) THEN
1031 IF(KKJ .GE. 0.D0) THEN
1032 IPATH = 1
1033 ELSE
1034 IPATH = 4
1035 END IF
1036 ELSE
1037 IF(KKJ .GE. 0.D0) THEN
1038 IPATH = 3
1039 ELSE
1040 IPATH = 2
1041 END IF
1042 END IF
1043 C
1044 KKIS = CNINJ*RP102 - (RRXIJ*NNXI + RRYIJ*NNYI + RRZIJ*NNZI)

• ki
s (KKIS) is calculated from Eq. (3.46). Similarly, ki

s ′

(KKIS2) concerning the negative magnetic charge of
particle j is calculated.

• The treatment for itree=1 of the general arrangement
in Table 3.1.
• The treatment is conducted for the four cases
depending on the position relationship of the positive
and negative charges of particles i and j; IPATH is used
for specifying the case chosen.

1045 KKIS2 = -CNINJ*RP102 - (RRXIJ*NNXI + RRYIJ*NNYI + RRZIJ*NNZI)
1046 C
1047 C1 = RP102 - KKJ
1048 C1 = DINT(C1)
1049 C2 = RP102 - DABS(KKJ)
1050 C2 = DINT(C2)
1051 C
1052 IF(IPATH .EQ. 1) THEN

1053 C --- PATH=1 ---
1054 C12 =-1.D0
1055 C22 =-1.D0
1056 IF(ISUBTREE .EQ. 1) THEN
1057 C11 = RP102
1058 C21 = KKIS
1059 IF(KKIS .GT. RP102) C21 = RP102
1060 IF(KKIS .LT.-RP102) C21 =-RP102
1061 ELSE
1062 C11 = KKJ + C1
1063 C21 = KKI + C1
1064 END IF
1065 C --- PATH=2 ---
1066 ELSE IF(IPATH .EQ. 2) THEN
1067 C12 = 1.D0
1068 C22 =-1.D0
1069 IF(ISUBTREE .EQ. 1) THEN
1070 C11 =-RP102
1071 C21 = KKIS2
1072 IF(KKIS2 .GT. RP102) C21 = RP102
1073 IF(KKIS2 .LT.-RP102) C21 =-RP102
1074 ELSE
1075 C11 = KKJ - C2
1076 C21 = KKI + C2
1077 END IF
1078 C --- PATH=3 ---
1079 ELSE IF(IPATH .EQ. 3) THEN
1080 C12 =-1.D0
1081 C22 = 1.D0
1082 IF(ISUBTREE .EQ. 1) THEN
1083 C11 = RP102
1084 C21 = KKIS
1085 IF(KKIS .LT. -RP102) C21 = -RP102
1086 IF(KKIS .GT. RP102) C21 = RP102
1087 ELSE
1088 C11 = KKJ + C1
1089 C21 = KKI - C1
1090 END IF
1091 C --- PATH=4 ---
1092 ELSE
1093 C12 = 1.D0
1094 C22 = 1.D0
1095 IF(ISUBTREE .EQ. 1) THEN
1096 C11 =-RP102
1097 C21 = KKIS2

• The direction in which the next
neighboring sphere is added to form
the sphere-connected particle j is
specified by C12; similarly, C22 is used
for particle i. C12=1 means the particle
axis direction. C12=–1 means the
opposite direction to the particle axis.

• According to the repulsive force model shown in
Section 3.2.4, the position of the first constituent sphere
to be placed is determined. The variables used to do so
are C11 and C21 for particles j and i, respectively.

97Practice of Molecular Dynamics Simulations

1098 IF(KKIS2 .LT. -RP102) C21 = -RP102
1099 IF(KKIS2 .GT. RP102) C21 = RP102
1100 ELSE
1101 C11 = KKJ - C2
1102 C21 = KKI - C2
1103 END IF
1104 END IF
1105 C
1106 C
1107 JJJE = IDNINT(RP1)
1108 DO 250 JJJ= 0, JJJE
1109 C
1110 CKKJ = C11 + C12*DBLE(JJJ)
1111 CKKI = C21 + C22*DBLE(JJJ)
1112 IF((DABS(CKKJ) .GT. RP102+1.D-10) .OR.
1113 & (DABS(CKKI) .GT. RP102+1.D-10)) GOTO 250
1114 C
1115 IF(ISUBTREE .EQ. 1) THEN
1116 IF((DABS(CKKI) .GT. RP102+1.D-10) .OR.
1117 & (DABS(CKKJ) .GT. RP102+1.D-10)) GOTO 1000
1118 END IF
1119 C
1120 245 XJ = RRXJ + NNXJ*CKKJ
1121 YJ = RRYJ + NNYJ*CKKJ
1122 ZJ = RRZJ + NNZJ*CKKJ
1123 XI = RRXI + NNXI*CKKI
1124 YI = RRYI + NNYI*CKKI
1125 ZI = RRZI + NNZI*CKKI
1126 RRIJ = DSQRT((XI-XJ)**2 + (YI-YJ)**2 + (ZI-ZJ)**2)
1127 IF(ISUBTREE .EQ. 1) THEN
1128 IF(RRIJ .GE. D1) GOTO 1000
1129 END IF
1130 XRXI = XI - RRXI
1131 YRYI = YI - RRYI
1132 ZRZI = ZI - RRZI
1133 XRXJ = XJ - RRXJ
1134 YRYJ = YJ - RRYJ
1135 ZRZJ = ZJ - RRZJ
1136 TXIJ0= (XI-XJ)/RRIJ
1137 TYIJ0= (YI-YJ)/RRIJ
1138 TZIJ0= (ZI-ZJ)/RRIJ
1139 ISKIP = 0
1140 CALL STEFORCE(RRIJ,RAV,ISKIP,TXIJ0,TYIJ0,TZIJ0)
1141 IF(.NOT. KEEP) THEN
1142 C1 = FXIJS
1143 C2 = FYIJS
1144 C3 = FZIJS
1145 FXIJS = FXJIS
1146 FYIJS = FYJIS
1147 FZIJS = FZJIS
1148 FXJIS = C1
1149 FYJIS = C2
1150 FZJIS = C3
1151 C1 = TXIJS
1152 C2 = TYIJS
1153 C3 = TZIJS
1154 TXIJS = TXJIS

• The posttreatment for the case of the
particle names exchanged.

• To evaluate the torque, the relative position
of the sphere from the rod-like particle center
is calculated.

• The positions of the spheres of particle i
and j are saved in (XI,YI,ZI) and (XJ,YJ,
ZJ), respectively.

1155 TYIJS = TYJIS
1156 TZIJS = TZJIS
1157 TXJIS = C1
1158 TYJIS = C2
1159 TZJIS = C3
1160 END IF
1161 FXI = FXI + FXIJS
1162 FYI = FYI + FYIJS
1163 FZI = FZI + FZIJS
1164 FX(J) = FX(J) + FXJIS
1165 FY(J) = FY(J) + FYJIS
1166 FZ(J) = FZ(J) + FZJIS
1167 TXI = TXI + TXIJS
1168 TYI = TYI + TYIJS
1169 TZI = TZI + TZIJS

98 Introduction to Practice of Molecular Simulation

1170 TX(J) = TX(J) + TXJIS
1171 TY(J) = TY(J) + TYJIS
1172 TZ(J) = TZ(J) + TZJIS
1173 C
1174 250 CONTINUE
1175 C
1176 GOTO 1000
1177 C -- (2) NORMAL ---
1178 C --- FOR II AND JJ ---
1179 C
1180 400 IF(KKJ .GE. 0.D0) THEN
1181 IPATH = 1
1182 ELSE
1183 IPATH = 2
1184 END IF
1185 C
1186 CNINJ = NXI*NXJ + NYI*NYJ + NZI*NZJ
1187 KKIS = CNINJ*RP102 - (RRXIJ*NNXI + RRYIJ*NNYI + RRZIJ*NNZI)
1188 KKIS2 = -CNINJ*RP102 - (RRXIJ*NNXI + RRYIJ*NNYI + RRZIJ*NNZI)
1189 C
1190 C11 = KKJ
1191 C21 = KKI
1192 IF(IPATH .EQ. 1) THEN
1193 C --- PATH=1 ---
1194 IF(ISUBTREE .EQ. 1) THEN
1195 C11 = RP102
1196 C21 = KKIS
1197 IF(KKIS .GT. RP102) C21 = RP102
1198 IF(KKIS .LT.-RP102) C21 =-RP102
1199 END IF
1200 ELSE
1201 C --- PATH=2 ---
1202 IF(ISUBTREE .EQ. 1) THEN
1203 C11 =-RP102
1204 C21 = KKIS2
1205 IF(KKIS2 .GT. RP102) C21 = RP102
1206 IF(KKIS2 .LT.-RP102) C21 =-RP102
1207 END IF
1208 END IF
1209 C

• ki
s (KKIS) is calculated from Eq. (3.46). Similarly, ki

s‚(KKIS2) concerning
the negative magnetic charge of particle j is calculated

• The treatment for the normal arrangement in Table 3.1.

1210 CKKJ = C11
1211 CKKI = C21
1212 XJ = RRXJ + CKKJ*NNXJ
1213 YJ = RRYJ + CKKJ*NNYJ
1214 ZJ = RRZJ + CKKJ*NNZJ
1215 XI = RRXI + CKKI*NNXI
1216 YI = RRYI + CKKI*NNYI
1217 ZI = RRZI + CKKI*NNZI
1218 RRIJ = DSQRT((XI-XJ)**2 + (YI-YJ)**2 + (ZI-ZJ)**2)
1219 IF(RRIJ .GE. D1) GOTO 1000
1220 C
1221 XRXI = XI - RRXI
1222 YRYI = YI - RRYI
1223 ZRZI = ZI - RRZI
1224 XRXJ = XJ - RRXJ
1225 YRYJ = YJ - RRYJ
1226 ZRZJ = ZJ - RRZJ
1227 TXIJ0= (XI-XJ)/RRIJ
1228 TYIJ0= (YI-YJ)/RRIJ
1229 TZIJ0= (ZI-ZJ)/RRIJ
1230 ISKIP = 0
1231 CALL STEFORCE(RRIJ,RAV,ISKIP,TXIJ0,TYIJ0,TZIJ0)
1232 IF(.NOT. KEEP) THEN
1233 C1 = FXIJS
1234 C2 = FYIJS
1235 C3 = FZIJS
1236 FXIJS = FXJIS
1237 FYIJS = FYJIS
1238 FZIJS = FZJIS
1239 FXJIS = C1
1240 FYJIS = C2

• The posttreatment for the case of the
particle names exchanged.

• To evaluate the torque, the relative
position of the sphere from the
rod-like particle center is calculated.

• The positions of the spheres of particles i and j are
saved in (XI,YI,ZI) and (XJ,YJ,ZJ), respectively.

• According to the repulsive force model shown in
Section 3.2.4, the position of the first constituent sphere
to be placed is determined. The variables used to do so
are C11 and C21 for particles j and i, respectively.

99Practice of Molecular Dynamics Simulations

1241 FZJIS = C3
1242 C1 = TXIJS
1243 C2 = TYIJS
1244 C3 = TZIJS
1245 TXIJS = TXJIS
1246 TYIJS = TYJIS
1247 TZIJS = TZJIS
1248 TXJIS = C1
1249 TYJIS = C2
1250 TZJIS = C3
1251 END IF
1252 FXI = FXI + FXIJS
1253 FYI = FYI + FYIJS
1254 FZI = FZI + FZIJS
1255 FX(J) = FX(J) + FXJIS
1256 FY(J) = FY(J) + FYJIS
1257 FZ(J) = FZ(J) + FZJIS
1258 TXI = TXI + TXIJS
1259 TYI = TYI + TYIJS
1260 TZI = TZI + TZIJS
1261 TX(J) = TX(J) + TXJIS
1262 TY(J) = TY(J) + TYJIS
1263 TZ(J) = TZ(J) + TZJIS
1264 C

• The treatment for the parallel arrangement in Table 3.1.

1265 GOTO 1000
1266 C -- (3) PARALLEL --
1267 C --- FOR I AND J ---
1268 C
1269 600 CNINJ = NXI*NXJ + NYI*NYJ + NZI*NZJ
1270 KIS = CNINJ*RP102 - (RXIJ*NXI + RYIJ*NYI + RZIJ*NZI)
1271 KJS = CNINJ*RP102 + (RXIJ*NXJ + RYIJ*NYJ + RZIJ*NZJ)
1272 C --- CHECK OVERLAP ---
1273 CWIDTH = (RXIJ + KIS*NXI - RP102*NXJ)**2
1274 & + (RYIJ + KIS*NYI - RP102*NYJ)**2
1275 & + (RZIJ + KIS*NZI - RP102*NZJ)**2
1276 IF(CWIDTH .GE. D1SQ) GOTO 1000
1277 C
1278 IF(CNINJ .GE. 0.D0) THEN
1279 IPATH = 1
1280 ELSE
1281 IF(KIS .LE. -RP102) THEN
1282 IPATH = 2
1283 ELSE
1284 IPATH = 3
1285 END IF
1286 END IF
1287 C
1288 KEEP = .TRUE.
1289 II = I
1290 JJ = J
1291 RRXI = RXI
1292 RRYI = RYI
1293 RRZI = RZI
1294 RRXJ = RXJ

• The square distance between particles i
and j is calculated and saved in CWIDTH.
In this calculation, the length of the vertical
line drawn from the positive magnetic
charge of particle j to the axis line of
particle i is evaluated.

1295 RRYJ = RYJ
1296 RRZJ = RZJ
1297 RRXIJ = RXIJ
1298 RRYIJ = RYIJ
1299 RRZIJ = RZIJ
1300 NNXI = NXI
1301 NNYI = NYI
1302 NNZI = NZI
1303 NNXJ = NXJ
1304 NNYJ = NYJ
1305 NNZJ = NZJ
1306 KKIS = KIS
1307 IF((IPATH .EQ. 1) .AND. (KIS .GT. KJS)) THEN
1308 KEEP = .FALSE.
1309 II = J
1310 JJ = I
1311 RRXI = RXJ
1312 RRYI = RYJ

100 Introduction to Practice of Molecular Simulation

1313 RRZI = RZJ
1314 RRXJ = RXI
1315 RRYJ = RYI
1316 RRZJ = RZI
1317 RRXIJ = -RXIJ
1318 RRYIJ = -RYIJ
1319 RRZIJ = -RZIJ
1320 NNXI = NXJ
1321 NNYI = NYJ
1322 NNZI = NZJ
1323 NNXJ = NXI
1324 NNYJ = NYI
1325 NNZJ = NZI
1326 KKIS = KJS
1327 END IF
1328 C --- FOR II AND JJ ---
1329 C
1330 KKIC = -(RRXIJ*NNXI+ RRYIJ*NNYI + RRZIJ*NNZI)
1331 KKJC = (RRXIJ*NNXJ+ RRYIJ*NNYJ + RRZIJ*NNZJ)
1332 CKKIC = DABS(KKIC)
1333 CKKIC2 = CKKIC/2.D0
1334 C
1335 C11 = KKJC/2.D0
1336 C21 = KKIC/2.D0
1337 IF(IPATH .EQ. 1) THEN
1338 C --- PATH=1 ---
1339 C12 = 1.D0
1340 C22 = 1.D0
1341 IF(CKKIC2 .GT. RP102) THEN
1342 C11 = RP102
1343 C21 = -RP102
1344 END IF
1345 C --- PATH=2 ---
1346 ELSE IF(IPATH .EQ. 2) THEN
1347 C12 =-1.D0
1348 C22 = 1.D0
1349 IF(CKKIC2 .GT. RP102) THEN
1350 C11 = -RP102
1351 C21 = -RP102
1352 END IF
1353 C --- PATH=3 ---
1354 ELSE
1355 C12 = 1.D0
1356 C22 =-1.D0
1357 IF(CKKIC2 .GT. RP102) THEN
1358 C11 = RP102
1359 C21 = RP102
1360 END IF
1361 END IF
1362 C
1363 JJJE = IDNINT(RP102)
1364 DO 650 JJJ= 0, JJJE
1365 C
1366 CKKJ = C11 + C12*DBLE(JJJ)
1367 CKKI = C21 + C22*DBLE(JJJ)
1368 IF(JJJ .EQ. 0) GOTO 645
1369 IF((DABS(CKKI) .GT. RP102+1.D-10) .OR.
1370 & (DABS(CKKJ) .GT. RP102+1.D-10)) GOTO 1000
1371 C
1372 645 XJ = RRXJ + NNXJ*CKKJ
1373 YJ = RRYJ + NNYJ*CKKJ
1374 ZJ = RRZJ + NNZJ*CKKJ

• The positions of the spheres of particles i
and j are saved in (XI,YI,ZI) and (XJ,YJ,ZJ),
respectively..

• Similarly, C22 is used for particle i. C12=1
means the particle axis direction; C12=–1 means
the opposite direction to the particle axis.

• The direction in which the next neighboring
sphere is added to form the sphere-connected
particle j is specified by C12.

• According to the repulsive force model in Section 3.2.4, the
position of the first sphere to be placed is determined. The
variables used to do so are C11 and C21 for particles j and
i, respectively.

• The point at which the vertical line drawn from the center
of particle j intersects the axis line of particle i is assumed to
be denoted by ri+ki

cei, ki
c, and a similar quantity kj

c is
evaluated.

1375 XI = RRXI + NNXI*CKKI
1376 YI = RRYI + NNYI*CKKI
1377 ZI = RRZI + NNZI*CKKI
1378 RRIJ = DSQRT((XI-XJ)**2 + (YI-YJ)**2 + (ZI-ZJ)**2)
1379 IF(RRIJ .GE. D1) GOTO 1000
1380 XRXI = XI - RRXI
1381 YRYI = YI - RRYI
1382 ZRZI = ZI - RRZI
1383 XRXJ = XJ - RRXJ

101Practice of Molecular Dynamics Simulations

1384 YRYJ = YJ - RRYJ
1385 ZRZJ = ZJ - RRZJ
1386 TXIJ0= (XI-XJ)/RRIJ
1387 TYIJ0= (YI-YJ)/RRIJ
1388 TZIJ0= (ZI-ZJ)/RRIJ
1389 ISKIP = 0
1390 CALL STEFORCE(RRIJ,RAV,ISKIP,TXIJ0,TYIJ0,TZIJ0)
1391 IF(.NOT. KEEP) THEN
1392 C1 = FXIJS
1393 C2 = FYIJS
1394 C3 = FZIJS
1395 FXIJS = FXJIS
1396 FYIJS = FYJIS
1397 FZIJS = FZJIS
1398 FXJIS = C1
1399 FYJIS = C2
1400 FZJIS = C3
1401 C1 = TXIJS
1402 C2 = TYIJS
1403 C3 = TZIJS
1404 TXIJS = TXJIS
1405 TYIJS = TYJIS
1406 TZIJS = TZJIS
1407 TXJIS = C1
1408 TYJIS = C2
1409 TZJIS = C3
1410 END IF
1411 FXI = FXI + FXIJS
1412 FYI = FYI + FYIJS
1413 FZI = FZI + FZIJS
1414 FX(J) = FX(J) + FXJIS
1415 FY(J) = FY(J) + FYJIS
1416 FZ(J) = FZ(J) + FZJIS
1417 TXI = TXI + TXIJS
1418 TYI = TYI + TYIJS
1419 TZI = TZI + TZIJS
1420 TX(J) = TX(J) + TXJIS
1421 TY(J) = TY(J) + TYJIS
1422 TZ(J) = TZ(J) + TZJIS
1423 C --- COUNT JUST ONCE FOR CENTRAL PLACE ---
1424 IF(JJJ .EQ. 0) GOTO 650
1425 C
1426 XJ = RRXJ - NNXJ*CKKJ
1427 YJ = RRYJ - NNYJ*CKKJ
1428 ZJ = RRZJ - NNZJ*CKKJ
1429 XI = RRXI - NNXI*CKKI

• Because of the parallel arrangement, a
similar calculation of the repulsive forces is
carried out for the particles placed on the
particle axis in the opposite direction.

• The posttreatment for the case of the particle
names exchanged.

• To evaluate the torque, the relative position of
the sphere from the rod-like particle center is
calculated.

1430 YI = RRYI - NNYI*CKKI
1431 ZI = RRZI - NNZI*CKKI
1432 RRIJ = DSQRT((XI-XJ)**2 + (YI-YJ)**2 + (ZI-ZJ)**2)
1433 XRXI = XI - RRXI
1434 YRYI = YI - RRYI
1435 ZRZI = ZI - RRZI
1436 XRXJ = XJ - RRXJ
1437 YRYJ = YJ - RRYJ
1438 ZRZJ = ZJ - RRZJ
1439 TXIJ0= (XI-XJ)/RRIJ
1440 TYIJ0= (YI-YJ)/RRIJ
1441 TZIJ0= (ZI-ZJ)/RRIJ
1442 ISKIP = 0
1443 CALL STEFORCE(RRIJ,RAV,ISKIP,TXIJ0,TYIJ0,TZIJ0)
1444 IF(.NOT. KEEP) THEN
1445 C1 = FXIJS
1446 C2 = FYIJS
1447 C3 = FZIJS
1448 FXIJS = FXJIS
1449 FYIJS = FYJIS
1450 FZIJS = FZJIS
1451 FXJIS = C1
1452 FYJIS = C2
1453 FZJIS = C3

102 Introduction to Practice of Molecular Simulation

1454 C1 = TXIJS
1455 C2 = TYIJS
1456 C3 = TZIJS
1457 TXIJS = TXJIS
1458 TYIJS = TYJIS
1459 TZIJS = TZJIS
1460 TXJIS = C1
1461 TYJIS = C2
1462 TZJIS = C3
1463 END IF
1464 FXI = FXI + FXIJS
1465 FYI = FYI + FYIJS
1466 FZI = FZI + FZIJS
1467 FX(J) = FX(J) + FXJIS
1468 FY(J) = FY(J) + FYJIS
1469 FZ(J) = FZ(J) + FZJIS
1470 TXI = TXI + TXIJS
1471 TYI = TYI + TYIJS
1472 TZI = TZI + TZIJS
1473 TX(J) = TX(J) + TXJIS
1474 TY(J) = TY(J) + TYJIS
1475 TZ(J) = TZ(J) + TZJIS
1476 C
1477 650 CONTINUE
1478 C
1479 GOTO 1000
1480 C
1481 C ----------------------- END OF ENERGY DUE TO STERIC INER. ---
1482 C
1483 1000 CONTINUE
1484 C
1485 FX(I) = FXI
1486 FY(I) = FYI
1487 FZ(I) = FZI
1488 TX(I) = TXI
1489 TY(I) = TYI
1490 TZ(I) = TZI
1491 C
1492 2000 CONTINUE
1493 C
1494 C --- TORQUES DUE TO MAG. FIELD ---
1495 DO 2010 I=1,N
1496 TX(I) = TX(I) + (NY(I)*HZ - NZ(I)*HY)*RAH
1497 TY(I) = TY(I) + (NZ(I)*HX - NX(I)*HZ)*RAH
1498 TZ(I) = TZ(I) + (NX(I)*HY - NY(I)*HX)*RAH
1499 2010 CONTINUE
1500 RETURN
1501 END
1502 C**** SUB STEFORCE ****
1503 SUBROUTINE STEFORCE(RRIJ,RAV,ISKIP,TXIJ,TYIJ,TZIJ)
1504 C
1505 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
1506 C
1507 COMMON /WORK20/ XRXI , YRYI , ZRZI , XRXJ , YRYJ , ZRZJ
1508 COMMON /WORK21/ FXIJS, FYIJS, FZIJS, FXJIS, FYJIS, FZJIS
1509 COMMON /WORK22/ TXIJS, TYIJS, TZIJS, TXJIS, TYJIS, TZJIS
1510 COMMON /WORK23/ RCOFF2 , RP102 , D1 , D1SQ
1511 C
1512 REAL*8 FXIJ , FYIJ , FZIJ , C0
1513 C --- STERIC REPULSION ---
1514 FXIJ = 0.D0
1515 FYIJ = 0.D0
1516 FZIJ = 0.D0
1517 C
1518 IF(RRIJ .LT. D1) THEN
1519 IF(RRIJ .LE. 1.D0) RRIJ = 1.0001D0
1520 C0 = DLOG(D1 / RRIJ)
1521 FXIJ = TXIJ*C0
1522 FYIJ = TYIJ*C0
1523 FZIJ = TZIJ*C0
1524 END IF

• A subroutine for calculating the
repulsive forces resulting from
the overlap of the surfactant
layers according to Eq. (3.63).

• The torque due to the external
magnetic field is calculated and
added to the corresponding
variable.

103Practice of Molecular Dynamics Simulations

1525 C
1526 FXIJS = FXIJ*RAV
1527 FYIJS = FYIJ*RAV
1528 FZIJS = FZIJ*RAV
1529 FXJIS = - FXIJS
1530 FYJIS = - FYIJS
1531 FZJIS = - FZIJS
1532 IF(ISKIP .EQ. 1) RETURN
1533 C --- TORQUES ---
1534 TXIJS = YRYI*FZIJS - ZRZI*FYIJS
1535 TYIJS = ZRZI*FXIJS - XRXI*FZIJS
1536 TZIJS = XRXI*FYIJS - YRYI*FXIJS
1537 TXJIS = YRYJ*FZJIS - ZRZJ*FYJIS
1538 TYJIS = ZRZJ*FXJIS - XRXJ*FZJIS
1539 TZJIS = XRXJ*FYJIS - YRYJ*FXJIS
1540 RETURN
1541 END

• The torques acting on particles i and j due
to the repulsive forces are calculated and
saved in (TXIJS,TYIJS,TZIJS) and (TXJIS,
TYJIS,TZJIS), respectively.

104 Introduction to Practice of Molecular Simulation

4 Practice of Monte Carlo Simulations

In the present chapter we demonstrate the two examples of an Monte Carlo (MC)

simulation by considering the aggregation phenomena of magnetic particles in

an applied magnetic field. The first exercise treats a two-dimensional suspension

composed of magnetic spherocylinder particles with the purpose of discussing

the dependence of the particle behavior on the magnetic particle�particle and the

particle�field interactions. The second exercise treats a three-dimensional suspen-

sion composed of magnetic disk-like particles for discussing similar particle behav-

ior in thermodynamic equilibrium. Understanding the MC method for simulations of

these nonspherical systems is an important first step in treating a more complex sys-

tem, such as DNA, polymeric liquids, or carbon-nanotubes. The sample simulation

programs that follow each exercise have been taken from real-life academic-oriented

research projects and are therefore realistic examples for guidance in writing an aca-

demic or commercial simulation program. In both examples demonstrated here, the

canonical MC algorithm is used under the physical conditions of a given number of

particles, temperature, and volume of the system.

4.1 Orientational Phenomena of Rod-like Particles in an
Applied Magnetic Field

In the present section we consider a suspension composed of magnetic rod-like par-

ticles as a two-dimensional system that is in thermodynamic equilibrium under the

conditions of a constant number of particles, temperature, and volume. A sample

simulation program written in the FORTRAN language completes the exercise.

4.1.1 Physical Phenomena of Interest

The system, assumed to be in thermodynamic equilibrium, is composed of N ferro-

magnetic particles with diameter d and length l0 (5l1 d) that are dispersed in a

base liquid. Each magnetic rod-like particle is modeled as a spherocylinder, as

already explained in Section 3.2, with magnetic plus and minus charges at the cen-

ters of each hemisphere cap; it is therefore magnetized in the particle axis direction.

Each particle is coated with a surfactant layer for stabilization purposes. In this

type of dispersion, the aggregation phenomenon of magnetic particles is strongly

dependent on the magnetic field strength, magnetic interactions, and the number

Introduction to Practice of Molecular Simulation. DOI: 10.1016/B978-0-12-385148-2.00004-5

© 2011 Elsevier Inc. All rights reserved.

density. In this example we discuss the influence of these effects on particle aggre-

gation by means of a canonical MC simulation.

4.1.2 Specification of Problems in Equations

The main consideration in formulating the present problem is the interaction energy

between the particles. Similar to Section 3.2, it is necessary to take into account

magnetic interactions and steric repulsive interactions acting between particles for

the spherocylinder particle model shown in Figure 4.1A. The treatment of the steric

interactions due to particle overlap is difficult even in the present two-dimensional

case. Therefore, in evaluating the steric interactions, we employ the simple linear

sphere-connected model shown in Figure 4.1B. In this model, each constituent

sphere is covered by a uniform steric layer. Hence, a repulsive interaction energy

due to the overlap of the two steric layers can be obtained by summing all interac-

tion energies for each pair of spheres belonging to the two different rod-like parti-

cles. This is a characteristic feature of the sphere-connected model, which is

different from the model employed in Section 3.2 in that the constituent spheres

are in fixed positions in the present case.

It is difficult to treat the particle overlap in a manner that results in an efficient

simulation program, even for the two-dimensional case, and therefore considerable

effort is required to address this problem for a three-dimensional system. In many

cases, rather than directly addressing the three-dimensional system, it is more effec-

tive to first develop a two-dimensional simulation program and then extend it

to the three-dimensional case. The three-dimensional simulation program shown

in Section 3.2 has been developed using this approach from the present

two-dimensional program, which will be shown in Section 4.1.6.

We use the notation ri for the position vector of the center of particle i (i5 1,

2,. . ., N), ei for the particle axis direction vector, and 6q for the plus and minus

magnetic charges at both hemispheres. The interaction energy with an applied mag-

netic field H is expressed similar to the spherical particles as

ui 5 2μ0miUH ð4:1Þ
in which mi is the magnetic moment, expressed as mi5 qlei (5mei). Eq. (4.1)

implies that a rod-like particle tends to incline in the magnetic field direction, lead-

ing to a minimum interaction energy.

(A) (B)

d

dl l

δ

δ

Figure 4.1 Rod-like particle

model with a steric layer: (A)

the spherocylinder model and

(B) the sphere-connected model.

106 Introduction to Practice of Molecular Simulation

We first show an expression for the interaction energy u between magnetic

charges q and q0. If the magnetic charges are separated by distance r, the interac-

tion energy is expressed as

u5
μ0qq

0

4πr
ð4:2Þ

This equation is quite well known [31]. Eq. (4.2) is applied to the present magnetic

rod-like particle shown in Figure 4.1. The interaction energy for the rod-like particles

shown in Figure 4.1B can be obtained by summing the interaction energies for the

four pairs of magnetic charges. If the position vectors of the plus and minus charges

of an arbitrary particle i are denoted by r1
i and r2

i ; respectively, they are written as

r1
i 5 ri 1 ðl=2Þei; r2

i 5 ri 2 ðl=2Þei ð4:3Þ

With this notation, the magnetic interaction energy uij between rod-like particles i

and j is expressed as

uij 5
μ0q

2

4π
1

jr1
i 2 r1

j j
2

1

jr1
i 2 r2

j j
2

1

jr2
i 2 r1

j j
1

1

jr2i 2 r2
j j

()
ð4:4Þ

The first term on the right-hand side is an interaction energy between the plus

charges of particles i and j. The second term is an energy between the plus charge

of particle i and the minus charge of particle j. The third term is an energy between

the minus charge of particle i and the plus charge of particle j. The fourth term is

an energy between the minus charges of particles i and j. Substitution of Eq. (4.3)

into Eq. (4.4) leads to

uij5
μ0q

2

4π
1

jrij1 leij=2j
2

1

jrij1 lðei1ejÞ=2j
2

1

jrij2 lðei1ejÞ=2j
1

1

jrij2 leij=2j

� �
ð4:5Þ

in which rij5 ri2 rj and eij5 ei2 ej.

We now consider an interaction energy uij
(V) arising from the overlap of the steric

layers. For a spherical particle with diameter d covered by a uniform surfactant

layer with thickness δ, an overlap of these two particles yields a repulsive interac-

tion energy uij
(V), as already shown in Eq. (3.41):

u
ðVÞ
ij 5 kTλV 22

2rij=d

tδ
ln

d1 2δ
rij

� �
2 2

rij=d2 1

tδ

� �
ð4:6Þ

in which rij is the separation between particles i and j (center-to-center distance), tδ
is the ratio of the steric layer thickness to the particle radius expressed as tδ5 2δ/d,
λV is a nondimensional parameter representing the strength of steric repulsive inter-

actions expressed as λV5πd2ns/2, and ns is the number of surfactant molecules per

107Practice of Monte Carlo Simulations

unit area on the particle surface. If the particle separation satisfies rij, d1 2δ, the
two steric layers of particles i and j overlap. In the following, we apply this interac-

tion energy to the two spherocylinder particles shown in Figure 4.1B.

The sphere-connected model enables us to employ the evaluation approach, which

has been used for calculating magnetic interactions. That is, the net steric interaction

energy between the two rod-like particles can be obtained by summing a steric inter-

action energy for each pair of constituent spherical particles belonging to the two dif-

ferent rod-like particles. However, this approach becomes inefficient, or requires

enormous computation time, as the rod-like particle becomes longer (i.e., for an

increase in the number of spherical particles). Since the steric layer is thin compared

with the particle diameter, the pair-wise calculation of the repulsive interactions

implies that, for some calculations, the result is negligible. We therefore need to

develop an alternative technique for calculating the steric interactions. This kind of

difficulty frequently appears in developing a simulation program, so the process

of overcoming this problem provides a good opportunity for the development of a

higher-level simulation program. Therefore, in the following we discuss this problem

in more detail.

The spatial relationship of two rod-like particles i and j is a function of the parti-

cle position vectors ri and rj and the particle direction (unit) vectors ei and ej. In

practice, a two-dimensional system is considerably more straightforward than a

three-dimensional system in treating the overlap assessment. Referring to

Figure 4.2, we now discuss the overlap between particles i and j. Assessing how

the two rod-like particles overlap first requires finding the intersection point of

each particle axis. If the two axis lines intersect at the positions (ri1 kiei) and

(rj1 kjej) of particles i and j, respectively, then the unknown constants ki and kj
have to satisfy the following equation:

ri 1 kiei 5 rj 1 kjej ð4:7Þ

i

k ie
i

k
j e

j

k is e i

k
j se

j

ri rj

j
Figure 4.2 Analysis of the overlap

condition of steric layers.

108 Introduction to Practice of Molecular Simulation

Vector product of ej (or ei) on both sides of this equation yields jkij (or jkjj):

jkij5
jrij 3 ejj
jei 3 ejj

; jkjj5
jrij 3 eij
jei 3 ejj

ð4:8Þ

These equations are valid for a nonparallel configuration. For parallel cases, the

treatment of the particle overlap is quite straightforward and will be explained

later.

Next we need to find the point (ri1 ki
sei) on the axis line of particle i, which is

the intersection point of the line drawn from the position rj
1 of the plus magnetic

charge of particle j that perpendicularly intersects the axis line of particle i. The

orthogonality condition of this vertical line and the particle direction vector ei pro-
vides the solution of the unknown constant ki

s as

ksi 5
l

2
eiUej 2 rijUei ð4:9Þ

The solution of kj
s can be obtained by exchanging the subscriptions i and j in this

equation. Similarly, if a line drawn from the position r2
j perpendicularly intersects

the axis line of particle i at the position (ri1 ki
s0ei), the above-mentioned mathemat-

ical procedure gives rise to the solution of ki
s0 as

ksi
0 5 2

l

2
eiUej 2 rijUei ð4:10Þ

The use of these intersection points enables us to calculate effectively the repul-

sive interaction energy between particles i and j arising from the overlap of the ste-

ric layers. First, the solutions of ki and kj are obtained from Eqs. (4.7) and (4.8).

From the large-or-small relationship and the positive-or-negative sign of ki and kj,

we see which sphere of particle i has a possibility of interacting with which sphere

of particle j. For example, since kj. ki. 0 in Figure 4.2, there is a possibility of

the plus magnetic charged sphere of particle j interacting with any constituent

spheres of particle i. Which sphere of particle i interacts with the plus charged

sphere of particle j can be determined by the solution ki
s in Eq. (4.9). Because

ki
s. l/2 in Figure 4.2, it has a possibility to interact with the plus magnetic charged

sphere of particle i. At this stage, we have identified the first pair of constituent

spheres of the particles i and j required for calculating the interaction energy due to

the overlap of the steric layers.

After this calculation, we shift our attention to the next neighboring constituent

spheres of each particle and calculate their interaction energy. Repeating this proce-

dure finally yields the total interaction energy due to the particle overlap of parti-

cles i and j. An important advantage of this procedure is that the nonoverlap of the

constituent spheres can be used to terminate the calculation. In other words, this

method becomes much more efficient with an increasing particle length when com-

pared to the simple calculation method, in which all possible pairs of constituent

109Practice of Monte Carlo Simulations

spheres are treated. Note that there may be situations where one constituent sphere

of particle j may interact with two constituent spheres of particle i. For example, in

Figure 4.2, this situation may arise if the two axis lines intersect under the condi-

tion of 2l/2, ki
s, l/2; in this case, the sphere of particle j is located at a position

between the two constituent spheres of particle i.

The parallel configuration and the linear configuration do not require values of

ki and kj for the calculation of the steric interaction energy. The linear configuration

satisfies the relationships of jei � ejj5 jei � tijj5 1, in which tij is the unit vector

between particles i and j, expressed as tij5 rij/rij. Only the two spheres at the end

of each particle have a possibility to overlap for the linear configuration, so that

just one calculation is sufficient for this case; these spheres can be straightfor-

wardly specified by the signs of ei � ej and ei � tij. For the parallel configuration, a

value of ki
s in Eq. (4.9) provides information as to how the two particles are shifted

in separation along the particle axis direction. The value of ki
s or kj

s indicates which

sphere of particle j interacts with which sphere of particle i in the nearest

configuration.

In the above discussion, we have explained the fundamental and mathematical

aspects of evaluating the steric interaction between the particles. The technical

aspect of this treatment, required for developing a simulation program, will be dis-

cussed in detail later in the next subsection on the MC algorithm.

Finally, we show the nondimensional expressions of the important physical

quantities. If distances and energies are nondimensionalized by the particle diame-

ter d and the thermal energy kT, respectively, Eqs. (4.1), (4.4), (4.5), and (4.6) are

nondimensionalized as

u�i 5 ui=kT 5 2ξeiUh ð4:11Þ

u�ij5uij=kT5λ0

1

jr1�
i 2r1�

j j2
1

jr1�
i 2r2�

j j2
1

jr2�
i 2r1�

j j1
1

jr2�
i 2r2�

j j

()

ð4:12Þ

u�ij 5uij=kT

5λ0

1

jr�ij1rpeij=2j
2

1

jr�ij1rpðei1ejÞ=2j
2

1

jr�ij2rpðei1ejÞ=2j
1

1

jr�ij2rpeij=2j

8<
:

9=
;

ð4:13Þ

u
ðVÞ�
ij 5u

ðVÞ
ij =kT5λV 22

2r�ij
tδ

ln
11tδ

r�ij

 !
22

r�ij21

tδ

()
ð4:14Þ

in which rp is the particle aspect ratio, defined as rp5 l/d. In addition, the nondi-

mensional parameters ξ and λ0 are expressed as

110 Introduction to Practice of Molecular Simulation

ξ5μ0mH=kT ; λ0 5μ0ðqdÞ2=4πd3kT ð4:15Þ

in which h5H/H(H5 jHj) and the quantities with superscript * are dimensionless

quantities. As previously explained in Eqs. (3.62) and (3.58), the meanings of ξ
and λ0 are the strengths of magnetic particle�field and magnetic particle�particle

interactions, respectively. A slightly different nondimensional parameter λ5 rp
2λ0

is introduced for discussion.

4.1.3 Canonical Monte Carlo Algorithm

The system is in thermodynamic equilibrium, composed of N rod-like particles

with specified volume V (i.e., area in this two-dimensional case) and temperature

T, and it is appropriate to use the canonical MC algorithm for the simulation. The

total system potential energy is evaluated by summing the magnetic particle�field

and the particle�particle interaction energy together with the steric repulsive inter-

action energy due to the overlap of the steric layers. That is,

U� 5
XN
i51

u�i 1
XN
i51

XN
j51ðj.iÞ

u�ij 1 u
ðVÞ�
ij

� �
ð4:16Þ

We now consider a transition from the present microscopic state k, which has a

system potential energy Uk. A new microscopic state l is generated by selecting

one particle and moving it to a new position by using random numbers, which

yields a new system potential energy Ul. The transition probability from micro-

scopic state k to l, pkl, is given by Eq. (1.49), but in this case the probability density

ratio is

ρl
ρk

5 exp 2
1

kT
ðUl 2UkÞ

� �
5 exp 2 U�

l 2U�
k

� 	
 � ð4:17Þ

After this treatment of the translational displacement of the particle, a similar

procedure is conducted for the rotational displacement. A series of trials for the

translational and rotational displacement, when applied to all the system particles,

is called an “MC step,” which corresponds to a time step in the molecular dynam-

ics method.

From the viewpoint of developing a simulation program, we now show the

scheme for calculating the interaction energy due to the overlap of the steric layers.

Figure 4.3 shows the categories of overlap for the two particles. There are four typ-

ical overlap regimes: linear (itree5 0), general (itree5 1), perpendicular (itree5 2),

and parallel (itree5 3). Any overlap of the steric layers can be classified into one

of these four regimes. Note that the variables itree and ipath (appearing later) have

no physical meaning but are used for the sake of convenience; these variables are

used in the sample simulation program with consistent meaning. We explain the

four overlap cases in more detail in the following paragraphs.

111Practice of Monte Carlo Simulations

4.1.3.1 General Overlap Case (itree5 1)

In this case, there are four types of overlap dependent upon the location of the plus

and minus magnetic charges, which are schematically shown in Figure 4.4. In order

to treat the particle overlap consistently in a simulation program, the names of the

two particles may be exchanged in such a way so as to satisfy the relationship

jkij, jkjj. This condition is assumed to be satisfied in the following discussion.

Figures 4.4A and C show the possibility of the plus magnetic charge of particle j

overlapping with particle i. Figures 4.4B and D are for the overlap of the minus

magnetic charge of particle j with particle i.

The four types of particle overlaps in Figure 4.4 can be identified in the follow-

ing way. By reason of jkij, jkjj, the particle on the left-hand side in Figure 4.4 is

(A) (B) (C) (D)

Figure 4.3 Typical overlap regime of the steric layers: (A) linear (itree5 0), (B) general

(itree5 1), (C) perpendicular (itree5 2), and (D) parallel (itree5 3).

(A)

(ipath = 1) (ipath = 2) (ipath = 3) (ipath = 4)

i

j

i

j

i

j

i

j

(B) (C) (D)

Figure 4.4 Overlap in the general situation (itree5 1).

112 Introduction to Practice of Molecular Simulation

particle i, and the particle on the right-hand side is particle j. For the case of

ei � ej$ 0, the overlap regime is ipath5 1 or ipath5 4, and for the case of ei � ej, 0,

it is ipath5 2 or ipath5 3. Furthermore, the sign of kj enables us to identify

whether ipath5 1 or ipath5 4 arises for the overlap, which is also applicable to the

identification of ipath5 2 or ipath5 3. For example, for the case of ei � ej$ 0 and

kj$ 0, there is a possibility of particle overlap in the situation ipath5 1.

We now discuss which constituent sphere of particle i interacts with the mag-

netic charged sphere of particle j. Since the principle is the same for all cases, we

focus on the case of ipath5 1. The value of ki
s can allow us to identify which

sphere of particle i has the possibility to interact with the plus magnetic charged

sphere of particle j. For simplification, we name the constituent spheres in the rod-

like particle in such a way that the plus magnetic charged sphere is called “subpar-

ticle 1,” the next neighboring sphere is called “subparticle 2,” and so on. For

ki
s$ l/2, subparticle 1 of particle j may overlap with subparticle 1 of particle i;

similarly, l/2. ki
s$ (l/22 d) overlaps with subparticle 1 or subparticle 2; and

(l/22 d). ki
s$ (l/22 2d) overlaps with subparticle 2 or subparticle 3. Even if the

rod-like particle is composed of numerous subparticles, the above-mentioned proce-

dure can provide us with a method to find which subparticle of particle i overlaps

with particle j.

We now consider the case in which subparticle 1 of particle j overlaps with sub-

particle 2 or 3 of particle i. The total repulsive interaction energy between particles

i and j can be obtained by calculating the interaction energy in Eq. (4.14) for this

pair of subparticles and by repeating this calculation procedure for the neighboring

subparticles for subparticle 2 of particle j and subparticle 3 or 4 (note that subparti-

cle 4 does not exist for the present three-sphere-connected model) of particle i, and

so on. The calculation procedure can be terminated when a pair of the subparticles

is found to be separated by more than the distance (d1 2δ). In the case of

Figure 4.4A, only the first two calculations are needed to obtain the total steric

repulsive interaction energy between particles i and j. This discussion clearly sug-

gests that the present method becomes much more effective for a longer rod-like

particle. In the sample simulation program shown later, the above-mentioned proce-

dures are employed for calculating the steric interaction energy together with the

variables itree and ipath with the same meaning as above.

4.1.3.2 Normal Overlap Case (itree5 2)

Figure 4.5 shows the two categories of particle overlap in a normal orientation. As

in the general overlap case, the subscripts i and j may be exchanged in order to sat-

isfy jkij, jkjj. Figure 4.5A shows an overlap between subparticle 1 of particle j and

particle i, and Figure 4.5B is for the case of the other end subparticle of particle j

overlapping with particle i. These two categories can be identified by the value of

kj; that is, there is a possibility of particle overlap in the situation ipath5 1 or

ipath5 2 for kj. 0 or kj, 0, respectively.

We treat the case ipath5 1 shown in Figure 4.5 to consider which subparticle of

particle i possibly overlaps with the subparticle of particle j. As in the general

113Practice of Monte Carlo Simulations

 overlap situation, subparticle 1 possibly overlaps with subparticle 1 of particle j for

ki
s$ l/2, subparticle 1 or 2 overlaps with particle j for l/2. ki

s$ (l/22 d), and sub-

particle 2 or 3 does so for (l/22 d). ki
s$ (l/22 2d). For the case where the rod-

like particle is composed of numerous subparticles, the above-mentioned procedure

is repeated to find a pair or two pairs of interacting subparticles.

4.1.3.3 Linear Overlap Case (itree5 0)

In the linear overlap case, there are four types of overlap possibility, as shown in

Figure 4.6. The four categories can be identified by assessing the signs of ei � ej and
ej � tij. That is, the relationship ei � ej. 0 provides an overlap for ipath5 1 or

ipath5 2, and ei � ej, 0 provides an overlap for ipath5 3 or ipath5 4. For the case

of ei � ej. 0, the sign of ej � tij can identify whether the overlap is for ipath5 1 or

ipath5 2. Subsequently, there is a possibility of particle overlap in the situation

(A)

i i

j j

(B)

(ipath = 1) (ipath = 2)

Figure 4.5 Overlap in the normal situation (itree5 2).

(A)

i

j

i

j

i

j

i

j

(B) (C) (D)

(ipath = 1) (ipath = 2) (ipath = 3) (ipath = 4)

Figure 4.6 Overlap in the linear situation (itree5 0).

114 Introduction to Practice of Molecular Simulation

where ipath5 1 for ei � ej. 0 and ej � tij. 0, ipath5 2 for ei � ej. 0 and ej � tij, 0,

ipath5 3 for ei � ej, 0 and ej � tij. 0, and ipath5 4 for ei � ej, 0 and ej � tij, 0.

Once the type of particle overlap is identified, the pair of the overlapping subparti-

cles is readily identified in order to calculate the interaction energy.

4.1.3.4 Parallel Overlap Case (itree5 3)

For the parallel overlap case, there are three types of particle overlap, as shown in

Figure 4.7. For the case of ipath5 1 in Figure 4.7A, the relationship ki
s# kj

s needs

to be satisfied by exchanging the particle names. The overlap regime is identified

by assessing the sign of ei � ej with a value of ki
s. That is, the overlap regime is

ipath5 1 for ei � ej. 0, ipath5 2 for ei � ej, 0 and ki
s#2l/2, and ipath5 3 for

ei � ej, 0 and ki
s. 2 l/2.

We focus on the cases ipath5 2 and 3 for discussion, since the treatment for

ipath5 1 is almost the same as in the general overlap case. For ipath5 2 and 3, the

determination of the separation between the particle centers makes the subsequent

treatment more straightforward. The separation between the particle centers

along the particle axis, kij
c, is expressed as kij

c5 jkisj2 l/2 for ipath5 2, and as kij
c5

ki
s1 l/2 for ipath5 3. Because of the similarity in the treatment for ipath5 2 and 3,

we explain only the case of ipath5 2. The value of kij
c allows us to find which sub-

particle of particle i overlaps with the minus magnetic charged sphere of particle j.

There is a possibility of the overlap with subparticle 1 or 2 of particle i for

d$ kij
c. 0 and of the overlap with subparticle 2 or 3 for 2d$ kij

c. d. This

calculation procedure is repeated until the end-sphere of particle i obtains the total

steric interaction energy.

4.1.4 Parameters for Simulations

We employed the following parameters for conducting the simulations. It is pre-

sumed that the rod-like particles aggregate to form chain-like clusters along the

(ipath = 1)

i i i

j j j

ij

kc ij

kc ij

(ipath = 2) (ipath = 3)

(A) (B) (C)

Figure 4.7 Overlap in the parallel situation (itree5 3).

115Practice of Monte Carlo Simulations

applied field direction (i.e., y-axis direction). We therefore choose to employ a rect-

angular simulation region dependent upon the particle aspect ratio; we therefore

adopt a rectangular region having a side length in the y-direction twice that of in

the x-direction. The results shown in the next subsection were obtained under the

assumption that a rod-like particle may be represented by three spherical subparti-

cles. The area fraction φV5 0.2, the nondimensional parameter λV, representing
the strength of steric repulsive interactions, is set as λV5 150. The thickness of the

steric layer is assumed as tδ5 0.3. The maximum distance δr�max and angle δθmax

per one trial in the MC algorithm are taken as δr�max 5 0:1 and δθmax5 5�. The MC

simulations were carried out for various cases of the magnetic particle�field and

the particle�particle interactions, ξ and λ, respectively.

4.1.5 Results of Simulations

Figures 4.8�4.11 show the results relating to the aggregate structures, which were

obtained by conducting the sample simulation program shown in the next subsec-

tion. Figure 4.8 was obtained for λ05 0.75, Figure 4.9 for λ05 1.75, Figure 4.10 for

λ05 4, and Figure 4.11 for λ05 7.5. Each figure has two snapshots: one for the case

of no external field, and the other for the case of a strong applied magnetic field.

For the case of λ05 0.75, shown in Figure 4.8, the magnetic interaction between

particles is of the same order of the thermal energy and therefore no aggregates are

observed in Figures 4.8A and B. Figure 4.8A is for the case of no external field and

therefore the rod-like particles have no specifically favored directional characteristic.

On the other hand, the rod-like particles tend to incline in the magnetic field direction

in Figure 4.8B because ξ5 20 represents a significantly strong magnetic field.

(A) (B)

Figure 4.8 Snapshots of aggregate structures for λ5 3 (λ05 0.75): (A) ξ5 0 and (B) ξ5 20.

116 Introduction to Practice of Molecular Simulation

Figure 4.9 shows snapshots for the slightly stronger interaction λ05 1.75. These

snapshots are similar to Figure 4.8, because λ05 1.75 is not significantly larger

than the thermal energy.

For the stronger case of λ05 4, shown in Figure 4.10, the magnetic interaction

between particles is now more dominant than the thermal energy, and thus signifi-

cant aggregate structures are observed. In the case of no applied magnetic field,

(A) (B)

Figure 4.9 Snapshots of aggregate structures for λ5 7 (λ05 1.75): (A) ξ5 0 and (B) ξ5 20.

(A) (B)

Figure 4.10 Snapshots of aggregate structures for λ5 16 (λ05 4): (A) ξ5 0 and (B) ξ5 20.

117Practice of Monte Carlo Simulations

shown in Figure 4.10A, loop-like clusters can be observed. Since the arrangement

of the contact of the plus and minus magnetic charged spheres gives rise to a lower

magnetic interaction energy, this type of connection is repeated and may result in

the formation of necklace-like clusters. In the case of no external magnetic field

there is no mechanism for forming chain-like clusters. In Figure 4.10B, the external

magnetic field is significantly strong in comparison to the thermal energy, and

therefore rod-like particles tend to aggregate to form chain-like clusters in the field

direction.

These characteristics exhibited by aggregate structures can be recognized more

clearly in the case of the much stronger interaction λ05 7.5 shown in Figure 4.11.

In addition to the necklace-like clusters, star-like clusters are partially observed in

Figure 4.11A. The snapshot in Figure 4.11B suggests the possibility that large-scale

network-like or thick chain-like clusters may be formed in the field direction for

stronger magnetic interaction cases.

4.1.6 Simulation Program

We now show a sample simulation program written in the FORTRAN language

employing the simulation techniques described above in the present demonstration

of the MC method.

The important variables used in the program are described below.

RX(I),RY(I) : (x,y) components of the position vector r�i of particle i
NX(I),NY(I) : (x,y) components of the unit vector ei of particle i denoting the

particle direction

(A) (B)

Figure 4.11 Snapshots of aggregate structures for λ5 30 (λ05 7.5): (A) ξ5 0 and (B) ξ5 20.

118 Introduction to Practice of Molecular Simulation

XL,YL : Side lengths of the simulation box in the (x,y) directions

N : Number of particles

D : Particle diameter (D51 in this case)

VDENS : Area fraction of particles φV
RA : Nondimensional parameter λ representing the strength of magnetic

particle�particle interactions

KU : Nondimensional parameter ξ representing the strength of magnetic

particle�field interactions

RV : Nondimensional parameter λV representing the strength of repulsive

interactions due to the overlap of the steric layers

RCOFF : Cutoff distance for calculations of interaction energies

DELR : δr�max

DELT : δθmax

RAN(J) : Uniform random numbers ranging 0B1(J51BNRANMX)
NRAN : Number of used random numbers

E(I) : Energy of particle i interacting with other particles

MOMX(*),
MOMY(*)

: Mean value of the particle direction at each MC step

MEANENE(*) : Mean value of the system energy at each MC step

As an aid for the reader, comments have been placed beside important program-

ming features. The line numbers are added for convenience and are unnecessary

for the execution of the simulation program.

Finally, note that the cluster-moving method [4] may not be required for the

case of a rod-like particle suspension, although it is indispensable for a spherical

particle system in order to obtain physically reasonable aggregate structures in a

strongly interacting system.

0001 C***
0002 C* mccylin3.f *
0003 C* *
0004 C* -------- MONTE CARLO SIMULATIONS ------- *
0005 C* TWO-DIMENSIONAL MONTE CARLO SIMULATION OF *
0006 C* FERROMAGNETIC COLLOIDAL DISPERSIONS COMPOSED OF *
0007 C* RODLIKE PARTICLES *
0008 C* *
0009 C* OPEN(9, FILE='@daa1.data', STATUS='UNKNOWN'); parameters *
0010 C* OPEN(10,FILE='daa11.data', STATUS='UNKNOWN'); para. & data *
0011 C* OPEN(21,FILE='daa001.data',STATUS='UNKNOWN'); particle pos. *
0012 C* OPEN(22,FILE='daa011.data',STATUS='UNKNOWN'); particle pos. *
0013 C* OPEN(23,FILE='daa021.data',STATUS='UNKNOWN'); particle pos. *
0014 C* OPEN(24,FILE='daa031.data',STATUS='UNKNOWN'); particle pos. *
0015 C* OPEN(25,FILE='daa041.data',STATUS='UNKNOWN'); particle pos. *
0016 C* OPEN(26,FILE='daa051.data',STATUS='UNKNOWN'); particle pos. *
0017 C* OPEN(27,FILE='daa061.data',STATUS='UNKNOWN'); particle pos. *
0018 C* OPEN(28,FILE='daa071.data',STATUS='UNKNOWN'); particle pos. *
0019 C* OPEN(29,FILE='daa081.data',STATUS='UNKNOWN'); particle pos. *
0020 C* OPEN(30,FILE='daa091.data',STATUS='UNKNOWN'); particle pos. *
0021 C* *
0022 C* 1. WITHOUT CLUSTER MOVEMENT. *
0023 C* 2. RODLIKE MODEL COMPOSED OF ARBITRARY NUMBER *
0024 C* OF PARTICLES. *
0025 C* *
0026 C* *
0027 C* VER.1 BY A.SATOH , '03 11/20 *
0028 C***

119Practice of Monte Carlo Simulations

0064 C
0065 REAL*8 RX(NN) , RY(NN) , NX(NN) , NY(NN) , E(NN)
0066 REAL*8 VDENS , KU
0067 REAL MOMX(NNS), MOMY(NNS), MEANENE(NNS)
0068 INTEGER N , NPTC , NDNSMX , NPTCHF
0069 C
0070 REAL RAN(NRANMX)
0071 INTEGER NRAN , IX , NRANCHK
0072 C
0073 REAL*8 RXCAN , RYCAN , NXCAN , NYCAN
0074 REAL*8 RXI , RYI , NXI , NYI
0075 REAL*8 RXIJ , RYIJ , RIJ , RIJSQ , RCOFF2
0076 REAL*8 ECAN , C1 , C2 , C3 , CX , CY
0077 INTEGER MCSMPL , MCSMPLMX , MCSMPL1 , MCSMPL2
0078 INTEGER NGRAPH , NOPT
0079 LOGICAL OVRLAP
0080 C
0081 OPEN(9, FILE='@daa1.data', STATUS='UNKNOWN')
0082 OPEN(10,FILE='daa11.data', STATUS='UNKNOWN')
0083 OPEN(21,FILE='daa001.data',STATUS='UNKNOWN')
0084 OPEN(22,FILE='daa011.data',STATUS='UNKNOWN')
0085 OPEN(23,FILE='daa021.data',STATUS='UNKNOWN')
0086 OPEN(24,FILE='daa031.data',STATUS='UNKNOWN')
0087 OPEN(25,FILE='daa041.data',STATUS='UNKNOWN')
0088 OPEN(26,FILE='daa051.data',STATUS='UNKNOWN')
0089 OPEN(27,FILE='daa061.data',STATUS='UNKNOWN')
0090 OPEN(28,FILE='daa071.data',STATUS='UNKNOWN')
0091 OPEN(29,FILE='daa081.data',STATUS='UNKNOWN')
0092 OPEN(30,FILE='daa091.data',STATUS='UNKNOWN')
0093 C

0029 C N : NUMBER OF PARTICLES
0030 C D : DIAMETER OF PARTICLE (=1 FOR THIS CASE)
0031 C VDENS : VOLUMETRIC FRACTION OF PARTICLES
0032 C RA : NONDIMENSIONAL PARAMETER OF PARTICLE-PARTICLE INTERACT
0033 C KU : NONDIMENSIONAL PARAMETER OF PARTICLE-FIELD INTERACTION
0034 C RV : NONDIMENSIONAL PARAMETER OF STERIC REPULSION
0035 C RCOFF : CUTOFF RADIUS FOR CALCULATION OF INTERACTION ENERGIES
0036 C XL,YL : DIMENSIONS OF SIMULATION REGION
0037 C
0038 C RX(N),RY(N) : PARTICLE POSITION
0039 C NX(N),NY(N) : DIRECTION OF MAGNETIC MOMENT
0040 C E(I) : INTERACTION ENERGY OF PARTICLE I WITH THE OTHERS
0041 C MOMX(**),MOMY(**) : MAGNETIC MOMENT OF SYSTEM AT EACH MC STEP
0042 C MEANENE(**) : MEAN ENERGY OF SYSTEM AT EACH MC STEP
0043 C
0044 C DELR : MAXIMUM MOVEMENT DISTANCE
0045 C DELT : MAXIMUM MOVEMENT IN ORIENTATION
0046 C
0047 C -XL/2 < RX(*) < XL/2 , -YL/2 < RY(*) < YL/2
0048 C---
0049 C
0050 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0051 C
0052 COMMON /BLOCK1/ RX , RY
0053 COMMON /BLOCK2/ NX , NY
0054 COMMON /BLOCK3/ XL , YL
0055 COMMON /BLOCK4/ RA , KU , RV , TD , RP
0056 COMMON /BLOCK5/ VDENS, N , NPTC , RCOFF , D , NPTCHF
0057 COMMON /BLOCK6/ E , ENEW , EOLD
0058 COMMON /BLOCK7/ NRAN , RAN , IX
0059 COMMON /BLOCK8/ DELR , DELT
0060 COMMON /BLOCK9/ MOMX , MOMY , MEANENE
0061 C
0062 PARAMETER(NN=1000 , NNS=200000)
0063 PARAMETER(NRANMX=500000 , PI=3.141592653589793D0)

120 Introduction to Practice of Molecular Simulation

0127 CCC OPEN(19,FILE='daa091.dat',STATUS='OLD')
0128 CCC READ(19,462) N , XL, YL, D , DT , NPTC
0129 CCC READ(19,464) (RX(I),I=1,N) , (RY(I),I=1,N) ,
0130 CCC & (NX(I),I=1,N) , (NY(I),I=1,N)
0131 CCC CLOSE(19,STATUS='KEEP')
0132 CCC GOTO 7
0133 C
0134 CALL INITIAL(VDENS , N , NPTC)
0135 C
0136 C --- PRINT OUT ---
0137 7 WRITE(NP,12) N, VDENS, RA, KU, RV, D, TD, XL, YL, RCOFF,
0138 & RP, NPTC, DELR, DELT
0139 WRITE(NP,14) MCSMPLMX, NGRAPH
0140 C
0141 C --- INITIALIZATION ---
0142 C
0143 C --
0144 C ----------------- START OF MONTE CARLO PART ---------------
0145 C --
0146 C
0147 C
0148 DO 500 MCSMPL = 1 , MCSMPLMX
0149 C
0150 DO 400 I=1,N
0151 C ------------------- POSITION --------
0152 C --- OLD ENERGY ---
0153 RXI = RX(I)
0154 RYI = RY(I)
0155 NXI = NX(I)
0156 NYI = NY(I)
0157 CALL ENECAL(I , RXI, RYI, NXI, NYI, RCOFF2 , ECAN, OVRLAP)
0158 EOLD = ECAN
0159 C ---------- (1) CANDIDATE
0160 C
0161 NRAN = NRAN + 1
0162 RXCAN = RX(I) + DELR*(1.D0 - 2.D0*DBLE(RAN(NRAN)))
0163 RXCAN = RXCAN - DNINT(RXCAN/XL)*XL
0164 NRAN = NRAN + 1
0165 RYCAN = RY(I) + DELR*(1.D0 - 2.D0*DBLE(RAN(NRAN)))

0094 NP=9
0095 C --- PARAMETER (1) ---
0096 C + N=6*6, 7*7, 8*8, +
0097 N = 36
0098 VDENS = 0.2D0
0099 RA = 5.0D0
0100 KU = 8.0D0
0101 RV = 150.D0
0102 D = 1.0D0
0103 TD = 0.3D0
0104 RP = 2.0D0
0105 NPTC = 3
0106 RCOFF = 5.D0*RP
0107 NPTCHF = (NPTC-1)/2
0108 C --- PARAMETER (2) ---
0109 DELR = 0.1D0
0110 DELT = (5.D0/180.D0)*PI
0111 C --- PARAMETER (3) ---
0112 MCSMPLMX = 10000
0113 NGRAPH = MCSMPLMX/10
0114 NOPT = 20
0115 RCOFF2 = RCOFF**2
0116 C --- PARAMETER (4) ---
0117 IX = 0
0118 CALL RANCAL(NRANMX, IX, RAN)
0119 NRAN = 1
0120 NRANCHK = NRANMX - 10*N
0121 C
0122 C --
0123 C ----------------- INITIAL CONFIGURATION ------------------
0124 C --
0125 C
0126 C --- SET INITIAL CONFIG. ---

• The given values and subaveraged values are written out in
@daa1.data and daa11.data; @daa1 is for confirming the values
assigned for simulations and the results calculated, and
daa11.data is for the postprocessing analysis.
• The particle positions and directions are written out in daa001 –
daa091 for the postprocessing analysis.

• The particle number N = 36, area fraction φV = 0.2, λ = 5,
ξ = 8, λV = 150, tδ = 0.3, aspect ratio rp = 2, number of
constituent spheres forming the sphere-connected model
NPTC, cutoff distance r*coff = 5rp, δr*max = 0.1, and δθmax =
(5/180)π.

• The total number of MC steps is 10,000, and the particle
positions are written out at every NGRAPH steps for the
postprocessing analysis.

• A sequence of uniform random numbers are
prepared in advance and, when necessary, random
numbers are taken out from the variable RAN(*)

• The READ statements are for continuing the
sequential simulation using the data saved
previously.

• The interaction energies are calculated between particle i and
its interacting particles.

• After particle i is slightly moved according to Eq. (1.52), the
interaction energy is calculated for this new microscopic state.

121Practice of Monte Carlo Simulations

0190 C
0191 C ---------------------- MOMENT --------
0192 150 RXI = RX(I)
0193 RYI = RY(I)
0194 NXI = NX(I)
0195 NYI = NY(I)
0196 C --- OLD ENERGY ---
0197 EOLD = ENEW
0198 C ---------- (3) CANDIDATE
0199 C
0200 NRAN = NRAN + 1
0201 C1 = DELT*DBLE(RAN(NRAN))
0202 NRAN = NRAN + 1
0203 C1 = DSIGN(C1 , DBLE(RAN(NRAN)-0.5))
0204 CX = DSIN(C1)
0205 CY = DCOS(C1)
0206 NXCAN = NXI*CY + NYI*CX
0207 NYCAN = NYI*CY - NXI*CX
0208 C
0209 C --- NEW ENERGY ---
0210 CALL ENECAL(I, RXI, RYI, NXCAN, NYCAN, RCOFF2, ECAN, OVRLAP)
0211 IF(OVRLAP) GOTO 400
0212 C
0213 C -------- (4) ENERGY HANDAN --------
0214 C
0215 C3 = ECAN - EOLD
0216 IF(C3 .GE. 0.D0)THEN
0217 NRAN = NRAN + 1
0218 IF(DBLE(RAN(NRAN)) .GE. DEXP(-C3))THEN
0219 GOTO 400
0220 END IF
0221 END IF
0222 C +++++++++++++++++++++++
0223 C CANDIDATES ARE ACCEPTED
0224 C +++++++++++++++++++++++
0225 NX(I) = NXCAN
0226 NY(I) = NYCAN
0227 E(I) = ECAN
0228 C
0229 ccc if(i.eq.1) then
0230 ccc write(6,*) 'smpl,rx,ry',mcsmpl, rx(1), ry(1)
0231 ccc end if
0232 C
0233 400 CONTINUE
0234 C
0235 C
0236 C ----- MOMENT AND ENERGY OF SYSTEM -----
0237 C1 = 0.D0
0238 C2 = 0.D0

• The procedure after the acceptance of the new state.

• The average of the components of the vector denoting the particle direction
is calculated.

• The system energy can be obtained by summing the energy of each particle.

0166 RYCAN = RYCAN - DNINT(RYCAN/YL)*YL
0167 C --- NEW ENERGY ---
0168 CALL ENECAL(I, RXCAN, RYCAN, NXI, NYI, RCOFF2, ECAN, OVRLAP)
0169 IF(OVRLAP) THEN
0170 ENEW = EOLD
0171 GOTO 150
0172 END IF
0173 C -------- (2) ENERGY HANDAN
0174 C
0175 C3 = ECAN - EOLD
0176 IF(C3 .GE. 0.D0)THEN
0177 NRAN = NRAN + 1
0178 IF(DBLE(RAN(NRAN)) .GE. DEXP(-C3))THEN
0179 ENEW = EOLD
0180 GOTO 150
0181 END IF
0182 END IF
0183 C +++++++++++++++++++++++
0184 C CANDIDATES ARE ACCEPTED
0185 C +++++++++++++++++++++++
0186 RX(I) = RXCAN
0187 RY(I) = RYCAN
0188 ENEW = ECAN
0189 E(I) = ECAN

• The procedure after the acceptance of the new state.

• After the direction of particle i is
slightly changed according to a
similar equation to Eq. (1.52), the
interaction energy is calculated for
this new microscopic state.

• The adoption of the new
state is determined according
to the transition probability in
Eq. (1.49).

• The adoption of the new state is determined
according to the transition probability in Eq. (1.49).

122 Introduction to Practice of Molecular Simulation

0253 WRITE(NOPT,462) N , XL , YL , D , DT , NPTC
0254 WRITE(NOPT,464) (RX(I),I=1,N) , (RY(I),I=1,N) ,
0255 & (NX(I),I=1,N) , (NY(I),I=1,N)
0256 CLOSE(NOPT,STATUS='KEEP')
0257 END IF
0258 C
0259 C --- CHECK OF THE SUM OF RANDOM NUMBERS ---
0260 C
0261 IF(NRAN .GE. NRANCHK)THEN
0262 CALL RANCAL(NRANMX, IX, RAN)
0263 NRAN = 1
0264 END IF
0265 C
0266 C
0267 500 CONTINUE
0268 C
0269 C --
0270 C -------------------- END OF MONTE CARLO PART -----------------
0271 C --
0272 C
0273 WRITE(NP,592)
0274 MCSMPL1 = 1
0275 MCSMPL2 = MCSMPLMX
0276 CALL PRNTDATA(MCSMPL1 , MCSMPL2 , NP)
0277 WRITE(NP,612) MCSMPL1 , MCSMPL2
0278 C
0279 C --- DATA OUTPUT FOR GRAPHICS (2) ---
0280 WRITE(10,1012) N, VDENS, RA, KU, RV, D, TD, XL, YL
0281 WRITE(10,1013) RCOFF, RP, NPTC, DELR, DELT
0282 WRITE(10,1014) MCSMPLMX, NGRAPH
0283 WRITE(10,1016) (MEANENE(I),I=MCSMPL1, MCSMPL2)
0284 & ,(MOMX(I), I=MCSMPL1, MCSMPL2)
0285 & ,(MOMY(I), I=MCSMPL1, MCSMPL2)
0286 C
0287 CLOSE(9, STATUS='KEEP')
0288 CLOSE(10,STATUS='KEEP')
0289 C -------------------------- FORMAT ------------------------------
0290 12 FORMAT(/1H ,'--'
0291 & /1H ,'- MONTE CARLO METHOD -'
0292 & /1H ,'--'
0293 & //1H ,'N=',I4, 2X ,'VDENS=',F5.2, 2X ,
0294 & 'RA=',F5.2, 2X ,'KU=',F6.2, 2X ,'RV=',F6.2, 2X,
0295 & 'D=',F5.2, 2X ,'TD=',F5.2
0296 & /1H ,'XL=',F6.2, 2X,'YL=',F6.2, 2X, 'RCOFF=',F6.2, 2X,
0297 & 'RP=',F7.4, 2X,'NPTC=',I3
0298 & /1H ,'DELR=',F7.4, 2X ,'DELT=',F7.4)
0299 14 FORMAT(1H ,'MCSMPMX=',I8, 2X, 'NGRAPH=',I8/)
0300 462 FORMAT(I5 , 4F9.4 , I5)
0301 464 FORMAT((8F10.5))
0302 592 FORMAT(/1H ,'++++++++++++++++++++++++++++++'
0303 & /1H ,' WITHOUT CLUSTER MOVEMENT '
0304 & /1H ,'++++++++++++++++++++++++++++++'/)
0305 612 FORMAT(///1H ,18X, 'START OF MC SAMPLING STEP=',I7
0306 & /1H ,18X, 'END OF MC SAMPLING STEP=',I7/)
0307 1007 FORMAT(/1H ,'*********** NUMBER DENSITY OF CLUSTERS ***********'
0308 & /1H ,'Q (MEAN LENGTH OF CLUSTERS)=',F10.5, 5X ,
0309 & 'NDNSMX=',I8
0310 & //1H ,'NDNSCLS(1), NDNSCLS(2), NDNSCLS(3),'
0311 & /(1H , 6E13.6))
0312 1012 FORMAT(I7 , 8F9.4)
0313 1013 FORMAT(2F9.5 , I4, 2F8.5)

0239 C3 = 0.D0
0240 DO 450 J=1,N
0241 C1 = C1 + NY(J)
0242 C2 = C2 + NX(J)
0243 C3 = C3 + E(J)
0244 450 CONTINUE
0245 MOMY(MCSMPL) = REAL(C1)/REAL(N)
0246 MOMX(MCSMPL) = REAL(C2)/REAL(N)
0247 MEANENE(MCSMPL) = REAL(C3-KU*C1)/REAL(2*N)
0248 C
0249 C --- DATA OUTPUT FOR GRAPHICS (1) ---
0250 C
0251 IF(MOD(MCSMPL,NGRAPH) .EQ. 0) THEN
0252 NOPT = NOPT + 1

• Since each interaction energy is counted twice, the magnetic
particle–field interaction is also added twice. The system
energy can finally be obtained by dividing the result by two.

• The number of the random numbers used is
checked. If over NRANCHK, a uniform random
number sequence is renewed.

123Practice of Monte Carlo Simulations

0316 STOP
0317 END
0318 C***
0319 C*************************** SUBROUTINE **************************
0320 C***
0321 C
0322 C**** SUB PRNTDATA ****
0323 SUBROUTINE PRNTDATA(MCSST, MCSMX, NP)
0324 C
0325 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0326 C
0327 COMMON /BLOCK9/ MOMX , MOMY , MEANENE
0328 C
0329 PARAMETER(NN=1000 , NNS=200000)
0330 PARAMETER(NRANMX=500000 , PI=3.141592653589793D0)
0331 C
0332 INTEGER MCSST , MCSMX , NP
0333 REAL MOMX(NNS) , MOMY(NNS) , MEANENE(NNS)
0334 C
0335 REAL AMOMX(10) , AMOMY(10) , AMEANENE(10) , C0
0336 INTEGER IC , IMC(0:10) , JS , JE
0337 C
0338 C ----- KEIKA INSATU -----
0339 IC = (MCSMX-MCSST+1)/50
0340 DO 20 I= MCSST-1+IC , MCSMX , IC
0341 WRITE(NP,10) I ,MOMX(I) ,MOMY(I) ,MEANENE(I)
0342 20 CONTINUE
0343 C ----- MONTE CARLO STEP HEIKIN -----
0344 IC = (MCSMX-MCSST+1)/10
0345 DO 30 I=0,10
0346 IMC(I) = MCSST - 1 + IC*I
0347 IF(I .EQ. 10) IMC(I) =MCSMX
0348 30 CONTINUE
0349 C
0350 C
0351 DO 35 I=1,10
0352 AMOMY(I) = 0.
0353 AMOMX(I) = 0.
0354 AMEANENE(I) = 0.
0355 35 CONTINUE
0356 C
0357 DO 50 I=1,10
0358 JS = IMC(I-1) + 1
0359 JE = IMC(I)
0360 DO 40 J=JS,JE
0361 AMOMY(I) = AMOMY(I) + MOMY(J)
0362 AMOMX(I) = AMOMX(I) + MOMX(J)
0363 AMEANENE(I) = AMEANENE(I) + MEANENE(J)
0364 40 CONTINUE
0365 50 CONTINUE
0366 C
0367 DO 70 I=1,10
0368 C0 = REAL(IMC(I)-IMC(I-1))
0369 AMOMY(I) = AMOMY(I) /C0
0370 AMOMX(I) = AMOMX(I) /C0
0371 AMEANENE(I) = AMEANENE(I)/C0
0372 70 CONTINUE
0373 C ----- STEP HEIKIN INSATU -----
0374 WRITE(NP,75)
0375 DO 90 I=1,10
0376 WRITE(NP,80)I,IMC(I-1)+1,IMC(I),AMOMX(I),AMOMY(I),AMEANENE(I)
0377 90 CONTINUE
0378 C --

• The particle direction and the averaged energy
are written out.

0314 1014 FORMAT(2I8)
0315 1016 FORMAT((5E16.9))

0379 10 FORMAT(1H ,'MCSMPL=',I5, 3X ,'MOMENT(X)=',F7.4, 3X ,
0380 & 'MOMENT(Y)=',F7.4, 3X ,'MEAN ENERGY=',E12.5)
0381 75 FORMAT(//1H ,'---'
0382 & /1H ,' MONTE CARLO HEIKIN '
0383 & /)
0384 80 FORMAT(1H ,'I=',I2, 2X ,'SMPLMN=',I5, 2X ,'SMPLMX=',I5
0385 & /1H ,15X ,'MOMENT(X)=',F7.4, 3X ,
0386 & 'MOMENT(Y)=',F7.4, 3X ,'MEAN ENERGY=',E12.5/)
0387 RETURN
0388 END

• The total MC steps are equally divided into 50
blocks, and the end value of each block is
written out.

• The total MC steps are equally divided into10
blocks, and the subaverages are calculated for
each block.

124 Introduction to Practice of Molecular Simulation

0389 C**** SUB INITIAL ****
0390 SUBROUTINE INITIAL(VDENS , N , NPTC)
0391 C
0392 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0393 C
0394 COMMON /BLOCK1/ RX , RY
0395 COMMON /BLOCK2/ NX , NY
0396 COMMON /BLOCK3/ XL , YL
0397 C
0398 PARAMETER(NN=1000)
0399 PARAMETER(NRANMX=500000 , PI=3.141592653589793D0)
0400 C
0401 REAL*8 RX(NN) , RY(NN) , NX(NN) , NY(NN)
0402 REAL*8 VDENS
0403 C
0404 INTEGER Q , PTCL
0405 REAL*8 A , XLUNT , YLUNT , RAN , RAN1 , RAN2 , C1 , C2
0406 C
0407 A = DSQRT(DBLE(NPTC)*PI/(8.D0*VDENS))
0408 Q = NINT(SQRT(REAL(N+1)))
0409 XL = A*DBLE(Q)
0410 YL = A*DBLE(2*Q)
0411 XLUNT = A
0412 YLUNT = A*DBLE(2)
0413 C ----- POSITION -----
0414 RAN1 = DSQRT(2.D0)
0415 RAN2 = DSQRT(7.D0)
0416 PTCL=0
0417 DO 10 J=0,Q-1
0418 DO 10 I=0,Q-1
0419 PTCL = PTCL + 1
0420 C1 = RAN1*DBLE(PTCL)
0421 C1 = C1 - DINT(C1)
0422 C1 = C1 - 0.5D0
0423 C2 = RAN2*DBLE(PTCL)
0424 C2 = C2 - DINT(C2)
0425 C2 = C2 - 0.5D0
0426 RX(PTCL) = DBLE(I)*XLUNT+XLUNT/2.D0+C1*(XLUNT/6.D0)-XL/2.D0
0427 RY(PTCL) = DBLE(J)*YLUNT+YLUNT/2.D0+C2*(YLUNT/6.D0)-YL/2.D0
0428 10 CONTINUE
0429 N = PTCL
0430 C ----- MOMENT -----
0431 RAN = DSQRT(2.D0)
0432 DO 20 I=1,N
0433 C1 = RAN*DBLE(I)
0434 C1 = C1 - DINT(C1)
0435 C1 = C1 - 0.5D0
0436 C1 = (5.D0/180.D0)*PI*C1
0437 NX(I) = DSIN(C1)
0438 NY(I) = DCOS(C1)
0439 20 CONTINUE
0440 RETURN
0441 END
0442 C**** SUB ENECAL *****
0443 SUBROUTINE ENECAL(I, RXI, RYI, NXI, NYI, RCOFF2 ,ECAN, OVRLAP)
0444 C
0445 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0446 C
0447 COMMON /BLOCK1/ RX , RY
0448 COMMON /BLOCK2/ NX , NY
0449 COMMON /BLOCK3/ XL , YL
0450 COMMON /BLOCK4/ RA , KU , RV , TD , RP
0451 COMMON /BLOCK5/ VDENS, N , NPTC , RCOFF , D , NPTCHF
0452 COMMON /BLOCK6/ E , ENEW , EOLD
0453 C
0454 PARAMETER(NN=1000 , PI=3.141592653589793D0)
0455 C
0456 REAL*8 RX(NN) , RY(NN) , NX(NN) , NY(NN) , E(NN)
0457 REAL*8 VDENS , KU
0458 LOGICAL OVRLAP
0459 C

• A subroutine for calculating the interaction
energies between particles.

0460 REAL*8 RXI , RYI , RXJ , RYJ , RXIJ , RYIJ , RIJ , RIJSQ
0461 REAL*8 NXI , NYI , NXJ , NYJ , NXIJ , NYIJ , NXIJ2 , NYIJ2
0462 REAL*8 RRXI , RRYI , RRXJ , RRYJ , RRXIJ , RRYIJ
0463 REAL*8 NNXI , NNYI , NNXJ , NNYJ

• A subroutine for setting the initial
position and velocity of each particle.

• The area occupied by one particle is
(a*×2a*) and therefore the relationship
between the area fraction φV and a* is
expressed as φV =(NPTC)*π/8a*2.

• To save pseudo-random numbers, quasi-random
numbers based on irrational numbers are used for
randomly setting the particle direction within a
small angle range.

• The particles are initially set in the simple lattice unit
formation in Figure 2.1A; the side lengths of the unit cell are
(a*, 2a*) in each direction.
• Each particle is moved in parallel by (XLUNT/2, YLUNT/2)
to remove subtle situations at outer boundary surfaces. Also,
to remove the regularity of the initial configuration, each
particle is moved randomly by the maximum displacement
0.5×(XLUNT/6, YLUNT/6) using quasi-random numbers.

125Practice of Monte Carlo Simulations

0464 REAL*8 TXIJ , TYIJ , R00 , R01 , R10 , R11
0465 REAL*8 C11 , C12 , C21 , C22 , C31 , C32 , C41 , C42
0466 REAL*8 C00 , C01 , C02
0467 REAL*8 CNINJ , CNINJ2 , CRIJNI2 , CRIJNJ2 , CKI , CKJ
0468 REAL*8 KI , KJ , KKI , KKJ , KIS , KJS , KKIS , KKIS2 , KKIJC
0469 REAL*8 DSQ, RCHKSQ , RCHKSQ2
0470 REAL*8 XI , YI , XJ , YJ , ENESTER
0471 INTEGER ITREE , IPATH , II , JJ , JJS , JJE , IIDEF, IINUMBR
0472 C
0473 OVRLAP = .FALSE.
0474 ECAN = - KU*NYI
0475 DSQ = (1.D0 + TD)**2
0476 C
0477 DO 1000 J=1,N
0478 C
0479 IF(J .EQ. I) GOTO 1000
0480 C
0481 RXJ = RX(J)
0482 RYJ = RY(J)
0483 RXIJ = RXI - RXJ
0484 RXIJ = RXIJ - DNINT(RXIJ/XL)*XL
0485 IF(DABS(RXIJ) .GE. RCOFF) GOTO 1000
0486 RYIJ = RYI - RYJ
0487 RYIJ = RYIJ - DNINT(RYIJ/YL)*YL
0488 IF(DABS(RYIJ) .GE. RCOFF) GOTO 1000
0489 RIJSQ= RXIJ**2 + RYIJ**2
0490 IF(RIJSQ .GE. RCOFF2) GOTO 1000
0491 RIJ = DSQRT(RIJSQ)
0492 C
0493 IF(DABS(RXIJ) .GT. XL/2.D0) THEN
0494 IF(RXIJ .GT. 0.D0) RXJ = RXJ + XL
0495 IF(RXIJ .LE. 0.D0) RXJ = RXJ - XL
0496 END IF
0497 IF(DABS(RYIJ) .GT. YL/2.D0) THEN
0498 IF(RYIJ .GT. 0.D0) RYJ = RYJ + YL
0499 IF(RYIJ .LE. 0.D0) RYJ = RYJ - YL
0500 END IF
0501 NXJ = NX(J)
0502 NYJ = NY(J)
0503 NXIJ = NXI - NXJ
0504 NYIJ = NYI - NYJ

• The treatment concerning particle i.

0505 NXIJ2 = NXI + NXJ
0506 NYIJ2 = NYI + NYJ
0507 C
0508 C11 = RXIJ*NXIJ + RYIJ*NYIJ
0509 C21 = RXIJ*NXIJ2 + RYIJ*NYIJ2
0510 C12 = 1.D0 - (NXI*NXJ + NYI*NYJ)
0511 C22 = 1.D0 + (NXI*NXJ + NYI*NYJ)
0512 C00 = RA/(RP**2)
0513 C01 = RP/RIJSQ
0514 C02 = RP**2/(2.D0*RIJSQ)
0515 C --- MAGNETIC ENERGY ---
0516 R00 = RIJ*(1.D0 + C01*C11 + C02*C12)**0.5
0517 R11 = RIJ*(1.D0 - C01*C11 + C02*C12)**0.5
0518 R01 = RIJ*(1.D0 + C01*C21 + C02*C22)**0.5
0519 R10 = RIJ*(1.D0 - C01*C21 + C02*C22)**0.5
0520 IF((R00 .LT. 1.D0) .OR. (R11 .LT. 1.D0)
0521 & .OR. (R01 .LT. 1.D0) .OR. (R10 .LT. 1.D0)) THEN
0522 OVRLAP = .TRUE.
0523 RETURN
0524 END IF
0525 C
0526 ECAN = ECAN + C00*(1.D0/R00 + 1.D0/R11 - 1.D0/R01 - 1.D0/R10)
0527 C
0528 C
0529 C ------------------------------- ENERGY DUE TO STERIC INER. ---
0530 C
0531 CNINJ = NXI*NXJ + NYI*NYJ
0532 IF(DABS(CNINJ) .LT. 0.2D0) THEN
0533 ITREE = 2
0534 ELSE IF(DABS(CNINJ) .GT. 0.9999D0) THEN
0535 ITREE = 3

• The interaction energy is summed for the
four pairs of magnetic charges.

• The treatment of the periodic BC.
• If the two particles are separated
over the cutoff distance r*coff, the
calculation is unnecessary.

• The interaction energy due to
the overlap of the steric layers
is calculated in the following.

• The magnetic interaction energy is
calculated from Eq. (4.13).
• The distance between the magnetic
charges is first calculated.

• The position of the partner particle j is
modified according to the periodic BC.

126 Introduction to Practice of Molecular Simulation

0536 ELSE
0537 ITREE = 1
0538 END IF
0539 C
0540 TXIJ = RXIJ/RIJ
0541 TYIJ = RYIJ/RIJ
0542 C11 = TXIJ*NXJ + TYIJ*NYJ
0543 IF((DABS(CNINJ).GT.0.9999D0).AND.(DABS(C11).GT.0.9999D0))THEN
0544 ITREE=0
0545 END IF
0546 C --------------------
0547 C ITREE=0: LINEAR
0548 C ITREE=1: GENERAL
0549 C ITREE=2: NORMALL
0550 C ITREE=3: PARALLEL
0551 C --------------------
0552 C
0553 C --- (0) LINEAR ---
0554 IF(ITREE .EQ. 0) THEN
0555 C
0556 IF(CNINJ .GE. 0) THEN
0557 IF(C11 .GE. 0) THEN
0558 C --- IPATH=1
0559 XJ = RXJ + NXJ*DBLE(NPTCHF)
0560 YJ = RYJ + NYJ*DBLE(NPTCHF)
0561 XI = RXI - NXI*DBLE(NPTCHF)
0562 YI = RYI - NYI*DBLE(NPTCHF)
0563 ECAN = ECAN + ENESTER(XI, YI, XJ, YJ, TD, RV, OVRLAP)
0564 IF (OVRLAP) RETURN
0565 ELSE
0566 C --- IPATH=2
0567 XJ = RXJ - NXJ*DBLE(NPTCHF)

• The treatment for a linear arrangement
in Figure 4.6.

0568 YJ = RYJ - NYJ*DBLE(NPTCHF)
0569 XI = RXI + NXI*DBLE(NPTCHF)
0570 YI = RYI + NYI*DBLE(NPTCHF)
0571 ECAN = ECAN + ENESTER(XI, YI, XJ, YJ, TD, RV, OVRLAP)
0572 IF (OVRLAP) RETURN
0573 END IF
0574 ELSE
0575 IF(C11 .GE. 0) THEN
0576 C --- IPATH=3
0577 XJ = RXJ + NXJ*DBLE(NPTCHF)
0578 YJ = RYJ + NYJ*DBLE(NPTCHF)
0579 XI = RXI + NXI*DBLE(NPTCHF)
0580 YI = RYI + NYI*DBLE(NPTCHF)
0581 ECAN = ECAN + ENESTER(XI, YI, XJ, YJ, TD, RV, OVRLAP)
0582 IF (OVRLAP) RETURN
0583 ELSE
0584 C --- IPATH=4
0585 XJ = RXJ - NXJ*DBLE(NPTCHF)
0586 YJ = RYJ - NYJ*DBLE(NPTCHF)
0587 XI = RXI - NXI*DBLE(NPTCHF)
0588 YI = RYI - NYI*DBLE(NPTCHF)
0589 ECAN = ECAN + ENESTER(XI, YI, XJ, YJ, TD, RV, OVRLAP)
0590 IF (OVRLAP) RETURN
0591 END IF
0592 END IF
0593 C
0594 GOTO 1000
0595 C
0596 END IF
0597 C --- END OF LINEAR --
0598
0599 IF((ITREE .EQ. 1) .OR. (ITREE .EQ. 2)) THEN
0600 C

• The position (XI,YI) and (XJ,YJ) of the spheres of
particles i and j are calculated.

0601 CNINJ2 = NXJ*NYI - NYJ*NXI
0602 CRIJNI2 = RXIJ*NYI - RYIJ*NXI
0603 CRIJNJ2 = RXIJ*NYJ - RYIJ*NXJ
0604 CKJ = DABS(CRIJNI2/CNINJ2)
0605 CKI = DABS(CRIJNJ2/CNINJ2)

• The absolute values (CKI, CKJ) of (ki, k j)
are calculated from Eq. (4.8).

0606 C
0607 C11 = RXIJ + CKI*NXI - CKJ*NXJ
0608 C12 = RYIJ + CKI*NYI - CKJ*NYJ
0609 C21 = RXIJ - CKI*NXI - CKJ*NXJ
0610 C22 = RYIJ - CKI*NYI - CKJ*NYJ

• The regime shown in Figure 4.3 is determined to proceed to the
appropriate treatment, and after the calculation of the interaction
energy, the calculation procedure returns to the main program.

127Practice of Monte Carlo Simulations

0611 C31 = RXIJ + CKI*NXI + CKJ*NXJ
0612 C32 = RYIJ + CKI*NYI + CKJ*NYJ
0613 C41 = RXIJ - CKI*NXI + CKJ*NXJ
0614 C42 = RYIJ - CKI*NYI + CKJ*NYJ
0615 C00 = 1.0D-8
0616 IF((DABS(C11).LT. C00) .AND. (DABS(C12).LT. C00))THEN
0617 KI = CKI
0618 KJ = CKJ
0619 GOTO 110
0620 END IF
0621 IF((DABS(C21).LT. C00) .AND. (DABS(C22).LT. C00))THEN
0622 KI = -CKI
0623 KJ = CKJ
0624 GOTO 110
0625 END IF
0626 IF((DABS(C31).LT. C00) .AND. (DABS(C32).LT. C00))THEN
0627 KI = CKI
0628 KJ = -CKJ
0629 GOTO 110
0630 END IF

• The final results of ki and k j are obtained by
checking the sign of ki and k j.

0631 IF((DABS(C41).LT. C00) .AND. (DABS(C42).LT. C00))THEN
0632 KI = -CKI
0633 KJ = -CKJ
0634 GOTO 110
0635 END IF
0636 C
0637 110 IF(CKJ .GT. CKI) THEN
0638 II = I
0639 JJ = J
0640 RRXI = RXI
0641 RRYI = RYI
0642 RRXJ = RXJ
0643 RRYJ = RYJ
0644 RRXIJ = RXIJ
0645 RRYIJ = RYIJ
0646 NNXI = NXI
0647 NNYI = NYI
0648 NNXJ = NXJ
0649 NNYJ = NYJ
0650 KKI = KI
0651 KKJ = KJ
0652 ELSE
0653 II = J
0654 JJ = I
0655 RRXI = RXJ
0656 RRYI = RYJ
0657 RRXJ = RXI
0658 RRYJ = RYI
0659 RRXIJ = -RXIJ
0660 RRYIJ = -RYIJ
0661 NNXI = NXJ
0662 NNYI = NYJ
0663 NNXJ = NXI
0664 NNYJ = NYI
0665 KKI = KJ
0666 KKJ = KI
0667 END IF
0668 C
0669 END IF
0670 C --------------------
0671 C ITREE=0: LINEAR
0672 C ITREE=1: GENERAL
0673 C ITREE=2: NORMALL
0674 C ITREE=3: PARALLEL
0675 C --------------------
0676 IF(ITREE .EQ. 1) GOTO 200
0677 IF(ITREE .EQ. 2) GOTO 400
0678 IF(ITREE .EQ. 3) GOTO 600
0679 C
0680 C -- (1) GENERAL ---
0681 200 CNINJ = NXI*NXJ + NYI*NYJ
0682 IF(CNINJ .GT. 0.D0) THEN
0683 IF(KKJ .GE. 0.D0) THEN
0684 IPATH = 1
0685 ELSE

• The treatment for a general arrangement in
Figure 4.4.

• The subscripts are exchanged between i and
j so as to satisfy |kj |>|ki |.
• As a result, the particle names i and j in
Figure 4.2 are expressed as II and JJ in the
program.

128 Introduction to Practice of Molecular Simulation

0686 IPATH = 4
0687 END IF
0688 ELSE
0689 IF(KKJ .GE. 0.D0) THEN
0690 IPATH = 3
0691 ELSE
0692 IPATH = 2
0693 END IF
0694 END IF
0695 C
0696 KKIS = CNINJ*DBLE(NPTCHF) - (RRXIJ*NNXI + RRYIJ*NNYI)
0697 KKIS2 = - CNINJ*DBLE(NPTCHF) - (RRXIJ*NNXI + RRYIJ*NNYI)
0698 RCHKSQ =(RRXIJ + KKIS *NNXI - NNXJ*DBLE(NPTCHF))**2
0699 & +(RRYIJ + KKIS *NNYI - NNYJ*DBLE(NPTCHF))**2
0700 RCHKSQ2=(RRXIJ + KKIS2*NNXI + NNXJ*DBLE(NPTCHF))**2
0701 & +(RRYIJ + KKIS2*NNYI + NNYJ*DBLE(NPTCHF))**2
0702 C
0703 IF(IPATH .EQ. 1) THEN
0704 C --- PATH=1 ---
0705 IF(RCHKSQ .GE. DSQ) GOTO 1000
0706 C
0707 IF(KKIS .GE. 0.D0) THEN
0708 IKKIS = IDINT(KKIS) + 1
0709 ELSE
0710 IKKIS = IDINT(KKIS)
0711 END IF
0712 IF(IKKIS .GT. NPTCHF) IKKIS = NPTCHF
0713 JJS = NPTCHF
0714 IIDEF = NPTCHF - IKKIS
0715 JJE = -NPTCHF + IIDEF
0716 C
0717 DO 250 JJ= JJS, JJE, -1
0718 XJ = RRXJ + DBLE(JJ)*NNXJ
0719 YJ = RRYJ + DBLE(JJ)*NNYJ
0720 DO 250 II= JJ-IIDEF, JJ-IIDEF-1, -1
0721 IF(II .LT. -NPTCHF) GOTO 250
0722 XI = RRXI + DBLE(II)*NNXI
0723 YI = RRYI + DBLE(II)*NNYI
0724 ECAN = ECAN + ENESTER(XI, YI, XJ, YJ, TD, RV, OVRLAP)
0725 IF (OVRLAP) RETURN
0726 250 CONTINUE
0727 C
0728 ELSE IF(IPATH .EQ. 2) THEN
0729 C --- PATH=2 ---
0730 IF(RCHKSQ2 .GE. DSQ) GOTO 1000
0731 C
0732 IF(KKIS2 .GE. 0.D0) THEN
0733 IKKIS2 = IDINT(KKIS2) + 1
0734 ELSE
0735 IKKIS2 = IDINT(KKIS2)
0736 END IF
0737 IF(IKKIS2 .GT. NPTCHF) IKKIS2 = NPTCHF
0738 JJS = NPTCHF
0739 IIDEF = NPTCHF - IKKIS2
0740 JJE = -NPTCHF + IIDEF
0741 C
0742 DO 252 JJ= JJS, JJE, -1
0743 JJJ= -JJ
0744 XJ = RRXJ + DBLE(JJJ)*NNXJ
0745 YJ = RRYJ + DBLE(JJJ)*NNYJ
0746 DO 252 II= JJ-IIDEF, JJ-IIDEF-1, -1
0747 IF(II .LT. -NPTCHF) GOTO 252
0748 XI = RRXI + DBLE(II)*NNXI
0749 YI = RRYI + DBLE(II)*NNYI
0750 ECAN = ECAN + ENESTER(XI, YI, XJ, YJ, TD, RV, OVRLAP)
0751 IF (OVRLAP) RETURN
0752 252 CONTINUE
0753 C
0754 ELSE IF(IPATH .EQ. 3) THEN
0755 C --- PATH=3 ---
0756 IF(RCHKSQ .GE. DSQ) GOTO 1000
0757 C
0758 IF(-KKIS .GE. 0.D0) THEN
0759 IKKIS = IDINT(-KKIS) + 1
0760 ELSE
0761 IKKIS = IDINT(-KKIS)

• After the assessment of the particle overlap
regime, ki

s (KKIS) and ki
s′ (KKIS2) are calculated

from Eqs. (4.9) and (4.10).

• The constituent spheres in the rod-like particle are
named in such a way that the central sphere is 0, the
neighboring spheres are 1,2,…, in the particle direction,
and –1,–2,…, in the opposite direction.

• The center of the sphere of particle i is
denoted by (XI,YI) and, similarly, (XJ,YJ)
for the sphere of particle j.

• The interaction energy between the sphere
IKKIS of particle i and the sphere JJS of
particle j is checked.
• The two spheres of particle i are checked
as an object interacting with the sphere of
particle j.

129Practice of Monte Carlo Simulations

0762 END IF
0763 IF(IKKIS .GT. NPTCHF) IKKIS = NPTCHF
0764 JJS = NPTCHF
0765 IIDEF = NPTCHF - IKKIS
0766 JJE = -NPTCHF + IIDEF
0767 C
0768 DO 254 JJ= JJS, JJE, -1
0769 XJ = RRXJ + DBLE(JJ)*NNXJ
0770 YJ = RRYJ + DBLE(JJ)*NNYJ
0771 DO 254 II= JJ-IIDEF, JJ-IIDEF-1, -1
0772 IF(II .LT. -NPTCHF) GOTO 254
0773 III = -II
0774 XI = RRXI + DBLE(III)*NNXI
0775 YI = RRYI + DBLE(III)*NNYI
0776 ECAN = ECAN + ENESTER(XI, YI, XJ, YJ, TD, RV, OVRLAP)
0777 IF (OVRLAP) RETURN
0778 254 CONTINUE
0779 C
0780 ELSE IF(IPATH .EQ. 4) THEN
0781 C --- PATH=4 ---
0782 IF(RCHKSQ2 .GE. DSQ) GOTO 1000
0783 C
0784 IF(-KKIS2 .GE. 0.D0) THEN
0785 IKKIS2 = IDINT(-KKIS2) + 1
0786 ELSE
0787 IKKIS2 = IDINT(-KKIS2)
0788 END IF
0789 IF(IKKIS2 .GT. NPTCHF) IKKIS2 = NPTCHF
0790 JJS = NPTCHF
0791 IIDEF = NPTCHF - IKKIS2
0792 JJE = -NPTCHF + IIDEF
0793 C
0794 DO 256 JJ= JJS, JJE, -1
0795 JJJ = -JJ
0796 XJ = RRXJ + DBLE(JJJ)*NNXJ
0797 YJ = RRYJ + DBLE(JJJ)*NNYJ
0798 DO 256 II= JJ-IIDEF, JJ-IIDEF-1, -1
0799 IF(II .LT. -NPTCHF) GOTO 256
0800 III = -II
0801 XI = RRXI + DBLE(III)*NNXI
0802 YI = RRYI + DBLE(III)*NNYI
0803 ECAN = ECAN + ENESTER(XI, YI, XJ, YJ, TD, RV, OVRLAP)
0804 IF (OVRLAP) RETURN
0805 256 CONTINUE
0806 C
0807 END IF
0808 C
0809 GOTO 1000
0810 C -- (2) NORMAL ---
0811 C
0812 400 IF(KKJ .GE. 0.D0) THEN
0813 IPATH = 1
0814 ELSE
0815 IPATH = 2
0816 END IF
0817 C
0818 CNINJ = NXI*NXJ + NYI*NYJ
0819 KKIS = CNINJ*DBLE(NPTCHF) - (RRXIJ*NNXI + RRYIJ*NNYI)

• The treatment for a normal arrangement in
Figure 4.5.

0820 KKIS2 = - CNINJ*DBLE(NPTCHF) - (RRXIJ*NNXI + RRYIJ*NNYI)
0821 RCHKSQ =(RRXIJ + KKIS *NNXI - NNXJ*DBLE(NPTCHF))**2
0822 & +(RRYIJ + KKIS *NNYI - NNYJ*DBLE(NPTCHF))**2
0823 RCHKSQ2=(RRXIJ + KKIS2*NNXI + NNXJ*DBLE(NPTCHF))**2
0824 & +(RRYIJ + KKIS2*NNYI + NNYJ*DBLE(NPTCHF))**2
0825 C
0826 IF(IPATH .EQ. 1) THEN
0827 IF(RCHKSQ .GE. DSQ) GOTO 1000
0828 ELSE
0829 IF(RCHKSQ2 .GE. DSQ) GOTO 1000
0830 END IF
0831 C
0832 IF(IPATH .EQ. 2) KKIS = KKIS2
0833 C
0834 IF(KKIS .GE. 0.D0) THEN
0835 IKKIS = IDINT(KKIS) + 1
0836 ELSE

• The constituent spheres in the rod-like particle
are named in such a way that the central sphere is
0, the neighboring spheres are 1,2,…, in the
particle direction, and –1, –2,…, in the opposite
direction.

• After the assessment of the particle overlap
regime, ki

s (KKIS) and ki
s′ (KKIS2) are

calculated from Eqs. (4.9) and (4.10).

130 Introduction to Practice of Molecular Simulation

0837 IKKIS = IDINT(KKIS)
0838 END IF
0839 IF(IKKIS .GT. NPTCHF) IKKIS = NPTCHF + 1
0840 IIDEF = NPTCHF - IKKIS
0841 C
0842 JJJ = NPTCHF
0843 IF(IPATH .EQ. 1) THEN
0844 JJ = JJJ
0845 ELSE
0846 JJ = -JJJ
0847 END IF
0848 C
0849
0850 XJ = RRXJ + DBLE(JJ)*NNXJ
0851 YJ = RRYJ + DBLE(JJ)*NNYJ
0852 DO 450 II= JJJ-IIDEF, JJJ-IIDEF-1, -1
0853 IF(II .GT. NPTCHF) GOTO 450
0854 IF(II .LT. -NPTCHF) GOTO 450
0855 XI = RRXI + DBLE(II)*NNXI
0856 YI = RRYI + DBLE(II)*NNYI
0857 ECAN = ECAN + ENESTER(XI, YI, XJ, YJ, TD, RV, OVRLAP)
0858 IF (OVRLAP) RETURN
0859 450 CONTINUE
0860 C
0861 GOTO 1000
0862 C -- (3) PARALLEL --
0863 C
0864 600 CNINJ = NXI*NXJ + NYI*NYJ
0865 KIS = CNINJ*DBLE(NPTCHF) - (RXIJ*NXI + RYIJ*NYI)
0866 KJS = CNINJ*DBLE(NPTCHF) + (RXIJ*NXJ + RYIJ*NYJ)
0867 IF(CNINJ .GE. 0.D0) THEN
0868 IPATH = 1
0869 ELSE
0870 IF(KIS .LE. -DBLE(NPTCHF)) THEN
0871 IPATH = 2
0872 ELSE
0873 IPATH = 3
0874 END IF
0875 END IF
0876 C
0877 II = I
0878 JJ = J
0879 RRXI = RXI
0880 RRYI = RYI
0881 RRXJ = RXJ
0882 RRYJ = RYJ

• The treatment for a parallel arrangement in Figure 4.7.

0883 RRXIJ = RXIJ
0884 RRYIJ = RYIJ
0885 NNXI = NXI
0886 NNYI = NYI
0887 NNXJ = NXJ
0888 NNYJ = NYJ
0889 KKIS = KIS
0890 IF((IPATH .EQ. 1) .AND. (KIS .GT. KJS)) THEN
0891 II = J
0892 JJ = I
0893 RRXI = RXJ
0894 RRYI = RYJ
0895 RRXJ = RXI
0896 RRYJ = RYI
0897 RRXIJ = -RXIJ
0898 RRYIJ = -RYIJ
0899 NNXI = NXJ
0900 NNYI = NYJ
0901 NNXJ = NXI
0902 NNYJ = NYI
0903 KKIS = KJS
0904 END IF
0905 C
0906 RCHKSQ = (RRXIJ + KKIS *NNXI - NNXJ*DBLE(NPTCHF))**2
0907 & +(RRYIJ + KKIS *NNYI - NNYJ*DBLE(NPTCHF))**2
0908 IF(RCHKSQ .GE. DSQ) GOTO 1000

• The interaction energy between the sphere IKKIS
of particle i and the sphere JJ of particle j is treated.
• The two spheres of particle i are checked as an
object interacting with the sphere of particle j.

• After the assessment of the particle
overlap regime, ki

s (KIS) and kj
s (KJS) are

calculated from Eq. (4.9).

• The center of the sphere of particle
i is denoted by (XI,YI) and, similarly,
(XJ,YJ) for the sphere of particle j

• The subscripts are exchanged between i and j so
as to satisfy kj

s > ki
s.

• As a result, the particle names i and j in Figure 4.7
are expressed as II and JJ in the program.

• The constituent spheres in the rod-like particle are
named in such a way that the central sphere is 0,
the neighboring spheres are 1,2,…, in the particle
direction, and –1, –2,…, in the opposite direction.

131Practice of Monte Carlo Simulations

0910 IF(IPATH .EQ. 1) THEN
0911 C --- PATH=1 ---
0912 IF(KKIS .GE. 0.D0) THEN
0913 IKKIS = IDINT(KKIS) + 1
0914 ELSE
0915 IKKIS = IDINT(KKIS)
0916 END IF
0917 IIDEF = NPTCHF - IKKIS
0918 C
0919 XJ = RRXJ + DBLE(NPTCHF)*NNXJ
0920 YJ = RRYJ + DBLE(NPTCHF)*NNYJ
0921 IINUMBR = NPTC + 1 - IIDEF
0922 DO 650 II= NPTCHF-IIDEF, NPTCHF-IIDEF-1, -1
0923 IF(II .LT. -NPTCHF) GOTO 650
0924 XI = RRXI + DBLE(II)*NNXI
0925 YI = RRYI + DBLE(II)*NNYI
0926 IINUMBR = IINUMBR - 1
0927 ECAN = ECAN + DBLE(IINUMBR)*
0928 & ENESTER(XI, YI, XJ, YJ, TD, RV, OVRLAP)
0929 IF (OVRLAP) RETURN
0930 650 CONTINUE
0931 END IF
0932 C
0933 KKIJC = DABS(KKIS) - DBLE(NPTCHF)
0934 C
0935 IF(IPATH .EQ. 2) THEN
0936 C --- PATH=2 ---
0937 IKKIJC = IDINT(KKIJC)
0938 IIDEF = IKKIJC
0939 XJ = RRXJ - DBLE(NPTCHF)*NNXJ
0940 YJ = RRYJ - DBLE(NPTCHF)*NNYJ
0941 IINUMBR = NPTC + 1 - IIDEF
0942 DO 652 II= NPTCHF-IIDEF, NPTCHF-IIDEF-1, -1
0943 IF(II .LT. -NPTCHF) GOTO 652
0944 XI = RRXI + DBLE(II)*NNXI
0945 YI = RRYI + DBLE(II)*NNYI
0946 IINUMBR = IINUMBR - 1
0947 ECAN = ECAN + DBLE(IINUMBR)*
0948 & ENESTER(XI, YI, XJ, YJ, TD, RV, OVRLAP)
0949 IF (OVRLAP) RETURN
0950 652 CONTINUE
0951 END IF
0952 C
0953 KKIJC = KKIS + DBLE(NPTCHF)
0954 C
0955 IF(IPATH .EQ. 3) THEN
0956 C --- PATH=3 ---
0957 IKKIJC = IDINT(KKIJC)
0958 IIDEF = IKKIJC
0959 XJ = RRXJ + DBLE(NPTCHF)*NNXJ
0960 YJ = RRYJ + DBLE(NPTCHF)*NNYJ
0961 IINUMBR = NPTC + 1 - IIDEF
0962 DO 654 II= NPTCHF-IIDEF, NPTCHF-IIDEF-1, -1
0963 IF(II .LT. -NPTCHF) GOTO 654
0964 III = -II
0965 XI = RRXI + DBLE(III)*NNXI
0966 YI = RRYI + DBLE(III)*NNYI
0967 IINUMBR = IINUMBR - 1
0968 ECAN = ECAN + DBLE(IINUMBR)*
0969 & ENESTER(XI, YI, XJ, YJ, TD, RV, OVRLAP)
0970 IF (OVRLAP) RETURN
0971 654 CONTINUE
0972 END IF
0973 C
0974 GOTO 1000
0975 C
0976 C ----------------------- END OF ENERGY DUE TO STERIC INER. ---
0977 C
0978 1000 CONTINUE
0979 RETURN
0980 END
0981 C#### FUN ENESTER ####
0982 DOUBLE PRECISION FUNCTION ENESTER(XI, YI, XJ, YJ, TD, RV, OVRLAP)
0983 C

0909 C

0984 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)

• The interaction energy between the sphere of the
positive magnetic charge of particle j and the sphere
IKKIS (and (IKKIS–1)) of particle i is calculated.
There are IINUMBER pairs of particles.

• The sphere of particle i is
determined as an object accord-
ing to Section 4.1.3.4. There are
IINUMBER pairs of particles
yielding such an arrangement.

• The separation between the central
spheres of particles i and j along the
particle axis, kij

c(KKIJC), is calculated.

• The center of the sphere of particle i is denoted
by (XI,YI) and, similarly, (XJ,YJ) for particle j.

132 Introduction to Practice of Molecular Simulation

0985 C
0986 LOGICAL OVRLAP
0987 C
0988 RIJ = DSQRT((XI-XJ)**2 + (YI-YJ)**2)
0989 X = 2.D0*(RIJ-1.D0)
0990 IF(X .LT. 0.D0) THEN
0991 OVRLAP = .TRUE.
0992 ENESTER = 1.D9
0993 RETURN
0994 END IF
0995 ccc write(6,*)'xi,yi,xj,yj', xi,yi,xj,yj
0996 C
0997 IF(RIJ .LE. (TD+1.D0)) THEN
0998 C1 = (X+2.D0)/TD
0999 C2 = DLOG((TD+1.D0)/(X/2.D0+1.D0))
1000 C3 = X/TD
1001 ENESTER = RV*(2.D0 - C1*C2 - C3)
1002 RETURN
1003 ELSE
1004 ENESTER = 0.D0
1005 RETURN
1006 END IF
1007 RETURN
1008 END
1009 C**** SUB RANCAL ****
1010 SUBROUTINE RANCAL(N, IX, X)
1011 C
1012 DIMENSION X(N)
1013 DATA INTEGMX/2147483647/
1014 DATA INTEGST,INTEG/584287,48828125/
1015 C
1016 AINTEGMX = REAL(INTEGMX)
1017 C
1018 IF (IX.LT.0) PAUSE
1019 IF (IX.EQ.0) IX = INTEGST
1020 DO 30 I=1,N
1021 IX = IX*INTEG
1022 IF (IX) 10, 20, 20
1023 10 IX = (IX+INTEGMX)+1
1024 20 X(I) = REAL(IX)/AINTEGMX
1025 30 CONTINUE
1026 RETURN
1027 END
1028 C***
1029 C THIS SUBROUTINE IS FOR GENERATING UNIFORM RANDOM NUMBERS *
1030 C (SINGLE PRECISION) FOR 64-BIT COMPUTER. *
1031 C N : NUMBER OF RANDOM NUMBERS TO GENERATE *
1032 C IX : INITIAL VALUE OF RANDOM NUMBERS (POSITIVE INTEGER) *
1033 C : LAST GENERATED VALUE IS KEPT *
1034 C X(N) : GENERATED RANDOM NUMBERS (0<X(N)<1) *
1035 C***
1036 C**** SUB RANCAL999 ****
1037 ccc SUBROUTINE RANCAL999(N, IX, X)
1038 C
1039 ccc IMPLICIT REAL*8 (A-H,O-Z), INTEGER*8 (I-N)
1040 C
1041 ccc REAL X(N)
1042 ccc INTEGER*8 INTEGMX, INTEG64, INTEGST, INTEG
1043 C
1044 CCC DATA INTEGMX/2147483647/
1045 ccc DATA INTEG64/2147483648/

• A subroutine for generating a uniform
random number sequence.

• This is for a 32-bit CPU based on the
expression of two’s complement.

1046 ccc DATA INTEGST,INTEG/584287,48828125/
1047 C
1048 CCC AINTEGMX = REAL(INTEGMX)
1049 ccc AINTEGMX = REAL(INTEG64)
1050 C
1051 ccc IF (IX.LT.0) PAUSE
1052 ccc IF (IX.EQ.0) IX = INTEGST
1053 ccc DO 30 I=1,N
1054 ccc IX = IX*INTEG
1055 ccc IX = KMOD(IX,INTEG64)
1056 CCC IF (IX) 10, 20, 20
1057 CCC10 IX = (IX+INTEGMX)+1
1058 ccc20 X(I) = REAL(IX)/AINTEGMX
1059 ccc30 CONTINUE
1060 ccc RETURN
1061 ccc END

• A function subprogram for calculating the
interaction energy due to the overlap of the
surfactant layers according to Eq. (4.14).

133Practice of Monte Carlo Simulations

4.2 Aggregation Phenomena in a Dispersion of Plate-like
Particles

In this section, we consider aggregation phenomena in a suspension composed of

disk-like particles. As seen in the rod-like particle system, there are several obsta-

cles to developing a simulation program employing a nonspherical particle system.

That is, we need to first make a mathematical analysis of particle overlap and then

express the overlap criterion in the language of a simulation program. Hence, in

this section we show the mathematical analysis from the viewpoint of developing a

simulation program. The exercise of interest is a circular disk-like particle with a

magnetic dipole moment at the particle center. We discuss the influences of mag-

netic particle�particle interactions and the magnetic field strength on aggregation

phenomena. The subject of the present exercise is partly under our research group’s

study, and therefore the sample simulation program has an academic emphasis. The

system of interest is in thermodynamic equilibrium and has a given number of

particles, temperature, and volume; therefore, the canonical MC algorithm is

employed.

4.2.1 Physical Phenomena of Interest

It is assumed that the system composed of disk-like particles with a magnetic

moment at the particle center is in thermodynamic equilibrium. In the present exer-

cise, we discuss aggregation phenomena in this type of dispersion under the influ-

ence of an applied magnetic field by means of an MC simulation.

The main points in formalizing this demonstration are to develop the particle

model, to express the potential energy between particles, and to analyze the crite-

rion for particle overlap. We explain these important subjects in detail below.

4.2.2 Particle Model

As shown in Figure 4.12, we here employ a disk-like particle with a magnetic

moment m (along the disk surface) normal to the particle axis at the particle center

with the section shape of a spherocylinder. The central part of this disk-like particle

is a short cylinder with diameter d and thickness b1. The side of the cylinder is sur-

rounded by the semi-shape of a torus shape, resulting in a particle circumcircle

with dimension d1 (5d1 b1), as shown in Figure 4.12. The configurational state of

a single axisymmetric particle i is specified by the position of the particle center ri,

the particle direction (normal to the disk surface) ei, and the magnetic moment

direction ni where ei and ni are the unit vectors. In the MC method, knowledge of

only the position and direction of each particle is sufficient to advance an MC step,

while both the translational and angular velocities need to be treated in the MD

method. The magnetic moment is assumed to be fixed in the particle body, so that

only the rotation of the particle can provide a change in the magnetic moment

direction.

134 Introduction to Practice of Molecular Simulation

The interaction energy ui between the magnetic moment mi and an applied mag-

netic field H is expressed as

ui 5 2μ0miUH ð4:18Þ

in which μ0 is the permeability of free space. This expression clearly implies that

the inclination of the magnetic moment along the field direction yields a minimum

interaction energy; that is, the particle has a tendency to orient in such a way that

the magnetic moment will incline in the field direction.

The magnetic interaction energy uij between particles i and j is expressed as [31]

uij 5
μ0

4πr3ij
miUmj 2

3

r2ij
ðmiUrijÞðmjUrijÞ

()
ð4:19Þ

in which ri is the position vector of particle i (i5 1, 2,. . ., N), rij5 ri2 rj, and

rij5 jrijj. Eq. (4.19) implies that a minimum interaction energy can be obtained

when both magnetic moments incline in the same direction along a line drawn

between the particle centers. However, note that a thermodynamic equilibrium state

will be determined by the balance of the decrease in the system energy and the

increase in the system entropy; that is, the entropy should be treated in addition to

the energy in order to discuss the thermodynamic equilibrium state. This approach

may provide an important facility to molecular simulation methods as a tool for

analyzing physical phenomena at the microscopic level. In addition to magnetic

forces, the interactions due to electric double layers and steric layers are important

considerations, but in this example we have chosen to neglect these interactions for

simplification and clarification of the method.

In our approach, by treating a nondimensional form of the system, we are able

to discuss the physical phenomenon of interest in a much more reasonable manner,

since several important factors governing the physical phenomenon appear as

explicit terms in the nondimensional equations. In the nondimensionalization pro-

cedure the representative values used are particle thickness b1 for distances and

(A) (B)

d 1 d

b1

d 1d

Figure 4.12 Particle model: (A) plane

view and (B) side view.

135Practice of Monte Carlo Simulations

thermal energy kT for energies. With these representative values, Eqs. (4.18) and

(4.19) are written as

u�i 5 ui=kT 5 2 ξniUh ð4:20Þ

u�ij 5 uij=kT 5λ
1

r�3ij
niUnj 2 3ðniUtijÞðnjUtijÞ

 � ð4:21Þ

in which ni5mi/m, m5 jmij, h5H/H, H5 jHj, tij5 rij/rij, and the superscript *

implies nondimensionalized quantities; ni and h are the unit vectors denoting the

magnetic moment direction and the magnetic field direction, respectively. The pro-

cedure gives rise to the nondimensional parameters ξ and λ that are defined as

ξ5μ0mH=kT ; λ5μ0m
2=4πb31kT ð4:22Þ

This is a typical example of the nondimensionalizing procedure giving rise to

the appearance of nondimensional parameters or nondimensional numbers. In the

present exercise, the physical phenomenon is governed by the magnetic particle�
field interactions, the particle�particle interactions, and the random forces and

torques acting on each particle. It is therefore reasonable that the ratios of these

factors appear in the basic equations as nondimensional parameters ξ and λ in

Eq. (4.22). These parameters imply the strengths of the magnetic particle�field

and the particle�particle interactions relative to the thermal energy, respectively.

4.2.3 Criterion of the Particle Overlap

Assessing the overlap of the two disk-like particles shown in Figure 4.12 is signifi-

cantly different from that of a pair of spherical particles. Both the torus parts may

overlap, or the torus part and the disk part may overlap. Taking into account all the

possible overlap regimes during a simulation requires probing into the essence of

the overlap and then making a systematic analysis based on the insight gained from

a careful investigation of the problem. This is usually undertaken in advance as

part of the preparation required in writing a computer simulation program. In the

previous case of the spherocylinder, systematic analysis on the particle overlap cri-

terion was achieved by viewing a pair from such a direction that the planes includ-

ing the corresponding particles are seen to be parallel. For our disk-like particle, a

systematic analysis may be possible by focusing on the line of intersection gener-

ated by the two corresponding planes. Hence, we first consider the case of nonpar-

allel planes, in which the intersection line can certainly be defined. The use of the

maximum section circle of diameter d1 of the disk-like particle enables us to indi-

cate the typical overlap patterns schematically in Figure 4.13. Figure 4.13A is for

the case of the intersection line penetrating each particle (circle), Figures 4.13B

and C are for the intersection line penetrating only one particle, and Figure 4.13D

is for the intersection line located outside both particles. Since the present disk-like

particles have a definite thickness, the above-mentioned regimes of the particle

136 Introduction to Practice of Molecular Simulation

overlap need to be slightly modified. That is, in each regime, the particle overlap is

assessed by calculating the minimum separation between the two particles. We dis-

cuss this method of assessing an overlap in detail below.

Advancing our analysis, we now consider the configuration of particles i and j

shown in Figure 4.14, with the notion ri for the particle center position, the unit

vector ei for denoting the particle direction (normal to the disk surface), the point

Si for the intersection point of the vertical line drawn from ri to the intersection

line, the position vector ri
s for point Si, and the unit vector ei

s for denoting the direc-

tion of ðris 2 riÞ; with similar notation for particle j. In addition, the notation tij
s is

used as the unit vector denoting the direction of the line drawn from points Sj to Si.

In the following paragraphs, these quantities are first evaluated for a pair of parti-

cles and then they are used to discuss the criterion for particle overlap.

(A) (B)

(C) (D)

Figure 4.13 Overlap of circular disk-like particles with infinitesimal thin thickness.

ei

ej

ri
rj

Sj

Si

(ki
s)

(r i
s)

(r j
s)

(kj
s)

ei
s

ej
s

tij
s

Figure 4.14 Analysis of circles with

radius r0 (5d/2).

137Practice of Monte Carlo Simulations

The unit vector tij
s along the intersection line is normal to both the vectors ei and

ej, so that tsij can be expressed from the formula of vector product as

tsij 5 ej 3 ei=jej 3 eij ð4:23Þ

in which tsij is necessarily taken from Sj toward Si. Since ei
s is normal to both ei and

tsij and, similarly, esj is normal to ej and tsij; the use of the vector tsij provides the

solutions of esi and esj as

esi 5 2ei 3 tsij; esj 5 ej 3 tsij ð4:24Þ

In the particle configuration shown in Figure 4.14, it is clear that the unit vectors

esi and esj in Eq. (4.24) point toward the intersection line from the center of each

particle. In certain situations, however, these vectors may point in the opposite

direction. The treatment of ensuring that esi and esj point toward the intersection line

will be discussed in detail in Section 4.2.5. If the distance between the center of

particle i and point Si is denoted by ksi (similarly, ksj for particle j), and the separa-

tion between points Si and Sj is denoted by ksij; the expression of point Si in the two

different forms yields the following equation:

ri 1 ksi e
s
i 5 rj 1 ksj e

s
j 1 ksijt

s
ij ð4:25Þ

The left- and right-hand sides in this equation are related to the same position vector

ri
s; which is traced from the center of particles i and j, respectively. With the orthog-

onality condition of the unit vectors, Eq. (4.25) provides the following expressions:

ksi 5 2
ejUrij
ejUesi

; ksj 5
eiUrij
eiUesj

; ksij 5 rijUtsij ð4:26Þ

Another preliminary discussion is necessary before proceeding to the analysis of

the particle overlap. Figure 4.15 shows the possibility of the torus part of particle j

overlapping with the disk surface part of particle i, where the angle between the

two planes including each particle is denoted by θ0. A line is drawn from the near-

est point Qj at the torus center circle of particle j so that it is perpendicular to the

plane of particle i, and this line will intersect the plane at a point denoted by Qi(j),

as shown in Figure 4.15. The length of the vertical line ki(j)
Q can be straightforwardly

obtained from a simple geometric relationship as

kQiðjÞ 5 ðksj 2 d=2ÞjesjUeij ð4:27Þ

The position vector rQiðjÞ of point Qi(j) can therefore be written as

rQiðjÞ 5 rj 1 ðd=2Þ esj 2 k
Q
iðjÞei ð4:28Þ

138 Introduction to Practice of Molecular Simulation

Note that Eqs. (4.27) and (4.28) are valid for kj
S$ d/2, as shown in Figure 4.15.

In the case of kj
S, d/2, the following expressions are used instead of Eqs. (4.27)

and (4.28):

kQiðjÞ 5 ðd=22 kj
sÞjesjUeij ð4:29Þ

rQiðjÞ 5 rj 1 ðd=2Þ ej
s 1 k

Q
iðjÞei ð4:30Þ

We have now completed the preparatory analysis and are able to begin discus-

sion of the particle overlap conditions. For simplicity, the condition kSi # kSj is

assumed to be satisfied in the following. It is reasonable to discuss the particle

overlap condition for the three different cases with regard to the directions of ei
and ej:

1. Case of ei 6¼ 6ej (general overlap).

2. Case of ei56ej and ei � rij5 0 (two particles being in the same plane).

3. Case of ei56ej and ei � rij 6¼ 0 (two particles being in the two parallel planes).

The procedure for assessing the particle overlap with regard to particles i and j

is as follows:

1. For ei56ej and ei � rij5 0 (both particles being in one plane).

1.1. For jri2 rjj$ d1, no overlap.

1.2. For jri2 rjj, d1, an overlap.

2. For ei56ej and ei � rij 6¼ 0 (particles i and j being in two parallel planes).

2.1. For jei � rijj$ b1, no overlap.

2.2. For jei � rijj, b1, a possibility of overlap.

e js

Q
j

e is

S
j

Sj

Qj

Qi(j)

kj
s |ej

s • ei
s|

k js
|e

js
•

e i
|

θ 0

kj
s

(A) (B) (C)

kQ
i(j)

Q
i(

j)
 (

rQ i(
j)
)

Figure 4.15 Analysis of the overlap of the flat part of particle i and the circumference of

particle j: (A) plane view, (B) side view, and (C) vector expression.

139Practice of Monte Carlo Simulations

The line drawn between ri and rj is projected onto each plane. The projected lines

will intersect the corresponding torus center circles at points Pi and Pj, respectively.

Then the unit vector ei
p denoting the direction from the particle center to point Pi

(similarly e
p
j) can be expressed as

e
p
j 5

ðei 3 rijÞ3 ei

jðei 3 rijÞ3 eij
5

rij 2 ðeiUrijÞei
jrij 2 ðeiUrijÞeij

; e
p
i 5 2e

p
j ð4:31Þ

r
p
ij 5 rij 2 ðeiUrijÞei ð4:32Þ

With these vectors,
2.2.1. For jrpijj, d; an overlap.

2.2.2. For jrpijj$ d1; no overlap.

2.2.3. For jrpijj$ d and jðri 1 ðd=2Þepi Þ2 ðrj 1 ðd=2Þepj Þj, b1; an overlap.

2.2.4. For jrpijj$ d and jðri 1 ðd=2Þepi Þ2 ðrj 1 ðd=2Þepj Þj$ b1; no overlap.

3. For ei 6¼ 6ej (general overlap situations)

3.1. For ksj . d=2;
3.1.1. For kiðjÞQ $ b1; no overlap irrespective of values of jriðjÞQ 2 rij:
3.1.2. For kiðjÞQ , b1; a possibility of overlap.

a. For jriðjÞQ 2 rij, d=2; an overlap.

b. For jriðjÞQ 2 rij$ d=2; a possibility of overlap.

b.1. For rij
ðminÞ $ b1; no overlap.

b.2. For rij
ðminÞ , b1; an overlap.

3.2. For ksi , d=2 and ksj # d=2; depending on the value of rij
ðminÞ (defined later)

3.2.1. For jriðjÞQ 2 rij, d=2; an overlap.

3.2.2. For jriðjÞQ 2 rij$ d=2; a possibility of overlap.

a. For rij
ðminÞ $ b1; no overlap.

b. For rij
ðminÞ , b1; an overlap.

The above-mentioned analysis has effectively generated an algorithm for asses-

sing the particle overlap. Notice that the algorithm has been organized from the

viewpoint of developing a simulation program, so it can be readily translated into a

programming language.

Figure 4.16 shows a method of evaluating the minimum distance rij
ðminÞ; which

has already been used in the analysis but not yet given an exact definition. The par-

ticle coordinate system XYZ is fixed at the center of the torus circle of particle i,

Y

(A) (B)

Xα

β

θ 0

Figure 4.16 Evaluation of the

minimum distance of particles i and

j using the particle-fixed coordinate

system XYZ: (A) plane view and

(B) side view.

140 Introduction to Practice of Molecular Simulation

and the center of particle j is assumed to be expressed as (x0,y0,z0) in this coordi-

nate system, where the X-axis is taken parallel to the intersection line. The angle

between the two planes that include particles i and j is denoted by the angle θ0, as
shown in Figure 4.16B. An arbitrary position vector x15 (x1,y1,z1) on the torus cen-

ter circle line of particle i is taken in the counterclockwise direction by the angle α.
Similarly, an arbitrary position vector x25 (x2,y2,z2) on the torus center circle line

of particle j is taken in a similar way by the angle β, as shown in Figure 4.16A.

Then x1 and x2 are expressed as

x1 5 ðr0 cos α; r0 sin α; 0Þ ð4:33Þ

x2 5 ðr0 cos β1 x0; r0 sin β cos θ0 1 y0; r0 sin β sin θ0 1 z0Þ ð4:34Þ

in which r05 d/2. The square separation between x1 and x2 is a function of the

angles α and β, expressed as

gðα;βÞ 5 ðx2 2 x1Þ2 1 ðy2 2 y1Þ2 1 ðz2 2 z1Þ2
5 ðr0 cos β1 x0 2 r0 cos αÞ2 1 ðr0 sin β cos θ0 1 y0 2 r0 sin αÞ2
1 ðr0 sin β sin θ0 1 z0Þ2

ð4:35Þ

Certain values of α and β give rise to a minimum value of g(α, β). It is clear that
the positions x1 and x2 on the different torus center circles specified by the angles α
and β that minimize the function g yield their minimum separation distance. The

values of α and β to satisfy a minimum g(α, β) can be obtained by solving the equa-

tions of @g/@α5 @g/@β5 0. The equation @g/@α5 0 yields the following

relationship:

tan α5
y2

x2
ð4:36Þ

Furthermore, the expression @g/@β5 0 gives rise to the following relationship:

tan β5
y0 2 y1

x0 2 x1
cos θ0 1

z0

x0 2 x1
sin θ0 ð4:37Þ

The solutions of α and β can be obtained by solving Eqs. (4.36) and (4.37).

However, because of the difficulty of an analytical approach, we here employ

Newton’s iteration method [33] for numerically solving these equations. From the

particle configuration in Figure 4.16, we reasonably expect that Newton’s iteration

method will effectively provide a converged solution after several iterations,

because g(α, β) has a relatively simple form. We show the algorithm of Newton’s

iteration method in the following steps:

1. Suppose a starting value βn, around an expected solution, for β.
2. Calculate (x2,y2,z2).

141Practice of Monte Carlo Simulations

3. Calculate ðx1; y1; z1Þ5 r0x2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 1 y22

p
; r0y2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 1 y22

p
; 0

� �
from Eqs. (4.36) and

(4.33).

4. Evaluate f(βn) from Eq. (4.37).

f ðβnÞ5 tan βn 2
y0 2 y1

x0 2 x1
cos θ0 2

z0

x0 2 x1
sin θ0 ð4:38Þ

5. Evaluate the derivative of f(β) with respect to β.

f 0ðβnÞ5
1

cos2βn

2
cosθ0

ðx02x1Þ2
2
@y1
@β

ðx02x1Þ1
@x1
@β

ðy02y1Þ
� �

2z0 sinθ0
@x1=@β
ðx02x1Þ2

ð4:39Þ

in which

@x1
@β

5 r0U

@x2
@β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 1 y22

p
2 x2

@x2
@β

1 y2
@y2
@β

0
@

1
Ax2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 1 y22

p
x22 1 y22

@y1
@β

5 r0U

@y2
@β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 1 y22

p
2 x2

@x2
@β

1 y2
@y2
@β

0
@

1
Ay2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 1 y22

p
x22 1 y22

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð4:40Þ

The right-hand sides are evaluated by setting β5 βn.

6. Evaluate the next approximation βn11 from Newton’s method:

βn11 5βn 2
f ðβnÞðx0 2 x1Þ2
f 0ðβnÞðx0 2 x1Þ2

ð4:41Þ

7. Go to step 8 in the case of sufficiently convergence such as jβn112βnj, ε (ε is infini-

tesimal small), otherwise repeat from step 2 by regarding βn11 as βn.

8. Calculate αn11 from Eq. (4.36) with the converged value of βn11, and evaluate g(αn11,

βn1 1) from Eq. (4.35), yielding the desired minimum distance rij
ðminÞ 5

ffi
gðαn11;βn11Þ

p
:

We here employ a value satisfying x25 x0/2 as a starting value of β. With this

value, β can be obtained from Eq. (4.34) as β5 cos21(2x0/2r0): although there are

two solutions of the equation of cos β5 2x0/2r0, such a solution as satisfying

z2, z0 is adopted for β. This solution β provides the values of y2 and z2 from

Eq. (4.34).

142 Introduction to Practice of Molecular Simulation

4.2.4 Canonical Monte Carlo Algorithm

As already indicated, we consider a system composed of N magnetic particles in an

applied magnetic field in thermodynamic equilibrium. The canonical MC method

is therefore adopted for a given system temperature T, volume V, and number of

particles N. The system potential energy U* can be expressed as the summation

of the magnetic particle�particle interaction energy uij
� and the magnetic particle�

field interaction energy ui
� as

U� 5
XN
i51

u�i 1
XN
i51

XN
j51ðj. iÞ

u�ij ð4:42Þ

in which ui
� and uij

� have already been shown in Eqs. (4.20) and (4.21).

The canonical MC algorithm has been explained in Chapter 1 for a nonspherical

particle system. According to Eq. (1.52), an arbitrary particle is translated into an

adjacent position using random numbers. If the energy U* decreases, the movement

is accepted, but if it increases, it is employed according to the probability shown in

Eq. (1.49). The rotational movement is first attempted and then accepted or rejected

in a similar procedure. Although the simultaneous attempt of the translational and

rotational movements is possible, the above-mentioned separate attempts will

become more effective in the case of a strongly interacting system.

4.2.5 Treatment of the Criterion of the Particle Overlap in Simulations

The criterion of the particle overlap has already been discussed in detail from a

mathematical point of view. In this subsection, we address important points to be

noted with regard to the actual treatment of particle overlap in the simulation.

1. Exchange of the particle names i and j:

The particle subscriptions i and j are exchanged in such a way to satisfy ki
s # kj

s: That
is, in the case of ki

s . kj
s; the subscriptions i and j are replaced with j and i, respectively;

therefore the criterion for particle overlap in Section 4.2.3 is directly applicable.

2. Reversal of the directions of the unit vectors ei and ej:

As shown in Figures (4.14) and (4.15), the unit vectors ei and ej are temporarily

reversed in such a way that the angle θ0 will satisfy 0# θ0#π/2. In the case of

rji � ei$ 0, ei is unchanged, otherwise ei is temporarily reversed in direction as

ei -2ei. For this new ei, ej is unchanged for ei � ej$ 0; otherwise ej is temporarily

reversed for the successive procedure. These treatments confirm that θ0 becomes an

acute angle, as shown in Figure 4.14. Note that the exchange of the subscriptions i

and j may be necessary in the following procedures.

3. Reversal of the direction of the unit vector tij
s:

The unit vector tij
s is taken in the direction from point Sj to Si. For tij

s evaluated from

Eq. (4.23), if tij
sUrij $ 0; tij

s is unchanged, otherwise tij
s is temporarily reversed as

tij
s-2tij

s: This treatment ensures that tij
s is from point Sj toward point Si even if parti-

cle j is on the left-hand side.

4. Reversal of the unit vectors ei and ej:

With the unit vectors ei
s and ej

s evaluated from Eq. (4.24), the solutions ki
s and kj

s can

be obtained from Eq. (4.26). However, note that the definition of these unit vectors

143Practice of Monte Carlo Simulations

pointing toward the intersection line from each particle center is not necessarily satis-

fied but depends on the interaction position. In other words, since the sign of ki
s or kj

s

is not necessarily positive, ei
s or ej

s may be reversed in this situation. In the case of

ksi $ 0; esi is unchanged, and in the case of ksi , 0; esi is reversed as ei
s-2 ei

s; making

ki
s positive. Similar treatment is made for kj

s and ej
s:

These procedures ensure that the previous algorithm for assessing the particle

overlap and Newton’s iteration method for finding the minimum separation are

directly applicable without any changes.

4.2.6 Particle-Fixed Coordinate System and the Absolute Coordinate
System

We here explain the particle-fixed coordinate system and the absolute coordinate

system, which are necessary for a rotation of the particle and a rotation of the mag-

netic moment. As previously defined, we use the notation e for the particle direc-

tion and n for the magnetic moment direction, as shown in Figure 4.17. We call the

coordinate system fixed at the particle the “particle-fixed coordinate system,” sim-

ply expressed as the XYZ-coordinate system, centered at the particle center with the

Z-axis along the particle axis direction. On the other hand, the coordinate system

fixed, for example, on the computational cell is called the “absolute coordinate sys-

tem,” simply expressed as the xyz-coordinate system. Note that each particle has its

own particle-fixed coordinate system centered at its particle center.

We briefly consider the rotation of the xyz-coordinate system about the z-axis by

an angle φ, and then the rotation of the rotated xyz-coordinate system about the

y-axis by an angle θ to generate the XYZ-coordinate system. For these rotations,

the rotational matrix R can be written as

R 5
cos θ 0 2sin θ
0 1 0

sin θ 0 cos θ

0
@

1
A cos φ sin φ 0

2sin φ cos φ 0

0 0 1

0
@

1
A

5
cos θ cos φ cos θ sin φ 2sin θ
2sin φ cos φ 0

sin θ cos φ sin θ sin φ cos θ

0
@

1
A

ð4:43Þ

x

(A) (B)
X

y

Y

z

Y

Xn

Z

e

φ

φ

θ

θ

ψ

Figure 4.17 Particle-fixed coordi-

nate system and absolute coordinate

system.

144 Introduction to Practice of Molecular Simulation

This rotational matrix will allow us to express the relationship between an arbi-

trary position ab 5 ðabx ; aby ; abz Þ in the XYZ-coordinate system and a5 (ax,ay,az) in

the xyz-coordinate system as

ab 5RUa ð4:44Þ

The inverse matrix R21 of R is equal to the transpose matrix Rt of R, so that a can

be obtained from ab as

a5R21Uab ð4:45Þ

Thus, the particle direction e and the magnetic moment direction n of an arbitrary

particle can be expressed as

e5R21Ueb; n5R21Unb ð4:46Þ

Since the XYZ-coordinate system is adopted so that the Z-axis is pointing in the

particle direction, the unit vector eb satisfies eb5 (0, 0, 1). This gives rise to the

particle direction e in the xyz-coordinate system expressed as e5 (ex,ey,ez)5
(sin θ cos φ, sin θ sin φ, cos θ). If necessary, known values of (ex,ey,ez) yield

the sine and cosine functions of θ and φ as cos θ5 ez, sin θ5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 e2z

p
;

cos φ5 ex/sin θ, and sin φ5 ey/sin θ, in which it is noted that θ is defined in the

range of 0# θ#π/2. Several special features arising from this definition of range

will be explained later.

We briefly explain the method for expressing the magnetic moment direction n.

As shown in Figure 4.17B, the direction of the magnetic moment can be specified

by an angle ψ in the counterclockwise direction from the X-axis in the

XYZ-coordinate system. That is, the magnetic moment direction nb is expressed as

nb5 (cos ψ, sin ψ, 0), so that the vector n in the xyz-coordinate system can be

obtained from Eq. (4.46) as n5R21 � nb.

4.2.7 Attempt of Small Angular Changes in the Particle Axis and the
Magnetic Moment

In MC simulations, an attempt is made to move each particle in translation and

rotation with small displacements using uniform random numbers. Since the

attempt of the translational movement is similar to that for a spherical particle sys-

tem, we here show the method of rotating the particle direction and the magnetic

moment direction.

We first consider the rotation of the particle direction. As shown previously, the

particle direction (θ, φ) of an arbitrary particle is assumed to be made as (θ1Δθ,
φ1Δφ), with the small change (Δθ, Δφ). Special treatment will be necessary if

(θ1Δθ) or (φ1Δφ) is then larger than π/2 for θ or 2π for φ and also if smaller

than zero for θ or φ, because the angles θ and φ are defined within the ranges of

0# θ#π/2 and 0#φ, 2π.

145Practice of Monte Carlo Simulations

1. For the case of θ1Δθ, 0:

We make a modification such that θ052(θ1Δθ), φ0 5φ1Δφ1π, and ψ0 5ψ1π,
and use these values (θ0, φ0, ψ0) for the rotational movement. Note that (φ0 2 2π) needs
to be adopted as φ0 if φ0 $ 2π since φ0 is defined in the range of 0#φ0 , 2π. Similar

treatment is required for ψ0.
2. For the case of θ1Δθ$π/2:

We make a modification such that θ0 5π2 (θ1Δθ), φ0 5φ1Δφ1 π, and

ψ0 5 2π2ψ. If φ0 or ψ0 is outside the range of 0#φ0, ψ0 , 2π, the above-mentioned

treatment is applicable.

3. For the case of 0# θ1Δθ,π/2:
In this case, a special modification is unnecessary and (θ0, φ0, ψ0) are merely expressed

as θ0 5 θ1Δθ, φ0 5φ1Δφ, and ψ0 5ψ, except that φ0 is modified as in the previous

case if φ0 is outside the defined range.

For the above-modified θ0, φ0, and ψ0, the rotational displacement is attempted and

determined by the MC assessing procedure.

We next consider the rotation of the magnetic moment. The angle ψ specifying

the direction is slightly displaced as (ψ1Δψ). Since ψ is defined in the range of

0#ψ, 2π, ψ0 is modified such that ψ0 5ψ1Δψ2 2π for ψ1Δψ$ 2π,
ψ0 5ψ1Δψ1 2π for ψ1Δψ, 0 and ψ0 5ψ1Δψ for the other cases. With this

modified ψ0, the magnetic moment direction n0b is specified as n0b5 (cos ψ0, sin ψ0, 0)
in the XYZ-coordinate system, and therefore the vector n0 in the xyz-coordinate system
can be obtained as n0 5R21 � n0b from Eq. (4.46). The magnetic interaction energies

are calculated for the new magnetic moment direction, and the MC procedure

determines whether this new state is accepted or rejected.

4.2.8 Parameters for Simulations

4.2.8.1 Initial Conditions

The assignment of an initial configuration of the circular disk-like particles

explained in Section 2.1.2 is applied to the present system with different number of

particles. As shown in Figure 2.5, four disk-like particles are located linearly along

the x-axis, with the particles aligning in the y-direction. This stack of 4 particles is

repeatedly placed in the y-direction, giving rise to 48 disk-like particles in the xy-

plane at this stage. These particles are expanded in the z-direction to total 6 layers,

giving a final sum of 288 particles placed in the simulation region. In this contact

configuration, the size of the simulation region (Lx,Ly,Lz) is (4rpb1, 12b1, 6rpb1).

The expansion of the distance between each pair of particles by α times each side

length yields the desired volumetric fraction of particles φV. The relationship

between α and φV can be expressed as

α5
π

24r2pφV

6ðrp 2 1Þ2 1 3πðrp 2 1Þ1 4

 �" #1

3

ð4:47Þ

146 Introduction to Practice of Molecular Simulation

This configuration is perfectly regular, and therefore each particle is given a

small translational displacement in order for the initial configuration to be able to

transform to an equilibrium state straightforwardly. Then the direction of each par-

ticle is assigned as ei5 (0, 1, 0) (i5 1, 2,. . ., N).
Finally the direction of the magnetic moment is set to be arbitrary using random

numbers. Thus, setting the ψ in the XY-plane gives rise to nb5 ðnbx ; nby ; 0Þ5 (cos ψ,
sin ψ, 0) and Eq. (4.46) finally yields the direction n in the xyz-coordinate system.

4.2.8.2 Assignment of Parameters

The simulations were conducted for the particle number N5 288 and the volumet-

ric fraction ranging φV5 0.05B0.3. An external magnetic field is applied in the

z-direction as h5 (0, 0, 1). We here employ the cutoff distance r�coff 5 5d�1 for

calculating magnetic interaction energies; an academic study may require a longer

cutoff distance because magnetic energies are of long-range order. The nondimen-

sional parameters ξ and λ representing the strengths of magnetic particle�field and

particle�particle interactions are taken as ξ5 0, 1, 10, and 30 and λ5 0, 1, 10, 30,

and 60. Note that the situation where ξc1 or λc1 means that the magnetic field

or the magnetic particle�particle interaction is more dominant than the Brownian

motion, respectively. The total number of MC steps Nmcsmplemx is usually taken as

Nmcsmplemx5 100,000�1,000,000, but the present exercise is only for the purpose

of demonstration and therefore we employ a smaller value Nmcsmplemx5 100,000.

4.2.9 Results of Simulations

Figures 4.18�4.21 show the snapshots of the aggregate structures, which were

obtained using the sample simulation program presented in the next subsection.

Figure 4.18 is for no magnetic interactions between particles, that is, λ5 0, and

(A) (B)

Figure 4.18 Aggregate structures for λ5 0: (A) ξ5 0 and (B) ξ5 30.

147Practice of Monte Carlo Simulations

Figures 4.19�4.21 are for the magnetic field strength ξ5 0 (i.e., no field), 10, and

30, respectively.

For the case of λ5 0 in Figure 4.18, no aggregates are formed because magnetic

particle�particle interactions are absent. In addition, since an external magnetic

field is also absent in Figure 4.18A, the particles do not show a specifically favored

direction in their orientational characteristics. On the other hand, the application of

a strong magnetic field, as shown in Figure 4.17B, makes the magnetic moment of

each particle incline almost in the field direction (i.e., z-direction), resulting in the

particle direction significantly fixed in the xy-plane.

(A) (B)

Figure 4.19 Aggregate structures for ξ5 0: (A) λ5 10 and (B) λ5 30.

(A) (B)

Figure 4.20 Aggregate structures for ξ5 10: (A) λ5 10 and (B) λ5 30.

148 Introduction to Practice of Molecular Simulation

Figure 4.19 is for no applied magnetic field ξ5 0, so that the particles have

no tendency to incline in a specifically favored direction. In the case of λ5 10

shown in Figure 4.19A, short aggregates are found but are not significant. On the

other hand, for the case of λ5 30 shown in Figure 4.19B, the disk-like particles

aggregate to form column-like clusters in the particle direction (i.e., in the direc-

tion normal to the disk surface); each cluster inclines in its favored direction.

This is because the magnetic particle�particle interaction is much more dominant

than the Brownian motion. A careful observation of the column-like clusters indi-

cates that the disk-like particles in the column-like cluster have their magnetic

moments alternating in direction with the neighboring particles. This is because

this type of internal structure gives rise to a minimum interaction energy for the

magnetic particle�particle interaction. In the case of an external magnetic field

of ξ5 10, shown in Figure 4.20B, the characteristic of the internal structure is

the same as in Figure 4.19B because the magnetic interaction of λ5 30 is much

more dominant than the applied magnetic field strength ξ5 10; that is, the

magnetic particle�particle interaction tends to determine the internal structures of

column-like clusters.

In contrast, for the strong applied magnetic field ξ5 30 shown in Figure 4.21A,

column-like clusters obtained in Figure 4.20B are not formed, but the magnetic

moment of each particle tends to incline toward the field direction and the particles

move singly without forming clusters. The field strength ξ5 30 implies that an

applied magnetic field significantly governs the aggregation process, so that the

snapshot in Figure 4.21A is not essentially different from that in Figure 4.18B. A

stronger interaction λ5 60 shown in Figure 4.21B recovers the formation of the

column-like clusters that were seen in Figure 4.20B; in this case, the magnetic

interactions significantly govern the aggregation process as compared with the

external magnetic field. These discussions demonstrate that the internal structures

(A) (B)

Figure 4.21 Aggregate structures for ξ5 30: (A) λ5 30 and (B) λ5 60.

149Practice of Monte Carlo Simulations

of the aggregates are dependent on which factor is more dominant among the

Brownian motion, the magnetic particle�particle interaction, and the magnetic

field strength.

4.2.10 Simulation Program

We now present the sample simulation program, written in FORTRAN, for simulat-

ing the present physical phenomenon. The important variables used in the program

are explained as follows:

RX(I),RY(I),RZ(I) : (x,y,z) components of the position vector r�i of particle i
EX(I),EY(I),EZ(I) : (x,y,z) components of the unit vector ei of particle i

denoting the particle direction

NX(I),NY(I),NZ(I) : (x,y,z) components of the unit vector ni of particle i

denoting the magnetic moment direction

XL,YL,ZL : Side lengths of the simulation box in the (x,y,z) directions

N : Number of particles

D1 : Diameter of the circular disk-like particle d�1
D : Diameter of the cylinder part of the circular disk-like

particle d*

RP : Particle aspect ratio d�1ð5d1=b1Þ
VP : Volume of the disk-like particle

VDENS : Volumetric fraction φV

HX,HY,HZ : (x,y,z) components of the unit vector h denoting the field

direction

RA : Nondimensional parameter λ representing the strength of

magnetic particle�particle interactions

KU : Nondimensional parameter ξ representing the strength of

magnetic particle�field interactions

RCOFF : Cutoff distance for calculations of interaction energies

DELR : Maximum displacement in the translational movement

DELT : Maximum angle in the rotational movement

RAN(J) : Uniform random numbers ranging 0B1

(J51BNRANMX)
NRAN : Number of used random numbers

E(I) : Energy of particle i interacting with other particles

MOMX(*),. . .,MOMZ(*) : Mean value of the particle direction at each MC step

MEANENE(*) : Mean value of the system energy at each MC step

Brief comments have been added to the important features of the program in

order to clarify the meaning for the reader. Note that the line numbers are merely

for convenience and are unnecessary for the execution of the program.

The use of quasi-random numbers for saving the pseudo-random numbers

RAN(*) has already been explained in Section 3.2.9.

150 Introduction to Practice of Molecular Simulation

0001 C***
0002 C* *
0003 C* mcdisk3.f *
0004 C* *
0005 C* OPEN(9, FILE='@aaa1.dat', STATUS='UNKNOWN') *
0006 C* OPEN(10,FILE='aaa11.dat', STATUS='UNKNOWN') *
0007 C* OPEN(13,FILE='aaa41.mgf', STATUS='UNKNOWN') *
0008 C* OPEN(21,FILE='aaa001.dat',STATUS='UNKNOWN') *
0009 C* OPEN(22,FILE='aaa011.dat',STATUS='UNKNOWN') *
0010 C* OPEN(23,FILE='aaa021.dat',STATUS='UNKNOWN') *
0011 C* OPEN(24,FILE='aaa031.dat',STATUS='UNKNOWN') *
0012 C* OPEN(25,FILE='aaa041.dat',STATUS='UNKNOWN') *
0013 C* OPEN(26,FILE='aaa051.dat',STATUS='UNKNOWN') *
0014 C* OPEN(27,FILE='aaa061.dat',STATUS='UNKNOWN') *
0015 C* OPEN(28,FILE='aaa071.dat',STATUS='UNKNOWN') *
0016 C* OPEN(29,FILE='aaa081.dat',STATUS='UNKNOWN') *
0017 C* OPEN(30,FILE='aaa091.dat',STATUS='UNKNOWN') *
0018 C* *
0019 C* -------- MONTE CARLO SIMULATIONS -------- *
0020 C* THREE-DIMENSIONAL MONTE CARLO SIMULATION OF *
0021 C* MAGNETIC COLLOIDAL DISPERSIONS COMPOSED OF *
0022 C* MAGNETIC DISK-LIKE PARTICLES *
0023 C* *
0024 C* 1. A PARTICLE IS MODELED AS A CIRCULAR DISK-LIKE PARTICLE. *
0025 C* 2. THE CLUSTER-MOVING METHOD IS NOT USED. *
0026 C* 3. A STERIC LAYER IS NOT TAKEN INTO ACCOUNT. *
0027 C* *
0028 C* VER.1 BY A.SATOH , '08 5/2 *
0029 C***
0030 C N : NUMBER OF PARTICLES (N=INIPX*INIPY*INIPZ)
0031 C D1 : DIAMETER OF OUTER CIRCLE OF A DISK-LIKE PARTICLE
0032 C D : DIAMETER OF THE PART OF CYLINDER
0033 C B1 : THICKNESS OF PARTICLE (=1 FOR THIS CASE)
0034 C RP : ASPECT RATIO (=D1/B1) (=D1 FOR THIS CASE)
0035 C VP : VOLUME OF THE PARTICLE
0036 C NDENS : NUMBER DENSITY
0037 C VDENS : VOLUMETRIC FRACTION
0038 C IPTCLMDL : =1 FOR DIPOLE IN THE CENTER, =2 FOR TWO POINT CHARGES
0039 C RA : NONDIMENSIONAL PARAMETER OF PARTICLE-PARTICLE INTERACT
0040 C RA0 : =RA/RP**3 FOR IPTCLMDL=1, =RA/RP FOR IPTCLMDL=2
0041 C KU : NONDIMENSIONAL PARAMETER OF PARTICLE-FIELD INTERACTION
0042 C HX,HY,HZ : MAGNETIC FIELD DIRECTION (UNIT VECTOR)
0043 C RCOFF : CUTOFF RADIUS FOR CALCULATION OF INTERACTION ENERGIES
0044 C XL,YL,ZL : DIMENSIONS OF SIMULATION REGION
0045 C (XL,YL,ZL)=(INIPX*RP, INIPY, INIPZ*RP) *ALPHA
0046 C (1) RP=3
0047 C INITREE=1 : (INIPX,INIPY,INIPZ)=(3, 9,12), N= 324
0048 C INITREE=2 : (INIPX,INIPY,INIPZ)=(4,12, 6), N= 288
0049 C (2) RP=4
0050 C INITREE=3 : (INIPX,INIPY,INIPZ)=(?, ?, ?), N= ?
0051 C INITREE=4 : (INIPX,INIPY,INIPZ)=(?, ?, ?), N= ?
0052 C (3) RP=5
0053 C INITREE=5 : (INIPX,INIPY,INIPZ)=(?, ?, ?), N= ?
0054 C INITREE=6 : (INIPX,INIPY,INIPZ)=(?, ?, ?), N= ?
0055 C RX(N),RY(N),RZ(N) : PARTICLE POSITION
0056 C EX(N),EY(N),EZ(N) : DIRECTION OF RODLIKE PARTICLE
0057 C NX(N),NY(N),NZ(N) : DIRECTION OF MAGNETIC MOMENT
0058 C E(I) : INTERACTION ENERGY OF PARTICLE I WITH THE OTHERS
0059 C MOMX(**),MOMY(**) : MAG. MOMENT OF SYSTEM AT EACH TIME STEP
0060 C MOMZ(**)
0061 C MEANENE(**) : MEAN ENERGY OF SYSTEM AT EACH MC STEP
0062 C ETHETA(N),EPHI(N) : ANGLES DENOTING THE PARTICLE DIRECTION
0063 C NPSI(N) : ANGLE DENOTING THE MAG.MOM. DIRECTION
0064 C RMAT(3,3,N) : ROTATIONAL MATRIX
0065 C NXB(N), NYB(N) : DIREC. OF MAG. MOM. IN THE BODY-FIXED AXIS
0066 C SYSTEM
0067 C
0068 C DELR : MAXIMUM MOVEMENT DISTANCE
0069 C DELT : MAXIMUM MOVEMENT IN ORIENTATION
0070 C
0071 C 0 < RX < XL , 0 < RY < YL , 0 < RZ < ZL
0072 C---
0073 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0074 C
0075 COMMON /BLOCK1/ RX , RY , RZ

151Practice of Monte Carlo Simulations

0076 COMMON /BLOCK2/ NX , NY , NZ
0077 COMMON /BLOCK3/ N , NDENS , VDENS
0078 COMMON /BLOCK4/ D , D1 , RP , VP , IPTCLMDL
0079 COMMON /BLOCK5/ XL , YL , ZL , INIPX , INIPY , INIPZ , INITREE
0080 COMMON /BLOCK6/ RA , RA0 , KU , HX , HY , HZ
0081 COMMON /BLOCK7/ E , ENEW , EOLD
0082 COMMON /BLOCK8/ RCOFF, DELR , DELT
0083 COMMON /BLOCK10/ MOMX , MOMY , MOMZ , MEANENE
0084 COMMON /BLOCK11/ EX , EY , EZ
0085 COMMON /BLOCK12/ NXB , NYB
0086 COMMON /BLOCK13/ ETHETA , EPHI , NPSI , RMAT
0087 COMMON /BLOCK30/ NRAN , RAN , IX
0088 C
0089 PARAMETER(NN=1360 , NNS=200000)
0090 PARAMETER(NRANMX=1000000 , PI=3.141592653589793D0)
0091 C
0092 REAL*8 KU , NDENS , VDENS
0093 REAL*8 RX(NN) , RY(NN) , RZ(NN)
0094 REAL*8 NX(NN) , NY(NN) , NZ(NN) , E(NN)
0095 REAL*8 EX(NN) , EY(NN) , EZ(NN)
0096 REAL*8 NXB(NN), NYB(NN)
0097 REAL*8 ETHETA(NN), EPHI(NN) , NPSI(NN) , RMAT(3,3,NN)
0098 REAL MOMX(NNS), MOMY(NNS) , MOMZ(NNS) , MEANENE(NNS)
0099 C
0100 REAL RAN(NRANMX)
0101 INTEGER NRAN , IX , NRANCHK
0102 C
0103 REAL*8 RXCAN , RYCAN , RZCAN
0104 REAL*8 NXCAN , NYCAN , NZCAN
0105 REAL*8 EXCAN , EYCAN , EZCAN
0106 REAL*8 RXI , RYI , RZI , NXI , NYI , NZI
0107 REAL*8 EXI , EYI , EZI
0108 REAL*8 RXIJ , RYIJ , RZIJ , RIJ , RIJSQ , RCOFF2
0109 REAL*8 NXBI , NYBI , NXBC , NYBC , NXC , NYC , NZC
0110 REAL*8 ETHETAI, EPHII, NPSII, ETHETAC, EPHIC, NPSIC
0111 REAL*8 RMATC(3,3)
0112 REAL*8 ECAN , C1 , C2 , C3 , C4
0113 REAL*8 CX , CY , CZ
0114 INTEGER MCSMPL , MCSMPLMX , MCSMPL1 , MCSMPL2 , NSMPL
0115 INTEGER NGRAPH , NOPT , DN , DNSMPL
0116 INTEGER ITHETA , IPHAI , IT , IP
0117 INTEGER NANIME , NANMCTR , NOPT1
0118 LOGICAL OVRLAP
0119 C
0120 OPEN(9,FILE='@baba1.dat' , STATUS='UNKNOWN')
0121 OPEN(10,FILE='baba11.dat', STATUS='UNKNOWN')
0122 OPEN(13,FILE='baba41.mgf', STATUS='UNKNOWN')
0123 OPEN(21,FILE='baba001.dat',STATUS='UNKNOWN')
0124 OPEN(22,FILE='baba011.dat',STATUS='UNKNOWN')
0125 OPEN(23,FILE='baba021.dat',STATUS='UNKNOWN')
0126 OPEN(24,FILE='baba031.dat',STATUS='UNKNOWN')
0127 OPEN(25,FILE='baba041.dat',STATUS='UNKNOWN')
0128 OPEN(26,FILE='baba051.dat',STATUS='UNKNOWN')
0129 OPEN(27,FILE='baba061.dat',STATUS='UNKNOWN')
0130 OPEN(28,FILE='baba071.dat',STATUS='UNKNOWN')
0131 OPEN(29,FILE='baba081.dat',STATUS='UNKNOWN')
0132 OPEN(30,FILE='baba091.dat',STATUS='UNKNOWN')
0133 NP=9
0134 C
0135 C --- PARAMETER (1) ---
0136 C ---
0137 C BE CAREFUL IN SETTING N, INIPX, ..., INITREE !!!
0138 C ---
0139 IPTCLMDL= 1
0140 VDENS = 0.1D0
0141 KU = 10.0D0
0142 RA = 10.0D0
0143 INITREE = 2
0144 N = 288
0145 CCC INITREE = 1
0146 CCC N = 324
0147 C --- PARAMETER (2) ---
0148 HX = 0.D0
0149 HY = 0.D0
0150 HZ = 1.D0
0151 RP = 3.D0

• The cutoff distance r*coff=5rp, the volume of the particle
VP, and the number density NDENS.

• The given values are
written out in @baba1,
sampled magnetic
moment directions are
done in baba11, and
data for MicroAVS are
done in baba41. The
particle positions and
directions are written
out in baba001 –
baba091.

• The number of particles N=288, volumetric fraction φV=
0.1, λ=10, and ξ=10. The size of the simulation region is
varied using INITREE.
• The aspect ratio rp=3 and the field direction h=(0,0,1).

152 Introduction to Practice of Molecular Simulation

0152 D1 = RP
0153 D = D1 - 1.D0
0154 RCOFF = 5.D0*D1
0155 VP = (PI/24.D0)*(6.D0*(RP-1.D0)**2+3.D0*PI*(RP-1.D0)+4.D0)
0156 NDENS = VDENS/VP
0157 IF(IPTCLMDL .EQ. 1) RA0 = RA/RP**3
0158 IF(IPTCLMDL .EQ. 2) RA0 = RA/RP
0159 C --- PARAMETER (3) ---
0160 DELR = 0.2D0
0161 DELT = (5.D0/180.D0)*PI
0162 C --- PARAMETER (4) ---
0163 CCC MCSMPLMX= 100000
0164 MCSMPLMX= 10000
0165 NGRAPH = MCSMPLMX/10
0166 NANIME = MCSMPLMX/200
0167 DN = 10
0168 DNSMPL = 10
0169 NOPT = 20
0170 RCOFF2 = RCOFF**2
0171 C --- PARAMETER (5) ---
0172 IX = 0
0173 CALL RANCAL(NRANMX, IX, RAN)
0174 NRAN = 1
0175 NRANCHK = NRANMX - 12*N
0176 C
0177 C --
0178 C ----------------- INITIAL CONFIGURATION ------------------
0179 C --
0180 C
0181 C --- SET INITIAL CONFIG. ---
0182 CCC OPEN(19,FILE='aaba091.dat',STATUS='OLD')
0183 CCC READ(19,472) N , XL , YL , ZL , D , D1 , RP
0184 CCC READ(19,473) (RX(I) ,I=1,N), (RY(I) ,I=1,N), (RZ(I) ,I=1,N)
0185 CCC READ(19,474) (NX(I) ,I=1,N), (NY(I) ,I=1,N), (NZ(I) ,I=1,N),
0186 CCC & (EX(I) ,I=1,N), (EY(I) ,I=1,N), (EZ(I) ,I=1,N),
0187 CCC & (NXB(I),I=1,N), (NYB(I),I=1,N)
0188 CCC READ(19,473) (ETHETA(I),I=1,N), (EPHI(I),I=1,N), (NPSI(I),I=1,N)
0189 CCC READ(19,474) (((RMAT(II,JJ,I),II=1,3), JJ=1,3), I=1,N)

• The maximum displacements in the MC method are
δr *max=0.2 and δθmax=(5/180)π.

0190 CCC CLOSE(19,STATUS='KEEP')
0191 CCC GOTO 7
0192 C
0193 CALL INITIAL
0194 C
0195 7 IF(XL .LE. YL) THEN
0196 IF(RCOFF .GE. XL/2.D0) THEN
0197 RCOFF = XL/2.D0 - 0.00001D0
0198 END IF
0199 ELSE
0200 IF(RCOFF .GE. YL/2.D0) THEN
0201 RCOFF = YL/2.D0 - 0.00001D0
0202 END IF
0203 END IF
0204 RCOFF2 = RCOFF**2
0205 CRAD = (XL*YL*ZL/DBLE(N*N)) / (4.D0*PI*DR)
0206 C
0207 C
0208 C --- PRINT OUT (1)---
0209 WRITE(NP,12) IPTCLMDL, N, VDENS, NDENS, RA, RA0, KU, RP,
0210 & D, D1, XL, YL, ZL, RCOFF, DELR, DELT
0211 WRITE(NP,14) MCSMPLMX, NGRAPH, DN, DNSMPL
0212 WRITE(NP,15) HX, HY, HZ
0213 C
0214 C
0215 NANMCTR = 0
0216 NSMPL = 0
0217 C --
0218 C --------------- START OF MONTE CARLO PROGRAM -------------
0219 C --
0220 C
0221 DO 1000 MCSMPL = 1 , MCSMPLMX
0222 C
0223 DO 400 I=1,N
0224 C +++++++++++++++++++ POSITION ++++++++
0225 C --- OLD ENERGY ---
0226 RXI = RX(I)

• These READ statements are for continuing the sequential
simulation using the data saved previously.

• The initial positions and directions
of particles are assigned.

• RCOFF has to be taken shorter than
XL/2 and YL/2.

• The treatment concerning particle i.

• The total number of MC steps is MCSMPLMX=10000 and
sampling is carried out at every DNSMPL steps.
• The particle positions are written out at every NGRAPH steps.
200 sets of data are written out for making an animation.

• A sequence of uniform random numbers is prepared
in advance. When necessary, random numbers are
taken out from the variable RAN(*)

153Practice of Monte Carlo Simulations

0227 RYI = RY(I)
0228 RZI = RZ(I)
0229 NXI = NX(I)
0230 NYI = NY(I)
0231 NZI = NZ(I)
0232 EXI = EX(I)
0233 EYI = EY(I)
0234 EZI = EZ(I)
0235 ITREE = 0
0236 CALL ENECAL(I, RXI, RYI, RZI, EXI, EYI, EZI, NXI, NYI, NZI,
0237 & RCOFF2, EOLD, OVRLAP, ITREE, J)
0238 C
0239 C ---------- (1) CANDIDATE
0240 NRAN = NRAN + 1
0241 RXCAN = RX(I) + DELR*(1.D0 - 2.D0*DBLE(RAN(NRAN)))
0242 IF(RXCAN .GE. XL) THEN
0243 RXCAN = RXCAN - XL
0244 ELSE IF(RXCAN .LT. 0.D0) THEN
0245 RXCAN = RXCAN + XL
0246 END IF
0247 NRAN = NRAN + 1
0248 RYCAN = RY(I) + DELR*(1.D0 - 2.D0*DBLE(RAN(NRAN)))
0249 IF(RYCAN .GE. YL) THEN
0250 RYCAN = RYCAN - YL
0251 ELSE IF(RYCAN .LT. 0.D0) THEN
0252 RYCAN = RYCAN + YL

• The interaction energies between particle i and its interacting particles.

• Particle i is slightly moved according to
Eq. (1.52).

• The treatment of the periodic BC.

0253 END IF
0254 NRAN = NRAN + 1
0255 RZCAN = RZ(I) + DELR*(1.D0 - 2.D0*DBLE(RAN(NRAN)))
0256 IF(RZCAN .GE. ZL) THEN
0257 RZCAN = RZCAN - ZL
0258 ELSE IF(RZCAN .LT. 0.D0) THEN
0259 RZCAN = RZCAN + ZL
0260 END IF
0261 C --- NEW ENERGY ---
0262 ITREE = 0
0263 CALL ENECAL(I , RXCAN, RYCAN, RZCAN, EXI, EYI, EZI,
0264 & NXI, NYI, NZI, RCOFF2, ECAN, OVRLAP, ITREE, J)
0265 C
0266 IF(OVRLAP) THEN
0267 GOTO 150
0268 END IF
0269 C -------- (2) ENERGY HANDAN
0270 C3 = ECAN - EOLD
0271 IF(C3 .GE. 0.D0)THEN
0272 NRAN = NRAN + 1
0273 IF(DBLE(RAN(NRAN)) .GE. DEXP(-C3))THEN
0274 GOTO 150
0275 END IF
0276 END IF
0277 C +++++++++++++++++++++++
0278 C CANDIDATES ARE ACCEPTED
0279 C +++++++++++++++++++++++
0280 RX(I) = RXCAN
0281 RY(I) = RYCAN
0282 RZ(I) = RZCAN
0283 EOLD = ECAN
0284 E(I) = ECAN
0285 C
0286 C ++++++++++++++++++++++ ROTATION ++++++++
0287 150 RXI = RX(I)
0288 RYI = RY(I)
0289 RZI = RZ(I)
0290 EXI = EX(I)
0291 EYI = EY(I)
0292 EZI = EZ(I)
0293 NXI = NX(I)
0294 NYI = NY(I)
0295 NZI = NZ(I)
0296 NXBI= NXB(I)
0297 NYBI= NYB(I)
0298 ETHETAI = ETHETA(I)
0299 EPHII = EPHI(I)
0300 NPSII = NPSI(I)
0301 C

• The procedure after the acceptance of the new state.

•The procedure for the rotation.

• The interaction energies are calculated for
this new state after the movement of particle i.

• The adoption of the new state is determined according
to the transition probability in Eq. (1.49).

• The particle direction is described by the
zenithal and azimuthal angles ETHETAI and
EPHII. The magnetic moment direction is
described by the angle NPSII taken counter
clockwise from the X-axis about the Z-axis.

154 Introduction to Practice of Molecular Simulation

0302 NPSIC = NPSII
0303 NXBC = NXBI
0304 NYBC = NYBI
0305 C ---------- (3) CANDIDATE
0306 NRAN = NRAN + 1
0307 C1 = DELT*DBLE(RAN(NRAN))
0308 NRAN = NRAN + 1
0309 C1 = DSIGN(C1 , DBLE(RAN(NRAN)-0.5))
0310 ETHETAC = ETHETAI + C1
0311 NRAN = NRAN + 1
0312 C1 = DELT*DBLE(RAN(NRAN))
0313 NRAN = NRAN + 1
0314 C1 = DSIGN(C1 , DBLE(RAN(NRAN)-0.5))
0315 EPHIC = EPHII + C1
0316 C
0317 IF(ETHETAC .LT. 0.D0) THEN
0318 ETHETAC = DABS(ETHETAC)
0319 EPHIC = EPHIC + PI
0320 IF(EPHIC .GE. 2.D0*PI) EPHIC = EPHIC - 2.D0*PI
0321 NPSIC = NPSII + PI
0322 IF(NPSIC .GE. 2.D0*PI) NPSIC = NPSIC - 2.D0*PI
0323 NXBC = -NXBI
0324 NYBC = -NYBI
0325 ELSE IF (ETHETAC .GT. PI/2.D0) THEN
0326 ETHETAC = PI - ETHETAC
0327 EPHIC = EPHIC + PI
0328 IF(EPHIC .GE. 2.D0*PI) EPHIC = EPHIC - 2.D0*PI
0329 NPSIC = 2.D0*PI - NPSIC
0330 ELSE
0331 IF(EPHIC .GE. 2.D0*PI) EPHIC = EPHIC - 2.D0*PI
0332 IF(EPHIC .LT. 0.D0) EPHIC = EPHIC + 2.D0*PI
0333 END IF
0334 C --- RMATC(3,3) ---
0335 C11 = DCOS(ETHETAC)
0336 C12 = DSIN(ETHETAC)
0337 C21 = DCOS(EPHIC)
0338 C22 = DSIN(EPHIC)
0339 RMATC(1,1) = C11*C21
0340 RMATC(2,1) = C11*C22
0341 RMATC(3,1) = -C12
0342 RMATC(1,2) = -C22
0343 RMATC(2,2) = C21
0344 RMATC(3,2) = 0.D0
0345 RMATC(1,3) = C12*C21
0346 RMATC(2,3) = C12*C22
0347 RMATC(3,3) = C11
0348 C
0349 EXC = RMATC(1,3)
0350 EYC = RMATC(2,3)
0351 EZC = RMATC(3,3)
0352 NXC = NXBC*RMATC(1,1) + NYBC*RMATC(1,2)
0353 NYC = NXBC*RMATC(2,1) + NYBC*RMATC(2,2)
0354 NZC = NXBC*RMATC(3,1) + NYBC*RMATC(3,2)
0355 C --- NEW ENERGY ---
0356 ITREE = 0
0357 CALL ENECAL(I , RXI, RYI, RZI, EXC, EYC, EZC,
0358 & NXC, NYC, NZC, RCOFF2, ECAN, OVRLAP, ITREE, J)
0359 C
0360 IF(OVRLAP) THEN
0361 GOTO 250
0362 END IF
0363 C -------- (4) ENERGY HANDAN --------
0364 C
0365 C3 = ECAN - EOLD
0366 IF(C3 .GE. 0.D0)THEN
0367 NRAN = NRAN + 1
0368 IF(DBLE(RAN(NRAN)) .GE. DEXP(-C3))THEN
0369 GOTO 250
0370 END IF
0371 END IF
0372 C +++++++++++++++++++++++
0373 C CANDIDATES ARE ACCEPTED
0374 C +++++++++++++++++++++++
0375 EX(I) = EXC
0376 EY(I) = EYC

• The treatment shown in Section 4.2.7.

• The interaction energies are calculated
for the new direction of particle i.

• The procedure after the acceptance of the new state.

• The zenithal and azimuthal
angles are slightly changed using
random numbers to change the
particle direction; the new angles
are saved in ETHETAC and
EPHIC.

• The rotational matrix R–1

(RMATC) is evaluated for the
particle direction.

• The particle direction e and the
magnetic moment direction n are
calculated from Eq. (4.46).

• The adoption of the new state is determined
according to the transition probability in Eq. (1.49).

155Practice of Monte Carlo Simulations

0377 EZ(I) = EZC
0378 NX(I) = NXC
0379 NY(I) = NYC
0380 NZ(I) = NZC
0381 NXB(I) = NXBC
0382 NYB(I) = NYBC
0383 ETHETA(I) = ETHETAC
0384 EPHI(I) = EPHIC
0385 NPSI(I) = NPSIC
0386 DO 110 II=1,3
0387 DO 110 JJ=1,3
0388 RMAT(II,JJ,I) = RMATC(II,JJ)
0389 110 CONTINUE
0390 EOLD = ECAN
0391 E(I) = ECAN
0392 C
0393 C ++++++++++++++++++++++ MOMENT ++++++++
0394 250 RXI = RX(I)
0395 RYI = RY(I)
0396 RZI = RZ(I)
0397 NXI = NX(I)
0398 NYI = NY(I)
0399 NZI = NZ(I)
0400 EXI = EX(I)
0401 EYI = EY(I)
0402 EZI = EZ(I)
0403 NXBI= NXB(I)
0404 NYBI= NYB(I)
0405 ETHETAI = ETHETA(I)
0406 EPHII = EPHI(I)
0407 NPSII = NPSI(I)
0408 C ---------- (5) CANDIDATE
0409 NRAN = NRAN + 1
0410 C1 = DELT*DBLE(RAN(NRAN))
0411 NRAN = NRAN + 1
0412 C1 = DSIGN(C1 , DBLE(RAN(NRAN)-0.5))
0413 NPSIC = NPSII + C1
0414 C
0415 IF(NPSIC .GE. 2.D0*PI) THEN
0416 NPSIC = NPSIC - 2.D0*PI
0417 ELSE IF (NPSIC .LT. 0.D0) THEN
0418 NPSIC = NPSIC + 2.D0*PI
0419 END IF
0420 C
0421 NXBC = DCOS(NPSIC)
0422 NYBC = DSIN(NPSIC)
0423 NXC = RMAT(1,1,I)*NXBC + RMAT(1,2,I)*NYBC
0424 NYC = RMAT(2,1,I)*NXBC + RMAT(2,2,I)*NYBC
0425 NZC = RMAT(3,1,I)*NXBC + RMAT(3,2,I)*NYBC
0426 C
0427 C --- NEW ENERGY ---
0428 ITREE = 1
0429 CALL ENECAL(I , RXI, RYI, RZI, EXI, EYI, EZI,
0430 & NXC, NYC, NZC, RCOFF2, ECAN, OVRLAP, ITREE, J)
0431 C
0432 CCC IF(OVRLAP) THEN
0433 CCC GOTO 400
0434 CCC END IF
0435 C
0436 C -------- (6) ENERGY HANDAN --------
0437 C3 = ECAN - EOLD
0438 IF(C3 .GE. 0.D0)THEN
0439 NRAN = NRAN + 1
0440 IF(DBLE(RAN(NRAN)) .GE. DEXP(-C3))THEN
0441 GOTO 400

• The attempt for changing the magnetic
moment direction.

• nb = (NXBC,NYBC,0)and
n = R–1 • nb.

• The interaction energies are calculated for this
new state of particle i.

• The procedure after the acceptance of the new state.

0442 END IF
0443 END IF
0444 C +++++++++++++++++++++++
0445 C CANDIDATES ARE ACCEPTED
0446 C +++++++++++++++++++++++
0447 NX(I) = NXC
0448 NY(I) = NYC
0449 NZ(I) = NZC
0450 NXB(I) = NXBC
0451 NYB(I) = NYBC

• The particle direction, magnetic moment
direction, and zenithal and azimuthal angles
are renewed.
• The rotational matrix is renewed.
• The interaction energy of particle i is saved
in E(I).

• The particle direction is described by the
zenithal and azimuthal angles ETHETAI and
EPHII. The magnetic moment direction is
described by the angle NPSII.

• The magnetic moment direction
is slightly changed using ran-
dom numbers; this new angle is
saved in NPSIC.

• The new magnetic moment direction is
evaluated from Eq. (4.46). The rotational
matrix is unchanged, still valid.

• The adoption of the new state is determined
according to the transition probability in Eq. (1.49).

156 Introduction to Practice of Molecular Simulation

0452 NPSI(I)= NPSIC
0453 E(I) = ECAN
0454 C
0455 C
0456 400 CONTINUE
0457 C
0458 C --
0459 C
0460 C ----- MOMENT AND ENERGY OF SYSTEM -----
0461 IF(MOD(MCSMPL,DNSMPL) .EQ. 0) THEN
0462 NSMPL = NSMPL + 1
0463 C1 = 0.D0
0464 C2 = 0.D0
0465 C3 = 0.D0
0466 C4 = 0.D0
0467 DO 420 J=1,N
0468 C1 = C1 + NX(J)
0469 C2 = C2 + NY(J)
0470 C3 = C3 + NZ(J)
0471 C4 = C4 + E(J)
0472 420 CONTINUE
0473 MOMX(NSMPL) = REAL(C1)/REAL(N)
0474 MOMY(NSMPL) = REAL(C2)/REAL(N)
0475 MOMZ(NSMPL) = REAL(C3)/REAL(N)
0476 MEANENE(NSMPL) = REAL(C4-KU*(C1*HX+C2*HY+C3*HZ))/REAL(2*N)
0477 END IF
0478 C
0479 IF(MOD(MCSMPL,NGRAPH) .EQ. 0) THEN
0480 NOPT = NOPT + 1
0481 WRITE(NOPT,472) N , XL , YL , ZL , D , D1 , RP
0482 WRITE(NOPT,473) (RX(I),I=1,N),(RY(I),I=1,N),(RZ(I),I=1,N)
0483 WRITE(NOPT,474) (NX(I),I=1,N),(NY(I),I=1,N),(NZ(I),I=1,N),
0484 & (EX(I),I=1,N),(EY(I),I=1,N),(EZ(I),I=1,N),
0485 & (NXB(I),I=1,N),(NYB(I),I=1,N)
0486 WRITE(NOPT,473) (ETHETA(I),I=1,N), (EPHI(I),I=1,N),
0487 & (NPSI(I),I=1,N)
0488 WRITE(NOPT,474) (((RMAT(II,JJ,I),II=1,3), JJ=1,3),
0489 & I=1,N)
0490 CLOSE(NOPT,STATUS='KEEP')
0491 END IF
0492 C
0493 C --- DATA OUTPUT FOR ANIMATION (2) ---
0494 IF(MOD(MCSMPL,NANIME) .EQ. 0) THEN
0495 NANMCTR = NANMCTR + 1
0496 NOPT1 = 13
0497 CALL ANIMEDAT(NOPT1, NANMCTR, MCSMPLMX, NANIME, N)
0498 END IF
0499 C
0500 C --- CHECK OF THE SUM OF RANDOM NUMBERS ---
0501 C
0502 IF(NRAN .GE. NRANCHK)THEN
0503 CALL RANCAL(NRANMX, IX, RAN)
0504 NRAN = 1
0505 END IF
0506 C --- NORMALIZATION ---
0507 IF(MOD(MCSMPL,DN) .EQ. 0) THEN
0508 DO 490 I=1,N
0509 C1 = DSQRT(NX(I)**2 + NY(I)**2 + NZ(I)**2)
0510 NX(I) = NX(I)/C1
0511 NY(I) = NY(I)/C1
0512 NZ(I) = NZ(I)/C1
0513 C1 = DSQRT(EX(I)**2 + EY(I)**2 + EZ(I)**2)
0514 EX(I) = EX(I)/C1
0515 EY(I) = EY(I)/C1
0516 EZ(I) = EZ(I)/C1
0517 C1 = DSQRT(NXB(I)**2 + NYB(I)**2)
0518 NXB(I) = NXB(I)/C1
0519 NYB(I) = NYB(I)/C1
0520 490 CONTINUE
0521 END IF
0522 C
0523 C
0524 1000 CONTINUE
0525 C

• To check the system convergence afterward,
the average of the particle direction vector is
calculated.

• The data of the particle positions and
directions are written out at every NGRAPH
MC steps for the postprocessing analysis.

• The data of the particle positions and
directions are written out at every NANIME
MC steps for making an animation.

• The number of the used random numbers
is checked. If over NRANCHK, a uniform
random number sequence is renewed.

• Each unit vector is
modified at every DN steps
so as to yield unit length.

157Practice of Monte Carlo Simulations

0526 C --
0527 C ------------------- END OF MONTE CARLO PROGRAM ---------------
0528 C --
0529 C
0530 C --- PRINT OUT (2) ---
0531 WRITE(NP,1002)
0532 MCSMPL1 = 1
0533 CCC MCSMPL2 = MCSMPLMX
0534 MCSMPL2 = NSMPL
0535 CALL PRNTDATA(MCSMPL1 , MCSMPL2 , NP)
0536 WRITE(NP,1004) MCSMPL1 , MCSMPL2
0537 C
0538 C --- DATA OUTPUT FOR GRAPHICS (3) ---
0539 WRITE(10,1012) IPTCLMDL, N, VDENS, NDENS, RA, RA0, KU
0540 WRITE(10,1014) RP, D, D1, XL, YL, ZL, RCOFF
0541 WRITE(10,1016) DELR, DELT
0542 WRITE(10,1017) HX, HY, HZ
0543 WRITE(10,1018) MCSMPLMX, NGRAPH, DN, DNSMPL
0544 WRITE(10,1022) MCSMPL1, MCSMPL2
0545 WRITE(10,1024) (MEANENE(I),I=MCSMPL1, MCSMPL2)
0546 & ,(MOMX(I), I=MCSMPL1, MCSMPL2)
0547 & ,(MOMY(I), I=MCSMPL1, MCSMPL2)
0548 C
0549 CLOSE(9, STATUS='KEEP')
0550 CLOSE(10,STATUS='KEEP')
0551 CLOSE(13,STATUS='KEEP')
0552 C -------------------------- FORMAT ------------------------------
0553 12 FORMAT(/1H ,'--'
0554 & /1H ,'- MONTE CARLO METHOD -'
0555 & /1H ,'--'
0556 & //1H ,'IPTCLMDL=',I4
0557 & /1H ,'N=',I4, 2X, 'VDENS=',F4.2, 2X ,'NDENS=',F7.4
0558 & /1H ,'RA=',F6.2, 2X, 'RA0=',F9.2, 2X ,'KU=',F6.2, 2X ,
0559 & 'RP=', F7.4
0560 & /1H ,'D=',F5.2, 2X ,'D1=',F5.2, 2X,
0561 & 'XL=',F6.2, 2X,'YL=',F6.2, 2X, 'ZL=',F6.2, 2X,
0562 & 'RCOFF=',F6.2
0563 & /1H ,'DELR=',F7.4, 2X ,'DELT=',F7.4)
0564 14 FORMAT(1H ,'MCSMPLMX=',I8, 2X,'NGRAPH=',I8, 2X,'DN=',I4, 2X,
0565 & 'DNSMPL=',I4/)
0566 15 FORMAT(1H ,'(HX,HY,HZ)=', 3F5.1)
0567 472 FORMAT(I5 , 3F9.4 , 3F8.4)
0568 473 FORMAT((5F16.10))
0569 474 FORMAT((11F7.3))
0570 1002 FORMAT(/1H ,'++++++++++++++++++++++++++++++'
0571 & /1H ,' WITHOUT CLUSTER MOVEMENT '
0572 & /1H ,'++++++++++++++++++++++++++++++'/)
0573 1004 FORMAT(///1H ,18X, 'START OF MC SAMPLING STEP=',I9
0574 & /1H ,18X, 'END OF MC SAMPLING STEP=',I9/)
0575 1012 FORMAT(I2 , I5 , 2F9.4 , 4F9.3)
0576 1014 FORMAT(3F7.2 , 3F9.3 , F9.3)
0577 1016 FORMAT(2F9.5)
0578 1017 FORMAT(3F7.2)
0579 1018 FORMAT(6I9)
0580 1020 FORMAT(2F7.3 , I4 , F7.3 , E12.4)
0581 1022 FORMAT(2I9)
0582 1024 FORMAT((7E11.4))
0583 1367 FORMAT(3I9, 2F9.4)
0584 1368 FORMAT(I6 , F8.4 , 3F10.5)
0585 1392 FORMAT(2I9)
0586 1394 FORMAT((7E11.4))
0587 1501 FORMAT(I8)
0588 1502 FORMAT((10F8.3))
0589 1511 FORMAT(I8)
0590 1513 FORMAT((10I8))
0591 1515 FORMAT((10F8.3))
0592 1521 FORMAT(I8)
0593 1523 FORMAT(2I8)
0594 1525 FORMAT((10F8.3))
0595 1541 FORMAT(I8)
0596 1543 FORMAT((10I8))
0597 1545 FORMAT((10F8.3))
0598 STOP
0599 END

• To check the system convergence
afterward, the data of the particle
directions and interaction energies
are written out.

158 Introduction to Practice of Molecular Simulation

0600 C***
0601 C*************************** SUBROUTINE **************************
0602 C***
0603 C
0604 C**** SUB PRNTDATA ****
0605 SUBROUTINE PRNTDATA(MCSST, MCSMX, NP)
0606 C
0607 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0608 C
0609 COMMON /BLOCK10/ MOMX , MOMY , MOMZ , MEANENE
0610 C
0611 PARAMETER(NN=1360 , NNS=200000)
0612 PARAMETER(NRANMX=1000000 , PI=3.141592653589793D0)
0613 C
0614 INTEGER MCSST , MCSMX , NP
0615 REAL MOMX(NNS) , MOMY(NNS) , MOMZ(NNS) , MEANENE(NNS)
0616 C
0617 REAL AMOMX(10) , AMOMY(10) , AMOMZ(10) , AMEANENE(10) , C0
0618 INTEGER IC , IMC(0:10) , JS , JE
0619 C
0620 C ----- KEIKA INSATU -----
0621 IC = (MCSMX-MCSST+1)/50
0622 DO 20 I= MCSST-1+IC , MCSMX , IC
0623 WRITE(NP,10) I, MOMX(I), MOMY(I), MOMZ(I), MEANENE(I)
0624 20 CONTINUE
0625 C ----- MONTE CARLO STEP HEIKIN -----
0626 IC = (MCSMX-MCSST+1)/10
0627 DO 30 I=0,10
0628 IMC(I) = MCSST - 1 + IC*I
0629 IF(I .EQ. 10) IMC(I) =MCSMX
0630 30 CONTINUE
0631 C
0632 C
0633 DO 35 I=1,10
0634 AMOMX(I) = 0.
0635 AMOMY(I) = 0.
0636 AMOMZ(I) = 0.
0637 AMEANENE(I) = 0.
0638 35 CONTINUE
0639 C
0640 DO 50 I=1,10
0641 JS = IMC(I-1) + 1
0642 JE = IMC(I)
0643 DO 40 J=JS,JE
0644 AMOMX(I) = AMOMX(I) + MOMX(J)
0645 AMOMY(I) = AMOMY(I) + MOMY(J)
0646 AMOMZ(I) = AMOMZ(I) + MOMZ(J)
0647 AMEANENE(I) = AMEANENE(I) + MEANENE(J)
0648 40 CONTINUE
0649 50 CONTINUE
0650 C
0651 DO 70 I=1,10
0652 C0 = REAL(IMC(I)-IMC(I-1))
0653 AMOMX(I) = AMOMX(I) /C0
0654 AMOMY(I) = AMOMY(I) /C0
0655 AMOMZ(I) = AMOMZ(I) /C0
0656 AMEANENE(I) = AMEANENE(I)/C0
0657 70 CONTINUE
0658 C ----- STEP HEIKIN INSATU -----
0659 WRITE(NP,75)
0660 DO 90 I=1,10
0661 WRITE(NP,80)I,IMC(I-1)+1,IMC(I),AMOMX(I),AMOMY(I),AMOMZ(I),
0662 & AMEANENE(I)
0663 90 CONTINUE
0664 C --
0665 10 FORMAT(1H ,'MCSMPL=',I8, 2X ,'MOMENT(X)=',F7.4, 2X ,
0666 & 'MOMENT(Y)=',F7.4, 2X ,'MOMENT(Z)=',F7.4
0667 & /1H , 53X , 'MEAN ENERGY=',E12.5)
0668 75 FORMAT(//1H ,'---'
0669 & /1H ,' MONTE CARLO HEIKIN '
0670 & /)
0671 80 FORMAT(1H ,'I=',I2, 2X ,'SMPLMN=',I8, 2X ,'SMPLMX=',I8
0672 & /1H ,15X ,'MOMENT(X)=',F7.4, 2X ,
0673 & 'MOMENT(Y)=',F7.4, 2X ,'MOMENT(Z)=',F7.4
0674 & /1H ,53X, 'MEAN ENERGY=',E12.5/)

• The total MC steps are equally divided into 50
blocks, and the end value of each block is
written out.

• The total MC steps are equally divided into 10
blocks, and the subaverages are calculated for
each block.

159Practice of Monte Carlo Simulations

0675 RETURN
0676 END
0677 C**** SUB ANIMEDAT ****
0678 SUBROUTINE ANIMEDAT(NOPT1, NANMCTR, MCSMPLMX, NANIME, N)
0679 C
0680 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0681 C
0682 COMMON /BLOCK1/ RX , RY , RZ
0683 COMMON /BLOCK2/ NX , NY , NZ
0684 COMMON /BLOCK4/ D , D1 , RP , VP , IPTCLMDL
0685 COMMON /BLOCK5/ XL , YL , ZL , INIPX , INIPY , INIPZ , INITREE
0686 COMMON /BLOCK11/ EX , EY , EZ
0687 C
0688 PARAMETER(NN=1360 , PI=3.141592653589793D0)
0689 C
0690 REAL*8 RX(NN) , RY(NN) , RZ(NN)
0691 REAL*8 NX(NN) , NY(NN) , NZ(NN)
0692 REAL*8 EX(NN) , EY(NN) , EZ(NN)
0693 REAL*8 D02 , D102 , CX1 , CY1 , CZ1 , CX2 , CY2 , CZ2
0694 REAL*8 CNX(50) , CNY(50) , CNZ(50)
0695 C
0696 D02 = D/2.D0
0697 D102 = D1/2.D0
0698 C
0699 IF(NANMCTR .EQ. 1) THEN
0700 WRITE(NOPT1,181) (MCSMPLMX/NANIME)
0701 END IF
0702 C
0703 IF((NANMCTR.GE.1) .AND. (NANMCTR.LE.9)) THEN
0704 WRITE(NOPT1,183) NANMCTR
0705 ELSE IF((NANMCTR.GE.10) .AND. (NANMCTR.LE.99)) THEN
0706 WRITE(NOPT1,184) NANMCTR
0707 ELSE IF((NANMCTR.GE.100) .AND. (NANMCTR.LE.999)) THEN
0708 WRITE(NOPT1,185) NANMCTR
0709 ELSE IF((NANMCTR.GE.1000) .AND. (NANMCTR.LE.9999)) THEN
0710 WRITE(NOPT1,186) NANMCTR
0711 END IF
0712 C
0713 C --- CYLINDER (1) ---
0714 WRITE(NOPT1,211) N
0715 DO 250 I=1,N
0716 CX1 = RX(I) - EX(I)*0.5D0
0717 CY1 = RY(I) - EY(I)*0.5D0
0718 CZ1 = RZ(I) - EZ(I)*0.5D0
0719 CX2 = RX(I) + EX(I)*0.5D0
0720 CY2 = RY(I) + EY(I)*0.5D0
0721 CZ2 = RZ(I) + EZ(I)*0.5D0
0722 WRITE(NOPT1,248) CX1,CY1,CZ1, CX2,CY2,CZ2, D02, 1.0, 0.0, 0.0
0723 250 CONTINUE
0724 C
0725 C --- SPHERE (1) ---
0726 C --- FOR MAKING OUTER SHAPE ---
0727 WRITE(NOPT1,311) N*16
0728 DO 350 I=1,N
0729 CNX(1) = NX(I)
0730 CNY(1) = NY(I)
0731 CNZ(1) = NZ(I)
0732 C
0733 C1X = EY(I)*NZ(I) - EZ(I)*NY(I)
0734 C1Y = EZ(I)*NX(I) - EX(I)*NZ(I)
0735 C1Z = EX(I)*NY(I) - EY(I)*NX(I)
0736 C1 = DSQRT(C1X**2 + C1Y**2 + C1Z**2)
0737 CNX(2) = C1X/C1
0738 CNY(2) = C1Y/C1
0739 CNZ(2) = C1Z/C1
0740 CNX(3) = - CNX(2)
0741 CNY(3) = - CNY(2)
0742 CNZ(3) = - CNZ(2)
0743 C
0744 CNX(4) = (CNX(1) + CNX(2))/1.4142D0
0745 CNY(4) = (CNY(1) + CNY(2))/1.4142D0
0746 CNZ(4) = (CNZ(1) + CNZ(2))/1.4142D0
0747 CNX(5) = (CNX(1) + CNX(3))/1.4142D0
0748 CNY(5) = (CNY(1) + CNY(3))/1.4142D0
0749 CNZ(5) = (CNZ(1) + CNZ(3))/1.4142D0

• Drawing of the cylindrical part.

• A subroutine for writing out the data,
which can be directly used for making an
animation based on MicroAVS.

• MicroAVS can make a visua-
lization or animation by reading
the data file baba41.mgf.

• Drawing of the disk-like particle in
Figure 4.12 by having the short cylinder
surrounded by numerous spheres.

160 Introduction to Practice of Molecular Simulation

0750 C
0751 CNX(6) = (CNX(1) + CNX(4))/1.8478D0
0752 CNY(6) = (CNY(1) + CNY(4))/1.8478D0
0753 CNZ(6) = (CNZ(1) + CNZ(4))/1.8478D0
0754 CNX(7) = (CNX(2) + CNX(4))/1.8478D0
0755 CNY(7) = (CNY(2) + CNY(4))/1.8478D0
0756 CNZ(7) = (CNZ(2) + CNZ(4))/1.8478D0
0757 CNX(8) = (CNX(1) + CNX(5))/1.8478D0
0758 CNY(8) = (CNY(1) + CNY(5))/1.8478D0
0759 CNZ(8) = (CNZ(1) + CNZ(5))/1.8478D0
0760 CNX(9) = (CNX(3) + CNX(5))/1.8478D0
0761 CNY(9) = (CNY(3) + CNY(5))/1.8478D0
0762 CNZ(9) = (CNZ(3) + CNZ(5))/1.8478D0
0763 C
0764 CNX(10) = - CNX(1)
0765 CNY(10) = - CNY(1)
0766 CNZ(10) = - CNZ(1)
0767 CNX(11) = - CNX(4)
0768 CNY(11) = - CNY(4)
0769 CNZ(11) = - CNZ(4)
0770 CNX(12) = - CNX(5)
0771 CNY(12) = - CNY(5)
0772 CNZ(12) = - CNZ(5)
0773 CNX(13) = - CNX(6)
0774 CNY(13) = - CNY(6)
0775 CNZ(13) = - CNZ(6)
0776 CNX(14) = - CNX(7)
0777 CNY(14) = - CNY(7)
0778 CNZ(14) = - CNZ(7)
0779 CNX(15) = - CNX(8)
0780 CNY(15) = - CNY(8)
0781 CNZ(15) = - CNZ(8)
0782 CNX(16) = - CNX(9)
0783 CNY(16) = - CNY(9)
0784 CNZ(16) = - CNZ(9)
0785 C
0786 DO 340 J=1,16
0787 CX1 = RX(I) + CNX(J)*D02
0788 CY1 = RY(I) + CNY(J)*D02
0789 CZ1 = RZ(I) + CNZ(J)*D02
0790 WRITE(NOPT1,348) CX1, CY1, CZ1, 0.499 , 1.0, 0.2, 0.2
0791 340 CONTINUE
0792 C
0793 350 CONTINUE
0794 C
0795 C --- SPHERE (2) ---
0796 C --- FOR MAG MOMENT ---
0797 WRITE(NOPT1,311) N
0798 DO 450 I=1,N
0799 CX1 = RX(I) + NX(I)*D102
0800 CY1 = RY(I) + NY(I)*D102
0801 CZ1 = RZ(I) + NZ(I)*D102
0802 WRITE(NOPT1,348) CX1, CY1, CZ1, 0.12 , 0.0, 0.8, 1.0
0803 450 CONTINUE
0804 C
0805 C -------------------------------------- SIM.REGEON LINES (3) ---
0806 WRITE(NOPT1,648) 17
0807 WRITE(NOPT1,649) 0. , 0. , 0.
0808 WRITE(NOPT1,649) XL , 0. , 0.
0809 WRITE(NOPT1,649) XL , YL , 0.
0810 WRITE(NOPT1,649) 0. , YL , 0.
0811 WRITE(NOPT1,649) 0. , 0. , 0.
0812 WRITE(NOPT1,649) 0. , 0. , ZL
0813 WRITE(NOPT1,649) XL , 0. , ZL
0814 WRITE(NOPT1,649) XL , YL , ZL
0815 WRITE(NOPT1,649) 0. , YL , ZL
0816 WRITE(NOPT1,649) 0. , 0. , ZL
0817 WRITE(NOPT1,649) 0. , 0. , 0.
0818 WRITE(NOPT1,649) 0. , YL , 0.
0819 WRITE(NOPT1,649) 0. , YL , ZL

• Drawing the frame of the simulation
box.

0820 WRITE(NOPT1,649) XL , YL , ZL
0821 WRITE(NOPT1,649) XL , YL , 0.
0822 WRITE(NOPT1,649) XL , 0. , 0.
0823 WRITE(NOPT1,649) XL , 0. , ZL
0824 C

• The magnetic moment direction is
described by adding a small sphere to
the surface of the torus part.

161Practice of Monte Carlo Simulations

0825 C ---------------------------- FORMAT ----------------------------
0826 181 FORMAT('# Micro AVS Geom:2.00'
0827 & /'# Animation of MC simulation results'
0828 & /I4)
0829 183 FORMAT('step',I1)
0830 184 FORMAT('step',I2)
0831 185 FORMAT('step',I3)
0832 186 FORMAT('step',I4)
0833 211 FORMAT('column'/'cylinder'/'dvertex_and_color'/'32'/I7)
0834 248 FORMAT(6F10.3 , F6.2 , 3F4.1)
0835 311 FORMAT('sphere'/'sphere_sample'/'color'/I7)
0836 348 FORMAT(3F10.3 , F6.2 , 3F5.2)
0837 648 FORMAT('polyline'/'pline_sample'/'vertex'/I3)
0838 649 FORMAT(3F10.3)
0839 RETURN
0840 END
0841 C**** SUB INITIAL ****
0842 SUBROUTINE INITIAL
0843 C
0844 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0845 C
0846 COMMON /BLOCK1/ RX , RY , RZ
0847 COMMON /BLOCK2/ NX , NY , NZ
0848 COMMON /BLOCK3/ N , NDENS, VDENS
0849 COMMON /BLOCK4/ D , D1 , RP , VP , IPTCLMDL
0850 COMMON /BLOCK5/ XL , YL , ZL , INIPX , INIPY , INIPZ , INITREE
0851 COMMON /BLOCK11/ EX , EY , EZ
0852 COMMON /BLOCK12/ NXB , NYB
0853 COMMON /BLOCK13/ ETHETA , EPHI , NPSI , RMAT
0854 C
0855 PARAMETER(NN=1360 , PI=3.141592653589793D0)
0856 C
0857 REAL*8 NDENS
0858 REAL*8 RX(NN) , RY(NN) , RZ(NN) , NX(NN) , NY(NN) , NZ(NN)
0859 REAL*8 EX(NN) , EY(NN) , EZ(NN)
0860 REAL*8 NXB(NN), NYB(NN)
0861 REAL*8 ETHETA(NN), EPHI(NN) , NPSI(NN) , RMAT(3,3,NN)
0862 C
0863 INTEGER PTCL , ICNTR
0864 REAL*8 XLUNT , YLUNT , ZLUNT, RAN1 , RAN2 , RAN3
0865 REAL*8 VDENSMX , CRATIO , C0 , C1 , C2 , C3
0866 C
0867 IF(INITREE .EQ. 1) THEN
0868 INIPX = 3
0869 INIPY = 9
0870 INIPZ = 12
0871 N = 324
0872 ELSE IF(INITREE .EQ. 2) THEN
0873 INIPX = 4
0874 INIPY = 12
0875 INIPZ = 6
0876 N = 288
0877 ELSE
0878 WRITE(6,*) '******************** SUB-INITIAL IS STOPPED *****'
0879 STOP
0880 END IF
0881 C --
0882 C
0883 VMN = DBLE(INIPX*INIPY*INIPZ)*RP**2
0884 CRATIO = ((DBLE(N)*VP)/(VMN*VDENS))**(1./3.)
0885 XLUNT = RP
0886 YLUNT = 1.D0
0887 ZLUNT = RP
0888 XLUNT = XLUNT*CRATIO
0889 YLUNT = YLUNT*CRATIO
0890 ZLUNT = ZLUNT*CRATIO
0891 XL = XLUNT*DBLE(INIPX)
0892 YL = YLUNT*DBLE(INIPY)
0893 ZL = ZLUNT*DBLE(INIPZ)
0894 C ----- POSITION -----

• A subroutine for setting the
initial position and direction of
each particle.

• (INIPX, INIPY, INIPZ) particles are
placed in the x-, y-, and z-directions,
respectively.

• The volumetric fraction φV satisfies φV=VP×N/(α3×Vmn),
so that α can be obtained as α=(VP×N/(φV×Vmn))1/3, in
which VMN=Vmn and CRATIO=α.
• As shown in Figure 2.5, VMN is the minimum volume for
a contact arrangement of the particles.

162 Introduction to Practice of Molecular Simulation

0895 RAN1 = DSQRT(2.D0)
0896 RAN2 = DSQRT(7.D0)
0897 RAN3 = DSQRT(11.D0)
0898 C0 = 1.D-4
0899 PTCL = 0
0900 DO 10 K=0, INIPZ-1
0901 DO 10 J=0, INIPY-1
0902 DO 10 I=0, INIPX-1
0903 PTCL = PTCL + 1
0904 C1 = RAN1*DBLE(PTCL)
0905 C1 = C1 - DINT(C1)
0906 C1 = C1 - 0.5D0
0907 C2 = RAN2*DBLE(PTCL)
0908 C2 = C2 - DINT(C2)
0909 C2 = C2 - 0.5D0
0910 C3 = RAN3*DBLE(PTCL)
0911 C3 = C3 - DINT(C3)
0912 C3 = C3 - 0.5D0
0913 RX(PTCL) = DBLE(I)*XLUNT + C1*C0 + C0
0914 RY(PTCL) = DBLE(J)*YLUNT + C2*C0 + C0
0915 RZ(PTCL) = DBLE(K)*ZLUNT + C3*C0 + C0
0916 10 CONTINUE
0917 N = PTCL
0918 C ----- DIRECTION -----
0919 RAN1 = DSQRT(2.D0)
0920 RAN2 = DSQRT(3.D0)
0921 DO 80 I=1,N
0922 C1 = PI/2.D0
0923 C2 = PI/2.D0
0924 EX(I) = DSIN(C1)*DCOS(C2)
0925 EY(I) = DSIN(C1)*DSIN(C2)
0926 EZ(I) = DCOS(C1)
0927 C
0928 ETHETA(I) = C1
0929 EPHI(I) = C2
0930 RMAT(1,1,I) = DCOS(C1)*DCOS(C2)
0931 RMAT(2,1,I) = DCOS(C1)*DSIN(C2)
0932 RMAT(3,1,I) = -DSIN(C1)
0933 RMAT(1,2,I) = -DSIN(C2)
0934 RMAT(2,2,I) = DCOS(C2)
0935 RMAT(3,2,I) = 0.D0
0936 RMAT(1,3,I) = DSIN(C1)*DCOS(C2)
0937 RMAT(2,3,I) = DSIN(C1)*DSIN(C2)
0938 RMAT(3,3,I) = DCOS(C1)
0939 80 CONTINUE
0940 C ----- MOMENT -----
0941 RAN1 = DSQRT(2.D0)
0942 DO 90 I=1,N
0943 C1 = RAN1*DBLE(I)
0944 C1 = C1 - DINT(C1)
0945 NPSI(I) = 2.D0*PI*C1

• (XLUNT, YLUNT, ZLUNT) are the distances between
the neighboring particles in each axis direction.

• All the particles are set so as to point in
the y-direction.

0946 NXB(I) = DCOS(NPSI(I))
0947 NYB(I) = DSIN(NPSI(I))
0948 NX(I) = RMAT(1,1,I)*NXB(I) + RMAT(1,2,I)*NYB(I)
0949 NY(I) = RMAT(2,1,I)*NXB(I) + RMAT(2,2,I)*NYB(I)
0950 NZ(I) = RMAT(3,1,I)*NXB(I) + RMAT(3,2,I)*NYB(I)
0951 90 CONTINUE
0952 RETURN
0953 END
0954 C**** SUB ENECAL *****
0955 SUBROUTINE ENECAL(I, RXI, RYI, RZI, EXI, EYI, EZI, NXI, NYI,
0956 & NZI, RCOFF2, ECAN, OVRLAP, ISTREET, JPTCL0)
0957 C
0958 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0959 C
0960 COMMON /BLOCK1/ RX , RY , RZ
0961 COMMON /BLOCK2/ NX , NY , NZ
0962 COMMON /BLOCK3/ N , NDENS, VDENS
0963 COMMON /BLOCK4/ D , D1 , RP , VP , IPTCLMDL
0964 COMMON /BLOCK5/ XL , YL , ZL , INIPX , INIPY , INIPZ , INITREE
0965 COMMON /BLOCK6/ RA , RA0 , KU , HX , HY , HZ
0966 COMMON /BLOCK7/ E , ENEW , EOLD
0967 COMMON /BLOCK8/ RCOFF, DELR , DELT
0968 COMMON /BLOCK11/ EX , EY , EZ
0969 COMMON /BLOCK12/ NXB , NYB

• RAN1, RAN2, and RAN3 are quasi-random numbers.
• (INIPX, INIPY, INIPZ) particles are placed in each
direction.
• Each particle is moved in parallel by the distance C0 to
remove subtle situations at outer boundary surfaces. Also,
to remove the regularity of the initial configuration, each
particle is moved randomly by (C1*C0, C2*C0, C3*C0) in
each direction.

• The rotational matrix R–1 (=RMAT) can be
evaluated as a transpose matrix in Eq. (4.43)
using the particle direction data.

• The magnetic moment direction is
randomly assigned using quasi-random
numbers.

• A subroutine for calculating the
interaction energies between particles.

163Practice of Monte Carlo Simulations

0970 COMMON /BLOCK13/ ETHETA , EPHI , NPSI , RMAT
0971 C
0972 PARAMETER(NN=1360 , PI=3.141592653589793D0)
0973 C
0974 REAL*8 NDENS , KU
0975 REAL*8 RX(NN) , RY(NN) , RZ(NN)
0976 REAL*8 NX(NN) , NY(NN) , NZ(NN) , E(NN)
0977 REAL*8 EX(NN) , EY(NN) , EZ(NN)
0978 REAL*8 NXB(NN), NYB(NN)
0979 REAL*8 ETHETA(NN), EPHI(NN) , NPSI(NN) , RMAT(3,3,NN)
0980 LOGICAL OVRLAP
0981 C
0982 REAL*8 RXI , RYI , RZI , RXJ , RYJ , RZJ
0983 REAL*8 RXIP , RYIP , RZIP , RXJP , RYJP , RZJP
0984 REAL*8 RXIJ , RYIJ , RZIJ , RXJI , RYJI , RZJI
0985 REAL*8 RXIJQ, RYIJQ, RZIJQ
0986 REAL*8 NXI , NYI , NZI , NXJ , NYJ , NZJ
0987 REAL*8 NXIJ , NYIJ , NZIJ
0988 REAL*8 NXIJ2, NYIJ2 , NZIJ2
0989 REAL*8 TXIJ , TYIJ , TZIJ , TXIJS, TYIJS, TZIJS
0990 REAL*8 EXI , EYI , EZI , EXJ , EYJ , EZJ
0991 REAL*8 EXIP , EYIP , EZIP , EXJP , EYJP , EZJP
0992 REAL*8 EXIS , EYIS , EZIS , EXJS , EYJS , EZJS
0993 REAL*8 KIS , KJS , KIJS , KIJQ
0994 REAL*8 RRXI , RRYI , RRZI , RRXJ , RRYJ , RRZJ
0995 REAL*8 RRXIJ , RRYIJ , RRZIJ , RRXJI , RRYJI , RRZJI
0996 REAL*8 TTXIJ , TTYIJ , TTZIJ , TTXIJS, TTYIJS, TTZIJS
0997 REAL*8 EEXI , EEYI , EEZI , EEXJ , EEYJ , EEZJ
0998 REAL*8 EEXIS , EEYIS , EEZIS , EEXJS , EEYJS , EEZJS
0999 REAL*8 KKIS , KKJS , KKIJS
1000 REAL*8 RIJ , RIJSQ , RIJ3 , R00 , R01 , R10 , R11
1001 REAL*8 RIJMN , RIJMNFUN
1002 REAL*8 ECAN , RCOFF2 , RCHKSQ , RCHKSQ2
1003 REAL*8 DSQ , D1 , D1SQ , D02 , CHCK0 , CHCK1
1004 REAL*8 C0 , C1 , C2 , C00 , C01 , C02 , C03
1005 REAL*8 C11 , C21 , C12 , C22
1006 REAL*8 C1X , C1Y , C1Z , C1SQ
1007 REAL*8 CEIEJ , CEIRIJ , CEJEIX , CEJEIY , CEJEIZ
1008 INTEGER ITREE , IPATH , JPTCL
1009 C
1010 OVRLAP = .FALSE.
1011 ECAN = - KU*(NXI*HX + NYI*HY + NZI*HZ)
1012 D1SQ = D1**2
1013 DSQ = D**2
1014 D02 = D/2.D0
1015 C
1016 C --- MAIN LOOP START
1017 C
1018 DO 1000 JPTCL=1,N
1019 C
1020 J = JPTCL
1021 IF(J .EQ. I) GOTO 1000
1022 C
1023 RXJ = RX(J)
1024 RYJ = RY(J)
1025 RZJ = RZ(J)
1026 c
1027 RXIJ = RXI - RXJ
1028 IF(RXIJ .GT. XL/2.D0) THEN
1029 RXIJ = RXIJ - XL
1030 RXJ = RXJ + XL
1031 ELSE IF(RXIJ .LT. -XL/2.D0) THEN
1032 RXIJ = RXIJ + XL
1033 RXJ = RXJ - XL
1034 END IF
1035 IF(DABS(RXIJ) .GE. RCOFF) GOTO 1000
1036 C
1037 RYIJ = RYI - RYJ
1038 IF(RYIJ .GT. YL/2.D0) THEN
1039 RYIJ = RYIJ - YL
1040 RYJ = RYJ + YL
1041 ELSE IF(RYIJ .LT. -YL/2.D0) THEN
1042 RYIJ = RYIJ + YL
1043 RYJ = RYJ - YL
1044 END IF

• The treatment concerning particle i.

• The treatment concerning particles i
and j.

• The treatment of the periodic BC.

164 Introduction to Practice of Molecular Simulation

1045 IF(DABS(RYIJ) .GE. RCOFF) GOTO 1000
1046 C
1047 RZIJ = RZI - RZJ
1048 IF(RZIJ .GT. ZL/2.D0) THEN
1049 RZIJ = RZIJ - ZL
1050 RZJ = RZJ + ZL
1051 ELSE IF(RZIJ .LT. -ZL/2.D0) THEN
1052 RZIJ = RZIJ + ZL
1053 RZJ = RZJ - ZL
1054 END IF
1055 IF(DABS(RZIJ) .GE. RCOFF) GOTO 1000
1056 C
1057 RIJSQ= RXIJ**2 + RYIJ**2 + RZIJ**2
1058 IF(RIJSQ .GE. RCOFF2) GOTO 1000
1059 IF(RIJSQ .LT. 1.D0) THEN
1060 OVRLAP = .TRUE.
1061 RETURN
1062 END IF
1063 C
1064 RIJ = DSQRT(RIJSQ)
1065 C
1066 C --------------------------------- START OF MAGNETIC ENERGY ---
1067 IF(IPTCLMDL .EQ. 1) THEN
1068 C
1069 NXJ = NX(J)
1070 NYJ = NY(J)
1071 NZJ = NZ(J)

• The magnetic interaction energies are
calculated.

1072 EXJ = EX(J)
1073 EYJ = EY(J)
1074 EZJ = EZ(J)
1075 RXJI = -RXIJ
1076 RYJI = -RYIJ
1077 RZJI = -RZIJ
1078 C
1079 C00 = NXI*NXJ + NYI*NYJ + NZI*NZJ
1080 C01 = NXI*RXIJ + NYI*RYIJ + NZI*RZIJ
1081 C02 = NXJ*RXIJ + NYJ*RYIJ + NZJ*RZIJ
1082 RIJ3 = RIJ*RIJSQ
1083 C
1084 C1 = (RA/RIJ3)*(C00 - 3.D0*C01*C02/RIJSQ)
1085 C
1086 ECAN = ECAN + C1
1087 C
1088 ELSE IF(IPTCLMDL .EQ. 2) THEN
1089 C
1090 NXJ = NX(J)
1091 NYJ = NY(J)
1092 NZJ = NZ(J)
1093 NXIJ = NXI - NXJ
1094 NYIJ = NYI - NYJ
1095 NZIJ = NZI - NZJ
1096 NXIJ2 = NXI + NXJ
1097 NYIJ2 = NYI + NYJ
1098 NZIJ2 = NZI + NZJ
1099 EXJ = EX(J)
1100 EYJ = EY(J)
1101 EZJ = EZ(J)
1102 RXJI = -RXIJ
1103 RYJI = -RYIJ
1104 RZJI = -RZIJ
1105 C
1106 C11 = RXIJ*NXIJ + RYIJ*NYIJ + RZIJ*NZIJ
1107 C21 = RXIJ*NXIJ2 + RYIJ*NYIJ2 + RZIJ*NZIJ2
1108 C12 = 1.D0 - (NXI*NXJ + NYI*NYJ + NZI*NZJ)
1109 C22 = 1.D0 + (NXI*NXJ + NYI*NYJ + NZI*NZJ)
1110 C01 = D/RIJSQ
1111 C02 = D**2/(2.D0*RIJSQ)
1112 C
1113 R00 = RIJ*(1.D0 + C01*C11 + C02*C12)**0.5
1114 R11 = RIJ*(1.D0 - C01*C11 + C02*C12)**0.5
1115 R01 = RIJ*(1.D0 + C01*C21 + C02*C22)**0.5
1116 R10 = RIJ*(1.D0 - C01*C21 + C02*C22)**0.5
1117 IF((R00 .LT. 1.D0) .OR. (R11 .LT. 1.D0) .OR.
1118 & (R01 .LT. 1.D0) .OR. (R10 .LT. 1.D0)) THEN
1119 OVRLAP = .TRUE.

• If the two particles are separated over
the cutoff distance r*coff, the calculation
is unnecessary.

• The treatment for the particle model
with a magnetic dipole at the particle
center.

• The treatment for the particle model with
a plus and a minus magnetic charge at
the torus part; this model is not used in
the present exercise.

165Practice of Monte Carlo Simulations

1120 RETURN
1121 END IF
1122 C
1123 ECAN = ECAN
1124 & + RA*(1.D0/R00 + 1.D0/R11 - 1.D0/R01 - 1.D0/R10)
1125 C
1126 END IF
1127 C ----------------------------------- END OF MAGNETIC ENERGY ---
1128 C
1129 IF(ISTREET .EQ. 1) GOTO 1000
1130 C
1131 IF(RIJ .GE. D1) THEN
1132 OVRLAP = .FALSE.
1133 GOTO 1000
1134 END IF

• The assessment of the overlap
between particles i and j.

1135 C
1136 C --
1137 C --------- CHECK THE OVERLAP OF PARTICLES I AND J -------
1138 C --
1139 C
1140 CEIEJ = EXI*EXJ + EYI*EYJ + EZI*EZJ
1141 TXIJ = RXIJ/RIJ
1142 TYIJ = RYIJ/RIJ
1143 TZIJ = RZIJ/RIJ
1144 C11 = TXIJ*EXI + TYIJ*EYI + TZIJ*EZI
1145 C
1146 IF(DABS(CEIEJ) .GT. 0.999D0) THEN
1147 IF(DABS(C11) .LT. 0.001D0)THEN
1148 ITREE = 2
1149 ELSE
1150 ITREE = 3
1151 END IF
1152 ELSE
1153 ITREE = 1
1154 END IF
1155 C -----------------------
1156 C ITREE=1: GENERAL
1157 C ITREE=2: ONE PLANE
1158 C ITREE=3: TWO PARALLEL
1159 C PLANES
1160 C -----------------------
1161 C
1162 C -- (1) ITREE=2 ---
1163 C
1164 IF(ITREE .EQ. 2) THEN
1165 IF(RIJ .GE. D1) THEN
1166 OVRLAP = .FALSE.
1167 GOTO 1000
1168 ELSE
1169 OVRLAP = .TRUE.
1170 RETURN
1171 END IF
1172 END IF
1173 C
1174 C -- (2) ITREE=3 ---
1175 C
1176 IF(ITREE .EQ. 3) THEN
1177 C
1178 CEIRIJ = EXI*RXIJ + EYI*RYIJ + EZI*RZIJ
1179 IF(DABS(CEIRIJ) .GE. 1.D0) THEN
1180 OVRLAP = .FALSE.
1181 GOTO 1000
1182 END IF
1183 C
1184 RXIP = RXIJ - CEIRIJ*EXI
1185 RYIP = RYIJ - CEIRIJ*EYI
1186 RZIP = RZIJ - CEIRIJ*EZI
1187 C0 = DSQRT(RXIP**2 + RYIP**2 + RZIP**2)
1188 IF(C0 .LE. D) THEN
1189 OVRLAP = .TRUE.
1190 RETURN
1191 ELSE IF(C0 .GE. D1) THEN
1192 OVRLAP = .FALSE.
1193 GOTO 1000
1194 END IF

• The treatment for a one-plane arrangement (ITREE=2).

• The treatment for a parallel arrangement (ITREE=3).

• rij
p in Eq. (4.32) is evaluated.

• An overlap in the case of 2.2.1 in Section 4.2.3.

• No overlap in the case of 2.2.2 in Section 4.2.3.

• The regime of particle overlap is
assessed. There are three regimes: a
general arrangement (ITREE=1), a
one-plane arrangement (ITREE=2), and
a parallel arrangement (ITREE=3).

• The occurrence of a particle
overlap can be assessed by only the
particle–particle distance.

• No overlap if the condition (2.1) in
Section 4.2.3 is satisfied.

166 Introduction to Practice of Molecular Simulation

1195 EXJP = RXIP/C0
1196 EYJP = RYIP/C0
1197 EZJP = RZIP/C0
1198 EXIP = -EXJP
1199 EYIP = -EYJP
1200 EZIP = -EZJP
1201 C1X = RXI + D02*EXIP - (RXJ + D02*EXJP)
1202 C1Y = RYI + D02*EYIP - (RYJ + D02*EYJP)
1203 C1Z = RZI + D02*EZIP - (RZJ + D02*EZJP)
1204 C1SQ = C1X**2 + C1Y**2 + C1Z**2
1205 IF(C1SQ .LT. 1.D0) THEN
1206 OVRLAP = .TRUE.
1207 RETURN
1208 ELSE
1209 OVRLAP = .FALSE.
1210 GOTO 1000
1211 END IF
1212 C
1213 END IF
1214 C
1215 C --- TIJS ---
1216 CEJEIX = EYJ*EZI - EZJ*EYI
1217 CEJEIY = EZJ*EXI - EXJ*EZI
1218 CEJEIZ = EXJ*EYI - EYJ*EXI
1219 C1 = DSQRT(CEJEIX**2 + CEJEIY**2 + CEJEIZ**2)
1220 TXIJS = CEJEIX / C1
1221 TYIJS = CEJEIY / C1
1222 TZIJS = CEJEIZ / C1
1223 C
1224 C -- EIS , EJS ---
1225 EXIS = -(EYI*TZIJS - EZI*TYIJS)
1226 EYIS = -(EZI*TXIJS - EXI*TZIJS)
1227 EZIS = -(EXI*TYIJS - EYI*TXIJS)
1228 EXJS = (EYJ*TZIJS - EZJ*TYIJS)
1229 EYJS = (EZJ*TXIJS - EXJ*TZIJS)
1230 EZJS = (EXJ*TYIJS - EYJ*TXIJS)
1231 C
1232 C -- KIS , KJS ---
1233 KIS = -(EXJ*RXIJ + EYJ*RYIJ + EZJ*RZIJ)/
1234 & (EXJ*EXIS + EYJ*EYIS + EZJ*EZIS)
1235 KJS = (EXI*RXIJ + EYI*RYIJ + EZI*RZIJ)/
1236 & (EXI*EXJS + EYI*EYJS + EZI*EZJS)
1237 KIJS = RXIJ*TXIJS + RYIJ*TYIJS + RZIJ*TZIJS
1238 C
1239 C ------------------------- REPLACEMENT OF PARTICLES I AND J ---
1240 IF(DABS(KJS) .GE. DABS(KIS)) THEN
1241 II = I
1242 JJ = J
1243 RRXI = RXI
1244 RRYI = RYI
1245 RRZI = RZI
1246 RRXJ = RXJ
1247 RRYJ = RYJ
1248 RRZJ = RZJ
1249 RRXIJ = RXIJ
1250 RRYIJ = RYIJ
1251 RRZIJ = RZIJ
1252 RRXJI = RXJI
1253 RRYJI = RYJI
1254 RRZJI = RZJI
1255 TTXIJ = TXIJ
1256 TTYIJ = TYIJ
1257 TTZIJ = TZIJ
1258 TTXIJS= TXIJS
1259 TTYIJS= TYIJS
1260 TTZIJS= TZIJS

• No overlap in the case of 2.2.4 in Section 4.2.3.

• An overlap in the case of 2.2.3 in Section 4.2.3.

• tij
s (=(TXIJS,TYIJS,TZIJS)) in Eq.

(4.23) is evaluated.

• ei
s and ej

s in Eq. (4.24) are evaluated.

• ki
s, kj

s, and kij
s in Eq. (4.26) are

evaluated.

1261 EEXI = EXI
1262 EEYI = EYI
1263 EEZI = EZI
1264 EEXJ = EXJ
1265 EEYJ = EYJ
1266 EEZJ = EZJ
1267 EEXIS = EXIS
1268 EEYIS = EYIS
1269 EEZIS = EZIS

• Treatment (1) shown in Section 4.2.5. The
subscripts are exchanged between i and j so
as to satisfy |kj

s|>|ki
s|.

• As a result, the particle names i and j are
expressed as II and JJ in the program.

167Practice of Monte Carlo Simulations

1270 EEXJS = EXJS
1271 EEYJS = EYJS
1272 EEZJS = EZJS
1273 KKIS = KIS
1274 KKJS = KJS
1275 KKIJS = KIJS
1276 ELSE
1277 II = J
1278 JJ = I
1279 RRXI = RXJ
1280 RRYI = RYJ
1281 RRZI = RZJ
1282 RRXJ = RXI
1283 RRYJ = RYI
1284 RRZJ = RZI
1285 RRXIJ = -RXIJ
1286 RRYIJ = -RYIJ
1287 RRZIJ = -RZIJ
1288 RRXJI = -RXJI
1289 RRYJI = -RYJI
1290 RRZJI = -RZJI
1291 TTXIJ = -TXIJ
1292 TTYIJ = -TYIJ
1293 TTZIJ = -TZIJ
1294 TTXIJS= -TXIJS
1295 TTYIJS= -TYIJS
1296 TTZIJS= -TZIJS
1297 EEXI = EXJ
1298 EEYI = EYJ
1299 EEZI = EZJ
1300 EEXJ = EXI
1301 EEYJ = EYI
1302 EEZJ = EZI
1303 EEXIS = EXJS
1304 EEYIS = EYJS
1305 EEZIS = EZJS
1306 EEXJS = EXIS
1307 EEYJS = EYIS
1308 EEZJS = EZIS
1309 KKIS = KJS
1310 KKJS = KIS
1311 KKIJS = KIJS
1312 END IF
1313 C
1314 C ------------------- REPLACEMENT OF DIRECTIONS OF EI AND EJ ---
1315 CHCK0 = RRXJI*EEXI + RRYJI*EEYI + RRZJI*EEZI
1316 IF(CHCK0 .LT. 0.D0) THEN
1317 EEXI = -EEXI
1318 EEYI = -EEYI
1319 EEZI = -EEZI
1320 END IF
1321 C
1322 CEIEJ = EEXI*EEXJ + EEYI*EEYJ + EEZI*EEZJ
1323 IF(CEIEJ .LT. 0.D0) THEN
1324 EEXJ = -EEXJ
1325 EEYJ = -EEYJ
1326 EEZJ = -EEZJ
1327 CEIEJ = -CEIEJ
1328 END IF
1329 C
1330 C ------------------------- REPLACEMENT OF DIRECTION OF TIJS ---
1331 CHCK0 = TTXIJS*RRXIJ + TTYIJS*RRYIJ + TTZIJS*RRZIJ
1332 IF(CHCK0 .LT. 0.D0) THEN
1333 TTXIJS = -TTXIJS
1334 TTYIJS = -TTYIJS
1335 TTZIJS = -TTZIJS
1336 END IF
1337 C
1338 C -------- REPLACEMENT OF DIRECTIONS OF EIS,EJS,KIS,KJS,KIJS ---
1339 IF(KKIS .LT. 0.D0) THEN
1340 KKIS = -KKIS
1341 EEXIS = -EEXIS
1342 EEYIS = -EEYIS
1343 EEZIS = -EEZIS
1344 END IF

• Treatment (3) shown in Section 4.2.5.

• Treatment (2) shown in Section 4.2.5.

• Treatment (4) shown in Section 4.2.5.

168 Introduction to Practice of Molecular Simulation

1345 IF(KKJS .LT. 0.D0) THEN
1346 KKJS = -KKJS
1347 EEXJS = -EEXJS
1348 EEYJS = -EEYJS
1349 EEZJS = -EEZJS
1350 END IF
1351 IF(KKIJS .LT. 0.D0) THEN
1352 KKIJS = -KKIJS
1353 END IF
1354 C
1355 C
1356 C -- (3) ITREE=1 ---
1357 C
1358 IF(ITREE .EQ. 1) THEN
1359 C
1360 C
1361 KIJQ = DABS(EEXJS*EEXI + EEYJS*EEYI + EEZJS*EEZI)
1362 IF(KKJS .GE. D02) THEN
1363 KIJQ = (KKJS - D02)*KIJQ
1364 RXIJQ = RRXJ + D02*EEXJS - KIJQ*EEXI
1365 RYIJQ = RRYJ + D02*EEYJS - KIJQ*EEYI
1366 RZIJQ = RRZJ + D02*EEZJS - KIJQ*EEZI
1367 IPATH = 1
1368 ELSE
1369 KIJQ = (D02 - KKJS)*KIJQ
1370 RXIJQ = RRXJ + D02*EEXJS + KIJQ*EEXI
1371 RYIJQ = RRYJ + D02*EEYJS + KIJQ*EEYI
1372 RZIJQ = RRZJ + D02*EEZJS + KIJQ*EEZI
1373 IPATH = 2
1374 END IF
1375 CHCK1 = DSQRT((RXIJQ-RRXI)**2 + (RYIJQ-RRYI)**2
1376 & + (RZIJQ-RRZI)**2)
1377 IF(CHCK1 .LE. D02) THEN
1378 C --- (3)-1 INNER CIRCLE ---
1379 IF(IPATH .EQ. 2) THEN
1380 OVRLAP = .TRUE.
1381 RETURN
1382 ELSE IF(IPATH .EQ. 1) THEN
1383 IF(KIJQ .LT. 1.D0) THEN
1384 OVRLAP = .TRUE.
1385 RETURN
1386 ELSE

• The treatment for a general arrangement (ITREE=1).

• An overlap in the case of 3.2.1 in
Section 4.2.3.

• An overlap in the case of 3.1.2.a in
Section 4.2.3.

1387 OVRLAP = .FALSE.
1388 GOTO 1000
1389 END IF
1390 END IF
1391 ELSE
1392 C --- (3)-2 OUTER CIRCLE ---
1393 IF(IPATH .EQ. 1) THEN
1394 C --- (3)-2-1 IPATH=1 ---
1395 IF(KIJQ .GE. 1.D0) THEN
1396 OVRLAP = .FALSE.
1397 GOTO 1000
1398 ELSE
1399 RIJMN = RIJMNFUN(EEXI, EEYI, EEZI, EEXJ, EEYJ, EEZJ,
1400 & EEXIS, EEYIS, EEZIS, EEXJS, EEYJS, EEZJS,
1401 & KKIS, KKJS, KKIJS, RRXIJ, RRYIJ, RRZIJ, D)
1402 IF(RIJMN .GE. 1.D0) THEN
1403 OVRLAP = .FALSE.
1404 GOTO 1000
1405 ELSE
1406 OVRLAP = .TRUE.
1407 RETURN
1408 END IF
1409 END IF
1410 ELSE IF(IPATH .EQ. 2) THEN
1411 C --- (3)-2-2 IPATH=2 --
1412 RIJMN = RIJMNFUN(EEXI, EEYI, EEZI, EEXJ, EEYJ, EEZJ,
1413 & EEXIS, EEYIS, EEZIS, EEXJS, EEYJS, EEZJS,
1414 & KKIS, KKJS, KKIJS, RRXIJ, RRYIJ, RRZIJ, D)
1415 IF(RIJMN .GE. 1.D0) THEN
1416 OVRLAP = .FALSE.
1417 GOTO 1000
1418 ELSE

• No overlap in the case of 3.1.1 in
Section 4.2.3.

• No overlap in the case of 3.1.1 in
Section 4.2.3.

• No overlap in the case of 3.1.2.b.1
in Section 4.2.3.

• An overlap in the case of 3.1.2.b.2
in Section 4.2.3.

• No overlap in the case of 3.2.2.a in
Section 4.2.3.

• kQ
i(j) in Eq. (4.27) and rQ

i(j) in
Eq. (4.28) are evaluated.
IPATH=1 means kj

s ≥d/2.

• kQ
i(j) in Eq. (4.29) and rQ

i(j) in
Eq. (4.30) are evaluated.
IPATH=2 means kj

s <d/2.

169Practice of Monte Carlo Simulations

1419 OVRLAP = .TRUE.
1420 RETURN
1421 END IF
1422 C
1423 END IF
1424 C
1425 END IF
1426 C
1427 C
1428 END IF
1429 C
1430 C
1431 1000 CONTINUE
1432 RETURN
1433 END
1434 C#### FUN RIJMNFUN ####
1435 DOUBLE PRECISION FUNCTION RIJMNFUN(EXI, EYI, EZI, EXJ,EYJ,EZJ,
1436 & EXIS, EYIS, EZIS, EXJS, EYJS, EZJS,
1437 & KIS, KJS, KIJS, RXIJ, RYIJ, RZIJ, D)
1438 C
1439 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
1440 C
1441 PARAMETER(PI=3.141592653589793D0)
1442 C
1443 REAL*8 KIS, KJS, KIJS
1444 C
1445 REAL*8 X0 , Y0 , Z0 , X1 , Y1 , Z1 , X2 , Y2 , Z2
1446 REAL*8 D02 , CS , SN , BETAN1 , BETAN2 , BETAN , DBETAN
1447 REAL*8 FBETAN , FPBETAN , GAB , GABMN
1448 REAL*8 DX1DB , DY1DB , DX2DB , DY2DB
1449 REAL*8 CX0X1 , CX0X1SQ , CY0CY1

• An overlap in the case of 3.2.2.b in
Section 4.2.3.

1450 REAL*8 SNBETA , CSBETA , CR2 , CRSQ , CHCK0 , DDEG
1451 REAL*8 DELX , DELY , DELZ , C0 , C1 , C2
1452 INTEGER ICTR
1453 C
1454 DDEG = 10.D0 * (PI/180.D0)
1455 D02 = D/2.D0
1456 CS = EXI*EXJ + EYI*EYJ + EZI*EZJ
1457 SN = DSQRT(1.D0 - CS**2)
1458 X0 = KIJS
1459 CHCK0 = EXIS*EXJ + EYIS*EYJ + EZIS*EZJ
1460 IF(CHCK0 .LE. 0.D0) THEN
1461 DELX = EXIS
1462 DELY = EYIS
1463 DELZ = EZIS
1464 ELSE
1465 DELX = -EXIS
1466 DELY = -EYIS
1467 DELZ = -EZIS
1468 END IF
1469 Y0 = -(RXIJ*DELX + RYIJ*DELY + RZIJ*DELZ)
1470 Z0 = KJS*DABS(EXJS*EXI + EYJS*EYI + EZJS*EZI)
1471 C
1472 C --- FOR THE CASE OF COS(BETA)=0 ---
1473 C - VALID ONLY FOR OUTER CIRCLE -
1474 IF(DABS(X0) .LE. 0.05D0) THEN
1475 X2 = X0
1476 Y2 = Y0 - D02*CS
1477 Z2 = Z0 - D02*SN
1478 X1 = 0.D0
1479 Z1 = 0.D0
1480 IF(Y2 .GE. 0.D0) THEN
1481 Y1 = D02
1482 ELSE
1483 Y1 = -D02
1484 END IF
1485 GAB = (X2-X1)**2 + (Y2-Y1)**2 + (Z2-Z1)**2
1486 RIJMNFUN = DSQRT(GAB)
1487 RETURN
1488 END IF
1489 C
1490 X2 = X0 / 2.D0
1491 C1 = 1.0D0
1492 C2 = -X0/D
1493 IF(DABS(C2) .GE. 1.D0) C2 = DSIGN(C1, C2)

• CS=cos(θ0) and SN=sin(θ0).
• x0=(x0, y0, z0) is evaluated.

• A function subprogram for
evaluating rij

(min) by means of
Newton’s method.

• The case of x0=(0, y0, z0) and
|rQ

i(j)–ri|≥d/2 enables us to
conduct simple treatment.

• A starting value of x2 is given. It
is first assumed that X2=X0/2,
yielding a starting value of β=
BETAN.

170 Introduction to Practice of Molecular Simulation

1494 BETAN1 = DACOS(C2)
1495 BETAN2 = 2.D0*PI - BETAN1
1496 C1 = DSIN(BETAN1)
1497 C2 = DSIN(BETAN2)
1498 IF(C1 .GE. C2) THEN
1499 BETAN = BETAN2
1500 ELSE
1501 BETAN = BETAN1
1502 END IF
1503 C
1504 C -------------------------------- START OF NEWTON PROCEDURE -----
1505 C
1506 GABMN = 1.D5
1507 ICTR = 0
1508 10 ICTR = ICTR + 1
1509 SNBETA = DSIN(BETAN)
1510 CSBETA = DCOS(BETAN)
1511 X2 = D02*CSBETA + X0
1512 Y2 = D02*SNBETA*CS + Y0

• The minimum value of g(α,β) is
saved in GABMN.

• x2=(X2,Y2,Z2) is calculated using BETAN
which is an expected value of the solution β.

1513 Z2 = D02*SNBETA*SN + Z0
1514 C
1515 CR2 = X2**2 + Y2**2
1516 CRSQ = DSQRT(CR2)
1517 X1 = (X2/CRSQ)*D02
1518 Y1 = (Y2/CRSQ)*D02
1519 Z1 = 0.D0
1520 C1 = (X2-X1)**2 + (Y2-Y1)**2 + (Z2-Z1)**2
1521 IF(C1 .LT. GABMN) GABMN = C1
1522 C
1523 CX0X1 = X0 - X1
1524 CX0X1SQ = CX0X1**2
1525 CY0Y1 = Y0 - Y1
1526 FBETAN = CX0X1*(CX0X1*SNBETA/CSBETA - CS*CY0Y1 - SN*Z0)
1527 C
1528 DX2DB = -D02*SNBETA
1529 DY2DB = D02*CSBETA*CS
1530 C0 = X2*DX2DB + Y2*DY2DB
1531 C1 = CRSQ/CR2
1532 C2 = C0/(CRSQ*CR2)
1533 DX1DB = (C1*DX2DB - C2*X2)*D02
1534 DY1DB = (C1*DY2DB - C2*Y2)*D02
1535 CY0Y1 = Y0 - Y1
1536 FPBETAN = CX0X1SQ/CSBETA**2 - CS*(-DY1DB*CX0X1 + DX1DB*CY0Y1)
1537 & - Z0*SN*DX1DB
1538 C
1539 BETAN1 = BETAN - FBETAN/FPBETAN
1540 C --- JUDGEMENT ---
1541 DBETAN = DABS(BETAN1-BETAN)
1542 IF(DBETAN .GT. 0.01D0) THEN
1543 IF(DBETAN .GT. DDEG) THEN
1544 BETAN = DSIGN(DDEG, (BETAN1-BETAN)) + BETAN
1545 ELSE
1546 BETAN = BETAN1
1547 ENDIF
1548 IF(ICTR .GT. 10) GOTO 900
1549 GOTO 10
1550 END IF
1551 C
1552 900 GAB = (X2-X1)**2 + (Y2-Y1)**2 + (Z2-Z1)**2
1553 IF(GAB .GT. GABMN) GAB = GABMN
1554 RIJMNFUN = DSQRT(GAB)
1555 RETURN
1556 END
1557 C***
1558 C THIS SUBROUTINE IS FOR GENERATING UNIFORM RANDOM NUMBERS *
1559 C (SINGLE PRECISION) FOR 32-BIT COMPUTER. *
1560 C N : NUMBER OF RANDOM NUMBERS TO GENERATE *
1561 C IX : INITIAL VALUE OF RANDOM NUMBERS (POSITIVE INTEGER) *
1562 C : LAST GENERATED VALUE IS KEPT *
1563 C X(N) : GENERATED RANDOM NUMBERS (0<X(N)<1) *
1564 C***
1565 C**** SUB RANCAL ****
1566 SUBROUTINE RANCAL(N, IX, X)
1567 C
1568 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
1569 C

• (x0–x1)
2f(βn)=FBETAN is evaluated.

• ∂x2/∂β=DX2DB and ∂y2/∂β=DY2DB.
• ∂x1/∂β=DX1DB and ∂y1/∂β=DY1DB.

• (x0–x1)
2f ′(βn)=FPBETAN is evaluated.

• βx+1=BETAN1 is evaluated from
Eq. (4.41).

• A subroutine for generating a uniform
random number sequence.

• The start of the iteration
procedure of Newton’s method.

• x1=(X1,Y1,Z1) is calculated from
procedure 3 of Newton’s method in
Section 4.2.3.

171Practice of Monte Carlo Simulations

1570 REAL X(N)
1571 INTEGER INTEGMX, INTEGST, INTEG
1572 C
1573 DATA INTEGMX/2147483647/
1574 DATA INTEGST,INTEG/584287,48828125/
1575 C

• This is for a 32-bit CPU based on the
expression of two’s complement.

1576 AINTEGMX = REAL(INTEGMX)
1577 C
1578 IF (IX.LT.0) STOP
1579 IF (IX.EQ.0) IX = INTEGST
1580 DO 30 I=1,N
1581 IX = IX*INTEG
1582 IF (IX .LT. 0) IX = (IX+INTEGMX)+1
1583 X(I) = REAL(IX)/AINTEGMX
1584 30 CONTINUE
1585 RETURN
1586 END

172 Introduction to Practice of Molecular Simulation

5 Practice of Brownian Dynamics
Simulations

In the previous chapters, we have shown how the MD method and MC method are

applied in a practical simulation. In the present and successive chapters, we follow

the same approach and demonstrate the microsimulation methods required for the

application of the Brownian Dynamics (BD) method, the DPD method, and the lat-

tice Boltzmann method. These further methods are very useful as simulation tools

for a colloidal dispersion or a suspension composed of dispersed particles. These

simulation methods have many applications in the pharmaceutical field, as well as

in science and engineering.

The exercise in the present chapter is for a BD simulation to discuss how

Lennard-Jones particles sediment in the gravitational field for cases when the

Brownian motion is expected to be significant. This example of a physical phenom-

enon becomes attractive as a research subject when the particle aggregation is

strongly related to the sedimentation. The sample simulation program is written in

the C programming language.

5.1 Sedimentation Phenomena of Lennard-Jones Particles

We consider a thermodynamic equilibrium state of N Brownian particles with mass

m dispersed in a base liquid contained in a rectangular parallelepiped box. For sim-

plification, the Brownian particles are assumed to be the Lennard-Jones particle,

where the particle�particle interactions can be expressed as a Lennard-Jones poten-

tial. The objective of the present practice is to discuss how the Brownian particles

in thermodynamic equilibrium sediment after the gravitational field is switched on.

The system temperature, gravitational force, and particle�particle interactions are

expected to significantly influence the sedimentation phenomenon.

5.2 Specification of Problems in Equations

Since the particles sediment under the effect of the Brownian motion in a gravitational

field, we are required to use the BD method, explained in Section 1.3, in order to sim-

ulate this phenomenon. In contrast to a magnetic particle system in which the particle

rotation is restricted by an external magnetic field, the Lennard-Jones particles are

only influenced by the isotropic force due to the Lennard-Jones potential. We

Introduction to Practice of Molecular Simulation. DOI: 10.1016/B978-0-12-385148-2.00005-7

© 2011 Elsevier Inc. All rights reserved.

therefore only need to treat the translational motion of the Brownian particles. The

particles hydrodynamically interact through their ambient fluid, but it is difficult to

take into account these multibody hydrodynamic interactions, even for the relatively

simple spherical particle system. It is still more so for a nonspherical particle system,

such as a rod-like or disk-like particle suspension. The difficulty of treating multibody

hydrodynamic interactions forces us to take into account only the friction term as a

first approximation, even in the case of a nondilute suspension. In the present exercise,

we therefore take into account the nonhydrodynamic interaction but neglect the multi-

body hydrodynamic interaction among the particles.

If the position vector of an arbitrary particle i is denoted by ri, the velocity by

vi, the nonhydrodynamic force by fi, and the random force by fi
B, then the equation

of motion of particle i is expressed as [1,4]

m
d2ri

dt2
5 f i 2 ξvi 1 fBi ð5:1Þ

in which ξ is the friction coefficient, expressed as ξ5 3πηd (η is the liquid viscos-

ity) under the assumption that the Lennard-Jones particles are spherical with diame-

ter d. The random force fi
B5 (fix

B, fiy
B, fiz

B) must satisfy the following stochastic

properties:

f Bix ðtÞ
� �

5 f Biy ðtÞ
D E

5 f Biz ðtÞ
� �

5 0 ð5:2Þ

f Bix ðtÞ
� �2D E

5 f Biy ðtÞ
n o2
� �

5 f Biz ðtÞ
� �2D E

5 2ξkTδðt2 t0Þ ð5:3Þ

The force fij acting on particle i by particle j due to the Lennard-Jones potential

is expressed as

f ij 5 24ε 2
d

rij

� 	12
2

d

rij

� 	6
()

rij

r2ij
ð5:4Þ

in which rij is the position vector of particle i relative to particle j, expressed as

rij5 ri2 rj, and rij is the magnitude of rij, that is, rij5 jrijj. The total force acting on

particle i, fi, can be obtained by summing fij from the contributions of all the ambient

particles.

The method of nondimensionalizing quantities is described in the next section.

5.3 Brownian Dynamics Algorithm

As explained in Section 1.3, the Ermak�McCammon method [24] enables us to

transform the equation of motion in Eq. (5.1) into Eq. (1.59). We here show the non-

dimensional expressions in the following. It may be inappropriate to use the

174 Introduction to Practice of Molecular Simulation

representative values usually employed for the Lennard-Jones system, because we

consider a dispersion of fine particles—which are regarded as a Lennard-Jones parti-

cle performing Brownian motion—and not a pure molecular system. We therefore

use the following representative values: the particle diameter d for distances; mg/

(3πηd) for the velocities, which is obtained by equating the friction force to the grav-
itational force; and the gravitational force mg for forces. With these representative

values, the equation of an arbitrary particle i is written in nondimensional form as

r�i ðt� 1 h�Þ5 r�i ðt�Þ1 h�f�i ðt�Þ1ΔrB�i ð5:5Þ
in which the components ðΔxB�i ;ΔyB�i ;ΔzB�i Þ of the random displacement ΔrB�i
must satisfy the following stochastic characteristics:

ΔxB
�

i

D E
5 ΔyB

�
i

D E
5 ΔzB

�
i

D E
5 0 ð5:6Þ

ΔxB
�

i

 �2� �
5 ΔyB

�
i

 �2� �
5 ΔzB

�
i

 �2� �
5 2RBh

� ð5:7Þ

in which RB is a nondimensional parameter representing the strength of the random

force relative to the gravitational force, expressed as RB5 kT/(mgd). The gravita-

tional force fi
(g) acting on particle i and the force fij

(LJ) due to the Lennard-Jones

interaction are expressed in nondimensional form as

f
ðgÞ�
i 5 ĝ ð5:8Þ

f
ð
ij
LJÞ�5 24RLJ 2

1

r�ij

 !12
2

1

r�ij

 !6
8<
:

9=
; r�ij

ðr�ijÞ2 ð5:9Þ

in which RLJ is a nondimensional parameter presenting the strength of the force due

to the Lennard-Jones potential relative to the gravitational force, expressed as

RLJ5 ε/(mgd), and ĝ is the unit vector, denoting the gravitational direction. The con-

sideration of these forces provides the nondimensional force fi
* acting on particle i as

f�i 5 f
ðgÞ�
i 1

X
jð6¼iÞ

f
ðLJÞ�
ij 5 ĝ1 24RLJ

X
jð6¼iÞ

2
1

r�ij

 !12
2

1

r�ij

 !6
8<
:

9=
; r�ij

ðr�ijÞ2
ð5:10Þ

Since the particles sediment in the gravitational field direction, assumed to be the

negative direction of the y-axis, the periodic boundary condition is not applicable

at the sedimentation surface, but it is applicable to the boundary surfaces normal to

the x- and z-directions. On the sedimentation surface, the elastic reflection condi-

tion is here employed for the boundary in order to ensure that a particle cannot

cross the boundary surface. In the concrete treatment of a reflecting particle, the

velocity component parallel to the boundary surface is unchanged, but the velocity

component normal to the boundary surface is reversed in direction.

175Practice of Brownian Dynamics Simulations

The main procedure of the BD simulation is summarized as follows. First,

we set the number of particles N, the size of simulation region (Lx
*,Ly

*,Lz
*), and the

volumetric fraction φV. Then, the assignment of the initial position of the particles

enables us to begin the main loop in a simulation program. The particles are simu-

lated according to the basic equations shown in Eq. (5.5) together with generating

the random displacements of the particles based on the stochastic properties in

Eqs. (5.6) and (5.7); these random displacements are sampled from the normal dis-

tribution specified by Eqs. (5.6) and (5.7). In order that we may discuss quantita-

tively the particle sedimentation phenomenon, the time variation in the local

densities is evaluated for each thin-sliced volume along the y-direction. The pair

correlation function is usually employed for an accurate quantitative discussion of

the internal particle structure of a system, but we here focus only on the method of

snapshots and employ the local number density.

5.4 Parameters for Simulations

In conducting the following BD simulations, the number of particles is taken as

N5 108, and the volumetric fraction is taken as φV5 0.1 to give a number density

n*5 6φV/π. The face-centered cubic lattice system shown in Figure 2.2B is

employed as an initial configuration of particles, yielding the lattice constant

a*5 (4/n*)1/3 and Q5 (N/4)1/3; the replication of the unit cell (Q2 1) times in each

direction generates the particle configuration for the whole simulation region. The

dimensions of the region are therefore (Lx
*,Ly

*,Lz
)5 (Qa,Qa*,Qa*). An appropriate

time interval h* has to be chosen with sufficient consideration. Setting an unreason-

ably large time interval is likely to induce a serious particle overlap problem, which

will result in the instability of the system. Choice of the appropriate time interval is

strongly dependent on the nondimensional parameters RLJ and RB. The larger these

quantities, the smaller the time interval (i.e., h*{1). In the present demonstration,

h*5 0.00005 was adopted for the case of RLJ5RB5 1. The simulations were car-

ried out for various cases of RLJ and RB, where we have used RLJ5 1 and 5 and

also RB5 0.1, 1, and 5.

5.5 Results of Simulations

Figures 5.1�5.3 show the snapshots of the Lennard-Jones particles in the sedimenta-

tion process under the influence of the gravitational field, which were obtained by con-

ducting the sample simulation program explained in the next section. The snapshots in

Figures 5.1 and 5.2 were obtained for different cases of RB after the particle distribu-

tion attains to a steady state (in the macroscopical meaning). Those in Figure 5.3 are

from the visualization of the sedimentation process with advancing time.

Figure 5.1A clearly shows that the particles have sedimented on the base surface

area under the gravitational field. This is because the value of the nondimensional

parameter RB5 0.1 implies a significant influence of the gravitational force over

the random Brownian force. On the other hand, in the case of RLJ5 5 in

176 Introduction to Practice of Molecular Simulation

 Figure 5.2A, the Lennard-Jones interactions significantly affect the sedimentation

process, exhibiting characteristic aggregates formed differently from those in

Figure 5.1A. For the case of the influence of the random force being equal to

that of the gravitational force in Figure 5.2B, the particles have almost

completely sedimented on the base area, but the internal structure seems to be

considerably different from that found in Figure 5.1A. This is an example where

the use of quantitative results from the pair correlation function would be

required for a deeper discussion. In the case of RB5 5 shown in Figures 5.1

and 5.2, the particles actively exhibit the Brownian motion without sedimenting

on the base surface area; however, the particles tend to aggregate to form clus-

ters with increasing values of RLJ even in the case of RB5 5. From these snap-

shots, we may conclude that the gravitational force mainly governs the

sedimentation process, and the Lennard-Jones interactions between particles

mainly determine the internal structures of the aggregates formed during the

sedimentation process. As already pointed out, a higher-level academic study

(A)

(C)

(B)

Figure 5.1 Snapshots in a steady state for RLJ5 1: (A) RB5 0.1, (B) RB5 1, and (C) RB5 5.

177Practice of Brownian Dynamics Simulations

 would require quantitative results, such as the pair correlation function, in addi-

tion to the qualitative results visualized here.

Figure 5.3 shows how the particles sediment with time, that is, the particle sedi-

mentation process for the case of RLJ5 1 and RB5 0.1: Figures 5.3A�C are for

nondimensional time t*5 1, 4, and 8, respectively. In this case of RB5 0.1, the

gravitational force is much more dominant than the random force (i.e., the

Brownian motion), so that the particles sediment, attain at the bottom surface, and

form layer structures from the base with time.

Figure 5.4 shows the results of the local number density of particles n* at the posi-

tion y* of each sliced layer taken from the base surface in the opposite direction to the

gravitational field. Note that the nondimensional time is used, and the data or subaver-

aged values were calculated at every certain number of time steps. This

figure demonstrates quantitative characteristics of the sedimentation process with

time, which clearly suggests the layered structures of sedimented particles indicated

previously.

(A)

(C)

(B)

Figure 5.2 Snapshots in a steady state for RLJ5 5: (A) RB5 0.1, (B) RB5 1, and (C) RB5 5.

178 Introduction to Practice of Molecular Simulation

 5.6 Simulation Program

We show a sample simulation program for the example of the present sedimenta-

tion phenomenon in the following. The program is written in the C language.

To aid the reader’s understanding, the important variables used in the program

are shown as follows:

RX[i],RY[i],RZ[i] : (x,y,z) components of the position vector r�i of particle i
FX[i],FY[i],FZ[i] : (x,y,z) components of the force f�i acting on particle i

RXB[i],RYB[i],
RZB[i]

: (x,y,z) components of the random displacements ΔrB�i of

particle i

XL,YL,ZL : Side lengths of the simulation box in the (x,y,z) directions

h : Time interval h*

ndens0 : Initial number density of particles

phaiv0 : Initial volumetric fraction of particles

(A)

(C)

(B)

Figure 5.3 Time change of aggregate structures for RLJ5 1 and RB5 0.1: (A) t*5 1, (B)

t*5 4, and (C) t*5 8.

179Practice of Brownian Dynamics Simulations

RLJ,RB : Nondimensional parameters RLJ and RB

n : Number of particles

RAN[j] : Uniform random numbers ranging 0B1(j51BNRANMX)
NRAN : Number of used random numbers

Note that the line numbers are added for convenience and are grammatically

unnecessary.

In the following program, several explanatory comments have been added to the

important features to assist the reader’s understanding.

0001 /*--*/
0002 /* bdsedim1.c */
0003 /* */
0004 /* -- */
0005 /* - Brownian dynamics simulation of the sedimentation of - */
0006 /* - spherical particles in gravity field. - */
0007 /* -- */
0008 /* */
0009 /* np1 = fopen("@eaa1.data", "w"); parameters */
0010 /* np2 = fopen("eaa11.data", "w"); parameters */
0011 /* np[1] = fopen("eaa001.data", "w"); particle position */
0012 /* np[2] = fopen("eaa011.data", "w"); particle position */
0013 /* np[3] = fopen("eaa021.data", "w"); particle position */
0014 /* np[4] = fopen("eaa031.data", "w"); particle position */
0015 /* np[5] = fopen("eaa041.data", "w"); particle position */
0016 /* np[6] = fopen("eaa051.data", "w"); particle position */
0017 /* np[7] = fopen("eaa061.data", "w"); particle position */
0018 /* np[8] = fopen("eaa071.data", "w"); particle position */
0019 /* np[9] = fopen("eaa081.data", "w"); particle position */
0020 /* np[10] = fopen("eaa091.data", "w"); particle position */
0021 /* */
0022 /* 1. Lennard-Jones particle system. */
0023 /* */
0024 /* */
0025 /* Ver.2 by A.Satoh , '04 3/10 */
0026 /*--*/

2.5

2
Time = 1
Time = 3
Time = 6

1.5

Lo
ca

l n
um

be
r

de
ns

ity
 (

n*
)

Height (y*)

1

0.5

0
0 4.1

Figure 5.4 Time change in the local number density distribution for RLJ5 1 and RB5 0.1.

180 Introduction to Practice of Molecular Simulation

0064 double cndns[NN] ;
0065 double dtsmpl ;
0066 FILE *fopen(), *np[11], *np1, *np2 ;
0067
0068 double rcoff , rcoff2 , rxi , ryi , rzi ;
0069 int ntime , ntimemx , ntimemx1 , nsmpl , inp , ngraph ;
0070 int i, j , nranchk ;
0071
0072 np1 = fopen("@eaa1.data", "w");
0073 np2 = fopen("eaa11.data", "w");
0074 np[1] = fopen("eaa001.data", "w");
0075 np[2] = fopen("eaa011.data", "w");
0076 np[3] = fopen("eaa021.data", "w");
0077 np[4] = fopen("eaa031.data", "w");
0078 np[5] = fopen("eaa041.data", "w");
0079 np[6] = fopen("eaa051.data", "w");
0080 np[7] = fopen("eaa061.data", "w");
0081 np[8] = fopen("eaa071.data", "w");
0082 np[9] = fopen("eaa081.data", "w");
0083 np[10] = fopen("eaa091.data", "w");
0084
0085 /*--- parameter (1) ---*/
0086 /*++*/
0087 /* n=32, 108, 256, 500, 864, 1372, 2048 must be chosen. */
0088 /*++*/
0089 n = 108 ;
0090 rcoff = 2.5 ;
0091 h = 0.00005 ;
0092 rcoff2 = rcoff*rcoff ;
0093 /*--- parameter (2) ---*/
0094 RB = 1.0 ;
0095 RLJ = 1.0 ; RG = 1.0 ;
0096 phaiv0 = 0.1 ;
0097 ndens0 = phaiv0*6./PI ;
0098 nychk = 40 ;
0099 /*--- parameter (3) ---*/
0100 ntimemx = 200000 ;
0101 dnsmpl = 200 ;
0102 dtsmpl = (double)dnsmpl*h ;
0103 ntimemx1= ntimemx/10 ;
0104 ngraph = ntimemx/10 ;
0105 inp = 0 ;
0106 /*--- parameter (4) ---*/
0107 IX = 0 ;

• The particle number N=108, cutoff distance
r*coff=2.5, and time interval h*=0.00005.

0027 /* */
0028 /* RX[i],RY[i],RZ[i] : particle position */
0029 /* RXB[i],RYB[i],RZB[i] : random displace. due to Brownian motion */
0030 /* FX[i],FY[i],FZ[i] : forces acting on particle i */
0031 /* XL, YL, ZL : size of simulation box along each axis */
0032 /* h : time interval */
0033 /* ndens0 : number density */
0034 /* phaiv0 : volumetric fraction */
0035 /* RB, RG, RLJ : nondimensional parameters */
0036 /* ychk[*] : is used to calculate number density distribution */
0037 /* dnsmpl,dtsmpl : data is sub-averaged using dnsmpl-data */
0038 /* : through dtsmpl-time */
0039 /* ndens[*][+] : number density distribution */
0040 /* ntimemx : maximum number of time step */
0041 /* */
0042 /* 0<RX[i]<XL , 0<RY[i]<YL , 0<RZ[i]<ZL */
0043 /*--*/
0044 #include <stdio.h>
0045 #include <math.h>
0046 #define PI 3.141592653589793
0047 #define NN 501
0048 #define NS 2001
0049 #define NRANMX 2001
0050 double RX[NN] , RY[NN] , RZ[NN] ;
0051 double RXB[NN], RYB[NN], RZB[NN] ;
0052 double FX[NN] , FY[NN] , FZ[NN] ;
0053 double XL, YL, ZL ;
0054 double RB, RG, RLJ ;
0055 float RAN[NRANMX] ;
0056 int NRAN, IX ;
0057
0058 /*-- main function ---*/
0059 main()
0060 {
0061 int n , nychk , dnsmpl ;
0062 double h , ndens0, phaiv0 ;
0063 double ndens[NN][NS], ychk[NN] ;

• The given values and results are written
out in @eaa1.data and eaa11.data.
• @eaa1 is for confirming the values set
for starting a simulation, and eaa11 is for
the postprocessing analysis.

• The total number of time steps is 200,000 and data are
sampled at every 200 time steps. The equilibration
procedure is conducted until ntimemx1 steps. The
particle positions are written out at every ngraph steps for
the postprocessing analysis.

• The particle position data are
written out in eaa001–eaa091
for the postprocessing analysis.

• RB=1, RLJ=1, volumetric fraction φV=0.1, and
number density n*=6φV/π. The simulation box is
sliced into nychk equal pieces in the y-direction.

181Practice of Brownian Dynamics Simulations

0127 fprintf(np1," \n") ;
0128 fprintf(np1," +++ Lennard-Jones particles system +++ \n") ;
0129 fprintf(np1,"n=%4d ndens=%8.3f phaiv0=%6.3f rcoff=%6.3f h=%10.8f\n",
0130 n, ndens0, phaiv0, rcoff, h) ;
0131 fprintf(np1,"XL=%6.3f YL=%6.3f ZL=%6.3f\n", XL, YL, ZL) ;
0132 fprintf(np1,"RB=%12.4e RG=%12.4e RLJ=%12.4e\n", RB, RG, RLJ) ;
0133 fprintf(np1,"ntimemx=%8d nychk=%4d dnsmple=%8d dtsmpl=%12.4e\n",
0134 ntimemx, nychk, dnsmpl, dtsmpl);
0135 fprintf(np1,"---\n");
0136
0137 /*--- initialization ---*/
0138 for(i=1 ; i <= nychk ; i++) {
0139 cndns[i] = 0. ;
0140 }
0141 nsmpl = 0 ;
0142
0143 /*--*/
0144 /*---------------------- equilibration ----------------------*/
0145 /*--*/
0146
0147 for (ntime = 1 ; ntime <= ntimemx1 ; ntime++) {
0148
0149 for (i=1 ; i<=n ; i++) {
0150
0151 rxi = RX[i] + h*FX[i] + RXB[i] ;
0152 ryi = RY[i] + h*FY[i] + RYB[i] ;
0153 rzi = RZ[i] + h*FZ[i] + RZB[i] ;
0154 rxi += - rint(rxi/XL - 0.5)*XL ;
0155 rzi += - rint(rzi/ZL - 0.5)*ZL ;
0156 if(ryi < 0.) ryi = - ryi ;
0157 if(ryi > YL) ryi = YL - (ryi - YL) ;
0158
0159 RX[i] = rxi ;
0160 RY[i] = ryi ;
0161 RZ[i] = rzi ;
0162 }
0163
0164 forcecal(n, rcoff, rcoff2) ;
0165 randisp(n , h) ;
0166 /*--- check of random numbers used ---*/
0167 if (NRAN >= nranchk) {
0168 rancal() ; NRAN = 1 ;
0169 }
0170 }
0171
0172 /*--*/
0173 /*------------------ start of main loop --------------------*/
0174 /*--*/
0175
0176 for (ntime = 1 ; ntime <= ntimemx ; ntime++) {
0177
0178 for (i=1 ; i<=n ; i++) {
0179
0180 FY[i] = FY[i] - RG ;
0181
0182 rxi = RX[i] + h*FX[i] + RXB[i] ;
0183 ryi = RY[i] + h*FY[i] + RYB[i] ;
0184 rzi = RZ[i] + h*FZ[i] + RZB[i] ;
0185 rxi += - rint(rxi/XL - 0.5)*XL ;
0186 rzi += - rint(rzi/ZL - 0.5)*ZL ;
0187 if(ryi < 0.) ryi = - ryi ;
0188 if(ryi > YL) ryi = YL - (ryi - YL) ;

• The variables are initialized for saving the
local number densities afterward.

• The equilibration procedure
is conducted below.

0108 rancal() ;
0109 NRAN = 1 ;
0110 nranchk = NRANMX - 6*n ;
0111
0112 /*--*/
0113 /*----------------- initial configuration ------------------*/
0114 /*--*/
0115 /*--- set initial positions ---*/
0116 iniposit(n, ndens0) ; YL = XL ; ZL = XL ;
0117 /*--- set grid for num.dens.dist. ---*/
0118 gridcal(nychk, ychk) ;
0119 /*--- calculate energy ---*/
0120 forcecal(n, rcoff, rcoff2) ;
0121 /*--- cal random displacement ---*/
0122 randisp(n , h) ;
0123
0124 /*--- print out constants ---*/
0125 fprintf(np1,"---\n") ;
0126 fprintf(np1," Brownian dynamics method \n") ;

• A sequence of uniform random numbers is prepared in
advance. When necessary, random numbers are taken
out from the variable RAN[*].

• The particle positions at the next time step
are calculated from Eq. (5.5).
• The periodic BC is used for the x- and
z-directions.

• The elastic collision model at the
boundary surface is used for the
y-direction.

• The forces acting on particles are calculated in the
function forcecal. The random displacements are
generated in the function randisp.

• The number of the used random numbers is
checked. If over nranchk, a uniform random number
sequence is renewed.

• The particle positions at the next time step
are evaluated according to Eq. (5.5).
• The periodic BC is used for the x- and
z-directions.
• The elastic collision model at the boundary
surface is used for the y-direction.

182 Introduction to Practice of Molecular Simulation

0190 RX[i] = rxi ;
0191 RY[i] = ryi ;
0192 RZ[i] = rzi ;
0193 }
0194 /*--- cal force ---*/
0195 forcecal(n , rcoff, rcoff2) ;
0196 /*--- cal random displacement ---*/
0197 randisp(n , h) ;
0198
0199 /*--*/
0200
0201 /*--- cal distri. of num. density ---*/
0202 ndnscal(n, nychk, ychk, cndns) ;
0203
0204 if((ntime % dnsmpl) == 0) {
0205 nsmpl += 1 ;
0206 for (j=1 ; j<=nychk ; j++) {
0207 cndns[j] /= (double)dnsmpl ;
0208 ndens[j][nsmpl] = cndns[j] / (XL*ZL*ychk[1]) ;
0209 cndns[j] = 0. ;
0210 }
0211 }
0212 /*--- data output for graphics (1) ---*/
0213 if((ntime % ngraph) == 0) {
0214 inp += 1 ;
0215 fprintf(np[inp],"%6d%10.3f%10.3f%10.3f\n", n, XL, YL, ZL) ;
0216 for (i=1 ; i<=n ; i++) {
0217 fprintf(np[inp],"%18.10e%18.10e%18.10e\n",
0218 RX[i], RY[i], RZ[i]) ;
0219 }
0220 fclose(np[inp]) ;
0221 }
0222 /*--- check of random numbers used ---*/
0223 if (NRAN >= nranchk) {
0224 rancal() ; NRAN = 1 ;
0225 }
0226 }
0227
0228 /*---*/
0229 /*--------------------- end of main loop --------------------*/
0230 /*---*/
0231
0232 /*--- print out ---*/
0233 fprintf(np1,"nsmpl=%8d dnsmpl=%8d dtsmpl=%12.4e\n",
0234 nsmpl, dnsmpl, dtsmpl) ;
0235 for (i= nsmpl/10 ; i<= nsmpl ; i += nsmpl/10) {
0236 fprintf(np1,"i=%8d time=%12.4e\n",
0237 i, dtsmpl*(double)i - dtsmpl/2.) ;
0238 fprintf(np1,"ndens(1), ndens(2), ndens(3),...,ndens(nychk)\n") ;
0239 for (j=1 ; j<=nychk ; j += 10) {
0240 fprintf(np1,
0241 "%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f\n",
0242 ndens[j][i] , ndens[j+1][i], ndens[j+2][i], ndens[j+3][i],
0243 ndens[j+4][i], ndens[j+5][i], ndens[j+6][i], ndens[j+7][i],
0244 ndens[j+8][i], ndens[j+9][i]) ;
0245 }
0246 }
0247 /*--- data output (2)---*/
0248 fprintf(np2,"%4d%8.5f%8.5f%8.4f%14.6e%14.6e%14.6e%14.6e\n",
0249 n, ndens0, phaiv0, rcoff, h, XL, YL, ZL) ;
0250 fprintf(np2,"%14.6e%14.6e%14.6e\n", RB, RG, RLJ) ;
0251 fprintf(np2,"%8d%8d\n", ntimemx, nychk) ;
0252 /*--- data output (3)---*/

• The forces acting on particles are calculated in the function forcecal.
The random displacements are generated in the function randisp.

• The particle position data are written out at every ngraph time
steps for the postprocessing analysis.

0189

0253 fprintf(np2,"%8d%8d%14.6e\n", nsmpl, dnsmpl, dtsmpl) ;
0254 for (i= 1 ; i<=nsmpl ; i++) {
0255 fprintf(np2,"%8d%14.6e\n", i, dtsmpl*(double)i-dtsmpl/2) ;
0256 for (j=1 ; j<=nychk ; j += 5) {
0257 fprintf(np2,"%12.4e%12.4e%12.4e%12.4e%12.4e\n",
0258 ndens[j][i], ndens[j+1][i], ndens[j+2][i], ndens[j+3][i],
0259 ndens[j+4][i]) ;
0260 }
0261 }
0262 fclose (np1) ;
0263 fclose (np2) ;
0264 }
0265 /*--*/
0266 /*-------------------------- functions -------------------------------*/
0267 /*--*/
0268 /*+++ fun iniposit +++*/

• The value divided by the sampling number
yields its average value, and then the average
value divided by the volume of one sliced piece
gives rise to the number density ndens[*]

• The number of the used random numbers is checked. If over
nranchk, a uniform random number sequence is renewed.

183Practice of Brownian Dynamics Simulations

0269 iniposit(n , ndens)
0270
0271 double ndens ;
0272 int n ;
0273 {
0274 double rxi, ryi, rzi, rx0, ry0, rz0 , c0 ;
0275 int q , k , ix , iy , iz , iface ;
0276 /*--- start ---*/
0277 c0 = pow((4./ndens), (1./3.)) ;
0278 q = rint(pow((double)(n/4), (1./3.))) ;
0279 XL = c0*(double)q ;
0280 /*--- set initial positions ---*/
0281 k = 0 ;
0282 for (iface=1 ; iface<=4 ; iface++) {
0283
0284 if(iface ==1) {
0285 rx0 = 0.0001 ; ry0 = 0.0001 ; rz0 = 0.0001 ;
0286 } else if(iface == 2) {
0287 rx0 = c0/2. ; ry0 = c0/2. ; rz0 = 0.0001 ;
0288 } else if(iface == 3) {
0289 rx0 = c0/2. ; ry0 = 0.0001 ; rz0 = c0/2. ;
0290 } else {
0291 rx0 = 0.0001 ; ry0 = c0/2. ; rz0 = c0/2. ;
0292 }
0293
0294 for (iz=0 ; iz <= q-1 ; iz++) {
0295 rzi = (double)iz*c0 + rz0 ;
0296 if(rzi >= XL) break ;
0297 for (iy=0 ; iy <= q-1 ; iy++) {
0298 ryi = (double)iy*c0 + ry0 ;
0299 if(ryi >= XL) break ;
0300 for (ix=0 ; ix <= q-1 ; ix++) {
0301 rxi = (double)ix*c0 + rx0 ;
0302 if(rxi >= XL) break ;
0303
0304 k += 1 ;
0305 RX[k] = rxi ; RY[k] = ryi ; RZ[k] = rzi ;
0306 }
0307 }
0308 }
0309 }
0310 }
0311 /*+++ fun gridcal +++*/
0312 gridcal(nychk, ychk)
0313
0314 int nychk ;
0315 double ychk[NN] ;

• A function for setting the initial
particle positions.

0316 {
0317 double c1 ;
0318 int i ;
0319
0320 c1 = YL/(double)nychk ;
0321 for (i=1 ; i<= nychk ; i++) {
0322 ychk[i] = c1 * (double)i ;
0323 }
0324 }
0325 /*+++ ndnscal +++*/
0326 ndnscal(n, nychk, ychk, cndns)
0327
0328 int n , nychk ;
0329 double ychk[NN], cndns[NN] ;
0330 {
0331 int i, j ;
0332
0333 for (i=1 ; i<=n ; i++) {
0334 for (j=1 ; j<=nychk ; j++) {
0335 if(ychk[j] >= RY[i]) {
0336 cndns[j] += 1. ;
0337 goto L2 ;
0338 }
0339 }
0340 cndns[nychk] += 1. ;
0341 L2: continue ;
0342 }
0343 }
0344 /*+++ forcecal +++*/
0345 forcecal(n, rcoff, rcoff2)
0346
0347 double rcoff, rcoff2 ;
0348 int n ;
0349 {

• A function for calculating the
forces acting on particles.

• n*=4/a*3, a*=(4/n*)1/3, and
Q=(N/4)1/3. a* and Q are
saved in the variables c0 and
q, respectively.

• The particles are placed in the
face-centered cubic lattice formation
shown in Figure 2.2(B).
• The four ways of setting provides this
initial formation of particles.
• Each particle is moved in parallel by a
small distance 0.0001 to remove subtle
situations at outer boundary surfaces.

• In order to evaluate the local
number densities, the simulation
box is divided into equal volumes
sliced in the y-direction.
• The y-axis side length of each
volume is YL/nychk, in which
nychk is the number of the sliced
volumes.

• The number of the particles
belonging to each volume is
calculated in order to evaluate the
local number density.
• The later procedure of dividing
cndns[*] by the volume, leading to
the number density of particles.

184 Introduction to Practice of Molecular Simulation

0350 double rxi , ryi , rzi , rxij , ryij , rzij , rijsq ;
0351 double fxi , fyi , fzi , fxij , fyij , fzij , fij ;
0352 double sr2 , sr6 , sr12 ;
0353 int i , j ;
0354
0355 for (i=1 ; i<=n ; i++) {
0356 FX[i] = 0. ; FY[i] = 0. ; FZ[i] = 0. ;
0357 }
0358
0359 for (i=1 ; i<=n-1 ; i++) {
0360
0361 rxi = RX[i] ; ryi = RY[i] ; rzi = RZ[i] ;
0362 fxi = FX[i] ; fyi = FY[i] ; fzi = FZ[i] ;
0363
0364 for (j=i+1 ; j<=n ; j++) {
0365
0366 rxij = rxi - RX[j] ;
0367 rxij += - rint(rxij/XL)*XL ;
0368 if(fabs(rxij) >= rcoff) goto L10 ;
0369 ryij = ryi - RY[j] ;
0370 /* ryij += - rint(ryij/YL)*YL ; */
0371 if(fabs(ryij) >= rcoff) goto L10 ;
0372 rzij = rzi - RZ[j] ;
0373 rzij += - rint(rzij/ZL)*ZL ;
0374 if(fabs(rzij) >= rcoff) goto L10 ;
0375
0376 rijsq= rxij*rxij + ryij*ryij + rzij*rzij ;
0377 if(rijsq >= rcoff2) goto L10 ;
0378

• The variables for saving forces are
initialized.

0379 sr2 = 1./rijsq ; sr6 = sr2*sr2*sr2 ; sr12 = sr6*sr6 ;
0380 fij = (2.*sr12 - sr6)/rijsq ;
0381 fxij = fij*rxij ;
0382 fyij = fij*ryij ;
0383 fzij = fij*rzij ;
0384 fxi += fxij ;
0385 fyi += fyij ;
0386 fzi += fzij ;
0387
0388 FX[j] += - fxij ;
0389 FY[j] += - fyij ;
0390 FZ[j] += - fzij ;
0391
0392 L10: continue ;
0393 }
0394
0395 FX[i] = fxi ;
0396 FY[i] = fyi ;
0397 FZ[i] = fzi ;
0398
0399 }
0400
0401 for(i=1 ; i<= n ; i++) {
0402 FX[i] *= RLJ*24. ;
0403 FY[i] *= RLJ*24. ;
0404 FZ[i] *= RLJ*24. ;
0405 }
0406 }
0407 /*+++ randisp +++*/
0408 randisp(n , h)
0409
0410 int n ;
0411 double h ;
0412 {
0413 double ran1, ran2 ;
0414 int i , j ;
0415
0416 for (i=1 ; i<= n ; i++) {
0417 /*--- random disp x ---*/
0418 NRAN += 1 ;
0419 ran1 = (double)(RAN[NRAN]) ;
0420 NRAN += 1 ;
0421 ran2 = (double)(RAN[NRAN]) ;
0422 RXB[i] = pow(-2.*(2.*h*RB)*log(ran1) , 0.5) * cos(2.*PI*ran2);
0423 /*--- random disp y ---*/
0424 NRAN += 1 ;
0425 ran1 = (double)(RAN[NRAN]) ;

• The consideration of the action–
reaction law enables us to calculate
only the pairs of particles satisfying
i<j.

• The treatment of the periodic BC.
• If the two particles are separated
over the cutoff distance r *coff, the
calculation is unnecessary.

• The forces acting on particles are
calculated according to Eq. (5.9);
the constant 24 is multiplied in the
later procedure.
• The action–reaction law can
provide the force acting on particle j
as (−fxij), (−fyij), and (−fzij).

• The random displacements can be
generated from Eq. (A2.3) with the
variance of the right-hand side term
in Eq. (5.7).

185Practice of Brownian Dynamics Simulations

0426 NRAN += 1 ;
0427 ran2 = (double)(RAN[NRAN]) ;
0428 RYB[i] = pow(-2.*(2.*h*RB)*log(ran1) , 0.5) * cos(2.*PI*ran2);
0429 /*--- random disp z ---*/
0430 NRAN += 1 ;
0431 ran1 = (double)(RAN[NRAN]) ;
0432 NRAN += 1 ;
0433 ran2 = (double)(RAN[NRAN]) ;
0434 RZB[i] = pow(-2.*(2.*h*RB)*log(ran1) , 0.5) * cos(2.*PI*ran2);
0435 }
0436 }
0437 /*--- rancal ---*/
0438 rancal()
0439
0440 {
0441 float aintegmx ;
0442 int integmx, integst, integ ;
0443 int i ;
0444
0445 integmx = 2147483647 ;
0446 integst = 584287 ;
0447 integ = 48828125 ;
0448
0449 aintegmx = (float)integmx ;
0450
0451 if (IX == 0) IX = integst ;
0452 for (i=1 ; i<NRANMX ; i++) {
0453 IX *= integ ;
0454 if (IX < 0) IX = (IX+integmx)+1 ;
0455 RAN[i] = (float)IX/aintegmx ;
0456 }
0457 }

• A function for generating a uniform
random number sequence.

• This is for a 32-bit CPU based on the
expression of two’s complement.

186 Introduction to Practice of Molecular Simulation

6 Practice of Dissipative Particle
Dynamics Simulations

In this chapter we consider an alternative microsimulation method called the dissi-

pative particle dynamics (DPD) method,” which is also available for simulating a

particle suspension system. In the DPD method [4�8], the fluid is assumed to be

composed of virtual fluid particles called “dissipative particles,” and therefore the

solution of a flow field can be obtained from the motion of the dissipative particles

in a way similar to the MD method. A significant advantage of this method is that

when it is applied to the simulation of a particle suspension, the multibody hydro-

dynamic interaction is taken into account without introducing a special technique.

This characteristic of the DPD method provides it with a great potential as a simu-

lation tool for particle suspensions; the present method is thus available for various

fields of scientific research, including the pharmaceutical sciences and specialized

engineering fields. The sample simulation program is written in the FORTRAN

programming language.

6.1 Aggregation Phenomena of Magnetic Particles

For our example, a system composed of N magnetic particles with mass m dis-

persed in a base liquid is assumed to be in thermodynamic equilibrium. The main

objective of the present exercise is to discuss the feasibility of the DPD method for

successfully capturing the aggregate formations of the magnetic particles, which

are dependent on the strength of magnetic particle�particle interactions. It is

important to note that in the present demonstration we assume the applied magnetic

field to be very strong, so that we only need to consider the translational motion of

magnetic particles. The rotational motion may be neglected.

6.2 Specification of Problems in Equations

6.2.1 Kinetic Equation of Dissipative Particles

A ferromagnetic colloidal suspension is composed of ferromagnetic particles and

the molecules of a base liquid. If a base liquid is regarded as being composed of

dissipative particles, the motion of magnetic particles is governed by the interaction

with both the other magnetic particles and the ambient dissipative particles. In the

following, we show the kinetic equation for the dissipative particles.

Introduction to Practice of Molecular Simulation. DOI: 10.1016/B978-0-12-385148-2.00006-9

© 2011 Elsevier Inc. All rights reserved.

Three kinds of forces act on dissipative particle i: a repulsive conservative force

Fij
C, exerted by the other particles; a dissipative force Fij

D, providing a viscous drag

to the system; and a random or stochastic force Fij
R, inducing the thermal motion of

particles. The force acting on the dissipative particles by magnetic particles is not

taken into account in this subsection, since that force will be addressed later. The

equation of motion of particle i is therefore written as

md

dvi

dt
5

X
jð6¼iÞ

FC
ij 1

X
jð6¼iÞ

FD
ij 1

X
jð6¼iÞ

FR
ij ð6:1Þ

in which

FD
ij 5 2γwDðrijÞðeijUvijÞeij; FR

ij 5σwRðrijÞeijζ ij; FC
ij 5αwRðrijÞeij ð6:2Þ

In these equations, md is the mass of particle i, and vi is the velocity. Regarding the

use of subscripts, as an example, Fij
C is the force acting on particle i by particle j.

Moreover, α, γ, and σ are constants representing the strengths of the repulsive, the

dissipative, and the random forces, respectively. The weight functions wD(rij) and

wR(rij) are introduced such that the interparticle force decreases with increasing

particle�particle separation. The expression for wR(rij) is written as

wRðrijÞ5
12

rij

dc
for rij # dc

0 for rij . dc

8<
: ð6:3Þ

The weight functions wD(rij) and wR(rij), as well as γ and σ, must satisfy the

following relationships, respectively:

wDðrijÞ5w2
RðrijÞ; σ2 5 2γkT ð6:4Þ

In the above equations, dc is the apparent diameter of dissipative particles, rij is the

relative position (rij5 jrijj), given by rij5 ri2 rj; eij is the unit vector denoting the

direction of particle i relative to particle j, expressed as eij5 rij/rij; vij is the relative

velocity, expressed as vij5 vi2 vj; k is Boltzmann’s constant; and T is the liquid tem-

perature. Also, ζ ij is a random variable inducing the random motion of the particles.

If Eq. (6.1) is integrated with respect to time over a small time interval Δt from

t to t1Δt, then the finite difference equations governing the particle motion in

simulations can be obtained as

Δri 5 viΔt ð6:5Þ

Δvi 5
α
md

X
jð6¼iÞ

wRðrijÞeijΔt2
γ
md

X
jð6¼iÞ

w2
RðrijÞðeijUvijÞeijΔt

1
ð2γkTÞ1=2

md

X
jð6¼iÞ

wRðrijÞeijθij
ffiffiffiffiffiffi
Δt

p ð6:6Þ

188 Introduction to Practice of Molecular Simulation

in which θij is the stochastic variable that must satisfy the following stochastic

properties:

hθiji5 0; hθijθi0j0 i5 ðδii0δjj0 1 δij0δji0 Þ ð6:7Þ

in which δij is the Kronecker delta. During the simulation, the stochastic variable

θij is sampled from a uniform or normal distribution with zero average value and

unit variance.

6.2.2 Model of Particles

A magnetic particle is idealized as a spherical particle with a central point dipole

and is coated with a uniform steric layer (or surfactant layer). Using the notation ds
for the diameter of the particle, δ for the thickness of the steric layer, and d

(5ds1 2δ) for the diameter, including the steric layer, then the magnetic interaction

energy between particles i and j, uij
(m), and the particle�field interaction energy,

ui
(H), and the interaction energy arising due to the overlap of the steric layers, uij

(V),

are expressed, respectively, as [31]

u
ðmÞ
ij 5

μ0

4πr3ij
miUmj 2 3ðmiUtijÞðmjUtijÞ

� � ð6:8Þ

u
ðHÞ
i 5 2μ0miUH ð6:9Þ

u
ðVÞ
ij 5 kTλV 22

2rij=ds
tδ

ln
d

rij

� �
2 2

rij=ds 2 1

tδ

� �
ð6:10Þ

in which μ0 is the permeability of free space, mi is the magnetic moment

(m05 jmij), tij is the unit vector given by rij/rij, rij5 ri2 rj, rij5 jrijj, H is the

applied magnetic field (H5 jHj), and tδ is the ratio of the thickness of the steric

layer δ to the radius of the solid part of the particle, equal to 2δ/ds. The nondimen-

sional parameter λV, appearing in Eq. (6.10), represents the strength of the steric

particle�particle interaction relative to the thermal energy, expressed as

λV5πds
2ns/2, in which ns is the number of surfactant molecules per unit area on

the particle surface.

From Eqs. (6.8) and (6.10), the forces acting on particle i are derived as

F
ðmÞ
ij 5 2

3μ0

4πr4ij
2ðmiUmjÞtij 1 5ðmiUtijÞðmjUtijÞtij 2 ðmjUtijÞmi 1 ðmiUtijÞmj

� �	

ð6:11Þ

F
ðVÞ
ij 5

kTλV

δ
U
rij

rij
ln

d

rij

� �
ðds # dij # dÞ ð6:12Þ

189Practice of Dissipative Particle Dynamics Simulations

In addition to these forces, the forces due to dissipative particles have to be

taken into account, but are not treated here, since they will be addressed in the fol-

lowing subsection.

The motion of magnetic particles is specified by Newton’s equations and are

discretized in time to obtain the finite difference equations governing the particle

motion in simulations:

Δri 5 viΔt ð6:13Þ

Δvi 5
X
jð6¼iÞ

FijΔt=mm ð6:14Þ

in which mm is the mass of magnetic particles and Fij5Fij
(m)1Fij

(V).

6.2.3 Model Potential for Interactions Between Dissipative and
Magnetic Particles

Each colloidal particle is modeled as a group of dissipative particles. In the ordi-

nary application of the method, the interaction of a magnetic particle with the

ambient dissipative particles is treated as the interaction between the ambient dissi-

pative particles and the constituent dissipative particles of the magnetic particle.

However, in a real dispersion, the interaction between colloidal particles and the

solvent molecules should depend on the characteristics of the dispersion of interest.

Such interactions are strongly dependent on the ratio of the mass and the diameter

of the colloidal particles to that of solvent molecules together with the properties of

the interaction potential.

Therefore, instead of regarding a colloidal particle as a group of dissipative par-

ticles, it may be possible to use a model potential to describe the interaction

between the magnetic and the ambient dissipative particles.

The simplest potential model may be the hard sphere potential, in which magnetic

particles are regarded as a hard sphere and dissipative particles are elastically

reflected on the contact with a magnetic particle. Another simple potential model

may be the Lennard-Jones potential. Although the present exercise adopts the latter

model potential and attempts to discuss its validity, the simple form of the Lennard-

Jones potential based on each particle center may cause a nonphysical overlap.

Hence, as shown in Figure 6.1, we consider an inscribed sphere with the same diam-

eter as the dissipative particles, which is located on the line connecting each center

of dissipative and magnetic particle. The Lennard-Jones potential is then employed

using the inscribed particle and dissipative particles such that the interaction energy

uip for dissipative particle p and magnetic particle i is expressed as

uip 5 4ε
dc

rip
0

� �m

2
dc

rip
0

� �n� �
ð6:15Þ

190 Introduction to Practice of Molecular Simulation

in which ε is a constant representing the strength of such an interaction,

rip
0 5 ri

0 2 rp, rip
0 5 jrip0j, ri is the position vector of the center of magnetic particle

i, rp is similarly the position vector of dissipative particle p, and ri
0 is the position

vector of the inscribed sphere. The expression for ri
0 is written as

ri
0
5 ri 2 ðd2 dc=2Þr̂ip ð6:16Þ

in which r̂ip 5 rip=rip; rip5 ri2 rp, and rip5 jripj. If we set m5 12 and n5 6 in

Eq. (6.15), the model potential leads to the well-known Lennard-Jones 12�6 poten-

tial, and this potential is employed in the present simulation.

From the expression of the interaction energy in Eq. (6.15), the force acting on

dissipative particle p by magnetic particle i, Fip
(int) is derived as

F
ðintÞ
ip 5 4nε

m

n

dc

rip
0

� �m

2
dc

rip
0

� �n� �
r̂ip

rip
0 ð6:17Þ

6.2.4 Nondimensionalization of the Equation of Motion and Related
Quantities

For the nondimensionalization of each quantity, the following representative values

are used: d for distances, mm for masses, kT for energies, (kT/mm)
1/2 for velocities,

d(mm/kT)
1/2 for time, kT/d for forces, and so forth. With these representative values,

Eqs. (6.5) and (6.6) are nondimensionalized as

Δri
� 5 vi

�Δt� ð6:18Þ

Magnetic
particle

Dissipative
particle

rp

ri

rip

ri
′

Figure 6.1 Model of the interaction

between magnetic and dissipative

particles.

191Practice of Dissipative Particle Dynamics Simulations

Δv�i 5
1

md
�d�c

α� X
jð6¼iÞ

wRðrij�ÞeijΔt� 2
1

ðmd
�Þ1=2d�c

γ�
X
jð6¼iÞ

w2
Rðrij�ÞðeijUvij�ÞeijΔt�

2
1

ðmd
�Þ3=4d�1=2c

ð2γ�Þ1=2
X
jð6¼iÞ

wRðrij�Þeijθij
ffiffiffiffiffiffiffiffi
Δt�

p
2

1

md
�
X
k

F
ðintÞ�
ki Δt�

ð6:19Þ

in which

wRðrij�Þ5 12 r�ij=d
�
c for rij

�=d�c # 1

0 for rij
�=d�c . 1

�
ð6:20Þ

α� 5α
dc

kT
; γ� 5 γ

dc

ðmdkTÞ1=2
ð6:21Þ

In the above equations, the superscript � indicates the nondimensionalized quanti-

ties. Note that Eq. (6.19) includes the forces due to the interaction with magnetic

particles, described in Section. 6.2.3.

Similarly, the nondimensional form of Eqs. (6.13), (6.14), (6.11), and (6.12) are

expressed as

Δri
� 5 vi

�Δt� ð6:22Þ

Δv�i 5
X
jð6¼iÞ

F�
ijΔt� 1

X
p

F
ðintÞ�
ip Δt� ð6:23Þ

F
ðmÞ�
ij 5 23λ

1

r4�ij
2ðniUnjÞtij 1 5ðniUtijÞðnjUtijÞtij 2 ðnjUtijÞni 1 ðniUtijÞnj

� �	

ð6:24Þ

F
ðVÞ�
ij 5λV

1

t�δ
Utij ln

1

rij�

� �
ðds� # rij

� # 1Þ ð6:25Þ

in which Fij
�5Fij

(m)�1Fij
(V)�, ni is the unit vector denoting the direction of the

magnetic moment mi, expressed as ni5mi/m0 (m05 jmij). The nondimensional

parameter λ in Eq. (6.24) is the strength of magnetic particle interactions relative

to the thermal energy, expressed as λ5μ0m0
2/4πd3kT. A slightly different parame-

ter λs5 (d/ds)
3λ (5μ0m0

2/4πds
3kT), which is defined based on the diameter of the

solid part, will be useful in order to compare the present results with the previous

MC and BD simulations.

The expression of the force between a dissipative and a magnetic particle is

written in nondimensional form as

192 Introduction to Practice of Molecular Simulation

Fip
�
5λε

m

n

dc
�

rip
0�

� �m

2
dc
�

rip
0�

� �n� �
r̂ip

rip
0�=d�c

ð6:26Þ

in which λε is a nondimensional parameter representing the strength of the interac-

tion, expressed as λε5 4nε/(kTdc
�).

In the present simulation we consider a two-dimensional system in thermody-

namic equilibrium, and therefore the relationship between the system temperature

and the mean kinetic energy of one dissipative particle is expressed from the equi-

partition law of energies as

1

2
mdv

2
d 5 2

kT

2
ð6:27Þ

From this equation, the mean square velocity of dissipative particles v�2d is

written as

v�2d 5 2=m�
d ð6:28Þ

Similarly, the mean square velocity of magnetic particles v�2m is expressed as

v�2m 5 2 ð6:29Þ

The number density of dissipative particles is nondimensionalized as

n�d 5 ndd
2 5 ndd

2
c ðd=dcÞ2 5 n̂�d=d

�2
c ð6:30Þ

In addition to nd
�, the nondimensional density n̂�d based on the diameter of dis-

sipative particles may be useful for quantifying the packing characteristics of

the dissipative particles. The nondimensional number density of magnetic particles

is expressed as n�m 5 nmd
2.

6.3 Parameters for Simulations

In this chapter, we are considering a two-dimensional dispersion composed of fer-

romagnetic particles in order to investigate the validity of using the method for this

type of problem. The equations of motion of a dissipative particle include many

indefinite factors, so we have chosen to focus on a simplified case in which the

external magnetic field is strong enough that we may neglect the rotational motion

of magnetic particles. In this situation, each magnetic moment will point along the

magnetic field direction. Also, we will only focus on the one specific model poten-

tial of (m,n)5 (12,6). Representative parameters used for the present simulations

are γ�5 10, α�5 γ�/10, md
�5 0.01, dc

�5 0.4, λε5 10, n̂�d 5 1, and Δt�5 0.0001.

193Practice of Dissipative Particle Dynamics Simulations

Eq. (6.19) shows that the displacement distance of a dissipative particle per unit

time step becomes greater with decreasing values of md
� and dc

�, and for this reason

the time interval Δt� will be adjusted in proportion to the product of md
� and dc

�. In
this way, a smaller value of the time interval is employed as the value of md

�dc
�

decreases. The total number of simulation steps, Ntimemx, is expected to be suffi-

cient when the condition of Δt�Ntimemx5 100 is satisfied.

6.4 Results of Simulations

We treat a multiparticle system with the number density of nm
� C0.4, composed of

81 magnetic particles, to investigate the influence of the mass of dissipative parti-

cles on the aggregate structures. Figure 6.2 illustrates the results for aggregate

structures in thermodynamic equilibrium for two cases of magnetic particle�
particle interactions, λs5 10 and 3. Unless specifically noted, all simulation results

were obtained for the case of dc
�5 0.4 using the other representative values of the

parameters given in Section 6.3. Figures 6.2A and B are for a value of the mass of

dissipative particles, md
�5 0.05. Figures 6.2C and D are for md

�5 0.01.

Figures 6.2E and F are for md
�5 0.005. Figures 6.2A, C, and E were obtained for

λs5 10. Figures 6.2B, D, and F are for λs5 3. In the figures, small and large cir-

cles indicate the dissipative and magnetic particles, respectively.

Since the magnetic particle�particle interaction is much more dominant than

the thermal energy for λs5 10, magnetic particles tend to aggregate to form chain-

like clusters along the magnetic field direction, which was clearly shown in the

(A)

(B)

(C)

(D)

(E)

(F)

Figure 6.2 Influence of the particle mass md
� on the aggregate structures for dc

�5 0.4: (A) for

md
�5 0.05 and λs5 10, (B) for md

�5 0.05 and λs5 3, (C) for md
�5 0.01 and λs5 10, (D) for

md
�5 0.01 and λs5 3, (E) for md

�5 0.005 and λs5 10, and (F) for md
�5 0.005 and λs5 3.

194 Introduction to Practice of Molecular Simulation

previous MC simulations. As shown in Figures 6.2A, C, and E, the present DPD

simulation results also reproduce this type of cluster formation well. However, the

aggregate structures seem to be strongly dependent on the mass of the dissipative

particles. That is, although only thin chain-like clusters are formed for the case of a

relatively large mass, such as md
�5 0.05, magnetic particles form thicker chain-like

clusters with decreasing values of the particle mass.

Now, we consider why much thicker chain-like clusters tend to form with

decreasing mass of the dissipative particles. If the mass of dissipative particles is

small, the magnetic particles should move easily by separating the ambient dissipa-

tive particles so they can force a path and approach each other. The thin chain-like

clusters shown in Figure 6.2A, therefore, have a sufficient probability to aggregate

to form the thicker chain-like clusters shown in Figure 6.2E. On the other hand,

Eq. (6.28) shows that dissipative particles with smaller mass move with larger aver-

age velocity for a given system temperature. Hence, although a chain-like cluster

can thicken to a certain degree, after that further growth is limited by the Brownian

motion of the magnetic particles due to the influence of the active motion of dissi-

pative particles. Since the magnetic particle�particle interaction is of a slightly

larger order than the thermal energy for the case of λs5 3, significant aggregates

should not be formed. However, the present DPD simulations exhibit significant

cluster formation with decreasing mass of dissipative particles; such unexpected

aggregate formation is significant for md
�5 0.005, and we also find that relatively

long chain-like clusters are formed even for the case of md
�5 0.05. In order to

explain these results, the first consideration must be that we do not use an equation

of motion which can simulate the rotational motion of the magnetic particles,

although the transnational motion is taken into account in the present exercise.

Another consideration must be the model potential we have employed for the inter-

action between the magnetic and the dissipative particles.

For reference, the aggregate structures for dc
�5 0.2 are shown in Figure 6.3

under the same conditions as in Figure 6.2 except for the particle diameter. We

here focus on the differences between the aggregate structures in Figures 6.2 and

6.3 without addressing the features of each aggregate structure in detail. The aggre-

gates in Figure 6.3 have a more compact or denser internal structure, and it appears

that large clusters are formed to a certain degree but do not grow any further. It

seems as if the Brownian motion of the magnetic particles due to the interaction

with the dissipative particles is not significant. The snapshot in Figure 6.3F also

shows aggregates with a dense internal structure, and the effect of the particle

Brownian motion does not appear significantly in the formation of these internal

structures.

Finally, we consider what the appropriate mass of a dissipative particle should

be for obtaining physically reasonable results. As pointed out previously, dissipa-

tive particles are virtual and regarded as groups or clusters of the real solvent mole-

cules, so that it seems to be reasonable for the mass density of dissipative particles

to be taken as roughly equal to the mass density of the base liquid of the dispersion

system, which one must consider for evaluating physical quantities experimentally.

In the present demonstration, for example, we consider a ferromagnetic colloidal

195Practice of Dissipative Particle Dynamics Simulations

dispersion in which metallic ferromagnetic fine particles are assumed to be dis-

persed into a base liquid, such as kerosene or water. In this case, if the ratio of the

mass density of magnetic particles to dissipative ones is regarded as 5�8, then the

ratio of mass is 0.013�0.008 for dc
�5 0.4, and 0.0016�0.001 for dc

�5 0.2. Hence,

it is for the case of dc
�5 0.4 and md

�5 0.01 that physically reasonable aggregate

structures can be regarded as being reproduced. This consideration is verified by

comparing it with the results obtained by MC and BD simulations.

In addition to the previous discussion, it may be necessary to verify that the

aggregate formation is truly induced by the magnetic interaction between magnetic

particles in a physically reasonable manner and not by certain false mechanisms

arising from the improper interaction between dissipative and magnetic particles.

Figure 6.4A and B show the results that were obtained for the strength of magnetic

interaction λs5 0 by using the aggregate structures in Figures 6.2C and 6.3C as an

initial configuration. Since the snapshot in Figure 6.4B from an initial configuration

in Figure 6.3C for dc
�5 0.2 and md

�5 0.01 exhibits the formation of large aggre-

gates, we may conclude that this case does not give rise to physically reasonable

results. In contrast, for the case of an initial configuration in Figure 6.2C for

dc
�5 0.4 and md

�5 0.01, Figure 6.4A shows that the thick chain-like clusters,

formed in the field direction, are dissociated sufficiently. However, a large aggre-

gate (i.e., not chain-like) still remains, although the internal structure of this aggre-

gate is considerably looser. The dissociation of the chain-like clusters indicates that

the Brownian motion has been sufficiently effective. On the other hand, this type

of loose aggregate structure of magnetic particles may be the result of employing a

kinetic equation without including the rotational motion, as adopted here, or from

(A)

(B)

(C)

(D)

(E)

(F)

Figure 6.3 Influence of the particle mass md
� on aggregate structures for dc

�5 0.2: (A) for

md
�5 0.05 and λs5 10, (B) for md

�5 0.05 and λs5 3, (C) for md
�5 0.01 and λs5 10, (D) for

md
�5 0.01 and λs5 3, (E) for md

�5 0.005 and λs5 10, and (F) for md
�5 0.005 and λs5 3.

196 Introduction to Practice of Molecular Simulation

employing the model potential for the interaction between dissipative and magnetic

particles.

6.5 Simulation Program

A sample simulation program is shown below for conducting the simulation of the

present exercise: the program is written in FORTRAN.

The important variables used in the program are explained as follow:

RX(I),RY(I) : (x,y) coordinates of the position vector r�i of magnetic

particle i

NX(I),NY(I) : (x,y) coordinates of the magnetic moment direction n�i
VX(I),VY(I) : (x,y) coordinates of the velocity v�i of magnetic particle i

FX(I),FY(I) : (x,y) coordinates of the magnetic force F�
i acting on

magnetic particle i

FXMD(I),FYMD(I) : (x,y) coordinates of the force acting on magnetic particle i

by dissipative particles

N,NDENS,VDENS : Number of particles N, number density n�, volumetric

fraction φV
� concerning magnetic particles

D,DS,DEL : Diameter, the diameter of solid part, the thickness of the

steric layer of magnetic particles

(XL,YL) : Side lengths of the simulation box in the (x,y) directions

RAS,RA,RV,RE : Nondimensional parameters λs, λ, λV, and λε
OVRLAP(I) : OVERLAP(I)5.TRUE. in the case of an extraordinary

overlap of magnetic particles

RXD(I),RYD(I) : Position vector r�i of dissipative particle i

VXD(I),VYD(I) : Velocity vector v�i of dissipative particle i
FDXD(I),FDYD(I) : Dissipative force FD�

i acting on dissipative particle i

FCXD(I),FCYD(I) : Conservative force FC�
i acting on dissipative particle i

FRXD(I),FRYD(I) : Random force FR�
i acting on dissipative particle i

(A) (B)

Figure 6.4 Snapshots for λs5 0 for the two initial configurations: Figures 6.2C and 6.3C

were used as an initial configuration for (A) and (B), respectively.

197Practice of Dissipative Particle Dynamics Simulations

FXDM(I),FYDM(I) : Force acting on dissipative particle i by magnetic particles

ND,MD,DC,VDENSD : Number of particles, mass md
�, diameter dc

�, volumetric

fraction concerning dissipative particles

NDENSD,NDENSDH : Number densities of dissipative particles n�d, n̂
�
d

TMX(I),TABLE(�,I) : Names of cells to which dissipative particles interacting

with the magnetic particle of interest belong

VTMX(I), VTABLE(#) : Names of magnetic particles interacting with the magnetic

particle of interest

VPLACE(I) : Information starts to appear from the position VPLACE(I)
in the variable VTABLE(I)concerning magnetic particles

interacting with magnetic particle i

TMXD(GRP),
TABLED(�,GRP))

: Cell index method for dissipative particles

GRPX(I),GRPY(I) : Name of cell to which dissipative particle i belongs is saved

ALP,GAM : Parameters α� and γ� representing the strengths of

repulsive and dissipative forces acting between dissipative

particles, respectively

As an aid to understanding the program, explanatory comments have been added

to important features. The line numbers are only for the reader’s convenience, and

unnecessary for executing a FORTRAN program.

0001 C***
0002 C* dpdmag3.f *
0003 C* *
0004 C* OPEN(9, FILE='@daa1.data', STATUS='UNKNOWN'); parameters *
0005 C* OPEN(10,FILE='daa11.data', STATUS='UNKNOWN'); para. & data *
0006 C* OPEN(11,FILE='daa21.mgf' , STATUS='UNKNOWN'); anime data *
0007 C* OPEN(21,FILE='daa001.data',STATUS='UNKNOWN'); particle pos. *
0008 C* OPEN(22,FILE='daa011.data',STATUS='UNKNOWN'); particle pos. *
0009 C* OPEN(23,FILE='daa021.data',STATUS='UNKNOWN'); particle pos. *
0010 C* OPEN(24,FILE='daa031.data',STATUS='UNKNOWN'); particle pos. *
0011 C* OPEN(25,FILE='daa041.data',STATUS='UNKNOWN'); particle pos. *
0012 C* OPEN(26,FILE='daa051.data',STATUS='UNKNOWN'); particle pos. *
0013 C* OPEN(27,FILE='daa061.data',STATUS='UNKNOWN'); particle pos. *
0014 C* OPEN(28,FILE='daa071.data',STATUS='UNKNOWN'); particle pos. *
0015 C* OPEN(29,FILE='daa081.data',STATUS='UNKNOWN'); particle pos. *
0016 C* OPEN(30,FILE='daa091.data',STATUS='UNKNOWN'); particle pos. *
0017 C* *
0018 C* ---------- DPD SIMULATION OF MAGNETIC PARTICLES ---------- *
0019 C* TWO-DIMENSIONAL DPD SIMULATION OF MAGNETIC SPHERICAL *
0020 C* PARTICLES IN DISSIPATIVE PARTICLES *
0021 C* *
0022 C* 1. FOR A STRONG MAGNETIC FIELD CASE (Y-DIRECTION). *
0023 C* 2. FERROMAGNETIC SPHERICAL PARTICLES WITH STERIC LAYER. *
0024 C* 3. LENNARD-JONES MODEL FOR INTERACTIONS BETWEEN *
0025 C* MAGNETIC AND DISSIPATIVE PARTICLES. *
0026 C* 4. NNN SHOULD BE SUFFICIENTLY LARGE (NNN=10000) *
0027 C* 5. OVRLAP(*) IS INTRODUCED. *
0028 C* *
0029 C* VER.1 BY A.SATOH, '09 4/5 *
0030 C***
0031 C
0032 C N : NUMBER OF MAGNETIC PARTICLES (M. PTCL.)
0033 C D : DIAMETER OF PARTICLE INCLUDING SURFACTANT LAYER
0034 C (=1 FOR THIS CASE)
0035 C DS : DIAMETER OF SOLID PARTICLE WITHOUT STERIC LAYER
0036 C DEL : THICKNESS OF STERIC LAYER
0037 C TD : DIMENSIONLESS THICKNESS OF STERIC LAYER BASED ON RADIUS
0038 C NDENS : NUMBER DENSITY OF M. PTCL

198 Introduction to Practice of Molecular Simulation

0056 C VELTHRYD : AVERAGE OF (VX**2+VY**2) (DESIRED) FOR D-PTCL
0057 C NVELSC : VELOCITIES OF M-PTCL ARE SCALED EVERY NVELSC
0058 C TIME STEP TO SATISFY THE DESIRED VELOCITY
0059 C NVELSCD : VELOCITIES OF D-PTCL ARE SCALED EVERY NVELSCD
0060 C TIME STEP TO SATISFY THE DESIRED VELOCITY
0061 C
0062 C RX(N),RY(N) : PARTICLE POSITION
0063 C NX(N),NY(N) : DIRECTION OF MAGNETIC MOMENT
0064 C VX(N),VY(N) : PARTICLE VELOCITY
0065 C FX(N),FY(N) : PARTICLE FORCE DUE TO MAGNETIC FORCES
0066 C FXMD(N),FYMD(N) : PARTICLE FORCE BY D. PTCL. ON M. PTCL.
0067 C TMX(I) : TOTAL NUMBER OF INDEX CELLS OF D. PTCL. WHICH MAY
0068 C INTERACT WITH M. PTCL. I
0069 C TABLE(*,I) : NAME OF INDEX CELLS WHICH MAY INTERACT WITH M. PTCL.
0070 C VTMX(I) : TOTAL NUMBER OF NEIGHBORING M.PTCL. WHICH MAY
0071 C INTERACT WITH M.PTCL. WITHIN THE CUTOFF RANGE
0072 C VTABLE(NNN): NAME OF M.PTCL. IS SAVED IN ORDER (VERLET METHOD)
0073 C VPLACE(I) : THE FIRST PTCL., WHICH INTERACTS WITH PTCL. I,
0074 C APPEARS AT VPLACE(I) IN THE TABLE OF VTABLE(**)
0075 C VRADIUS : CUTOFF RADIUS FOR VERLET METHOD
0076 C NVTABLE : VERLET TABLE IS RENEWED EVERY NVTABLE TIME STEP
0077 C
0078 C OVRLAP(*) : OVRLAP(I)=.TRUE. FOR OVERLAPING
0079 C
0080 C ND : NUMBER OF DISSIPATIVE PARTICLES (D.PTCL.)
0081 C MD : MASS OF D.PTCL.
0082 C DC : DIAMETER OF D.PTCL.
0083 C RCOFFD : CUTOFF DISTANCE FOR INTERACTIONS BETWEEN D. PTCL.
0084 C ALP : COEFFICIENT REPRESENTING REPULSIVE FORCE OF D.PTCL.
0085 C GAM : COEFFICIENT REPRESENTING DISSIPATIVE FORCE OF D.PTCL.
0086 C
0087 C RXD(ND),RYD(ND) : POSITIONS OF D.PTCL.
0088 C VXD(ND),VYD(ND) : VELOCITIES OF D.PTCL.
0089 C FCXD(ND),FCYD(ND) : CONSERVATIVE FORCES ACTING ON A PARTICLE
0090 C FDXD(ND),FDYD(ND) : DISSIPATIVE FORCES ACTING ON A PARTICLE
0091 C FRXD(ND),FRYD(ND) : RANDOM FORCES ACTING ON A PARTICLE
0092 C FXDM(ND),FYDM(ND) : PARTICLE FORCE BY M. PTCL. ON D. PTCL.
0093 C NDENSDH : NUMBER DENSITY WITH HAT
0094 C NDENSD : NUMBER DENSITY OF D.PTCL.
0095 C VDENSD : VOLUMETRIC FRACTION OF D.PTCL.
0096 C
0097 C GRPX(ND),GRPY(ND) : GROUP TO WHICH D.PTCL. I BELONGS
0098 C PXD : NUMBER OF CUT-OFF CELLS IN EACH DIRECTION
0099 C TMXD(GRP) : TOTAL NUMBER OF PTCL. BELONGING TO GROUP(GRP)
0100 C TABLED(*,GRP): NAME OF PTCL. BELONGING TO GROUP(GRP)
0101 C GRPLXD(PXD) : IS USED FOR DETERMINE THE CELL TO WHICH A
0102 C PARTICLE IS BELONG
0103 C
0104 C RAN(NRANMX) : RANDOM NUMBERS BETWEEN 0 AND 1
0105 C
0106 C -XL/2 <RX(I) <XL/2 , -YL/2 <RY(I)< YL/2
0107 C---
0108 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0109 C
0110 COMMON /BLOCK1/ RX , RY

0039 C VDENS : VOLUMETRIC FRACTION OF PARTICLES
0040 C RA : NONDIMENSIONAL PARAMETER OF PARTICLE-PARTICLE INTERACT
0041 C RAS : NONDIMENSIONAL PARAMETER OF PARTICLE-PARTICLE INTERACT
0042 C BASED ON THE DIAMETER OF THE SOLID PART
0043 C KU : NONDIMENSIONAL PARAMETER OF PARTICLE-FIELD INTERACTION
0044 C RV : NONDIMENSIONAL PARAMETER OF STERIC REPULSION (=120)
0045 C RVS : NONDIMENSIONAL PARAMETER OF STERIC REPULSION
0046 C BASED ON THE DIAMETER OF THE SOLID PART (=150)
0047 C RE : NONDIMENSIONAL PARAMETER OF M.PTCL.-D.PTCL INTERACTION
0048 C RCOFF :CUTOFF RADIUS FOR CALCULATION OF MAG. FORCES
0049 C RCOFFMD :CUTOFF RADIUS FOR FORCES BETWEEN M.PTCL. AND D.PTCL.
0050 C RCOFFDDM :CUTOFF RADIUS FOR FORCES BETWEEN P.PTCL. AND VIRTUAL
0051 C PTCL. INSIDE M.PTCL.
0052 C XL,YL : DIMENSIONS OF SIMULATION REGION
0053 C H : TIME INTERVAL FOR DPD SIMULATIONS
0054 C (HX,HY,HZ) : APPLIED MAGNETIC FIELD (UNIT VECTOR)
0055 C VELTHRY : AVERAGE OF (VX**2+VY**2) (DESIRED) FOR M-PTCL

199Practice of Dissipative Particle Dynamics Simulations

0111 COMMON /BLOCK2/ VX , VY
0112 COMMON /BLOCK3/ NX , NY
0113 COMMON /BLOCK5/ FX , FY
0114 COMMON /BLOCK7/ N , NDENS , VDENS , D , DS , DEL , TD
0115 COMMON /BLOCK8/ RA , RV , RE
0116 COMMON /BLOCK9/ TMX , TABLE
0117 COMMON /BLOCK10/ VTMX , VTABLE , VPLACE , NVTABLE , VRADIUS
0118 COMMON /BLOCK11/ FXMD , FYMD , RCOFFMD , RCOFFDDM
0119 COMMON /BLOCK13/ OVRLAP
0120 COMMON /BLOCK15/ H , XL , YL , RCOFF
0121 COMMON /BLOCK16/ VELTHRY, VELTHRYD, NVELSC, NVELSCD
0122 C
0123 COMMON /BLOCK21/ RXD , RYD
0124 COMMON /BLOCK22/ VXD , VYD
0125 COMMON /BLOCK23/ FCXD , FCYD
0126 COMMON /BLOCK24/ FDXD , FDYD
0127 COMMON /BLOCK25/ FRXD , FRYD
0128 COMMON /BLOCK26/ ND , NDENSDH , NDENSD , VDENSD , MD
0129 COMMON /BLOCK27/ DC , ALP , GAM , RCOFFD
0130 COMMON /BLOCK28/ GRPX , GRPY
0131 COMMON /BLOCK29/ TMXD , TABLED
0132 COMMON /BLOCK30/ PXD , GRPLXD , PXYD
0133 COMMON /BLOCK31/ FXDM , FYDM
0134 C
0135 COMMON /BLOCK35/ NRAN , RAN , IX
0136 C
0137 INTEGER TT, PPXD, PPXYD, TTD
0138 PARAMETER(NN=100 , NNN=10000 , TT=500)
0139 PARAMETER(NRANMX=100000000)
0140 PARAMETER(PI=3.141592653589793D0)
0141 PARAMETER(NND=50000 , PPXD=500 , PPXYD=250000 , TTD=20)
0142 C
0143 REAL*8 RX(NN) , RY(NN) , VX(NN) , VY(NN)
0144 REAL*8 FX(NN) , FY(NN) , NX(NN) , NY(NN)
0145 REAL*8 NDENS
0146 REAL*8 FXMD(NN) , FYMD(NN)
0147 INTEGER TMX(NN) , TABLE(TT,NN)
0148 INTEGER VTMX(NN) , VTABLE(NNN) , VPLACE(NN)
0149 LOGICAL OVRLAP(NN)
0150 C
0151 REAL*8 RXD(NND) , RYD(NND) , VXD(NND) , VYD(NND)
0152 REAL*8 FCXD(NND), FCYD(NND) , FDXD(NND) , FDYD(NND)
0153 REAL*8 FRXD(NND), FRYD(NND) , FXDM(NND) , FYDM(NND)
0154 REAL*8 NDENSDH , NDENSD , MD
0155 REAL*8 GRPLXD(PPXD)
0156 INTEGER GRPX(NND), GRPY(NND)
0157 INTEGER TMXD(PPXYD), TABLED(TTD,PPXYD) , PXD , PXYD
0158 C
0159 REAL*8 VELTHRY, VELTHRYD
0160 INTEGER NVELSC, NVELSCD
0161 C
0162 REAL RAN(NRANMX)
0163 INTEGER NRAN , IX , NRANCHK
0164 C
0165 REAL*8 RXI , RYI , RXID , RYID , RCOFF2, HSQ2 , H2
0166 REAL*8 VXI , VYI , VXID , VYID , VELAV , VELAVD
0167 REAL*8 VELMX , VELDMX
0168 REAL*8 EVELX, EVELY, EVELSQ, EVELXD, EVELYD, EVELSQD
0169 INTEGER NTIME , NTIMEMX , NGRAPH , NANIME , NANMCTR
0170 INTEGER NVELAV, NVELAVD , NP , NOPT
0171 INTEGER TMX00 , TMXD00 , VTABLE00
0172 C
0173 OPEN(9, FILE='@acka1.data' ,STATUS='UNKNOWN')
0174 OPEN(10,FILE='acka11.data' ,STATUS='UNKNOWN')
0175 OPEN(11,FILE='acka21.mgf' ,STATUS='UNKNOWN')
0176 OPEN(21,FILE='acka001.data',STATUS='UNKNOWN')
0177 OPEN(22,FILE='acka011.data',STATUS='UNKNOWN')
0178 OPEN(23,FILE='acka021.data',STATUS='UNKNOWN')
0179 OPEN(24,FILE='acka031.data',STATUS='UNKNOWN')
0180 OPEN(25,FILE='acka041.data',STATUS='UNKNOWN')
0181 OPEN(26,FILE='acka051.data',STATUS='UNKNOWN')
0182 OPEN(27,FILE='acka061.data',STATUS='UNKNOWN')

• The given values are
written out in @acka1
and acka11.

200 Introduction to Practice of Molecular Simulation

0221 NTIMEMX = 100000
0222 NGRAPH = NTIMEMX/10
0223 NANIME = NTIMEMX/200
0224 NVTABLE = INT(0.0001D0/H)
0225 IF(NVTABLE .LE. 0) NVTABLE = 1
0226 C --- PARAMETER (4) ---
0227 NVELSC = INT(0.1D0 /H + 0.001D0)
0228 NVELSCD = INT(0.01D0/H + 0.001D0)
0229 VELTHRY = 2.D0**0.5
0230 VELTHRYD= (2.D0/MD)**0.5
0231 IF(NVELSC .LE. 0) NVELSC = 1
0232 IF(NVELSCD .LE. 0) NVELSCD = 1
0233 C --- PARAMETER (5) ---
0234 IX = 0
0235 CALL RANCAL(NRANMX, IX, RAN)
0236 NRAN = 1
0237 C
0238 C --
0239 C ----------------- INITIAL CONFIGURATION ------------------
0240 C --
0241 C --- SET INITIAL POSIT. AND VEL. ---
0242 CCC OPEN(19,FILE='acka091.data',STATUS='OLD')
0243 CCC READ(19,592) N , XL, YL
0244 CCC READ(19,594) (RX(I),I=1,N) , (RY(I),I=1,N) ,
0245 CCC & (VX(I),I=1,N) , (VY(I),I=1,N) ,
0246 CCC & (NX(I),I=1,N) , (NY(I),I=1,N)
0247 CCC READ(19,596) ND
0248 CCC READ(19,598) (RXD(I),I=1,ND) , (RYD(I),I=1,ND) ,
0249 CCC & (VXD(I),I=1,ND) , (VYD(I),I=1,ND)
0250 CCC CLOSE(19,STATUS='KEEP')
0251 CCC GOTO 7
0252 C

• The data table in the Verlet neighbor list method
is renewed at every NVTABLE time steps. The
velocity scaling of magnetic and dissipative
particles is carried out at every NVELSC and
NVELSCD, respectively. The theoretical
averaged velocities of magnetic and dissipative
particles are denoted by VELTHRY and
VELTHRYD, respectively.

• Pseudo-random numbers are saved in the variable RAN(*).

• The initial positions of
magnetic and dissipative
particles are assigned in the
subroutines INIPOSIT and
INIPOSID. Similarly, the initial
velocities are set in INIVEL
and INIVELD.

0183 OPEN(28,FILE='acka071.data',STATUS='UNKNOWN')
0184 OPEN(29,FILE='acka081.data',STATUS='UNKNOWN')
0185 OPEN(30,FILE='acka091.data',STATUS='UNKNOWN')
0186 NP=9
0187 C ++++++++++++++++++++++++++++++++++++++
0188 C N=25, 36, 49, 64, 81, 100, 121, ...
0189 C H=0.001 FOR RAS=10
0190 C ++++++++++++++++++++++++++++++++++++++
0191 C --- PARAMETER (1) ---
0192 N = 81
0193 VDENS = 0.3D0
0194 NDENS = VDENS*(4.D0/PI)
0195 RAS = 10.D0
0196 RV = 120.D0
0197 RE = 10.D0
0198 D = 1.D0
0199 TD = 0.3D0
0200 DEL = TD/2.D0
0201 DS = 1.D0 - TD
0202 RCOFF = 8.D0
0203 VRADIUS = RCOFF*1.3D0
0204 RCOFF2 = RCOFF**2
0205 VELMX = 2.D0*5.5D0**2
0206 RA = RAS*DS**3
0207 C --- PARAMETER (2) ---
0208 NDENSDH = 1.0D0
0209 DC = 0.4D0
0210 NDENSD = NDENSDH/DC**2
0211 VDENSD = NDENSDH*PI/4.D0
0212 GAM = 10.D0
0213 ALP = GAM/10.D0
0214 MD = 0.05D0
0215 RCOFFD = DC
0216 RCOFFDDM= 3.D0*DC
0217 RCOFFMD = 0.5D0 + RCOFFDDM - DC/2.D0
0218 VELDMX = (2.D0/MD)*5.5D0**2
0219 C --- PARAMETER (3) ---
0220 H = 0.001D0

• The positions and velocities of particles are written out in
acka001 to acka091, and the data for MicroAVS are written
out in acka21.

Concerning magnetic particles:
• The number of particles N=81, volumetric fraction φ*V=0.3,
λs=10, λV=120 and λε=10. The particle diameter d*=1, the
surfactant layer thickness δ*=0.15 and tδ=0.3.
• The cutoff distance r*coff=8, rl* is used for the Verlet
neighbor list method (see Figure 2.12).

Concerning dissipative particles:
• The number density =1, diameter d*c=0.4 and mass
m*d=0.05. γ*=10, α*=γ*/10, and cutoff distance d*c.
• The cutoff distance between magnetic and dissipative
particles is denoted by RCOFFMD.
• The maximum velocity is assumed to be VELDMX.

・The number of the total time steps is 100,000. The particle
positions are written out at every NGRAPH time steps, and
200 sets of data are written out for making an animation.

• Time interval h*=0.001.

 *ˆdn

0253 CALL INIPOSIT(N , VDENS , NDENS, PI , VRADIUS)

201Practice of Dissipative Particle Dynamics Simulations

0254 CALL INIPOSID(DC , RCOFFD , N)
0255 CALL INIVEL(N , PI , VELMX)
0256 CALL INIVELD(ND , MD , PI , VELDMX)
0257 C --- (A1) GENERATE GRID FOR INDEX METHOD ---
0258 7 CALL GRIDGENE(XL , RCOFFD)
0259 C --- (A2) GROUP TO WHICH D.PTCL. BELONG ---
0260 CALL GROUP(ND)
0261 C --- (A3) SET UP TABLE FOR D.PTCL.---
0262 CALL TABLECAL(ND , PXD)
0263 C --- (B1) SET UP VERLET TABLE OF D.PTCL ---
0264 C - FOR M. PTCL. -
0265 CALL VTABLEDP(N , RCOFFD , RCOFFMD , XL , YL , DC)
0266 C --- (B2) SET UP VERLET TABLE OF M.PTCL ---
0267 C - FOR M. PTCL. -
0268 CALL VTABLEMA(N , XL , YL)
0269 C --- FORCE CAL. ---
0270 CALL FORCEMAG(RCOFF2 , NTIME)
0271 CALL FORCEDPD(PI)
0272 CALL FORCEINT(N , ND , RE , DC)
0273 C
0274 C --- PRINT OUT CONSTANTS ---
0275 WRITE(NP,10) N, VDENS, NDENS, RAS, RA, RV, RE, D, TD, DEL, DS,

• Cells are set for using the cell index method.

• The name of the cell to which each dissipative particle
belongs is grasped. Also, the name of dissipative particles
belonging to each cell is grasped.

• The names of the cells interacting with each magnetic
particle are grasped.

• The names of magnetic particles
interacting with each magnetic particle
are grasped in VTABLEMA.

0276 & RCOFF, VRADIUS, RCOFFMD, RCOFFDDM, XL, YL, H
0277 WRITE(NP,12) ND, NDENSDH, DC, NDENSD, VDENSD, MD, ALP, GAM,
0278 & RCOFFD
0279 WRITE(NP,14) H, NTIMEMX, NGRAPH, NVTABLE
0280 C
0281 C --- INITIALIZATION ---
0282 NVELAV = 0
0283 VELAV = 0.D0
0284 NVELAVD = 0
0285 VELAVD = 0.D0
0286 NOPT = 20
0287 NRANCHK = NRANMX - ND*ND
0288 NANMCTR = 0
0289 C
0290 EVELX = 0.D0
0291 EVELY = 0.D0
0292 EVELSQ = 0.D0
0293 EVELXD = 0.D0
0294 EVELYD = 0.D0
0295 EVELSQD = 0.D0
0296 C
0297 C --
0298 C ------------------- START OF MAIN LOOP -------------------
0299 C --
0300 C
0301 DO 1000 NTIME = 1,NTIMEMX
0302 C
0303 C --------- (1) D. PTCL. CASE ---
0304 DO 100 I = 1,ND
0305 C
0306 RXID = RXD(I) + VXD(I)*H
0307 RYID = RYD(I) + VYD(I)*H
0308 RXID = RXID - DNINT(RXID/XL)*XL
0309 RYID = RYID - DNINT(RYID/YL)*YL
0310 RXD(I) = RXID
0311 RYD(I) = RYID
0312 C --- VELOCITIES ---
0313 VXID = VXD(I) + FCXD(I) + FDXD(I) + FRXD(I) + FXDM(I)*H/MD
0314 VYID = VYD(I) + FCYD(I) + FDYD(I) + FRYD(I) + FYDM(I)*H/MD
0315 VXD(I) = VXID
0316 VYD(I) = VYID
0317 C1 = VXID**2 + VYID**2
0318 IF(C1 .GT. VELDMX) THEN
0319 C1 = DSQRT(VELDMX/C1)
0320 VXD(I) = VXID*C1
0321 VYD(I) = VYID*C1
0322 END IF

• The forces acting on magnetic and dissipative
particles are calculated in the subroutines
FORCEMAG and FORCEDPD, respectively.
The forces acting between magnetic and
dissipative particles are calculated in
FORCEINT.

• The positions of dissipative particles at the next
time step are evaluated according to Eq. (6.18).

• The velocities of dissipative particles at the next
time step are evaluated according to Eq. (6.19).

• The velocity of each particle is modified so as to be
smaller than the maximum value.

• The treatment of the periodic BC.

0323 C
0324 IF(NTIME .GT. NTIMEMX/2) VELAVD=VELAVD+VXD(I)**2+VYD(I)**2

202 Introduction to Practice of Molecular Simulation

0325 C
0326 100 CONTINUE
0327 C
0328 IF(NTIME .GT. NTIMEMX/2) NVELAVD = NVELAVD + 1
0329 C --------- (2) M. PTCL. CASE ---
0330 HSQ2 = H*H/2.D0
0331 H2 = H/2.D0
0332 DO 200 I = 1,N
0333 ccc RXI = RX(I) + VX(I)*H + (FX(I)+FXMD(I))*HSQ2
0334 ccc RYI = RY(I) + VY(I)*H + (FY(I)+FYMD(I))*HSQ2
0335 RXI = RX(I) + VX(I)*H
0336 RYI = RY(I) + VY(I)*H
0337 C1 = VX(I)**2 + VY(I)**2
0338 IF(C1 .GT. VELMX) THEN
0339 C1 = DSQRT(VELMX/C1)
0340 VXI = VX(I)*C1
0341 VYI = VY(I)*C1
0342 RXI = RX(I) + VXI*H
0343 RYI = RY(I) + VYI*H
0344 END IF
0345 RXI = RXI - DNINT(RXI/XL)*XL
0346 RYI = RYI - DNINT(RYI/YL)*YL
0347 RX(I) = RXI
0348 RY(I) = RYI
0349 C --- PART (1) OF VEL ---
0350 IF(OVRLAP(I)) THEN
0351 VXI = VX(I) + FX(I) * H
0352 VYI = VY(I) + FY(I) * H
0353 ELSE
0354 VXI = VX(I) + (FX(I)+FXMD(I))*H
0355 VYI = VY(I) + (FY(I)+FYMD(I))*H
0356 END IF
0357 VX(I) = VXI
0358 VY(I) = VYI
0359 C1 = VXI**2 + VYI**2
0360 IF(C1 .GT. VELMX) THEN
0361 C1 = DSQRT(VELMX/C1)
0362 VX(I) = VXI*C1
0363 VY(I) = VYI*C1
0364 END IF
0365 200 CONTINUE
0366 C --- RENEW TABLE DATA ---
0367 CALL GROUP(ND)
0368 CALL TABLECAL(ND , PXD)
0369 CALL VTABLEDP(N , RCOFFD , RCOFFMD , XL , YL , DC)
0370 IF(MOD(NTIME,NVTABLE) .EQ. 0) THEN
0371 CALL VTABLEMA(N , XL , YL)
0372 END IF
0373 C --- FORCE CAL. ---
0374 CALL FORCEMAG(RCOFF2 , NTIME)
0375 CALL FORCEDPD(PI)
0376 CALL FORCEINT(N , ND , RE , DC)
0377 C --- SAMPLING ---
0378 DO 220 I = 1,N
0379 IF(NTIME .GT. NTIMEMX/2) VELAV = VELAV+VX(I)**2+VY(I)**2
0380 220 CONTINUE
0381 C
0382 IF(NTIME .GT. NTIMEMX/2) NVELAV = NVELAV + 1
0383 C
0384 C ------------------------------------- FOR VELOCITY SCALING ---
0385 DO 255 I = 1, N

• The positions of magnetic particles at the next
time step are evaluated according to Eq. (6.22).

• The treatment in the case of the solid parts
of the two magnetic particles overlapping.

• The velocities of magnetic particles at the next
time step are evaluated according to Eq. (6.23).

• The velocity of each particle is modified so as
to be smaller than the maximum value.

• The treatment of the periodic BC.

• The information in the cell index table and in
the Verlet neighbor list table is renewed.

• The forces acting between magnetic
particles, between dissipative particles,
and between magnetic and dissipative
particles are calculated.

• The velocities are sampled for
scaling the particle velocities
afterward.

0386 EVELX = EVELX + VX(I)
0387 EVELY = EVELY + VY(I)
0388 EVELSQ = EVELSQ + VX(I)**2 + VY(I)**2
0389 255 CONTINUE
0390 DO 260 I = 1, ND
0391 EVELXD = EVELXD + VXD(I)
0392 EVELYD = EVELYD + VYD(I)
0393 EVELSQD = EVELSQD + VXD(I)**2 + VYD(I)**2
0394 260 CONTINUE
0395 C --- MAG VELOCITY SCALING ---

203Practice of Dissipative Particle Dynamics Simulations

0396 IF(MOD(NTIME,NVELSC) .EQ. 0) THEN
0397 EVELX = EVELX /DBLE(N*NVELSC)
0398 EVELY = EVELY /DBLE(N*NVELSC)
0399 EVELSQ = EVELSQ/DBLE(N*NVELSC)
0400 CALL SCALEVEL(N, VX, VY, VELTHRY, EVELX, EVELY, EVELSQ)
0401 EVELX = 0.D0
0402 EVELY = 0.D0
0403 EVELSQ = 0.D0
0404 END IF
0405 C --- DPD VELOCITY SCALING ---
0406 IF(MOD(NTIME,NVELSCD) .EQ. 0) THEN
0407 EVELXD = EVELXD /DBLE(ND*NVELSCD)
0408 EVELYD = EVELYD /DBLE(ND*NVELSCD)
0409 EVELSQD = EVELSQD/DBLE(ND*NVELSCD)
0410 CALL SCALEVEL(ND,VXD,VYD,VELTHRYD,EVELXD,EVELYD,EVELSQD)
0411 EVELXD = 0.D0
0412 EVELYD = 0.D0
0413 EVELSQD = 0.D0
0414 END IF
0415 C
0416 C --
0417 C
0418 C --- DATA OUTPUT FOR GRAPHICS (1) ---
0419 IF(MOD(NTIME,NGRAPH) .EQ. 0) THEN
0420 NOPT = NOPT + 1
0421 WRITE(NOPT,592) N , XL, YL
0422 WRITE(NOPT,594) (RX(I),I=1,N) , (RY(I),I=1,N) ,
0423 & (VX(I),I=1,N) , (VY(I),I=1,N) ,
0424 & (NX(I),I=1,N) , (NY(I),I=1,N)
0425 WRITE(NOPT,596) ND
0426 WRITE(NOPT,598) (RXD(I),I=1,ND) , (RYD(I),I=1,ND) ,
0427 & (VXD(I),I=1,ND) , (VYD(I),I=1,ND)
0428 CLOSE(NOPT,STATUS='KEEP')
0429 END IF
0430 C --- DATA OUTPUT (2) FOR ANIMATION ---
0431 IF(MOD(NTIME,NANIME) .EQ. 0) THEN
0432 NANMCTR = NANMCTR + 1
0433 C
0434 IF(NANMCTR .EQ. 1) THEN
0435 WRITE(11,381) (NTIMEMX/NANIME)
0436 END IF
0437 C
0438 IF((NANMCTR.GE.1) .AND. (NANMCTR.LE.9)) THEN
0439 WRITE(11,383) NANMCTR
0440 ELSE IF((NANMCTR.GE.10) .AND. (NANMCTR.LE.99)) THEN

• The velocities of magnetic particles are scaled so as
to yield the desired system temperature.

• The velocities of dissipative particles are scaled so
as to yield the desired system temperature.

• The data are written out for making an
animation based on the commercial
software MicroAVS.

• The number of the used random numbers is
checked. If over NRANCHK, a uniform random
number sequence is renewed.

0441 WRITE(11,384) NANMCTR
0442 ELSE IF((NANMCTR.GE.100) .AND. (NANMCTR.LE.999)) THEN
0443 WRITE(11,385) NANMCTR
0444 ELSE IF((NANMCTR.GE.1000) .AND. (NANMCTR.LE.9999)) THEN
0445 WRITE(11,386) NANMCTR
0446 END IF
0447 C
0448 WRITE(11,388) (N+ND)
0449 C
0450 DO 400 I=1,N
0451 WRITE(11,398) RX(I) ,RY(I) ,0.0, D/2.D0, 1.0, 0.0, 0.0
0452 400 CONTINUE
0453 DO 410 I=1,ND
0454 WRITE(11,398) RXD(I),RYD(I),0.0, DC/2.D0, 0.0, 0.8, 1.0
0455 410 CONTINUE
0456 END IF
0457 C
0458 C --- CHECK RANDOM NUMBERS USED ---
0459 IF(NRAN .GT. NRANCHK) THEN
0460 CALL RANCAL(NRANMX, IX, RAN)
0461 NRAN = 1
0462 END IF
0463 C
0464 C
0465 1000 CONTINUE
0466 C
0467 C --

204 Introduction to Practice of Molecular Simulation

0468 C ---------------------- END OF MAIN LOOP --------------------
0469 C --
0470 C
0471 VELAV = VELAV /DBLE(NVELAV*N)
0472 VELAVD = VELAVD/DBLE(NVELAVD*ND)
0473 C
0474 TMX00 = 0
0475 TMXD00 = 0
0476 DO 1006 I=1,N
0477 IF(TMX(I) .GT. TMX00) TMX00 = TMX(I)
0478 1006 CONTINUE
0479 DO 1007 I=1,PXYD
0480 IF(TMXD(I) .GT. TMXD00) TMXD00 = TMXD(I)
0481 1007 CONTINUE
0482 VTABLE00 = VPLACE(N) + VTMX(N) - 1
0483 C
0484 C ---- PRINT OUT (1) ----
0485 WRITE(NP,1011) TMX00 , TMXD00 , VTABLE00 ,
0486 & REAL(TMX00)/REAL(TT) , REAL(TMXD00)/REAL(TTD) ,
0487 & REAL(VTABLE00)/REAL(NNN) , REAL(PXYD)/REAL(PPXYD)
0488 WRITE(NP,1013) PXD , PXYD
0489 WRITE(NP,1014) DSQRT(VELAV) , DSQRT(VELAVD) ,
0490 & DSQRT(VELAV/2.D0) , DSQRT(VELAVD*MD/2.D0)
0491 C
0492 C ---- DATA OUTPUT FOR GRAPHICS (1) ----
0493 WRITE(10,1210) N, VDENS, NDENS, RAS, RA, RV, RE, D, TD, DEL, DS
0494 WRITE(10,1211) RCOFF, VRADIUS, RCOFFMD, RCOFFDDM, XL, YL, H
0495 WRITE(10,1213) ND, NDENSDH, DC, NDENSD, VDENSD, MD, ALP, GAM,
0496 & RCOFFD
0497 WRITE(10,1214) H, NTIMEMX, NGRAPH, NVTABLE
0498 C
0499 CLOSE(9,STATUS='KEEP')
0500 CLOSE(10,STATUS='KEEP')
0501 CLOSE(11,STATUS='KEEP')
0502 C
0503 C ------------------------- FORMAT -------------------------------
0504 10 FORMAT(/1H ,'--'
0505 & /1H ,' DPD SIMULATION OF MAGNETIC PARTICLES '
0506 & /1H ,' IN DISSIPATIVE PARTICLES IN EQUILIBRIUM '
0507 & /1H ,' +++ TWO-DIMENSIONAL EQUILIBRIUM CASE +++ '
0508 & /1H ,'--'
0509 & //1H ,'N=',I3 ,2X, 'VDENS=', F6.3, 2X, 'NDENS=',F6.3 ,2X,
0510 & 'RAS=', F7.3, 2X, 'RA=', F7.3, 2X, 'RV=', F8.2
0511 & /1H ,'RE=', F7.3, 2X, 'D=', F3.1, 2X, 'TD=', F4.2, 2X,
0512 & 'DEL=', F5.3, 2X, 'DS=', F5.2
0513 & /1H ,'RCOFF=',F6.2, 2X, 'VRADIUS=',F6.2, 2X, 'RCOFFMD=',
0514 & F5.2, 2X, 'RCOFFDDM=', F5.2
0515 & /1H ,'XL=', F6.2, 2X, 'YL=', F6.2, 2X, 'H=', E9.2)
0516 12 FORMAT(/1H ,'ND=',I4, 2X, 'NDENSDH=', F6.3, 2X, 'DC=', F6.2, 2X,
0517 & 'NDENSD=', F6.2, 2X, 'VDENSD=', F6.2, 2X, 'MD=',F5.3
0518 & /1H ,'ALP=', F6.2, 2X, 'GAM=', F6.2, 2X, 'RCOFFD=', F6.2)
0519 14 FORMAT(/1H ,'H=', E9.2, 2X, 'NTIMEMX=', I8, 2X, 'NGRAPH=',I7,
0520 & 2X, 'NVTABLE=', I4/)
0521 381 FORMAT('# Micro AVS Geom:2.00'
0522 & /'# Animation of DPD simulation results'/I4)
0523 383 FORMAT('step',I1)
0524 384 FORMAT('step',I2)
0525 385 FORMAT('step',I3)
0526 386 FORMAT('step',I4)
0527 388 FORMAT('sphere'/'sphere_sample'/'color'/I7)
0528 398 FORMAT(3F10.4 , F6.2 , 3F5.2)
0529 592 FORMAT(I8, 2F12.6)
0530 594 FORMAT((5E16.8))
0531 596 FORMAT(I8)
0532 598 FORMAT((5E16.8))
0533 1011 FORMAT(/1H ,'TMX00=',I5, 2X, 'TMXD00=',I5, 2X, 'VTABLE00=',I5
0534 & /1H ,'REAL(TMX00)/REAL(TT)=',F5.3, 2X,
0535 & 'REAL(TMXD00)/REAL(TTD)=',F5.3
0536 & /1H ,'REAL(VTABLE00)/REAL(NNN)=',F5.3, 2X,
0537 & 'REAL(PXYD)/REAL(PPXYD)=',F5.3)
0538 1013 FORMAT(1H ,'PXD=', I5, 2X, 'PXYD=', I6/)
0539 1014 FORMAT(1H ,'VELAV=', F9.4, 2X, 'VELAVD=', F9.4

205Practice of Dissipative Particle Dynamics Simulations

0540 & /1H ,'VELAV/THEORY=', F9.4, 2X, 'VELAVD/THEORY=', F9.4)
0541 1210 FORMAT(I4 , 2F6.3 , 3F8.3 , 5F7.3)
0542 1211 FORMAT(6F8.3 , E11.3)
0543 1213 FORMAT(I4 , F6.3 , 7F8.3)
0544 1214 FORMAT(E11.3 , 3I8)
0545 STOP
0546 END
0547 C***
0548 C*************************** SUBROUTINE **************************
0549 C***
0550 C

• A subroutine for setting the
initial positions of magnetic
particles.

• φV=(π/4)/a*2, a*=(π/(4φV))1/2 and Q=N1/2 . The
values of a* and Q are saved in A and Q,
respectively.

• RAN1 and RAN2 are quasi-random numbers.
• Each particle is moved in parallel by the distance (0.1, 0.1) to
remove subtle situations at the outer boundary surfaces. Also, to
remove the regularity of the initial configuration, each particle is
moved randomly by the maximum displacement (1/2)×(0.091,
0.091) using quasi-random numbers.

0551 C**** SUB INIPOSIT ****
0552 SUBROUTINE INIPOSIT(N , VDENS , NDENS , PI , VRADIUS)
0553 C
0554 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0555 C
0556 COMMON /BLOCK1/ RX , RY
0557 COMMON /BLOCK3/ NX , NY
0558 COMMON /BLOCK15/ H , XL , YL , RCOFF
0559 C
0560 PARAMETER(NN=100)
0561 C
0562 REAL*8 RX(NN) , RY(NN) , NX(NN) , NY(NN) , NDENS
0563 REAL*8 A , RAN , C1
0564 INTEGER Q , PTCL
0565 C
0566 A = DSQRT(PI/(4.D0*VDENS))
0567 Q = NINT(SQRT(REAL(N+1)))
0568 XL = A*DBLE(Q)
0569 YL = XL
0570 C ----- POSITION -----
0571 RAN1 = DSQRT(2.D0)
0572 RAN2 = DSQRT(3.D0)
0573 PTCL = 0
0574 DO 10 J=0,Q-1
0575 DO 10 I=0,Q-1
0576 PTCL = PTCL + 1
0577 C1 = RAN1*DBLE(PTCL)
0578 C1 = C1 - DINT(C1)
0579 C1 = C1 - 0.5D0
0580 C2 = RAN2*DBLE(PTCL)
0581 C2 = C2 - DINT(C2)
0582 C2 = C2 - 0.5D0
0583 RX(PTCL) = DBLE(I)*A - XL/2.D0 + 0.1D0 + C1*0.091D0
0584 RY(PTCL) = DBLE(J)*A - YL/2.D0 + 0.1D0 + C2*0.091D0
0585 10 CONTINUE
0586 N = PTCL
0587 C ----- MOMENT -----
0588 DO 20 I=1,N
0589 NX(I) = 0.D0
0590 NY(I) = 1.D0
0591 20 CONTINUE
0592 C
0593 IF(VRADIUS .GT. XL/2.D0) THEN
0594 VRADIUS = XL/2.D0
0595 RCOFF = XL/2.D0
0596 END IF
0597 RETURN
0598 END
0599 C**** SUB INIPOSID *****
0600 SUBROUTINE INIPOSID(DC , RCOFFD , N)
0601 C
0602 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0603 C
0604 COMMON /BLOCK1/ RX , RY
0605 COMMON /BLOCK15/ H , XL , YL , RCOFF

• Additionally each particle is moved in parallel by (1/2)×(–XL, –YL) so that the
center of the simulation box is the origin of the coordinate system.

• The direction of each magnetic moment is set in the y-direction.

• A subroutine for setting the
initial positions of dissipative
particles.

0606 COMMON /BLOCK21/ RXD , RYD
0607 COMMON /BLOCK26/ ND , NDENSDH , NDENSD , VDENSD , MD
0608 C
0609 PARAMETER(NN=100 , NND=50000)
0610 C
0611 REAL*8 RX(NN) , RY(NN) , RXD(NND), RYD(NND)

206 Introduction to Practice of Molecular Simulation

• n*d=1/b*2 and b*=(1/n*d)1/2. Particles are placed
in each axis direction.

• Each particle is moved in parallel by
(1/2)×(–XL,–YL), so that the center of
the simulation box is the origin of the
coordinate system.

• The dissipative particles are
not placed if the separation
between magnetic and
dissipative particles is shorter
than RCOFFMN.

• A subroutine for setting the initial
velocities of magnetic particles.

0612 REAL*8 NDENSDH, NDENSD , MD , B , RSQCHK , RXID , RYID
0613 REAL*8 RXI , RYI , RXIJ , RYIJ , RIJSQ, RCOFFMN, RCOFFMN2
0614 INTEGER P , PTCL
0615 C
0616 B = DSQRT(1.D0/NDENSD)
0617 P = INT(XL/B)
0618 RSQCHK = (0.5D0 + DC/2.D0)**2
0619 RCOFFMN = 0.5D0 + (DC/2.D0)*0.3D0
0620 RCOFFMN2 = RCOFFMN**2
0621 C ------- POSITION (1) ---
0622 PTCL=0
0623 DO 120 IY=0,P-1
0624 RYID = DBLE(IY)*B - YL/2.D0 + 0.0001D0
0625 IF(RYID .GE. YL/2.D0) GOTO 120
0626 DO 100 IX=0,P-1
0627 RXID = DBLE(IX)*B - XL/2.D0 + 0.0001D0
0628 IF(RXID .GE. XL/2.D0) GOTO 100
0629 C --- REMOVE OVERLAP WITH MAG.PTCL. ---
0630 DO 50 I=1,N
0631 RXI = RX(I)
0632 RYI = RY(I)
0633 RXIJ = RXID - RXI
0634 RXIJ = RXIJ - DNINT(RXIJ/XL)*XL
0635 IF(DABS(RXIJ) .GT. RCOFFMN) GOTO 50
0636 RYIJ = RYID - RYI
0637 RYIJ = RYIJ - DNINT(RYIJ/YL)*YL
0638 IF(DABS(RYIJ) .GT. RCOFFMN) GOTO 50
0639 RIJSQ= RXIJ**2 + RYIJ**2
0640 IF(RIJSQ .LT. RCOFFMN2) GOTO 100
0641 50 CONTINUE
0642 C
0643 PTCL = PTCL + 1
0644 RXD(PTCL) = RXID
0645 RYD(PTCL) = RYID
0646 100 CONTINUE
0647 120 CONTINUE
0648 ND = PTCL
0649 RETURN
0650 END
0651 C**** SUB INIVEL *****
0652 SUBROUTINE INIVEL(N , PI , VELMX)
0653 C
0654 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0655 C
0656 COMMON /BLOCK2/ VX , VY
0657 COMMON /BLOCK35/ NRAN , RAN , IX
0658 C
0659 PARAMETER(NN=100 , NRANMX=100000000)
0660 C

• The initial velocities are assigned
according to Eq. (A2.3).

• The initial velocities are modified so as
to be smaller than the maximum velocity.

0661 REAL*8 VX(NN) , VY(NN) , MOMX , MOMY , CC1 , CC2
0662 REAL RAN(NRANMX)
0663 C
0664 DO 10 I=1,N
0665 NRAN = NRAN + 1
0666 CC1 = DSQRT(-2.D0*(1.D0)*DLOG(DBLE(RAN(NRAN))))
0667 NRAN = NRAN + 1
0668 CC2 = 2.D0*PI*DBLE(RAN(NRAN))
0669 VX(I) = CC1*DCOS(CC2)
0670 C
0671 NRAN = NRAN + 1
0672 CC1 = DSQRT(-2.D0*(1.D0)*DLOG(DBLE(RAN(NRAN))))
0673 NRAN = NRAN + 1
0674 CC2 = 2.D0*PI*DBLE(RAN(NRAN))
0675 VY(I) = CC1*DSIN(CC2)
0676 C
0677 C1 = VX(I)**2 + VY(I)**2
0678 IF(C1 .GT. VELMX) THEN
0679 C1 = DSQRT(VELMX/C1)
0680 VX(I) = VX(I)*C1
0681 VY(I) = VY(I)*C1
0682 END IF
0683 10 CONTINUE

207Practice of Dissipative Particle Dynamics Simulations

• The velocities are modified so as to yield
zero total system momentum.

• A subroutine for setting the initial
velocities of dissipative particles.

0684 C --- SET TOTAL MOMENTUM ZERO ---
0685 MOMX = 0.D0
0686 MOMY = 0.D0
0687 DO 20 I=1,N
0688 MOMX = MOMX + VX(I)
0689 MOMY = MOMY + VY(I)
0690 20 CONTINUE
0691 MOMX = MOMX/DBLE(N)
0692 MOMY = MOMY/DBLE(N)
0693 C --- CORRECT VELOCITIES TO SATISFY ---
0694 C --- ZERO TOTAL MOMENTUM ---
0695 DO 30 I=1,N
0696 VX(I) = VX(I) - MOMX
0697 VY(I) = VY(I) - MOMY
0698 30 CONTINUE
0699 RETURN
0700 END
0701 C**** SUB INIVELD *****
0702 SUBROUTINE INIVELD(ND , MD , PI , VELDMX)
0703 C
0704 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0705 C
0706 COMMON /BLOCK22/ VXD , VYD
0707 COMMON /BLOCK35/ NRAN , RAN , IX
0708 C
0709 PARAMETER(NND=50000 , NRANMX=100000000)
0710 C
0711 REAL*8 VXD(NND), VYD(NND) , MD , MOMX , MOMY , CC1 , CC2
0712 REAL RAN(NRANMX)
0713 C
0714 DO 10 I=1,ND
0715 NRAN = NRAN + 1

• The initial velocities are assigned
according to Eq. (A2.3).

• The initial velocities are modified so as
to be smaller than the maximum velocity.

• The velocities are modified so as to yield
zero total system momentum.

0716 CC1 = DSQRT(-2.D0*(1.D0/MD)*DLOG(DBLE(RAN(NRAN))))
0717 NRAN = NRAN + 1
0718 CC2 = 2.D0*PI*DBLE(RAN(NRAN))
0719 VXD(I) = CC1*DCOS(CC2)
0720 C
0721 NRAN = NRAN + 1
0722 CC1 = DSQRT(-2.D0*(1.D0/MD)*DLOG(DBLE(RAN(NRAN))))
0723 NRAN = NRAN + 1
0724 CC2 = 2.D0*PI*DBLE(RAN(NRAN))
0725 VYD(I) = CC1*DSIN(CC2)
0726 C
0727 C1 = VXD(I)**2 + VYD(I)**2
0728 IF(C1 .GT. VELDMX) THEN
0729 C1 = DSQRT(VELDMX/C1)
0730 VXD(I) = VXD(I)*C1
0731 VYD(I) = VYD(I)*C1
0732 END IF
0733 10 CONTINUE
0734 C --- SET TOTAL MOMENTUM ZERO ---
0735 MOMX = 0.D0
0736 MOMY = 0.D0
0737 DO 20 I=1,ND
0738 MOMX = MOMX + VXD(I)
0739 MOMY = MOMY + VYD(I)
0740 20 CONTINUE
0741 MOMX = MOMX/DBLE(ND)
0742 MOMY = MOMY/DBLE(ND)
0743 C --- CORRECT VELOCITIES TO SATISFY ---
0744 C --- ZERO TOTAL MOMENTUM ---
0745 DO 30 I=1,ND
0746 VXD(I) = VXD(I) - MOMX
0747 VYD(I) = VYD(I) - MOMY
0748 30 CONTINUE
0749 RETURN
0750 END
0751 C**** SUB SCALEVEL ****
0752 SUBROUTINE SCALEVEL(N, VX, VY, VELTHRY, VELX, VELY, VELSQ)

208 Introduction to Practice of Molecular Simulation

• A subroutine for scaling the velocities
(common for both magnetic and dissipative
particles).

• The velocities are modified so as to yield
zero total momentum.

0753 C
0754 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0755 C
0756 REAL*8 VX(N), VY(N)
0757 C --- ZERO TOTAL MOMENTUM FOR EACH AXIS ---
0758 DO 10 I = 1,N
0759 VX(I) = VX(I) - VELX
0760 VY(I) = VY(I) - VELY
0761 10 CONTINUE
0762 C --- CORRECT VELOCITIES TO SATISFY ---
0763 C - SPECIFIED TEMPERATURE -
0764 C1 = VELTHRY/DSQRT(VELSQ - VELX**2 - VELY**2)
0765 DO 50 I = 1,N
0766 VXI = VX(I)
0767 VYI = VY(I)
0768 VX(I) = VXI*C1
0769 VY(I) = VYI*C1
0770 50 CONTINUE

• The velocities are modified so as to yield
the desired system temperature.

• A subroutine for generating cells for
the cell index method in the case of
dissipative particles.

0771 RETURN
0772 END
0773 C**** SUB GRIDGENE ****
0774 SUBROUTINE GRIDGENE(XL , RCOFFD)
0775 C
0776 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0777 C
0778 COMMON /BLOCK30/ PXD , GRPLXD , PXYD
0779 C
0780 INTEGER PPXD
0781 PARAMETER(PPXD=500)
0782 C
0783 REAL*8 GRPLXD(PPXD) , C0
0784 INTEGER PXD , PXYD
0785 C
0786 PXD = INT(XL/RCOFFD)
0787 PXYD = PXD**2
0788 C0 = XL/DBLE(PXD)
0789 DO 10 I=1,PXD
0790 GRPLXD(I) = C0*DBLE(I) - XL/2.D0
0791 10 CONTINUE
0792 RETURN
0793 END
0794 C**** SUB GROUP *****
0795 SUBROUTINE GROUP(ND)
0796 C
0797 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0798 C
0799 COMMON /BLOCK21/ RXD , RYD
0800 COMMON /BLOCK28/ GRPX , GRPY
0801 COMMON /BLOCK30/ PXD , GRPLXD , PXYD
0802 C
0803 INTEGER PPXD, PPXYD, TTD
0804 PARAMETER(NND=50000 , PPXD=500 , PPXYD=250000 , TTD=20)
0805 C
0806 REAL*8 RXD(NND) , RYD(NND)
0807 REAL*8 GRPLXD(PPXD)
0808 INTEGER GRPX(NND), GRPY(NND) , PXD , PXYD
0809 C
0810 DO 100 I=1,ND
0811 C --- X AXIS ---
0812 DO 10 J=1,PXD
0813 IF(GRPLXD(J) .GT. RXD(I)) THEN
0814 GRPX(I) = J
0815 GOTO 15
0816 END IF
0817 10 CONTINUE
0818 GRPX(I) = PXD
0819 C --- Y AXIS ---
0820 15 DO 20 J=1,PXD
0821 IF(GRPLXD(J) .GT. RYD(I)) THEN
0822 GRPY(I) = J
0823 GOTO 100
0824 END IF

• The cells are made by dividing the
simulation box into PXD equal cells in
each axis-direction. The position of the
x-coordinate (equal to y-coordinate) is
saved in GRPLXD.

• A subroutine for grasping the name of
the cell to which each dissipative
particle belongs.

• If particle i belongs to the cell which is
assumed to be the (GRPX(I)-th, GRPY(I)-th)
cell in x- and y-directions, the name of the cell
is GP=GRPX(I)+(GRPY(I)−1)*PXD.

209Practice of Dissipative Particle Dynamics Simulations

• A subroutine for grasping the names
of dissipative particles belonging to
each cell.

0826 GRPY(I) = PXD
0827 C
0828 100 CONTINUE
0829 RETURN
0830 END
0831 C**** SUB TABLECAL *****
0832 SUBROUTINE TABLECAL(ND , PXD)
0833 C
0834 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0835 C
0836 COMMON /BLOCK28/ GRPX , GRPY
0837 COMMON /BLOCK29/ TMXD , TABLED
0838 C
0839 INTEGER PPXD, PPXYD, TTD
0840 PARAMETER(NND=50000 , PPXD=500 , PPXYD=250000 , TTD=20)
0841 C
0842 INTEGER GRPX(NND), GRPY(NND)
0843 INTEGER TMXD(PPXYD), TABLED(TTD,PPXYD) , PXD , GX , GY , GP
0844 C
0845 DO 10 GY=1,PXD
0846 DO 10 GX=1,PXD
0847 GP = GX + (GY-1)*PXD
0848 TMXD(GP) = 0
0849 TABLED(1,GP) = 0
0850 10 CONTINUE
0851 C
0852 DO 20 I=1,ND
0853 GX = GRPX(I)
0854 GY = GRPY(I)
0855 GP = GX + (GY-1)*PXD
0856 TMXD(GP) = TMXD(GP) + 1
0857 TABLED(TMXD(GP),GP) = I
0858 20 CONTINUE
0859 RETURN
0860 END
0861 C**** SUB VTABLEDP *****
0862 SUBROUTINE VTABLEDP(N , RCOFFD , RCOFFMD , XL , YL , DC)
0863 C
0864 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0865 C
0866 COMMON /BLOCK1/ RX , RY
0867 COMMON /BLOCK9/ TMX , TABLE
0868 COMMON /BLOCK30/ PXD , GRPLXD , PXYD
0869 C
0870 INTEGER TT, PPXD
0871 PARAMETER(NN=100 , NNN=10000 , TT=500 , PPXD=500)
0872 C
0873 INTEGER TMX(NN), TABLE(TT,NN) , PXD , PXYD
0874 REAL*8 RX(NN) , RY(NN) , GRPLXD(PPXD)
0875 REAL*8 RXI, RYI, RX1, RY1, RX2, RY2, XI, YI, CL, MODX, MODY
0876 REAL*8 RSQCHK , RSQCHK2 , RRISQ , RCHK
0877 INTEGER GPX1 , GPX2 , GPY1 , GPY2 , GP
0878 C
0879 CL = GRPLXD(2) - GRPLXD(1)
0880 RCHK = RCOFFMD + (CL/2.D0)*1.415D0

• A subroutine for grasping the cells in
which dissipative particles possibly
interact with magnetic particles.

• If particle i belongs to the cell which is assumed to
be the (GX-th, GY-th) cell in the x- and y-directions,
the name of the cell is GP=GX+(GY−1)*PXD.
・The name of particle i is therefore saved in the
variable in TABLED(*,GP) concerning cell GP.

0825 20 CONTINUE

0881 RSQCHK = RCHK**2
0882 RSQCHK2 = (0.5D0-DC/2.D0-(CL/2.D0)*1.415D0)**2
0883 DO 10 I=1,N
0884 TMX(I) = 0
0885 TABLE(1,I) = 0
0886 10 CONTINUE
0887 C
0888 DO 200 I=1,N
0889 RXI = RX(I)
0890 RYI = RY(I)
0891 RX1 = RXI - RCHK
0892 RY1 = RYI - RCHK
0893 RX2 = RXI + RCHK
0894 RY2 = RYI + RCHK

210 Introduction to Practice of Molecular Simulation

0895 GPX1 = INT((RX1+XL/2.D0)/CL) - 1
0896 GPX2 = INT((RX2+XL/2.D0)/CL) + 2
0897 GPY1 = INT((RY1+YL/2.D0)/CL) - 1
0898 GPY2 = INT((RY2+YL/2.D0)/CL) + 2
0899 C
0900 DO 150 IY0 = GPY1, GPY2
0901 IY = IY0
0902 MODY = 0.D0
0903 IF(IY0 .LE. 0) THEN
0904 IY = IY0 + PXD
0905 MODY = -YL
0906 END IF
0907 IF(IY0 .GT. PXD) THEN
0908 IY = IY0 - PXD
0909 MODY = YL
0910 END IF
0911 YI = GRPLXD(IY) - CL/2.D0 + MODY
0912 C
0913 DO 140 IX0 = GPX1, GPX2
0914 IX = IX0
0915 MODX = 0.D0
0916 IF(IX0 .LE. 0) THEN
0917 IX = IX0 + PXD
0918 MODX = -XL
0919 END IF
0920 IF(IX0 .GT. PXD) THEN
0921 IX = IX0 - PXD
0922 MODX = XL
0923 END IF
0924 XI = GRPLXD(IX) - CL/2.D0 + MODX
0925 C
0926 GP = IX + PXD*(IY-1)
0927 RRISQ= (XI-RXI)**2 + (YI-RYI)**2
0928 IF(RRISQ .GE. RSQCHK) GOTO 140
0929 IF(RRISQ .LE. RSQCHK2) GOTO 140
0930 C
0931 TMX(I) = TMX(I) + 1
0932 TABLE(TMX(I),I) = GP
0933 140 CONTINUE
0934 150 CONTINUE
0935 200 CONTINUE

• If the distance between magnetic
particle i and a cell is shorter than
RSQCHK, the cell is regarded as a
possible interacting cell.

• The treatment of the periodic BC.

• The dissipative particles only in the
neighboring cells possibly interact
with magnetic particle i.

0936 RETURN
0937 END
0938 C**** SUB VTABLEMA *****
0939 SUBROUTINE VTABLEMA(N , XL , YL)
0940 C
0941 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0942 C
0943 COMMON /BLOCK1/ RX , RY
0944 COMMON /BLOCK10/ VTMX , VTABLE , VPLACE , NVTABLE , VRADIUS
0945 C
0946 PARAMETER(NN=100 , NNN=10000)
0947 C
0948 REAL*8 RX(NN) , RY(NN)
0949 INTEGER VTMX(NN) , VTABLE(NNN) , VPLACE(NN) , N2
0950 REAL*8 RXI , RYI , RXIJ , RYIJ , RIJ2 , VRADIUS2
0951 C
0952 VRADIUS2 = VRADIUS**2
0953 N2 = N**2
0954 IF(N2 .GT. NNN) N2 = NNN
0955 DO 10 I=1,N
0956 VTMX(I) = 0
0957 VPLACE(I) = 0
0958 10 CONTINUE
0959 DO 15 I=1,N2
0960 VTABLE(I) = 0
0961 15 CONTINUE
0962 C
0963 C
0964 DO 200 I=1,N
0965 C
0966 RXI = RX(I)

• The number of the magnetic particles
interacting with particle i is saved in
VTMX(I), and the names of the
interacting particles are saved in
VTABLE(*). The name of the particle
interacting with particle i first appears
in the VPLACE(I)-th position of the
variable VTABLE(*).

• A subroutine for grasping the names of
magnetic particles interacting with
magnetic particle themselves according
to the Verlet neighbor list method.

211Practice of Dissipative Particle Dynamics Simulations

0967 RYI = RY(I)
0968 IF(I .EQ. 1) THEN
0969 VPLACE(I) = 1
0970 ELSE
0971 VPLACE(I) = VPLACE(I-1) + VTMX(I-1)
0972 END IF
0973 C
0974 DO 150 J=1,N
0975 C
0976 IF(J.EQ.I) GOTO 150
0977 RXIJ = RXI - RX(J)
0978 RXIJ = RXIJ - DNINT(RXIJ/XL)*XL
0979 IF(DABS(RXIJ) .GE. VRADIUS) GOTO 150
0980 RYIJ = RYI - RY(J)
0981 RYIJ = RYIJ - DNINT(RYIJ/YL)*YL
0982 IF(DABS(RYIJ) .GE. VRADIUS) GOTO 150
0983 C
0984 RIJ2 = RXIJ*RXIJ + RYIJ*RYIJ
0985 IF(RIJ2 .GE. VRADIUS2) GOTO 150
0986 C
0987 VTMX(I) = VTMX(I) + 1
0988 VTABLE(VPLACE(I) + VTMX(I) - 1) = J
0989 C
0990 150 CONTINUE

• If the distance between
magnetic particles is within
VRADIUS, the names of the
magnetic particles are saved
in VTABLE(*).

• The treatment for the periodic
BC.

0991 200 CONTINUE
0992 RETURN
0993 END
0994 C**** SUB FORCEMAG *****
0995 SUBROUTINE FORCEMAG(RCOFF2 , NTIME)
0996 C
0997 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0998 C
0999 COMMON /BLOCK1/ RX , RY
1000 COMMON /BLOCK2/ VX , VY
1001 COMMON /BLOCK3/ NX , NY
1002 COMMON /BLOCK5/ FX , FY
1003 COMMON /BLOCK7/ N , NDENS , VDENS , D , DS , DEL , TD
1004 COMMON /BLOCK8/ RA , RV , RE
1005 COMMON /BLOCK10/ VTMX , VTABLE , VPLACE , NVTABLE , VRADIUS
1006 COMMON /BLOCK13/ OVRLAP
1007 COMMON /BLOCK15/ H , XL , YL , RCOFF
1008 C
1009 INTEGER TT
1010 PARAMETER(NN=100 , NNN=10000 , TT=500)
1011 C
1012 REAL*8 RX(NN) , RY(NN) , VX(NN) , VY(NN)
1013 REAL*8 FX(NN) , FY(NN) , NX(NN) , NY(NN)
1014 REAL*8 NDENS
1015 LOGICAL OVRLAP(NN)
1016 INTEGER VTMX(NN) , VTABLE(NNN) , VPLACE(NN)
1017 C
1018 REAL*8 RXI , RYI , RXIJ , RYIJ
1019 REAL*8 NXI , NYI , NXJ , NYJ
1020 REAL*8 FXI , FYI , FXIJ , FYIJ
1021 REAL*8 TXIJ , TYIJ , RIJ , RIJ2 , RIJ4 , RIJORGN
1022 REAL*8 RA3, RMN, RMN2
1023 REAL*8 C0 , C1 , C2 , C3
1024 INTEGER IVPLACE
1025 C
1026 RA3 = 3.D0*RA
1027 RMN = DS
1028 RMN2 = RMN**2
1029 DO 10 I=1,N
1030 FX(I) = 0.D0
1031 FY(I) = 0.D0

• Whether or not an overlap of the solid
parts of the two magnetic particles
appears is described by the logical
variable OVRLAP(*).

• A subroutine for calculating
the magnetic forces acting on
magnetic particles.

1032 OVRLAP(I) = .FALSE.
1033 10 CONTINUE
1034 C
1035 C
1036 DO 100 I=1,N
1037 C

212 Introduction to Practice of Molecular Simulation

1038 RXI = RX(I)
1039 RYI = RY(I)
1040 NXI = NX(I)
1041 NYI = NY(I)
1042 FXI = FX(I)
1043 FYI = FY(I)
1044 C
1045 IF(VTMX(I) .EQ. 0) GOTO 100

• The name of the particles
interacting with particle i first
appears in the VPLACE(I)-th
position of the variable
VTABLE(*). The number of the
magnetic particles interacting
with particle i is VTMX(I).

1046 C
1047 IVPLACE = VPLACE(I)
1048 DO 50 JJ=1, VTMX(I)
1049 C
1050 J = VTABLE(IVPLACE + JJ - 1)
1051 IF(J.EQ.I) GOTO 50
1052 RXIJ = RXI - RX(J)
1053 RXIJ = RXIJ - DNINT(RXIJ/XL)*XL
1054 IF(DABS(RXIJ) .GE. RCOFF) GOTO 50
1055 RYIJ = RYI - RY(J)
1056 RYIJ = RYIJ - DNINT(RYIJ/YL)*YL
1057 IF(DABS(RYIJ) .GE. RCOFF) GOTO 50
1058 C
1059 RIJ2 = RXIJ*RXIJ + RYIJ*RYIJ
1060 IF(RIJ2 .GE. RCOFF2) GOTO 50
1061 RIJ = DSQRT(RIJ2)
1062 RIJORGN = RIJ
1063 C
1064 IF(RIJ2 .LT. RMN2) THEN
1065 RXIJ = RMN*RXIJ/RIJ
1066 RYIJ = RMN*RYIJ/RIJ
1067 RIJ = RMN
1068 RIJ2 = RMN2
1069 OVRLAP(I) = .TRUE.
1070 OVRLAP(J) = .TRUE.
1071 END IF
1072 RIJ4 = RIJ2**2
1073 TXIJ = RXIJ/RIJ
1074 TYIJ = RYIJ/RIJ
1075 NXJ = NX(J)
1076 NYJ = NY(J)
1077 C
1078 C1 = NXI*NXJ + NYI*NYJ
1079 C2 = NXI*TXIJ + NYI*TYIJ
1080 C3 = NXJ*TXIJ + NYJ*TYIJ
1081 C --- MAGNETIC FORCE ---
1082 FXIJ = - (RA3/RIJ4) * ((- C1 + 5.D0*C2*C3)*TXIJ
1083 & - (C3*NXI + C2*NXJ))
1084 FYIJ = - (RA3/RIJ4) * ((- C1 + 5.D0*C2*C3)*TYIJ
1085 & - (C3*NYI + C2*NYJ))
1086 C --- STERIC REPULSION ---
1087 IF(RIJORGN .LT. 1.D0) THEN
1088 C0 = DLOG(1.D0 / RIJORGN)
1089 FXIJ = FXIJ + RV*TXIJ*C0/DEL
1090 FYIJ = FYIJ + RV*TYIJ*C0/DEL
1091 END IF
1092 C
1093 FXI = FXI + FXIJ
1094 FYI = FYI + FYIJ
1095 C
1096 50 CONTINUE
1097 C
1098 FX(I) = FXI
1099 FY(I) = FYI
1100 C

•The repulsive force arising from the
overlap of the surfactant layers is
calculated according to Eq. (6.25).

• The magnetic forces acting on
particles are calculated according to
Eq. (6.24).

• If the solid particles overlap,
OVRLAP(I)=OVRLAP(J)=.TRUE.
are set.

• The treatment for the periodic BC.

1101 100 CONTINUE
1102 RETURN
1103 END
1104 C**** SUB FORCEDPD *****
1105 SUBROUTINE FORCEDPD(PI)
1106 C
1107 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
1108 C

• A subroutine for calculating the
forces acting between dissipative
particles.

213Practice of Dissipative Particle Dynamics Simulations

1109 COMMON /BLOCK15/ H , XL , YL , RCOFF
1110 COMMON /BLOCK21/ RXD , RYD
1111 COMMON /BLOCK22/ VXD , VYD
1112 COMMON /BLOCK23/ FCXD , FCYD
1113 COMMON /BLOCK24/ FDXD , FDYD
1114 COMMON /BLOCK25/ FRXD , FRYD
1115 COMMON /BLOCK26/ ND , NDENSDH , NDENSD , VDENSD , MD
1116 COMMON /BLOCK27/ DC , ALP , GAM , RCOFFD
1117 COMMON /BLOCK28/ GRPX , GRPY
1118 COMMON /BLOCK29/ TMXD , TABLED
1119 COMMON /BLOCK30/ PXD , GRPLXD , PXYD
1120 COMMON /BLOCK35/ NRAN , RAN , IX
1121 C
1122 INTEGER PPXD, PPXYD, TTD
1123 PARAMETER(NND=50000 , PPXD=500 , PPXYD=250000 , TTD=20)
1124 PARAMETER(NRANMX=100000000)
1125 C
1126 REAL*8 RXD(NND) , RYD(NND) , VXD(NND) , VYD(NND)
1127 REAL*8 FCXD(NND), FCYD(NND) , FDXD(NND), FDYD(NND)
1128 REAL*8 FRXD(NND), FRYD(NND)
1129 REAL*8 NDENSDH , NDENSD , MD
1130 REAL*8 GRPLXD(PPXD)
1131 INTEGER GRPX(NND), GRPY(NND)
1132 INTEGER TMXD(PPXYD), TABLED(TTD,PPXYD) , PXD , PXYD
1133 C
1134 REAL RAN(NRANMX)
1135 INTEGER NRAN , IX , NRANCHK
1136 C
1137 REAL*8 RXI , RYI , RXIJ , RYIJ , RIJSQ , RIJ
1138 REAL*8 VXI , VYI , VXIJ , VYIJ
1139 REAL*8 FCXI , FCYI , FCXIJ, FCYIJ
1140 REAL*8 FDXI , FDYI , FDXIJ, FDYIJ
1141 REAL*8 FRXI , FRYI , FRXIJ, FRYIJ
1142 REAL*8 FXIJ , FYIJ
1143 REAL*8 EXIJ , EYIJ
1144 REAL*8 WR , WR2 , TTAIJ , RAN1 , RAN2 , RCOFFD2
1145 REAL*8 MODX , MODY , C1
1146 INTEGER GX , GY , GRP
1147 C
1148 RCOFFD2 = RCOFFD**2
1149 DO 10 I=1,ND
1150 FCXD(I) = 0.D0
1151 FCYD(I) = 0.D0
1152 FDXD(I) = 0.D0
1153 FDYD(I) = 0.D0
1154 FRXD(I) = 0.D0
1155 FRYD(I) = 0.D0

• The conservative force, i.e., the first term
on the right-hand side of Eq. (6.19), is
saved in FCXD(*) and FCYD(*). Similarly,
the dissipative term, i.e., the second term,
is saved in FDXD(*) and FDYD(*). The
random term, i.e., the third term, is saved in
FRXD(*) and FRYD(*).1156 10 CONTINUE

1157 C
1158 DO 500 I=1,ND
1159 C
1160 RXI = RXD(I)
1161 RYI = RYD(I)
1162 VXI = VXD(I)
1163 VYI = VYD(I)
1164 FCXI = FCXD(I)
1165 FCYI = FCYD(I)
1166 FDXI = FDXD(I)
1167 FDYI = FDYD(I)
1168 FRXI = FRXD(I)
1169 FRYI = FRYD(I)
1170 C +++ NEIGHBORING GROUP +++
1171 DO 300 JJ=-1,1
1172 GY = GRPY(I) + JJ
1173 IF(GY .EQ. 0) THEN
1174 GY = PXD
1175 MODY = -YL
1176 GOTO 150
1177 END IF
1178 IF(GY .EQ. PXD+1) THEN

• The name of the cell in which the
particles possibly interact with particle i of
interest is GRP=GX+(GY−1)*PXD.
• (MODX, MODY) are used in treating the
periodic BC.

1179 GY = 1
1180 MODY = YL

214 Introduction to Practice of Molecular Simulation

1181 GOTO 150
1182 END IF
1183 MODY =0.D0
1184 C
1185 150 DO 300 II=-1,1
1186 GX = GRPX(I) + II
1187 IF(GX .EQ. 0) THEN
1188 GX = PXD
1189 MODX =-XL
1190 GOTO 160
1191 END IF
1192 IF(GX .EQ. PXD+1) THEN
1193 GX = 1
1194 MODX = XL
1195 GOTO 160
1196 END IF
1197 MODX =0.D0
1198 C
1199 160 GRP = GX + (GY-1)*PXD
1200 IF(TMXD(GRP) .EQ. 0) GOTO 300
1201 C +++ ENERGY +++
1202 DO 200 JJJ=1,TMXD(GRP)
1203 C
1204 J = TABLED(JJJ,GRP)
1205 IF(J .LE. I) GOTO 200
1206 C
1207 RXIJ = RXI - (RXD(J) + MODX)
1208 IF(DABS(RXIJ) .GE. RCOFFD) GOTO 200
1209 RYIJ = RYI - (RYD(J) + MODY)
1210 IF(DABS(RYIJ) .GE. RCOFFD) GOTO 200

• The treatment of the periodic BC.
• If the two particles are separated
over the cutoff distance RCOFFD,
the calculation is unnecessary.1211 RIJSQ = RXIJ**2 + RYIJ**2

1212 IF(RIJSQ .GE. RCOFFD2) GOTO 200
1213 RIJ = DSQRT(RIJSQ)
1214 VXIJ = VXI - VXD(J)
1215 VYIJ = VYI - VYD(J)
1216 C
1217 EXIJ = RXIJ/RIJ
1218 EYIJ = RYIJ/RIJ
1219 IF(RIJ .LE. DC) THEN
1220 WR = 1.D0 - RIJ/DC
1221 WR2 = WR*WR
1222 ELSE
1223 WR = 0.D0
1224 WR2 = 0.D0
1225 END IF
1226 C --- FC ---
1227 FCXIJ = WR*EXIJ
1228 FCYIJ = WR*EYIJ
1229 FCXI = FCXI + FCXIJ
1230 FCYI = FCYI + FCYIJ
1231 FCXD(J)= FCXD(J) - FCXIJ
1232 FCYD(J)= FCYD(J) - FCYIJ
1233 C --- FD ---
1234 C1 = EXIJ*VXIJ + EYIJ*VYIJ
1235 FDXIJ = - WR2*C1*EXIJ
1236 FDYIJ = - WR2*C1*EYIJ
1237 FDXI = FDXI + FDXIJ
1238 FDYI = FDYI + FDYIJ

• The calculation of the first
conservative force in Eq. (6.19).

• The calculation of the second
dissipative force in Eq. (6.19).

• The action–reaction law can
provide the force acting on particle
j as (−FCXIJ) and (−FCYIJ).

1239 FDXD(J)= FDXD(J) - FDXIJ
1240 FDYD(J)= FDYD(J) - FDYIJ
1241 C --- FR ---
1242 NRAN = NRAN + 1
1243 RAN1 = DBLE(RAN(NRAN))
1244 IF(RAN1 .LE. 0.D0) RAN1 = 0.99999D0
1245 NRAN = NRAN + 1
1246 RAN2 = DBLE(RAN(NRAN))
1247 TTAIJ = DSQRT(-2.D0*DLOG(RAN1))*DCOS(2.D0*PI*RAN2)

• The calculation of the third
random force in Eq. (6.19).

1248 CCC IF(DABS(TTAIJ) .GT. 6.D0) TTAIJ = DSIGN(6.D0, TTAIJ)
1249 C

215Practice of Dissipative Particle Dynamics Simulations

1250 FRXIJ = WR*EXIJ*TTAIJ
1251 FRYIJ = WR*EYIJ*TTAIJ
1252 FRXI = FRXI + FRXIJ
1253 FRYI = FRYI + FRYIJ
1254 FRXD(J)= FRXD(J) - FRXIJ
1255 FRYD(J)= FRYD(J) - FRYIJ
1256 C
1257 200 CONTINUE
1258 C
1259 300 CONTINUE
1260 C
1261 FCXD(I) = FCXI
1262 FCYD(I) = FCYI
1263 FDXD(I) = FDXI
1264 FDYD(I) = FDYI
1265 FRXD(I) = FRXI

• TTAIJ means θij.

1266 FRYD(I) = FRYI
1267 C
1268 500 CONTINUE
1269 C
1270 DO 520 I=1,ND
1271 FCXD(I) = FCXD(I)*H*ALP/(MD*DC)
1272 FCYD(I) = FCYD(I)*H*ALP/(MD*DC)
1273 FDXD(I) = FDXD(I)*H*GAM/(DC*MD**0.5)
1274 FDYD(I) = FDYD(I)*H*GAM/(DC*MD**0.5)
1275 FRXD(I) = FRXD(I)*(H*2.D0*GAM)**0.5/(MD**0.75*DC*0.5)
1276 FRYD(I) = FRYD(I)*(H*2.D0*GAM)**0.5/(MD**0.75*DC*0.5)
1277 520 CONTINUE
1278 RETURN
1279 END
1280 C**** SUB FORCEINT *****
1281 SUBROUTINE FORCEINT(N , ND , RE , DC)
1282 C
1283 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
1284 C
1285 COMMON /BLOCK1/ RX , RY
1286 COMMON /BLOCK9/ TMX , TABLE
1287 COMMON /BLOCK11/ FXMD , FYMD , RCOFFMD , RCOFFDDM
1288 COMMON /BLOCK15/ H , XL , YL , RCOFF
1289 COMMON /BLOCK21/ RXD , RYD
1290 COMMON /BLOCK29/ TMXD , TABLED
1291 COMMON /BLOCK31/ FXDM , FYDM
1292 C
1293 INTEGER TT, PPXD, PPXYD, TTD
1294 PARAMETER(NN=100 , NNN=10000 , TT=500)
1295 PARAMETER(NND=50000 , PPXD=500 , PPXYD=250000 , TTD=20)
1296 C
1297 REAL*8 RX(NN) , RY(NN) , FXMD(NN) , FYMD(NN)
1298 REAL*8 RXD(NND) , RYD(NND) , FXDM(NND), FYDM(NND)
1299 INTEGER TMX(NN) , TABLE(TT,NN)
1300 INTEGER TMXD(PPXYD), TABLED(TTD,PPXYD)
1301 C
1302 REAL*8 RCOFFMD2 , FCOFFDDM , RCOFFMN , RCOFFMN2
1303 REAL*8 RXI , RYI , RXIJ , RYIJ , RZIJ , RIJ , RIJ2
1304 REAL*8 RXID , RYID , RRIJ , TXIJ , TYIJ
1305 REAL*8 FIJ , FXIJ , FYIJ , SR2 , SR4
1306 INTEGER GP
1307 C
1308 RCOFFMD2 = RCOFFMD**2
1309 FCOFFDDM = 2.D0*(DC/RCOFFDDM)**12 - (DC/RCOFFDDM)**6
1310 RCOFFMN = 0.5D0 + (DC/2.D0)*0.3D0
1311 RCOFFMN2 = RCOFFMN**2
1312 DO 10 I=1,N
1313 FXMD(I) = 0.D0
1314 FYMD(I) = 0.D0
1315 10 CONTINUE
1316 DO 12 I=1,ND
1317 FXDM(I) = 0.D0
1318 FYDM(I) = 0.D0
1319 12 CONTINUE
1320 C

• The force acting on magnetic
particle i by dissipative particles
is saved in FXMD(I) and FYMD(I).
The force acting on dissipative
particle i by magnetic particles is
saved in FXDM(I) and FYDM(I).

• A subroutine for calculating
the forces between magnetic
and dissipative particles.

216 Introduction to Practice of Molecular Simulation

1321 C
1322 DO 200 I=1,N
1323 RXI = RX(I)
1324 RYI = RY(I)
1325 IF(TMX(I) .EQ. 0) GOTO 200
1326 C
1327 DO 150 J=1, TMX(I)
1328 GP = TABLE(J,I)
1329 IF(TMXD(GP) .EQ. 0) GOTO 150
1330 C
1331 DO 120 K=1, TMXD(GP)
1332 II = TABLED(K,GP)
1333 RXID = RXD(II)
1334 RYID = RYD(II)
1335 C
1336 RXIJ = RXI - RXID
1337 RXIJ = RXIJ - DNINT(RXIJ/XL)*XL
1338 IF(DABS(RXIJ) .GE. RCOFFMD) GOTO 120
1339 RYIJ = RYI - RYID
1340 RYIJ = RYIJ - DNINT(RYIJ/YL)*YL
1341 IF(DABS(RYIJ) .GE. RCOFFMD) GOTO 120
1342 RIJ2 = RXIJ**2 + RYIJ**2
1343 IF(RIJ2 .GT. RCOFFMD2) GOTO 120
1344 IF(RIJ2 .LT. RCOFFMN2) RIJ2 = RCOFFMN2
1345 C
1346 RIJ = DSQRT(RIJ2)
1347 TXIJ = RXIJ/RIJ
1348 TYIJ = RYIJ/RIJ
1349 RRIJ = RIJ - 0.5D0 + DC/2.D0
1350 SR1 = (DC/RRIJ)
1351 SR2 = (DC/RRIJ)**2
1352 SR4 = SR2*SR2
1353 SR6 = SR2*SR4
1354 SR12 = SR6*SR6
1355 FIJ = (RE*DC/RRIJ)*(2.D0*SR12 - SR6 - FCOFFDDM)
1356 FXIJ = FIJ*TXIJ
1357 FYIJ = FIJ*TYIJ
1358 C
1359 FXMD(I) = FXMD(I) + FXIJ
1360 FYMD(I) = FYMD(I) + FYIJ
1361 FXDM(II) = FXDM(II) - FXIJ
1362 FYDM(II) = FYDM(II) - FYIJ
1363 C
1364 120 CONTINUE
1365 150 CONTINUE
1366 200 CONTINUE
1367 RETURN
1368 END
1369 C***
1370 C THIS SUBROUTINE IS FOR GENERATING UNIFORM RANDOM NUMBERS *
1371 C (SINGLE PRECISION) FOR 32-BIT COMPUTER. *
1372 C N : NUMBER OF RANDOM NUMBERS TO GENERATE *
1373 C IX : INITIAL VALUE OF RANDOM NUMBERS (POSITIVE INTEGER) *
1374 C : LAST GENERATED VALUE IS KEPT *
1375 C X(N) : GENERATED RANDOM NUMBERS (0<X(N)<1) *

• The forces are calculated according to Eq. (6.26).

• If the magnetic particle and
the dissipative particle are
separated over RCOFFMD,
the force is regarded to be
zero. If the two particles
significantly overlap, the
separation is regarded as
RCOFFMN in order to
prevent the system from
diverging.

• The name of the cell in
which the dissipative
particles possibly interact
with magnetic particle i is GP.
The names of such dissipa-
tive particles are read from
the variable TABLED (*,GP).

1376 C***
1377 C**** SUB RANCAL ****
1378 SUBROUTINE RANCAL(N, IX, X)
1379 C
1380 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
1381 C
1382 REAL X(N)
1383 INTEGER INTEGMX, INTEGST, INTEG
1384 C
1385 DATA INTEGMX/2147483647/
1386 DATA INTEGST,INTEG/584287,48828125/
1387 C
1388 AINTEGMX = REAL(INTEGMX)
1389 C
1390 IF (IX.LT.0) STOP

• This is for a 32-bit CPU based on the
expression of two’s complement.

• A subroutine for generating a uniform
random number sequence.

217Practice of Dissipative Particle Dynamics Simulations

1391 IF (IX.EQ.0) IX = INTEGST
1392 DO 30 I=1,N
1393 IX = IX*INTEG
1394 IF (IX .LT. 0) IX = (IX+INTEGMX)+1
1395 X(I) = REAL(IX)/AINTEGMX
1396 30 CONTINUE
1397 RETURN
1398 END

218 Introduction to Practice of Molecular Simulation

7 Practice of Lattice Boltzmann
Simulations

In this chapter, we consider the lattice Boltzmann method, which is generally used

as a simulation technique for a pure liquid system but has a different approach to

the molecular simulation and microsimulation methods. The lattice Boltzmann

method is also a potential simulation technique for taking into account multibody

hydrodynamic interactions among particles in a particle suspension or polymers in

a polymeric liquid. Therefore, the lattice Boltzmann method may be a promising

simulation tool in various fields in science and engineering.

In treating fluid properties, such as the flow field, the lattice Boltzmann method

employs an abstract approach that makes use of the particle distribution function,

whereas the usual fluid simulation method deals with quantities that are intuitively

understandable, such as velocities and pressures. The reader may therefore find that

the basic principle behind the lattice Boltzmann method is slightly more difficult to

understand. However, once mastered, the concept of the particle distribution func-

tion and the theoretical background of this simulation method will enable a

research scientist to apply the lattice Boltzmann method to various types of flow

problems in a relatively straightforward manner.

The present exercise addresses a uniform flow around a circular cylinder, which

will be a foundation for applying the lattice Boltzmann method to flow problems in

a particle dispersion or a polymeric liquid. The validity of the solution obtained by

this method can be evaluated by comparing it with that obtained by a fully devel-

oped simulation method, such as the finite difference method. The sample simula-

tion program has been developed from the viewpoint of applying it to a particle

suspension; it may thus be very valuable in a practical context.

7.1 Uniform Flow Around a Two-Dimensional Circular
Cylinder

We here consider solving the problem of uniform flow past a circular cylinder by

means of the lattice Boltzmann method. In a certain limited range of the Reynolds

number, a pair of vortices appears behind the cylinder. The formation of these vor-

tices is very sensitive to the type of boundary model used for the interaction

between the cylinder and the neighboring virtual fluid particles.

Introduction to Practice of Molecular Simulation. DOI: 10.1016/B978-0-12-385148-2.00007-0

© 2011 Elsevier Inc. All rights reserved.

7.2 Specification of Problems in Equations

The important task in the formalization of the present problem is the treatment of

the boundary condition between the cylinder and the virtual fluid particles in the

neighboring lattice sites in addition to the outer boundary conditions.

We consider a uniform flow past a two-dimensional circular cylinder in the

x-direction, as shown in Figure 7.1. The present flow problem is treated as a two-

dimensional flow, so we use the D2Q9 lattice model, as explained in Section 1.5.

The simulation region is divided into the lattice system shown in Figure 7.2. The

two-dimensional circular cylinder with diameter D is fixed at the origin of the coor-

dinate system. Numbering the velocity direction α in the unit cell is as shown in

Figure 1.5B, and α is taken as α5 0,1,2,. . .,8. If r is the position vector of an arbi-

trary lattice point and fα(r,t) is the particle distribution function at time t, the func-

tion after the time interval Δt, fα(r1 cαΔt, t1Δt), can be evaluated from

Eq. (1.91) as

y

x

l0

–h0 h0

–l0
Figure 7.1 Uniform flow past a circular

cylinder.

y

x

l0

–h0 h0

–l0
Figure 7.2 Simulation region made up

of square lattices.

220 Introduction to Practice of Molecular Simulation

fαðr1 cαΔt; t1ΔtÞ5 ~f αðr; tÞ
~f αðr; tÞ5 fαðr; tÞ1

1

τ
ff ð0Þα ðr; tÞ2 fαðr; tÞg

9>=
>; ð7:1Þ

in which τ is the relaxation time, f ð0Þα is the thermodynamic equilibrium distribution

function, and cα is the lattice velocity in the α-direction. With the notation u for

the macroscopic velocity and ρ for the density, the equilibrium distribution function

is written as

f ð0Þα 5 ρwα 11 3
cαUu
c2

2
3u2

2c2
1

9

2
U
ðcαUuÞ2

c4

� �
ð7:2Þ

in which wα is a weighting constant. For the case of the D2Q9 model, these terms

are written as

wα 5
4=9 for α5 0

1=9 for α5 1; 2; 3; 4
1=36 for α5 5; 6; 7; 8

jcαj5
0 for α5 0

c for α5 1; 2; 3; 4ffiffiffiffiffi
2c

p
for α5 5; 6; 7; 8

8<
:

8<
: ð7:3Þ

In these expressions, c is the velocity of the movement for the shortest lattice dis-

tance, expressed as c5Δx/Δt, in which Δx is the shortest distance between two

neighboring sites. The lattice velocities given in Eq. (7.3) guarantee that the fluid

particles can move from site to site during the time interval Δt. If the particle dis-

tributions fα (α5 0,1,2,. . .,8) are known for all the directions, the macroscopic

density and momentum can be evaluated from Eqs. (1.88) and (1.89). That is,

ρðr; tÞ5
X8
α50

fαðr; tÞ; ρðr; tÞuðr; tÞ5
X8
α50

fαðr; tÞcα ð7:4Þ

In the present case, a uniform flow is generated by employing a thermodynamic

equilibrium distribution with a given uniform velocity at the upstream boundary

surface at x5 2h0. In order to ensure that we obtain reasonable solutions for the

present flow problem, we must give careful attention to the interaction between

the cylinder and the neighboring lattice sites, and to the outer boundary condition.

In the next section we consider the treatment of the boundary conditions.

7.3 Boundary Conditions

We are now ready to formalize the boundary conditions that complement the basic

equations explained previously. The boundary surfaces to be treated are the upstream

and downstream boundaries, both outer side boundaries, and the cylinder surface

boundary. Among these boundary surfaces, the boundary between the cylinder

221Practice of Lattice Boltzmann Simulations

and its neighboring lattice points is the most important and complex. In the following

paragraphs, the boundary conditions relating to the cylinder surface are treated first.

We first explain the Yu�Mei�Luo�Shyy (YMLS) model [34] using Figure 7.3.

The particle distribution function in the α-direction is considered (α5 2 in

Figure 7.3). In Figure 7.3, rw is the point at the cylinder surface, rp is the neighbor-

ing point inside the cylinder, rl is the neighboring site in the liquid area, and rl0 is

the next neighboring point. Since the next point of rl in the direction of α5 1

is inside the cylinder, f2(rl,t1Δt) cannot be obtained from Eq. (7.1). That is,

f2(rl,t1Δt) is dependent on the particle distribution function at the cylinder surface

rw, and not on that at rp. If the particle distribution function at rw, f2(rw,t1Δt) is

known, f2(rl,t1Δt) at rl can be evaluated from the linear interpolation method using

those at rl0 and rw as

f2ðrl; t1ΔtÞ5 Δw

11Δw

f2ðrl0 ; t1ΔtÞ1 1

11Δw

f2ðrw; t1ΔtÞ ð7:5Þ

in which Δw5 jrl2 rwj/jrl2 rpj. Figure 7.3 shows the treatment for the direction

of α5 2 (in the opposite direction to α5 1), and Eq. (7.5) is simply applied to the

direction α5 2; in which the connecting line in the opposite direction (α5 1)

crosses the cylinder surface. In order to evaluate f2(rl,t1Δt) from Eq. (7.5),

f2(rw,t1Δt) at the surface is necessary, and this method uses the following

equation:

f2ðrw; t1ΔtÞ5 ð12ΔwÞ ~f 1ðrl0 ; tÞ1Δw
~f 1ðrl; tÞ ð7:6Þ

This expression means that the particle distribution function on the right-hand side,

which is obtained from the linear interpolation method, becomes that in the oppo-

site direction at the next time step. The linear YMLS method [34] uses the linear

interpolation procedure with Eqs. (7.5) and (7.6) to obtain f2(rl,t1Δt). In this

method, only two lattice points are used for the interpolation procedure, so it is

suitable for many particle dispersions in which a near-contact situation of particles

frequently arises.

In addition to the present YMLS boundary model, for the purpose of study, we will

employ three other methods explained in Chapter 8: the historical bounce-back rule

[35,36] in Eq. (8.106); the quadratic YMLS method, based on the quadratic curve with

the additional point rlv (Eq. (8.121)); and the Bouzidi�Firdaouss�Lallemand (BFL)

r l″ r l ′ r l rw rp

Figure 7.3 Boundary condition on the

material surface.

222 Introduction to Practice of Molecular Simulation

model [37] in Eqs. (8.113) and (8.116), or in Eqs. (8.117) and (8.118), which uses the

slightly different interpolation scheme. The two different procedures are adopted for

Δw# 1/2 andΔw. 1/2 in order not to lose the accuracy of the interpolation.

Next, we specify the treatment at the upstream and downstream surfaces. At the

upstream surface, the equilibrium distribution with a given uniform velocity U is

specified. On the other hand, the extrapolation condition, which is widely used in

numerical analysis methods, may be employed at the downstream boundary sur-

face. As will be shown in Chapter 8, the extrapolation method regards the last three

values at rN2 2, rN2 1, and rN as having a linear relationship, expressed as

fαðrN ; t1ΔtÞ5 2fαðrN2 1; t1ΔtÞ2 fαðrN2 2; t1ΔtÞ ð7:7Þ

in which α is the direction leaving the outer boundary toward the inside of the

simulation region.

Similarly, the zero-gradient condition may be applicable, and in this condition

the differential away from the boundary is regarded as zero:

fαðrN ; t1ΔtÞ5 fαðrN2 1; t1ΔtÞ ð7:8Þ

This condition is inferior to the previous extrapolation in accuracy but superior on

the point of divergence. In addition, the uniform flow condition is employed, in

which a uniform flow is assumed outside the simulation region.

Finally, the outer side boundary surfaces of the simulation region are specified.

If the simulation region is sufficiently large compared with the cylinder diameter,

the periodic boundary condition, which is generally used in molecular simulations,

is applicable. With this condition, the particle distribution function at the upper

surface in Figure 7.1, fα(x,y,t) jupper (α5 0,1,. . .,8), is regarded as equal to

fα(x,y,t) jlower at the lower surface. Also, the equilibrium distribution in Eq. (7.2) and

the bounce-back rule may be applied at both side boundaries. However, these bound-

ary models may cause significant distortion of the flow field, unless a sufficiently

large simulation region is employed. The most effective method for removing the

influences of the outer boundary surfaces is expected to be the extrapolation condi-

tion. Hence, we next discuss the relative accuracy of the uniform flow condition

(i.e., the equilibrium distribution condition), the extrapolation condition, and the

zero-gradient condition.

7.4 Various Treatments in the Simulation Program

7.4.1 Definition and Evaluation of the Drag Coefficient

The cylinder located in the fluid acts as a resistance to the smooth fluid flow. The

drag coefficient CD for a uniform flow past a two-dimensional circular cylinder can

be evaluated using the force F per unit length in the flow direction exerted by the

ambient fluid, defined as

223Practice of Lattice Boltzmann Simulations

CD 5
F

ρU2D=2
ð7:9Þ

in which ρ is the density of the fluid, U is the uniform flow velocity, and D is the

cylinder diameter.

We now show the method of evaluating F. It is assumed that the point r
cyl
l is the

nearest neighbor site in the liquid to the cylinder surface, and the neighbor lattice

point from the site in the α-direction is inside the cylinder. The momentum toward

the cylinder surface from r
cyl
l at time t is cαcyl

l

~fαcyl

l

ðrcyll ; tÞΔxΔy; and that after the

collision with the cylinder surface at (t1Δt) is 2 cαcyl

l

fαcyl

l

ðrcyll ; t1ΔtÞΔxΔy: The
change in the momentum during the time interval Δt is equal to the impulse

Fαcyl

l

Δt: Hence, Fαcyl

l

Δt can be obtained as

Fαcyl

l

5 cαcyl

l

~f αcyl

l

ðrcyll ; tÞΔxΔy1 cαcyl

l

fαcyl

l

ðrcyll ; t1ΔtÞΔxΔy
n o

=Δt ð7:10Þ

The force acting on the cylinder by the fluid F can be evaluated by summing the

contributions from the neighbor lattice sites interacting with the cylinder as

F5
X
l

X
αcyl

l

Fαcyl

l

ð7:11Þ

In the present flow, the absolute value of F5 jFj is used to calculate the drag co-

efficient in Eq. (7.9).

The flow field and the drag coefficient have already been obtained theoretically

and numerically as a function of the Reynolds number Re for a uniform flow past a

cylinder, so the accuracy of the present results can be evaluated by comparison

with such theoretical and numerical solutions. The Reynolds number Re is defined

as Re5DU/ν, in which the kinematic viscosity ν is expressed in Eq. (8.94) for the

D2Q9 model. That is,

ν5
Δtc2

3
ðτ2 1=2Þ ð7:12Þ

7.4.2 Choice of the Procedures by Coloring Lattice Sites

All the lattice points can be classified into one of several groups. That is, the group

is composed of (1) lattice points at the upstream and downstream boundary surfaces,

(2) lattice points at the outer side boundary surfaces, (3) lattice points interacting

with the cylinder, (4) lattice points inside the cylinder, and (5) all other usual lattice

points. In the simulation program, this discrimination is expressed using the function

“color.” The following values are given to color(i) in the sample program:

color(i)5 0 : all the lattice points in the simulation region not included below

color(i)5 1 : lattice points at the upstream boundary (both end points are included)

224 Introduction to Practice of Molecular Simulation

color(i)5 2 : lattice points at the downstream boundary (both end points are included)

color(i)5 3 : lattice points at the outer upper boundary surfaces (neither end point is

included)

color(i)5 4 : lattice points at the outer lower boundary surfaces (neither end point is

included)

color(i)5 5 : lattice points interacting with the cylinder

color(i)5 6 : lattice points inside the cylinder, interacting with the neighboring outside

points

color(i)5 7 : lattice points inside the cylinder, not interacting with the neighboring

outside points

In the present study, since the cylinder is fixed and does not move, the above

checking procedure is only required once before starting the main loop in the pro-

gram. The introduction of the color variable is useful to make the logical flow clear

in the program, which is important in developing a simulation program. Moreover,

this approach is directly applicable when the dispersed particles move with time, so

that the checking procedure must be regularly undertaken until the end of the

simulation.

7.4.3 Treatment of Interactions on the Cylinder Surface

In order to use the above-mentioned boundary conditions at the cylinder surface,

the quantity Δw5 jrl2 rwj/jrl2 rpj must be evaluated. Since the point rw is at the

cylinder surface, the following equation has to be satisfied:

jð12ΔwÞðrl 2 rpÞ1 rp 2 rcylj5Rcyl ð7:13Þ

in which Rcyl is the cylinder radius (Rcyl5D/2), and rcyl is the cylinder position

vector (rcyl5 0 in the present exercise). Equation (7.13) reduces to an easily solved

quadratic equation:

Δw 5
ðr̂l2 2 r̂pUr̂lÞ2

ffi
ðr̂l2 2 r̂pUr̂lÞ2 2 ðr̂l 2 r̂pÞ2ðr̂l2 2R2

cylÞ
q

ðr̂l 2 r̂pÞ2
ð7:14Þ

in which the notation of r̂l 5 rl 2 rcyl and r̂p 5 rp 2 rcyl is used for simplification.

In simulations, the value of Δw for all pairs of the two interacting points on either

side of the cylinder surface is calculated and saved.

7.4.4 Evaluation of the Velocity and Density

In order to employ the equilibrium distribution function, the macroscopic velocity

u and density ρ at an arbitrary lattice point must be evaluated. The definition of the

lattice velocities and the coordinate system are shown in Figure 1.4 and Figure 7.1,

respectively. First, the density ρ(r,t) at an arbitrary point r is evaluated from

225Practice of Lattice Boltzmann Simulations

Eq. (7.4), and then the velocity u5 (ux,uy) is calculated from the following

equations:

ρðr; tÞuxðr; tÞ5 cðf1ðr; tÞ2 f2ðr; tÞÞ1
ffiffiffi
2

p
c

ffiffiffi
2

p

2
f5ðr; tÞ2

ffiffiffi
2

p

2
f6ðr; tÞ

0
@

1
A

1
ffiffiffi
2

p
c

ffiffiffi
2

p

2
f7ðr; tÞ2

ffiffiffi
2

p

2
f8ðr; tÞ

0
@

1
A

5 cðf1ðr; tÞ2 f2ðr; tÞ1 f5ðr; tÞ2 f6ðr; tÞ1 f7ðr; tÞ2 f8ðr; tÞÞ
ð7:15Þ

ρðr; tÞuyðr; tÞ5 cðf3ðr; tÞ2 f4ðr; tÞ1 f5ðr; tÞ2 f6ðr; tÞ2 f7ðr; tÞ1 f8ðr; tÞÞ ð7:16Þ

7.5 Nondimensionalization of the Basic Equations

In simulations, it is usual practice for each quantity to be nondimensionalized and

for the nondimensionalized equations to be treated. Since this has been explained

in Section 8.6, we briefly show the nondimensionalized results. Here time is nondi-

mensionalized by Δt, velocities by c (5Δx/Δt), and the particle distribution func-

tion by ρ0, so that the basic equation (7.1) is expressed in nondimensional form as

fα
�ðr� 1 cα

�; t� 1 1Þ5 ~f α
�ðr�; t�Þ

~f α
�ðr�; t�Þ5 fα

�ðr�; t�Þ1 1

τ
f ð0Þ�α ðr�; t�Þ2 fα

�ðr�; t�Þ� �
9>=
>; ð7:17Þ

in which

f ð0Þ
�

α 5wαρ
�

11 3c�αUu
� 1

9

2
cα
�Uu�

� �2
2

3

2
u�2

� �
ð7:18Þ

cα
�		 		5 0 for α5 0

1 for α5 1; 2; 3; 4ffiffiffi
2

p
for α5 5; 6; 7; 8

8<
: ð7:19Þ

In these equations, wα has already been shown in Eq. (7.3), and τ is originally a

nondimensional quantity. Note that the relationship c*5 1 has been taken into

account in the above derivations. The nondimensional expressions of Eq. (7.4) are:

ρ�ðr�; t�Þ5
X8
α50

f �α ðr�; t�Þ; ρ�ðr�; t�Þu�ðr�; t�Þ5
X8
α50

f �α ðr�; t�Þc�α ð7:20Þ

226 Introduction to Practice of Molecular Simulation

Since the velocities of fluid particles are nondimensionalized by the lattice speed c,

the nondimensional speed of sound c�s is expressed as c�s 5 1=
ffiffiffi
3

p
in Eq. (8.46).

Hence, it should be noted that one needs to treat flow problems for a macroscopic

velocity u* of u*{1, unless the density significantly varies in the simulation

region. The nondimensional kinematic viscosity, which is necessary for evaluating

the Reynolds number, is expressed as ν*5 (2τ2 1)/6.

7.6 Conditions for Simulations

7.6.1 Initial Distribution

As an initial distribution, the equilibrium distribution with a uniform velocity U

and density ρ0 is used here for the inner simulation region, as well as for the

entrance boundary surface. It is possible to use an equilibrium distribution with

zero velocity, but this may induce a divergence of the system with time. It is

important to discuss the validity of the various initial conditions adopted in order to

clarify the characteristics of the simulation program.

7.6.2 Parameters for Simulations

The solution of the flow field and the drag coefficient for the case of a uniform

flow past a two-dimensional circular cylinder has already been solved theoretically

for Re & 1 and numerically for Re * 1. Since a pair of stable vortices appears

behind the cylinder in the range of 7 & Re & 40, it is quite reasonable to focus on

a pair of vortices for 7 & Re & 40; these vortices are very sensitive to the type of

surface model employed. Hence, the present simulations have been conducted

within the range of 1#Re# 20. The Reynolds number can be expressed as

Re5U*D*/((2τ2 1)/6), so that in order to take a large Reynolds number, the relax-

ation time τ is chosen as τC1/2. The uniform velocity U* cannot be large due to

the restriction of the use of a slow uniform velocity compared with the speed of

sound. From these considerations, the uniform flow velocity is taken as

U*5 0.005�0.01 and the relaxation time as τ5 0.515�0.8. The cylinder diameter

D* is D*5 3�20, and the size of the simulation region is taken as

2h0
5 4D�14D*and 2l0

5 3D�11D*. The influence of the boundary model will

appear to be more significant for a smaller simulation region.

7.7 Results of Simulations

It is known that the flow field for outer flow problems is significantly distorted

unless a sufficiently large simulation region is used. The results for a relatively small

simulation region (2h0
*,2l0

)5 (7D,6D*) are shown in Figure 7.4 for Re5 20.

Figures 7.4A and B depict the uniform flow condition and the zero-gradient

227Practice of Lattice Boltzmann Simulations

 condition, respectively, and Figure 7.4C shows the Navier�Stokes solution. The his-

torical bounce-back rule has been used for the treatment of the interactions with the

cylinder. In the case of Re5 20, the length of the pair of vortices is approximately

the same as the cylinder diameter, and the formation of these vortices is quite sensi-

tive to the outer boundary condition that has been adopted. The result in Figure 7.4C

is the numerical solution obtained by the ordinary finite difference method, and it

can be regarded as an exact solution. As shown in Figure 7.4A, for the uniform flow

condition (the equilibrium distribution case), the pair of vortices behind the cylinder

is significantly distorted and shortened, and the fluid flows along and does not tend

to cross the outer side boundary surfaces. This is quite understandable in this case,

because a uniform flow is assumed just outside the boundary surfaces; therefore, the

flow crossing the boundaries does not tend to arise. The pair of distorted vortices is

due to a similar reason—the flow crossing the downstream boundary surface is

(A) (B)

(C)

Figure 7.4 Dependence of the flow field on the outer boundary conditions for Re5 20; the

bounce-back rule is used for the cylinder surface: (A) uniform flow condition, (B) zero-gradient

condition, and (C) numerical solution of Navier�Stokes equation.

228 Introduction to Practice of Molecular Simulation

 significantly distorted. These results clearly show that a uniform flow condition has

the tendency to distort the flow field significantly unless a sufficiently large simula-

tion region is used, although this condition is found to exhibit less divergence in the

calculation procedures during a simulation run. In contrast, the result for the zero-

gradient condition shown in Figure 7.4B is in agreement with the Navier�Stokes

solution, but the pair of vortices is significantly distorted. As discussed in the follow-

ing, this is again due to the use of a small simulation region. For the extrapolation

boundary condition, it was found that stable solutions could not be obtained because

the flow field diverged during the advance of the time steps.

Figure 7.5 shows the influence of the size of the simulation region on the forma-

tion of a pair of vortices for the three cases of (2h0
*,2l0

)5 (6D,5D*), (9D*,7D*),

and (14D*,11D*), which correspond to Figure 7.5A�C, respectively. The bounce-

back rule has been used for the collision with the cylinder, and the zero-gradient

(A) (B)

(C)

Figure 7.5 Dependence of the flow field on the size of the simulation region (Re5 20,

the bounce-back method): (A) (2h0
*,2l0

)5 (6D,5D*); (B) (2h0
*,2l0

)5 (9D,7D*); and (C)

(2h0
*, 2l0

)5 (14D,11D*).

229Practice of Lattice Boltzmann Simulations

condition has been used for the boundaries of the simulation box. The Reynolds

number Re is 20, as in the previous case. For the case of our smallest simulation

region, shown in Figure 7.5A, the pair of vortices unreasonably lengthens in the

downstream area due to the significantly small region used. The results obtained by

the lattice Boltzmann method tend to approach the Navier�Stokes solution shown

in Figure 7.4C with the size of the simulation region, and the flow field is in agree-

ment with the exact solution. This clearly demonstrates the importance of grasping

the influence of this effect by investigating several cases with different size simula-

tion regions.

Figure 7.6 shows the influence of the boundary model employed at the cylinder

surface on the formation of the pair of vortices. Figure 7.6A�D illustrate the

bounce-back rule, the linear YMLS method, the liner BFL method, and the

Navier�Stokes solution. These results were obtained for Re5 20, the simulation

region (2h0
*,2l0

)5 (14D,11D*), and the zero-gradient condition for the outer

boundary surfaces. The quadratic YMLS and BFL methods give rise to a diver-

gence of the flow field. As clearly seen in Figure 7.6, no significant difference can

be observed among these flow fields, and these three boundary models show agree-

ment concerning the formation of the pair of vortices behind the cylinder.

Qualitative and quantitative agreement with the exact solution was also confirmed

(A) (B)

(C) (D)

Figure 7.6 Dependence of the flow field on the surface models on the cylinder surface

(Re5 20, the zero-gradient condition): (A) bounce-back rule, (B) linear YMLS method, (C) linear

BFL method, and (D) numerical solution of Navier�Stokes equation.

230 Introduction to Practice of Molecular Simulation

concerning the drag coefficient and the velocity distributions, although not shown

here. In particular, agreement for the linear YMLS method is good, which may

indicate there is some advantage to be found in the application of this

boundary method for particle dispersions. As previously discussed, this is because

the method that uses the fewer lattice points in the interpolation scheme is the most

desirable.

7.8 Simulation Program

The following list is an example simulation program written in FORTRAN for the

case discussed in this chapter, and it explains the significance of the important vari-

ables used in the program:

RX(I,J),RY(I,J) : (x,y) components of the position r�i;j of lattice site (i,j)
(I50,1,. . .,PX; J50,1,. . .,PY)

VX(I,J),VY(I,J) : Macroscopic velocity u�i;j at lattice site (i,j)
RHO(I,J) : Macroscopic density at lattice site (i,j)

F(I,J,K) : Particle distribution function (K50,1,. . .,8)at lattice site
(i,j)

FTILD(I,J,K) : Particle distribution function after the collision at lattice (i,j)

W(K) : Weighting constant wα

CVEL(2,K) : Lattice velocity cα (CVEL(1,K)is x-component, and CVEL
(2,K) is y-component)

XL,YL : Dimensions of the simulation region in the (x,y) directions

DNS0 : Density of an inflow fluid

DCYL : Diameter of the cylinder

UVELX : Uniform flow velocity U*

RE : Reynolds number Re

TAU : Relaxation time τ
RXCYL,RYCYL : Center of the cylinder (equal to the origin in this practice)

ICYL,JCYL : Lattice site (in the (x,y) direction) representing the cylinder

center

COLOR(ITH) : Color function representing the type of lattice site (i,j)

(ITH5(11PX)*J1I11)
TBLNAM(II) : Save the name of lattice sites interacting with the cylinder

POSINTBL(ITH) : Save the order in which each lattice site appears in TBLNAM
TBLPOS(II) : Save the order in which quantities relate to lattice site

TBLNAM(II) appear in the variable TBLDW
TBLNUM(II) : Save the number of velocities interacting with the cylinder

concerning lattice site TBLNAM(II)
TBLDW(III) : Save the value of Δw

TBLAL(III) : Save the name of the lattice directions α interacting with the

cylinder

In order to assist the reader in understanding the program, explanatory state-

ments have been added to the important features.

231Practice of Lattice Boltzmann Simulations

0001 C***
0002 C* LBcyl5.f *
0003 C* *
0004 C* OPEN(9, FILE='@bbba1.dat' ,STATUS='UNKNOWN'); para, results *
0005 C* OPEN(11,FILE='bbba11.dat' ,STATUS='UNKNOWN'); parameters *
0006 C* OPEN(12,FILE='bbba21.dat' ,STATUS='UNKNOWN'); VEL data *
0007 C* OPEN(21,FILE='bbba001.dat',STATUS='UNKNOWN'); VEL field *
0008 C* OPEN(22,FILE='bbba011.dat',STATUS='UNKNOWN'); VEL field *
0009 C* OPEN(23,FILE='bbba021.dat',STATUS='UNKNOWN'); VEL field *
0010 C* OPEN(24,FILE='bbba031.dat',STATUS='UNKNOWN'); VEL field *
0011 C* OPEN(25,FILE='bbba041.dat',STATUS='UNKNOWN'); VEL field *
0012 C* OPEN(26,FILE='bbba051.dat',STATUS='UNKNOWN'); VEL field *
0013 C* OPEN(27,FILE='bbba061.dat',STATUS='UNKNOWN'); VEL field *
0014 C* OPEN(28,FILE='bbba071.dat',STATUS='UNKNOWN'); VEL field *
0015 C* OPEN(29,FILE='bbba081.dat',STATUS='UNKNOWN'); VEL field *
0016 C* OPEN(30,FILE='bbba091.dat',STATUS='UNKNOWN'); VEL field *
0017 C* OPEN(41,FILE='avsvel1.fld',STATUS='UNKNOWN'); MicroAVS fld *
0018 C* OPEN(42,FILE='avsvel1.dat',STATUS='UNKNOWN'); MicroAVS data *
0019 C* *
0020 C* ----- LATTICE BOLTZMANN SIMULATION OF A FLOW PAST ----- *
0021 C* A CIRCULAR CYLINDER IN A TWO-DIMENSIONAL SYSTEM *
0022 C* *
0023 C* VER.1: *
0024 C* 1. D2Q9 MODEL IS USED *
0025 C* 2. EQUILIBRIUM BC WITH GIVEN UNIFORM VEL. IS USED FOR *
0026 C* UPSTREAM BC *
0027 C* 3. THREE FOLLOWING BC'S ARE USED FOR BOTH SIDES BC OF CYL *
0028 C* (1) EXTRAPOLATION BC (ITREESID=1) *
0029 C* (2) DEF=0 (ITREESID=2) *
0030 C* (3A) UIFORM FLOW (Const)(ITREESID=3) *
0031 C* (3B) UIFORM FLOW (DEF=0)(ITREESID=4) *
0032 C* (3C) UIFORM FLOW (Extra)(ITREESID=5) *
0033 C* 4. THREE FOLLOWING BC'S ARE USED FOR DOWNSTREAM BC *
0034 C* (1) EXTRAPOLATION BC (ITREEDWN=1) *
0035 C* (2) DEF=0 (ITREEDWN=2) *
0036 C* (3A) UIFORM FLOW (Const)(ITREEDWN=3) *
0037 C* (3B) UIFORM FLOW (DEF=0)(ITREEDWN=4) *
0038 C* (3C) UIFORM FLOW (Extra)(ITREEDWN=5) *
0039 C* 5. THREE FOLLOWING BC'S ARE USED FOR COLLISION BETWEEN *
0040 C* SITES AND CYLINDER *
0041 C* (1) BOUNCE-BACK (ITREECYL=1) *
0042 C* (2A) YMLS METHOD(Quadratic) (ITREECYL=2) *
0043 C* (2B) YMLS METHOD(Liner) (ITREECYL=3) *
0044 C* (3A) BFL METHOD(Quadratic) (ITREECYL=4) *
0045 C* (3B) BFL METHOD(Linear) (ITREECYL=5) *
0046 C* *
0047 C* VER.1 BY A.SATOH, '08 7/4 *
0048 C***
0049 C ---- THE FOLLOWING NOTATIONS ARE USED FOR LATTICE BOLTZMANN ---
0050 C F(I,J,K) : DENSITY DISTRIBUTION FUNCTION
0051 C I=0,1,2,...,PX : J=0,1,2,...PY : K=0,1,...,8
0052 C FTILD(I,J,K) : DENSITY DISTRIBUTION FUNCTION BEFORE TRAVEL
0053 C CVEL(2,K) : C_ALPHA
0054 C C_0=(0,0)
0055 C C_1=(1,0), C_2=(-1, 0), C_3=(0, 1), C_4=(0,-1)
0056 C C_5=(1,1), C_6=(-1,-1), C_7=(1,-1), C_8=(-1, 1)
0057 C W(K) : WEIGHT CONSTANTS
0058 C W(0)=4/9, W(ALPHA)=1/9 (ALPHA=1,2,3,4),
0059 C W(ALPHA)=1/36 (ALPHA=5,6,7,8)
0060 C ALPHAMX : =8 FOR D2Q9
0061 C IINC(2,K) : INCREMENT IN EACH DIRECTION FOR TRANSFER
0062 C FOR ALPHA DIRECTION
0063 C (E.X., IINC(1,1)=1, IINC(2,1)=0)
0064 C ANTIALPH(K) : NAME OF THE OPPOSITE DIRECTION SITE FOR ALPHA
0065 C (E.X., ANTIALPH(1)=2)
0066 C RHO(I,J) : DENSITY AT (I,J)
0067 C RX(I,J),RY(I,J) : LATTICE POSITION
0068 C VX(I,J),VY(I,J) : VELOCITY COMPONENTS IN X- AND Y-DIRECTIONS
0069 C DNS0 : MEAN DENSITY (CONSTANT FOR NON-COMPRESSIVE FLOW)
0070 C PX,PY : NUMBER OF CELLS IN EACH DIRECTION (EVEN VALUES)
0071 C PXY : = (PX+1)*(PY+1)
0072 C XL,YL : LENGTHS OF SIMULATION REGION IN EACH DIRECTION
0073 C TAU : NON-DIMENSIONAL RELAXATION TIME
0074 C DX : UNIT LENGTH (=1)
0075 C DT : TIME INTERVAL(=1)
0076 C CLAT : LATTICE VELOCITY (=1)
0077 C (UVELX,UVELY) : UNIFORM VELOCITY COMPONENTS
0078 C
0079 C ------ THE FOLLOWING NOTATIONS ARE USED FOR THE CYLINDER ------

232 Introduction to Practice of Molecular Simulation

0082 C ICYL , JCYL : SITE POSITION OF CYLINDER
0083 C COLOR(PXY) : COLOR FOR DISTINGUISHING PROCEDURES FOR EACH SITE
0084 C POSINTBL(PXY): POSITION OF THE SITE IN TBLNAM(*) FOR EACH SITE
0085 C TBLNAM(NTBL) : NAMES OF INTERACTING SITES WITH CYLINDER
0086 C TBLNUM(NTBL) : NUMBERS OF INTERACTING ALPHA-VELS FOR EACH SITE
0087 C TBLPOS(NTBL) : POSITION OF THE SITE APPEARING IN TBLDW(*) AND
0088 C TBLAL(*)
0089 C TBLDW(NTBLDW): VALUES OF DW ARE SAVED IN TBLDW(*) FOR EACH SITE
0090 C TBLAL(NTBLDW): VALUES OF ALPHA-VEL ARE SAVED FOR EACH SITE
0091 C TBLNAMIN(NTBLNAMI) : THE NAMES OF SITES INSIDE CYLINDER
0092 C
0093 C ------------------ CONCERNING DRAG COEFFICIENT -----------------
0094 C CD : DRAG COEFFICIENT
0095 C CDFORCE(NSMPLCD) : FORCE IS SAVED FOR EACH TIME STEP
0096 C CDFORCE0 : COEFFICIENT (U**2)D/2 IS USED FOR CAL. CD
0097 C NSMPLCD : TOTAL SAMPLING NUMBER
0098 C RE : REYNOLDS NUMBER
0099 C U=0.005 D=20 TAU=0.80 Re= 1
0100 C U=0.005 D=20 TAU=0.60 Re= 3
0101 C U=0.005 D=20 TAU=0.55 Re= 6
0102 C U=0.005 D=20 TAU=0.53 Re= 10
0103 C U=0.005 D=20 TAU=0.52 Re= 15
0104 C U=0.005 D=20 TAU=0.515 Re= 20
0105 C U=0.005 D=20 TAU=0.51 Re= 30
0106 C
0107 C +++ -XL1<RX(I)<XL2 , -YL1<RY(I)<YL2 , -ZL1<RZ(I)<ZL2 +++
0108 C---
0109 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0110 C
0111 COMMON /BLOCK1/ F , FTILD
0112 COMMON /BLOCK2/ CVEL , W , IINC , ANTIALPH, ALPHAMX
0113 COMMON /BLOCK3/ RHO , RX , RY , VX , VY
0114 COMMON /BLOCK4/ DNS0 , TAU , DX , DT , CLAT
0115 COMMON /BLOCK5/ XL , YL , XL1 , YL1 , XL2 , YL2 , PX , PY , PXY
0116 COMMON /BLOCK6/ UVELX , UVELY
0117 C
0118 COMMON /BLOCK14/ RXCYL , RYCYL , ICYL , JCYL , DCYL
0119 COMMON /BLOCK15/ COLOR , POSINTBL
0120 COMMON /BLOCK16/ TBLNAM , TBLNUM , TBLPOS , NTBL
0121 COMMON /BLOCK17/ TBLDW , TBLAL , NTBLDW
0122 COMMON /BLOCK18/ TBLNAMIN , NTBLNAMI
0123 C
0124 COMMON /BLOCK21/ CD , CDFORCE0 , CDFORCE , RE , NSMPLCD
0125 C
0126 C -----------------------------
0127 INTEGER PP , QQ , KK
0128 PARAMETER(PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0)
0129 C
0130 REAL*8 F(0:PP,0:QQ,0:KK), FTILD(0:PP,0:QQ,0:KK)
0131 REAL*8 CVEL(2,0:KK) , W(0:KK)
0132 REAL*8 RHO(0:PP,0:QQ)
0133 REAL*8 RX(0:PP,0:QQ) , RY(0:PP,0:QQ)
0134 REAL*8 VX(0:PP,0:QQ) , VY(0:PP,0:QQ)
0135 INTEGER ALPHAMX , IINC(2,0:KK) , ANTIALPH(0:KK)
0136 INTEGER PX , PY , PXY
0137 C -----------------------------
0138 INTEGER PPXY
0139 PARAMETER(PPXY=150000 , NNTBL=2200 , NNTBL2=4400 , NNTBL3=4400)
0140 C
0141 REAL*8 TBLDW(NNTBL2)
0142 INTEGER COLOR(PPXY) , POSINTBL(PPXY)
0143 INTEGER TBLNAM(NNTBL) , TBLNUM(NNTBL) , TBLPOS(NNTBL) , NTBL
0144 INTEGER TBLAL(NNTBL2) , NTBLDW
0145 INTEGER TBLNAMIN(NNTBL3) , NTBLNAMI
0146 C -----------------------------
0147 INTEGER NNCD
0148 PARAMETER(NNCD=1000000)
0149 C
0150 REAL*8 CDFORCE(NNCD)
0151 C -----------------------------
0152 REAL*8 VXSUM(0:PP,0:QQ), VYSUM(0:PP,0:QQ), RHOSUM(0:PP,0:QQ)
0153 REAL*8 H , DCYL2SQ , CD99 , C1
0154 INTEGER NTIMEMX , NGRAPH , NANIME , NOPT, NSMPLCD, NDUM
0155 INTEGER NTHROW , NSMPLVEL, NANMCTR, NSMPL1
0156 INTEGER ITREECYL, ITREESID, ITREEDWN

0080 C DCYL : DIAMETER OF CYLINDER
0081 C RXCYL,RYCYL : POSITION OF CYLINDER(=(0,0) FOR THE PRESENT CASE)

• The given values are written out in @bbbd1
and bbbd11, and the velocities are written
out in bbbd21.

233Practice of Lattice Boltzmann Simulations

0157 C
0158 OPEN(9,FILE='@bbbd1.dat' ,STATUS='UNKNOWN')
0159 OPEN(11,FILE='bbbd11.dat' ,STATUS='UNKNOWN')
0160 OPEN(12,FILE='bbbd21.dat' ,STATUS='UNKNOWN')
0161 OPEN(21,FILE='bbbd001.dat',STATUS='UNKNOWN')
0162 OPEN(22,FILE='bbbd011.dat',STATUS='UNKNOWN')
0163 OPEN(23,FILE='bbbd021.dat',STATUS='UNKNOWN')
0164 OPEN(24,FILE='bbbd031.dat',STATUS='UNKNOWN')
0165 OPEN(25,FILE='bbbd041.dat',STATUS='UNKNOWN')
0166 OPEN(26,FILE='bbbd051.dat',STATUS='UNKNOWN')
0167 OPEN(27,FILE='bbbd061.dat',STATUS='UNKNOWN')
0168 OPEN(28,FILE='bbbd071.dat',STATUS='UNKNOWN')
0169 OPEN(29,FILE='bbbd081.dat',STATUS='UNKNOWN')
0170 OPEN(30,FILE='bbbd091.dat',STATUS='UNKNOWN')
0171 OPEN(41,FILE='avsvel1.fld',STATUS='UNKNOWN')
0172 OPEN(42,FILE='avsvel1.dat',STATUS='UNKNOWN')
0173 NP=9
0174 C --- PARAMETER (1) ---
0175 C ++ PX=140, PY=120 ; PX=280, PY=220 ++
0176 C ++ PX=180, PY=140 ; PX=320, PY=260 ++
0177 C ++ PX=220, PY=180 ; PX=340, PY=280 ++
0178 AU = 0.515D0
0179 UVELX = 0.005D0
0180 UVELY = 0.0D0
0181 PX = 140
0182 PY = 120
0183 C --- PARAMETER (2) ---
0184 ALPHAMX = 8
0185 XL = DBLE(PX)
0186 YL = DBLE(PY)
0187 XL1 = XL/2.D0
0188 YL1 = YL/2.D0
0189 XL2 = XL - XL1

• τ=0.515 and U*=0.005. The numbers of the lattice points in the x- and
y-directions are (PX, PY), respectively. α=0,…,8. The size of the
simulation box is (XL,YL) in each direction.

• The name of the first lattice point is 0, so that the total
number of the lattice points is PXY=(PX+1)×(PY+1).
• The cylinder diameter centered at the origin is DCYL=
20, and its center is therefore (RXCYL,RYCYL)=(0,0).

0190 YL2 = YL - YL1
0191 DNS0 = 1.D0
0192 DX = 1.D0
0193 DT = 1.D0
0194 CLAT = 1.D0
0195 PXY = (PX+1)*(PY+1)
0196 C --- PARAMETER (2) ---
0197 DCYL = 20.D0 - 0.0001D0
0198 DCYL2SQ = DCYL**2 / 4.D0
0199 RXCYL = 0.D0
0200 RYCYL = 0.D0
0201 C --- PARAMETER (4) ---
0202 C ++ (1) BOUNCE-BACK (ITREECYL=1) ++
0203 C ++ (2A) YMLS METHOD(Quadratic) (ITREECYL=2) ++
0204 C ++ (2B) YMLS METHOD(Liner) (ITREECYL=3) ++
0205 C ++ (3A) BFL METHOD(Quadratic) (ITREECYL=4) ++
0206 C ++ (3B) BFL METHOD(Linear) (ITREECYL=5) ++
0207 C ++ (1) EXTRAPOLATION BC (ITREESID=1) ++
0208 C ++ (2) DEF=0 (ITREESID=2) ++
0209 C ++ (3A) UIFORM FLOW(Const)(ITREESID=3) ++
0210 C ++ (3B) UIFORM FLOW(DEF=0)(ITREESID=4) ++
0211 C ++ (3C) UIFORM FLOW(Extra)(ITREESID=5) ++
0212 C ++ (1) EXTRAPOLATION BC (ITREEDWN=1) ++
0213 C ++ (2) DEF=0 (ITREEDWN=2) ++
0214 C ++ (3A) UIFORM FLOW(Const) (ITREEDWN=3) ++
0215 C ++ (3B) UIFORM FLOW(DEF=0) (ITREEDWN=4) ++
0216 C ++ (3C) UIFORM FLOW(Extra) (ITREEDWN=5) ++
0217 ITREECYL= 1
0218 ITREESID= 2
0219 ITREEDWN= 2
0220 C
0221 NTIMEMX = 200000
0222 NGRAPH = NTIMEMX/10
0223 NANIME = NTIMEMX/10
0224 NOPT = 20
0225 C --- PARAMETER (5) ---
0226 C - NSMPLCD FOR CD -
0227 C - NSMPL1 FOR VEL -
0228 NSMPLCD = NTIMEMX
0229 NSMPL1 = 5
0230 NTHROW = NTIMEMX/10
0231 C --- PARAMETER (6) ---
0232 CDFORCE0= (DNS0*(UVELX)**2)*DCYL /2.D0
0233 RE = UVELX*DCYL/((2.D0*TAU - 1.D0)/6.D0)
0234 C
0235 C --
0236 C --------------------- INITIAL SETTING --------------------

• 10 sets of data are written out for making
an animation based on MicroAVS.

• The velocities and positions of
the lattice points are assigned.

• The velocities and
densities are written
out in bbbd001 to
bbbd091, and the
data are written out
in avsvel1 for Micro-
AVS.

• The boundary condition is adopted according to the values of
ITREECYL, ITREESID, and ITREEDWN.
• The total number of time steps is NTIMEMX= 200000. The
velocity field data are written out at every NGRAPH time steps.

234 Introduction to Practice of Molecular Simulation

0237 C --
0238 C --- SET C_VEL(2,8),W(8),IINC(2,8),ANTIALPH(8) ---
0239 CALL INICVEL
0240 C --- SET LATTICE POSITION RX(*,*),RY(*,*) ---
0241 CALL INILAT
0242 C --- SET INITIAL POSIT. AND VEL. ---
0243 C
0244 CCC OPEN(19,FILE='bbbd091.dat',STATUS='OLD')
0245 CCC READ(19,201) PX, PY, ALPHAMX
0246 CCC READ(19,202) (((F(I,J,K),K=0,ALPHAMX),J=0,PY), I=0,PX)
0247 CCC READ(19,204) ((RX(I,J),J=0,PY),I=0,PX)
0248 CCC READ(19,204) ((RY(I,J),J=0,PY),I=0,PX)
0249 CCC READ(19,206) ((VX(I,J),J=0,PY),I=0,PX)
0250 CCC READ(19,206) ((VY(I,J),J=0,PY),I=0,PX)
0251 CCC READ(19,208) ((RHO(I,J),J=0,PY),I=0,PX)
0252 CCC CLOSE(19,STATUS='KEEP')
0253 CCC GOTO 7
0254 C --- SET INITIAL DENSITY F(*,*,8)---
0255 CALL INIDIST(DNS0 , ALPHAMX)
0256 C --- SET COLOR FOR EACH SITE ---
0257 C - COLOR, POSINTBL, TBLNAMIN -
0258 7 CALL INICOLOR(PX , PY , DCYL2SQ)
0259 C --- MAKE TABLE OF INTERACTING SITES ---
0260 C - WITH CYLINDER -
0261 CALL MAKETBLE(DCYL2SQ , NTBL , NTBLDW)
0262 C
0263 C --- SET ZERO VEL INSIDE CYL ---
0264 DO 9 J=0, PY
0265 DO 8 I=0, PX
0266 ITH = (PX+1)*J + (I+1)
0267 IF((COLOR(ITH).EQ.6) .OR. (COLOR(ITH).EQ.7)) THEN
0268 VX(I,J) = 0.D0
0269 VY(I,J) = 0.D0
0270 RHO(I,J) = DNS0
0271 END IF
0272 8 CONTINUE
0273 9 CONTINUE
0274 C -- PRINT OUT CONSTANTS ---
0275 WRITE(NP,10) DNS0, TAU, DX, DT, CLAT, ALPHAMX
0276 WRITE(NP,11) PX, PY, PXY, XL, YL, XL1, YL1, XL2, YL2,
0277 & UVELX, UVELY
0278 WRITE(NP,13) DCYL, ITREECYL, ITREESID, ITREEDWN
0279 WRITE(NP,14) NTIMEMX, NGRAPH, NANIME, NSMPLCD, NTHROW, NSMPL1
0280 WRITE(NP,15) CDFORCE0, RE
0281 C --- INITIALIZATION ---
0282 C
0283 C --- INITIALIZE(1) ---
0284 NSMPLCD = 0
0285 DO 20 I=1, NTIMEMX
0286 CDFORCE(I) = 0.D0
0287 20 CONTINUE
0288 C --- INITIALIZE(2) ---
0289 DO 30 J=0, PY
0290 DO 25 I=0, PX
0291 VXSUM(I,J) = 0.D0
0292 VYSUM(I,J) = 0.D0
0293 RHOSUM(I,J) = 0.D0
0294 25 CONTINUE
0295 30 CONTINUE
0296 NSMPLVEL = 0
0297 C --- INITIALIZE(3) ---
0298 NANMCTR = 0
0299 C
0300 C --
0301 C ------------------- START OF MAIN LOOP -------------------
0302 C --
0303 C
0304 DO 1000 NTIME = 1,NTIMEMX
0305 C
0306 C --- CAL. VEL AT EACH LAT. POS. ---
0307 C - VX(*,*),VY(*,*),RHO(*,*) -
0308 CALL VELCAL(COLOR , ITREESID , ITREEDWN, NTIME)
0309 C --- COLLISION PROCEDURE FTILD(*,*,8) ---
0310 CALL COLLPROC(COLOR , ALPHAMX)
0311 C --- PROPAGATION PROCEDURE,FORCE EVALUATION ---
0312 C - F(*,*,8) WITHOUT BC -
0313 NSMPLCD = NSMPLCD + 1
0314 CALL MOVEPROC(PX , PY , ANTIALPH , RHO , DNS0 , ITREECYL)
0315 C --- BOUNDARY CONDITION PROC. ---

• The lattice points interacting with
the cylinder are checked.

• The velocities at the lattice points inside the cylinder
are set to be zero.

• The initial values of the distribution function are
assigned, and the values of the variable color
in Section 7.4.2 are evaluated. This procedure
is conducted only once because of the
cylinder being fixed.

• The following procedure is conducted in the main
loop: (1) the velocities at each lattice point are
evaluated in VELCAL, (2) the collision treatment is
carried out in COLLPROC, (3) the transfer of the
distribution function is conducted in MOVEPROC,
and (4) the BC treatment is conducted in BCPROC.

235Practice of Lattice Boltzmann Simulations

0316 C - FX(*,*,8) FOR BC -
0317 CALL BCPROC(PX , PY , DNS0 , ALPHAMX , ITREESID ,
0318 & ITREEDWN)
0319 C
0320 C --- DATA OUTPUT (1) FOR GRAPHICS ---
0321 C
0322 IF(MOD(NTIME,NGRAPH) .EQ. 0) THEN
0323 C
0324 CALL VELCAL(COLOR , ITREESID , ITREEDWN , NTIME)
0325 C
0326 NOPT = NOPT + 1
0327 WRITE(NOPT,201) PX, PY, ALPHAMX
0328 WRITE(NOPT,202) (((F(I,J,K),K=0,ALPHAMX),J=0,PY),
0329 & I=0,PX)
0330 WRITE(NOPT,204) ((RX(I,J),J=0,PY),I=0,PX)
0331 WRITE(NOPT,204) ((RY(I,J),J=0,PY),I=0,PX)
0332 WRITE(NOPT,206) ((VX(I,J),J=0,PY),I=0,PX)
0333 WRITE(NOPT,206) ((VY(I,J),J=0,PY),I=0,PX)
0334 WRITE(NOPT,208) ((RHO(I,J),J=0,PY),I=0,PX)
0335 C
0336 CLOSE(NOPT,STATUS='KEEP')
0337 END IF
0338 C --- DATA OUTPUT (2) FOR ANIMATION ---
0339 C
0340 IF(MOD(NTIME,NANIME) .EQ. 0) THEN
0341 C
0342 CALL VELCAL(COLOR , ITREESID , ITREEDWN , NTIME)
0343 C
0344 NANMCTR = NANMCTR + 1
0345 CALL GRAPHVEL(NANMCTR)
0346 C
0347 END IF
0348 C
0349 C --- DATA BETWEEN NTIME=0 AND ---
0350 C --- =NTHROW ARE THROWN AWAY. ---
0351 IF(NTIME .LT. NTHROW) GOTO 1000
0352 C
0353 C --
0354 IF(NTIME .EQ. NTHROW) THEN
0355 C +++ INITIALIZE +++
0356 NSMPLCD = 0
0357 DO 302 I=1, NTIMEMX
0358 CDFORCE(I) = 0.D0
0359 302 CONTINUE
0360 C
0361 DO 310 J=0, PY
0362 DO 305 I=0, PX
0363 VXSUM(I,J) = 0.D0
0364 VYSUM(I,J) = 0.D0
0365 RHOSUM(I,J) = 0..D0
0366 305 CONTINUE
0367 310 CONTINUE
0368 NSMPLVEL = 0
0369 C
0370 GOTO 1000
0371 END IF
0372 C --- CAL. SUM OF VELOCITIES ---
0373 C
0374 IF(MOD(NTIME,NSMPL1) .EQ. 0)THEN
0375 NSMPLVEL = NSMPLVEL + 1
0376 CALL VELCAL(COLOR , ITREESID , ITREEDWN , NTIME)
0377 C
0378 DO 500 J=0, PY

• The velocity data, etc., are written out at every
NANIME time steps for making an animation.

0379 DO 490 I=0, PX
0380 VXSUM(I,J) = VXSUM(I,J) + VX(I,J)
0381 VYSUM(I,J) = VYSUM(I,J) + VY(I,J)
0382 RHOSUM(I,J) = RHOSUM(I,J) + RHO(I,J)
0383 490 CONTINUE
0384 500 CONTINUE
0385 END IF
0386 C
0387 C
0388 1000 CONTINUE
0389 C
0390 C --
0391 C ---------------------- END OF MAIN LOOP ------------------------
0392 C --
0393 C
0394 C --- CAL. CD ---
0395 C1 = 0.D0
0396 DO 1100 I=1, NSMPLCD

• The velocity data, etc., are
written out at every NGRAPH
time steps for the post
processing analysis.

• In order to evaluate average values, the
velocity data, etc., are sampled at every
NSMPL1 time steps.

236 Introduction to Practice of Molecular Simulation

0397 C1 = C1 + CDFORCE(I)
0398 1100 CONTINUE
0399 CD = (C1/DBLE(NSMPLCD)) / CDFORCE0
0400 CD99 = CDFORCE(NSMPLCD) / CDFORCE0
0401 C
0402 C --- CAL AVE. AND PRINT OUT CONSTANTS (1) ---
0403 CALL AVECAL(NP, NSMPLVEL, VXSUM, VYSUM, RHOSUM,
0404 & PX, PY, ALPHAMX)
0405 C
0406 C --- DATA OUTPUT (3) ---
0407 WRITE(11,1101) DNS0, TAU, DX, DT, CLAT, ALPHAMX
0408 WRITE(11,1103) PX, PY, PXY, XL, YL, XL1, XL2, YL1, YL2
0409 WRITE(11,1105) UVELX, UVELY
0410 WRITE(11,1107) DCYL, ITREECYL, ITREESID, ITREEDWN
0411 WRITE(11,1109) NTIMEMX, NGRAPH, NANIME, NSMPLCD, NTHROW, NSMPL1
0412 WRITE(11,1111) CD, RE
0413 C --- DATA OUTPUT (4) ---
0414 WRITE(12,1121) PX, PY
0415 WRITE(12,1123) ((VXSUM(I,J),J=0,PY), I=0,PX)
0416 WRITE(12,1123) ((VYSUM(I,J),J=0,PY), I=0,PX)
0417 WRITE(12,1125) ((RHOSUM(I,J),J=0,PY), I=0,PX)
0418 C
0419 C --- PRINT OUT (2) ---
0420 WRITE(NP,1131) CD99 , CD , RE
0421 C --- DATA OUTPUT (5) ---
0422 WRITE(12,1133) CD , RE , NSMPLCD
0423 WRITE(12,1135) (CDFORCE(I), I=1, NSMPLCD)
0424 C
0425 CLOSE(9,STATUS='KEEP')
0426 CLOSE(11,STATUS='KEEP')
0427 CLOSE(12,STATUS='KEEP')
0428 CLOSE(41,STATUS='KEEP')
0429 CLOSE(42,STATUS='KEEP')
0430 C
0431 C ------------------------- FORMAT -------------------------------
0432 C
0433 10 FORMAT(/1H ,'--'
0434 & /1H ,1X,'LATTICE BOLTZMANN SIMULATION OF',
0435 & ' A FLOW AROUND A CYLINDER'
0436 & /1H ,10X,' +++ TWO-DIMENSIONAL FLOW +++'
0437 & /1H ,'--'
0438 & //1H ,'DNS0=', F6.3, 2X, 'TAU=',F6.4,
0439 & 2X, 'DX=', F6.2, 2X, 'DT=', F6.2, 2X, 'CLAT=',
0440 & F6.3
0441 & /1H , 'ALPHAMX=', I3)

• The drag coefficient is calculated.

0442 11 FORMAT(1H ,'PX=', I3, 1X, 'PY=', I3, 1X, 'PXY=', I6, 1X,
0443 & 'XL=', F6.2, 1X, 'YL=', F6.2, 1X, 'XL1=', F6.2, 1X,
0444 & 'YL1=',F6.2
0445 & /1H ,'XL2=', F6.2, 1X, 'YL2=', F6.2, 2X,
0446 & 'UVELX=', F6.2, 2X, 'UVELY=',F6.2)
0447 13 FORMAT(1H ,'DCYL=', F7.3, 2X,'ITREECYL=',I3, 2X,'ITREESID=',I3,
0448 & 2X,'ITREEDWN=',I3)
0449 14 FORMAT(1H ,'NTIMEMX=', I8, 2X, 'NGRAPH=', I8, 2X, 'NANIME=', I8
0450 & /1H ,'NSMPLCD=',I8, 2X, 'NTHROW=',I8, 2X, 'NSMPL1=',I8)
0451 15 FORMAT(1H ,'CDFORCE0=', F9.4, 2X, 'RE=', F9.3)
0452 201 FORMAT(3I9)
0453 202 FORMAT((6E13.6))
0454 204 FORMAT((6E13.6))
0455 206 FORMAT((6E13.6))
0456 208 FORMAT((6E13.6))
0457 1101 FORMAT(5F9.4, I8)
0458 1103 FORMAT(3I8, 6F9.3)
0459 1105 FORMAT(2F11.5)
0460 1107 FORMAT(F6.2 , 3I3)
0461 1109 FORMAT(6I10)
0462 1111 FORMAT(2F12.6)
0463 1121 FORMAT(2I10)
0464 1123 FORMAT((8E10.3))
0465 1125 FORMAT((8E10.3))
0466 1131 FORMAT(/1H ,'CD99=', F10.5, 3X, 'CD=', F10.5, 3X, 'RE=', F10.5)
0467 1133 FORMAT(2F10.4 , I9)
0468 1135 FORMAT((7E11.4))
0469 STOP
0470 END
0471 C***
0472 C************************ SUBROUTINE *******************************
0473 C***
0474 C
0475 C**** SUB AVECAL *****
0476 SUBROUTINE AVECAL(NP, NSMPLVEL, VXSUM, VYSUM, RHOSUM,

237Practice of Lattice Boltzmann Simulations

0477 & PX, PY, ALPHAMX)
0478 C
0479 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0480 C
0481 INTEGER PP , QQ , KK
0482 PARAMETER(PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0)
0483 C
0484 INTEGER PX , PY , ALPHAMX
0485 REAL*8 VXSUM(0:PP,0:QQ), VYSUM(0:PP,0:QQ), RHOSUM(0:PP,0:QQ)
0486 C
0487 C --- CAL VELOCITY FIELD ---
0488 DO 1010 J=0, PY
0489 DO 1008 I=0, PX
0490 VXSUM(I,J) = VXSUM(I,J) / DBLE(NSMPLVEL)
0491 VYSUM(I,J) = VYSUM(I,J) / DBLE(NSMPLVEL)
0492 RHOSUM(I,J) = RHOSUM(I,J) / DBLE(NSMPLVEL)
0493 1008 CONTINUE
0494 1010 CONTINUE
0495 C --- PRINT OUT (2) VELOCITY FIELD ---
0496 C +++ VX +++
0497 WRITE(NP,1021)
0498 DO 1030 I=0, PX
0499 DO 1029 J=0, PY, 17
0500 WRITE(NP,1026) VXSUM(I,J),VXSUM(I,J+ 1),VXSUM(I,J+ 2),
0501 & VXSUM(I,J+ 3),VXSUM(I,J+ 4),VXSUM(I,J+ 5),
0502 & VXSUM(I,J+ 6),VXSUM(I,J+ 7),VXSUM(I,J+ 8),
0503 & VXSUM(I,J+ 9),VXSUM(I,J+10),VXSUM(I,J+11),
0504 & VXSUM(I,J+12),VXSUM(I,J+13),VXSUM(I,J+14),

• The velocity field is calculated
by an averaging procedure.

0505 & VXSUM(I,J+15),VXSUM(I,J+16)
0506 1029 CONTINUE
0507 1030 CONTINUE
0508 C +++ VY +++
0509 WRITE(NP,1041)
0510 DO 1050 I=0, PX
0511 DO 1049 J=0, PY, 17
0512 WRITE(NP,1026) VYSUM(I,J),VYSUM(I,J+ 1),VYSUM(I,J+ 2),
0513 & VYSUM(I,J+ 3),VYSUM(I,J+ 4),VYSUM(I,J+ 5),
0514 & VYSUM(I,J+ 6),VYSUM(I,J+ 7),VYSUM(I,J+ 8),
0515 & VYSUM(I,J+ 9),VYSUM(I,J+10),VYSUM(I,J+11),
0516 & VYSUM(I,J+12),VYSUM(I,J+13),VYSUM(I,J+14),
0517 & VYSUM(I,J+15),VYSUM(I,J+16)
0518 1049 CONTINUE
0519 1050 CONTINUE
0520 C +++ RHO +++
0521 WRITE(NP,1061)
0522 DO 1070 I=0, PX
0523 DO 1069 J=0, PY, 17
0524 WRITE(NP,1062) RHOSUM(I,J),RHOSUM(I,J+ 1),RHOSUM(I,J+ 2),
0525 & RHOSUM(I,J+ 3),RHOSUM(I,J+ 4),RHOSUM(I,J+ 5),
0526 & RHOSUM(I,J+ 6),RHOSUM(I,J+ 7),RHOSUM(I,J+ 8),
0527 & RHOSUM(I,J+ 9),RHOSUM(I,J+10),RHOSUM(I,J+11),
0528 & RHOSUM(I,J+12),RHOSUM(I,J+13),RHOSUM(I,J+14),
0529 & RHOSUM(I,J+15),RHOSUM(I,J+16)
0530 1069 CONTINUE
0531 1070 CONTINUE
0532 C
0533 1021 FORMAT(/1H ,' VX1, VX2, VX3, VX4, VX5, VX6,...')
0534 1026 FORMAT((7E11.4))
0535 1041 FORMAT(/1H ,' VY1, VY2, VY3, VY4, VY5, VY6,...')
0536 1061 FORMAT(/1H ,' RHO1, RHO2, RHO3, RHO4, RHO5, RHO6,...')
0537 1062 FORMAT((6E13.6))
0538 RETURN
0539 END
0540 C**** SUB INICVEL *****
0541 SUBROUTINE INICVEL
0542 C
0543 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0544 C
0545 COMMON /BLOCK2/ CVEL , W , IINC , ANTIALPH, ALPHAMX
0546 C
0547 INTEGER PP , QQ , KK
0548 PARAMETER(PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0)
0549 C
0550 REAL*8 CVEL(2,0:KK) , W(0:KK)
0551 INTEGER ALPHAMX , IINC(2,0:KK) , ANTIALPH(0:KK)
0552 C
0553 CVEL(1,0) = 0.D0
0554 CVEL(2,0) = 0.D0
0555 CVEL(1,1) = 1.D0
0556 CVEL(2,1) = 0.D0
0557 CVEL(1,2) = -1.D0

• A subroutine for setting the lattice velocities, etc.

• The lattice velocity cα is set.

238 Introduction to Practice of Molecular Simulation

0558 CVEL(2,2) = 0.D0
0559 CVEL(1,3) = 0.D0
0560 CVEL(2,3) = 1.D0
0561 CVEL(1,4) = 0.D0
0562 CVEL(2,4) = -1.D0
0563 CVEL(1,5) = 1.D0
0564 CVEL(2,5) = 1.D0
0565 CVEL(1,6) = -1.D0
0566 CVEL(2,6) = -1.D0
0567 CVEL(1,7) = 1.D0
0568 CVEL(2,7) = -1.D0
0569 CVEL(1,8) = -1.D0
0570 CVEL(2,8) = 1.D0
0571 C
0572 W(0) = 4.D0/9.D0
0573 W(1) = 1.D0/9.D0
0574 W(2) = W(1)
0575 W(3) = W(1)
0576 W(4) = W(1)
0577 W(5) = 1.D0/36.D0
0578 W(6) = W(5)
0579 W(7) = W(5)
0580 W(8) = W(5)
0581 C
0582 IINC(1,1) = 1
0583 IINC(2,1) = 0
0584 IINC(1,2) = -IINC(1,1)
0585 IINC(2,2) = -IINC(2,1)
0586 IINC(1,3) = 0
0587 IINC(2,3) = 1
0588 IINC(1,4) = -IINC(1,3)
0589 IINC(2,4) = -IINC(2,3)
0590 IINC(1,5) = 1
0591 IINC(2,5) = 1
0592 IINC(1,6) = -IINC(1,5)
0593 IINC(2,6) = -IINC(2,5)
0594 IINC(1,7) = 1
0595 IINC(2,7) = -1
0596 IINC(1,8) = -IINC(1,7)
0597 IINC(2,8) = -IINC(2,7)
0598 C
0599 ANTIALPH(1) = 2
0600 ANTIALPH(2) = 1
0601 ANTIALPH(3) = 4
0602 ANTIALPH(4) = 3
0603 ANTIALPH(5) = 6
0604 ANTIALPH(6) = 5
0605 ANTIALPH(7) = 8
0606 ANTIALPH(8) = 7
0607 RETURN
0608 END
0609 C**** SUB INILAT *****
0610 SUBROUTINE INILAT
0611 C
0612 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0613 C
0614 COMMON /BLOCK3/ RHO , RX , RY , VX , VY
0615 COMMON /BLOCK5/ XL , YL , XL1 , YL1 , XL2 , YL2 , PX , PY , PXY
0616 C
0617 INTEGER PP , QQ , KK
0618 PARAMETER(PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0)
0619 C
0620 REAL*8 RHO(0:PP,0:QQ)
0621 REAL*8 RX(0:PP,0:QQ) , RY(0:PP,0:QQ)
0622 REAL*8 VX(0:PP,0:QQ) , VY(0:PP,0:QQ)
0623 INTEGER PX , PY , PXY
0624 C
0625 C1 = XL/DBLE(PX)
0626 C2 = YL/DBLE(PY)
0627 DO 100 J=0, PY
0628 DO 90 I=0, PX
0629 RX(I,J) = DBLE(I)*C1 - XL1
0630 RY(I,J) = DBLE(J)*C1 - YL1

• The weighting coefficient wα is set.

• IINC is used for describing the
relationship between the lattice point
and the α-direction. For example, the
neighboring site in the α-direction of α
=1 is arrived at by moving (+1,0) in the
x- and y-direction from the site of
interest. In this case, the movement is
described as IINC(1,1)=1 and
IINC(2,1)=0.

• The opposite direction of the
α-direction is saved in ATIALPH(*).

• A subroutine for setting the lattice positions.

• (PX+1,PY+1) lattice points are set in
the x- and y-direction.

0631 90 CONTINUE
0632 100 CONTINUE
0633 RETURN
0634 END
0635 C**** SUB INIDIST *****

239Practice of Lattice Boltzmann Simulations

0639 C
0640 COMMON /BLOCK1/ F , FTILD
0641 COMMON /BLOCK5/ XL , YL , XL1 , YL1 , XL2 , YL2 , PX , PY , PXY
0642 COMMON /BLOCK6/ UVELX , UVELY
0643 C
0644 INTEGER PP , QQ , KK
0645 PARAMETER(PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0)
0646 C
0647 REAL*8 F(0:PP,0:QQ,0:KK), FTILD(0:PP,0:QQ,0:KK)
0648 INTEGER PX , PY , PXY , ALPHAMX
0649 C
0650 REAL*8 FEQ, CDNS0
0651 C
0652 CDNS0 = DNS0
0653 C
0654 DO 110 J=0, PY
0655 DO 100 I=0, PX
0656 DO 10 K=0, ALPHAMX
0657 IF(I.EQ.0) THEN
0658 F(I,J,K)= FEQ(UVELX, UVELY, K, CDNS0)
0659 ELSE
0660 CCC F(I,J,K)= FEQ(0.D0 , 0.D0 , K, CDNS0)
0661 F(I,J,K)= FEQ(UVELX, UVELY, K, CDNS0)
0662 END IF
0663 10 CONTINUE
0664 100 CONTINUE
0665 110 CONTINUE
0666 RETURN
0667 END
0668 C**** SUB INICOLOR ****
0669 SUBROUTINE INICOLOR(PX , PY , DCYL2SQ)
0670 C --------------------------------
0671 C 0 : USUAL TREATMENT
0672 C 1 : TREATMENT AT Bupstream
0673 C 2 : TREATMENT AT Bdownstream
0674 C 3 : TREATMENT AT Bupper_side
0675 C 4 : TREATMENT AT Blower_side
0676 C 5 : TREATMENT AT Bcyl_surface
0677 C 6 : NO BC TREAT. INSIDE PTCL,
0678 C BUT INTERACTING OUTER SITES
0679 C 7 : NO BC TREAT. INSIDE PTCL,
0680 C NOT INTERACTING OUTER SITES
0681 C --------------------------------
0682 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0683 C
0684 COMMON /BLOCK3/ RHO , RX , RY , VX , VY
0685 C
0686 COMMON /BLOCK14/ RXCYL , RYCYL , ICYL , JCYL , DCYL
0687 COMMON /BLOCK15/ COLOR , POSINTBL
0688 COMMON /BLOCK18/ TBLNAMIN , NTBLNAMI
0689 C
0690 C -----------------------------
0691 INTEGER PP , QQ , KK
0692 PARAMETER(PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0)
0693 C

• An equilibrium distribution
with the uniform velocity U is
used as an initial distribution.

• A subroutine for
evaluating the values of
the variable color
explained in Section
7.4.2.

0694 REAL*8 RHO(0:PP,0:QQ)
0695 REAL*8 RX(0:PP,0:QQ) , RY(0:PP,0:QQ)
0696 REAL*8 VX(0:PP,0:QQ) , VY(0:PP,0:QQ)
0697 INTEGER PX , PY , PXY
0698 C -----------------------------
0699 INTEGER PPXY
0700 PARAMETER(PPXY=150000 , NNTBL=2200 , NNTBL2=4400 , NNTBL3=4400)
0701 C
0702 INTEGER COLOR(PPXY) , POSINTBL(PPXY)
0703 INTEGER TBLNAMIN(NNTBL3) , NTBLNAMI
0704 C -----------------------------
0705 REAL*8 RJDG1 , RJDG2 , RJDG2SQ , RXI , RYI , C1
0706 REAL*8 RXIJ , RYIJ , RIJSQ
0707 INTEGER ISITE, IC1, IS, IE, JS, JE
0708 C
0709 DO 120 J=0, PY
0710 DO 100 I=0, PX
0711 ISITE = (PX+1)*J + (I+1)
0712 C
0713 POSINTBL(ISITE) = 0
0714 C

0636 SUBROUTINE INIDIST(DNS0 , ALPHAMX)
0637 C
0638 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N) • A subroutine for setting the initial

value of the distribution functions.

240 Introduction to Practice of Molecular Simulation

0715 IF(I.EQ.0) THEN
0716 COLOR(ISITE) = 1
0717 ELSE IF(I.EQ.PX) THEN
0718 COLOR(ISITE) = 2
0719 ELSE IF(J.EQ.PY) THEN
0720 COLOR(ISITE) = 3
0721 ELSE IF(J.EQ.0) THEN
0722 COLOR(ISITE) = 4
0723 ELSE
0724 COLOR(ISITE) = 0
0725 END IF
0726 100 CONTINUE
0727 120 CONTINUE
0728 C --- FOR SPECIAL TREATMENT OF SITES INSIDE CYLINDER ---
0729 DO 150 I=1, PX
0730 IF(RX(I,0) .GE. RXCYL) THEN
0731 ICYL = I
0732 GOTO 170
0733 END IF
0734 150 CONTINUE
0735 ICYL = PX
0736 C
0737 170 DO 160 J=1, PY
0738 IF(RY(0,J) .GE. RYCYL) THEN
0739 JCYL = J
0740 GOTO 180
0741 END IF
0742 160 CONTINUE
0743 JCYL = PY
0744 C
0745 180 C1 = (DCYL/2.D0+0.01D0) / (RX(2,0)-RX(1,0))
0746 CCC IC1 = IDINT(C1)
0747 IC1 = IDINT(C1) + 2
0748 IS = ICYL - IC1 - 1
0749 IE = ICYL + IC1
0750 JS = JCYL - IC1 - 1
0751 JE = JCYL + IC1
0752 RJDG1 = (DCYL/2.D0) + 3.D0*(RX(2,0)-RX(1,0))
0753 RJDG2 = RJDG1
0754 RJDG2SQ = RJDG2**2
0755 C
0756 NTBLNAMI = 0

• The values shown in Section
7.4.2 are assigned to the
lattice sites next to each
boundary surface.

• The treatment concerning the
sites related to the cylinder.

• The sites to be checked are
limited to the neighboring
sites around the cylinder to a
certain degree.

0757 DO 220 J=JS, JE
0758 DO 200 I=IS, IE
0759 C
0760 RXI = RX(I,J)
0761 RYI = RY(I,J)
0762 C
0763 ISITE = (PX+1)*J + (I+1)
0764 RXIJ = RXI - RXCYL
0765 IF(DABS(RXIJ) .GE. RJDG1) GOTO 200
0766 RYIJ = RYI - RYCYL
0767 IF(DABS(RYIJ) .GE. RJDG1) GOTO 200
0768 RIJSQ = RXIJ**2 + RYIJ**2
0769 IF(RIJSQ .GE. RJDG2SQ) GOTO 200
0770 C
0771 IF(RIJSQ .LE. DCYL2SQ) THEN
0772 COLOR(ISITE) = 7
0773 NTBLNAMI = NTBLNAMI +1
0774 TBLNAMIN(NTBLNAMI) = ISITE
0775 END IF
0776 C
0777 200 CONTINUE
0778 220 CONTINUE
0779 RETURN
0780 END
0781 C**** SUB MAKETBLE ****
0782 SUBROUTINE MAKETBLE(DCYL2SQ , NTBL , NTBLDW)
0783 C
0784 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0785 C
0786 COMMON /BLOCK3/ RHO , RX , RY , VX , VY
0787 COMMON /BLOCK5/ XL , YL , XL1 , YL1 , XL2 , YL2 , PX , PY , PXY
0788 C
0789 COMMON /BLOCK14/ RXCYL , RYCYL , ICYL , JCYL , DCYL
0790 COMMON /BLOCK15/ COLOR , POSINTBL
0791 C
0792 C -----------------------------
0793 INTEGER PP , QQ , KK
0794 PARAMETER(PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0)
0795 C

• color(*)=7 is set for the site
inside the cylinder.

• A subroutine for making a
list of the lattice sites
interacting with the cylinder.

241Practice of Lattice Boltzmann Simulations

0796 REAL*8 RHO(0:PP,0:QQ)
0797 REAL*8 RX(0:PP,0:QQ) , RY(0:PP,0:QQ)
0798 REAL*8 VX(0:PP,0:QQ) , VY(0:PP,0:QQ)
0799 INTEGER PX , PY , PXY
0800 C -----------------------------
0801 INTEGER PPXY
0802 PARAMETER(PPXY=150000 , NNTBL=2200 , NNTBL2=4400 , NNTBL3=4400)
0803 C
0804 INTEGER COLOR(PPXY) , POSINTBL(PPXY)
0805 C -----------------------------
0806 REAL*8 C1 , RXI , RYI
0807 REAL*8 RJDG1 , RJDG2 , RJDG2SQ
0808 INTEGER IS , IE , JS , JE , IC1 , ISITE
0809 CCC INTEGER JJ , JJ2 , II , II2 , IALPHA(0:8) , NIALPHA
0810 INTEGER IALPHA(0:8) , NIALPHA
0811 C
0812 C --- CYLINDER POSITION IS (ICYL,JCYL) IN LATTICE ---
0813 NTBL = 0
0814 NTBLDW= 0
0815 C --- CHECK WHETHER OR NOT SITES ARE INSIDE CYL ---
0816 C
0817 40 C1 = (DCYL/2.D0+0.01D0) / (RX(2,0)-RX(1,0))
0818 CCC IC1 = IDINT(C1)
0819 IC1 = IDINT(C1) + 2
0820 IS = ICYL - IC1 - 1
0821 IE = ICYL + IC1
0822 JS = JCYL - IC1 - 1
0823 JE = JCYL + IC1
0824 C
0825 RJDG1 = (DCYL/2.D0) + 3.D0*(RX(2,0)-RX(1,0))
0826 RJDG2 = RJDG1
0827 RJDG2SQ = RJDG2**2
0828 C
0829 C
0830 DO 220 J=JS, JE
0831 DO 200 I=IS, IE
0832 C
0833 RXI = RX(I,J)
0834 RYI = RY(I,J)
0835 C --------------------------------- FOR THE MOST OUTER SITES ---
0836 IF((I.EQ.IS) .AND. (J.EQ.JS)) THEN
0837 C +++AT LEFT-DOWN CORNER+++
0838 IALPHA(1) = 5
0839 NIALPHA = 1
0840 CALL INTERACT(I, J, RXI, RYI, RXCYL, RYCYL, NIALPHA, IALPHA,
0841 & RJDG2SQ , DCYL2SQ)
0842 ELSE IF((I.EQ.IE) .AND. (J.EQ.JS)) THEN
0843 C +++AT RIGHT-DOWN CORNER+++
0844 IALPHA(1) = 8
0845 NIALPHA = 1
0846 CALL INTERACT(I, J, RXI, RYI, RXCYL, RYCYL, NIALPHA, IALPHA,
0847 & RJDG2SQ , DCYL2SQ)
0848 ELSE IF((I.EQ.IS) .AND. (J.EQ.JE)) THEN
0849 C +++AT LEFT-UP CORNER+++
0850 IALPHA(1) = 7
0851 NIALPHA = 1
0852 CALL INTERACT(I, J, RXI, RYI, RXCYL, RYCYL, NIALPHA, IALPHA,
0853 & RJDG2SQ , DCYL2SQ)
0854 ELSE IF((I.EQ.IE) .AND. (J.EQ.JE)) THEN
0855 C +++AT RIGHT-UP CORNER+++
0856 IALPHA(1) = 6
0857 NIALPHA = 1
0858 CALL INTERACT(I, J, RXI, RYI, RXCYL, RYCYL, NIALPHA, IALPHA,
0859 & RJDG2SQ , DCYL2SQ)
0860 C
0861 C ------- FOR OUTER CIRCUMFERENCE SITES OF CHECKING RECTANGLE ---
0862 C
0863 ELSE IF (J.EQ.JS) THEN
0864 C +++ALONG X-AXIS (DOWN)+++
0865 IALPHA(1) = 3
0866 IALPHA(2) = 5
0867 IALPHA(3) = 8
0868 NIALPHA = 3
0869 C
0870 CALL INTERACT(I, J, RXI, RYI, RXCYL, RYCYL, NIALPHA, IALPHA,
0871 & RJDG2SQ , DCYL2SQ)
0872 ELSE IF (I.EQ.IS) THEN
0873 C +++ ALONG Y-AXIS (LEFT) +++

• The sites to be checked are
limited to the neighboring
sites around the cylinder to a
certain degree.

• The treatment for the four corner sites of
the outermost rectangle.

• For the left-down site.

• For the right-down site.

• For the left-up site.

• For the right-up site.

• The treatment for the sites on the outermost
rectangle, except the four corner sites.

• For the sites on the bottom
line along the x-axis.

242 Introduction to Practice of Molecular Simulation

0874 IALPHA(1) = 1
0875 IALPHA(2) = 5
0876 IALPHA(3) = 7
0877 NIALPHA = 3
0878 C
0879 CALL INTERACT(I, J, RXI, RYI, RXCYL, RYCYL, NIALPHA, IALPHA,
0880 & RJDG2SQ , DCYL2SQ)
0881 ELSE IF (I.EQ.IE) THEN
0882 C +++ ALONG Y-AXIS (RIGHT) +++

• For the sites on the left line
along the y-axis.

0883 IALPHA(1) = 2
0884 IALPHA(2) = 6
0885 IALPHA(3) = 8
0886 NIALPHA = 3
0887 C
0888 CALL INTERACT(I, J, RXI, RYI, RXCYL, RYCYL, NIALPHA, IALPHA,
0889 & RJDG2SQ , DCYL2SQ)
0890 ELSE IF (J.EQ.JE) THEN
0891 C +++ ALONG X-AXIS (UP) +++
0892 IALPHA(1) = 4
0893 IALPHA(2) = 6
0894 IALPHA(3) = 7
0895 NIALPHA = 3
0896 C
0897 CALL INTERACT(I, J, RXI, RYI, RXCYL, RYCYL, NIALPHA, IALPHA,
0898 & RJDG2SQ , DCYL2SQ)
0899 C
0900 C ------------------- FOR INNER SITES OF CHECKING RECTANGLE ---
0901 ELSE
0902 C
0903 IALPHA(1) = 1
0904 IALPHA(2) = 2
0905 IALPHA(3) = 3
0906 IALPHA(4) = 4
0907 IALPHA(5) = 5
0908 IALPHA(6) = 6
0909 IALPHA(7) = 7
0910 IALPHA(8) = 8
0911 NIALPHA = 8
0912 C
0913 CALL INTERACT(I,J, RXI,RYI, RXCYL,RYCYL, NIALPHA,IALPHA,
0914 & RJDG2SQ , DCYL2SQ)
0915 C
0916 END IF
0917 C
0918 200 CONTINUE
0919 220 CONTINUE
0920 RETURN
0921 END
0922 C**** SUB INTERACT *****
0923 SUBROUTINE INTERACT(I, J, RXI, RYI, RXCYL , RYCYL ,
0924 & NIALPHA, IALPHA, RJDG2SQ, DCYL2SQ)
0925 C
0926 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0927 C
0928 COMMON /BLOCK2/ CVEL , W , IINC , ANTIALPH, ALPHAMX
0929 COMMON /BLOCK3/ RHO , RX , RY , VX , VY
0930 COMMON /BLOCK5/ XL , YL , XL1 , YL1 , XL2 , YL2 , PX , PY , PXY
0931 C
0932 COMMON /BLOCK15/ COLOR , POSINTBL
0933 COMMON /BLOCK16/ TBLNAM , TBLNUM , TBLPOS , NTBL
0934 COMMON /BLOCK17/ TBLDW , TBLAL , NTBLDW
0935 C
0936 C -----------------------------
0937 INTEGER PP , QQ , KK
0938 PARAMETER(PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0)
0939 C
0940 REAL*8 CVEL(2,0:KK) , W(0:KK)
0941 REAL*8 RHO(0:PP,0:QQ)
0942 REAL*8 RX(0:PP,0:QQ) , RY(0:PP,0:QQ)
0943 REAL*8 VX(0:PP,0:QQ) , VY(0:PP,0:QQ)
0944 INTEGER ALPHAMX , IINC(2,0:KK) , ANTIALPH(0:KK)
0945 INTEGER PX , PY , PXY , NIALPHA , IALPHA(0:8)

• For the sites on the right line
along the y-axis.

• For the sites on the top line
along the x-axis.

• For the sites inside the
outermost rectangle.

• A subroutine for
assessing whether or
not the neighboring site
is inside the cylinder.

0946 C -----------------------------
0947 INTEGER PPXY
0948 PARAMETER(PPXY=150000 , NNTBL=2200 , NNTBL2=4400 , NNTBL3=4400)
0949 C
0950 REAL*8 TBLDW(NNTBL2)
0951 INTEGER COLOR(PPXY) , POSINTBL(PPXY)
0952 INTEGER TBLNAM(NNTBL) , TBLNUM(NNTBL) , TBLPOS(NNTBL) , NTBL
0953 INTEGER TBLAL(NNTBL2) , NTBLDW
0954 C -----------------------------

243Practice of Lattice Boltzmann Simulations

0955 C
0956 INTEGER ISITE, ISITE1, IPATH, IALPHA0
0957 INTEGER IX1 , IY1 , JJJ
0958 REAL*8 RXI , RYI , RXIJ , RYIJ , RIJSQ
0959 REAL*8 RXI1, RYI1, RXIJ1, RYIJ1, RIJSQ1 , RJDG2SQ
0960 REAL*8 RXCYL, RYCYL , DCYL2SQ
0961 REAL*8 C01 , C1 , C2 , C3 , CDW
0962 C
0963 C
0964 ISITE = (PX+1)*J + (I+1)
0965 RXIJ = RXI - RXCYL
0966 RYIJ = RYI - RYCYL
0967 RIJSQ = RXIJ**2 + RYIJ**2
0968 IF(RIJSQ .GE. RJDG2SQ) THEN
0969 COLOR(ISITE) = 0
0970 RETURN
0971 END IF
0972 IF(RIJSQ .LE. DCYL2SQ) RETURN
0973 C
0974 IPATH = 0
0975 DO 200 JJJ = 1, NIALPHA
0976 C --- (I,J) : ORIGINAL ---
0977 C --- ISITE : ORIGINAL ---
0978 C --- (RXI,RYI) : ORIGINAL ---
0979 C --- (IX1,IY1) : CANDIDATE ---
0980 C --- ISITE1 : CANDITATE ---
0981 C --- (RXI1,RYI1): CANDIDATE ---
0982 C --- (RXCYL,RYCYL): CYLINDER---
0983 IALPHA0= IALPHA(JJJ)
0984 IX1 = I + IINC(1,IALPHA0)
0985 IY1 = J + IINC(2,IALPHA0)
0986 RXI1 = RX(IX1,IY1)
0987 RYI1 = RY(IX1,IY1)
0988 RXIJ1 = RXI1 - RXCYL
0989 RYIJ1 = RYI1 - RYCYL
0990 RIJSQ1 = RXIJ1**2 + RYIJ1**2
0991 C
0992 IF(RIJSQ1 .LE. DCYL2SQ) THEN
0993 IPATH = IPATH + 1
0994 IF(IPATH .EQ. 1) THEN
0995 NTBL = NTBL + 1
0996 TBLNAM(NTBL) = ISITE
0997 COLOR(ISITE) = 5
0998 POSINTBL(ISITE) = NTBL
0999 END IF
1000 C --- FOR OUTSIDE SITES OF CYLINDER ---
1001 C01 = RXIJ*RXIJ1 + RYIJ*RYIJ1
1002 C1 = RIJSQ + RIJSQ1 - 2.D0*C01
1003 C2 = -RIJSQ + C01
1004 C3 = RIJSQ - DCYL2SQ
1005 CDW = (- C2 - DSQRT(C2**2 - C1*C3)) / C1
1006 C
1007 NTBLDW = NTBLDW + 1
1008 TBLDW(NTBLDW) = CDW

• The sites being far over the
RJDG2SQ distance (note the square)
have no interaction with the cylinder.

• If the neighboring site is inside the cylinder, then
the variable color is set to be 5 for this site, its site
name is saved in TBLNAM, and the order of the
site appearing in TBLNAM is saved in POSINTBL.

• Δw =CDW is calculated from Eq. (7.14). The direction
of the neighboring site inside the cylinder is saved in
TBLAL, and the value of Δw is saved in TBLDW.

• The order of the quantities,
related to the site of interest,
first appearing in TBLAL and
TBLDW, is saved in TBLPOS.

1009 TBLAL(NTBLDW) = IALPHA0
1010 IF(IPATH .EQ. 1) TBLPOS(NTBL) = NTBLDW
1011 C
1012 C --- FOR INSIDE SITES OF CYLINDER ---
1013 ISITE1 = (PX+1)*IY1 + (IX1+1)
1014 COLOR(ISITE1) = 6
1015 END IF
1016 C
1017 200 CONTINUE
1018 C
1019 IF(IPATH .GE. 1) THEN
1020 TBLNUM(NTBL) = IPATH
1021 ELSE
1022 COLOR(ISITE) = 0
1023 END IF
1024 RETURN
1025 END
1026 C**** SUB VELCAL *****
1027 SUBROUTINE VELCAL(COLOR , ITREESID , ITREEDWN , NTIME)
1028 C
1029 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
1030 C
1031 COMMON /BLOCK1/ F , FTILD
1032 COMMON /BLOCK3/ RHO , RX , RY , VX , VY
1033 COMMON /BLOCK4/ DNS0 , TAU , DX , DT , CLAT
1034 COMMON /BLOCK5/ XL , YL , XL1 , YL1 , XL2 , YL2 , PX , PY , PXY
1035 COMMON /BLOCK6/ UVELX , UVELY

• The number of the sites, inside the cylinder, interacting
with the site of interest is saved in TBLNUM.

• A subroutine for calculating the veloci-
ties and densities at each lattice site.

244 Introduction to Practice of Molecular Simulation

1036 C
1037 C -----------------------------
1038 INTEGER PP , QQ , KK
1039 PARAMETER(PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0)
1040 C
1041 REAL*8 F(0:PP,0:QQ,0:KK), FTILD(0:PP,0:QQ,0:KK)
1042 REAL*8 RHO(0:PP,0:QQ)
1043 REAL*8 RX(0:PP,0:QQ) , RY(0:PP,0:QQ)
1044 REAL*8 VX(0:PP,0:QQ) , VY(0:PP,0:QQ)
1045 INTEGER PX , PY , PXY
1046 C -----------------------------
1047 INTEGER PPXY
1048 PARAMETER(PPXY=150000 , NNTBL=2200 , NNTBL2=4400 , NNTBL3=4400)
1049 C
1050 INTEGER COLOR(PPXY)
1051 C -----------------------------
1052 REAL*8 VX0, VY0, RHO0
1053 INTEGER ITH, ICLR
1054 C --- Bupstream ---
1055 DO 50 J=0, PY
1056 VX(0, J) = UVELX
1057 VY(0, J) = UVELY
1058 RHO(0, J) = DNS0
1059 50 CONTINUE
1060 C --- INSIDE AREA ---
1061 DO 100 I=1, PX
1062 DO 90 J=0, PY
1063 ITH = (PX+1)*J + (I+1)
1064 ICLR = COLOR(ITH)
1065 IF((ICLR .EQ. 6) .OR. (ICLR .EQ. 7)) GOTO 90
1066 C
1067 VX0 = F(I,J,1) - F(I,J,2) + F(I,J,5) - F(I,J,6)
1068 & + F(I,J,7) - F(I,J,8)
1069 VY0 = F(I,J,3) - F(I,J,4) + F(I,J,5) - F(I,J,6)
1070 & + F(I,J,8) - F(I,J,7)
1071 RHO0 = F(I,J,0) + F(I,J,1) + F(I,J,2) + F(I,J,3) + F(I,J,4)

• A uniform flow is set at the
upstream boundary surface.

• The local velocities and
densities are calculated
inside the cylinder from Eq.
(7.20).

1072 & + F(I,J,5) + F(I,J,6) + F(I,J,7) + F(I,J,8)
1073 VX(I,J) = VX0 /RHO0
1074 VY(I,J) = VY0 /RHO0
1075 RHO(I,J) = RHO0
1076 IF((ICLR.EQ.1) .OR. (ICLR.EQ.2) .OR. (ICLR.EQ.3) .OR.
1077 & (ICLR.EQ.4)) THEN
1078 IF(RHO(I,J) .LT. DNS0) RHO(I,J) = DNS0
1079 END IF
1080 90 CONTINUE
1081 100 CONTINUE
1082 C --- Bside ---
1083 IF((ITREESID.EQ.3).OR.(ITREESID.EQ.4).OR.(ITREESID.EQ.5)) THEN
1084 DO 120 I=1, PX-1
1085 IF(ITREESID.EQ.3) THEN
1086 VX(I,PY) = UVELX
1087 VY(I,PY) = UVELY
1088 RHO(I,PY) = DNS0
1089 VX(I, 0) = UVELX
1090 VY(I, 0) = UVELY
1091 RHO(I, 0) = DNS0
1092 ELSE IF(ITREESID.EQ.4) THEN
1093 VX(I,PY) = VX(I,PY-1)
1094 VY(I,PY) = VY(I,PY-1)
1095 RHO(I,PY) = RHO(I,PY-1)
1096 IF(RHO(I,PY) .LT. DNS0) RHO(I,PY) = DNS0
1097 VX(I, 0) = VX(I,1)
1098 VY(I, 0) = VY(I,1)
1099 RHO(I, 0) = RHO(I,1)
1100 IF(RHO(I, 0) .LT. DNS0) RHO(I, 0) = DNS0
1101 ELSE IF(ITREESID.EQ.5) THEN
1102 VX(I,PY) = 2.D0*VX(I,PY-1) - VX(I,PY-2)
1103 VY(I,PY) = 2.D0*VY(I,PY-1) - VY(I,PY-2)
1104 RHO(I,PY) = 2.D0*RHO(I,PY-1) - RHO(I,PY-2)
1105 IF(RHO(I,PY) .LT. DNS0) RHO(I,PY) = DNS0
1106 VX(I, 0) = 2.D0*VX(I,1) - VX(I,2)
1107 VY(I, 0) = 2.D0*VY(I,1) - VY(I,2)
1108 RHO(I, 0) = 2.D0*RHO(I,1) - RHO(I,2)
1109 IF(RHO(I, 0) .LT. DNS0) RHO(I, 0) = DNS0
1110 END IF
1111 120 CONTINUE
1112 END IF
1113 C --- Bdownstream ---
1114 IF((ITREEDWN.EQ.3).OR.(ITREEDWN.EQ.4).OR.(ITREEDWN.EQ.5)) THEN

• The treatment at the side boundary surfaces.

• (1) The equilibrium distribution.

• (2) The zero-gradient condition
(Eq. (7.8)).

• (3) The extrapolation
condition (Eq. (7.7)).

• The treatment at the downstream boundary surface.

• The densities are assumed to
be not smaller than the given
density at the outer boundary
surfaces.

245Practice of Lattice Boltzmann Simulations

1115 DO 140 J=1, PY-1
1116 IF(ITREEDWN.EQ.3) THEN
1117 VX(PX,J) = UVELX
1118 VY(PX,J) = UVELY
1119 RHO(PX,J) = DNS0
1120 ELSE IF(ITREEDWN.EQ.4) THEN
1121 VX(PX,J) = VX(PX-1,J)
1122 VY(PX,J) = VY(PX-1,J)
1123 RHO(PX,J) = RHO(PX-1,J)
1124 IF(RHO(PX,J) .LT. DNS0) RHO(PX,J) = DNS0
1125 ELSE IF(ITREEDWN.EQ.5) THEN
1126 VX(PX,J) = 2.D0*VX(PX-1,J) - VX(PX-2,J)
1127 VY(PX,J) = 2.D0*VY(PX-1,J) - VY(PX-2,J)
1128 RHO(PX,J) = 2.D0*RHO(PX-1,J) - RHO(PX-2,J)
1129 IF(RHO(PX,J) .LT. DNS0) RHO(PX,J) = DNS0
1130 END IF
1131 140 CONTINUE
1132 C ++ Corners ++
1133 IF(ITREEDWN.EQ.3) THEN
1134 VX(PX,PY) = UVELX

• (1) The equilibrium distribution.

• (2) The zero-gradient condition
(Eq. (7.8)).

• (3) The extrapolation
condition (Eq. (7.7)).

1135 VY(PX,PY) = UVELY
1136 RHO(PX,PY) = DNS0
1137 VX(PX, 0) = UVELX
1138 VY(PX, 0) = UVELY
1139 RHO(PX, 0) = DNS0
1140 ELSE IF(ITREEDWN.EQ.4) THEN
1141 VX(PX,PY) = VX(PX-1,PY-1)
1142 VY(PX,PY) = VY(PX-1,PY-1)
1143 RHO(PX,PY) = RHO(PX-1,PY-1)
1144 IF(RHO(PX,PY) .LT. DNS0) RHO(PX,PY) = DNS0
1145 VX(PX, 0) = VX(PX-1,1)
1146 VY(PX, 0) = VY(PX-1,1)
1147 RHO(PX, 0) = RHO(PX-1,1)
1148 IF(RHO(PX, 0) .LT. DNS0) RHO(PX, 0) = DNS0
1149 ELSE IF(ITREEDWN.EQ.5) THEN
1150 VX(PX,PY) = 2.D0*VX(PX-1,PY-1) - VX(PX-2,PY-2)
1151 VY(PX,PY) = 2.D0*VY(PX-1,PY-1) - VY(PX-2,PY-2)
1152 RHO(PX,PY) = 2.D0*RHO(PX-1,PY-1) - RHO(PX-2,PY-2)
1153 IF(RHO(PX,PY) .LT. DNS0) RHO(PX,PY) = DNS0
1154 VX(PX, 0) = 2.D0*VX(PX-1,1) - VX(PX-2,2)
1155 VY(PX, 0) = 2.D0*VY(PX-1,1) - VY(PX-2,2)
1156 RHO(PX, 0) = 2.D0*RHO(PX-1,1) - RHO(PX-2,2)
1157 IF(RHO(PX, 0) .LT. DNS0) RHO(PX, 0) = DNS0
1158 END IF
1159 END IF
1160 RETURN
1161 END
1162 C**** SUB COLLPROC *****
1163 SUBROUTINE COLLPROC(COLOR , ALPHAMX)
1164 C --------- COLLISION PROCEDURE ---
1165 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
1166 C
1167 COMMON /BLOCK1/ F , FTILD
1168 COMMON /BLOCK3/ RHO , RX , RY , VX , VY
1169 COMMON /BLOCK4/ DNS0 , TAU , DX , DT , CLAT
1170 COMMON /BLOCK5/ XL , YL , XL1 , YL1 , XL2 , YL2 , PX , PY , PXY
1171 C
1172 C -----------------------------
1173 INTEGER PP , QQ , KK
1174 PARAMETER(PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0)
1175 C
1176 REAL*8 F(0:PP,0:QQ,0:KK), FTILD(0:PP,0:QQ,0:KK)
1177 REAL*8 RHO(0:PP,0:QQ)
1178 REAL*8 RX(0:PP,0:QQ) , RY(0:PP,0:QQ)
1179 REAL*8 VX(0:PP,0:QQ) , VY(0:PP,0:QQ)
1180 INTEGER ALPHAMX , PX , PY , PXY
1181 C -----------------------------
1182 INTEGER PPXY
1183 PARAMETER(PPXY=150000 , NNTBL=2200 , NNTBL2=4400 , NNTBL3=4400)
1184 C
1185 INTEGER COLOR(PPXY)
1186 C -----------------------------
1187 REAL*8 FEQ, CDNS0, UVELX0, UVELY0
1188 INTEGER ITH, ICLR
1189 C
1190 CCC CDNS0 = DNS0
1191 C
1192 DO 210 I=0, PX
1193 DO 200 J=0, PY
1194 C

• (1) The equilibrium distribution.

• (2) The zero-gradient condition
(Eq. (7.8)).

• (3) The extrapolation
condition (Eq. (7.7)).

• A subroutine for treating
the collision at each site.

• The treatment for the sites at the downstream boundary
surface and inside the simulation region, and also for the
sites interacting with the cylinder according to Eq. (7.17).

246 Introduction to Practice of Molecular Simulation

1195 ITH = (PX+1)*J + (I+1)
1196 ICLR = COLOR(ITH)
1197 IF((ICLR.EQ.6) .OR. (ICLR.EQ.7)) GOTO 200
1198 C --- FOR Busual,Bdownstream,Bcyl_surface ---
1199 IF((ICLR .EQ. 0) .OR. (ICLR .EQ. 2) .OR. (ICLR .EQ. 5)) THEN
1200 UVELX0 = VX(I,J)
1201 UVELY0 = VY(I,J)
1202 CDNS0 = RHO(I,J)
1203 DO 100 K=0, ALPHAMX
1204 FTILD(I,J,K) = F(I,J,K) * (TAU-1.D0)/TAU
1205 & + FEQ(UVELX0, UVELY0, K, CDNS0) / TAU
1206 100 CONTINUE
1207 C --- FOR Bupstream ---
1208 ELSE IF(ICLR .EQ. 1) THEN
1209 UVELX0 = VX(0,J)
1210 UVELY0 = VY(0,J)
1211 CDNS0 = RHO(0,J)
1212 DO 120 K=0, ALPHAMX
1213 FTILD(0,J,K) = FEQ(UVELX0, UVELY0, K, CDNS0)
1214 120 CONTINUE
1215 C --- FOR Bupper_side ---
1216 ELSE IF(ICLR .EQ. 3) THEN
1217 UVELX0 = VX(I,PY)
1218 UVELY0 = VY(I,PY)
1219 CDNS0 = RHO(I,PY)
1220 DO 140 K=0, ALPHAMX
1221 FTILD(I,PY,K) = F(I,PY,K) * (TAU-1.D0)/TAU
1222 & + FEQ(UVELX0, UVELY0, K, CDNS0) / TAU
1223 140 CONTINUE
1224 C --- FOR Blower_side ---
1225 ELSE IF(ICLR .EQ. 4) THEN
1226 UVELX0 = VX(I,0)
1227 UVELY0 = VY(I,0)
1228 CDNS0 = RHO(I,0)
1229 DO 160 K=0, ALPHAMX
1230 FTILD(I,0,K) = F(I,0,K) * (TAU-1.D0)/TAU
1231 & + FEQ(UVELX0, UVELY0, K, CDNS0) / TAU
1232 160 CONTINUE
1233 END IF
1234 C
1235 200 CONTINUE
1236 210 CONTINUE
1237 RETURN
1238 END
1239 C**** SUB MOVEPROC *****
1240 SUBROUTINE MOVEPROC(PX , PY , ANTIALPH , RHO , DNS0 , ITREECYL)
1241 C --------- MOVEMENT PROCEDURE ---
1242 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
1243 C
1244 COMMON /BLOCK1/ F , FTILD
1245 C
1246 COMMON /BLOCK14/ RXCYL , RYCYL , ICYL , JCYL , DCYL
1247 COMMON /BLOCK15/ COLOR , POSINTBL
1248 COMMON /BLOCK16/ TBLNAM , TBLNUM , TBLPOS , NTBL
1249 COMMON /BLOCK17/ TBLDW , TBLAL , NTBLDW
1250 C
1251 COMMON /BLOCK21/ CD , CDFORCE0 , CDFORCE , RE , NSMPLCD
1252 C
1253 C -----------------------------
1254 INTEGER PP , QQ , KK
1255 PARAMETER(PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0)
1256 C
1257 REAL*8 F(0:PP,0:QQ,0:KK), FTILD(0:PP,0:QQ,0:KK)
1258 REAL*8 RHO(0:PP,0:QQ)
1259 INTEGER PX , PY , ANTIALPH(0:KK)
1260 C -----------------------------

• The treatment for the sites at the upstream boundary
surface. The equilibrium distribution is used.

• The treatment for the sites at the upper side
boundary surface. Eq. (7.17) is treated.

• The treatment for the sites at the lower side boundary
surface. Eq. (7.17) is treated.

• A subroutine for the transfer process of
the particle distribution function.

1261 INTEGER PPXY
1262 PARAMETER(PPXY=150000 , NNTBL=2200 , NNTBL2=4400 , NNTBL3=4400)
1263 C
1264 REAL*8 TBLDW(NNTBL2)
1265 INTEGER COLOR(PPXY) , POSINTBL(PPXY)
1266 INTEGER TBLNAM(NNTBL) , TBLNUM(NNTBL) , TBLPOS(NNTBL) , NTBL
1267 INTEGER TBLAL(NNTBL2) , NTBLDW
1268 C -----------------------------
1269 INTEGER NNCD
1270 PARAMETER(NNCD=1000000)
1271 C
1272 REAL*8 CDFORCE(NNCD)
1273 C -----------------------------
1274 INTEGER ITH , ICLR , ITBL , INUM , IPOS , IALPHA , K , KANTI
1275 INTEGER I1 , I2 , ID , J1 , J2 , JD , I00 , J00

247Practice of Lattice Boltzmann Simulations

1276 INTEGER I11, J11, I21, I22, J21, J22
1277 REAL*8 FWALL, CDW , C1 , C2
1278 REAL*8 CA11 , CA12 , CA21 , CA22 , CA23
1279 REAL*8 CB11 , CB12 , CB21 , CB22 , CB23
1280 REAL*8 CD11 , CD12 , CD21 , CD22 , CD23
1281 C
1282 C -- 0-DIRECTION ---
1283 DO 3 I=0, PX
1284 DO 1 J=0, PY
1285 F(I,J,0)=FTILD(I,J,0)
1286 1 CONTINUE
1287 3 CONTINUE
1288 C
1289 C ---------------------------------- 1,2,3,4,5,6,7,8-DIRECTION ---
1290 C
1291 DO 100 K=1,8
1292 C
1293 IF(K.EQ.1) THEN
1294 I1 = PX-1
1295 I2 = 1
1296 ID = -1
1297 J1 = PY-1
1298 J2 = 1
1299 JD = -1
1300 ELSE IF(K.EQ.2) THEN
1301 I1 = 1
1302 I2 = PX-1
1303 ID = 1
1304 J1 = PY-1
1305 J2 = 1
1306 JD = -1
1307 ELSE IF(K.EQ.3) THEN
1308 I1 = 1
1309 I2 = PX-1
1310 ID = 1
1311 J1 = PY-1
1312 J2 = 1
1313 JD = -1
1314 ELSE IF(K.EQ.4) THEN
1315 I1 = 1
1316 I2 = PX-1
1317 ID = 1
1318 J1 = 1
1319 J2 = PY-1
1320 JD = 1
1321 ELSE IF(K.EQ.5) THEN
1322 I1 = PX-1
1323 I2 = 1

• K means the α-direction.

1324 ID = -1
1325 J1 = PY-1
1326 J2 = 1
1327 JD = -1
1328 ELSE IF(K.EQ.6) THEN
1329 I1 = 1
1330 I2 = PX-1
1331 ID = 1
1332 J1 = 1
1333 J2 = PY-1
1334 JD = 1
1335 ELSE IF(K.EQ.7) THEN
1336 I1 = PX-1
1337 I2 = 1
1338 ID = -1
1339 J1 = 1
1340 J2 = PY-1
1341 JD = 1
1342 ELSE IF(K.EQ.8) THEN
1343 I1 = 1
1344 I2 = PX-1
1345 ID = 1
1346 J1 = PY-1
1347 J2 = 1
1348 JD = -1
1349 END IF
1350 C
1351 C
1352 DO 40 I= I1, I2, ID
1353 DO 20 J= J1, J2, JD
1354 C
1355 ITH = (PX+1)*J + (I+1)
1356 ICLR = COLOR(ITH)

• The ITH-th site is treated in
the following.

• The sites to be treated begin
from I1 to I2 at interval ID for
the x-direction.

• The sites to be treated begin
from J1 to J2 at interval JD for
the y-direction.

248 Introduction to Practice of Molecular Simulation

1390 C

1392 C

1395 C

1397 C

1401 C

1357 IF((ICLR.EQ.6) .OR. (ICLR.EQ.7)) GOTO 20
1358 C
1359 IF(K.EQ.1) THEN
1360 I00 = I-1
1361 J00 = J
1362 ELSE IF(K.EQ.2) THEN
1363 I00 = I+1
1364 J00 = J
1365 ELSE IF(K.EQ.3) THEN
1366 I00 = I
1367 J00 = J-1
1368 ELSE IF(K.EQ.4) THEN
1369 I00 = I
1370 J00 = J+1
1371 ELSE IF(K.EQ.5) THEN
1372 I00 = I-1
1373 J00 = J-1
1374 ELSE IF(K.EQ.6) THEN
1375 I00 = I+1
1376 J00 = J+1
1377 ELSE IF(K.EQ.7) THEN
1378 I00 = I-1
1379 J00 = J+1
1380 ELSE IF(K.EQ.8) THEN
1381 I00 = I+1
1382 J00 = J-1
1383 END IF
1384 C ----- FOR CYL_surface -----
1385 IF(ICLR .EQ. 5) THEN
1386 C

• The position (name) of the site
in the opposite direction to the
α-direction (K) is described as
(I00,J00). For example, if α=2
(K=2), such a site is I00=I+1 and
J00=J, where (I,J) is the position
(name) of the site of interest.

• The treatment of the site
interacting with the cylinder.

1387 ITBL = POSINTBL(ITH)
1388 INUM = TBLNUM(ITBL)
1389 IPOS = TBLPOS(ITBL)

1391 DO 10 JJ=0,INUM-1

1393 IALPHA = TBLAL(IPOS+JJ)
1394 KANTI = ANTIALPH(K)

1396 IF(IALPHA .EQ. KANTI) THEN

1398 IF((K.EQ.1) .OR. (K.EQ.5) .OR. (K.EQ.7)) THEN
1399 CDFORCE(NSMPLCD)=CDFORCE(NSMPLCD) - FTILD(I,J,KANTI)
1400 END IF

1402 IF(K.EQ.1) THEN
1403 I11 = I+1
1404 J11 = J
1405 I21 = I+1
1406 I22 = I+2
1407 J21 = J
1408 J22 = J
1409 ELSE IF(K.EQ.2) THEN
1410 I11 = I-1
1411 J11 = J
1412 I21 = I-1
1413 I22 = I-2
1414 J21 = J
1415 J22 = J
1416 ELSE IF(K.EQ.3) THEN
1417 I11 = I
1418 J11 = J+1
1419 I21 = I
1420 I22 = I
1421 J21 = J+1
1422 J22 = J+2
1423 ELSE IF(K.EQ.4) THEN
1424 I11 = I
1425 J11 = J-1
1426 I21 = I
1427 I22 = I
1428 J21 = J-1
1429 J22 = J-2
1430 ELSE IF(K.EQ.5) THEN
1431 I11 = I+1
1432 J11 = J+1
1433 I21 = I+1
1434 I22 = I+2
1435 J21 = J+1
1436 J22 = J+2

• (I) For IALPHA=KANTI.

• IALPHA is the direction of the ITH-th site toward
the neighboring site inside the cylinder, and the
opposite direction to K is KANTI.

• The variables (I11,J11) are used in the linear
interpolation procedure of the BFL and YMLS
methods.
• The variables (I21,J21) and (I22,J22) are used in
the quadratic interpolation procedure for the BFL
and YMLS methods.

• The order of the ITH-site, in which its information is
saved in TBLNUM and TBLPOS, is extracted from
POSINTBL. The result is saved in ITBL.

• INUM is the number of the interacting sites inside
the cylinder. IPOS is the first position of such sites
appearing in the corresponding variables.

249Practice of Lattice Boltzmann Simulations

1437 ELSE IF(K.EQ.6) THEN
1438 I11 = I-1
1439 J11 = J-1
1440 I21 = I-1
1441 I22 = I-2
1442 J21 = J-1
1443 J22 = J-2
1444 ELSE IF(K.EQ.7) THEN
1445 I11 = I+1
1446 J11 = J-1
1447 I21 = I+1
1448 I22 = I+2
1449 J21 = J-1
1450 J22 = J-2
1451 ELSE IF(K.EQ.8) THEN
1452 I11 = I-1
1453 J11 = J+1
1454 I21 = I-1
1455 I22 = I-2
1456 J21 = J+1
1457 J22 = J+2
1458 END IF
1459 C
1460 C
1461 IF((ITREECYL.EQ.2) .OR. (ITREECYL.EQ.3)) THEN
1462 CDW = TBLDW(IPOS+JJ)
1463 FWALL = (1.D0-CDW) * FTILD(I11,J11,KANTI)
1464 & + CDW * FTILD(I ,J ,KANTI)
1465 C
1466 C1 = 1.D0+CDW
1467 C2 = 2.D0+CDW
1468 CA11 = CDW /C1
1469 CA12 = 1.D0/C1
1470 CA21 = 2.D0*CA12/C2
1471 CA22 = 2.D0*CA12*CDW
1472 CA23 = -CDW/C2
1473 END IF
1474 C
1475 IF((ITREECYL.EQ.4) .OR. (ITREECYL.EQ.5)) THEN
1476 CDW = TBLDW(IPOS+JJ)
1477 C1 = 1.D0+2.D0*CDW
1478 C2 = 1.D0-2.D0*CDW
1479 CB11 = C2
1480 CB12 = 2.D0*CDW
1481 CB21 = CDW*C1
1482 CB22 = C1*C2
1483 CB23 = -CDW*C2
1484 CD11 = (-C2)/(2.D0*CDW)
1485 CD12 = 1.D0/(2.D0*CDW)
1486 CD21 = 1.D0/CB21
1487 CD22 = (-C2)/CDW
1488 CD23 = C2/C1
1489 END IF
1490 C
1491 C
1492 IF(ITREECYL .EQ. 1) THEN
1493 C +++ (1) BOUNCE-BACK +++++++++++++++++
1494 F(I,J,K) = FTILD(I,J,KANTI)
1495 C
1496 ELSE IF(ITREECYL .EQ. 2) THEN
1497 C +++ (2A) YMLS METHOD (Quadratic) +++
1498 F(I,J,K) = CA21*FWALL + CA22*F(I21,J21,K)
1499 & + CA23*F(I22,J22,K)
1500 C
1501 ELSE IF(ITREECYL .EQ. 3) THEN
1502 C +++ (2B) YMLS METHOD (Liner) +++++++
1503 F(I,J,K) = CA11*F(I11,J11,K) + CA12*FWALL
1504 C
1505 ELSE IF(ITREECYL .EQ. 4) THEN
1506 C +++ (3A) BFL METHOD (Quadratic) +++++
1507 IF(CDW .LE. 0.5D0) THEN
1508 C
1509 F(I,J,K) = CB21*FTILD(I,J,KANTI)
1510 & + CB22*FTILD(I21,J21,KANTI)
1511 & + CB23*FTILD(I22,J22,KANTI)
1512 ELSE

• The bounce-back rule.

• The quadratic YMLS method.

• The linear YMLS
method.

• The quadratic BFL
method.

• Eq. (8.112) is evaluated.

• Eq. (8.116) is evaluated.

• CB11 and CB12 are used in the linear
interpolation procedure of BFL in Eq.
(8.117), and CB21, CB22, and CB23 are
used in the quadratic interpolation
procedure of BFL in Eq. (8.112); in
advance, the coefficients are calculated
and saved in these variables for the
successive procedures. Similarly, CD11,
CD12, …, CD23 are used in calculating
Eqs. (8.118) and (8.116) for Δw>1/2.

• CA11 and CA12 are used in the linear
interpolation procedure of YMLS expressed
in Eq. (7.5), and CA21, CA22, and CA23 are
used in the quadratic interpolation procedure
of YMLS in Eq. (8.121); in advance, the
coefficients are calculated and saved in these
variables for the successive procedures.

250 Introduction to Practice of Molecular Simulation

1513 C
1514 F(I,J,K) = CD21*FTILD(I,J,KANTI)
1515 & + CD22*FTILD(I ,J ,K)
1516 & + CD23*FTILD(I21,J21,K)
1517 END IF
1518 C
1519 ELSE IF(ITREECYL .EQ. 5) THEN
1520 C +++ (3B) BFL METHOD (Linear) ++++++++
1521 IF(CDW .LE. 0.5D0) THEN
1522 C
1523 F(I,J,K) = CB11*FTILD(I11,J11,KANTI)
1524 & + CB12*FTILD(I,J,KANTI)
1525 ELSE
1526 C
1527 F(I,J,K) = CD11*FTILD(I,J,K)
1528 & + CD12*FTILD(I,J,KANTI)
1529 END IF
1530 C
1531 END IF
1532 C
1533 C
1534 IF((K.EQ.1) .OR. (K.EQ.5) .OR. (K.EQ.7)) THEN
1535 CDFORCE(NSMPLCD) = CDFORCE(NSMPLCD) - F(I,J,K)
1536 ELSE IF((K.EQ.2) .OR. (K.EQ.6) .OR. (K.EQ.8)) THEN
1537 CDFORCE(NSMPLCD) = CDFORCE(NSMPLCD) + F(I,J,K)
1538 END IF
1539 C
1540 GOTO 20
1541 C
1542 ELSE IF(IALPHA .EQ. K) THEN
1543 C
1544 IF((K.EQ.1) .OR. (K.EQ.5) .OR. (K.EQ.7)) THEN
1545 CDFORCE(NSMPLCD) = CDFORCE(NSMPLCD) + FTILD(I,J,K)
1546 END IF
1547 C
1548 F(I,J,K) = FTILD(I00, J00, K)
1549 GOTO 20
1550 C
1551 END IF
1552 C
1553 10 CONTINUE
1554 END IF
1555 C ----- FOR USUAL -----
1556 F(I,J,K) = FTILD(I00, J00, K)
1557 C
1558 20 CONTINUE
1559 40 CONTINUE
1560 C
1561 100 CONTINUE
1562 RETURN
1563 END
1564 C**** SUB BCPROC *****
1565 SUBROUTINE BCPROC(PX , PY , DNS0 , ALPHAMX , ITREESID ,
1566 & ITREEDWN)
1567 C --------- BOUNDARY CONDITION PROC. ---
1568 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
1569 C
1570 COMMON /BLOCK1/ F , FTILD
1571 COMMON /BLOCK3/ RHO , RX , RY , VX , VY
1572 COMMON /BLOCK6/ UVELX , UVELY
1573 C
1574 INTEGER PP , QQ , KK
1575 PARAMETER(PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0)

• The linear BFL method.

• Eq. (8.117) is evaluated.

• Eq. (8.118) is evaluated.

• (II) For IALPHA=K.

• A subroutine for treating the
boundary surfaces.

1576 C
1577 REAL*8 F(0:PP,0:QQ,0:KK), FTILD(0:PP,0:QQ,0:KK)
1578 REAL*8 RHO(0:PP,0:QQ)
1579 REAL*8 RX(0:PP,0:QQ) , RY(0:PP,0:QQ)
1580 REAL*8 VX(0:PP,0:QQ) , VY(0:PP,0:QQ)
1581 INTEGER PX , PY , ALPHAMX
1582 C
1583 REAL*8 FEQ , CDNS0 , UVELX0 , UVELY0
1584 C
1585 CDNS0 = DNS0
1586 C
1587 C --- BC for Bupstream ---
1588 DO 100 J=0, PY
1589 DO 80 K=0, ALPHAMX
1590 C +++ UNIFORM FLOW +++
1591 F(0,J,K) = FEQ(UVELX, UVELY, K, CDNS0)
1592 C

• I. The treatment at the upstream boundary surface.

• An equilibrium distribution is assigned.

251Practice of Lattice Boltzmann Simulations

1593 80 CONTINUE
1594 100 CONTINUE
1595 C
1596 C --------------------------- BC for Bupper_side & Blower_side ---
1597 DO 300 I=1, PX-1
1598 DO 280 K=0, ALPHAMX
1599 IF(ITREESID .EQ. 1) THEN
1600 C +++ (1) EXTRAPOLATION +++
1601 F(I,PY,K) = 2.D0*F(I,PY-1,K) - F(I,PY-2,K)
1602 F(I, 0,K) = 2.D0*F(I,1,K) - F(I,2,K)
1603 C
1604 ELSE IF(ITREESID .EQ. 2) THEN
1605 C +++ (2) DEF=0 +++
1606 F(I,PY,K) = F(I,PY-1,K)
1607 F(I, 0,K) = F(I,1,K)
1608 C
1609 ELSE IF((ITREESID.EQ.3) .OR. (ITREESID.EQ.4) .OR.
1610 & (ITREESID.EQ.5)) THEN
1611 C +++ (3) UNIFORM FLOW +++
1612 UVELX0 = VX(I,PY)
1613 UVELY0 = VY(I,PY)
1614 CDNS0 = RHO(I,PY)
1615 F(I,PY,K) = FEQ(UVELX0, UVELY0, K, CDNS0)
1616 C
1617 UVELX0 = VX(I,0)
1618 UVELY0 = VY(I,0)
1619 CDNS0 = RHO(I,0)
1620 F(I, 0,K) = FEQ(UVELX0, UVELY0, K, CDNS0)
1621 C
1622 END IF
1623 C
1624 280 CONTINUE
1625 300 CONTINUE
1626 C
1627 C --- BC for Bdownstream ---
1628 DO 500 J=0, PY
1629 DO 480 K=0, ALPHAMX
1630 IF(ITREEDWN .EQ. 1) THEN
1631 C +++ (1) EXTRAPOLATION +++
1632 F(PX,J,K) = 2.D0*F(PX-1,J,K) - F(PX-2,J,K)
1633 C
1634 ELSE IF(ITREEDWN .EQ. 2) THEN
1635 C +++ (2) DEF=0 +++
1636 F(PX,J,K) = F(PX-1,J,K)
1637 C
1638 ELSE IF((ITREEDWN.EQ.3) .OR. (ITREEDWN.EQ.4) .OR.

• II. The treatment at the side boundary surfaces.

• The extrapolation condition in
Eq. (7.7) is applied.

• The zero-gradient condition in Eq. (7.8) is
applied.

• An equilibrium distribution with
each local velocity is assigned.

• III. The treatment at the downstream surface.

• The extrapolation condition in Eq. (7.7) is applied.

• The zero-gradient condition in Eq. (7.8) is applied.

1639 & (ITREEDWN.EQ.5)) THEN
1640 C +++ (3) UNIFORM FLOW +++
1641 UVELX0 = VX(PX,J)
1642 UVELY0 = VY(PX,J)
1643 CDNS0 = RHO(PX,J)
1644 F(PX,J,K) = FEQ(UVELX0, UVELY0, K, CDNS0)
1645 C
1646 END IF
1647 480 CONTINUE
1648 500 CONTINUE
1649 C
1650 C -------------------------------- TWO Corners for Bdownstream ---
1651 DO 530 K=0, ALPHAMX
1652 IF(ITREEDWN .EQ. 1) THEN
1653 F(PX,PY,K) = 2.D0*F(PX-1,PY-1,K) - F(PX-2,PY-2,K)
1654 F(PX, 0,K) = 2.D0*F(PX-1, 1,K) - F(PX-2, 2,K)
1655 ELSE IF(ITREEDWN .EQ. 2) THEN
1656 F(PX,PY,K) = F(PX-1,PY-1,K)
1657 F(PX, 0,K) = F(PX-1, 1,K)
1658 END IF
1659 530 CONTINUE
1660 RETURN
1661 END
1662 C**** SUB GRAPHVEL ****
1663 SUBROUTINE GRAPHVEL(NANMCTR)
1664 C
1665 CCC IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
1666 IMPLICIT REAL (A-H,O-Z), INTEGER (I-N)
1667 C
1668 COMMON /BLOCK3/ RHO , RX , RY , VX , VY
1669 COMMON /BLOCK5/ XL , YL , XL1 , YL1 , XL2 , YL2 , PX , PY , PXY
1670 COMMON /BLOCK6/ UVELX , UVELY
1671 COMMON /BLOCK14/ RXCYL , RYCYL , ICYL , JCYL , DCYL
1672 C

• An equilibrium dist. with each
local velocity is assigned.

• IV. The treatment at both corner sites of the
downstream surface.

• The extrapolation condition in Eq. (7.7) is applied.

• The zero-gradient condition
in Eq. (7.8) is applied.

• A subroutine for writing out the
data used for making an animation
based on the commercial software
MicroAVS.

252 Introduction to Practice of Molecular Simulation

1673 INTEGER PP , QQ , KK
1674 REAL*8 PI
1675 PARAMETER(PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0)
1676 C
1677 C ---------------------------------
1678 REAL*8 RHO(0:PP,0:QQ)
1679 REAL*8 RX(0:PP,0:QQ) , RY(0:PP,0:QQ)
1680 REAL*8 VX(0:PP,0:QQ) , VY(0:PP,0:QQ)
1681 INTEGER PX , PY , PXY
1682 C ---------------------------------
1683 REAL*8 XL , YL , XL1 , YL1 , XL2 , YL2 , UVELX , UVELY
1684 REAL*8 RXCYL , RYCYL , DCYL
1685 C ---------------------------------
1686 INTEGER QQSQ , NNDUM
1687 PARAMETER(QQSQ=150000 , NNDUM=150000)
1688 C
1689 REAL DUMRX(NNDUM) ,DUMRY(NNDUM) , DUMVX(NNDUM) ,DUMVY(NNDUM)
1690 REAL VEL
1691 INTEGER NDUM, ISKIP
1692 C
1693 C ------------------------- DATA OUTPUT FOR VEL-FIELD MicroAVS ---
1694 C
1695 VEL = REAL(DSQRT(UVELX**2 + UVELY**2))
1696 C +++ MAKE MicroAVS data FILE +++
1697 WRITE(42,83) NANMCTR
1698 C
1699 II = 0
1700 DO 100 J=0, PY, 1
1701 DO 90 I=0, PX, 1
1702 II = II + 1
1703 DUMRX(II) = REAL(RX(I,J))
1704 DUMRY(II) = REAL(RY(I,J))
1705 DUMVX(II) = REAL(VX(I,J)) / VEL
1706 DUMVY(II) = REAL(VY(I,J)) / VEL
1707 WRITE(42,85) DUMRX(II), DUMRY(II), DUMVX(II), DUMVY(II)
1708 90 CONTINUE
1709 100 CONTINUE
1710 C
1711 NDUM = II
1712 C +++ MAKE MicroAVS fld FILE +++
1713 IF(NANMCTR .EQ. 1) THEN
1714 WRITE(41,181)
1715 WRITE(41,183)
1716 WRITE(41,185) (PX+1), (PY+1)
1717 WRITE(41,187)
1718 END IF
1719 C
1720 ISKIP = (NDUM+1)*(NANMCTR-1) + 1
1721 C
1722 WRITE(41,188) ISKIP-1
1723 WRITE(41,189) ISKIP
1724 WRITE(41,191) ISKIP
1725 WRITE(41,197)
1726 C
1727 C
1728 83 FORMAT(I5)
1729 85 FORMAT(4F8.3)
1730 181 FORMAT('# AVS field file'/ '#')
1731 183 FORMAT('ndim=2')
1732 185 FORMAT('dim1=',I4/ 'dim2=',I4)
1733 187 FORMAT('nspace= 2'/ 'veclen= 2'/ 'data= float'
1734 & / 'field= uniform'/)
1735 188 FORMAT('time file=./avsvel1.dat filetype=ascii '
1736 & 'skip=',I7,' close=1')
1737 189 FORMAT('variable 1 file=./avsvel1.dat filetype=ascii '
1738 & 'skip=',I7,' offset=2 stride=4')
1739 191 FORMAT('variable 2 file=./avsvel1.dat filetype=ascii '
1740 & 'skip=',I7,' offset=3 stride=4')
1741 197 FORMAT('EOT')
1742 RETURN
1743 END
1744 C#### FUN FEQ ####
1745 DOUBLE PRECISION FUNCTION FEQ(UVELX, UVELY, ALPHA, CDNS0)
1746 C ---
1747 C EQUILIBRIUM DISTRIBUTION FUNCTION F^(eq)
1748 C ---
1749 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
1750 C
1751 COMMON /BLOCK2/ CVEL , W , IINC , ANTIALPH, ALPHAMX
1752 C
1753 INTEGER PP , QQ , KK

• The equilibrium distribution function.

253Practice of Lattice Boltzmann Simulations

1754 PARAMETER(PP=300 , QQ=400 , KK=8 , PI=3.141592653589793D0)
1755 C
1756 REAL*8 CVEL(2,0:KK) , W(0:KK)
1757 INTEGER ALPHAMX , IINC(2,0:KK) , ANTIALPH(0:KK)
1758 INTEGER ALPHA
1759 C
1760 REAL*8 C0, C1, C2, C3
1761 C
1762 K = ALPHA
1763 C0 = W(K)*CDNS0
1764 C1 = CVEL(1,K)*UVELX + CVEL(2,K)*UVELY
1765 C2 = C1*C1
1766 C3 = UVELX**2 + UVELY**2
1767 FEQ = C0*(1.D0 + 3.D0*C1 + (9.D0/2.D0)*C2 - (3.D0/2.D0)*C3)
1768 RETURN
1769 END

• An equilibrium distribution is assigned
according to Eq. (7.18).

254 Introduction to Practice of Molecular Simulation

8 Theoretical Background of Lattice
Boltzmann Method

The lattice Boltzmann method [9�12] is a useful simulation technique for numeri-

cally solving flow problems. This method is also feasible as a simulation technique

for systems such as a suspension of solid particles or a polymeric liquid. In a multi-

component system, the motion of the suspended particles or polymers must be

solved together with the flow field of the solvent molecules. In a molecular simula-

tion of a suspension composed of solid particles in a liquid, it is very difficult to

treat the multibody hydrodynamic interactions among the suspended particles.

Hence, it is usual to model the flow field as a simple shear flow, and under this

approach only the motion of the suspended particles will be solved during the sim-

ulation. A typical simulation technique employing this concept is the Stokesian

dynamics method. On the other hand, the lattice Boltzmann method enables us to

solve the motion of suspended particles and the ambient flow field simultaneously,

so there is much of interest in this method.

In the present chapter, we turn from the practice of molecular simulations to the

theoretical background of the lattice Boltzmann method. The key equations are

almost all indicated for the successive derivation procedure such that the reader

will be able to derive all the important equations from the key expressions.

Understanding the theoretical background is essential if, for example, the reader

needs to employ a new boundary condition or develop a new version of the lattice

Boltzmann method that can take into account the random motion of the suspended

particles. For a clear, logical development, the fundamental equations for the fol-

lowing derivation may be found in Appendix A1. Note that we focus here on the

BGK lattice Boltzmann method, which is the simplest and provides a solid founda-

tion for application to various flow problems.

8.1 Equilibrium Distribution

The lattice Boltzmann method treats the particle distribution function of virtual

fluid particles, which are able to move from site to site on a lattice system. A mac-

roscopic quantity of interest, such as the fluid velocity, can be obtained from the

solution of the particle distribution function. In the case of a two-dimensional sys-

tem, such as the D2Q9 model shown in Figure 8.1, fluid particles at lattice site 0

have a possibility of moving to the neighboring lattice sites 1,. . .,8. If the quiescent

Introduction to Practice of Molecular Simulation. DOI: 10.1016/B978-0-12-385148-2.00008-2

© 2011 Elsevier Inc. All rights reserved.

state is included, there are nine velocities for the fluid particles moving (or not

moving) to a neighboring site; a fluid particle will arrive at its neighboring site

with a given microscopic velocity during a given time interval. We use the notation

cα for the velocity for the transfer in the α-direction (α5 0,1,2,. . .,8). The particle

distribution function fα(r,t) in the α-direction at the lattice site r at time t can be

obtained by treating the collision of the fluid particles at r and evaluating the

inflow and the outflow of fluid particles from and to the lattice site r. In the BGK

lattice Boltzmann method, the particle distribution function fα(r1 cαΔt, t1Δt) is

obtained from the following equation:

fαðr1 cαΔt; t1ΔtÞ5 ~f αðr; tÞ ð8:1Þ

~f αðr; tÞ5 fαðr; tÞ1
1

τ
f ð0Þα ðr; tÞ2 fαðr; tÞ
� � ð8:2Þ

The ~f α in Eq. (8.2) is the particle distribution function after the collision at the site r.

Eq. (8.1) implies that this distribution moves to the neighboring site (r1 cαΔt) in

the α-direction. The second term on the right-hand side in Eq. (8.2) is the collision

term, frequently denoted by the notation Ωα(r,t):

Ωαðr; tÞ5
1

τ
f ð0Þα ðr; tÞ2 fαðr; tÞ
� � ð8:3Þ

With the above particle distribution, the macroscopic fluid density ρ(r,t) and

momentum ρ(r,t)u(r,t) can be evaluated as

ρðr; tÞ5
X
α

fαðr; tÞ ð8:4Þ

ρðr; tÞuðr; tÞ5
X
α

fαðr; tÞcα ð8:5Þ

Additionally, if a system is in thermodynamic equilibrium with constant tempera-

ture T, the following equi-partition law of energies must be satisfied:

D

2
kT 5

X
α

m

2
ðcα 2 uÞ2 fα

ρ
ð8:6Þ

3

y

x
12 0

4

8

6 7

5

Figure 8.1 Lattice model for the D2Q9.

256 Introduction to Practice of Molecular Simulation

in which D is a constant for describing the dimension with the value 2 or 3 for a

two- or three-dimensional space, respectively, and m is the mass of a fluid particle.

The thermodynamic equilibrium velocity distribution in the lattice Boltzmann

method differs from that in the MD method. This is because virtual fluid particles

in the lattice Boltzmann method are not allowed to move freely in a simula-

tion region, but are restricted to move only from site to site. The velocity c of a

molecule (a fluid particle), which moves freely in a three-dimensional space with

a uniform flow velocity u of the system, is specified by the Maxwellian distribu-

tion f (eq)(c) [25]:

f ðeqÞðcÞ5 ρ
m

2πkT

� �3=2

exp 2
m

2kT
ðc2 uÞ2

n o
ð8:7Þ

Note that this definition includes the density ρ, whereas the usual Maxwellian dis-

tribution does not include the density in its expression. The equilibrium distribution

in the lattice Boltzmann method fα
(0) may be expressed by expanding the exponen-

tial function in Eq. (8.7) in a Taylor series expansion as

f ð0Þα 5 ρwα 11 b
cαUu
c2

1 e
u2

c2
1 h

ðcαUuÞ2
c4

� �
ð8:8Þ

in which wα, b, e, and h are unknown constants to be determined later, wα is a

weighting constant, and c is the lattice speed for fluid particles moving from site to

site, expressed as c5Δx/Δt.

In the lattice Boltzmann method, the whole system space is divided into a fine

mesh that acts as the lattice system, and the fluid particles are only able to move

from lattice site to lattice site. However, any physical phenomenon should not

depend on the setting of the lattice system, and Eqs. (8.4)�(8.6) are required to

remain valid for an arbitrary rotation of the lattice. This requirement will determine

the above-mentioned unknown constants and, because the values of these unknown

constants depend on the model used, we discuss the derivation for determining the

unknown constants for the D2Q9 and D3Q19 models separately.

8.1.1 D2Q9 Model

The xy-coordinate system and the α-direction are specified as shown in Figure 8.1.

As already pointed out, the equilibrium distribution can be obtained explicitly by

determining the unknown constants wα, b, e, and h such that the terms on the right-

hand side in Eqs. (8.4)�(8.6) remain unchanged by a rotation of the whole lattice

system by an angle φ: Before we start the procedure of determining the unknown

constants, we show preliminary expressions that are useful in the following discus-

sion. Note that the relationship of the momentum flux is necessary for determining

these constants.

257Theoretical Background of Lattice Boltzmann Method

As shown in Figure 8.2, the four unit vectors, which are along the plus and

minus x- and y-axes of the orthogonal coordinate system, are rotated about the z-

axis, and the new unit vectors are denoted by d1, d2, d3, and d4. These vectors are

written in component expressions as

d1 5 ðd1x; d1yÞ5 ðcos φ; sin φÞ

d2 5 ðd2x; d2yÞ5 cos φ1
π
2

0
@

1
A; sin φ1

π
2

0
@

1
A

0
@

1
A

d3 5 ðd3x; d3yÞ5 ðcosðφ1πÞ; sinðφ1πÞÞ

d4 5 ðd4x; d4yÞ5 cos φ1
3π
2

0
@

1
A; sin φ1

3π
2

0
@

1
A

0
@

1
A

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð8:9Þ

Using these expressions, we derive several useful equations for the successive deri-

vation. Although these equations can be derived from a simple transformation, as

will be shown in the next subsection for the D3Q19 model, we here show a more

sophisticated derivation based on the concept of imaginary numbers.

With the Euler formula eiθ5 cos θ1 i sin θ for imaginary numbers, the follow-

ing relationships can be obtained:

X4
k51

ðdkx1idkyÞ45
X3
k50

ei kπ
2
1φð Þn o4

5
X3
k50

eið2πk14φÞ5ei4φ
X3
k50

ei2πk54ei4φ ð8:10Þ

Similarly,

X4
k51

ðdkx 1 idkyÞ3ðdkx 2 idkyÞ5 0

X4
k51

ðdkx 1 idkyÞ2ðdkx 2 idkyÞ2 5 4

9>>>>=
>>>>;

ð8:11Þ

y

d2 d1

d3 d4

xφ

Figure 8.2 Rotation of the unit vectors.

258 Introduction to Practice of Molecular Simulation

The corresponding real and imaginary parts on the left- and right-hand sides in

Eq. (8.10) are equal, which leads to the following equation:

X4
k51

ðd4kx 1 d4ky 2 6d2kxd
2
kyÞ5 4 cos 4φ

X4
k51

4ðd3kxdky 2 dkxd
3
kyÞ5 4 sin 4φ

9>>>>>=
>>>>>;

ð8:12Þ

These relationships have been derived by expanding the left-hand side in

Eq. (8.10). Similarly, from Eq. (8.11),

X4
k51

ðd4kx 2 d4kyÞ5 0

X4
k51

ðd3kxdky 1 dkxd
3
kyÞ5 0

X4
k51

ðd4kx 1 d4ky 1 2d2kxd
2
kyÞ5 4

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð8:13Þ

Further preliminary relationships can be derived from Eqs. (8.12) and (8.13).

From the first equation in Eq. (8.12) and the third equation in Eq. (8.13),

X4
k51

d2kxd
2
ky 5

1

2
ð12 cos 4φÞ ð8:14Þ

From the second equation in Eqs. (8.12) and (8.13),

X4
k51

d3kxdky 5
1

2
sin 4φ

X4
k51

dkxd
3
ky 5 2

1

2
sin 4φ

9>>>>>>=
>>>>>>;

ð8:15Þ

From the first and third equations in Eq. (8.13),

X4
k51

d4kx 5
X4
k51

d4ky 5 22
X4
k51

d2kxd
2
ky 5

3

2
1

1

2
cos 4φ ð8:16Þ

259Theoretical Background of Lattice Boltzmann Method

From a similar derivation procedure, the terms concerning dkx or dky to the first,

second, and third powers are obtained as

X4
k51

dkx 5
X4
k51

dky 5 0

X4
k51

d2kx 5
X4
k51

d2ky 5 2;
X4
k51

dkxdky 5 0

X4
k51

d3kx 5
X4
k51

d3ky 5
X4
k51

d2kxdky 5
X4
k51

dkxd
2
ky 5 0

9>>>>>>>>>=
>>>>>>>>>;

ð8:17Þ

We have now obtained all the preliminary equations and will proceed to the deter-

mination procedures for the unknown constants wα, b, e, and h.

As shown in Figure 8.1, we consider the rotation of the D2Q9 lattice system

about the z-axis by the angle φ: We first evaluate the following quantity:

X8
α50

wαc
2
αxc

2
αy 5w1

X4
α51

c2αxc
2
αy 1w5

X8
α55

c2αxc
2
αy 5w1c

4 1

2
ð12 cos 4φÞ

1w5

ffiffiffi
2

p
c

	
4 1
2

12 cos 4 φ1
π
4

	
n o ð8:18Þ

With the assumption of

w1 5 4w5 ð8:19Þ

Eq. (8.18) comes to be independent of φ: That is,

X8
α50

wαc
2
αxc

2
αy 5w1c

4 ð8:20Þ

Similar manipulation gives rise to

X8
α50

wαc
3
αxcαy 5

X8
α50

wαcαxc
3
αy 5 0

X8
α50

wαc
4
αx 5

X8
α50

wαc
4
αy 5 3w1c

4

9>>>>=
>>>>;

ð8:21Þ

The above results can be written in one expression by using the Kronecker delta δij:X8
α50

wαcαicαjcαkcαl 5w1c
4ðδijδkl 1 δikδjl 1 δilδjkÞ ð8:22Þ

260 Introduction to Practice of Molecular Simulation

Similarly,

X8
α50

wαcαx 5
X8
α50

wαcαy 5 0;
X8
α50

wαcαicαj 5 3w1c
2δij

X8
α50

wαc
2
αx 5

X8
α50

wαc
2
αy 5 3w1c

2;
X8
α50

wαcαxcαy 5 0

X8
α50

wαc
3
αx 5

X8
α50

wαc
3
αy 5

X8
α50

wαc
2
αxcαy 5

X8
α50

wαcαxc
2
αy 5 0

9>>>>>>>>>>=
>>>>>>>>>>;

ð8:23Þ

We now determine the appropriate values of the constants b, e, h, and wα for an

equilibrium distribution in Eq. (8.8). The relationships that must be satisfied for an

equilibrium state are the equation of mass in Eq. (8.4), the equation of momentum

in Eq. (8.5), and the equi-partition law of energies in Eq. (8.6). In these equations,

f ð0Þα must be used as fα. Substitution of Eq. (8.8) into the right-hand side of

Eq. (8.4) leads to

X8
α50

f ð0Þα 5
X8
α50

ρwα 11b
cαUu
c2

1e
u2

c2
1h

ðcαUuÞ2
c4

� �
5ρ wsum1wsum

u2

c2
e13w1

u2

c2
h

� �

ð8:24Þ

In deriving this equation, the following relationships have been used:

X8
α50

wαðcαUuÞ5
X8
α50

wαðcαxux1cαyuyÞ50

X8
α50

wαðcαUuÞ25
X8
α50

wαðc2αxu2x1c2αyu
2
y12uxuycαxcαyÞ53w1c

2u2

9>>>>>=
>>>>>;

ð8:25Þ

Equation (8.4) says that the quantity in Eq. (8.24) must equal the density ρ, so that

the following relationships are obtained:

wsum 5 1; wsume1 3w1h5 0 ð8:26Þ

in which wsum5w01 4w11 4w55w01 5w1.

Similarly, we obtain the following equation:

X8
α50

cαif
ð0Þ
α 5

X8
α50

ρwαcαi 11 b
cαUu
c2

1 e
u2

c2
1 h

ðcαUuÞ2
c4

� �
5 3ρw1uib ð8:27Þ

in which the following relationships have been used for the derivation.

261Theoretical Background of Lattice Boltzmann Method

X8
α50

wαcαxðcαUuÞ5
X8
α50

wαðc2αxux 1 cαxcαyuyÞ5 3w1c
2ux

X8
α50

wαcαxðcαUuÞ2 5
X8
α50

wαðc3αxu2x 1 2c2αxcαyuxuy 1 cαxc
2
αyu

2
yÞ5 0

9>>>>=
>>>>;

ð8:28Þ

Since the momentum equation in Eq. (8.5) must be satisfied, b is obtained as

b5
1

3w1

ð8:29Þ

Then, we evaluate the momentum flux Πð0Þ
ij by substituting the equilibrium dis-

tribution f ð0Þα in Eq. (8.8) into this momentum flux expression:

Πð0Þ
ij 5

X8
α50

cαicαj f
ð0Þ
α 5

X8
α50

ρwαcαicαj 11 b
cαUu
c2

1 e
u2

c2
1 h

ðcαUuÞ2
c4

8<
:

9=
;

5 ρw1 3c2 11
u2

c2
e

0
@

1
Aδij 1 u2hδij

8<
:

9=
;1 2ρw1uiujh

ð8:30Þ

in which the following relationships have been used for deriving this equation:

X8
α50

wαcαxcαyðcαUuÞ5
X8
α50

wαc
2
αxðcαUuÞ5

X8
α50

wαc
2
αyðcαUuÞ5 0

X8
α50

wαcαxcαyðcαUuÞ2 5 2w1c
4uxuy

X8
α50

wαc
2
αxðcαUuÞ2 5 2w1c

4u2x 1w1c
4u2

9>>>>>>>>>=
>>>>>>>>>;

ð8:31Þ

For the case of an equilibrium state, Πð0Þ
ij can be related to the pressure p as

Πð0Þ
ij 5 pδij 1 ρuiuj ð8:32Þ

Hence, the comparison of Eq. (8.30) with Eq. (8.32) yields the following

relationships:

h5
1

2w1

; p5 3ρw1c
2 ð8:33Þ

3e1 h5 0 ð8:34Þ

262 Introduction to Practice of Molecular Simulation

The pressure p is related to the speed of sound cs as p5 ρc2s ; so that cs can be

written as

cs 5
ffiffiffiffiffiffiffiffi
3w1

p
c ð8:35Þ

Finally, we evaluate the kinetic energy. Preliminary relationships can be derived

from Eq. (8.23) as

X8
α50

wαc
2
α 5 6w1c

2

X8
α50

wαc
2
αxðcαUuÞ5

X8
α50

wαc
2
αyðcαUuÞ5

X8
α50

wαc
2
αðcαUuÞ5 0

X8
α50

wαc
2
αðcαUuÞ2 5 4w1c

4u2;
X8
α50

wαðcαUuÞ3 5 0

9>>>>>>>>>=
>>>>>>>>>;

ð8:36Þ

Using these relationships, the right-hand side in Eq. (8.6) may be calculated as

X8
α50

m

2
ðcα 2 uÞ2 fα

ð0Þ

ρ
5

m

2

X8
α50

wαðcα2 1 u2 2 2cαUuÞ

3 11 b
cαUu
c2

1 e
u2

c2
1 h

ðcαUuÞ2
c4

� �

5
m

2
6w1 11 e

u2

c2

� �
c2 1 4w1hu

2 1wsum 11 e
u2

c2

� �
u2 1 3w1h

u4

c2
2 6w1bu

2

� �
ð8:37Þ

By taking into account Eqs. (8.26), (8.29), and (8.33), the above equation is simpli-

fied as

X8
α50

m

2
ðcα 2 uÞ2 fα

ð0Þ

ρ
5

m

2
ð6w1c

2 1 6w1u
2e1wsumu

2Þ ð8:38Þ

Hence, Eq. (8.6) reduces to

2

2
kT 5

m

2
ð6w1c

2 1 6w1u
2e1wsumu

2Þ ð8:39Þ

Since the temperature T is independent of the macroscopic velocity u, this equation

yields the final relationships:

6w1e1wsum 5 0 ð8:40Þ

3mw1c
2 5 kT ð8:41Þ

263Theoretical Background of Lattice Boltzmann Method

We now have the same number of equations as the unknown constants, so that the

solutions required can be obtained in a straightforward way as

b5 3; e5 2
3

2
; h5

9

2
ð8:42Þ

wsum 5 1; w0 5
4

9
; w1 5

1

9
; w5 5

1

36
ð8:43Þ

We summarize the final results as

f ð0Þα 5 ρwα 11 3
cαUu
c2

2
3

2
U
u2

c2
1

9

2
U
ðcαUuÞ2

c4

� �
ð8:44Þ

wα 5

4=9 for α5 0

1=9 for α5 1; 2; 3; 4

1=36 for α5 5; 6; 7; 8

; cαj j5
0 for α5 0

c for α5 1; 2; 3; 4ffiffiffi
2

p
c for α5 5; 6; 7; 8

8><
>:

8><
>:

ð8:45Þ

The speed of sound cs is expressed as

cs 5 c=
ffiffiffi
3

p
ð8:46Þ

8.1.2 D3Q19 Model

In the case of the D3Q19 lattice model, the thermodynamic equilibrium distribution

can be assumed to have the form of Eq. (8.8), and therefore the unknown constants

can be derived through similar procedures to the previous D2Q9 model. Only in

this present subsection, we use the notation ~cð5Δx=ΔtÞ for the lattice speed

instead of c, since the notation c will be used for the abbreviated symbol of the

cosine function.

In order to satisfy the isotropy condition, the lattice system has to be adopted

such that it is independent of an arbitrary rotation of the lattice. In Figure 8.3, for a

rotation of the lattice system about the z-axis by an angle φ and a rotation about

the y-axis by an angle θ, the rotation matrix R is written as

R5
cos θ 0 sin θ
0 1 0

2sin θ 0 cos θ

0
@

1
A cos φ 2sin φ 0

sin φ cos φ 0

0 0 1

0
@

1
A5

Cc 2Cs S

s c 0

2Sc Ss C

0
@

1
A
ð8:47Þ

264 Introduction to Practice of Molecular Simulation

in which the abbreviations C5 cos θ, S5 sin θ, c5 cos φ, and s5 sin φ are used

for simplification of the equations. An arbitrary component X is related to the

corresponding rotated component X0 by the expression X0 5R �X. The transferred

component dk (k5 1,2,. . .,18) of each lattice point in Figure 8.3 is obtained as

d1 5R

1

0

0

0
B@

1
CA5

Cc

s

2Sc

0
B@

1
CA; d3 5R

0

1

0

0
B@

1
CA5

2Cs

c

Ss

0
B@

1
CA; d5 5

2S

0

2C

0
B@

1
CA

d7 5

C c2 sð Þ
s1 c

2S c2 sð Þ

0
B@

1
CA; d9 5

C c1 sð Þ
s2 c

2S c1 sð Þ

0
B@

1
CA; d11 5

2Cs1 S

c

Ss1C

0
B@

1
CA

d13 5

Cs1 S

2c

2Ss1C

0
B@

1
CA; d15 5

Cc1 S

s

2Sc1C

0
B@

1
CA; d17 5

Cc2 S

s

2Sc2C

0
B@

1
CA

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ð8:48Þ

From symmetric considerations, the following relationship must be satisfied:

d2k 5 2d2k2 1 ðk51; 2; . . . ; 9Þ ð8:49Þ

The final expressions are summarized in Table 8.1.

The results in Table 8.1 give rise to those concerning cαx, cαy, and cαz, such asP18
α50

5wαcαicαjcαkcαl in Table 8.2. As seen from the result of
P18
α50

wαc
4
αi; the

z

x

y

6

2

4

5

1

3 7

9

10

8

18

1716

15
11

13

14

12

0

Figure 8.3 Lattice model for the

D3Q19.

265Theoretical Background of Lattice Boltzmann Method

Table 8.1 Results of Quantities for the Successive Derivation

X6
k51

d4kx 5 24ðC2S2 1C4c2s2Þ1 2

X6
k51

d4ky 5 4ðc4 2 c2Þ1 2

X6
k51

d4kz 5 24ðC2S2 1 S4c2s2Þ1 2

X18
k57

d4kx 5 8ðC2S2 1C4c2s2Þ1 8

X18
k57

d4ky 5 2 8ðc4 2 c2Þ1 8

X18
k57

d4kz 5 8ðC2S2 1 S4c2s2Þ1 8

X6
k51

d2kxd
2
ky 5 4C2c2s2

X6
k51

d2kxd
2
kz 5 4C2S2ð12 c2s2Þ

X6
k51

d2kyd
2
kz 5 4S2c2s2

X18
k57

d2kxd
2
ky 5 28C2c2s2 1 4

X18
k57

d2kxd
2
kz 5 28C2S2ð12 c2s2Þ1 4

X18
k57

d2kyd
2
kz 5 28S2c2s2 1 4

X6
k51

d2kxdkydkz 5 2C2Scsð2c2 1 s2Þ
X6
k51

dkxd
2
kydkz 5 24CSc2s2

X6
k51

dkxdkyd
2
kz 5 2CS2csðc2 2 s2Þ

X18
k57

d2kxdkydkz 5 4C2Sðc2 2 s2Þcs
X18
k57

dkxd
2
kydkz 5 8CSc2s2

X18
k57

dkxdkyd
2
kz 5 24CS2ðc2 2 s2Þcs

X6
k51

d3kxdky 5 2C3csðc2 2 s2Þ
X6
k51

d3kxdkz 5 22C3Sð12 2c2s2Þ1 2CS3

X6
k51

d3kydkx 5 2Ccsð2c2 1 s2Þ
X6
k51

d3kydkz 5 2Scsðc2 2 s2Þ
X6
k51

d3kzdkx 5 22CS3ð12 2c2s2Þ1 2C3S

X6
k51

d3kzdky 5 22S3csðc2 2 s2Þ

X18
k57

d3kxdky 5 24C3ðc2 2 s2Þcs
X18
k57

d3kxdkz 5 4C3Sð12 2c2s2Þ2 4CS3

X18
k57

d3kydkx 5 4Cðc2 2 s2Þcs
X18
k57

d3kydkz 5 24Sðc2 2 s2Þcs
X18
k57

d3kzdkx 5 4CS3ð12 2c2s2Þ2 4C3S

X18
k57

d3kzdky 5 4S3ðc2 2 s2Þcs
X6
k51

d2kx 5
X6
k51

d2ky 5
X6
k51

d2kz 5 2

X6
k51

dkxdky 5
X6
k51

dkxdkz 5
X6
k51

dkydkz 5 0

X18
k57

d2kx 5
X18
k57

d2ky 5
X18
k57

d2kz 5 8

X18
k57

dkxdky 5
X18
k57

dkxdkz 5
X18
k57

dkydkz 5 0

266 Introduction to Practice of Molecular Simulation

Table 8.2 Final Results of Quantities for the Successive Derivation

X18
α50

wαc
4
αx 5 ~c4ð2 4w1 1 8w7ÞðC2S2 1C4c2s2Þ1 ~c4ð2w1 1 8w7Þ

X18
α50

wαc
4
αy 5 ~c4ð4w1 2 8w7Þðc4 2 c2Þ1 ~c4ð2w1 1 8w7Þ

X18
α50

wαc
4
αz 5 ~c4ð2 4w1 1 8w7ÞðC2S2 1 S4c2s2Þ1 ~c4ð2w1 1 8w7Þ

+ w1 5 2w7

X18
α50

wαc
4
αx 5

X18
α50

wαc
4
αy 5

X18
α50

wαc
4
αz 5 6w1 ~c

4

X18
α50

wαc
2
αxc

2
αy5

X18
α50

wαc
2
αxc

2
αz5

X18
α50

wαc
2
αyc

2
αz52w1 ~c

4

X18
α50

wαc
3
αxcαy5

X18
α50

wαc
3
αxcαz5

X18
α50

wαc
3
αycαx5

X18
α50

wαc
3
αycαz5

X18
α50

wαc
3
αzcαx5

X18
α50

wαc
3
αzcαy50

X18
α50

wαc
2
αxcαycαz5

X18
α50

wαcαxc
2
αycαz5

X18
α50

wαcαxcαyc
2
αz50

X18
α50

wαc
3
αx5

X18
α50

wαc
3
αy5

X18
α50

wαc
3
αz50

X18
α50

wαc
2
αxcαy5

X18
α50

wαc
2
αxcαz5

X18
α50

wαc
2
αycαx5

X18
α50

wαc
2
αycαz5

X18
α50

wαc
2
αzcαx5

X18
α50

wαc
2
αzcαy50

X18
α50

wαcαxcαycαz50

X18
α50

wαc
2
αx 5

X18
α50

wαc
2
αy 5

X18
α50

wαc
2
αz 5 6w1 ~c

2

X18
α50

wαcαxcαy 5
X18
α50

wαcαxcαz 5
X18
α50

wαcαycαz 5 0

X18
α50

wαcαx 5
X18
α50

wαcαy 5
X18
α50

wαcαz 5 0

267Theoretical Background of Lattice Boltzmann Method

relationship of w15 2w7 has to be satisfied in order for this result to be independent

of the rotational angle. Hence, the results after the arrow in Table 8.2 have taken

into account this relationship. The expressions in Table 8.2 are written in simply

unified equations as

X18
α50

wαcαicαjcαkcαl 5 2w1 ~c
4ðδijδkl 1 δikδjl 1 δilδjkÞ

X18
α50

wαcαicαjcαk 5 0

X18
α50

wαcαicαj 5 6w1 ~c
2δij;

X18
α50

wαci 5 0

9>>>>>>>>>=
>>>>>>>>>;

ð8:50Þ

We are now ready to derive the equilibrium distribution for the D3Q19 lattice

model.

As mentioned before, the relationships that the equilibrium distribution f ð0Þα
shown in Eq. (8.8) must satisfy are the mass, momentum, kinetic energy, and

momentum flux equations. The former three equations are written as

X18
α50

f ð0Þα 5 ρ ð8:51Þ

X18
α50

cαf
ð0Þ
α 5 ρu ð8:52Þ

X18
α50

m

2
ðcα 2 uÞ2 f ð0Þα

ρ
5

3

2
kT ð8:53Þ

With the results shown in Table 8.2, the following equation is obtained:

X18
α50

f ð0Þα 5
X18
α50

wαρ 11 b
cαUu

~c2
1 e

u2

~c2
1 h

ðcαUuÞ2
~c4

� �

5 ρ wsum 1
u2

~c2
ðwsume1 6w1hÞ

� �
ð8:54Þ

The comparison of this equation with Eq. (8.51) leads to

wsum 5 1; wsume1 6w1h5 0 ð8:55Þ

in which wsum5w01 6w11 12w75w01 12w1.

268 Introduction to Practice of Molecular Simulation

In order to compare this result with the right-hand side of Eq. (8.52), the left-

hand side is evaluated using the equilibrium distribution as

X18
α50

cαif
ð0Þ
α 5

X18
α50

ρwαcαi 11 b
cαUu

~c2
1 e

u2

~c2
1 h

ðcαUuÞ2
~c4

� �
5 6bw1ρui ð8:56Þ

Hence, the comparison of the right-hand sides in Eqs. (8.56) and (8.52) gives rise

to

6w1b5 1 ð8:57Þ

Similar to the D2Q9 model, the momentum flux Πð0Þ
ij is calculated as

Πð0Þ
ij 5

X18
α50

cαicαj f
ð0Þ
α 5 6ρw1 ~c

2 11 e
u2

~c2

� �
1 2ρw1u

2h

� �
δij 1 4ρw1uiujh

ð8:58Þ

In deriving this equation, the following relationships are used:

X18
α50

wαcαxcαy 11 b
cαUu

~c2
1 e

u2

~c2
1 h

ðcαUuÞ2
~c4

8<
:

9=
;5 4w1uxuyh

X18
α50

wαc
2
αx 11 b

cαUu

~c2
1 e

u2

~c2
1 h

ðcαUuÞ2
~c4

8<
:

9=
;

5 6w1 ~c
2 11 e

u2

~c2

0
@

1
A1 2w1u

2h1 4w1u
2
xh

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

ð8:59Þ

The expression for Πð0Þ
ij as defined by Eq. (8.32) is also valid for a three-dimen-

sional system. The following relationships can therefore be obtained by comparison

with Eq. (8.58) as

p5 6ρw1 ~c
2 ð8:60Þ

4w1h5 1; 3e1 h5 0 ð8:61Þ

Hence, the speed of sound cs is expressed from p5 ρc2s as

cs 5
ffiffiffiffiffiffiffiffi
6w1

p
U ~c ð8:62Þ

269Theoretical Background of Lattice Boltzmann Method

Finally, in order to compare with Eq. (8.53), the following reformation is

performed:

X18
α50

ðcα2uÞ2 f
ð0Þ
α

ρ
5
X18
α50

wαðcα2uÞ2 11b
cαUu

~c2
1e

u2

~c2
1h

ðcαUuÞ2
~c4

8<
:

9=
;

5
X18
α50

wαðc2α22cαUu1u2Þ 11b
cαUu

~c2
1e

u2

~c2
1h

ðcαUuÞ2
~c4

8<
:

9=
;

5
X18
α50

wαðc2α22cαUu1u2Þ 11e
u2

~c2

0
@

1
A

1
X18
α50

wαðc2α22cαUu1u2ÞðcαUuÞ b
~c2

1
X18
α50

wαðc2α22cαUu1u2ÞðcαUuÞ2 h
~c4

5 11e
u2

~c2

0
@

1
Að18w1 ~c

21wsumu
2Þ2 2b

~c2
X18
α50

wαðcαUuÞ2

1
h

~c4
X18
α50

wα

(
c2αðcαUuÞ21u2ðcαUuÞ2

)

518w1 ~c
21 ðwsum212w1b118w1e110w1hÞu2 ð8:63Þ

in which Eq. (8.55) and the following relationship have been used for the

derivation:

X18
α50

wαðcαUuÞ2 5 6w1 ~c
2u2

X18
α50

wαc
2
αðcαUuÞ2 5 10w1 ~c

4u2

9>>>>=
>>>>;

ð8:64Þ

Since the temperature is independent of the macroscopic velocity u, the second

term on the right-hand side in Eq. (8.63) must vanish:

wsum 2 12w1b1 18w1e1 10w1h5 0 ð8:65Þ

The comparison of Eq. (8.63) with Eq. (8.6) yields the following equation:

m

2
18w1 ~c

2 5
3

2
kT ð8:66Þ

270 Introduction to Practice of Molecular Simulation

We now have the same number of equations as the unknown constants. The final

results for the unknown constants can be obtained from Eqs. (8.55), (8.57), (8.61),

and (8.65) and the relationships of w15 2w7 and wsum5w01 12w1, as

w0 5
1

3
; w1 5

1

18
; w7 5

1

36
; wsum 5 1

b5 3; e5 2
3

2
; h5

9

2

9>>>=
>>>;

ð8:67Þ

With the original notation c for the lattice velocity, the equilibrium distribution for

the D3Q19 model is finally written as

f ð0Þa 5 ρwα 11 3
cαUu
c2

2
3

2
U
u2

c2
1

9

2
U
ðcαUuÞ2

c4

� �
ð8:68Þ

wα 5
1=3 for α50

1=18 for α5 1; 2; . . . ; 6
1=36 for α5 7; 8; . . . ; 18

; cαj j5
0 for α5 0

c for α5 1; 2; . . . ; 6ffiffiffi
2

p
c for α5 7; 8; . . . ; 18

8<
:

8<
:

ð8:69Þ

8.2 Navier�Stokes Equation

In this section, we derive the Navier�Stokes equation from the preliminary equa-

tions derived in Appendix A1, which is the basic macroscopic equation for flow

problems. The following derivation procedure is valid for both D2Q9 and D3Q19

models, with the exception that α is taken as α5 0,1,. . .,8, the axis index i is x or y

for the former model, α is taken as α5 0,1,. . .,18, and i is x, y, or z for the latter

model.

The starting equation for the derivation procedure is Eq. (A1.27), rewritten as

@

@t
ðρuiÞ1

X
j

@

@rj
Πij1

Δt

2
ε
X
j

@

@rj

@

@t1
Πð0Þ

ij

� �
1

Δt

2

X
j

X
k

@

@rj

@

@rk
S
ð0Þ
ijk

� �
50

ð8:70Þ

Another starting equation is Eq. (A1.31), rewritten as

2
1

τΔt
f ð1Þα 52

@f ð0Þα

@ρ
U

@

@r1
UðρuÞ2

X
i

X
j

@f ð0Þα

@ðρuiÞ
U

@

@r1j
Πð0Þ

ij 1
X
i

@

@r1i
ðcαif ð0Þα Þ

ð8:71Þ

271Theoretical Background of Lattice Boltzmann Method

in which

fα 5 f ð0Þα 1 εf ð1Þα 1 ε2f ð2Þα 1? ð8:72Þ

Πð0Þ
ij 5

X
α

cαicαj f
ð0Þ
α 5 pδij 1 ρuiuj 5

ρ
3
c2δij 1 ρuiuj ð8:73Þ

S
ð0Þ
ijk 5

X
α

cαicαjcαkf
ð0Þ
α ð8:74Þ

@

@t
5 ε

@

@t1
1 ε2

@

@t2
;

@

@ri
5 ε

@

@r1i
ð8:75Þ

We now begin the derivation procedure for the Navier�Stokes equation by

deriving the solution for f ð1Þα from the basic equation in Eq. (8.71). If the terms

higher than the order of (u/c)2 are neglected, the following relationships are

obtained:

f ð0Þα 5 ρwα 11 3
cαUu
c2

n o
ð8:76Þ

Πð0Þ
ij 5

ρ
3
c2δij 1 ρuiuj ð8:77Þ

@f ð0Þα

@ρ
5wα ð8:78Þ

@f ð0Þα

@ðρuiÞ
5wα

@

@ðρuiÞ
3

c2

X
j

cαjðρujÞ
()

5wα
3

c2
cαi ð8:79Þ

@

@r1j
Πð0Þ

ij 5
c2

3
U
@ρ
@r1j

δij 1
@

@r1j
ðρuiujÞ ð8:80Þ

@

@r1i
ðcαif ð0Þα Þ5wα

@

@r1i
ðρcαiÞ1 3wα

1

c2
U

@

@r1i

X
j

ρcαicαjuj

()
ð8:81Þ

By substituting these relationships into Eq. (8.71), the solution of f ð1Þα can finally be

obtained as

f ð1Þα 523wαΔtτ
1

c2

X
k

X
l

cαkcαl2
1

3
c2δkl

� �
@

@r1l
ðρukÞ ð8:82Þ

272 Introduction to Practice of Molecular Simulation

With this solution, the next quantity can be evaluated:

εΠð1Þ
ij 5 ε

X
α

cαicαj f
ð1Þ
α

523Δtτ
1

c2

X
k

X
l

X
α

wαcαicαjcαkcαl

 !
@

@rl
ðρukÞ

1Δtτ
P
α
wαcαicαj

	
 @

@r
UðρuÞ

52
Δtτc2

3

@

@rj
ðρuiÞ1

@

@ri
ðρujÞ

8<
:

9=
;

ð8:83Þ

In deriving this equation, Eqs. (8.50), (8.22), and (8.23) are used. This equation

leads to

X
j

@

@rj
ðεΠð1Þ

ij Þ52
Δtτc2

3

@2

@r2
ðρuiÞ1

@

@ri

@

@r
UðρuÞ

� �� �
ð8:84Þ

On the other hand, Πð0Þ
ij is written as

X
j

@

@rj
ðΠð0Þ

ij Þ5
X
j

@

@rj
ðpδij 1 ρuiujÞ ð8:85Þ

With the approximation of Πij � Πð0Þ
ij 1 εΠð1Þ

ij ; the following equation is obtained

from Eqs. (8.84) and (8.85):

X
j

@

@rj
Πij5

X
j

@

@rj
ðpδij1ρuiujÞ2

Δtτc2

3

@2

@r2
ðρuiÞ1

@

@ri

@

@r
UðρuÞ

� �� �
ð8:86Þ

Moreover, Eqs. (A1.11) and (A1.17) give rise to

Δt

2
ε
@

@t1
Πð0Þ

ij 5
1

6
Δtc2δijε

@ρ
@t1

52
1

6
Δtc2δij

@

@r
UðρuÞ ð8:87Þ

From this equation, the following equation can be obtained:

Δt

2
ε
X
j

@

@rj

@

@t1
Πð0Þ

ij

� �
5 2

1

6
Δtc2

@

@ri

@

@r
UðρuÞ

� �
ð8:88Þ

We next evaluate the quantity S
ð0Þ
ijk : First,

S
ð0Þ
ijk 5

X
α

cαicαjcαk f
ð0Þ
α 5

X
α

wαcαicαjcαkρ 11 3
cαUu
c2

	

ð8:89Þ

273Theoretical Background of Lattice Boltzmann Method

With this equation, the partial derivative in Eq. (8.70) is obtained as

X
j

X
k

@

@rj
U

@

@rk
S
ð0Þ
ijk

	

5

1

3
c2
X
j

X
k

@

@rj
U

@

@rk
ðρukδij 1 ρujδik 1 ρuiδjkÞ

5
2

3
c2

@

@ri

@

@r
UðρuÞ

� �
1

1

2
U
@2

@r2
ðρuiÞ

� �
ð8:90Þ

We have now finished the preparation for deriving the Navier�Stokes equation.

If the summation of the first and second terms, and the summation of the third and

fourth terms on the left-hand side in Eq. (8.70), are denoted by A and B, respec-

tively, these quantities are evaluated as

A5
@

@t
ðρuiÞ1

X
j

@

@rj
ðpδij 1 ρuiujÞ2

Δtτc2

3

@2

@r2
ðρuiÞ1

@

@ri

@

@r
UðρuÞ

0
@

1
A

8<
:

9=
;

5
@

@t
ðρuiÞ1

X
j

@

@rj
ðρuiujÞ1

@p

@ri
2

Δtτc2

3

@2

@r2
ðρuiÞ1

@

@ri

@

@r
UðρuÞ

0
@

1
A

8<
:

9=
;

ð8:91Þ

B5
Δt

2
ε
X
j

@

@rj

@

@t1
Πð0Þ

ij

0
@

1
A1

Δt

2

X
j

X
k

@

@rj

@

@rk
S
ð0Þ
ijk

0
@

1
A

5
1

6
Δtc2

@2

@r2
ðρuiÞ1

@

@ri

@

@r
UðρuÞ

0
@

1
A

8<
:

9=
;

ð8:92Þ

By substituting Eqs. (8.91) and (8.92) into Eq. (8.70), together with the relationship

of @
@r UðρuÞ5 0 for noncompressible fluids, the Navier�Stokes equation is finally

obtained as

ρ
@u

@t
1 ðuUrÞu

� �
5 2rp1μLBr2u ð8:93Þ

in which μLB is the viscosity, expressed as

μLB 5
ρΔtc2

3
τ2

1

2

� �
; νLB 5

μLB

ρ
5

Δtc2

3
τ2

1

2

� �
ð8:94Þ

In this equation vLB is the kinematic viscosity.

274 Introduction to Practice of Molecular Simulation

8.3 Body Force

If a body force, such as the gravitational force, acts on a fluid, how do we incorpo-

rate it into the lattice Boltzmann equation? The method can be seen in the

following:

fαðr1 cαΔt; t1ΔtÞ5 ~f αðr; tÞ
~f αðr; tÞ5 fαðr; tÞ1Ωα 1 gα

9=
; ð8:95Þ

in which

Ωα 5
1

τ
f ð0Þα ðr; tÞ2 fαðr; tÞ
� � ð8:96Þ

gα 5

0 for α5 0

3Δt

c2
wαcαUF for α 6¼ 0

8><
>:

9>=
>; ð8:97Þ

gα is a quantity that is due to the body force F per unit volume and has the follow-

ing characteristics:

X
α

gα 5 0

X
α

cαgα 5
X
α

3Δt

c2
wαðcαcαÞUF5ΔtF

9>>>=
>>>;

ð8:98Þ

In this reformation, the following relationship has been used:

X
α

wαcαcα 5 ðc2=3ÞI ð8:99Þ

in which I is the unit tensor, and Eq. (8.99) is valid for both D2Q9 and D3Q19

models. It is quite clear that the quantity gα can be expressed in the form of

Eq. (8.97), because the particle distribution tends to move in the direction of the

body force F acting. Therefore, the relationship of the form gα~cα �F can be

expected.

We will now confirm that the gα, expressed in Eq. (8.97), appears in a reason-

able form in the Navier�Stokes equation by deriving these equations starting from

Eq. (8.95), as conducted in Section 8.2. There is no new concept applied here

except for the inclusion of the new term gα into the derivation procedure shown in

Section 8.2; therefore we show only the important expressions.

275Theoretical Background of Lattice Boltzmann Method

From Appendix A1, the relationships of the orders ε and ε2 are written as

@ρ
@t1

1r1UðρuÞ5 0

@

@t1
ðρuiÞ1

X
j

@

@r1j
Πð0Þ

ij 5
1

ε
Fi

@ρ
@t2

1
Δt

2
U
@2ρ
@t21

1
Δt

2

X
i

X
j

@

@r1i
U

@

@r1j
Πð0Þ

ij 1Δt
X
i

@

@t1
U

@

@r1i
ðρuiÞ5 0

9>>>>>>>>>>=
>>>>>>>>>>;
ð8:100Þ

@

@t2
ðρuiÞ1

Δt

2
U
@2

@t21
ðρuiÞ1

X
j

@

@r1j
Πð1Þ

ij 1
Δt

2

X
j

X
k

@

@r1j
U

@

@r1k
S
ð0Þ
ijk

1Δt
X
j

@

@t1
U

@

@r1j
Πð0Þ

ij 5 0

ð8:101Þ

These expressions lead to the following basic equations:

@ρ
@t

1rUðρuÞ5 0 ð8:102Þ

@

@t
ðρuiÞ1

X
j

@

@rj
Πij 1

X
j

Δt

2
U
@

@rj
ε
@

@t1
Πð0Þ

ij 1
X
k

@

@rk
S
ð0Þ
ijk

()
5Fi ð8:103Þ

Also, f ð1Þα is written as

f ð1Þα 52 tτΔt
@f ð0Þα

@t1
1
X
i

@

@r1i
cαif

ð0Þ
α

� �8<
:

9=
;1

τ
ε
gα

523wαΔtτ
1

c2

X
k

X
l

cαkcαl 2
1

3
c2δkl

0
@

1
A @

@r1l
ðρukÞ

ð8:104Þ

Finally, using these expressions in a derivation procedure similar to that used previ-

ously, the Navier�Stokes equation is obtained as

ρ
@u

@t
1 ðuUrÞu

� �
52rp1μLBr2u1F ð8:105Þ

in which μLB has already been shown in Eq. (8.94). Eq. (8.105) clearly shows that

gα defined in Eq. (8.97) gives rise to the body force F appearing in the appropriate

form in the Navier�Stokes equation.

276 Introduction to Practice of Molecular Simulation

8.4 Boundary Conditions

In simulations by the lattice Boltzmann method, it is very important to treat the

boundary conditions in an appropriate manner at all the simulation boundary sur-

faces. Hence, there is a lot of current interest in developing more accurate boundary

conditions, and papers addressing this problem have been appearing in academic

journals. For example, if we consider a flow inside a tube or around an obstacle, or

a suspension composed of solid particles, the treatment of the boundary condition

at the wall or particle surface is very important for obtaining reliable solutions of

the flow field. In this section, we first explain the historical bounce-back boundary

condition, and then focus on several alternative boundary conditions that have a

clearer physical and mathematical background.

8.4.1 Bounce-back Rule

We explain the historical bounce-back rule [35,36] using Figure 8.4. The lattice

position of interest in a fluid is denoted by rl, its neighboring site inside the mate-

rial by rp, and the point at the material surface on a straight line between these two

points by rw, as shown in Figure 8.4. According to the BGK lattice Boltzmann

method, the particle distribution ~f α after the collision at time t becomes that at the

neighboring site in the α-direction at time (t1Δt). The bounce-back rule employs

the following treatment of the collision at the material surface:

fαðrl; t1ΔtÞ5 ~f αðrl; tÞ2 2ρwα
uwUcα
c2s

ð8:106Þ

fαðrp; t1ΔtÞ5 ~f αðrp; tÞ1 2ρwα
uwUcα
c2s

ð8:107Þ

r l

rw

rp

Figure 8.4 Bounce-back rule for the treatment at

the material surface.

277Theoretical Background of Lattice Boltzmann Method

in which α implies the opposite direction of α; α is the direction toward the object.

Eq. (8.106) means that the fluid particles at r5 rl move in the α-direction, collide
with the obstacle at the middle point of the two lattice points, and return to the

original lattice point during t and t1Δt. In this movement, if the solid surface

moves in the α-direction, the number of the particles returning after the collision

decreases, so that the second term on the right-hand side in Eq. (8.106) is necessary

to make this modification. The following consideration makes clear that the

bounce-back rule does not offer sufficient accuracy. That is, in the treatment of

Eq. (8.106), the fluid particles starting from the point rl do not collide with the

actual solid surface rw, but at the exact middle point between rl and rp, before
returning to the original site. In other words, the collision procedure is conducted

under the assumption that the surface of the obstacle is at the middle point between

two neighboring lattice sites. In order to improve this approach, various boundary

conditions have been developed. Research in this area is still a topic of interest.

Here we consider the validity of the second term on the right-hand side in

Eq. (8.106). The consideration of Eqs. (8.82), (8.72), and (A1.11) leads to

~f αðrl; tÞ5 fαðrl; tÞ1
1

τ
f ð0Þα ðrl; tÞ2 fαðrl; tÞ
� �

5 fαðrl; tÞ1ρ
wα

c2s
cαU

@uðrlÞ
@r

� �
UcαΔt

ð8:108Þ

in which a fluid has been assumed to be noncompressive. Substituting this equation

into Eq. (8.106) yields

fαðrl; t1ΔtÞ5 fαðrl; tÞ1 ρ
wα

c2s
cαU

@uðrlÞ
@r

� �
UcαΔt2 2ρwα

uwUcα
c2s

ð8:109Þ

If fα(rl,t) in Eq. (8.109) is assumed to be not far from an equilibrium state, it is

approximated from Eq. (8.68) as

fαðrl; tÞ � fαðrl; tÞ1 2ρwα
uðrlÞUcα

c2s
ð8:110Þ

Substituting this equation into Eq. (8.109) gives rise to

fαðrl;t1ΔtÞ5fαðrl; tÞ1
2ρwα

c2s
uðrlÞ1 @uðrlÞ

@r
U
Δt

2
cα

� �
2uw

 �
Ucα

� fαðrl; tÞ1
2ρwα

c2s
uðrl1cαΔt=2Þ2uw
� �

Ucα

ð8:111Þ

It is seen from Eq. (8.111) that u(rl1 (1/2)cαΔt) is equal to uw, if the medium point

(rl1 (1/2)cαΔt) is sufficiently near to the solid surface. Hence, we obtain the result

fαðrl; t1ΔtÞ5 fαðrl; tÞ: That is, the particle distribution in the direction away from

278 Introduction to Practice of Molecular Simulation

the solid surface approximates to the equilibrium distribution and is independent

of time.

8.4.2 BFL Method

In this subsection we explain the BFL method [37]. In the bounce-back rule, the

solid surface is regarded as being at the middle point of two lattice sites, and virtual

fluid particles are reflected at this point. Hence, the exact position of the solid sur-

face is not employed in the bounce-back method. The BFL method attempts to

improve this drawback by taking into account the exact position of the solid surface

in the procedure of the collision process between virtual fluid particles and the

material. As shown in Figure 8.5, rl is the point of interest in a fluid, rp is the neigh-

boring point inside the particle, rw is the point at the solid surface on a line between

these two points, and rl0 is the next neighboring point in the direction away from the

solid surface. The exact position of the solid surface can be expressed using the

quantity Δw5 jrl2 rwj/jrl2 rpj; although the lattice separation is defined to be Δx,

we regarded Δx as unity in Sections 8.4.2 and 8.4.3 for simplicity’s sake, because

the final results derived here are unaffected even if Δx is not unity. The solid sur-

face is at the position which is away from rl in the direction toward rp determined

by Δw, as shown in Figure 8.5. The BFL method is based on an interpolation but,

so as not to lose the accuracy of the interpolation, two different procedures are

adopted for Δw# 1/2 and Δw. 1/2, although the concept of the treatment is the

same for both cases. The fundamental concept is that fluid particles move, collide

with the solid material, and return to a certain point during the time interval Δt.

Since the unit lattice length is assumed in this analysis, the transportation distance is

unity. In this collision process, the exact position of the solid surface is necessary.

In the following text, the treatment for Δw# 1/2 is discussed first.

As shown in Figure 8.5A, in the case of Δw# 1/2, the particle distribution func-

tion ~f αðrm; tÞ at rm becomes that at rl, fαðrl; t1ΔtÞ; in which the point rm is evalu-

ated such that fluid particles move in the α-direction, collide with the solid surface,

and arrive at the lattice point rl; the distance of travel for a fluid particle is just

unity. The point rm can be obtained straightforwardly as the position away from rl

r l″
(A) (B)

r l ′ r l rp

rw
rm

1–2Δw Δw

r l″ r l ′ r l rp

rw

rm

2Δw –1 1–Δw

Figure 8.5 BFL method for the treatment at the material surface.

279Theoretical Background of Lattice Boltzmann Method

at the distance of (12 2Δw), shown in Figure 8.5A. Hence, the particle distribution

function ~f αðrm; tÞ is easily obtained from the quadratic extrapolation procedure as

~f αðrm; tÞ5Δwð11 2ΔwÞ ~f αðrl; tÞ1 ð12 4Δ2
wÞ ~f αðrl0 ; tÞ2Δwð12 2ΔwÞ ~f αðrlv; tÞ

ð8:112Þ

Since fluid particles collide with the solid surface, fαðrl; t1ΔtÞ can finally be

obtained as

fαðrl; t1ΔtÞ5 ~f αðrm; tÞ2 2ρwα
uwUcα
c2s

ð8:113Þ

Equation (8.112) has been obtained from the following formula of the quadratic

interpolation method. If an arbitrary function h(x) has values h(x1), h(x2), and h(x3)

for x5 x1, x2, and x3, respectively, h(x) at an arbitrary position x between x1 and x3
can be given from the quadratic interpolation as

hðxÞ5 ðx2x2Þðx2x3Þ
ðx12x2Þðx12x3Þ

hðx1Þ1
ðx2x1Þðx2x3Þ
ðx22x1Þðx22x3Þ

hðx2Þ1
ðx2x1Þðx2x2Þ
ðx32x1Þðx32x2Þ

hðx3Þ

ð8:114Þ

We now consider the treatment for Δw. 1/2. As shown in Figure 8.5B, fluid

particles leaving the lattice point rl collide with the object, and return to the posi-

tion rm between rl and rw. Hence, the following relationship is satisfied:

fαðrm; t1ΔtÞ5 ~f αðrl; tÞ2 2ρwα
uwUcα
c2s

ð8:115Þ

With this expression, the particle distribution function fαðrl; t1ΔtÞ can be evalu-

ated from the interpolation procedure based on a quadratic curve using values at

rm, rl0, and rlv:

fαðrl; t1ΔtÞ5 1

Δwð2Δw 1 1Þ
~f αðrl; tÞ1

2Δw 2 1

Δw

~f αðrl; tÞ

1
12 2Δw

11 2Δw

~f αðrl0 ; tÞ2
1

Δwð2Δw 1 1Þ 2ρwα
uwUcα
c2s

ð8:116Þ

We call the method using Eqs. (8.112), (8.113), (8.115), and (8.116) the “quadratic

BFL method.”

Instead of the quadratic interpolation procedure, the linear interpolation method

is also applicable, and in this case each procedure for Δw# 1/2 and Δw. 1/2 can

be expressed as

Δw# 1/2:

fαðrl; t1ΔtÞ5 ð12 2ΔwÞ ~f αðrl0 ; tÞ1 2Δw
~f αðrl; tÞ2 2ρwα

uwUcα
c2s

ð8:117Þ

280 Introduction to Practice of Molecular Simulation

Δw. 1/2:

fαðrl; t1ΔtÞ5 2Δw 2 1

2Δw

~f αðrl; tÞ1
1

2Δw

~f αðrl; tÞ2
1

2Δw

2ρwα
uwUcα
c2s

ð8:118Þ

We call this scheme the “linear BFL method.”

8.4.3 YMLS Method

In this subsection, we explain the YMLS method [34] using Figure 8.6. This

method is also based on an interpolation scheme. The distribution function ~f αðrm; tÞ
at the position rm, from which fluid particles start and arrive at rw after the time

interval Δt, is used for the interpolation procedure. The particle distribution

fαðrl; t1ΔtÞ in the α-direction away from the material surface can be obtained

from the interpolation using the distribution ~f αðrm; tÞ: As shown in Figure 8.6, with

the notation of the point rp inside the material, and the points rl, rl0, and rlv on the

fluid side away from the solid surface, the particle distribution functions at the

solid surface in the α- and α-directions are written, respectively, as

fαðrw; t1ΔtÞ5 ð12ΔwÞ ~f αðrl0 ; tÞ1Δw
~f αðrl; tÞ ð8:119Þ

fαðrw; t1ΔtÞ5 fαðrw; t1ΔtÞ2 2ρwα
uwUcα
c2s

ð8:120Þ

in which Δw5 jrl2 rwj/jrl2 rpj, as previously defined. Eq. (8.119) implies that

fα(rw,t1Δt) is obtained from the interpolation procedure using ~f αðrl0 ; tÞ and
~f αðrl; tÞ; and Eq. (8.120) means that fluid particles are reflected at the solid surface.

If fαðrw; t1ΔtÞ; fαðrl0 ; t1ΔtÞ; and fαðrlv; t1ΔtÞ are used, then fαðrl; t1ΔtÞ can
be obtained from the quadratic interpolation procedure as

fαðrl; t1ΔtÞ5 2

ð11ΔwÞð21ΔwÞ
fαðrw; t1ΔtÞ1 2Δw

11Δw

fαðrl0 ; t1ΔtÞ

2
Δw

21Δw

fαðrlv; t1ΔtÞ
ð8:121Þ

This is known as the quadratic YMLS method.

r l″ r l ′ r l rw rp

Figure 8.6 YMLS method.

281Theoretical Background of Lattice Boltzmann Method

The linear interpolation procedure yields the following linear YMLS method

instead of Eq. (8.121):

fαðrl; t1ΔtÞ5 Δw

11Δw

fαðrl0 ; t1ΔtÞ1 1

11Δw

fαðrw; t1ΔtÞ ð8:122Þ

in which fαðrw; t1ΔtÞ is evaluated from Eq. (8.120). In this method, fαðrl; t1ΔtÞ
can be obtained from the interpolation scheme using fαðrl0 ; t1ΔtÞ in the fluid

region and fαðrw; t1ΔtÞ at the solid surface. In the linear YMLS method, only two

lattice points are used for the interpolation procedure, so that it may be suitable for

particle dispersions in which a near-contact situation of dispersed particles

frequently arises.

8.4.4 Other Methods

As in the MD or the MC simulations, the periodic boundary condition is applicable

for the thermodynamic equilibrium case. For this case, the particle distribution

function at the point rout of the fluid particles outgoing from the simulation box,

fα(rout,t1Δt), is made to equal to that at the point rin of the incoming fluid parti-

cles, fα(rin,t1Δt).

Finally, we explain the extrapolation boundary condition, which is usually used

for numerical simulations based on the finite difference or finite element method

for a flow past an obstacle. The extrapolation boundary condition is also applicable

to lattice Boltzmann simulations, for which the distribution functions at the points

rN, rN21, rN22, which are taken from the boundary surface into the simulation

region, are assumed to be in the linear relationship

fαðrN ; t1ΔtÞ5 2fαðrN2 1; t1ΔtÞ2 fαðrN2 2; t1ΔtÞ ð8:123Þ

in which α is in the direction leaving the outer boundary toward the simulation

region. If the zero-gradient condition is applicable, then the differential away from

the boundary is regarded as zero: that is, fαðrN ; t1ΔtÞ5 fαðrN2 1; t1ΔtÞ: This
boundary condition can be used for lattice points that are physically symmetric. If

a simulation region is taken to be sufficiently large, the zero-gradient condition

may be expected to give rise to results that are reasonably accurate.

8.5 Force and Torque Acting on Particles

In the case of a suspension composed of spherical or rod-like particles, the forces

and torques acting on the suspended particles need to be evaluated in order to solve

the particle motion and the flow field around the suspended particles simulta-

neously. The momentum change of the fluid particles that collide with the particle

surface and are reflected during the time interval Δt is equal to the impulse acting

282 Introduction to Practice of Molecular Simulation

on the particle. Hence, the force Fα acting on the particle in the α-direction is

obtained as

Fαðt1Δt=2Þ5 cα fαðrðintÞl ; t1ΔtÞ1 ~f αðrðintÞl ; tÞ
n oΔV

Δt
ð8:124Þ

in which ΔV is the volume occupied by one lattice site. Hence, the force Fp and

torque Tp acting on the mass center of the particle are obtained from summing the

contributions from the neighboring lattice sites of the particle as

Fpðt1Δt=2Þ5
X

all r
ðintÞ
l

X
α

ΔV

Δt
fαðrðintÞl ; t1ΔtÞ1 ~f αðrðintÞl ; tÞ
n o

cα ð8:125Þ

Tpðt1Δt=2Þ5
X

all r
ðintÞ
l

X
α
ðrw 2 rcÞ3 ΔV

Δt
fαðrðintÞl ; t1ΔtÞ1 ~f αðrðintÞl ; tÞ
n o

cα

ð8:126Þ

in which rc is the position vector of the particle mass center, and rw is the position

vector at the particle surface on a line drawn in the α-direction from the lattice

point r
ðintÞ
l in the liquid region. The summation concerning α is only performed for

the directions along which the above-mentioned line crosses the particle surface.

Given the force and the torque from Eqs. (8.125) and (8.126), the translational and

angular velocities up and Ωp of an arbitrary particle p with mass Mp and inertia

moment Ip can be evaluated as

upðt1ΔtÞ5 upðtÞ1
Δt

Mp

Fpðt1Δt=2Þ

Ωpðt1ΔtÞ5ΩpðtÞ1
Δt

Ip
Tpðt1Δt=2Þ

9>>>=
>>>;

ð8:127Þ

Note that here we have treated the case of the axisymmetric particle; therefore,

only the inertia moment appears in the equation and not the inertia tensor.

8.6 Nondimensionalization

Finally, we show the usual nondimensionalization method used in lattice

Boltzmann simulations. The following representative quantities are used in nondi-

mensionalizing each quantity: Δx for distances, Δt for time, c (5Δx/Δt) for

velocities, ρ0 for the particle distribution, ρ0(Δx)2Δx/(Δt)2 for forces, (Δx)2/Δt for

kinematic viscosity, and ρ0(Δx/Δt)2 for pressures in the case of a two-dimensional

system. Nondimensional equations are obtained by expressing a dimensional quan-

tity as the product of the corresponding representative and nondimensional quantity

283Theoretical Background of Lattice Boltzmann Method

—for example, fα 5 ρ0 3 f �α—and substituting such quantities into the dimensional

equations. Since the derivation procedure is quite straightforward, only the final

results are shown in the following equations:

f �α ðr� 1 c�α; t
� 1 1Þ5 ~f

�
αðr�; t�Þ ð8:128Þ

~f
�
αðr�; t�Þ5 f �α ðr�; t�Þ1

1

τ
f ð0Þ�α ðr�; t�Þ2 f �α ðr�; t�Þ
� � ð8:129Þ

in which

f ð0Þ�α ðr�; t�Þ5wαρ� 11 3c�αUu
� 1

9

2
ðc�αUu�Þ2 2

3

2
u�2

� �
ð8:130Þ

c� 5 1; c�s 5 1=
ffiffiffi
3

p
; ν� 5 ð2τ2 1Þ=6; p� 5 ρ�c�2s ð8:131Þ

In these equations, the superscript * indicates the nondimensional quantities.

284 Introduction to Practice of Molecular Simulation

Appendix 1: Chapman�Enskog
Expansion

In this appendix, we derive the important equations which are the starting expres-

sions for deriving the Navier�Stokes equation, by means of the Chapman�Enskog

expansion [38].

The basic equations required in the derivation are as follows:

ρðr; tÞ5
X
α

fαðr; tÞ ðA1:1Þ

ρðr; tÞuðr;tÞ5
X
α

cαfαðr; tÞ ðA1:2Þ

Πij 5
X
α

cαicαjfαðr; tÞ ðA1:3Þ

fαðr1 cαΔt; t1ΔtÞ5 fαðr; tÞ1Ωαðr; tÞ ðA1:4Þ

Ωαðr; tÞ5
1

τ
f ð0Þα ðr; tÞ2 fαðr; tÞ

� � ðA1:5Þ

Note that the following derivation is valid for both D2Q9 and D3Q19 models,

except that α has to be taken as α5 0, 1, . . ., 8 and α5 0, 1, . . ., 16, respectively.
A Taylor series expansion of the left-hand side of Eq. (A1.4) gives rise to

Δt
@fα
@t

1
ðΔtÞ2
2

U
@2fα
@t2

1ΔtðcαUrÞfα 1
ðΔtÞ2
2

ðcαUrÞðcαUrÞfα

1 ðΔtÞ2ðcαUrÞ
@fα
@t

5
1

τ
ðf ð0Þα 2 fαÞ

ðA1:6Þ

The particle distribution function is expanded using the infinitesimal small quantity

ε as

fα 5 f ð0Þα 1 εf ð1Þα 1 ε2f ð2Þα 1? ðA1:7Þ

By substituting Eq. (A1.7) into Eqs. (A1.1) and (A1.2), the following relation-

ships are obtained:

X
α

f ð0Þα 5 ρ;
X
α

cαf
ð0Þ
α 5 ρu ðA1:8Þ

X
α

f ðnÞα 5 0;
X
α

cαf
ðnÞ
α 5 0 for n5 1; 2; . . . ðA1:9Þ

Next, we consider the Chapman�Enskog expansion. There are two characteris-

tic times employed in characterizing fluid problems: T1 relating to the fluid veloc-

ity, and T2 relating to the viscous dissipation. It is generally satisfied that T2 is

much longer than T1 (i.e., T2cT1). Hence, if the infinitesimal quantities ε and Δt

are taken as Δt/T15O(ε), T2 satisfies the relationship of Δt/T25O(ε2). On the

other hand, if the representative distance is denoted by L1, the distance Δx is gener-

ally taken such that Δx/L15O(ε). With these assumptions, the time derivative is

regarded as the summation of the time derivations due to the characteristics of

T1 and T2. That is,

@

@t
5 ε

@

@t1
1 ε2

@

@t2
ðA1:10Þ

Similarly, the position derivative @/@r is expressed, for the three-dimensional posi-

tion r5 (rx,ry,rz), as

@

@ri
5 ε

@

@r1i
ði5 x; y; zÞ ðA1:11Þ

The expressions in Eqs. (A1.10) and (A1.11) imply that the original variables

(t,r) can be transformed into the new ones (t1,t2,r1). In the usual approach, the dif-

ferentiated quantities are used for comparing the magnitudes of all the terms in an

equation. That is, the magnitudes of, for example, @g1/@t and @g2/@t are evaluated

in such a way that @g1/@t5O(ε) and @g2/@t5O(ε2), and they are compared with

each other to neglect the smaller terms such as @g2/@t5O(ε2). In contrast, accord-

ing to the Chapman�Enskog expansion, @g1/@t and @g2/@t are of the same order of

magnitude but are moderated by the infinitesimal parameter ε and written as ε @g1/
@t and ε2 @g2/@t in an equation.

We are now ready to proceed to the important equations in the derivation of the

Navier�Stokes equation by means of the Chapman�Enskog expansion. The colli-

sion term in Eq. (A1.5) has the following characteristics:

X
α

Ωα 5 0;
X
α

cαΩα 5 0 ðA1:12Þ

From Eqs. (A1.6), (A1.10) and (A1.11),

286 Introduction to Practice of Molecular Simulation

Δt ε
@fα
@t1

1 ε2
@fα
@t2

� �
1 ðΔtÞ2 ε

2

2
U
@2fα
@t21

1ΔtεðcαUr1Þfα

1 ðΔtÞ2 ε
2

2
ðcαUr1ÞðcαUr1Þfα1 ðΔtÞ2ε2ðcαUr1Þ

@fα
@t1

1Oðε3Þ5Ωα

ðA1:13Þ

By multiplying cα on both sides of this equation,

Δt εcα
@fα
@t1

1ε2cα
@fα
@t2

� �
1ðΔtÞ2ε

2

2
cα
@2fα
@t21

1ΔtεcαðcαUr1Þfα

1ðΔtÞ2ε
2

2
cαðcαUr1ÞðcαUr1Þfα1ðΔtÞ2ε2cαðcαUr1Þ

@fα
@t1

1Oðε3Þ5cαΩα

ðA1:14Þ

Equation (A1.7) is substituted into Eq. (A1.13), the summation of α is con-

ducted on the both sides, and the terms of the order ε are collected. Then, taking

these collected terms equal to zero finally yields

X
α

Δt
@f ð0Þα

@t1
1ΔtðcαUr1Þf ð0Þα

� �
5 0 ðA1:15Þ

Similarly, from Eq. (A1.14),

X
α

Δt
@

@t1
ðcαif ð0Þα Þ1Δt

X
j

cαicαj
@

@r1j
f ð0Þα

()
5 0 ðA1:16Þ

With Eqs. (A1.8) and (A1.3), Eqs. (A1.15) and (A1.16) become

@

@t1
ρ1r1UðρuÞ5 0 ðA1:17Þ

@

@t1
ðρuiÞ1

X
j

@

@r1j
ðΠð0Þ

ij Þ5 0 ðA1:18Þ

in which Πð0Þ
ij 5

X
α

cαicαjf
ð0Þ
α :

Returning to the substitution of Eq. (A1.7) into Eq. (A1.13), but now taking the

collected terms of the order ε2 equal to zero, the following expression is derived:

@ρ
@t2

1
Δt

2
U
@2ρ
@t21

1
Δt

2

X
i

X
j

@

@r1i
U

@

@r1j
Πð0Þ

ij 1Δt
X
i

@

@t1
U

@

@r1i
ðρuiÞ5 0

ðA1:19Þ

Similarly, returning to the derivation of Eq. (A1.16) and taking the collected terms

of the order ε2 equal to zero yields

287Appendix 1

@

@t2
ðρuiÞ1

Δt

2
U
@2

@t21
ðρuiÞ1

X
j

@

@r1j
Πð1Þ

ij

1
Δt

2

X
j

X
k

@

@r1j
U

@

@r1k
S
ð0Þ
ijk 1Δt

X
j

@

@t1
U

@

@r1j
Πð0Þ

ij 5 0

ðA1:20Þ

in which Πð1Þ
ij 5

X
α

cαicαj f
ð1Þ
α and S

ð0Þ
ijk 5

X
α

cαicαjcαk f
ð0Þ
α :

Next, we reform Eqs. (A1.19) and (A1.20). Differentiating Eq. (A1.17) with

respect to t1 yields

@2ρ
@t21

5
@

@t1
2r1UðρuÞ
� �

5 2
@

@t1

X
i

@

@r1i
ðρuiÞ

()
ðA1:21Þ

With this result, Eq. (A1.19) is reformed and finally obtained as

@ρ
@t2

1
Δt

2

X
i

@

@r1i

@

@t1
ðρuiÞ1

X
j

@

@r1j
Πð0Þ

ij

()
5 0 ðA1:22Þ

With Eq. (A1.18), Eq. (A1.22) reduces to

@ρ
@t2

5 0 ðA1:23Þ

Differentiating Eq. (A1.18) with respect to t1 gives rise to

@2

@t21
ðρuiÞ5 @

@t1
2
X
j

@

@r1j
Πð0Þ

ij

)
5 2

X
j

@

@t1
U

@

@r1j
Πð0Þ

ij

(
ðA1:24Þ

By substituting this result into Eq. (A1.20), the following equation is obtained:

@

@t2
ðρuiÞ1

X
j

@

@r1j
Πð1Þ

ij 1
Δt

2

@

@t1
Πð0Þ

ij 1
X
k

@

@r1k
S
ð0Þ
ijk

()" #
5 0 ðA1:25Þ

If Eqs. (A1.17) and (A1.23) are multiplied by ε and ε2, respectively, summing

each side of these equations, and taking into account Eq. (A1.10), the following

mass conversation law is obtained:

@ρ
@t

1rUðρuÞ5 0 ðA1:26Þ

288 Introduction to Practice of Molecular Simulation

From a similar manipulation of Eqs. (A1.18) and (A1.25), the momentum conversa-

tion law is obtained as

@

@t
ðρuiÞ1

X
j

@

@rj
Πij 1

X
j

Δt

2
U
@

@rj
ε
@

@t1
Πð0Þ

ij 1
X
k

@

@rk
S
ð0Þ
ijk

()
5 0 ðA1:27Þ

in which Πij � Πð0Þ
ij 1 εΠð1Þ

ij :
Finally, we derive another important equation. The variable transformation of

Eqs. (A1.10) and (A1.11) is conducted for Eq. (A1.6) to give

Δt ε
@fα
@t1

1 ε2
@fα
@t2

� �
1

ðΔtÞ2
2

ε2
@2fα
@t21

1ΔtεðcαUr1Þfα

1
ðΔtÞ2
2

ε2ðcαUr1ÞðcαUr1Þfα 1 ðΔtÞ2ε2ðcαUr1Þ
@fα
@t1

5
1

τ
ð f ð0Þα 2 fαÞ

ðA1:28Þ

Substituting Eq. (A1.7) into this equation, collecting the terms of the order ε, and
taking these collected terms equal to zero then yields

2
1

τΔt
f ð1Þα 5

@f ð0Þα

@t1
1

X
i

@

@r1i
ðcαif ð0Þα Þ ðA1:29Þ

Since f ð0Þα can be regarded as a function of the macroscopic quantities ρ and ρui,
@f ð0Þα =@t can be reformed using Eqs. (A1.17) and (A1.18) as

@f ð0Þα

@t1
5

@f ð0Þα

@ρ
U
@ρ
@t1

1
X
i

@f ð0Þα

@ðρuiÞ
U
@ðρuiÞ
@t1

5 2
@f ð0Þα

@ρ
U

@

@r1
UðρuÞ2

X
i

X
j

@f ð0Þα

@ðρuiÞ
U

@

@r1j
Πð0Þ

ij

ðA1:30Þ

Substituting this equation into Eq. (A1.29) yields the required equation:

2
1

τΔt
f ð1Þα 5 2

@f ð0Þα

@ρ
U

@

@r1
UðρuÞ2

X
i

X
j

@f ð0Þα

@ðρuiÞ
U

@

@r1j
Πð0Þ

ij 1
X
i

@

@r1i
ðcαif ð0Þα Þ

ðA1:31Þ

Equations (A1.27) and (A1.31) are the basic equations for deriving the important

relationships in Chapter 8.

289Appendix 1

This page intentionally left blank

Appendix 2: Generation of Random
Numbers According to Gaussian
Distribution

In order to set the initial velocities of particles in MD simulations, or to generate

random displacements in BD and DPD simulations, it is necessary to generate ran-

dom numbers according to a particular probability distribution. The probability dis-

tributions of interest here are the Gaussian distribution (also known as the normal

distribution), and the Maxwell�Boltzmann distribution (or Maxwellian distribu-

tion). For example, since the velocity of particles theoretically has the Maxwellian

velocity distribution for thermodynamic equilibrium, as explained in Section 2.2,

the initial velocity of particles in simulations must have such a velocity distribu-

tion. We show the method of setting the initial velocity of particles according to

the Maxwellian distribution in the following paragraphs.

We assume that the stochastic variable x, such as the particle velocity or a ran-

dom displacement, obeys the following normal distribution ρ(x):

ρðxÞ5 1

ð2πÞ1=2σ
exp 2

ðx2 xÞ2
2σ2

� �
ðA2:1Þ

in which σ2 is the variance and x is the average of the stochastic variable x.

In order to generate the stochastic variable x according to this normal distribution,

the following equations are used together with a uniform random number sequence

ranging from zero to unity:

x5 x1 ð22σ2 ln R1Þ1=2 cosð2πR2Þ or x5 x1 ð22σ2 ln R1Þ1=2 sinð2πR2Þ
ðA2:2Þ

According to either equation of Eq. (A2.2), the required number of values of the

stochastic variable are generated using a series of random numbers, such as R1 and

R2, taken from a uniform random number sequence. In this way, the initial veloci-

ties of particles and random displacements can be assigned. The technique in

Eq. (A2.2) is called the Box�Müller method [26].

For generating a uniform random number sequence, there is an arithmetic

method and a machine-generated method; the former is shown in the last subrou-

tine of the sample simulation program in Section 3.1.6. The arithmetic method is

reproducible, and the same random number sequence can be obtained at any time

in the simulations. In contrast, the machine-generated method is generally not a

reproducible sequence, and a different sequence of random numbers is generated

each time a simulation is run.

For the case of the Maxwellian velocity distribution, the velocity components of

particle i can be assigned using the random numbers R1, R2, . . ., R6 taken from a

uniform random number sequence as

vix 5 f22ðkT=mÞln R1g1=2 cosð2πR2Þ
viy 5 f22ðkT=mÞln R3g1=2 cosð2πR4Þ
viz 5 f22ðkT=mÞln R5g1=2 cosð2πR6Þ

9>=
>; ðA2:3Þ

In this way, all the initial velocity components can be assigned using random

numbers.

292 Introduction to Practice of Molecular Simulation

Appendix 3: Outline of Basic Grammars
of FORTRAN and C Languages

We here do not aim to explain the entire grammar of the programming languages;

indeed, there is not sufficient space to do so. In each section of programming lan-

guage, the main structure of a program is first explained in order to understand the

logical framework of a program. Then, such important grammar as control state-

ments is explained. Finally, several points of interest that may be outside of the

main body of a program will be addressed. This will be followed by a short sample

program that demonstrates the essence of a research simulation program and

explains the grammar used in the program in detail. This approach is most effec-

tive, because the grammar is explained in relation to the logical flow of a simula-

tion program. The skill to develop a simulation program has a strong relationship

with the ability for embodying a logical flow using a programming language.

A3.1 FORTRAN Language

The general structure of a program written in the FORTRAN language is composed

of a main program together with subroutine subprograms or function subprograms,

as shown below.

123456789… …72

IMPLICIT REAL*8 (A-H, O-Z), INTEGER (I-N)
PARAMETER(NN=8)
REAL*8 RX(NN), RY(NN)
REAK*8 VX(NN), VY(NN)
INTEGER N

STOP
END

Main program

Description of calculation procedures

SUBROUTINE INIPOSIT(N,H)

RETURN
END

SUBROUTINE INIVEL(N)

RETURN
END

REAL*8 FUNCTION PRESSURE(H)

RETURN
END

Subroutine subprogram

Function subprogram

Subroutine subprogram

Description of calculation procedures

Description of calculation procedures

Description of calculation procedures

A main program first needs to be constructed, and then subroutine or/and func-

tion subprograms necessarily follow the main program. The main program begins

with the definition of the variables and finishes with the STOP and END statements

that are placed at the end to halt the execution of the program. A subroutine or

function subprogram begins with a SUBROUTINE (name of a subroutine) or (pre-

cision) FUNCTION (name of a function) statement, respectively, and finishes with

the RETURN and END statements that signal the return to the task of the main

program. A main program must be written in such a way that the logical flow is

clear, and calculations that disturb this logical flow should be treated in subroutine

or function subprograms. In other words, when a program is constructed in such a

way that a reader is able to grasp the logical flow in a straightforward manner, it

becomes more than a hobby program—it becomes a common useful tool. This is

an important consideration for developing a simulation program with contributions

from and used by different persons in a successive research project.

In a subroutine subprogram, routine calculations are carried out. The calculation

task moves from a main program to a subroutine subprogram by calling the name of

the subroutine (the CALL statement) and returns to the main program on meeting

the RETURN statement in the subroutine. A function subprogram is quite similar to

a subroutine subprogram in that routine calculations are carried out in an area (the

subprogram) aside from the main program. The difference between the two is that in

a function subprogram the name of the function subprogram itself assumes a calcu-

lated value, and this value is passed to the main program by simply referring to the

name of the function subprogram in the main program. In other words, the name of

a function subprogram is treated as a variable in a main program: the calculation

294 Introduction to Practice of Molecular Simulation

task moves to a function subprogram at the time of meeting its name, and returns to

the main program with a value calculated there on meeting the RETURN statement.

Hence, a CALL statement is unnecessary in order to move to a subprogram area.

These are the main points of the program structure and flow of the calculation proce-

dures. There is an important point concerning the data transfer between a main pro-

gram and a subprogram. In the FORTRAN language, information regarding the

value of variables cannot be transferred between a main program and a subprogram

unless definite descriptions are written for that purpose. There is a significant differ-

ence between the FORTRAN and the C language in this respect. We explain the

method of transferring data between a main program and a subprogram in detail

later.

As shown in the preceding example, main sentences generally have to be written

between the 7th and 72nd columns in a FORTRAN77 program. The first column is

used for defining whether or not that line is a comment line (that does not influence

calculations) by employing a C character or a blank; the sixth column is for defin-

ing whether or not the line is regarded as a continuation line from the previous line

by the “&” character or blank; and the area between the 2nd and 5th columns is

used for writing figures (or labels) of the end statements, such as the CONTINUE

statement or of an indication of the destination of the GOTO statement. Various

examples of this type of use can be seen in the sample simulation programs, and

therefore we omit such explanations here.

• This is the simplest IF statement, and
THEN is unnecessary in this case.

IF(X.GT.0.D0)A=B+10.D0

IF(X.GT.0.D0)THEN
 …
END IF

IF(X.GT.0.D0)THEN
 …
ELSE
 …
END IF

IF(X.GT.0.D0)THEN
 …
ELSE IF(X.LE.-10.D0) THEN
 …
ELSE
…
END IF

IF(X.GT.0.D0)THEN
 …
ELSE IF(X.LE.-10.D0) THEN
 …
ELSE IF(X.EQ.-5.D0) THEN
…
END IF

• Execution only for X>0.

• One of separate procedures is chosen
for X>0 or X≤0.

• One of three separate procedures is
chosen for X>0 or X≤–10 or the other
cases.

• One of three separate procedures is
chosen for X>0 or X≤-10 or X=–5.

295Appendix 3

We now explain the IF and DO statements, which are perhaps the most impor-

tant control statements for developing a calculation program. The IF statement is a

control statement to select a calculation procedure by assessing the condition. The

DO statement is a control statement to repeat a certain procedure a prescribed num-

ber of times. Typical examples of the IF statement are shown above. The IF state-

ment implies the execution of a certain procedure if a condition is satisfied;

another procedure is carried out if it is not satisfied. In the above examples, the first

IF statement is the simplest and the following examples become more complex.

Several IF statements can be combined to make a complex assessment, and such

examples may be found in the sample simulation programs. In the IF statement, LT

and LE imply , and # , respectively; GT and GE imply . and $, respectively;

and EQ and NE imply 5 and 6¼, respectively. The statement for repeating proce-

dures is the DO statement. Several representative examples of the DO statement

are shown in the following.

 DO 30 I=N,1,-2
 …
 30 CONTINUE

 DO 90 I=-N,N+1,5
 …
 90 CONTINUE

 DO 20 I=1,N
 …
 20 CONTINUE

• The procedure starts at I=1, then is
conducted at I=2 and continued until
I=N.
• The procedure starts at I=N, then is
conducted at I=N-2 and continued at
I=N-4, N-6, ….

• The procedure starts at I=-N, then is
conducted at I=-N+5, I=-N+10, …,
until I becomes over N+1.

The DO statement implies that the procedure written between DO and

CONTINUE is executed until the index arrives at the required end value. In the

above example, I is the index and N is the end value of the loop. In the first exam-

ple, the index I changes in the sequence I5 1, 2,. . ., N. In the second example, the

index I changes in the sequence I5N, N2 2, N2 4,. . .; if N is even, the proce-

dures are repeated until N5 2, and if N is odd, they are repeated until N5 1. The

last example shows that a negative value, 2N, is possible as a starting value of the

index I. Either specific numbers or variables are possible for the starting and ending

values and the increment interval value of the DO loop statement. Be aware that

although REAL variables can be used as an index of the DO loop, INTEGER vari-

ables are desirable in order to remove any ambiguity in relation to the assessment

concerning the termination of the DO loop. In order to move out of the DO loop at

any time before the designed end, the GOTO statement employed with the previous

IF statement may be used. A final point to be noted relating to the DO loop is that

in the first above example, the index I does not have the figure N but (N1 1) for

the end of the procedure; thus, care should be taken in using the variable I in the

next task. Using variables in this way should be avoided in order to prevent causing

an unexpected error.

296 Introduction to Practice of Molecular Simulation

Next, we explain several types of grammar that are relatively difficult to

understand when learning the FORTRAN language. First, we explain how to

transfer the values of variables between the main program and a subprogram. In

FORTRAN, there are two methods for the data transfer: (1) the values of vari-

ables are transferred to a subprogram through the arguments of the subprogram,

and (2) the variables to be transferred between a main program and a subpro-

gram are declared with the COMMON statements so that they can be accessed

from both the main program and the subprograms. An example of the former

method is as follows:

CALL INIVEL(N,H,T)
. . .
SUBROUTINE INIVEL(N,H,T)
. . .

In this case, the values of the variables N and H are transferred from a main

program to a subprogram, and the procedure returns to the main program with a

value of T, which was calculated in the subprogram. A big difference between

FORTRAN and the C language is that in the former language new values of N

and H, which were changed in the subprogram, are reflected in the main pro-

gram, but in the latter language this never arises unless a specific direction is

given to do so. This will be explained in detail later in the grammar of the C

language.

The second method for the data transfer is to use the COMMON statement: the

variables declared in the COMMON statements can be accessed from both the

main program and all the subprograms without any need for specific statements for

the data transfer. An example is as follows:

PARAMETER (NN5100)
COMMON /BLOCK1/ N, RX, RY
REAL*8 RX(NN), RY(NN), H
INTEGER N
. . .
CALL INIVEL(H)
. . .
STOP
END
. . .
SUBROUTINE INIVEL(H)
PARAMETER (NN5100)
COMMON /BLOCK1/ N, RX, RY
REAL*8 RX(NN), RY(NN), H
INTEGER N

297Appendix 3

. . .
RETURN
END

In a main program, the variables, which are used in subprograms, can be defined

in the COMMON statements before the definition of other standard variables.

By defining the same variables in the COMMON statements in a subprogram,

the values saved on the variables can be referred to; also, new values may be

saved on these variables. In the above example, the values of N, RX(*), and

RY(*) are transferred using the COMMON statement, and a value of H is trans-

ferred as an argument. Note that the names of the variables in the COMMON

statements are not necessarily the same, but we recommend that the beginner

use the same names until they obtain a more complete understanding of the

language.

Another feature that the beginner may find difficult is the WRITE and

FORMAT statements. These statements are used for outputting results to a data file

and have no relation to the execution of the calculations. The following example is

for outputting the data for the purpose of confirming either the final or intervening

results of the calculation:

I53
XI55.D0
YI52.D0
PRESS5XI*YI
WRITE(NP,20) I, XI, YI,PRESS

20 FORMAT(’I5’,I3,3X,’XI5’,F7.3,2X,’YI5’,F7.3,2X,
& ’PRESSURE AT (XI,YI)5’, F10.3)

The result of the output from this FORMAT statement is as follows:

I5 3 XI5 5.000 YI5 2.000 PRESSURE AT (XI,YI)5 10.000

The above example is a part of the program for outputting the data of the vari-

able PRESS, which is obtained by multiplying XI by YI. For the case of

NP5 6, the results are output to the display of the computer, and if the OPEN

statement relates the device number (or device unit number) NP with a data

file, the result is output to the data file. For example, if “OPEN (11,

FILE5 ‘faa1.data’, STATUS5 ‘UNKNOWN’)” is declared and NP is set as

NP5 11, the data is output to the file faa1.data. Since the results shown on a

display can be seen only once, data is usually output to a data file. Inside the

298 Introduction to Practice of Molecular Simulation

parentheses of the FORMAT statement, I3 means that the output is an integer

and is output up to three spaces (columns) to the right of the space, F7.3 means

that the output is a real number and is output using 7 spaces (columns), in

which the number is rounded to three decimal places and is written to the right

of the space; 3X means that three blank spaces are to be inserted. The reader

can see many examples of FORMAT statements in the sample simulation pro-

grams in Chapters 3�7.

A long run of the execution of a simulation program is sometimes divided into

several short runs. For this case, the intervening results are output to a data file,

and the following run is carried out to continue from the previous run using the

data saved in the file. This data may also be used for visualizing a particle configu-

ration in a form such as a snapshot. To do so, only numerical data is suitable for

the output to a data file—that is, without the specification of the names of the vari-

ables. A typical example is as follows:

. . .
WRITE(NP,50) N

50 FORMAT(I8)
WRITE(NP,55) (RX(I),I51,N), (RY(I),I51,N)

55 FORMAT((5E16.8))

In the above example, the data saved in the array-type variables RX(*) and RY(*)

are output using a simple specification without using the DO statement. The speci-

fication of (5E16.8) in the FORMAT statement means that five data are output in

one line. The outer bracket () is used for the repetition of the output specification

5E16.8, which means that the output data is real and is output using 16 spaces (col-

umns) in which the data is written to the right of the space with 8 decimal places.

In order to continue a separate successive run using the data which is output in the

above example, we need to use the following READ statement for reading the nec-

essary data:

READ(NP1,60) N
60 FORMAT(I8)

READ(NP1,65) (RX(I),I51,N), (RY(I),I51,N)
65 FORMAT((5E16.8))

An important point is that the same FORMAT statement must be used for the

WRITE and READ statements; otherwise, the exact numerical values cannot be

read by the READ statement.

Finally, to assist the reader in understanding the grammar in more detail, we

have added explanatory remarks to the following sample program, which was made

by compressing a full simulation program.

299Appendix 3

0001 C**
0002 C* diffuse_sample.f (not complete version) *
0003 C* *
0004 C* MOLECULAR DYNAMICS METHOD FOR MOLECULAR DIFFUSION PROBLEM *
0005 C* --- TWO-DIMENSIONAL CASE --- *
0006 C* *
0016 C**
0033 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0034 C
0035 COMMON /BLOCK1/ RX0 , RY0 , RX , RY
0036 COMMON /BLOCK2/ FX , FY
0040 C
0041 PARAMETER(NN=80, NRANMX=50000)
0042 PARAMETER(PI=3.141592653589793D0)
0043 C
0044 REAL*8 RX0(NN), RY0(NN), RX(NN) , RY(NN)
0045 REAL*8 FX(NN) , FY(NN) , VELX(NN), VELY(NN)
0046 REAL*8 H , RC , L , T , K , NDENS
0047 C
0048 REAL RAN(NRANMX)
0049 INTEGER NRAN , IX
0050 C
0051 REAL*8 RXI, RYI, TIME, HSQ, CC0, CC1
0052 INTEGER N, NA, NB

0055 C
0056 OPEN(9,FILE= '@aaa1.data',STATUS='UNKNOWN')
0057 OPEN(21,FILE='aaa001.data',STATUS='UNKNOWN')
0058 OPEN(22,FILE='aaa011.data',STATUS='UNKNOWN')

0062 NP=9
0063 C ----- PARAMETER (1) -----
0064 T = 5.0D0
0065 K = 10.D0
0066 NA = 20
0072 L = DSQRT(DBLE(N)/NDENS)
0073 HSQ = H*H
0079 C ----- PARAMETER (3) -----
0080 IX = 0
0081 CALL RANCAL(NRANMX, IX, RAN)
0082 NRAN = 1
0083 C
0084 C ---
0085 C --------------- INITIAL CONFIGURATION ---------------
0086 C ---
0087 C
0100 C --- CAL PREVIOUS POSITION ---
0101 CALL POSITR1(N, NA, H, K)
0102 C
0103 C --- PRINT OUT CONSTANTS ---
0104 WRITE(NP,5) T , K , NDENS , NA , NB , L , H , RC
0105 C --- PRINT OUT INITIAL CONFIGURATION ---
0109 C ---
0110 C --------------- START OF MAIN LOOP

• IMPLICIT is the implicit data type declaration. In this case, the variables with their
name starting with one of A~H and O~Z are regarded to be a double-precision real,
and similarly those with one of I~N are regarded to be an integer.

• The variable defined in the COMMON

statement can be accessed from everywhere
without transferring them into subprograms as
arguments. In the case of array variables, the
dimension must be defined in the data type
statement.

• The PARAMETER statement is frequently used for defining the variables used for
specifying the dimensions of array variables; the change of these values in PARAMETER
enables us to change the dimensions of the related array variables.

• REAL*8, REAL, and INTEGER are the data type declaration statements for double-
precision reals, single-precision reals, and integers, respectively. Although a computer can
usually treat integers only between ± several ten billions, the INTEGER*8 statement
enables one to use a much wider range of integers. Double-precision reals may be
sufficient in scientific computations, but quad-precision reals are appropriate in some
cases.

• OPEN statements can relate data files to the input/output devices; CLOSE statements must be
used together. The number 5 is the keyboard, 6 is the display, and other numbers are used for
data files (numbers larger than 8 may be desirable). OLD in the STATUS statement implies an
already-existed file.

• Double-precision reals are expressed for example 5.2D0 or
0.052D2; single-precision reals are expressed such as 5.2
or 0.052E2. DSQRT means the square root, and * means the
multiplication.

• The line number is added for convenience and the first column
starts from the position of C character. The C in the first column
implies that the line is just a comment.

• The subroutine POSITR1 is called by the CALL statement.

The variables necessary in the subroutine are passed as

arguments (N, NA, H, K); the description of these variables

has to be described in this order in the subroutine subprogram.

• The data are written out in the format expressed in the 5

FORMAT statement; these statements should be placed before

the STOP statement.

300 Introduction to Practice of Molecular Simulation

0111 C ---
0114 C
0115 DO 100 NTIME=1, NTIMEMX
0116 C
0121 DO 50 I=1,N
0122 C
0123 IF (I .EQ. NA+1) CC1 = CC0
0124 RXI = 2.D0*RX(I) - RX0(I) + FX(I)*HSQ*CC1
0126 RX0(I) = RX(I)
0128 RX(I) = RXI
0130 C
0131 50 CONTINUE
0132 C --- PRINT OUT DATA ---
0133 IF (MOD(NTIME,NPRINT) .EQ. 0) THEN
0134 TIME = H*DBLE(NTIME)
0135 CALL PRINTOUT(N, NA, TIME, NP)
0136 END IF
0141 C
0142 DO 60 I =1,N
0143 IF(I .LE. NA) THEN
0144 R = 1.D0
0145 ELSE
0146 R = 1.5D0
0147 END IF
0148 WRITE(NOPT,58) I, R, RX(I), RY(I)
0149 60 CONTINUE
0153 C
0154 100 CONTINUE
0155 C
0156 C ---
0157 C ------------------ END OF MAIN LOOP ----------------
0158 C ---
0159 CLOSE(NP, STATUS='KEEP')
0160 C
0161 C ---------------------- FORMAT --------------------------
0162 5 FORMAT(/1H ,'--'
0163 & /1H ,' MOLECULAR DYNAMICS SIMULATION '
0164 & /1H ,'FOR TWO-DIMENSIONAL MOLECULAR DIFFUSION PROBLEM'
0165 & /1H ,'---'
0166 & /1H ,'TEMPERATURE=',F6.2 ,2X, 'MASS RATIO=',F6.2 ,2X,
0167 & 'NDENS=',F6.3
0168 & /1H ,'NUMBER OF MOLECULES OF SPECIES A=',I4
0169 & /1H ,'NUMBER OF MOLECULES OF SPECIES B=',I4
0170 & /1H ,'MAGNITUDE OF CAGE=',F7.2 ,2X, 'TIME DIFF.=',
0171 & F8.5 ,2X, 'CUTOFF RADIUS=',F6.2/)
0172 56 FORMAT(3I6, 2E13.8)
0173 58 FORMAT(I5, F8.3 , 2E26.18)
0174 C
0175 STOP
0176 END
0177 C**
0178 C********************* SUBROUTINE *********************
0179 C**
0180 C
0380 C**** SUB POSITR1 ****
0381 SUBROUTINE POSITR1(N, NA, H, K)
0382 C
0383 IMPLICIT REAL*8 (A-H,O-Z), INTEGER (I-N)
0384 C
0385 COMMON /BLOCK1/ RX0 , RY0, RX, RY
0386 COMMON /BLOCK2/ FX , FY
0387 COMMON /BLOCK3/ VELX, VELY
0388 C
0389 PARAMETER(NN=80)
0390 C
0391 REAL*8 RX0(NN), RY0(NN), RX(NN) , RY(NN)
0392 REAL*8 FX(NN) , FY(NN) , VELX(NN), VELY(NN)
0393 REAL*8 H , K
0394 REAL*8 HSQ2, CC0, CC1

• The DO loop implies the iteration calculation; the
statements between DO and CONTINUE are repeatedly
carried out. The procedure starts at NTIME=1, and then is
conducted at NTIME=2, 3,···, until I=NTIMEMX. DO loops
are possible inside the DO loop.

• MOD(NTIME, NPRINT)returns the remainder after NTIME is
divided by NPRINT. DMOD is used for such an operator of
double-precision reals. As in this example, operators have a
slightly different name depending on the data type of variables.

• DBLE(*) is used for transforming an integer into a double-
precision real. For developing a universal program, it is
desirable that the data types be the same between the left and
right-hand sides in the equation. INT(*) is used for transform-
ing a double-precision real into an integer.

•One of the procedures is chosen after assessing the IF
statement. In this example, R=1.D0 if I≤NA, and R=1.5D0 if
I>NA.

• The data file opened by the OPEN statement
must be closed using the CLOSE statement. NP
is the device number (name) of the I/O device,
which is used to open the data file. KEEP is
used in the STATUS statement in almost all
cases.

• The variables are described in the same order in which they
have been written in CALL POSITR1.

• IMPLICIT, PARAMETER, and REAL*8

statements are described in the same way as in

the main program. The subroutine can access

the variables in the COMMON statements, as well

as the arguments of N, NA, H, and K; note

that the change in these variables in the

subroutine is reflected in the main program.

The other variables are valid only in this

subroutine, and never affect the main program.

• The collection of FORMAT statements before the STOP
statement makes the logical structure of calculations clearer.
• / on the first line means the insertion of one blank line; / in
the later lines mean starting a new line. “1H ,” means one
blank space indent in each line. “56 FORMAT” and “58
FORMAT” are for writing out only numerical data (or figures).

301Appendix 3

0395 INTEGER NA , N
0396 C
0397 HSQ2 = H*H/2.D0
0398 CC0 = 1.D0/K
0399 CC1 = 1.D0
0400 C
0401 DO 10 I=1,N
0402 IF(I .EQ. NA+1) CC1 = CC0
0403 RX(I) = RX0(I) + H*VELX(I) + HSQ2*FX(I)*CC1
0404 RY(I) = RY0(I) + H*VELY(I) + HSQ2*FY(I)*CC1
0405 10 CONTINUE
0406 RETURN
0407 END

The use of the RETURN statement arbitrary
times is possible in the subroutine. The END
statement is necessary for specifying the end of
the descriptions of the subroutine.

A3.2 C Language

Wewill explain the grammar of the C language in a way similar to our discussion of the

FORTRAN language. The main structure of a program written in the C language is

made up of the functionmain and a set of functions that correspond to subprograms in

FORTRAN. The C language has considerable flexibility in writing a program in com-

parison to FORTRAN. However, the logical structure concerning the arrangement of

main and functions has similarities to FORTRAN, and therefore it may be beneficial

for the reader to write a simulation program in a similar structure to one in FORTRAN.

We show a typical structure of a C program in the following. Note that there is

no requirement that the statements be written between 7th and 72nd columns in the

C language.

 setiniposit(n,temp)
 double temp ;
 int n ;
 {

 double rxi, ryi ;
 int i, j ;

 }

Description of calculation procedures

Function (setiniposit)

#include <stdio.h>
#include <math.h>
#define PI 3.1415926535
#define NN 20
 double RX[NN], RY[NN] ;
main()
 {

 }

 double rxi, ryi ;
 int n, i, j ;

The function main

Description of calculation procedures

302 Introduction to Practice of Molecular Simulation

 setinivel(n,press)
 double press ;
 int n ;
 {

 double vxi, vyi ;
 int i, j ;

 }

Function (setinivel)

Description of calculation procedures

The function main is placed first, and other functions, corresponding to

subprograms in FORTRAN, follow main. The main body of the statements in

each function begins with the notation { and ends with the notation }. Since

there is no limit on the number of characters in one line, the notation ; is

used for terminating a line of statement—that is, it means the end of the line.

Except for special statements, every line must end with such a notation ;.

Because mathematical functions such as sin and sqrt are necessarily used in

scientific calculations, the statement of #include ,math.h. needs to be

declared in the first description area. Also, the statement of #include , stdio.h.
is indispensable to any program to facilitate the input or output of data to a

display or data file, and for reading data from a keyboard or data file. The

statements of #define PI 3.14. . . and #define NN 20 correspond to the

PARAMETER statement in FORTRAN. A statement beginning with the nota-

tion # is a preprocessor directive, which is a command to the compiler’s pre-

processor that treats instructions before the compilation procedure starts. The

preprocessor directive of #define NN 20 implies that the value of 20 is

assigned to the variable NN. The next statement, corresponding to the

COMMON statement in FORTRAN, is the declaration of the array-type vari-

ables RX[NN] and RY[NN] being used as global variables (which can be used

in the other function programs with no further definitions). The C language

typically uses lower-case characters, but it may be best that the names of

global variables are declared using upper case, so a programmer can be more

aware of treating the global variables. In a way similar to FORTRAN, the exe-

cution of a program starts with the function main; the procedures move to a

function when the function name is met and return to the main program

(main) after completion of the procedures in the function. As seen in this

explanation, the C language does not need the CALL statement used in the

FORTRAN language for transferring the task to another function. It employs

only the name of the function. The function main is written in a way to clar-

ify the flow of calculations, whilst any complex calculation procedure is

recommended as a separate function.

Next, we explain the most important statements for developing a program: the

if, for, do while, and switch statements. We first explain the if statement, which is

303Appendix 3

used for choosing tasks according to certain conditions specified by the instruc-

tions. Some typical examples are as follows:

if(i= =3) x=a ;

if(x>=0.) z=b ;
else if(x<-10.) z=c ;
else z=d ;

if(x>=5.) {
 z=a1 ;
}

if(x>5.) {
 z=a1 ;
}else if(x<=-10.) {
 z=b1 ;
}else {
 z=c1 ;
}

if((x>=-10.) && (X<=10.)) {
 z=a1 ;
} else if((x>=50.)||(x<=-50.)){
 z=b1 ;
}

• This is the simplest if statement.
“i=3” is expressed as “i==3” in the C
language.

• If x≥0, z=b is set, if x<-10, z=c, and
z=d for the other cases.

• This is a block-type if statement.

• This is also a block-type if
statement. One procedure is chosen
depending on the condition; there are
three cases x>5, x≤-10, and the
other cases.

• This is also a block-type if
statement. “&&” means that if both the
conditions are satisfied, z=a1 is
assigned and “| |” means that if one of
the conditions at least is satisfied,
z=b1 is assigned.

The if statement implies that the procedure is carried out if a certain condition

specified in the if statement is satisfied; otherwise, another assessment or another

procedure (including the end of the execution of the if directive) is conducted. The

specification “, 5 ” in the condition statements represents the mathematical

meaning # , “. 5 ” means $, “5 5 ” means 5 , and “!5 ” means 6¼. We next

explain the statements of for, while, and do while, which are used for specifying

the repeating procedures. Several typical examples follow.

for(i=1; i<=n; i++) {
… ;

}

for(i=100; i>=0; i-=2) {
… ;

}

 i=3 ;
 do {
 xnew = xold + xdef ;
 i++ ;
 } while(i<=n) ;

 i=3 ;
 while(i<=n) {
 xnew = xold + xdef ;
 i++ ;
 }

• The procedure starts at i=1, then is
conducted at i=2 and continued until
i=n.

• The procedure starts at i=100, and is
conducted at i=98, 96,…, while i≥0.
“i–=2” means“i=i–2.”

• The procedure starts at i=3 and is
conducted at i=4,5, …, while i≤n.
“i++” means “i=i+1” and “i––” means
“ i=i–1.”

• The procedure is the same as in the
previous case, but terminating the
procedure is assessed in a different
position.

304 Introduction to Practice of Molecular Simulation

The above statements correspond to the DO statement in FORTRAN. The proce-

dures specified between { and } are repeated, with the value of the index variable i

increasing or decreasing after the execution of each cycle step. The way of chang-

ing the index value is specified by the statement between (and) in the for state-

ment, such as “i11 ” or “i25 2”. In the case of the do while and while

statements, the way of changing the index value is specified by “i11 .” If the

statement of “i15 3” is used, the index i will change so that “i5i13.” A differ-

ence between the do while and the while statements is the position for assessing

the termination of the procedures. The procedure specified between { and } is

repeatedly carried out, whilst the condition indicated in the while statement

is satisfied.

A statement with characteristics similar to if is the switch statement. This state-

ment is quite simple to use; an example follows:

switch (itree) {
 case 2 ;
 x = a1 ;
 y = b1 ;
 break ;
 case 3 ;
 x = a2 ;
 y = b2 ;
 break ;
 default ;
 x = a4 ;
 y = b4 ;
 break ;
}

• When itree=2, a series of

statements defined in “case 2” are

executed, and break means the exit

from the switch statement. A similar

procedure is carried out for “case 3.”

In the other cases, a series of

statements defined in default are

executed; the break statement is

possibly unnecessary in the default

area.

As already pointed out, the function main and other functions correspond to a

main program and subprograms in the FORTRAN language, respectively. There

are two types of functions in the C language. That is, the first type of function cor-

responds to a function subprogram in the FORTRAN language, and therefore a

value calculated in the function is transferred through the variable (i.e., the name of

the function) in the function main. The second type of function corresponds to a

subroutine subprogram, and a value calculated there is not transferred through the

name of the function. Several examples that explain these two types of functions

are shown here:

setinivel(n,press)
 double press ;
 int n ;
 {
 double vxi, vyi ;
 int i, j ;
 …
 }

• This is a function that returns no calculated
values to the main function. It corresponds to
the subroutine subprogram in FORTRAN.

305Appendix 3

double press(x, y)
 double x, y;
 {
 double c1, c2, cans ;
 c1=1. ; c2=2. ;
 cans = c1*x + c2*y ;
 return(cans) ;
 }

int press(x,y)
 double x, y ;
 {
 int ic, jc, ians ;
 ians = ic*(int)x
 + jc*(int)y ;
 return(ians) ;
 }

• This corresponds to the function subprogram
in FORTRAN; the calculated value “cans” is
substituted into the double-precision variable
“press,” and the value of “press” is returned
to main.

• This also corresponds to the integer function
subprogram in FORTRAN; the calculated
value “ians” is substituted into the integer
variable “press,” and the value of “press” is
returned to main.

In the second and third examples, a value calculated in the function is transferred

to the main program main through the function name. The descriptor of the func-

tion type, such as double and integer, is, therefore, attached before the function

name. In the first example, the function does not return a calculated value to the

main program, but certain procedures are carried out in this function, so that

the declaration of the function type is unnecessary and not attached to the function

name. Note that int, float, and double imply that a variable (or data) is integer-

type, single-precision-real-type, and double-precision-real-type, respectively.

Next, we explain several important points that seem to be relatively difficult or

may be misunderstood by the beginner who is learning the grammar of the C lan-

guage. Array-type variables are defined in the declaration statements of the data

type in such a way as double a[100] or rx[20][20]. For example, in the case of a

one-dimensional array such as double a[100], it is noted that a[0], a[1], . . ., a[99]
storage spaces are prepared, but a[100] is not available. The second example of

double rx[20][20] means the declaration of a two-dimensional array variable, and

rx[0]][0], rx[0][1], rx[0][2], . . ., rx[19][19] storage spaces are prepared.
A significant difference between FORTRAN and the C language concerns the data

transfer between the function main (main program) and other functions (subpro-

grams). In FORTRAN, when one transfers data to a subprogram as arguments, one

does not take the values themselves saved in the variables but rather takes the positions

or addresses of the variables in which the data are saved. This means that the values

saved in the variables can freely be accessed from the subprogram, and also that new

data can be assigned to such variables; these new values are reflected in the main pro-

gram. This data transfer type is the “call by reference.” In the case of the C language,

the specification of variables as arguments, as in the FORTRAN language, does not

mean the transfer of the address of the variables; rather, the values themselves saved in

the variables are transferred to the function; therefore the assignment of new values to

the variables in the function is never reflected in the main program. This type of data

transfer is the “call by value.” This means that in respect to data transfer, the C lan-

guage is much safer than FORTRAN. If the data transfer is carried out by “call by ref-

erence” in a similar way to FORTRAN, then the variables of the “pointer” class must

be used in the C language. A pointer variable saves the position or address of a stan-

dard variable, and therefore it is important to declare what type of data is saved at the

306 Introduction to Practice of Molecular Simulation

position. For example, if an integer value is to be saved in a variable, the address of

which a pointer variable “pa” saves, then the asterisk * must be attached to the pointer

variable like “*pa,” and the data type must be declared like “int *pa.” In the body of

the program, the variable “*pa” is treated as a standard integer variable. If “int *pb,

ix” is declared in the definition statement of the data types, the statement “pb5&ix” is

used in order to save the address of the integer variable “ix” in the pointer variable

“pb.” If “&” is attached to a standard variable, for example, “&ix,” it will return the

value of the address of the variable ix. Therefore, since a pointer variable—for exam-

ple, “pa”—has the information about the address of a standard variable, a value (data)

saved at the address of the standard variable can be extracted using the notation “*pa.”

We are now ready to begin the explanation of “call by reference.”

In order to return from a function with the calculated values, the information of

the addresses of the variables, in which the calculated values are saved, need to be

transferred to the function by using arguments of the pointer type. For example,

consider a sample program in which a calculation is carried out using a value saved

in the variable “h” in the function “anscal,” and the calculated data is returned to

the main program through the variable “ans.” One has to call the function using the

statement “anscal (h, &ans),” in which a value (i.e., not the pointer information)

saved in the variable “h” is transferred to the function “anscal,” and the address of

the variable “ans” can be transferred to the function using the pointer information

“&ans.” It is important that the data type of the variable “*ans” is declared in the

function “anscal,” so that the variable “*ans” can be treated as a standard variable

in the function. Several typical examples (including a bad example) follow.

• The address of “ans” is transferred to
the function; “&ans” is the address of the
variable “ans.” In the function, the
pointer variable “pans” is used for
receiving the value of “ans” in the main
function. Since “ans” is a double-
precision real, “*pans” has to be defined
as a double-precision-real variable.

double h, ans ;

x = anscal(h, &ans) ;

anscal(h, pans)
 double h, *pans ;
 {
 *pans = h*h ;
 }

double h, ans ;

x = anscal(h, ans) ;

anscal(h, ans)
 double h, ans ;
 {
 ans = h*h ;
 }

double h, ans[100] ;

x = anscal(h, ans) ;

anscal(h, ans)
 double h, ans[100] ;
 {
 for(i=0, i<=99; i++) {
 ans[i] = h*(dble)i ;
 }
 }

• This is a bad example. In this case the
values saved in “h” and “ans” are
transferred to the function “anscal,”
but the values calculated in the function
can never be returned (reflected) to the
main function.

• For array variables, the data transfer to
the function is quite similar to
FORTRAN; the pointer variables are
unnecessary for the data transfer for the
case of array variables. The variable
name itself is used as an argument in
calling the function and also in the
definition of the function name.

307Appendix 3

In the first example, the address of the variable “ans” in the main program is trans-

ferred as an argument “&ans.” This value is saved in the pointer variable “pans” in

the function; the data type of the variable “ans” is recognized in the function by

declaring “double *pans” there. Through these statements, the original value saved

in the variable “ans” in the main program is changed into a new value after this

new value is substituted into the variable “*pans” in the function. Clearly identify-

ing pointer variables from standard variables by attaching the asterisk * may signif-

icantly assist the programmer by removing the danger of mistakes arising from

substituting new values to those variables in other functions.

The second example demonstrates a bad example of programming, where new

values calculated in the function “anscal” are not transferred to the variables “h”

and “ans” in the main program, since the connection of the variables between the

main function and the function “anscal” can never be made using a statement of

the type “anscal (h, ans).” If the arguments are defined without pointer variables,

then a function that returns a calculated value to the main program may be used, as

already explained; in this case, “anscal (h, ans)” has to be changed into “double

anscal (h, ans),” and “return (ans);” is added to the line after “ans5 h*h;,” which

corresponds to a function subprogram in the FORTRAN language.

The third example demonstrates how to transfer values saved in array-type vari-

ables such as “ans.” The data transfer of array-type variables can be conducted in the

same way as for the FORTRAN language, and therefore pointer variables are unneces-

sary. That is, calling a function with the arguments that are array-type variables will

have a direct type of connection, so that new values assigned to the array-type vari-

ables in the function are reflected inmain without the need for pointer variables.

We have shown the three methods of returning calculated values from a function

back to the main function. The first method is to use pointer variables; the second is

to use array-type variables; and the third is to use a function that returns a calculated

value through the name of the function itself. In addition to these three methods is

another method that uses global variables that correspond to variables declared in

the COMMON statements in FORTRAN. The global variables have to be declared

before the “main()” statement, and for these variables we recommend the use of

capital characters in their names, to help the programmer recognize them. An exam-

ple of using global variables is in the sample simulation program shown in

Section 5.6 as the array-type variables such as RX[NN], RY[NN], and RZ[NN].

Next, we explain the statements for inputting data, scanf and fscanf statements,

and for outputting data, printf and fprintf statements. The scanf and printf state-

ments correspond to READ(5,*) and WRITE(6,*) statements in FORTRAN; in these

statements, data are input from a keyboard and results shown on a display. In the

case of the fscanf and fprintf statements, data files are used for reading and writing

the data. If the reader understands the latter reading and writing statements, the for-

mer statements are quite straightforward to understand, so we only focus on the

explanation of the fscanf and fprintf statements. In order to use data files, pointer

variables must be connected to the data files used in a program. To do so, the fopen

statement is used, and fclose must be used to disconnect the data file used before the

end of the main program; this means that a data file connected by the fopen state-

ment should always be disconnected in a program. Some examples follow.

308 Introduction to Practice of Molecular Simulation

main()
{

double a, b, c;
int i;
FILE *fopen(),*np1,*np2,*np[4];

np15fopen(”aaa0.data”,”r”);
np25fopen(”aaa1.data”,”w”);
np[1]5fopen(”bbb1.data”,”w”);
np[2]5fopen(”bbb2.data”,”w”);
np[3]5fopen(”bbb3.data”,”w”);

. . .
fscanf(np1,”%lf”, &c);
fprintf(np2,”a5%10.3f b5%10.3f\n”, a, b);
i52;
fprintf(np[i],”a5%10.3f b5%10.3f c5%10.3f\n”,
a,b,c);

. . .
fclose(np[1]);
fclose(np[2]);
fclose(np[3]);
fclose(np1);
fclose(np2);

As shown in the above example, a data file must be connected to the file pointer vari-

able, which is declared in the FILE statement, by using the fopen statement. After a

data file is opened (connected), data can be input from the data file by using the

fscanf (np1,. . .) statement, and also can be output by the fprintf (np2,. . .) or fprintf
(np[2],. . .). The latter example for fprintf is quite useful for outputting the particle

positions at given time step intervals, which may be used for making an animation of

the particle motion. In this case, the index “i” in “np[i]” is made to change in such a

way as i51,2,3,. . ., with advancing time for the output. The arguments “r” and “w”

in the fopen statement indicate the reading and the writing mode, respectively. A

data file opened by the fopen statement must be closed (disconnected) using the

fclose statement before the end of the program. If a data is read and saved in a stan-

dard variable “c,” the pointer information (address) of “c” is necessary as an argu-

ment in the fscanf statement. In contrast, when a data saved in the variable “a” is

output to a data file, only a value is necessary, so that the name itself is used as an

argument in the fprintf statement; the pointer information is unnecessary in this case.

Next, we explain how to describe the format to output data, using the following

example:

i53;
xi55.;

309Appendix 3

yi52.;
press5xi*yi;
fprintf(np2,”i5%3d xi5%7.3f yi5%7.3f pressure5
%10.3f\n”, i, xi, yi, press);

The output result of the above fprintf statement is as follows:

i5 3 xi5 5.000 yi5 2.000 pressure5 10.000

The C language does not have a statement corresponding to the FORMAT state-

ment in FORTRAN. Instead, the output format for the data is specified in the

fprintf statement. In the above example, “%3d” is used for integer-type data and is

written using 3 columns (spaces) from the right. Similarly, “%7.3f” is for real-type

data and is written using 7 columns from the right with three decimal places, and

“\n” means the start of a new paragraph. If a data is output in exponential form, for

example, using “%10.2e,” this implies that a value is written using 10 columns

with 2 decimals. The reader sees many examples in the sample simulation program

shown in Section 5.6.

In order to make a visualization, such as an animation or snapshot, using the

data of the particle positions, it is necessary to write out only data (figures) in a

data file without any characters for explaining the data such as the names of vari-

ables. An example for this output is as follows:

. . .
for (i51; i,100; i11) {

fprintf(np2,”%10.4f%10.4f%10.4f\n”, rx[i], ry[i],
rz[i]);

}
. . .

In this example, the components of the particle position vector, rx[*], ry[*], and

rz[*] are output at each time step using the for loop statement; the position data of

particle 1, particle 2, and particle i are written in the first, second, and ith lines,

respectively, of the data file. In order to conduct another run using the data saved

in the above-mentioned manner, one needs to read such data from the data file in

the following way:

. . .
for (i51; i,100; i11) {

fscanf(np1,”%lf%lf%lf\n”, &rx[i], &ry[i], &rz[i]);
}

. . .

310 Introduction to Practice of Molecular Simulation

In the above example, “rx[*], ry[*], and rz[*]” are assumed to be defined as

double-precision-real-type variables. As this example demonstrates, in the C language,

data does not need to be read using the same format description that was used in the

fprintf statement, but only described as “%lf%lf%lf/n” in the fscanf statement; this is

in contrast to FORTRAN. As already pointed out, the address of the variables—not

the name itself—is necessary in reading the data by the fscanf statement.

The C language has several characteristic concepts for using variables, such as

structure variables, which are not contained in the FORTRAN77 language. We do

not explain them in this book, because these characteristic statements are not used

in the sample simulation programs. Since imaginary variables may be useful in cer-

tain cases, the reader may find them in a textbook on the C language, if necessary.

Finally, we show some additional features of the grammar using a short sample

simulation program.

0001 /*---*/
0002 /* alder1.c */
0003 /* */
0004 /* ----- Hard Sphere Molecular Dynamics ----- */
0005 /* Simulation of phase transition for a two */
0006 /* dimensional system. */
0021 /*---*/
0042 #include <stdio.h>
0043 #include <math.h>
0044 #define PI 3.141592653589793
0045 #define NN 201
0046 #define NNCOLMX 2001
0047 #define NRANMX 100001
0048 double RX[NN] , RY[NN] ;
0049 double VX[NN] , VY[NN] ;
0050 double XL, YL ;
0051 float RAN[NRANMX] ;
0052 int NRAN, IX ;
0053
0054 /*--- main function ---*/
0055 main()
0056 {
0057 int n, partnr[NN] ;
0057 int n, partnr[NN] ;
0059 double coltim[NN] , tstep, tij , tim, timbig ;
0061 float rx0[NN][NNCOLMX], ry0[NN][NNCOLMX] ;
0062 int i, j, k, ii, ncol , ncolmx , nbump ;
0064 FILE *fopen(), *np[10], *np1, *np2 ;
0065
0066 np1 = fopen("@baa1.data", "w");
0068 np[1] = fopen("baa011.data", "w");
0069 np[2] = fopen("baa021.data", "w");
0076
0077 /*--- parameter (1) ---*/
0081 n = 36 ;
0082 vdens = 0.1 ;
0085 ndens = vdens*(4./PI) ;
0086 dsq = d*d ;
0087 timbig = 1.e10 ;
0091 /*--- parameter (3) ---*/
0092 IX = 0 ;

• The statements enclosed by “/*” and “*/” are regarded
as comment lines and therefore have no influence on the
calculation. Comment lines are placed at any positions,
which is dissimilar to FORTRAN.

• “#include <stdio.h>” is necessary for the
input/output of data, and “#include <math.h>” is
necessary for the use of mathematical calculations.
• The “define” statement corresponds to the
PARAMETER statement in FORTAN, which is useful
for defining the size of the array-type variables.
• The variables defined using “double,” “float,”
and “int” are regarded as global variables that can
be accessed from any functions without any definition
in each function.

• In order to output the calculated data on a data file, the file has to be
related to the pointer variable (device number) using the “fopen”
statement; the opened file has to be closed using the “fclose”
statement before the end of the main function. “w” and “r” are used for
writing and reading the data, respectively.

• This is calling the function rancal(*), in which
arguments are unnecessary because of the use of the
global variables. This is a void function of returning no
calculated results, which corresponds to a subroutine
subprogram in FORTRAN.

311Appendix 3

0123 /*---------------------- equilibration ----------------------*/
0124 /*--*/
0125
0126 for (ncol=1 ; ncol<=ncolmx ; ncol++) {
0127
0137 /*--- coll. for i and j ---*/
0140 tim += tstep ;
0141 nbump += 1 ;
0142 /*--- advance particle position ---*/
0143 for (k=1 ; k<=n ; k++) {
0144 coltim[k] += - tstep ;
0145 RX[k] += VX[k]*tstep ;
0146 RY[k] += VY[k]*tstep ;
0147 RX[k] += - rint(RX[k]/XL - 0.5)*XL ;
0148 RY[k] += - rint(RY[k]/YL - 0.5)*YL ;
0149 }
0156 for(k=1 ; k<=n ; k++) {
0157 if((partnr[k] == i) || (partnr[k] == j))
0158 collist(n, dsq, k, coltim, partnr) ;
0159 }
0160 /*--- for data output ---*/
0161 for(k=1 ; k<=n ; k++) {
0162 rx0[k][ncol] = (float)RX[k] ;
0163 ry0[k][ncol] = (float)RY[k] ;
0164 }
0165 }
0166
0167 /*---*/
0168 /*--------------------- end of main loop --------------------*/
0169 /*---*/
0170
0171 /*--- print out ---*/

0172 fprintf(np1,"time=%11.3e num.of coll.=%7d nbump/ncolmx=%6.3f¥n",
0173 tim, nbump, (float)nbump / (float)ncolmx) ;
0174 /*--- data output ---*/
0175 fprintf(np2,"%4d%8.4f%8.4f%8.3f%9.3f%9.3f%8d¥n",
0176 n, ndens, vdens, temp, XL, YL , ncolmx) ;
0179 /*--- data output ---*/

0180 for (ii=1 ; ii<=7 ; ii++) {
0181 op = 5*(ii-1) ; inp += 1 ;
0182 for(k=1 ; k<=ncolmx ; k++) {
0183 fprintf(np[inp],

• This is not for the postprocessing analysis, just for reconfirming the validity
of results.

• This “fprintf” statement is for the postprocessing analysis, such as making
snapshots and analyzing data; thus, only numerical values are written out.

• The “(float)” is added just before the variable in order to change a double-
precision to a single-precision data.

• The “tim+=tstep” implies “tim=tim+tstep.”
“rint” is a round-up function.

• In the “if” statement, “==” means “=,” “<=” means
“≤,” and “>=” means “≥.” Also, “||” means “OR,” and
“&&” means “AND.”

0093 rancal() ;
0094 NRAN = 1 ;
0095
0096 /*--*/
0097 /*----------------- initial configuration ------------------*/
0098 /*--*/
0099 /*--- set initial positions ---*/
0100 iniposit(n, ndens) ;
0101 /*--- set initial velocities ---*/
0102 inivel(n, temp) ;
0109 /*--- print out constants ---*/
0110 fprintf(np1,"---¥n");
0111 fprintf(np1," Molecular dynamics of hard spheres ¥n");
0112 fprintf(np1," ¥n");
0113 fprintf(np1," n=%4d ndens=%8.3f vdens=%6.3f temp=%7.3f¥n",
0114 n, ndens, vdens, temp) ;
0115 fprintf(np1," XL=%6.3f YL=%6.3f¥n", XL, YL) ;
0116 fprintf(np1," ncolmx=%8d¥n", ncolmx) ;
0117 fprintf(np1,"---¥n");
0118
0122 /*--*/

• The given parameters are written out in the data file
@baa1.data.
• There is no statement that corresponds to the FORMAT
statement in FORTRAN.

• The “for” loop implies the iteration calculation. The
procedure starts at ncol=1 and then is conducted at
ncol=2,3,···, until ncol=ncolmx. Another “for” loop is
possible inside the “for” loop.

312 Introduction to Practice of Molecular Simulation

0211
0212 /*--- set mol. at close-packed lattice points ---*/
0213 a = sqrt((2./sqrt(3.))/ndens) ;
0214 p = rint(sqrt((double)(n/4))) ;
0215 XL = sqrt(3.)*a*(double)p ;
0217
0218 ax = sqrt(3.)*a ; ay = 2.*a ;
0219 kx = p ; ky = p ;
0223
0224 for (iface=1 ; iface<=4 ; iface++) {
0225 if(iface == 1) {
0226 rx0 = c1 ; ry0 = c1 ;
0227 } else if(iface == 2) {
0228 rx0 = c1 ; ry0 = a + c1 ;
0229 } else if(iface == 3) {
0230 rx0 = ax/2. + c1 ;
0231 ry0 = a/2. + c1 ;
0232 } else {
0233 rx0 = ax/2. + c1 ;
0234 ry0 = a*3./2. + c1 ;
0235 }
0236 for(j=0 ; j<=ky-1 ; j++) {
0237 ryi = (double)j*ay + ry0 ;
0238 if (ryi >= YL) break ;
0239 for (i=0 ; i<=kx-1 ; i++) {
0240 rxi = (double)i*ax + rx0 ;
0241 if (rxi >= XL) break ;
0242
0243 k += 1 ;
0244 RX[k] = rxi ;
0246 }
0247 }
0248 }
0249 }
0250 /*+++ fun inivel +++*/
0251 inivel(n, temp)
0252
0253 int n ;
0254 double temp ;
0255 {
0256 int i ;
0257 double c0 , c1 , c2 , c3 , t , vxi , vyi ;
0258
0259 c0 = 2.*PI ;
0263 for (i=1 ; i<=n ; i++) {
0264
0265 L5: NRAN += 1 ;

• “sqrt” means a mathematical
function that calculates the square
root of a value.

• The “break” statement
enables the procedure to be
terminated and to leave the
calculation in the “for” or the
“if” statement unit.

• “log(x)” means a natural
logarithm, “cos(x)” and
“sin(x)” mean a cosine and a
sine function, “fabs(x)” returns
the absolute value of x,
“pow(x,y)” means xy, and “m%n”
returns the reminder. Also,
“floor(x)” means truncation,
“rint(x)” means rounding-up,
and “exp(x)” is an exponential
function. In the above functions,
x is regarded to be a double-
precision real, and m and n are
integer variables.

0184 "%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f%6.2f¥n",
0185 rx0[op+1][k],ry0[op+1][k], rx0[op+2][k],ry0[op+2][k],
0186 rx0[op+3][k],ry0[op+3][k], rx0[op+4][k],ry0[op+4][k],
0187 rx0[op+5][k],ry0[op+5][k]) ;
0188 }
0189 fclose(np[inp]) ;
0190 }
0196 fclose (np1) ;
0198 }
0199
0200 /*--*/
0201 /*-------------------------- functions -------------------------------*/
0202 /*--*/
0203 /*+++ fun iniposit +++*/
0204 iniposit(n, ndens)
0205
0206 double ndens ;
0207 int n ;
0208 {
0209 double rxi, ryi, rx0, ry0, a , ax , ay , c1 ;
0210 int i , j , kx , ky , k , p , iface ;

• The file opened by the “fopen” statement is necessarily
closed by the “fclose” statement.

• The variables defined are valid only
in this function, and these values have
no influence on the main function.
• The results calculated here are
returned to the main program through
the global variables.

• The arguments have to be described in the same order
as being called in the main function.
• Even if any values are saved in “n” and “ndens,” these
values are not reflected in the main function.

313Appendix 3

0266 c1 = sqrt(-t*log((double)(RAN[NRAN]))) ;
0267 NRAN += 1 ;
0268 c2 = c0*(double)(RAN[NRAN]) ;
0269 vxi = c1*cos(c2) ;
0271
0272 if((vxi*vxi+vyi*vyi) >= c3) goto L5 ;
0273 VX[i] = vxi ;
0275 }
0276 }

• The “goto” statement tends to
make the logical flow complex, so
this statement should be used
limitedly.

In this example, the line numbers are attached for the sake of convenience—they

are not necessary in writing a program. In the C language, all variables used in a

program must be defined using the data type statement such as int, float, and

double.

A3.3 Execution Procedures of FORTRAN and C Programs

The execution of a program in the FORTRAN or the C language involves two pro-

cedures: one to make an executive-type program by compiling the program, and

another to conduct a command for running the executive-type program. When error

messages appear in compiling a program, one has to modify the program so as to

completely remove those errors. Error messages are quite useful for the beginner in

the process to learn how to develop a program, so that the reader is recommended

to spend sufficient time on tackling such problems. Note that if there are no error

messages, it does not mean that there are no bugs in the simulation program, but

just implies there are no grammatical errors. Hence, after error messages disappear

in compiling, one should check a program another 5 times. Since this kind of care-

ful verification procedure is necessary to remove fatal bugs, programmers have to

avoid employing complex logical structures in writing a program.

The sample simulation programs shown in each chapter of this book are almost

directly portable to free FORTRAN and C compilers, for example, in a free Linux

system. However, if the reader intends to conduct a large-scale simulation, it is

desirable to introduce a commercial compiler, which may offer higher performance

for the computer.

If a Linux system is installed with GNU family compilers in the FORTRAN and

C languages, typical execution procedures are as follows:

> f77 sample1.f
> ./a.out

> cc sample1.c -lm
> ./a.out

> f77 -o sample1.out sample1.f
> ./sample1.out

> cc -o sample1.out sample1.c -lm
> ./sample1.out

The “a.out” is a default name of an executive-type program, but in the second

example, the name of an executive-type program is assigned to a chosen name and

314 Introduction to Practice of Molecular Simulation

the execution is carried out using this name. Since mathematical functions are usu-

ally used in a program, the compile option “-lm” is necessary for a C program.

If you use a commercial compiler, offered by Intel or other companies, installed

on a Linux system, a typical example for the execution is as follows:

. ifort �o sample1.out sample1.f

../sample1.out

in which “ifort” is the command for starting the FORTRAN compiler. If the reader

is using a freeware, the required command may be “g77,” “f90,” “f95,” “gfortran,”

“ifc,” or “fort.”

If the reader wants more information on the compile options, “man ifort” or

“man ifc” can be used to access to the manual of the compiler. Note that since the

grammar is slightly different among different compilers, one compiler may output

error messages in compiling, but another does not. Hence, we recommend that the

reader devise a program in a general form, otherwise, a large amount of tuning

tasks may be necessary to apply it to a compiler on another computer.

If error messages are output in compiling the same programs in this book, the

following data type statement may be a reason; in this case, the reader is advised to

replace “REAL*8” with “DOUBLE PRECISION.” Also, error messages may be

resolved by reducing the size of array-type variables.

315Appendix 3

This page intentionally left blank

Appendix 4: Unit Systems of Magnetic
Materials

The CGS unit system and the SI unit system, which was developed from the

MKSA unit system, are generally used in the field of magnetic materials. Although

the CGS unit system is commonly used in the commercial world, the SI unit system

is invariably used in textbooks on magnetic materials. Using quantities expressed

in different unit systems at the same time will lead to wrong expressions for physi-

cal quantities, so one must adhere to the same unit system for handling equations

or physical values of magnetic materials. Many textbooks on magnetic materials

provide tables to transform values from one unit system to another. We here sum-

marize the two unit systems based on the MKSA system. In the first unit system,

the magnetization M corresponds to the magnetic field H in units. In the second

unit system, M corresponds to the magnetic flux density B. Some typical quantities

used for magnetic materials are tabulated below.

Note that in this book we use the first unit system of M corresponding to H in

units.

B5µ0(H1M) B5µ0H1M

Magnetic field strength, H [A/m] [A/m]

Magnetization strength, M [A/m] [Wb/m2]

Magnetic flux density, B [T] (5[Wb/m2]) [T] (5[Wb/m2])

Permeability of free

space, μ0

μ05 4π3 1027 [H/m]

(5[Wb/(A �m)]

μ05 4π3 1027 [H/m]

(5[Wb/(A �m)]

Magnetic charge, q [A �m] [Wb] (5[N �m/A])

Magnetic moment, m [A �m2] [Wb �m] (5[N �m2/A])

Potential energy, U U5 2μ0m �H [J]

(5[Wb �A])
U5 2m �H [J] (5[Wb �A])

Torque, T T5μ0m3H [N �m]

(5[Wb �A])
T5m3H [N �m]

(5[Wb �A])
Magnetic field induced by

magnetic charge, H

H5 q
4πr2 U

r
r
[A/m] H5 q

4πμ0r
2 U r

r
[A/m]

Magnetic force acting between

two magnetic charges, F
F5

μ0qq
0

4πr2 U
r
r
[N]

(5[Wb �A/m])

F5 qq0

4πμ0r
2 U r

r
[N]

(5[Wb �A/m])

Magnetic interaction between

two magnetic moments, U
U5

μ0

4πr3 m1Um2 2
3
r2

�
3 ðm1UrÞðm2UrÞg
[J](5[Wb �A])

U5 1
4πμ0r

3 m1Um2 2
3
r2

�
3 ðm1UrÞðm2UrÞg
[J] (5[Wb �A])

Combined units: [H]5 [Wb/A], [T]5 [Wb/m2], [J]5 [N �m]

Equivalent units: [N]5 [Wb �A/m]

This page intentionally left blank

How to Acquire Simulation Programs

A copy of the sample simulation programs that are shown in this book can be

requested directly from the author via e-mail:

asatoh_book2010@excite.co.jp

Please note that the following information is required:

1. the purchase date,

2. the number of purchased copies,

3. the profession of the purchaser.

The sample simulation programs in this book can be used free of charge for edu-

cational purposes in an academic environment such as a university, but are not per-

mitted to be used for commercial purposes. In addition, the user takes

responsibility for all results obtained from using the sample simulation programs.

The author would deeply appreciate the report of any bugs in the programs, but

regrets that he is unable to accept any inquiries concerning the content of the simu-

lation programs.

This page intentionally left blank

References

[1] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford,

1987.

[2] D.C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University

Press, Cambridge, 1995.

[3] J.M. Haile, Molecular Dynamics Simulation, Elementary Methods, John Wiley & Sons,

New York, 1992.

[4] A. Satoh, Introduction to Molecular-Microsimulation of Colloidal Dispersions, Elsevier

Science, Amsterdam, 2003.

[5] P.J. Hoogerbrugge, J.M.V.A. Koelman, Simulating microscopic hydrodynamic phe-

nomena with dissipative particle dynamics, Europhys. Lett. 19 (1992) 155�160.

[6] J.M.V.A. Koelman, P.J. Hoogerbrugge, Dynamic simulations of hard-sphere suspen-

sions under steady shear, Europhys. Lett. 21 (1993) 363�368.

[7] P. Espanol, Hydrodynamics from dissipative particle dynamics, Phys. Rev. E 52 (1995)

1734�1742.

[8] C.A. Marsh, G. Backx, M.H. Ernst, Static and dynamic properties of dissipative particle

dynamics, Phys. Rev. E 56 (1997) 1676�1691.

[9] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Clarendon

Press, Oxford, 2001.

[10] D.H. Rothman, S. Zaleski, Lattice-Gas Cellular Automata, Simple Models of Complex

Hydrodynamics, Cambridge University Press, Cambridge, 1997.

[11] J.-P. Rivet, J.P. Boon, Lattice Gas Hydrodynamics, Cambridge University Press,

Cambridge, 2001.

[12] B. Chopard, M. Droz, Cellular Automata Modeling of Physical Systems, Cambridge

University Press, Cambridge, 1998.

[13] L. Verlet, Computer experiments on classical fluids. I. Thermodynamical properties of

Lennard-Jones molecules, Phys. Rev. 159 (1967) 98�103.

[14] W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, A computer simulation method

for the calculation of equilibrium constants for the formation of physical clusters of

molecules: application to small water clusters, J. Chem. Phys. 76 (1982) 637�649.

[15] R.W. Hockney, The potential calculation and some applications, Methods Comput.

Phys. 9 (1970) 136�211.

[16] S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications,

Butterworth-Heinemann, Stoneham, 1991.

[17] H. Brenner, Rheology of a dilute suspension of axisymmetric Brownian particles, Int.

J. Multiphase Flow 1 (1974) 195�341.

[18] S. Kim, R.T. Mifflin, The resistance and mobility functions of two equal spheres in

low-Reynolds-number flow, Phys. Fluids 28 (1985) 2033�2045.

[19] D.A. McQuarrie, Statistical Mechanics, Harper & Row, New York, 1976.

[20] J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, second ed., Academic Press,

London, 1986.

[21] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of

state calculations by fast computing machines, J. Chem. Phys. 21 (1953) 1087�1092.

[22] H.C. Tuckwekk, Elementary Applications of Probability Theory, second ed., Chapman &

Hall, London, 1995.

[23] A. Jeffrey, Mathematics for Engineers and Scientists, fifth ed., Chapman & Hall,

London, 1996.

[24] D.L. Ermak, J.A. McCammon, Brownian dynamics with hydrodynamic interactions,

J. Chem. Phys. 69 (1978) 1352�1360.

[25] G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, second ed.,

Oxford University Press, Oxford, 1994.

[26] G.E.P Box, M.E. Müller, A note on the generation of random normal deviates, Ann.

Math. Stat. 29 (1958) 610�611.

[27] B. Quentrec, C. Brot, New method for searching for neighbors in molecular dynamics

computations, J. Comput. Phys. 13 (1975) 430�432.

[28] R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles, McGraw-Hill,

New York, 1981.

[29] S.M. Thompson, Use of neighbor lists in molecular dynamics, CCP5 Quarterly

8 (1983) 20�28.

[30] A.W. Lees, S.F. Edwards, The computer study of transport processes under extreme

conditions, J. Phys. C 5 (1972) 1921�1929.

[31] R.E. Rosensweig, Ferrohydrodynamics, Cambridge University Press, Cambridge, 1985.

[32] R.E. Rosensweig, J.W. Nestor, R.S. Timminins, Ferrohydrodynamics fluids for direct

conversion of heat energy, Symp. AIChE-I Chem. Eng. 5 (1965) 104�118.

[33] C. Pozrikidis, Introduction to Theoretical and Computational Fluid Dynamics, Oxford

University Press, Oxford, 1997.

[34] D. Yu, R. Mei, L.-S. Luo, W. Shyy, Viscous flow computations with the method of

lattice Boltzmann equation, Prog. Aerospace Sci. 39 (2003) 329�367.

[35] A.J.C. Ladd, Numerical simulations of particulate suspensions via a discreti-

zed Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech. 271 (1994)

285�309.

[36] A.J.C. Ladd, Short-time motion of colloidal particles: numerical simulation via a fluctu-

ating lattice-Boltzmann equation, Phys. Rev. Lett. 70 (1993) 1339�1342.

[37] M. Bouzidi, M. Firdaouss, P. Lallemand, Momentum transfer of a Boltzmann-lattice

fluid with boundaries, Phys. Fluids 13 (2001) 3452�3459.

[38] S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform Gases,

Cambridge University Press, Cambridge, 1960.

322 Introduction to Practice of Molecular Simulation

