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Preface

Molecular Gas Dynamics originates from lectures and seminars delivered by the
author at various universities and institutions worldwide. These materials are
supplemented and arranged in a form appropriate to a graduate textbook on
molecular gas dynamics, or gas dynamics on the basis of kinetic theory. The
book provides an up-to-date description of the basic theory of molecular gas
dynamics and its various applications giving interesting and important gas dy-
namic phenomena. The progress of molecular gas dynamics in the last forty
years has greatly enhanced the contents of the basic theory and provided infor-
mation on various interesting and important gas dynamic problems. This has
made it possible to compile a new graduate textbook on molecular gas dynam-
ics. The present book reflects these developments providing working knowledge:
theory, techniques, and typical phenomena in a rarefied gas (low-density and mi-
cro flows), for future theoretical development and applications.

The book begins with a brief presentation of the fundamental properties of
the Boltzmann equation and a summary of notation used globally in subsequent
chapters of the book. A full explanation of the fundamental properties is given
in Appendix A. The author hopes that readers of various backgrounds can
proceed quickly to the main subject, with reference to Appendix A if necessary.
As is apparent from the table of contents, after presenting general theories for
highly and slightly rarefied gases and various simple flows, such as unidirectional
or quasi-unidirectional flows, and flows around a sphere, the author discusses
various subjects: flows induced by temperature fields, which are typical in a
rarefied gas; flows with evaporation and condensation; bifurcation of flows in
a rarefied gas; and ghost effects in a gas in the continuum limit. In Appendix
B, where methods of solution are described, the theoretical background of the
direct simulation Monte Carlo method (DSMC method) is explained in a way
that can be read by nonmathematicians.

The existence of ghost effects in a gas in the continuum limit makes molecular
gas dynamics indispensable to the study of a gas in the continuum limit, which
is traditionally discussed by classical fluid dynamics. Ghost and non-Navier–
Stokes effects present themselves in well-known classical fluid dynamic problems,
such as the Bénard and Taylor–Couette problems; they are discussed in Chapter
8. Another type of ghost effect, the recently proposed infinitesimal curvature
effect, is discussed in Chapter 9, where bifurcation of the plane Couette flow, a
long-standing problem, is worked out as an example. The discussion on ghost
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effects will be essential to a modern treatment of traditional fluid dynamics.
Basic theory is developed in a systematic way and presented in a form easily

applicable to practical use. Fundamental examples showing kinetic effects and
various interesting physical phenomena are discussed analytically, numerically,
or experimentally. Mathematical discussion is on the level of classical advanced
calculus; definitions, assumptions, and formulations are stated explicitly. Thus,
engineers can apply theoretical works to practical problems, and mathematicians
will have access to physically interesting mathematical problems without much
difficulty. Readers should be aware of the relationship of the present book to the
author’s previous one, Kinetic Theory and Fluid Dynamics (Birkhäuser, 2002).
The latter is a monograph mainly discussing the time-independent problems in
Chapter 3 of the present book in more detail. Some supplementary discussions
on the subject, including a brief but systematic discussion of its time-dependent
problems, are naturally made in the present book. Thus, the two books are
complementary. Misprints that are found in the two above-mentioned books
will be posted at http://fd.kuaero.kyoto-u.ac.jp/members/sone.

The author owes a great deal to many people. He was influenced by fruitful
discussion with the late Harold Grad, who offered the author a chance to work
with him at the Courant Institute for two years. Collaboration with French
mathematicians, especially C. Bardos and F. Golse, was initiated by H. Ca-
bannes’s invitation of the author to be a visiting professor at the Université
Pierre et Marie Curie. The author enjoyed very fruitful discussions with Tai-
Ping Liu and Shih-Hsien Yu, who offered the author their unpublished works.
He also enjoyed discussions with L. Arkeryd in the comfortable climate of sev-
eral Swedish summers. The conversations and correspondences with J. B. Keller
and A. Acrivos were instructive. The discussions and collaboration enhanced
the content of the book. G. Bird and W. Wagner read Section B.1 on the DSMC
method and gave the author useful comments. T. Yano, M. Hasegawa, T. Doi,
H. Sugimoto, S. Takata, T. Kataoka, and M. Handa, each kindly examined con-
siderable parts of the draft manuscript carefully, providing helpful suggestions
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Chapter 1

Boltzmann Equation

In this chapter we summarize the preliminary information on the Boltzmann
equation (the definitions, notations, formulas, etc.) for the convenience of the
discussions in the following chapters. With this preliminary summary, the read-
ers will proceed faster to the discussion of gas-dynamic problems treated in
those chapters. Its detailed or supplementary explanation is given in Appendix
A. Related information is found in Boltzmann [1896, 1898], Grad [1958], Vin-
centi & Kruger [1965], Kogan [1969], Cercignani [1988], Sone & Aoki [1994],
and Sone [2002].

1.1 Velocity distribution function and
macroscopic variables

Consider a gas consisting of identical molecules whose intermolecular potential
is spherically symmetric. The gas is assumed not to be dense. That is, in a
volume of the gas, the volume of the molecules there packed together, or the
total volume of the ranges where their intermolecular forces are effective, is
negligibly small compared with the volume of the gas.1 Let Xi (or X) be the
Cartesian (or rectangular) coordinates of our physical space, and ξi (or ξ) the
molecular velocity.2 Let the number dN of molecules in the six-dimensional

1This is called the perfect-gas condition. In statistical physics, the gas is sometimes called
rarefied gas. However, in gas dynamics, the term rarefied gas is used for a gas where the
length of the mean free path (Section 1.5) is not negligible.

2In this book, the Cartesian-tensor notation (Jeffreys [1965]) is mainly used. However, the
vector notation is sometimes convenient, for example, to express the arguments of a function.
The subscripts of these variables are cumbersome and confusing with subscripts used in real
operations. Thus, we introduce the vector notation without notice. What should be noted in
the Cartesian-tensor notation is the summation convention: that is, double indices mean the
summation without the

P
sign (e.g., aibi = a1b1 + a2b2 + a3b3, aii = a11 + a22 + a33). Note

that the expression ∂2/∂X2
i means the Laplacian, i.e., ∂2/∂X2

1 + ∂2/∂X2
2 + ∂2/∂X2

3 . Here,
Cartesian coordinates are used in their narrower definition, i.e., rectangular ones.
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volume element dX1dX2dX3dξ1dξ2dξ3 (dXdξ, for short) be expressed as

dN =
1
m

f(X, ξ, t)dXdξ, (1.1)

where m is the mass of a molecule and t is the time. Then, f or f/m, which is
a function of the seven variables X, ξ, and t, is called the velocity distribution
function of the gas molecules.

The macroscopic variables—the density ρ of the gas, the flow velocity vi, the
temperature T , the pressure p, the specific internal energy e, the stress tensor
pij , and the heat-flow vector qi at position X and at time t—are defined by the
following moments of f :

ρ =
∫

f(X, ξ, t)dξ, (1.2a)

vi =
1
ρ

∫
ξif(X, ξ, t)dξ, (1.2b)

3RT =
1
ρ

∫
(ξi − vi)2f(X, ξ, t)dξ, (1.2c)

p =
1
3

∫
(ξi − vi)2f(X, ξ, t)dξ = RρT, (1.2d)

e =
1
ρ

∫
1
2
(ξi − vi)2f(X, ξ, t)dξ =

3
2
RT, (1.2e)

pij =
∫

(ξi − vi)(ξj − vj)f(X, ξ, t)dξ, (1.2f)

qi =
∫

1
2
(ξi − vi)(ξj − vj)2f(X, ξ, t)dξ, (1.2g)

where R is the specific gas constant [the Boltzmann constant kB (= 1.3806505×
10−23J·K−1) divided by m] and the three-dimensional integration with respect
to ξ is, hereafter, carried out over the whole space of ξ unless otherwise stated.
These definitions are compatible with those in the classical fluid dynamics.

According to the explanation in Fig. 1.1, the mass −mf , momentum −pi,
and energy −ef transferred from the gas to its (real or imaginary) boundary, at
a point X, per its unit area and per unit time are given by3

mf =
∫

(ξj − vwj)njf(X, ξ, t)dξ

= njρ(vj − vwj), (1.3a)

pi =
∫

ξi(ξj − vwj)njf(X, ξ, t)dξ

= nj [pij + ρvi(vj − vwj)], (1.3b)

3Quantities or variables expressing flows per unit area and per unit time will be called
fluxes. The heat-flow vector qi in Eq. (1.2g) may be better called a heat-flux vector, but we
follow the convention.
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Figure 1.1. Explanatory figure for the formulas (1.3a)–(1.3c). The molecules with
velocity ‰ in the cylinder with its generatrices parallel to the relative velocity ξi − vwi,
its base given by the surface element dS, and its height given by |(ξi − vwi)ni|dt will
reach the surface element dS within time dt when (ξi − vwi)ni < 0 and have left
dS within time dt in the past when (ξi − vwi)ni > 0. Thus, total mass, momentum,
and energy transferred by the molecules with their velocities in d‰ at ‰ to the sur-
face element dS in time dt are, respectively given by −f(X, ‰, t)d‰(ξj − vwj)njdSdt,
−ξif(X, ‰, t)d‰(ξj − vwj)njdSdt, and − 1

2
ξ2

i f(X, ‰, t)d‰(ξj − vwj)njdSdt. Summing
up for all molecular velocities, we obtain the formulas (1.3a)–(1.3c).

ef =
∫

1
2
ξ2
i (ξj − vwj)njf(X, ξ, t)dξ

= nj

[
qj + pijvi + ρ

(
e +

1
2
v2

i

)
(vj − vwj)

]
, (1.3c)

where vwi is the velocity of the boundary and ni is the unit normal vector to
the boundary, pointed to the gas. When there is no mass flux (mf= 0) through
a boundary,

pi = njpij , ef = nj(qj + pijvi). (1.4)

1.2 Boltzmann equation

The behavior of the velocity distribution function f is determined by the Boltz-
mann equation

∂f

∂t
+ ξi

∂f

∂Xi
+

∂Fif

∂ξi
= J(f, f), (1.5)

where
J(f, f) =

1
m

∫
all αi, all ξi∗

(f ′f ′
∗ − ff∗)BdΩ(α)dξ∗, (1.6)

f = f(Xi, ξi, t), f∗ = f(Xi, ξi∗, t),

f ′ = f(Xi, ξ′i, t), f ′
∗ = f(Xi, ξ′i∗, t),

ξ′i = ξi + αiαj(ξj∗ − ξj), ξ′i∗ = ξi∗ − αiαj(ξj∗ − ξj),

B = B(|αi(ξi∗ − ξi)|/|ξj∗ − ξj |, |ξj∗ − ξj |),
|ξj∗ − ξj | = [(ξj∗ − ξj)2]1/2,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(1.7)
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and mFi is the external force on a molecule;4 αi (or α) is a unit vector, express-
ing the variation of the direction of the molecular velocity owing to a molecular
collision; dΩ(α) is the solid-angle element in the direction of αi; and B is a
function of |αi(ξi∗ − ξi)|/|ξj∗ − ξj | and |ξj∗ − ξj |, positive almost everywhere5

in the space (ξ, α), and its functional form is determined by the intermolecular
force [e.g., B = d2

m|(ξi∗ − ξi)αi|/2 for a gas consisting of hard-sphere molecules
with diameter dm].6 The definition of B is given in Eq. (A.20), and its relation
to the intermolecular potential is discussed in Section A.2.4. The integrations
with respect to ξi∗ and αi are carried out over the whole space of ξi∗ and over
the whole direction of αi (the whole spherical surface), respectively. The inte-
gral J(f, f) is called the collision integral or the collision term of the Boltzmann
equation (1.5). Its first part m−1

∫
f ′f ′

∗BdΩdξ∗ is called the gain term (denoted
by JG for short), and the second m−1

∫
ff∗BdΩdξ∗ the loss term (denoted by

JL). Then,
J = JG − JL = JG − νcf, (1.8)

where νc is the collision frequency to be defined by Eq. (1.18).
The Boltzmann equation (1.5) expresses the variation of the velocity dis-

tribution function f along a molecular path under the external force Fi owing
to intermolecular collisions. If the intermolecular collision is absent, fdXdξ is
invariant along a molecular path, where dXdξ is taken to move along the path,
i.e.,

∂f

∂t
+ ξi

∂f

∂Xi
+

∂Fif

∂ξi
= 0,

in view of the variation of the volume dXdξ along the path determined by the
law of dynamics.7 According to Boltzmann [1896, 1898], the (JL/m)dXdξdt
is the number of the molecules in dXdξ that will make intermolecular colli-
sion in time dt or the number of the molecules that leave dXdξ in dt owing
to intermolecular collision; (JG/m)dXdξdt is the number of the molecules in
dXdξ that have made intermolecular collision in the past dt or the number
of the molecules that have entered dXdξ in the past dt owing to intermolecu-
lar collision (see also, e.g., Sommerfeld [1964], Sone & Aoki [1994]). Thus, the
variation of f is given by Eq. (1.5).

The Boltzmann equation is derived from the Liouville equation in Section
A.1 for a gas consisting of molecules with their intermolecular force extending

4The external force Fi does not appear in the following chapters except in Sections 3.3,
5.1.3, 8.1, 8.2, A.3, and B.1. In some places, it is absent, i.e., Fi = 0, and in the others, the
discussion is independent of Fi. Their difference may be obvious. When the external force is
absent, the symbol Fi is sometimes used for other kinds of forces; they are defined in each
place, and no confusion will happen.

5The term almost everywhere is used to state that the fact in question holds everywhere
except at the points of a set of measure zero, which is defined by a set of points that can be
covered by a finite number or by a denumerable sequence of rectangular parallelepipeds whose
total volume (i.e., the sum of the individual volumes) is arbitrarily small (see, e.g., Jeffreys &
Jeffreys [1946], Riesz & Sz.-Nagy [1990]).

6(i) The gravity between molecules is not considered in the study of this book.
(ii) A gas consisting of identical hard-sphere molecules is called a hard-sphere gas.

7It is invariant when Fi = 0 or generally ∂Fi/∂ξi = 0 (see, e.g., Reif [1965], Diu, Guthmann,
Lederer & Roulet [1989], Sone & Aoki [1994]).
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only within a finite distance (say dm). That is, take a system consisting of N
particles (or molecules) with a spherically symmetric intermolecular potential
with finite range dm and investigate the limiting behavior where the charac-
teristic number density n0 of the particles as well as N increases indefinitely
(n0 → ∞, N → ∞) and dm → 0 with n0d

2
m fixed.8 In the derivation, in addi-

tion to the molecular chaos assumption for molecules before collision (Section
A.1), the velocity distribution function f is assumed to be invariant over the
distance of the molecular size or dm and over the time to proceed the distance
by a characteristic molecular speed or dm divided by a characteristic molecular
speed (slowly varying assumption). Thus, the Boltzmann equation cannot de-
scribe the behavior of the molecular scale. For an intermolecular force extending
to infinity (dm = ∞), the formula for B, obtained by the discussion of a binary
molecular collision, is substituted in the equation for a finite dm (Section A.2.4).
For dm = ∞, each of the gain and loss terms diverges though J(f, f) converges
for the potential decaying fast enough.

The generalized form J(f, g) of the collision integral J(f, f),

J(f, g) =
1

2m

∫
all αi, all ξi∗

(f ′g′∗ + f ′
∗g

′ − fg∗ − f∗g)BdΩ(α)dξ∗, (1.9)

is often used in the following chapters. The rule (1.7) is, hereafter, applied to
the other functions (e.g., g, ϕ) of ξi. The following properties of the integral
J(f, g) are also frequently used in the analysis of the Boltzmann equation. The
moment

∫
ϕ(ξ)J(f, g)dξ, where ϕ is an arbitrary function of ξ, satisfies the

symmetry relation∫
ϕ(ξ)J(f, g)dξ

=
1

8m

∫
(ϕ + ϕ∗ − ϕ′ − ϕ′

∗)(f
′g′∗ + f ′

∗g
′ − fg∗ − f∗g)BdΩ(α)dξ∗dξ

=
1

4m

∫
(ϕ′ + ϕ′

∗ − ϕ − ϕ∗)(fg∗ + f∗g)BdΩ(α)dξ∗dξ, (1.10)

where the integration is carried out over the whole spaces of ξ, ξ∗, and α (see
Section A.2.2). By choosing 1, ξi, or ξ2

i for ϕ, it is easily seen that

∫ ⎛⎜⎝ 1
ξi

ξ2
i

⎞⎟⎠ J(f, g)dξ = 0, (1.11)

because ξi + ξi∗ = ξ′i + ξ′i∗ and ξ2
i + ξ2

i∗ = ξ′2i + ξ′2i∗.

8(i) It is implicitly assumed that the mass m of a molecule vanishes (m → 0) as n0 → ∞
with mn0 (a characteristic density of the gas) fixed. Thus, f is finite, but f/m, which is also
used as the velocity distribution function in many literatures, is infinite. In the latter case,
some relative number of molecules should be considered.

(ii) The inverse of n0d2
m is of the order of the characteristic mean free path (Section 1.5).

(iii) In this limit, n0d3
m → 0 automatically, that is, the perfect gas condition is satisfied.
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1.3 Conservation equations

Multiplying the Boltzmann equation (1.5) by 1, ξi, or ξ2
i , and integrating the

result over the whole space of ξi,9 we obtain the following conservation equa-
tions:

∂ρ

∂t
+

∂

∂Xi
(ρvi) = 0, (1.12)

∂

∂t
(ρvi) +

∂

∂Xj
(ρvivj + pij) = ρFi, (1.13)

∂

∂t

[
ρ

(
e +

1
2
v2

i

)]
+

∂

∂Xj

[
ρvj

(
e +

1
2
v2

i

)
+ vipji + qj

]
= ρvjFj , (1.14)

where the force Fi is assumed to be independent of the molecular velocity ξi.
The collision term vanishes on integration [see Eq. (1.11)]. Equations (1.12),
(1.13), and (1.14) are, respectively, called the conservation equations of mass,
momentum, and energy. In the classical fluid dynamics, pij and qi are assumed
to be in appropriate forms to close the system (1.12)–(1.14). For example,

pij = pδij , qi = 0, (1.15)

or

pij = pδij −μ

(
∂vi

∂Xj
+

∂vj

∂Xi
− 2

3
∂vk

∂Xk
δij

)
−μB

∂vk

∂Xk
δij , qi = −λ

∂T

∂Xi
, (1.16)

where δij is Kronecker’s delta (i.e., δij = 1 for i = j, δij = 0 for i �= j), and
μ, μB , and λ, called the viscosity, bulk viscosity, and thermal conductivity of
the gas respectively, are functions of temperature. The set of equations with
the former stress and heat flow is called the Euler set, and the set with the
latter the Navier–Stokes set. The relations for pij and qi given in Eq. (1.16) are,
respectively, called Newton’s law and Fourier’s law.

1.4 Maxwell distribution
(Equilibrium distribution)

The solution fE of the Boltzmann equation (1.5) with Fi = 0 for an equilibrium
state (∂f/∂t = ∂f/∂Xi = 0) is given by the following Maxwell distribution (or
Maxwellian) with constant parameters ρ, vi, and T (see Section A.7.1):

fE =
ρ

(2πRT )3/2
exp

(
− (ξi − vi)2

2RT

)
. (1.17)

9As to be explained in Section 3.1.6, the velocity distribution function generally has discon-
tinuities along the characteristic of the Boltzmann equation, though the macroscopic variables
are continuous. Thus, interchanging the order of differentiation and integration in the process
should be done carefully.
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The same form of the velocity distribution function fe where ρ, vi, and
T depend on Xi or t does not satisfy Eq. (1.5) with Fi = 0 except for some
special cases. The distribution fe is called local Maxwell distribution (or local
Maxwellian). The local Maxwellian that satisfies the Boltzmann equation is
discussed in Section A.7.2.

1.5 Mean free path

The collision frequency νc(ξ) of a molecule with velocity ξ (per unit time) is10

νc =
1
m

∫
f(ξ∗)BdΩ(α)dξ∗. (1.18)

Its average over all the molecules (the mean collision frequency ν̄c) is

ν̄c =
1

ρm

∫
f(ξ)f(ξ∗)BdΩdξ∗dξ. (1.19)

The inverse of νc(ξ) is called the free time τc(ξ) [= 1/νc(ξ)] of a molecule
with velocity ξ, and the inverse of ν̄c is called the mean free time τ̄c of the gas
molecules. The mean free time multiplied by the average speed ξ [= ρ−1

∫
ξfdξ;

ξ = |ξi| = (ξi)1/2] of the gas molecules is called their mean free path :11

 = ξτ̄c. (1.20)

If the velocity distribution function is a Maxwellian, the mean collision fre-
quency is given by (see Section A.8)

ν̄c = 2
√

2π1/2d2
m(2RT )1/2(ρ/m), (1.21)

and for a Maxwellian with vi = 0, the mean free path  is given by

 = [
√

2πd2
m(ρ/m)]−1, (1.22)

where dm is the radius of the influence range of the intermolecular force. (For
a hard-sphere molecule, dm is the diameter of a molecule.)

The above definitions of the collision frequency, the mean collision frequency,
the mean free time, and the mean free path are not useful when the intermolecu-
lar force extends to infinity, for the first and second ones are infinite for any such
potential, however fast it decays. In such a case its effective value, as a quantita-
tive symbol of the collision effect, is defined. For example, the range of integral
in Eq. (1.19) is limited in a domain where a range |αi(ξi∗ − ξi)|/|ξj∗ − ξj | � 1
is excluded (or the intermolecular interactions that induce only small velocity
changes are not counted as collision); the mean free time τ̄c and the mean free
path  are defined on the basis of this ν̄c by the relations shown above.

10(i) The expression for νc can be understood by the discussion in the paragraph next to
that containing Eq. (1.8).

(ii) The argument or arguments of a function are not always shown when no fear of
confusion or misunderstanding is expected. This rule is applied to a special argument or
arguments. That is, νc(‰) and f(‰) instead of νc(X, ‰, t) and f(X, ‰, t).

11There are variations of the choice of the reference speed in the definition of the mean free
path. The free path of a molecule of velocity ‰ is defined on the basis of τc.
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1.6 Kinetic boundary condition

1.6.1 Simple boundary

On a boundary or wall where there is no mass flux across it [or mf= 0; see
Eq. (1.3a)], which will be called a simple boundary, the following condition (the
Maxwell-type condition) is widely used:

f(Xi, ξi, t) = (1 − α)f(Xi, ξi − 2(ξj − vwj)njni, t)

+
ασw

(2πRTw)3/2
exp

(
− (ξj − vwj)2

2RTw

)
[(ξj − vwj)nj > 0], (1.23a)

σw = −
(

2π

RTw

)1/2 ∫
(ξi−vwi)ni<0

(ξj − vwj)njf(X, ξ, t)dξ, (1.23b)

where Tw and vwi are, respectively, the temperature and velocity of the bound-
ary, ni is the unit normal vector to the boundary, pointed to the gas, and
α (0 ≤ α ≤ 1) is the accommodation coefficient.12 These quantities depend on
the position of the boundary. The case α = 1 is called the diffuse-reflection con-
dition, and α = 0 the specular-reflection condition. That is, the diffuse-reflection
condition is

f(X, ξ, t) =
σw

(2πRTw)3/2
exp

(
− (ξj − vwj)2

2RTw

)
[(ξj − vwj)nj > 0], (1.24a)

σw = −
(

2π

RTw

)1/2 ∫
(ξi−vwi)ni<0

(ξj − vwj)njf(X, ξ, t)dξ, (1.24b)

and the specular-reflection condition is

f(Xi, ξi, t) = f(Xi, ξi − 2(ξj − vwj)njni, t) [(ξj − vwj)nj > 0]. (1.25)

More generally, the boundary condition is expressed in terms of a scattering
kernel KB(ξ, ξ∗, X, t) as

f(X, ξ, t) =
∫

(ξi∗−vwi)ni<0

KB(ξ, ξ∗, X, t)f(X, ξ∗, t)dξ∗ [(ξi − vwi)ni > 0].

(1.26)
The kernel KB(ξ, ξ∗, X, t) is required to satisfy the following conditions (i)–(iii):

(i) KB(ξ, ξ∗) ≥ 0 [(ξi − vwi)ni > 0, (ξi∗ − vwi)ni < 0]. (1.27a)

(ii) −
∫

(ξi−vwi)ni>0

(ξk − vwk)nk

(ξj∗ − vwj)nj
KB(ξ, ξ∗)dξ = 1 [(ξi∗ − vwi)ni < 0],

(1.27b)

12When the condition of the boundary is specified, it is generally rather loosely mentioned
that the temperature or velocity of the body or the condensed phase under consideration is
so and so. This means that the surface temperature or velocity of the body or the condensed
phase is so and so; then the temperature or velocity inside it is not important. Hereafter we
do not repeat this type of note.
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which corresponds to the condition of a simple boundary (or mf= 0).13

(iii) When the kernel KB is determined by the local condition of the boundary,14

fB(ξ) =
∫

(ξi∗−vwi)ni<0

KB(ξ, ξ∗)fB(ξ∗)dξ∗ [(ξi − vwi)ni > 0], (1.27c)

where

fB(ξ) =
ρ

(2πRTw)3/2
exp

(
− (ξi − vwi)2

2RTw

)
,

with ρ being arbitrary, and the other Maxwellians do not satisfy the relation
(1.27c). This uniqueness condition excludes the specular condition. The condi-
tion (1.27c) is the result of the local property of the kernel KB and the natural
requirement that the equilibrium state at temperature T̄w and velocity v̄wi is
established in a box with a uniform temperature T̄w and moving with a uniform
velocity v̄wi.

For the Maxwell-type condition (1.23a) with (1.23b), the scattering kernel
KB is given by

KB(ξ, ξ∗) = KBM (ξ, ξ∗)

=
−α

2π(RTw)2
(ξj∗ − vwj)nj exp

(
− (ξk − vwk)2

2RTw

)
+ (1 − α)δ(ξi∗ − [ξi − 2(ξj − vwj)njni]),

where δ(ξi) is the Dirac delta function.

1.6.2 Interface

On the interface of a gas and its condensed phase, the following mixed-type
condition is often mentioned:

f(Xi, ξi, t) =
αcρw

(2πRTw)3/2
exp

(
− (ξj − vwj)2

2RTw

)
+ (1 − αc)

[
(1 − α)f(Xi, ξi − 2(ξj − vwj)njni, t)

+
ασw

(2πRTw)3/2
exp

(
− (ξj − vwj)2

2RTw

)]
[(ξj − vwj)nj > 0],

(1.28a)
13Consider the case where f(X, ‰, t) = c0δ(‰ − ‰†) for (ξj − vwj)nj < 0, where c0 is a

constant. Compute the integralZ
(ξj−vwj)nj>0

(ξj − vwj)njf(X, ‰, t)d‰

by two equations, one by the condition mf = 0 of a simple boundary [see Eq. (1.3a)] and the
other by the boundary condition (1.26). Then, equating the two expressions of the integral,
we obtain Eq. (1.27b).

14The kernel is determined by the velocity vwi, the temperature Tw, and the other properties
of the boundary at the position X and the time t under consideration and is independent of
their derivatives.
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σw = −
(

2π

RTw

)1/2 ∫
(ξi−vwi)ni<0

(ξj − vwj)njf(X, ξ, t)dξ, (1.28b)

where ρw is the saturated gas density at temperature Tw, αc (0 < αc ≤ 1) is the
condensation coefficient, and α (0 ≤ α ≤ 1) is the accommodation coefficient.
Especially the case αc = 1 (the complete-condensation condition) is widely used.
The complete-condensation condition is expressed as

f(X, ξ, t) =
ρw

(2πRTw)3/2
exp

(
− (ξj − vwj)2

2RTw

)
[(ξj − vwj)nj > 0]. (1.29)

The experimental discussion is found in Takens, Mischke, Korving & Beenakker
[1984]. The saturated gas pressure pw (= RρwTw) at temperature Tw is more
often used instead of ρw. The saturated gas pressure pw is an increasing function
of the temperature of the condensed phase (e.g., see Table C.2). Their relation
is determined by the Clausius–Clapeyron relation (see, e.g., Feynman, Leighton
& Sands [1963], Reif [1965], Landau & Lifshitz [1963]).

More generally, the condition is expressed in terms of a scattering kernel
KI(ξ, ξ∗,X, t) as

f(X, ξ, t) = gI(X, ξ, t) +
∫

(ξi∗−vwi)ni<0

KI(ξ, ξ∗, X, t)f(X, ξ∗, t)dξ∗

[(ξi − vwi)ni > 0], (1.30)

where gI , independent of f , corresponds to the term containing ρw in Eq.
(1.28a).15 The gI and KI(ξ, ξ∗,X, t) are required to satisfy the following con-
ditions (i)–(iii):

(i) gI(X, ξ, t) ≥ 0 [(ξi − vwi)ni > 0]. (1.31a)

(ii) KI(ξ, ξ∗) ≥ 0 [(ξi − vwi)ni > 0, (ξi∗ − vwi)ni < 0]. (1.31b)

(iii) When the kernel KI is determined by the local condition of the boundary,16

fw(ξ) = gI(X, ξ, t) +
∫

(ξi∗−vwi)ni<0

KI(ξ, ξ∗)fw(ξ∗)dξ∗ [(ξi − vwi)ni > 0],

(1.31c)
where

fw(ξ) =
ρw

(2πRTw)3/2
exp

(
− (ξi − vwi)2

2RTw

)
,

and the other Maxwellians do not satisfy the relation (1.31c). The condition
(1.31c) is the result of the local property of the kernel KI and the natural
requirement that the equilibrium state at temperature T̄w, density ρ̄w (the sat-
urated gas density at temperature T̄w), and velocity v̄wi is established in a box,
with a uniform temperature T̄w and moving with a uniform velocity v̄wi, made
of the condensed phase of the gas.

15In Sone [2002], gB is used for gI here.
16See Footnote 14 in Section 1.6.1.
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For the condition (1.28a) with (1.28b), gI and KI are given by

gI(ξ) =
αcρw

(2πRTw)3/2
exp

(
− (ξj − vwj)2

2RTw

)
,

KI(ξ, ξ∗) = (1 − αc)KBM (ξ, ξ∗).

1.7 H theorem

Consider the following functional, called the H function, of the velocity distri-
bution function f :

H(Xi, t) =
∫

f ln(f/c0)dξ, (1.32)

where c0 is a constant to make f/c0 dimensionless. Multiplying the Boltzmann
equation (1.5) with Fi = 0 by 1 + ln(f/c0), and integrating the result over the
whole space of ξ, we obtain the equation

∂H

∂t
+

∂Hi

∂Xi
= G, (1.33)

where

Hi =
∫

ξif ln(f/c0)dξ, (1.34a)

G =
∫

[1 + ln(f/c0)]J(f, f)dξ

= − 1
4m

∫
(f ′f ′

∗ − ff∗) ln
(

f ′f ′
∗

ff∗

)
BdΩdξ∗dξ ≤ 0. (1.34b)

The equality in the last relation holds when and only when f is a (local)
Maxwellian.17 Incidentally, for a Maxwellian, i.e., f = ρ(2πRT )−3/2 exp[−(ξj −
vj)2/2RT ],

H

ρ
= ln

ρ

c0(2πRT )3/2
− 3

2
, Hi = Hvi, (1.35)

where −RH/ρ corresponds to the entropy per unit mass in thermodynamics.
The time variation of the integral H of H over a domain D bounded by ∂D,
which may be a moving boundary, is given by18

dH

dt
−
∫

∂D

(Hi − Hvwi)nidS =
∫

D

GdX ≤ 0, (1.36)

where
H =

∫
D

HdX, (1.37)

17See the process of derivation of the Maxwell distribution in Section A.7.1.
18See Lemma in Section A.1.
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and vwi is the velocity of the boundary and ni is the unit normal vector to the
boundary, pointed to the gas.

From these equations, we have
(i) If the state, or f, is spatially uniform, then H never increases.
(ii) If (Hi − Hvwi)ni = 0 on the boundary ∂D, then H never increases.
In both cases, H or H remains constant only when f is a (local) Maxwellian.
These are the Boltzmann H theorem, which shows that the time evolution of a
solution of the Boltzmann equation has a direction.

When the boundary is a simple boundary, the statement (ii) is made more
explicit with the aid of the inequality (A.262) derived by Darrozes & Guiraud
[1966]. The boundary term of Eq. (1.36) is estimated as Eq. (A.268) or∫

∂D

(Hi − Hvwi)nidS ≤ −
∫

∂D

ni[qi + pij(vj − vwj)]
RTw

dS, (1.38)

where Tw is the temperature of the boundary. The equality in Eq. (1.38) holds
when and only when f is the Maxwellian that satisfies the boundary condition
(1.26) (or a Maxwellian with vi = vwi and T = Tw); in this case its right-hand
side vanishes. From Eqs. (1.36) and (1.38), we have

dH

dt
≤ −

∫
∂D

ni[qi + pij(vj − vwj)]
RTw

dS. (1.39)

From this relation, we have
(ii´) If there is no heat flow that flows into the boundary on each point of a
simple boundary,19 then H never increases.

1.8 Model equation

The following model equation, called the Boltzmann–Krook–Welander, BKW,
or BGK equation (Bhatnagar, Gross & Krook [1954], Welander [1954], Kogan
[1958], Sone & Aoki [1994]), where the collision term in Eq. (1.5) is simplified,
is widely used in analyses of rarefied gas flows:20

∂f

∂t
+ ξi

∂f

∂Xi
+

∂Fif

∂ξi
= Acρ(fe − f), (1.40a)

fe =
ρ

(2πRT )3/2
exp

(
− (ξi − vi)2

2RT

)
, (1.40b)

where Ac is a constant, and fe is the local Maxwellian whose parameters ρ, vi,
and T are defined with f by Eqs. (1.2a)–(1.2c).

19On a simple boundary, the energy transferred to the boundary per unit area and unit
time from the gas is −ni(qi +pijvj) [Eq. (1.3c)], and the work done on the boundary per unit
area and unit time by the gas is −nipijvwj . Thus, their difference −ni[qi + pij(vj − vwj)] is
the heat flow into the boundary.

20Some unreasonably undervalue this model equation. However, many fundamental and
important results for the standard Boltzmann equation have been obtained with the studies
of the BKW equation as precursors.
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In the BKW equation, the loss term JL of the collision integral is put in the
form Acρf, which is equivalent to that of the pseudo Maxwell molecule (Section
A.2.4), but the gain term JG is put in the form Acρfe, which is just a crude
assumption. Identification of the Acρf term in Eq. (1.40a) as the loss term
gives the physical meaning of Ac, i.e., Acρ is the collision frequency, which is
independent of ξ in accordance with the pseudo Maxwell molecule. Thus, the
mean free path  of the gas in the equilibrium state at rest with density ρ and
temperature T is related to Ac as

 =
(8RT/π)1/2

Acρ
. (1.41)

The crude assumption in the BKW model is that the molecules just collided
are distributed in Maxwellian with local flow velocity and temperature. This
does not mean that the velocity distribution function f itself of the gas is to be
close to a Maxwellian. If |JpM

G (f, f) − Acρfe| is much smaller than Acρ|fe −
f |, where JpM

G (f, f) is the gain term for the pseudo Maxwell molecule, the
BKW equation approximates the Boltzmann equation for the pseudo Maxwell
molecule well; f may differ considerably from fe. The above criterion can be
examined from the solution of the BKW equation for each problem.

For the BKW equation, the same conservation equations as in Section 1.3,
where the collision term has vanished on integration (this is an important prop-
erty of the collision term), are derived, and the H theorem (Section 1.7), an
important property of the Boltzmann equation, holds.

1.9 Nondimensional expressions I

The nondimensional variables and equations, which are used in the following
chapters, are listed here.

Let L, p0, T0, and t0 be, respectively, the reference length, pressure, temper-
ature, and time, and put

ρ0 = p0/RT0. (1.42)

Then, the nondimensional variables are defined as follows:

xi = Xi/L, t̂ = t/t0, ζi = ξi/(2RT0)1/2,

f̂ = f/[ρ0(2RT0)−3/2], F̂i = Fi/(2RT0/L),

ρ̂ = ρ/ρ0, v̂i = vi/(2RT0)1/2, T̂ = T/T0,

p̂ = p/p0, p̂ij = pij/p0, q̂i = qi/p0(2RT0)1/2,

Ĥ = H/ρ0, Ĥi = Hi/ρ0(2RT0)1/2, Ĝ = G/(ρ2
0B0/m),

v̂wi = vwi/(2RT0)1/2, T̂w = Tw/T0, ρ̂w = ρw/ρ0,

p̂w = pw/p0, (p̂w = ρ̂wT̂w),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1.43)
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where (2RT0)1/2 and p0(2RT0)1/2 are, respectively, chosen as the reference mag-
nitudes of velocity and heat-flow vector. With the notation E(ζ)

E(ζ) =
1

π3/2
exp(−ζ2), ζ = |ζi| = (ζ2

i )1/2 = |ζ|, (1.44)

the Maxwell distribution f0 with vi = 0, p = p0, and T = T0, i.e.,

f0 =
ρ0

(2πRT0)3/2
exp

(
− ξ2

i

2RT0

)
, (1.45)

is expressed in the form

f0 =
ρ0

(2RT0)3/2
E(ζ). (1.46)

The nondimensional form of the Boltzmann equation for f̂ is

Sh
∂f̂

∂t̂
+ ζi

∂f̂

∂xi
+

∂F̂if̂

∂ζi
=

1
k

Ĵ(f̂ , f̂), (1.47a)

Ĵ(f̂ , ĝ) =
1
2

∫
(f̂ ′ĝ′∗ + f̂ ′

∗ĝ
′ − f̂ ĝ∗ − f̂∗ĝ)B̂ dΩ(α)dζ∗, (1.47b)

where

Sh =
L

t0(2RT0)1/2
, (1.48a)

k =
(2RT0)1/2

(ρ0/m)B0L
=

√
π0
2L

=
√

π

2
Kn, (1.48b)

B̂ = B̂ (|α · (ζ∗ − ζ)|/|ζ∗ − ζ|, |ζ∗ − ζ|)

=
B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|)

B0
, (1.48c)

B0 =
1
ρ2
0

∫
f0f0∗B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|)dΩ(α)dξdξ∗

=
∫

EE∗B(|α · (ζ∗ − ζ)|/|ζ∗ − ζ|, (2RT0)1/2|ζ∗ − ζ|)dΩ(α)dζdζ∗

= 4
√

πd2
m(RT0)1/2, (1.48d)

dζ = dζ1dζ2dζ3, dζ∗ = dζ1∗dζ2∗dζ3∗, (1.48e)

f̂ = f̂(ζi), f̂∗ = f̂(ζi∗), f̂ ′ = f̂(ζ ′i), f̂ ′
∗ = f̂(ζ ′i∗),

ζ ′i = ζi + αiαj(ζj∗ − ζj), ζ ′i∗ = ζi∗ − αiαj(ζj∗ − ζj),

}
(1.48f)

and Eq. (1.48f) is applied also to the function ĝ of ζi, and the dot · between bold
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letters indicates their scalar product.21 It is noted that the nondimensionalized
form B̂ of B, a function of |αi(ζi∗−ζi)|/|ζk∗−ζk| and |ζi∗−ζi|, generally depends
on T0 as well as the intermolecular potential.22 For a hard-sphere gas,

B̂ =
|αi(ζi∗ − ζi)|

4(2π)1/2
, (1.49)

which is exceptionally independent of T0. According to the definitions given in
Section 1.5, ρ0B0m

−1 is the mean collision frequency of the gas in the equilib-
rium state at rest with pressure p0 and temperature T0 [or the state given by
Eq. (1.45)], and 0 [= (8RT0/π)1/2/(ρ0/m)B0] is the mean free path of the gas
in the equilibrium state. The Sh is called the Strouhal number, and Kn the Knud-
sen number. The product ShKn [= 2/

√
π(ρ0/m)B0t0] is 2/

√
π times the ratio of

the mean free time [(ρ0/m)B0]−1 to the reference time t0. The nondimensional
collision term Ĵ is split into the gain and loss terms as

Ĵ = ĴG − ĴL = ĴG − ν̂cf̂ , (1.50)

where

ĴG =
∫

f̂ ′f̂ ′
∗B̂ dΩ(α)dζ∗, (1.51a)

ν̂c =
∫

f̂∗B̂ dΩ(α)dζ∗. (1.51b)

The Knudsen number Kn and the product ShKn are the nondimensional pa-
rameters that characterize the effect of molecular collisions. They are, respec-
tively, the weight of the space-derivative terms and that of the time-derivative
term relative to the collision term in the Boltzmann equation (1.5). Accord-
ing to Footnote 22 in this section (or the more detailed discussion in Section
A.2.4), another nondimensional parameter U0/kBT0 is contained in the Boltz-
mann equation (1.47a), in addition to Kn and ShKn. These three parameters are
the similarity parameters in the Boltzmann equation.

21When the intermolecular potential extends up to infinity (dm → ∞), B0 is infinite and
therefore the above-defined nondimensionalization is useless. In such a case, the range of
integral of the definition of B0 is limited, for example, to a domain where the range |αi(ζi∗ −
ζi)|/|ζk∗ − ζk| � 1 is excluded. The other quantities, i.e., 	0, k, Kn, and bB , are defined on
the basis of this B0 by the relations shown above (see also Sections 1.2, 1.5, and A.2.4).

22When the intermolecular potential of the finite range dm is given, for example, by
U0U(r/dm), where r is the intermolecular distance, the function bB is a function of |αi(ζi∗ −
ζi)|/|ζk∗−ζk|, |ζi∗−ζi|, and U0/kBT0, i.e., bB(|αi(ζi∗−ζi)|/|ζk∗−ζk|, |ζi∗−ζi|, U0/kBT0) and
its functional form depends on U (see Section A.2.4). Thus, the nondimensional Boltzmann
equation contains the parameter U0/kBT0 in addition to the Strouhal and Knudsen numbers
Sh and Kn (and external force). The Boltzmann equation for a hard-sphere gas and the BKW
equation are exceptional cases, where this parameter is absent in their nondimensional forms
[see Eqs. (1.49) and (1.60a)]. This fact is not widely mentioned, but it should be noted that
the solution of the nondimensional Boltzmann equation depends on this parameter as well as
Sh and Kn.
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The generalized collision integral Ĵ(f̂ , ĝ) satisfies the following symmetry
relation corresponding to Eq. (1.10): For any ϕ(ζ), f̂(ζ), and ĝ(ζ),∫

ϕ(ζ)Ĵ(f̂ , ĝ)dζ =
1
8

∫
(ϕ + ϕ∗ −ϕ′ −ϕ′

∗)(f̂
′ĝ′∗ + f̂ ′

∗ĝ
′ − f̂ ĝ∗ − f̂∗ĝ)B̂dΩdζ∗dζ,

(1.52)
from which ∫ ⎛⎜⎝ 1

ζi

ζ2
i

⎞⎟⎠ Ĵ(f̂ , ĝ)dζ = 0. (1.53)

The relations between the nondimensional macroscopic variables ρ̂, v̂i, T̂ , etc.
and the nondimensional velocity distribution function f̂ are

ρ̂ =
∫

f̂dζ, (1.54a)

ρ̂v̂i =
∫

ζif̂dζ, (1.54b)

3
2
ρ̂ T̂ =

∫
(ζi − v̂i)2f̂dζ, (1.54c)

p̂ = ρ̂ T̂ , (1.54d)

p̂ij = 2
∫

(ζi − v̂i)(ζj − v̂j)f̂dζ, (1.54e)

q̂i =
∫

(ζi − v̂i)(ζj − v̂j)2f̂dζ. (1.54f)

The local Maxwellian f̂e in the present nondimensional expression is given
by

f̂e =
ρ̂

(πT̂ )3/2
exp

(
− (ζi − v̂i)2

T̂

)
, (1.55)

for which
Ĵ(f̂e, f̂e) = 0. (1.56)

The nondimensional forms of the conservation equations (1.12)–(1.14) are

Sh
∂ρ̂

∂t̂
+

∂ρ̂v̂i

∂xi
= 0, (1.57)

Sh
∂ρ̂v̂i

∂t̂
+

∂

∂xj

(
ρ̂v̂iv̂j +

1
2
p̂ij

)
= ρ̂F̂i, (1.58)

Sh
∂

∂t̂

[
ρ̂

(
v̂2

i +
3
2
T̂

)]
+

∂

∂xj

[
ρ̂v̂j

(
v̂2

i +
3
2
T̂

)
+ p̂ij v̂i + q̂j

]
= 2ρ̂v̂jF̂j , (1.59)

where F̂i is assumed to be independent of ζ.
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For the BKW equation the collision integral Ĵ(f̂ , f̂) and k are given by23

Ĵ(f̂ , f̂) = ρ̂(f̂e − f̂), (1.60a)

k =
√

π0
2L

=
(2RT0)1/2

Acρ0L
. (1.60b)

That is, the nondimensional form of the BKW equation is given by

Sh
∂f̂

∂t̂
+ ζi

∂f̂

∂xi
+

∂F̂if̂

∂ζi
=

1
k

ρ̂(f̂e − f̂). (1.61)

The Maxwell-type boundary condition on a simple boundary is expressed as

f̂(xi, ζi, t̂) = (1 − α)f̂(xi, ζi − 2(ζj − v̂wj)njni, t̂)

+
ασ̂w

(πT̂w)3/2
exp

(
− (ζi − v̂wi)2

T̂w

)
[(ζj − v̂wj)nj > 0], (1.62a)

σ̂w = −2
(

π

T̂w

)1/2 ∫
(ζj−v̂wj)nj<0

(ζj − v̂wj)nj f̂(xi, ζi, t̂)dζ. (1.62b)

The diffuse-reflection condition is given by putting α = 1 in Eq. (1.62a), i.e.,

f̂(xi, ζi, t̂) =
σ̂w

(πT̂w)3/2
exp

(
− (ζi − v̂wi)2

T̂w

)
[(ζj − v̂wj)nj > 0], (1.63a)

σ̂w = −2
(

π

T̂w

)1/2 ∫
(ζj−v̂wj)nj<0

(ζj − v̂wj)nj f̂(xi, ζi, t̂)dζ, (1.63b)

and the specular-reflection condition is given by putting α = 0 in Eq. (1.62a),
i.e.,

f̂(xi, ζi, t̂) = f̂(xi, ζi − 2(ζj − v̂wj)njni, t̂) [(ζj − v̂wj)nj > 0].

The nondimensional form of the boundary condition (1.26) expressed by the
scattering kernel is

f̂(x, ζ, t̂) =
∫

(ζi∗−v̂wi)ni<0

K̂B(ζ, ζ∗, x, t̂)f̂(x, ζ∗, t̂)dζ∗ [(ζi − v̂wi)ni > 0],

(1.64)
where

K̂B(ζ, ζ∗,x, t̂) = KB(ξ, ξ∗, X, t)(2RT0)3/2. (1.65)

23For the BKW equation, the expression Ĵ(f̂ , ĝ) is not defined unless ĝ = f̂ , and Ĵ(f̂ , f̂)
is taken as the collision integral as a whole. Various expressions obtained by the use of the
bilinear character of Ĵ(f̂ , ĝ) in the following chapters are not applied to the BKW equation,

including the case where the same arguments happen to appear. Some Ĵ(f̂ , ĝ) expressions in
equations correspond to linearized collision integrals linearized around some Maxwell distri-
butions (see Section A.2.8) and play an important role there.
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Corresponding to the conditions (i), (ii), and (iii) just after Eq. (1.26), the kernel
K̂B(ζ, ζ∗) satisfies the following conditions:

(i) K̂B(ζ, ζ∗) ≥ 0 [(ζi − v̂wi)ni > 0, (ζi∗ − v̂wi)ni < 0]. (1.66a)

(ii) −
∫

(ζi−v̂wi)ni>0

(ζk − v̂wk)nk

(ζj∗ − v̂wj)nj
K̂B(ζ, ζ∗)dζ = 1 [(ζi∗ − v̂wi)ni < 0].

(1.66b)

(iii) f̂B(ζ) =
∫

(ζi∗−v̂wi)ni<0

K̂B(ζ, ζ∗)f̂B(ζ∗)dζ∗ [(ζi − v̂wi)ni > 0],

(1.66c)

where

f̂B(ζ) =
ρ̂

(πT̂w)3/2
exp

(
− (ζi − v̂wi)2

T̂w

)
,

with arbitrary ρ̂, and any other Maxwellian does not satisfy Eq. (1.66c).
The mixed-type condition (1.28a) with (1.28b) on the interface is reduced

to the following form:

f̂(xi, ζi, t̂) =
αcρ̂w

(πT̂w)3/2
exp

(
− (ζi − v̂wi)2

T̂w

)
+ (1 − αc)

[
(1 − α)f̂(xi, ζi − 2(ζj − v̂wj)njni, t̂)

+
ασ̂w

(πT̂w)3/2
exp

(
− (ζi − v̂wi)2

T̂w

)]
[(ζj − v̂wj)nj > 0],

(1.67a)

σ̂w = −2
(

π

T̂w

)1/2 ∫
(ζj−v̂wj)nj<0

(ζj − v̂wj)nj f̂(xi, ζi, t̂)dζ. (1.67b)

The complete-condensation condition is given by putting αc = 1 in Eq. (1.67a),
i.e.,

f̂(xi, ζi, t̂) =
ρ̂w

(πT̂w)3/2
exp

(
− (ζi − v̂wi)2

T̂w

)
[(ζj − v̂wj)nj > 0]. (1.68)

The nondimensional form of the boundary condition (1.30) expressed by the
scattering kernel is

f̂(x, ζ, t̂) = ĝI(x, ζ, t̂) +
∫

(ζi∗−v̂wi)ni<0

K̂I(ζ, ζ∗,x, t̂)f̂(x, ζ∗, t̂)dζ∗

[(ζi − v̂wi)ni > 0], (1.69)

where

K̂I(ζ, ζ∗, x, t̂) = KI(ξ, ξ∗, X, t)(2RT0)3/2, (1.70a)

ĝI(x, ζ, t̂) = gI(X, ξ, t)/[ρ0(2RT0)−3/2]. (1.70b)
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Corresponding to the conditions (i), (ii), and (iii) just after Eq. (1.30), ĝI and
K̂I satisfy the following conditions:

(i) ĝI(x, ζ, t̂) ≥ 0 [(ζi − v̂wi)ni > 0]. (1.71a)

(ii) K̂I(ζ, ζ∗) ≥ 0 [(ζi − v̂wi)ni > 0, (ζi∗ − v̂wi)ni < 0]. (1.71b)

(iii) f̂w(ζ) = ĝI(x, ζ, t̂) +
∫

(ζi∗−v̂wi)ni<0

K̂I(ζ, ζ∗)f̂w(ζ∗)dζ∗ [(ζi − v̂wi)ni > 0],

(1.71c)

where

f̂w(ζ) =
ρ̂w

(πT̂w)3/2
exp

(
− (ζi − v̂wi)2

T̂w

)
,

and any other Maxwellian does not satisfy Eq. (1.71c).
The nondimensional form of the equation for H [Eq. (1.33)] is

Sh
∂Ĥ

∂t̂
+

∂Ĥi

∂xi
=

1
k

Ĝ, (1.72)

where

Ĥ(xi, t̂) =
∫

f̂ ln(f̂/ĉ0)dζ, Ĥi(xi, t̂) =
∫

ζif̂ ln(f̂/ĉ0)dζ,

Ĝ = −1
4

∫
(f̂ ′f̂ ′

∗ − f̂ f̂∗) ln

(
f̂ ′f̂ ′

∗
f̂ f̂∗

)
B̂dΩdζ∗dζ ≤ 0,

⎫⎪⎪⎬⎪⎪⎭ (1.73)

with ĉ0 = c0(2RT0)3/2/ρ0.

1.10 Nondimensional expressions II

When we consider the case where the state of a gas is not much different from an
equilibrium state at rest in a system with Fi = 0, it is convenient to choose the
variables expressing the perturbation from this state. The Maxwell distribution
f0 given by Eq. (1.45) is taken as the reference state. The nondimensional
perturbed variables are chosen as follows:

φ = f/f0 − 1 ω = ρ/ρ0 − 1 ui = vi/(2RT0)1/2

= f̂/E − 1, = ρ̂ − 1, = v̂i,

τ = T/T0 − 1 P = p/p0 − 1 Pij = pij/p0 − δij

= T̂ − 1, = p̂ − 1, = p̂ij − δij ,

Qi = qi/p0(2RT0)1/2 uwi = vwi/(2RT0)1/2 τw = Tw/T0 − 1

= q̂i, = v̂wi, = T̂w − 1,

ωw = ρw/ρ0 − 1 Pw = pw/p0 − 1 (Pw = ωw + τw + ωwτw).

= ρ̂w − 1, = p̂w − 1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(1.74)
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This system of notation is suitable to perturbation analyses.
The nondimensional form of the Boltzmann equation with Fi = 0 is given

as

Sh
∂φ

∂t̂
+ ζi

∂φ

∂xi
=

1
k

[L(φ) + J (φ, φ)], (1.75a)

L(φ) =
∫

E∗(φ′ + φ′
∗ − φ − φ∗)B̂ dΩ(α)dζ∗, (1.75b)

J (φ, ψ) =
1
2

∫
E∗(φ′ψ′

∗ + φ′
∗ψ

′ − φψ∗ − φ∗ψ)B̂ dΩ(α)dζ∗, (1.75c)

where

φ = φ(ζi), φ∗ = φ(ζi∗), φ′ = φ(ζ ′i), φ′
∗ = φ(ζ ′i∗), (1.76a)

ζ ′i = ζi + αiαj(ζj∗ − ζj), ζ ′i∗ = ζi∗ − αiαj(ζj∗ − ζj). (1.76b)

The rule (1.76a) is applied to the function ψ of ζi. The operator J is related to
L and Ĵ [Eq. (1.47b)] in the following way:

2J (1, φ) = L(φ), (1.77a)

EJ (φ, ψ) = Ĵ(Eφ, Eψ). (1.77b)

The relations between the nondimensional macroscopic variables and the
nondimensional velocity distribution function φ are

ω =
∫

φEdζ, (1.78a)

(1 + ω)ui =
∫

ζiφEdζ, (1.78b)

3
2
(1 + ω)τ =

∫ (
ζ2
i − 3

2

)
φEdζ − (1 + ω)u2

i , (1.78c)

P = ω + τ + ωτ, (1.78d)

Pij = 2
∫

ζiζjφEdζ − 2(1 + ω)uiuj , (1.78e)

Qi =
∫

ζiζ
2
j φEdζ − 5

2
ui − ujPij −

3
2
uiP − (1 + ω)uiu

2
j . (1.78f)

The linear part L(φ) of the collision integral, called the linearized collision
integral, satisfies the following relations (see Section A.2.2):
The symmetry relation, corresponding to Eq. (1.52), is

∫
ψ(ζ)L(φ)Edζ =

1
4

∫
EE∗(ψ + ψ∗ − ψ′ − ψ′

∗)(φ
′ + φ′

∗ − φ − φ∗)B̂dΩdζ∗dζ

for any φ and ψ. (1.79)
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With ψ = φ in Eq. (1.79), ∫
φL(φ)Edζ ≤ 0, (1.80)

where the equality sign holds when and only when φ is a summational invari-
ant, i.e., a linear combination of 1, ζi, and ζ2

i (see Section A.2.3). Also from
Eq. (1.79), the operator L(∗) is found to be self-adjoint, i.e.,∫

ψL(φ)Edζ =
∫

φL(ψ)Edζ for any φ and ψ. (1.81)

Each of the following two relations holds when and only when ϕ is a linear
combination of 1, ζi, and ζ2

i :24 the equation

L(ϕ) = 0, (1.82)

and the relation ∫
ϕL(φ)Edζ = 0 for any φ. (1.83)

Corresponding to Eq. (1.53), in view of the relation (1.77b),

∫ ⎛⎜⎝ 1
ζi

ζ2
i

⎞⎟⎠J (φ, ψ)Edζ = 0 for any φ and ψ. (1.84)

The (local) Maxwell distribution φe in the present nondimensional perturbed
expression is

Eφe =
1 + ω

π3/2(1 + τ)3/2
exp

(
− (ζi − ui)2

1 + τ

)
− E. (1.85)

Sometimes, its parameters ω, ui, and τ are explicitly shown as φe(ω, ui, τ).
Corresponding to Eq. (1.56),

L(φe) + J (φe, φe) = 0. (1.86)

The conservation equations are expressed as

Sh
∂ω

∂t̂
+

∂(1 + ω)ui

∂xi
= 0, (1.87)

Sh
∂(1 + ω)ui

∂t̂
+

∂

∂xj

(
(1 + ω)uiuj +

1
2
Pij

)
= 0, (1.88)

Sh
∂

∂t̂

(
(1 + ω)u2

i +
3
2
P

)
+

∂

∂xj

(
5
2
uj + uiPij +

3
2
Puj + (1 + ω)uju

2
i + Qj

)
= 0. (1.89)

24Each relation is obviously satisfied by the linear combination. It is seen from the above-
mentioned results, including the self-adjoint property of L(∗), that ϕ is limited to the linear
combination.
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The BKW equation is

Sh
∂φ

∂t̂
+ ζi

∂φ

∂xi
=

1
k

(1 + ω)(φe − φ), (1.90)

where
k = (2RT0)1/2(ρ0AcL)−1[= (

√
π/2)0L−1]. (1.91)

The Maxwell-type boundary condition in a general case is just a transcription
of the formula (1.62a) with (1.62b) by Eq. (1.74) and not a simple form, because
the Maxwellian E(ζ) with ζi replaced by ζi − 2(ζj − v̂wj)njni [or ζi − 2(ζj −
uwj)njni] is not a simple form unless v̂wini = 0 (or uwini = 0), i.e.,

E(ζ)[1 + φ(xi, ζi, t̂)] = (1 − α)E(ζ̆)[1 + φ(xi, ζ̆i, t̂)] + αE(ζ)[1 + φe(σ̌w, uwi, τw)]
[(ζj − uwj)nj > 0], (1.92a)

σ̌w = σ̂w − 1

= −2
(

π

1 + τw

)1/2 ∫
(ζj−uwj)nj<0

(ζj − uwj)njE(ζ)[1 + φ(xi, ζi, t̂)]dζ − 1,

(1.92b)

ζ̆i = ζi − 2(ζj − uwj)njni, ζ̆ = (ζ̆2
i )1/2. (1.92c)

When uwini = 0, the variable ζ̆ is reduced to ζ, and the formula is a little
simplified as

φ(xi, ζi, t̂) = (1 − α)φ(xi, ζ̆i, t̂) + αφe(σ̌w, uwi, τw) (ζjnj > 0), (1.93a)

σ̌w = −2
(

π

1 + τw

)1/2 ∫
ζjnj<0

ζjnjE(ζ)φ(xi, ζi, t̂)dζ +
(

1
1 + τw

)1/2

− 1,

(1.93b)

ζ̆i = ζi − 2ζjnjni. (1.93c)

The nondimensional mixed-type condition in the perturbed variables corre-
sponding to Eq. (1.67a) on the interface of a gas and its condensed phase is

E(ζ)[1 + φ(xi, ζi, t̂)] = αcE(ζ)[1 + φe(ωw, uwi, τw)]

+ (1 − αc)
{
(1 − α)E(ζ̆)[1 + φ(xi, ζ̆i, t̂)]

+αE(ζ)[1 + φe(σ̌w, uwi, τw)]
}

[(ζj − uwj)nj > 0], (1.94)

where σ̌w and ζ̆i are given by the same expressions as Eqs. (1.92b) and (1.92c).
When uwini = 0, similarly to Eq. (1.93a), this formula is reduced to

φ(xi, ζi, t̂) = αcφe(ωw, uwi, τw)

+ (1 − αc)[(1 − α)φ(xi, ζ̆i, t̂) + αφe(σ̌w, uwi, τw)] (ζjnj > 0), (1.95)
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where σ̌w and ζ̆i are given by the same simplified expressions as Eqs. (1.93b)
and (1.93c).

Here some notes may be in order.
(i) The formulas (equations, boundary conditions, etc.) in this section are ex-
pressed in the perturbed quantities defined by Eq. (1.74), and are conveniently
used in analyzing problems where the state of a gas is close to an equilibrium
state at rest. The expressions are the simple transformations of the corre-
sponding formulas in the dimensional variables in Sections 1.1–1.8 or in the
nondimensional variables in Section 1.9, and no approximation is introduced.
(ii) In a problem consisting of a gas and its condensed phase, the density of
the gas in an equilibrium state at rest is given by the saturated gas density
at its temperature. The choice of the reference Maxwellian [or f0 in Eq. (1.74)
given by Eq. (1.45)] in perturbation analyses is not unique. The variables ρ0 and
T0 may be chosen at any values such that the perturbed velocity distribution
function φ is small, and ρ0 may not necessarily be the saturated gas density at
temperature T0.

1.11 Linearized Boltzmann equation

In analyzing the behavior of a gas that deviates only slightly from an equilibrium
state at rest in a system with Fi = 0, the linearized Boltzmann equation, which is
obtained by neglecting the nonlinear terms of φ in Eq. (1.75a), is widely used.25

It is given as

Sh
∂φ

∂t̂
+ ζi

∂φ

∂xi
=

1
k
L(φ). (1.96)

The linearized version of Eqs. (1.78a)–(1.78f) is

ω =
∫

φEdζ, (1.97a)

ui =
∫

ζiφEdζ, (1.97b)

3
2
τ =

∫ (
ζ2
i − 3

2

)
φEdζ, (1.97c)

P = ω + τ, (1.97d)

Pij = 2
∫

ζiζjφEdζ, (1.97e)

Qi =
∫

ζiζ
2
j φEdζ − 5

2
ui. (1.97f)

25The Boltzmann equation linearized around a Maxwellian with flow velocity is also called
the linearized Boltzmann equation. In this book, the linearized Boltzmann equation given by
Eq. (1.96), the Boltzmann equation linearized around a Maxwellian at rest, is used without a
special notice. When we refer to the former linearized equation, we mention it explicitly.
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The linearized expression for the perturbed (local) Maxwellian φe is

φe = ω + 2ζiui +
(

ζ2
i − 3

2

)
τ. (1.98)

The linearized form of the conservation equations is

Sh
∂ω

∂t̂
+

∂ui

∂xi
= 0, (1.99)

Sh
∂ui

∂t̂
+

1
2

∂Pij

∂xj
= 0, (1.100)

3
2
Sh

∂P

∂t̂
+

∂

∂xi

(
5
2
ui + Qi

)
= 0. (1.101)

The linearized BKW equation is

Sh
∂φ

∂t̂
+ ζi

∂φ

∂xi
=

1
k

[
−φ + ω + 2ζiui +

(
ζ2
i − 3

2

)
τ

]
. (1.102)

With the same notation L(φ) as the standard Boltzmann equation for the ex-
pression in the brackets,

L(φ) =
∫ [

1 + 2ζiζi∗ +
2
3

(
ζ2
i − 3

2

)(
ζ2
j∗ −

3
2

)]
φ(ζ∗)E(ζ∗)dζ∗ − φ. (1.103)

The linearized form of the kinetic boundary conditions on a simple boundary
is summarized as follows:
The Maxwell-type condition (1.92a) with (1.92b) on a simple boundary is

φ(xi, ζi, t̂) = (1 − α)
(

φ(xi, ζi − 2(ζj − uwj)njni, t̂) + 4ζjuwknjnk

)
+ α

[
σ̌w + 2ζjuwj +

(
ζ2
j − 3

2

)
τw

]
[(ζj − uwj)nj > 0], (1.104a)

σ̌w =
√

πuwjnj −
1
2
τw − 2

√
π

∫
(ζk−uwk)nk<0

ζjnjφEdζ. (1.104b)

The diffuse-reflection condition is given by putting α = 1 in Eq. (1.104a), i.e.,

φ(xi, ζi, t̂) = σ̌w + 2ζjuwj +
(

ζ2
j − 3

2

)
τw [(ζj − uwj)nj > 0], (1.105a)

σ̌w =
√

πuwjnj −
1
2
τw − 2

√
π

∫
(ζk−uwk)nk<0

ζjnjφEdζ, (1.105b)

and the specular-reflection condition is given by putting α = 0 in Eq. (1.104a),
i.e.,

φ(xi, ζi, t̂) = φ(xi, ζi − 2(ζj − uwj)njni, t̂) + 4ζjuwknjnk. (1.106)
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The boundary condition (1.64) expressed in a scattering kernel is reduced to
(see Section A.9)

E(ζ)φ(ζ) =
[
2ζiuwi +

(
ζ2
i − 3

2

)
τw

]
E(ζ)

−
∫

(ζi∗−uwi)ni<0

K̂B0(ζ, ζ∗)
[
2ζi∗uwi +

(
ζ2
i∗ −

3
2

)
τw

]
E(ζ∗)dζ∗

+
∫

(ζi∗−uwi)ni<0

K̂B0(ζ, ζ∗)φ(ζ∗)E(ζ∗)dζ∗ [(ζi − uwi)ni > 0], (1.107)

where K̂B0 is the kernel K̂B in Eq. (1.64) on a simple boundary in the reference
state. The conditions on K̂B0 corresponding to the conditions (i)–(iii) on K̂B

after Eq. (1.64) are given as

(i) K̂B0(ζ, ζ∗) ≥ 0 (ζini > 0, ζi∗ni < 0). (1.108a)

(ii) −
∫

ζini>0

ζknk

ζj∗nj
K̂B0(ζ, ζ∗)dζ = 1 (ζi∗ni < 0). (1.108b)

(iii) Let ϕ be ϕ = c0 + ciζi + c4ζ
2
i , where c0, ci, and c4 are constants. Among

this ϕ, only ϕ = c0 satisfies the relation

E(ζ)ϕ(ζ) =
∫

ζi∗ni<0

K̂B0(ζ, ζ∗)ϕ(ζ∗)E(ζ∗)dζ∗ (ζini > 0). (1.108c)

The linearized form of the kinetic boundary conditions on an interface is
summarized as follows:
The mixed-type boundary condition (1.94) on an interface of a gas and its
condensed phase is

φ(xi, ζi, t̂) = αc

[
ωw + 2ζjuwj +

(
ζ2
j − 3

2

)
τw

]
+ (1 − αc)

{
(1 − α)

(
φ(xi, ζi − 2(ζj − uwj)njni, t̂) + 4ζjuwknjnk

)
+ α

[
σ̌w + 2ζjuwj +

(
ζ2
j − 3

2

)
τw

]}
[(ζj − uwj)nj > 0],

(1.110)

where σ̌w is given by the same expression as Eq. (1.104b).
The linearized complete-condensation condition is given by putting αc = 1 in
Eq. (1.110), i.e.,

φ(xi, ζi, t̂) = ωw + 2ζjuwj +
(

ζ2
j − 3

2

)
τw [(ζj − uwj)nj > 0]. (1.111)
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The boundary condition (1.69) expressed in a scattering kernel is reduced to
(see Section A.9)

E(ζ)φ(ζ) =
[
ωw + 2ζiuwi +

(
ζ2
i − 3

2

)
τw

]
E(ζ)

−
∫

(ζi∗−uwi)ni<0

K̂I0(ζ, ζ∗)
[
ωw + 2ζi∗uwi +

(
ζ2
i∗ −

3
2

)
τw

]
E(ζ∗)dζ∗

+
∫

(ζi∗−uwi)ni<0

K̂I0(ζ, ζ∗)φ(ζ∗)E(ζ∗)dζ∗ [(ζi − uwi)ni > 0], (1.112)

where K̂I0 is the kernel K̂I in Eq. (1.69) on an interface in the reference state.
The conditions on K̂I0 corresponding to the conditions on K̂I after Eq. (1.69)
are given as

(i) K̂I0(ζ, ζ∗) ≥ 0 (ζini > 0, ζi∗ni < 0). (1.113a)

(ii-a) E = ĝI0 +
∫

ζi∗ni<0

K̂I0(ζ, ζ∗)E∗dζ∗ (ζini > 0), (1.113b)

where ĝI0 is ĝI at the reference state;

(ii-b) Let ϕ be ϕ = c0 + ciζi + c4ζ
2
i , where c0, ci, and c4 are constants. Among

this ϕ, only ϕ = 0 satisfies the relation

E(ζ)ϕ(ζ) =
∫

ζi∗ni<0

K̂I0(ζ, ζ∗)ϕ(ζ∗)E(ζ∗)dζ∗ (ζini > 0). (1.113c)

Here some notes may be in order.
(i) The formulas given in this section are the simplified version of those in Section
1.10 obtained by neglecting the second and higher-order terms of the perturbed
quantities introduced in Eq. (1.74).
(ii) The choice of the reference Maxwellian [or f0 in Eq. (1.74) given by Eq. (1.45)]
in perturbation analyses is not unique, and it can be chosen freely as far as the
perturbed velocity distribution function φ is so small that its nonlinear terms
can be neglected [see also the note (ii) in the last paragraph of Section 1.10].
(iii) The term 4ζjuwknjnk in Eqs. (1.104a), (1.106), and (1.110) and the term√

πuwjnj in Eqs. (1.104b) and (1.105b) come from the leading term E of the
velocity distribution function E(1+φ) owing to the normal velocity uwknkni of
the boundary. The first one arises because the Maxwellian E is not symmetric
with respect to (ζi − uwi)ni = 0, and the second arises because the mass fluxes
of the Maxwellian E for (ζi − uwi)ni < 0 and (ζi − uwi)ni > 0 do not cancel
out.
(iv) Refer to Section A.9, especially the discussion in its last two paragraphs
on the range (ζi∗ − uwi)ni < 0 of integration and the small shift uwjnj of the
variable ζi in φ(xi, ζi − 2(ζj − uwj)njni, t̂).
(v) In Eqs. (1.107) and (1.112), the kernels K̂B0 and K̂I0 have to be extended
outside the original range of definition (see Section A.9).
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Corresponding to Eq. (1.33) for the H function, which is related to the di-
rection of variation of the solution of the Boltzmann equation, the following
equation [the linearized-Boltzmann-equation version of Eq. (1.33)] is obtained
for the linearized Boltzmann equation (1.96):

Sh
∂

∂t̂

∫
φ2Edζ +

∂

∂xi

∫
ζiφ

2Edζ =
1
k

LG, (1.115)

where

LG = −1
2

∫
EE∗(φ′ + φ′

∗ − φ − φ∗)2B̂dΩdζ∗dζ ≤ 0. (1.116)

Equation (1.115) is obtained simply by multiplying Eq. (1.96) by φE, integrating
over the whole space of ζ, and using the symmetry relation (1.79).26 The equal-
ity in the last relation of LG holds when and only when φ is a local Maxwellian,
i.e., a linear combination of 1, ζi, and ζ2

j . The H theorem for the linearized
Boltzmann equation is similarly expressed in terms of

∫
φ2Edζ and

∫
ζiφ

2Edζ.
Finally, it may be noted that the linearization is carried out by neglecting

the second and higher-order terms of the perturbations formally, and that it
is not a rigorous mathematical process to assure that the linearized system
really approximates the original system when the parameter of the basis of
linearization is small (see the discussion in the last part of Section A.9). Thus,
the linearized system should be taken as an independent system and be clearly
posed when one poses the system.

26Equation (1.115) is not the linearized form of Eq. (1.33). It is the second-order terms of

the perturbation φ in Eq. (1.33). That is, noting that f̂ = E(1 + φ) and examining Eq. (1.72)
for small φ, we find that the terms of the order of φ are reduced to Eq. (1.99) and that the
second-order terms correspond to Eq. (1.115). The functions

R
φ2Ed“,

R
ζiφ

2Ed“, and LG
are, respectively, the second-order terms in φ of H (the H function), Hi, and G in Section 1.7

(or Ĥ, Ĥi, and Ĝ in Section 1.9) except for a common constant factor.



Chapter 2

Highly Rarefied Gas:
Free Molecular Gas and
Its Correction

With an increase of the Knudsen number of the system, the effect of intermolec-
ular collisions becomes less important. When their effect can be neglected, the
gas (its state) is called a free molecular gas (free molecular flow). In this chap-
ter, we discuss the free molecular flow and its correction by molecular collisions
when external force is absent.

2.1 General solution of a free molecular flow

In a free molecular flow, where the intermolecular collisions are absent, the
Boltzmann equation (1.5) reduces to the simple form without the collision term

∂f

∂t
+ ξi

∂f

∂Xi
= 0. (2.1)

The velocity distribution function f at time t is related to that at time t0 as

f(Xi, ξi, t) = f(Xi − ξi(t − t0), ξi, t0). (2.2)

In a time-independent case (∂/∂t = 0), the above relation is reduced to

f(Xi, ξi) = f(Xi − ξit, ξi), (2.3)

where t is just a parameter.
Owing to the absence of the collision term, the solution of Eq. (2.1) shows

a decisively different feature from that of the Boltzmann equation (1.5) with
Fi = 0. An arbitrary time-independent and spatially uniform state, i.e., an
arbitrary function of ξi that is independent of Xi and t is a solution of Eq. (2.1)
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in contrast to the case of the Boltzmann equation, where a time-independent
and spatially uniform solution is given by a Maxwellian (Section A.7.1). This
difference should be kept in mind when the boundary-value problem for a free
molecular gas in an infinite domain is considered. Even if the state at infinity
is uniform, the velocity distribution function is not necessarily Maxwellian. For
economy of expression, when we often mention, for example, that the state at
infinity is in the equilibrium state at rest with density ρ∞ and temperature T∞
in the examples in this chapter, it means that the velocity distribution function
of the molecules leaving the infinity is given by

f =
ρ∞

(2πRT∞)3/2
exp

(
− ξi

2

2RT∞

)
.

The distribution for the other molecular velocities is not mentioned. Whether
the state at infinity is really given by the Maxwellian (for all the molecular
velocities) or not depends on the problem considered.1 In the latter case, the
density, temperature, or velocity at infinity is not necessarily ρ∞, T∞, or zero
respectively.2

2.2 Initial-value problem

Consider a gas in an infinite domain without any boundary (body) in the do-
main. The state (the velocity distribution function) of the gas at time t = t0 is
given as

f(Xi, ξi, t0) = g(Xi, ξi), (2.4)

where g(Xi, ξi) is a given function. Then the behavior of the gas in the later
time t is given as follows:

f(Xi, ξi, t) = g(Xi − ξi(t − t0), ξi). (2.5)

By substitution of the solution (2.5) into Eqs. (1.2a)–(1.2g), the macroscopic
variables, such as density, flow velocity, and temperature, are obtained.

2.3 Boundary-value problem

2.3.1 Preparation

Consider the boundary-value problem in a time-independent (or steady) state.
Let the boundary conditions (1.26) and (1.30) be written in a common form as

1If the bodies are confined in a finite domain, the state is the corresponding (full)
Maxwellian.

2Examine the uniform state

f =

(
ρ−∞(2πRT−∞)−3/2 exp(−ξi

2/2RT−∞) (ξ1 > 0),

ρ∞(2πRT∞)−3/2 exp(−ξi
2/2RT∞) (ξ1 < 0),

which is a solution of Eq. (2.1). Here, ρ−∞ and T−∞ as well as ρ∞ and T∞ are constants.
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Figure 2.1. Free molecular gas around a convex body.

follows:

f(X, ξ) = g(X, ξ) +
∫

ξj∗nj<0

K(ξ, ξ∗,X)f(X, ξ∗)dξ∗ [ξjnj(X) > 0], (2.6)

where (g, K) = (0,KB) for a simple boundary and (g,K) = (gI ,KI) for an
interface of the gas and its condensed phase (see Section 1.6) and the vwini terms
in (1.26) and (1.30) have dropped off, because the velocity vwi of the boundary
must satisfy the condition vwini = 0 for the system to be time-independent.
According to the general solution (2.3), the velocity distribution function at an
arbitrary point in the gas can be expressed by the boundary data of the velocity
distribution function. That is, let XBi(X, ξ/ξ) [ξ = (ξ2

i )1/2] be the point on
the boundary or infinity encountered for the first time when we trace back the
path of a molecule with velocity ξi (or trace in the −ξi direction) from Xi, i.e.,

XBi(X, ξ/ξ) = Xi − sBξi/ξ, (2.7)

where sB is the distance from X to the nearest boundary point in the −ξi

direction. Then,
f(X, ξ) = f(XB(X, ξ/ξ), ξ), (2.8)

where ξjnj(XB) > 0 with ni(XB) being the unit normal vector to the boundary
at XBi, pointed to the gas domain. Thus, the problem is reduced to obtaining
the velocity distribution function of the molecules leaving the boundary.

2.3.2 Free molecular gas around a convex body

Consider the case where a convex body lies solely in an infinite expanse of a gas
(Fig. 2.1). All the molecules impinging on a point Xi of the body [those with
ξjnj(X) < 0] come from infinity (XB is at infinity). The velocity distribution
function for these molecules is determined by the condition at infinity, i.e.,

f(X, ξ) = f(∞(X, ξ/ξ), ξ) [ξjnj(X) < 0], (2.9)



32 Chapter 2. Highly Rarefied Gas

where the arguments of ∞ are shown for discrimination because the condition
at infinity may not be uniform. With Eq. (2.9) in the boundary condition (2.6),
the velocity distribution function of the molecules leaving a point Xi on the
boundary is given by

f(X, ξ) = fw(X, ξ)

= g(X, ξ) +
∫

ξj∗nj(X)<0

K(ξ, ξ∗, X)f(∞(X, ξ∗/ξ∗), ξ∗)dξ∗

[ξjnj(X) > 0]. (2.10)

The condition at infinity being given, the velocity distribution function f of
the gas at an arbitrary point in the gas is obtained with the aid of Eqs. (2.8)
and (2.10). That is, let Xi be an arbitrary point and let sB be the distance
from Xi to the nearest boundary point in the direction −ξi. Then, the velocity
distribution function f(X, ξ) of a gas around a convex body is given by

f(X, ξ) = fw(X − sBξ/ξ, ξ)

= g(X − sBξ/ξ, ξ)

+
∫

ξj∗nj(X−sBξ/ξ)<0

K(ξ, ξ∗, X − sBξ/ξ)f(∞(X − sBξ/ξ, ξ∗/ξ∗), ξ∗)dξ∗,

(2.11a)

if sB is finite, and by

f(X, ξ) = f(∞(X, ξ/ξ), ξ), (2.11b)

if sB is infinite.
We will give some applications of the general formulas.

Example. A flat plate with temperature T0 lies in a uniform gas with flow
velocity (U, 0, 0), density ρ0, and temperature T0, with its surface parallel to
the flow. The plate is of width L and length infinite and the edge of infinite
length is placed normal to the flow. The gas molecules make the diffuse reflection
(1.24a) on the plate.

Let the plate be on the plane X2 = 0. The velocity distribution function f
of the molecules impinging on the X2 > 0 side of the plate is

f =
ρ0

(2πRT0)3/2
exp

(
− (ξi − Uδ1i)2

2RT0

)
(ξ2 < 0),

from which the velocity distribution of the molecules leaving there is obtained,
with the aid of the diffuse-reflection condition, as

f =
ρ0

(2πRT0)3/2
exp

(
− ξi

2

2RT0

)
(ξ2 > 0).
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Thus, the state is uniform on the plate. In view of the symmetry, the plate is,
per unit length, subject to the force 2p0LU/(2πRT0)1/2 in the direction of the
flow, where p0 (= Rρ0T0) is the pressure at infinity. �
Example. A convex body B with a uniform temperature T1 and surface area
S lies in a gas in the equilibrium state at rest with temperature T0 and density
ρ0. The gas molecules make the diffuse reflection on the body.

The gas molecules (ξini < 0) impinging on the body B all come from infinity,
and therefore its velocity distribution is given by that at infinity, i.e.,

f =
ρ0

(2πRT0)3/2
exp

(
− ξ2

i

2RT0

)
. (2.12)

Then, with the aid of the diffuse-reflection condition, the velocity distribution
of the molecules leaving the body is given by

f =
ρw

(2πRT1)3/2
exp

(
− ξ2

i

2RT1

)
(ξini > 0), (2.13a)

ρw = −
(

2π

RT1

)1/2 ∫
ξini<0

ξjnj
ρ0

(2πRT0)3/2
exp

(
− ξ2

i

2RT0

)
dξ

= ρ0

(
T0

T1

)1/2

. (2.13b)

The velocity distribution function at a point in the gas is obtained by Eqs. (2.11a)
and (2.11b) with the data given by Eqs. (2.12), (2.13a) and (2.13b).

By simple manipulation, we find that the flow velocity of the gas vanishes
and that the temperature in the gas is expressed as

T =

1 +
1
4π

[(
T1

T0

)1/2

− 1

]
Ω(X, B)

1 +
1
4π

[(
T0

T1

)1/2

− 1

]
Ω(X, B)

T0,

where Ω(X, B) is the solid angle viewing the body B from the point X. The
energy ET transferred per unit time from the body to the gas is

ET =
ρ0(2RT0)3/2

2
√

π

(
T1

T0
− 1

)
S. �

Example. Two equilibrium states of a gas at rest, one at pressure p1 and
temperature T1 in X1 < 0 and the other at pressure p2 and temperature T2 in
X1 > 0, are separated by a thin flat plate at X1 = 0 with a small hole (area S)
connecting the two regions (or two reservoirs).3

3The states at infinities are the corresponding (full) Maxwellians if the temperatures of
the walls are T1 on the X1 < 0 side and T2 on the X1 > 0 side (see the discussion in the last
paragraph of Section 2.1).
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The plate with a hole is not a convex body, but the velocity distribution
function of the gas molecules on the hole is known because all the molecules
come from X1 = ∞ or X1 = −∞. That is, the velocity distribution function f
on the hole is uniformly given by

f =
2πp1

(2πRT1)5/2
exp

(
− ξ2

i

2RT1

)
(ξ1 > 0),

f =
2πp2

(2πRT2)5/2
exp

(
− ξ2

i

2RT2

)
(ξ1 < 0),

where the gas with pressure p1 is taken to be in the region X1 < 0. Thus, the
state is uniform on the hole, and the mass flow M per unit time through the
hole from X1 < 0 to X1 > 0 is given by

M = S

∫
ξ1fdξ

=
(

p1

(2πRT1)1/2
− p2

(2πRT2)1/2

)
S.

When there is a temperature difference (T1 �= T2), a flow is induced even if there
is no pressure difference. The condition that no flow is induced is

p1/
√

T1 = p2/
√

T2.

This condition is proved to be true for a general situation in Sone [1984a, 1985]
(see Section 2.5.6). �

2.3.3 Arbitrary body shape and arrangement

General boundary condition

Consider a system where a nonconvex body or several convex or nonconvex
bodies lie in a gas, bounded or unbounded (Fig. 2.2). Expressing the velocity
distribution function f of the impinging molecules under the integral sign in the
boundary condition (2.6) by that of the molecules reflected on other parts of
the boundary and those coming from infinity, we obtain an integral equation of
the velocity distribution function for the reflected molecules on the boundary,
i.e.,

f(X, ξ) = g(X, ξ) +
∫

ξj∗nj<0

K(ξ, ξ∗, X)f(XB(X, ξ∗/ξ∗), ξ∗)dξ∗

[ξjnj(X) > 0]. (2.14)

It is noted that X in this equation runs only on the boundary.

Diffuse reflection I

In the case of the diffuse-reflection boundary condition, we can eliminate the
molecular velocity ξ from the above integral equation (2.14). This is done
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Figure 2.2. Free molecular gas around a nonconvex body.

directly from the diffuse-reflection condition as follows. Let X be a point on
the boundary. The diffuse-reflection condition (1.24a) with (1.24b) is

f(X, ξ) =
σw(X)

[2πRTw(X)]3/2
exp

(
− [ξj − vwj(X)]2

2RTw(X)

)
(ξjnj > 0), (2.15a)

σw(X) = −
(

2π

RTw(X)

)1/2 ∫
ξi∗ni<0

ξj∗nj(X)f(X, ξ∗)dξ∗. (2.15b)

The distribution function f of the impinging molecules on X in the integrand
of Eq. (2.15b) is replaced by that of the molecules leaving other points on the
boundary or infinity with the aid of the relation (2.8), i.e.,

σw(X) = −
(

2π

RTw(X)

)1/2 ∫
ξi∗ni<0

ξj∗nj(X)f(XB(X, ξ∗/ξ∗), ξ∗)dξ∗. (2.16)

Here, if XB(X, ξ∗/ξ∗) is on the boundary, f(XB(X, ξ∗/ξ∗), ξ∗) is expressed in
terms of σw(XB) with the aid of the diffuse-reflection condition (2.15a), i.e.,

f(XB , ξ∗) =
σw(XB)

[2πRTw(XB)]3/2
exp

(
− [ξj∗ − vwj(XB)]2

2RTw(XB)

)
, (2.17)

and if XB(X, ξ∗/ξ∗) is at infinity, f(XB(X, ξ∗/ξ∗), ξ∗) is given by the condi-
tion at infinity, i.e.,

f(XB(X, ξ∗/ξ∗), ξ∗) = f∞, (2.18)

where f∞ is the velocity distribution function of the molecules starting at infin-
ity. Substituting Eqs. (2.17) and (2.18) into Eq. (2.16), we obtain the integral
equation for σw(X), which is independent of ξ. This is much simpler than the
integral equation (2.14) of f(X, ξ) for ξjnj(X) > 0, although three-dimensional
integral with respect to ξ∗ has still to be carried out.
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Diffuse reflection II

In the integral equation for σw(X), Eq. (2.16) with Eqs. (2.17) and (2.18) substi-
tuted for f(XB(X, ξ∗/ξ∗), ξ∗), the three-dimensional integration with respect
to ξ∗, which is also contained in σw(XB), vwj(XB), and Tw(XB) through XB ,
has to be carried out. When the boundary except the infinity is at rest (vwi = 0),
this integral is reduced to two-dimensional one as shown below. We introduce
new quantities j(X) and j∞(X) defined on the boundary by

j(X) = −
∫

ξi∗ni(X)<0

ξj∗nj(X)f(XB(X, ξ∗/ξ∗), ξ∗)dξ∗

=
(

RTw(X)
2π

)1/2

σw(X), (2.19)

j∞(X) = −
∫

ξi∗ni(X)<0
|XB |=∞

ξj∗nj(X)f(XB(X, ξ∗/ξ∗), ξ∗)dξ∗. (2.20)

The function j(X) is the mass flux of the molecules impinging on the boundary
element at X (per unit area and per unit time), which is also the same as
the flux of the molecules leaving the element; j∞(X) is the mass flux of the
molecules impinging on the boundary element at X from infinity directly and
therefore is a known function of X determined by f∞. The integral in Eq. (2.19)
is split into two parts

j(X) = −
∫

ξi∗ni(X)<0
|XB |<∞

−
∫

ξi∗ni(X)<0
|XB |=∞

= −
∫

ξi∗ni(X)<0
|XB |<∞

+j∞(X). (2.21)

With the aid of Eqs. (2.17) with vwi = 0 and (2.19), f(XB(X, ξ∗/ξ∗), ξ∗) in the
first integral is expressed as

f(XB(X, ξ∗/ξ∗), ξ∗) =
σw(XB)

[2πRTw(XB)]3/2
exp

(
−

ξ2
j∗

2RTw(XB)

)

=
2j(XB)

π[2RTw(XB)]2
exp

(
−

ξ2
j∗

2RTw(XB)

)
.

With this expression in Eq. (2.21), we have the integral equation for j(X)

j(X) = −
∫

ξi∗ni(X)<0
|XB |<∞

2j(XB)ξj∗nj(X)
π[2RTw(XB)]2

exp
(
− ξ2

i∗
2RTw(XB)

)
dξ∗+j∞. (2.22)

Here, we change the variable ξ∗ of integration to ξ∗ and l̄i∗ (= −ξi∗/ξ∗). Noting
the relations4

dξ∗ = ξ2
∗dξ∗dΩ(̄l∗), l̄i∗ =

XBi − Xi

|XB − X| , ξi∗ni(X) = −ξ∗ l̄i∗ni(X), (2.23)

4In the second relation, the range ξi∗ni(X) < 0 of integration is taken into account.
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where dΩ(̄l∗) is the solid-angle element in the direction l̄∗, we can carry out
the integration with respect to ξ∗ irrespectively of the shape and temperature
distribution of the boundary as

j(X) =
1
π

∫
Ω∗

l̄i∗ni(X)j(XB)dΩ(̄l∗) + j∞(X), (2.24)

where Ω∗ is the range of l̄∗ in which direction the boundary can be seen from the
point X, and the relation between XB and l̄∗ is determined by the geometry
of the system. Further, changing the variable of integration from l̄∗ to XB , and
noting the relation

|XB − X|2dΩ(̄l∗) =
(Xi − XiB)ni(XB)

|X − XB | dS(XB),

where dS(XB) is the surface element of the boundary at XB , we have

j(X) = − 1
π

∫
S∗

ni(X)(Xi∗ − Xi)nj(X∗)(Xj∗ − Xj)
|X∗ − X|4 j(X∗)dS(X∗) + j∞(X),

(2.25)
where X is a point on the boundary and the integration is carried out over the
boundary S∗ that can be seen from the point X. It may be noted that the ho-
mogeneous part of Eq. (2.25) is independent of the temperature distribution on
the boundary and is determined by the geometrical configuration of the system.
Physical variables enter only through j∞. When the domain is bounded, the in-
homogeneous term j∞ disappears and j(X) = const is a solution of Eq. (2.25).5

The problem is studied under a more general boundary condition and the solu-
tion and its uniqueness are given in Sone [1985]. The theory and its applications
are given in Section 2.5.

Take a system that is joined with N reservoirs extending to infinities in
the equilibrium states at rest with pressure pm and temperature Tm (m =
1, 2, . . . , N), as shown in Fig. 2.3. The expression (2.20) is transformed by chang-
ing the variable ξ∗ of integration to ξ∗ and l̄i∗ in the following form:

j∞ =
N∑

m=1

pm

(2πRTm)1/2
j∞m, (2.26)

where
j∞m(X) =

1
π

∫
Ω∞m

l̄i∗ni(X)dΩ(̄l∗). (2.27)

Here, the domain Ω∞m of integration is the region of l̄i∗ in which direction the
infinity with pressure pm and temperature Tm can be seen from the point X.6

5For this case, Eq. (2.24) or (2.25) is reduced to

j(X) =
1

π

Z
l̄i∗ni(X)>0

l̄i∗ni(X)j(X∗)dΩ(̄l∗).

It is easily seen that j(X) = const is a solution, because
R

l̄i∗ni(X)>0 l̄i∗ni(X)dΩ(̄l∗) = π.
6The expression of j∞m is derived in the same way as Eq. (2.24).
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Figure 2.3. A system connected with various states [(p1, T1), (p2, T2), (p3, T3),
(p4, T4)] at infinities.

Let jn be the solution j of Eq. (2.25) with pm/(2πRTm)1/2 = δmn (δmn = 1 for
m = n and δmn = 0 for m �= n; m, n = 1, 2, . . . , N).7 The solution j of the
original problem is expressed by the linear combination of jn

j =
N∑

m=1

pm

(2πRTm)1/2
jm, (2.28)

because the corresponding homogeneous equation has no nontrivial solution.8

The solution jm is determined by the geometrical configuration and is indepen-
dent of physical variables. Thus, the temperature distribution of the boundary
walls in a finite region does not contribute to the solution j of the original
problem.

Applications and comments

Several examples and comments are given here.
Example. There is a highly rarefied gas between two parallel plane walls: one
is at rest at X2 = 0 and the other is moving with a uniform velocity U in the
X1 direction at X2 = D (the plane-Couette-flow problem). The temperatures

7Strictly, the jn is the solution with the nondimensional δmn being substituted instead of
pm/(2πRTm)1/2 that has dimension.

8This is intuitively clear because the homogeneous equation corresponds to the system
with uniform wall temperature to which no gas enters through the exits, and thus all the gas
escapes from the system. The difference from the homogeneous equation for the bounded
domain problem in Footnote 5 in this subsection is that the direction of the exits is excluded
from the range of integration with respect to l̄i∗. Thus,

R
Ω∗ l̄i∗ni(X)dΩ(̄l∗) = π or < π,

depending on whether the infinity cannot or can be seen from X. Let the maximum of j(X)
be jM at XM . Then, from the above inequality and Eq. (2.24) with X = XM , XB = X, and
j∞ = 0, it is found that j(X) = jM or j(X) = jM = 0 for all the points X on the boundary
that can be seen from XM depending on whether the infinity cannot or can be seen from
XM . Here, we consider the system where any two points on the boundary of the system can
be connected by a broken line inside the gas with the broken points on the boundary. Then,
repeating the above process, we find that j(X) = 0 everywhere.
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of the walls are at the same uniform temperature T0. The gas molecules make
the diffuse reflection on the walls.

The state of the gas or the velocity distribution function f can be considered
to be uniform with respect to X1 and X3. Then, from Eq. (2.1) or (2.8), it is
also independent of X2. From Eq. (2.15b),

σw(D) =
(

2π

RT0

)1/2 ∫
ξ2>0

ξ2f(D, ξ)dξ.

By successive application of Eqs. (2.8) and (2.15a), we have

σw(D) =
(

2π

RT0

)1/2 ∫
ξ2>0

ξ2f(D, ξ)dξ =
(

2π

RT0

)1/2 ∫
ξ2>0

ξ2f(0, ξ)dξ

=
2σw(0)

π(2RT0)2

∫
ξ2>0

ξ2 exp
(
− ξ2

i

2RT0

)
dξ = σw(0).

Thus, from Eqs. (2.15a) and (2.8) with the one-dimensional character of the
problem, the distribution function in the gas is given by

f(X2, ξ) =
σw(0)

(2πRT0)3/2
exp

(
− ξ2

i

2RT0

)
(ξ2 > 0),

f(X2, ξ) =
σw(0)

(2πRT0)3/2
exp

(
− (ξi − Uδ1i)2

2RT0

)
(ξ2 < 0).

The density, flow velocity, and temperature of the gas are

ρ = σw(0), v1 =
U

2
, v2 = v3 = 0, T = T0 +

U2

12R
.

The density ρ is what we have to specify as is in a general finite domain problem.
The force fi acting on the wall at X2 = 0 per unit area is

f1 =
1

2
√

π
ρU(2RT0)1/2, f2 = −RρT0, f3 = 0. �

Example. There is a highly rarefied gas between two parallel plane walls at
rest: one with temperature T0 is at X2 = 0 and the other with temperature T1

is at X2 = D (the heat-transfer problem). The gas molecules make the diffuse
reflection on the walls.

The state of the gas or the velocity distribution function f can be considered
to be uniform with respect to X1 and X3. Then, from Eq. (2.8), it is also inde-
pendent of X2. By successive application of Eqs. (2.8) and (2.15a) to Eq. (2.15b)
at X2 = D, we have

σw(D) =
(

2π

RT1

)1/2 ∫
ξ2>0

ξ2f(D, ξ)dξ =
(

2π

RT1

)1/2 ∫
ξ2>0

ξ2f(0, ξ)dξ

=
(

2π

RT1

)1/2
σw(0)

(2πRT0)3/2

∫
ξ2>0

ξ2 exp
(
− ξ2

i

2RT0

)
dξ = σw(0)

√
T0

T1
.
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From Eqs. (2.15a) and (2.8), the velocity distribution function is

f(X2, ξ) =
σw(0)

(2πRT0)3/2
exp

(
− ξ2

i

2RT0

)
(ξ2 > 0),

f(X2, ξ) =
σw(0)

(2πRT1)3/2

√
T0

T1
exp

(
− ξ2

i

2RT1

)
(ξ2 < 0).

The density, flow velocity, and temperature of the gas are

ρ =
σw(0)

2

(
1 +

√
T0

T1

)
, vi = 0, T =

√
T0T1,

where ρ is to be specified. The energy flow ef (1 → 0) from the wall with T1 at
X2 = D, per unit area and per unit time, to that with T0 at X2 = 0 is

ef (1 → 0) =

√
8
π

RρT
(√

RT1 −
√

RT0

)
. �

Example. Consider a straight circular pipe with length L and diameter D
which joins two large reservoirs, one is at pressure p1 and temperature T1 and
the other at pressure p2 and temperature T2. The gas molecules make the diffuse
reflection on the pipe wall.

Let the axis of the pipe be on the X1 coordinate (X2 = X3 = 0) and let the
exit of the pipe to the reservoir with p1 and T1 be on the plane X1 = 0 and the
other exit to the reservoir with p2 and T2 be at X1 = L. From the symmetry,
the solution j(X) of the integral equation (2.25) is a function of X1 only, and
is expressed in the form

j(X) = ĵ(x) =
p1

(2πRT1)1/2
ĵ1(x) +

p2

(2πRT2)1/2
ĵ1(2L/D − x),

where x = 2X1/D and ĵ1(x) is the solution of Eq. (2.25) corresponding to the
present geometry with p1/(2πRT1)1/2 = 1 and p2/(2πRT2)1/2 = 0.9 The inte-
gral equation (2.25) is reduced to the following simple form for ĵ1(x) :

ĵ1(x) = ĵ∞1(x) +
∫ 2L/D

0

K̂P (|x − x∗|)ĵ1(x∗)dx∗, (2.29)

where

K̂P (|x − x∗|) =
1
2

(
1 − 6|x − x∗| + |x − x∗|3

(4 + |x − x∗|2)3/2

)
,

ĵ∞1(x) =
1
2

(
x2 + 2

(x2 + 4)1/2
− x

)
.

9See Footnote 7 in Section 2.3.3.
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The function ĵ∞1(x) corresponds to j∞1(X) defined by Eq. (2.27). This integral
equation is called Clausing’s equation (Von Clausing [1932]). Let the mass-flow
rate through the pipe for the case p1/(2πRT1)1/2 = 1 and p2/(2πRT2)1/2 = 0
be M̂1 [corresponding to ĵ1(x)]. The mass-flow rate M through the pipe in the
positive X1 direction for the original problem is expressed with M̂1 in the form

M =
(

p1

(2πRT1)1/2
− p2

(2πRT2)1/2

)
M̂1. (2.30)

The mass-flow rate M vanishes when p1/
√

T1 = p2/
√

T2 as in the case of slit
(the third example in Section 2.3.2). This condition is shown to be true for a
more general situation in Section 2.5.6.

The mass-flow rate M̂1 is the difference of the mass-flow rate M̂fr∞ of the
molecules entering the exit of the pipe at X1 = 0 from the infinity and the
mass-flow rate M̂ret of the molecules returning to the exit from the pipe surface
and is expressed as

M̂1 = M̂fr∞ − M̂ret =
πD2

4

(
1 − 2

π

∫ 2L/D

0

ĵ1(x)
∫

Ω∞1

l̄inidΩ(̄l)dx

)

=
πD2

4

[
1 −

∫ 2L/D

0

ĵ1(x)
(
−x +

x2 + 2√
x2 + 4

)
dx

]
,

where l̄ is a unit vector and Ω∞1 is the range of l̄ in the direction of which the
exit at X1 = 0 can be seen from a point on the pipe at x, and ni is the unit
normal to the boundary, pointed to the gas, there. This expression is further
transformed into a well-known formula with the aid of Eq. (2.29)

M̂1

π(D/2)2
=

D

2L

∫ 2L/D

0

[x2 + 2 − x(x2 + 4)1/2]ĵ1(x)dx. (2.31)

The relation M̂1/π(D/2)2 vs 2L/D is shown in Fig. 2.4. �
In the first two examples, the state of gas is uniform. However, the walls

are subject to a force or a heat is transferred to the walls. Thus, it is some-
times stated that the viscosity and thermal conductivity are infinite in a free
molecular gas. However, this statement is easily seen to be inappropriate from
the examples of a flow past a flat plate and a heat transfer from a convex body
in Section 2.3.2, where the velocity or temperature field is obviously nonuni-
form. Local stress and heat flux in a free molecular gas are not determined by
local quantities such as the velocity and temperature gradients, but the global
configuration of the system plays the decisive role.

Taking the limit that D → ∞ in the same two examples, we obtain the
solution of the half-space problem if σw(D) is replaced by ρ1 which corresponds
to ρ in the Maxwellian coming from infinity. In each case, the state at infinity is
not in equilibrium (or the distribution is not Maxwellian, but is the combination
of two different half-Maxwellians). As a result, the solution taking the effect of
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Figure 2.4. Mass-flow rate M̂1 of a free molecular gas through a straight circular
pipe. (The numerical data are prepared by H. Sugimoto.)

molecular collisions into account cannot be obtained by a perturbation of the
free molecular solution, as to be explained in Section 2.6, and the state at rest
with the uniform temperature T0 is established in both cases if the effect of
molecular collisions is taken in (see Section 4.4).

The case of the complete condensation (1.29) on an interface of the gas and
its condensed phase is a trivial case where the velocity distribution function of
the molecules leaving the interface is known. The case of the condition (1.28a)
with (1.28b) and α = 1 can be reduced to the integral equation for σw as in
the case of the diffuse reflection. On the basis of the integral equation of σw for
that case, Inamuro [1989] discussed some problems related to a cryopump and
vacuum vapor deposition.

2.4 Initial and boundary-value problem

The discussion on boundary-value problems for a free molecular gas in Section
2.3 is limited only to time-independent cases. We will briefly explain the initial
and boundary-value problem. The initial condition is assumed to be given at
time t = 0.

The velocity distribution function f at time t is related to that at some
previous time t0 by Eq. (2.2), i.e.,

f(Xi, ξi, t) = f(Xi − ξi(t − t0), ξi, t0). (2.32)

Let (X, ξ, t) be given. If we trace back a particle with velocity ξ from (X, t),
we encounter some point on the boundary at some time tB(X, ξ, t) before the
initial time t = 0, or do not encounter any point on the boundary until the
initial time. We take t0 = tB in the former case, and t0 = 0 in the latter. When
t0 = 0 for (X, ξ, t), then the value of the velocity distribution function f at
(X, ξ, t) is determined by the initial value, and when t0 = tB , it is determined
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by its boundary value f(Xi − ξi(t − tB), ξi, tB) for the molecules leaving the
boundary. Thus the velocity distribution function is determined by the initial
and boundary data. The velocity distribution function of the molecules leaving
the boundary generally depends on that of the impinging molecules, which is
determined by the distribution of the molecules leaving other points of the
boundary in the past and that of the initial time. Expressing this process in
mathematical expressions, we obtain an integral equation for the boundary data
of the velocity distribution function for the molecules leaving (or impinging on)
the boundary. This process is shown by simple examples.
Example. Consider a gas in the region X1 > 0 bounded by a plane wall with
temperature T0 at X1 = 0. The gas is in the equilibrium state at rest with
density ρ0 and temperature T0. At time t = 0, the wall suddenly moves with
a constant speed U in the X1 direction. The gas molecules make the diffuse
reflection on the wall. (Piston problem)

The state of the gas can be considered to be uniform with respect to X2

and X3. The position of the wall is given by X1 = Ut, and the gas region is
in X1 > Ut. Let (X1, ξ, t) be given in the gas region. When ξ1 < X1/t, the
path of the particle, if we trace back the particle, is always in the gas region
[X1 − ξ1(t − t0) > Ut0 for t ≥ t0 ≥ 0]. Therefore, f is expressed by the initial
condition, i.e.,

f(X1, ξ, t) =
ρ0

(2πRT0)3/2
exp

(
− ξ2

i

2RT0

)
(ξ1 <

X1

t
). (2.33)

When ξ1 > X1/t, the path encounters the wall at t0 = (ξ1t−X1)/(ξ1 −U) > 0.
Therefore, f is given by the boundary condition at X1 = X10 = Ut0, i.e., from
the diffuse-reflection boundary condition,

f(X1, ξ, t) = f(X10, ξ, t0) =
σw(t0)

(2πRT0)3/2
exp

(
− (ξi − Uδ1i)2

2RT0

)
(ξ1 >

X1

t
),

(2.34a)

σw(t0) = −
(

2π

RT0

)1/2 ∫
ξ1−U<0

(ξ1 − U)f(X10, ξ, t0)dξ, (2.34b)

X10 =
U(ξ1t − X1)

ξ1 − U
, t0 =

ξ1t − X1

ξ1 − U
. (2.34c)

We can use the initial data (2.33) for f(X10, ξ, t0) (ξ1 − U < 0) in Eq. (2.34b).
Thus,

σw(t0) = − ρ0

2π(RT0)2

∫
ξ1−U<0

(ξ1 − U) exp
(
− ξ2

i

2RT0

)
dξ

= ρ0

[
exp

(
− U2

2RT0

)
+

U√
2RT0

(
√

π + 2
∫ U/

√
2RT0

0

exp
(
−ζ2

)
dζ

)]
.

With this σw(t0), the velocity distribution function is determined. This problem
corresponds to the case of a gas around a convex body in Section 2.3.2. �



44 Chapter 2. Highly Rarefied Gas

Example. A gas is bounded by two parallel plane walls with the same temper-
ature T0, one at X1 = 0 and the other at X1 = D. The gas is initially in the
equilibrium state at rest with density ρ0 and temperature T0. At time t = 0,
the temperature of the wall at X1 = D is suddenly raised (or lowered) to T1.
The gas molecules make the diffuse reflection on the walls.

The state of the gas can be considered to be uniform with respect to X2 and
X3. Let (X1, ξ, t) be given in the gas region. When −(D − X1)/t < ξ1 < X1/t,
the path of the particle, if we trace back the particle, is always in the gas region
0 < X1 < D for 0 ≤ t0 ≤ t, Therefore, f is expressed by the initial condition,
i.e.,

f(X1, ξ, t) =
ρ0

(2πRT0)3/2
exp

(
− ξ2

i

2RT0

) (
−D − X1

t
< ξ1 <

X1

t

)
. (2.35)

When ξ1 > X1/t, the path encounters the wall at X1 = 0 at time t0 = t −
X1/ξ1 > 0. Therefore, f is given by the boundary condition at X1 = 0, i.e.,
from the diffuse-reflection boundary condition,

f(X1, ξ, t) =
σw(0, t − X1/ξ1)

(2πRT0)3/2
exp

(
− ξ2

i

2RT0

) (
ξ1 >

X1

t

)
, (2.36)

where

σw(0, t0) = −
(

2π

RT0

)1/2 ∫
ξ1<0

ξ1f(0, ξ, t0)dξ.

When ξ1 < −(D − X1)/t, the path encounters the wall at X1 = D at time
t0 = t + (D − X1)/ξ1 > 0. Therefore, f is given by the boundary condition at
X1 = D, that is, from the diffuse-reflection boundary condition,

f(X1, ξ, t) =
σw(D, t + (D − X1)/ξ1)

(2πRT1)3/2
exp

(
− ξ2

i

2RT1

) (
ξ1 < −D − X1

t

)
,

(2.37)
where

σw(D, t0) =
(

2π

RT1

)1/2 ∫
ξ1>0

ξ1f(D, ξ, t0)dξ.

If we know σw(0, t0) and σw(D, t0) for 0 < t 0 < t, the solution f(X1, ξ, t) is
given by Eqs. (2.35), (2.36), and (2.37).

Substituting the above form of the velocity distribution function into the
definition of σw(0, t) and σw(D, t), we obtain the integral equations for σw(0, t)
and σw(D, t) (t > 0), i.e.,

σw(0, t) = −
(

2π

RT0

)1/2 ∫
ξ1<0

ξ1f(0, ξ, t)dξ

= −
(

2π

RT0

)1/2
[∫

ξ1<−D/t

σw(D, t + D/ξ1)
(2πRT1)3/2

ξ1 exp
(
− ξ2

i

2RT1

)
dξ

+
ρ0

(2πRT0)3/2

∫
−D/t<ξ1<0

ξ1 exp
(
− ξ2

i

2RT0

)
dξ

]
,
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σw(D, t) =
(

2π

RT1

)1/2 ∫
ξ1>0

ξ1f(D, ξ, t)dξ

=
(

2π

RT1

)1/2
[

ρ0

(2πRT0)3/2

∫
0<ξ1<D/t

ξ1 exp
(
− ξ2

i

2RT0

)
dξ

+
∫

ξ1>D/t

σw(0, t − D/ξ1)
(2πRT0)3/2

ξ1 exp
(
− ξ2

i

2RT0

)
dξ

]
.

After some arrangements, the integral equations for σw(0, t) and σw(D, t) for
t > 0 are given in the form

σw(0, t) = −2
√

T1

T0

∫ −D√
2RT1 t

−∞
σw

(
D, t +

D√
2RT1ζ

)
ζ exp

(
−ζ2

)
dζ

+ ρ0

[
1 − exp

(
− D2

2RT0t2

)]
,

σw(D, t) = 2
√

T0

T1

∫ ∞

D√
2RT0 t

σw

(
0, t − D√

2RT0ζ

)
ζ exp

(
−ζ2

)
dζ

+ ρ0

√
T0

T1

[
1 − exp

(
− D2

2RT0t2

)]
. �

2.5 Statics of a free molecular gas: Effect of the
temperature of the boundary

Consider the time-independent behavior of a free molecular gas around a group
of bodies at rest. The gas region may be bounded or extend to infinity. The
shape and arrangement of the boundary (bodies or outer wall) and the temper-
ature distribution on the boundary are arbitrary. We assume that the reflected
gas molecules on the boundary satisfy the Maxwell-type condition [(1.23a) and
(1.23b)]. In the case where the domain extends to infinity, the condition there
is reserved for a moment. A simple way to solve this problem is developed in
Sone [1984a, 1985]. In the present section, we will explain the method with its
applications.

2.5.1 Construction of the velocity distribution function

With the molecular speed ξ, i.e., ξ = (ξ2
i )1/2, and the unit vector li in the

direction of ξi, i.e., li = ξi/ξ, Eq. (2.3) is expressed as

f(Xi, ξli) = f(Xi − lis, ξli), (2.38)



46 Chapter 2. Highly Rarefied Gas

where s is a parameter. The Maxwell-type boundary condition is given in the
form

f(Xi, ξli) = (1 − α)f(Xi, ξ(li − 2ljnjni)) + ασβ2 exp(−βξ2) (lini > 0),

(2.39a)

σ = − 2
π

∫
lini<0

ξljnjf(X, ξ)dξ, (2.39b)

β =
1

2RTw
, (2.39c)

where Tw is the temperature of the boundary, ni is the unit normal vector to
the boundary pointed to the gas domain, α is the accommodation coefficient
of the boundary, and R is the gas constant per unit mass.10 The boundary
parameters Tw, ni, and α depend on the position on the boundary. This fact is
shown like Tw(X), α(X) when the discrimination is preferable.

Now we will construct the solution of the boundary-value problem given
by Eqs. (2.38) and (2.39a). From the position Xi, we trace back the path of
the molecule with velocity ξli that has specularly reflected on the boundary.
The points that the molecule encountered the boundary are denoted by X

(m)
i

(m = 1, 2, . . .) and the direction of the molecule having impinged on the point
X

(m)
i by l

(m)
i , where m is numbered in the order from the nearest past point

(Fig. 2.5). That is, let X
(0)
i = Xi and l

(0)
i = li, and then the sequences X

(m)
i and

l
(m)
i (m = 1, 2, . . .) are determined successively from m = 1 as follows: X

(m)
i is

the first intersection of the half-line X
(m−1)
i − l

(m−1)
i s with the boundary, where

s is a positive parameter, and

l
(m)
i = l

(m−1)
i − 2l

(m−1)
j n

(m)
j n

(m)
i , (2.40)

where
n

(m)
i = ni(X(m)).

If |X(m)| = ∞ at some m, the sequence is terminated at this stage. The
sequence is uniquely determined by Xi and li. From the definition of l

(0)
i and

X
(1)
i , l

(0)
i n

(1)
i > 0. Then from Eq. (2.40),

|l(m)
i | = 1, l

(m)
i n

(m)
i < 0, l

(m)
i n

(m+1)
i > 0. (2.41)

From Eqs. (2.38) and (2.39a), with the notation introduced above, the velocity
distribution function at (X, ξl) is expressed as

f(X, ξl) = α(X(1))σ(X(1))β(X(1))2 exp[−β(X(1))ξ2]

+ [1 − α(X(1))]f(X(1), ξl(1)), (2.42)

10The σ introduced here is related to σw in Eq. (2.15b) by σ = σw/π3/2β1/2.
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Figure 2.5. Path of a specularly reflecting molecule and X
(m)
i , l

(m)
i , and n

(m)
i .

where
β(X(1)) =

1

2RTw(X(1))
,

and the relation (2.40) is used. The function f(X(1), ξl(1)) in the last term
on the right-hand side of Eq. (2.42) is the velocity distribution function of
the molecules impinging on X(1). By a similar procedure, this is replaced by
f(X(2), ξl(1)) of the molecules leaving X(2) and the boundary condition is ap-
plied to the result. Repeating this process, we obtain the following expression
for f(X, ξl):

f(X, ξl) = α(1)σ(1)M(1) + (1 − α(1))α(2)σ(2)M(2)

+ (1 − α(1))(1 − α(2))α(3)σ(3)M(3) + · · ·

=
∞∑

m=1

m−1∏
h=1

(1 − α(h))α(m)σ(m)M(m), (2.43)

where

M(m) = β2
(m) exp(−β(m)ξ

2), α(m) = α(X(m)),

β(m) = β(X(m)) = 1/2RTw(X(m)), σ(m) = σ(X(m)),

}
(2.44)

and the convention
∏0

h=1(1 − α(h)) = 1 is used. If |X(N)| = ∞, the series ends
at the N -th term and the last term is given by

∏N−1
h=1 (1−α(h))f(X(N), ξl(N−1)),

where f(X(N), ξl(N−1)) is the velocity distribution function at infinity.
The series (2.43) is constructed in such a way that it satisfies the basic

equation (2.38) and the boundary condition (2.39a). However, σ(X) in the
series is, by definition, an undetermined function depending on the velocity
distribution function of the molecules impinging on the boundary point X.
Substituting the series (2.43) into Eq. (2.39b), we obtain an integral equation
for σ(X). Now we assume that the velocity distribution function at infinity is
given by

f(∞, ξl) = Cβ2
∞ exp(−β∞ξ2), (2.45)
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where (i) the bold ∞ is used to discriminate the position at infinity, (ii) C
is an arbitrary constant, (iii) β∞ may depend on the position at infinity and
l, which allows the situation where many reservoirs extending to infinity are
connected by pipes, and (iv) the condition (2.45) is applied only to such l that
no boundary is encountered if one proceeds in the −l direction from the point
under consideration. Under this assumption on the condition at infinity, we will
show that

σ(X) = C (2.46)

is the solution of the integral equation.
Putting σ(m) = C and applying the condition (2.45) when |X(N)| = ∞ in

the series (2.43), we have

f(X, ξl) = C[α(1)M(1) + (1 − α(1))α(2)M(2)

+ (1 − α(1))(1 − α(2))α(3)M(3) + · · · ], (2.47)

where α(N) = 1 when |X(N)| = ∞. Substituting this expression into Eq. (2.39b),
we have

σ(X) = − 2
π

∫
ljnj<0
0<ξ<∞

liniξ
3f(X, ξl)dξdΩ(l)

= −2C

π

∫
liniξ

3[α(1)M(1) + (1 − α(1))α(2)M(2)

+ (1 − α(1))(1 − α(2))α(3)M(3) + · · · ]dξdΩ

= −C

π

∫
ljnj<0

lini[α(1) + (1 − α(1))α(2) + (1 − α(1))(1 − α(2))α(3) + · · · ]dΩ

= C,

where dΩ(l) is the solid angle element in the direction of l, the facts that α(m)

is independent of ξ and that
∫∞
0

ξ3M(m)dξ =
∫∞
0

ξ3β2
(m) exp(−β(m)ξ

2)dξ = 1/2
are to be noted in the process from the second equation to the third, and the
series α(1) + (1− α(1))α(2) + (1− α(1))(1− α(2))α(3) + · · · converges to unity.11

Thus, we find that σ(X) = C is the solution of the integral equation.
From the preceding discussion, we find that the series

f(X, ξl) = C
∞∑

m=1

m−1∏
h=1

(1 − α(h))α(m)M(m), (2.48)

with the convention : α(N) = 1 when |X(N)| = ∞,

11For 0 < ε ≤ α ≤ 1 (ε is a constant), all the terms of the series are non-negative and it is
uniformly convergent with respect to X and l. We can see that the series converges to unity
from the following form of the series:

α(1) + (1 − α(1))[1 − (1 − α(2))] + (1 − α(1))(1 − α(2))[1 − (1 − α(3))] + · · · ,

obtained by rewriting α(m) at the m-th term as 1 − (1 − α(m)).
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is the solution of the boundary-value problem [Eqs. (2.38), (2.39a), and (2.45)].
The constant C is determined (i) by the density or pressure at infinity in an
infinite domain problem [see Eq. (2.45)] or (ii) by the total mass of the system
or the density or pressure at a specified point in a bounded domain problem.
Here, the velocity distribution function is expressed by the temperatures and
accommodation coefficients at the boundary points that are encountered when
we trace back the path of the specularly reflecting molecules. The series (2.48)
converges uniformly with respect to X and l when 0 < ε ≤ α ≤ 1 and 0 < δ ≤
Tw (ε and δ are constants). The error estimate of its truncated series is easy,
and the series converges rapidly when α is not too small. In the case of the
diffuse reflection (α = 1), only the first term of the series remains, i.e.,

f(X, ξl) = CM(1). (2.49)

This formula is applicable when only the part of the boundary that can be seen
from the point X is diffusely reflecting.

2.5.2 Condition of applicability

Obviously from the derivation of the solution (2.48), it is applicable without
restriction for a bounded domain problem. In an infinite domain problem,
according to the assumption (2.45), the velocity distribution function of the
molecules starting at infinity is required to be given by

f = Cβ2
∞ exp(−β∞ξ2), (2.50)

where β∞ may depend on l and the position at infinity.

2.5.3 Macroscopic variables

Macroscopic variables, density, flow velocity, temperature, etc., are expressed by
some moments of the velocity distribution function. Three-dimensional integra-
tions there being carried out in spherical-coordinate variables, the integration
with respect to ξ can be carried out without specifying the problem explicitly
as follows:∫

ξi1 ξi2 · · · ξih
fdξ =

∫
ξi1 ξi2 · · · ξih

fξ2dξdΩ(l)

= CEh+2

∫
li1 li2 · · · lih

(
α(1)β

(1−h)/2
(1) + (1 − α(1))α(2)β

(1−h)/2
(2)

+ (1 − α(1))(1 − α(2))α(3)β
(1−h)/2
(3) + · · ·

)
dΩ, (2.51)

where dΩ(l) is the solid angle element in the direction of l and

Eh =
∫ ∞

0

ξh exp(−ξ2)dξ,

E2n =
1 · 3 · · · (2n − 1)

2n+1

√
π, E0 =

√
π

2
, E2n+1 =

n!
2

, E1 =
1
2
.
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2.5.4 Flow velocity

Flow velocity, which corresponds to the case h = 1 in Eq. (2.51), is found
to be zero with the aid of the formula α(1) + (1 − α(1))α(2) + (1 − α(1))(1 −
α(2))α(3) + · · · = 1.12 Thus, no flow is induced irrespective of the distributions
of temperature and accommodation coefficient on the boundary at rest (or the
bodies and boundary walls) in any bounded-domain system, which is enclosed by
an outer boundary, or in an unbounded-domain system where the conditions at
infinities are given by Eq. (2.50), e.g., a common equilibrium state at rest. This
is not an obvious matter. In a rarefied gas, it is known that various kinds of flows
are induced by temperature fields, such as thermal creep flow, thermal stress
flow, flow induced around the edge of a heated plate, and thermal transpiration
(see Chapters 3 and 5). The above-mentioned result shows that these flows
induced owing to gas rarefaction vanish in the limit of high gas rarefaction.
Even in the absence of flow, as will be shown in Section 2.5.7, an interaction
force generally acts between bodies with different temperatures or a propulsion
force acts on a nonconvex body even if it is heated uniformly. In a gas in the
continuum limit, vi = 0 and p = const is a solution in the situation under
consideration (see Section 3.3) and no force acts on a body in the gas.13

2.5.5 Principle of superposition

Let the boundary (body, surrounding wall, infinity) consist of n parts B1, B2,
. . . , Bn. We try to express the effect of temperature of each boundary Bm

separately. We express the solution (2.48) in a little different form

f = C
∞∑

m=1

m−1∏
h=1

(1−α(h))α(m)M(m) + C
∞∑

m=1

m−1∏
h=1

(1−α(h))α(m)M0 − f0, (2.52)

where

f0 = CM0, M0 = β2
0 exp(−β0ξ

2), β0 =
1

2RT0
, T0 = const.

Here, f0 is the solution of the problem when the boundary is at uniform temper-
ature T0 (i.e., the system is in the uniform equilibrium state at rest with tem-
perature T0). The series in the second term on the right-hand side of Eq. (2.52)
is another expression of f0.

We further transform f given by Eq. (2.52) in the following way. For a given
set of (X, ξl), let X(mk) (k = 1, 2, . . .) among X(m) (m = 1, 2, . . .) be on the
boundary B1. Interchange the mk terms in the first series and those in the
second on the right-hand side of Eq. (2.52). This being performed for all the set

12See Footnote 11 in Section 2.5.1.
13The same result is derived from the Navier–Stokes set of equations.
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of (X, ξl), f in Eq. (2.52) is rewritten as

f = f(1) + f (1) − f0, (2.53a)

f(1) = C
∞∑

m=1

m−1∏
h=1

(1 − α(h))α(m)M̄
(m)
1 , (2.53b)

f (1) = C
∞∑

m=1

m−1∏
h=1

(1 − α(h))α(m)M̄
(m)
2 , (2.53c)

M̄
(m)
1 =

{
M(m) (m �= mk),
M0 (m = mk),

M̄
(m)
2 =

{
M0 (m �= mk),
M(m) (m = mk).

(2.53d)

Here, f(1) is the solution in the case where the temperature of B1 is T0 and the
temperature distributions on the other boundaries Bi (i = 2, . . .) remain in their
original distributions, and f (1) is the solution in the case where the temperature
distribution on B1 remains in the original one and the temperatures on the other
boundaries Bi (i = 2, . . .) are all T0.

The process from Eq. (2.52) to Eq. (2.53d) is applied to f(1) with appropriate
replacements (e.g., B1 by B2 and therefore X(mk) is on B2), and so on. Then,
we have

f = f (1) + f (2) + · · · + f (n) − (n − 1)f0. (2.54)

Here, f (m) (m = 1, 2, . . . , n) is the solution on the same geometrical problem
where the temperature distribution on the boundary Bm is kept at the original
one, but the temperature distributions on the other boundaries (B1, B2, . . . , Bn

except Bm) are changed to a uniform temperature T0 with the accommodation
coefficient α of the boundaries kept at its original value; and f0 is the solution
of the problem where all the boundaries are set at a uniform temperature T0. It
may be noted that the common constant C in the solution f (1), f (2), etc. has a
common meaning in each solution in an infinite domain problem [see Eq. (2.50)].
In a bounded domain problem, the meaning of C generally depends on f (1), f (2),
etc.

Let Bs be a closed (or bounded) body. Then the force F
(s)
i acting on the

body Bs is given by

F
(s)
i = F

(s,1)
i + F

(s,2)
i + · · · + F

(s,n)
i , (2.55)

where F
(s,m)
i is the force acting on the body Bs in the situation corresponding

to f (m). The contribution from the f0 term vanishes because f0 is a uniform
Maxwellian.

2.5.6 Simple applications

Reservoirs joined by various pipes

Equation (2.50) is an additional condition for the series (2.48) to be the solu-
tion in the case where the domain extends to infinity, and thus it limits the
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A: TA, pA(∞)

(∞)

B: TB, pB

ZE

ZE

ZE

Figure 2.6. Two reservoirs joined by pipes. The reservoir A is in the equilibrium state
at rest with temperature TA and pressure pA and the reservoir B is in the equilibrium
state at rest with temperature TB and pressure pB . They are joined by various pipes.
The temperature of the wall of reservoir A is TA and that of the reservoir B is TB

except in a finite region ZE in the neighborhood of the entrance of the pipes.

applicability of the solution. In return, from this restriction, we can derive the
condition that keeps a gas at rest (or in a state without flow) between reservoirs
with different temperatures. Two large reservoirs, one, say A, in the equilibrium
state at rest with temperature TA and pressure pA and the other, say B, in the
equilibrium state at rest with temperature TB and pressure pB , are joined by
pipes (Fig. 2.6).14 The temperature of the reservoir wall may differ from TA

on the side of the reservoir A or from TB on the side of B in a finite region
in the neighborhood of the entrance of the pipes. When the solution (2.48)
is applicable, or the state of the gas at infinity is given by Eq. (2.50), no flow
occurs in this system. In the present case, the velocity distribution function at
infinity is compatible with Eq. (2.50), if β∞ = 1/2RTA in A and β∞ = 1/2RTB

in B. Then, the pressure pA in A and that pB in B are given, respectively, by
π3/2C

√
RTA/2 and π3/2C

√
RTB/2. Eliminating C from these relations, we

obtain the condition under which no flow occurs between reservoirs A and B as
follows:

pA√
TA

=
pB√
TB

. (2.56)

This relation applies irrespective of the condition of the pipes, i.e., the shape
and number of the pipes or the distributions of temperature and accommodation
coefficient along the pipes. The condition (2.56) is known for a long time for two

14The states at infinity of the reservoirs are easily seen to be the (full) Maxwellians in the
case of Fig. 2.6, because the velocity distribution function of the molecules reflected on the
plane wall outside ZE region is the mirror image of that of the impinging molecules from
infinity (see the discussion in the last paragraph of Section 2.1).
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Figure 2.7. A convex body B coexisting with diffusely reflecting bodies.

special cases where the connection between the reservoirs is a slit or a straight
pipe with specularly reflecting wall (see, for example, Section 2.3.2 and Kogan
[1969]).

A convex body coexisting with diffusely reflecting bodies

A convex body, say, B, (temperature T1, accommodation coefficient αB ; T1 and
αB are constants) and several diffusely reflecting bodies (temperature T0) lie in
an infinite expanse of a uniform gas at rest with temperature T0 and pressure
p0 (Fig. 2.7). The shapes, sizes, number, and arrangement of the bodies are
arbitrary except that the body B is convex. For this situation, the solution is
expressed by the series (2.48).

The velocity distribution function of the molecules leaving infinity is

f = CM0, (2.57a)

M0 = β2
0 exp(−β0ξ

2), β0 =
1

2RT0
, C = 2π−3/2p0(2RT0)−1/2. (2.57b)

From Eq. (2.49), the velocity distribution of the molecules leaving the diffusely
reflecting bodies is also given by Eq. (2.57a). Therefore, the velocity distribution
of the molecules impinging on the body B is given by

f = CM0 (lini < 0). (2.58)

From Eq. (2.48), the velocity distribution function of the molecules leaving the
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body B is given by

f = C[αBM1 + (1 − αB)M0] (lini > 0), (2.59a)

M1 = β2
1 exp(−β1ξ

2), β1 = 1/2RT1. (2.59b)

From Eqs. (2.58) and (2.59a), the force Fi acting on the body B and the energy
ET leaving B per unit time are given as follows:

Fi = 0, (2.60)

ET =
p0(2RT0)1/2

√
π

(
T1

T0
− 1

)
αBSB , (2.61)

where SB is the surface area of the body B. The force (2.60) and the energy
transfer (2.61) are independent of the shape of the body B and the shapes, sizes,
arrangement, and number of the diffusely reflecting bodies.

2.5.7 Forces acting on heated bodies in a free
molecular gas

A group of diffusely reflecting bodies

Consider a system where a group of bodies lie in an infinite expanse of a uni-
form stationary gas in equilibrium at temperature T0 and pressure p0. The gas
molecules make the diffuse reflection on the bodies. Then the following propo-
sitions hold:
Proposition 2.1. If all the bodies are heated (or cooled) at the same uniform
temperature (say, T1), neither force nor moment of force acts on the system of
the bodies as a whole.
Proof. First consider the case where the temperature of the bodies is the same
as that of the gas, i.e., T1 = T0. Then, obviously, the gas is in the uniform
equilibrium state at rest with temperature T0 and pressure p0, and neither force
nor moment of force acts on each body. The force acting on a surface element
dS of a body is

−pijnjdS = −p0nidS,

which is the same as that due to static pressure. The contribution of the
molecules (ξknk < 0) impinging on dS to the force is the same as that of
the molecules (ξknk > 0) leaving dS. That is,

−pijnj(ξknk < 0)dS = −1
2
p0nidS, (2.62)

−pijnj(ξknk > 0)dS = −1
2
p0nidS. (2.63)

The contribution of each of them to the force on the body as a whole, which is
obtained by integrating it over the body, obviously vanishes. The same argument
applies to the moment of force.
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With this preparation, consider the case where the temperature T1 of the
bodies is different from that of the gas, i.e., T1 �= T0. The velocity distribution of
the molecules leaving dS being given by Eq. (2.49) with C = 2π−3/2p0(2RT0)−1/2,
their contribution to the force on it is given by

−pijnj(ξknk > 0)dS = −1
2
p0ni

(
T1

T0

)1/2

dS. (2.64)

The contribution of this force to the force on the body as a whole obtained by
integrating over the body also vanishes as that of Eq. (2.63). The contribution
of the impinging molecules can be split into two parts, that of the molecules
impinging from infinity and that from the bodies (the other part of the body and
the other bodies). The former is the same as that of the case when T1 = T0. The
latter contribution summed up over all the bodies is shown to vanish irrespective
of the value of T1 in the next paragraph. Therefore, the contribution of the
impinging molecules is also the same as that when T1 = T0. Thus, neither force
nor moment of force acts on the system.

Owing to Eq. (2.49), the contribution to the force on the surface element dS
at XB

i by the molecules impinging on dS from another surface element dS(1) at
X

(1)
i on the bodies is given by

−C

(∫ ∞

0

ξ4M1dξ

)
lilknklhn

(1)
h dS(1)

(XB
j − X

(1)
j )2

dS = −3
√

πClilknklhn
(1)
h β

−1/2
1 dS(1)dS

8(XB
j − X

(1)
j )2

,

(2.65)

M1 = β2
1 exp(−β1ξ

2), β1 = 1/2RT1,

where li is the unit vector of the direction from X
(1)
i to XB

i , and ni and n
(1)
i

are, respectively, unit normal vectors to dS and dS(1) (Fig. 2.8); the line of
force lies on the line defined by the points XB

i and X
(1)
i . The contribution to

the force on dS(1) by the molecules impinging on dS(1) from dS is, obviously
from the symmetry, given by replacing li by −li (see Fig. 2.8). Thus, the two
contributions are equal in magnitude, opposite in direction, and on the same
line of force. Summing up the contribution as the pair over all the bodies, the
two contributions cancel out each other irrespective of the temperature T1. �
Corollary. When the number of bodies is one, the body is subject to neither
force nor moment of force.
Corollary. When the number of bodies is two, the force and the moment of
force on a body and those on the other are equal in magnitude and opposite in
direction.
Proposition 2.2. The temperature is uniform on each body, but it may differ
depending on the bodies. Then, the force and the moment of force on a body in
the system do not depend on its own temperature.
Proof. Take a body (say, B1), and examine the dependence of the force acting
on B1 on the temperature of B1. The velocity distribution of the molecules
leaving the surface element dS of B1 is isotropic and independent of the position
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Figure 2.8. Reciprocity relation of the interaction between the surface elements dS
and dS(1).

on B1. Therefore, the contributions of these molecules to the force and the
moment of force on B1 vanish, irrespective of the temperature of B1. Among
the molecules impinging on dS of B1, only those that come from the other part
of B1 depend on the temperature of B1. The contributions of those molecules to
the force and the moment of force being calculated as the pair of dS and dS(1)

as was done in the proof in Proposition 2.1, they are found to vanish. Therefore,
the force and the moment of force on B1 are independent of the temperature
of B1. �
Corollary. When only one of the bodies has a temperature different from T0,
the body is subject to neither force nor moment of force.

As examples of interaction force of a specific problem, simple formulas for
two parallel cylinders and for two spheres are given here. Two parallel cylinders
1 and 2 (or spheres 1 and 2) lie in a uniform gas at rest with temperature T0

and pressure p0. The cylinder 1 (or sphere 1) has a uniform surface temperature
T1 and radius r1, and the other T2 and r2. The distance between the axes (or
centers) of the two cylinders (or spheres) is D. Then, cylinder 1 (per unit
length) is subject to the force of the following magnitude F (including sign) in
the direction from the axis of cylinder 2 to that of cylinder 1 and normal to the
axes:

F = (4r1r2/πD) p0(
√

T2/T0 − 1). (2.66)

Sphere 1 is subject to the force of the following magnitude F (including sign)
in the direction from the center of sphere 2 to that of sphere 1:

F = (3π/4)(r1r2/D)2p0(
√

T2/T0 − 1). (2.67)

The negative value of F in these formulas means that the direction of force is
from cylinder 1 (sphere 1) to cylinder 2 (sphere 2).
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Figure 2.9. Propulsion force on a �-shaped body I. (a) Heated �-shaped body and
(b) �-shaped body with a convex outer cover. The dotted line abcda ······· in panel (a)
is the control surface.

Various simple formulas are derived for the diffuse-reflection boundary con-
dition. In the following examples, however, we will see that the forces on a body
degenerate to vanish for the diffuse or specular-reflection condition. Thus, the
result of a problem under the diffuse-reflection condition cannot be taken as the
typical feature of the problem in a free molecular gas.

Propulsion force on a heated body

Consider a uniformly heated body with a uniform accommodation coefficient
in a uniform gas at rest. If the body shape is convex, it is seen that neither
force nor moment of force acts on the body (Section 2.5.6). We will show, with
examples, that a uniformly heated body is subject to a force when it is not of a
convex shape.

-shaped body A 
-shaped two-dimensional body shown in Fig. 2.9 lies in a
gas in the uniform equilibrium state at rest with pressure p0 and temperature
T0. The temperature T1 and accommodation coefficient α1 of the body are both
uniform.

The molecules impinging on the outer side of the body all come from infinity,
and therefore their velocity distribution is

f = CM0 (lini < 0), (2.68)

M0 = β2
0 exp(−β0ξ

2), β0 =
1

2RT0
, C = 2π−3/2p0(2RT0)−1/2.
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Figure 2.10. Propulsion force on �-shaped body II. (a) The relation between N and
l2/l1 and (b) the force acting on the heated �-shaped body.

The velocity distribution of the molecules leaving the outer surface is

f = C[α1M1 + (1 − α1)M0] (lini > 0), (2.69)

M1 = β2
1 exp(−β1ξ

2), β1 =
1

2RT1
.

The molecules entering the mouth ad (l1 > 0) all come from infinity. Thus,

f = CM0 (l1 > 0) on ad. (2.70)

According to Eq. (2.48), the velocity distribution of the molecules going out
from the mouth ad is given by

f = C{[1 + (1 − α1) + · · · + (1 − α1)N−1]α1M1 + (1 − α1)NM0}
= C[M1 + (1 − α1)N (M0 − M1)] (l1 < 0) on ad, (2.71)

where N is the positive integer that satisfies |X(N+1)| = ∞, that is, when we
trace back the path of the specularly reflecting molecule with velocity ξli from
the point Xi on the mouth ad, we reach infinity after N encounters on the inner
wall of the body. The integer N is determined uniquely and simply by Xi and
li with the aid of Fig. 2.10 (a). Figure 2.10 (a) shows the body abcd, its mirror
images, and their successive images. The integer N is given as the number of
intersection of the half-line from the point Xi in the direction of −li with the
body or the mirror images, because this line is made from the mirror images
of the path of the specularly reflecting molecule. Simply from Fig. 2.10 (a), the
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integer N is given by

(N − 1)D ≤ 2Ll2l
−1
1 + s < ND (l2 ≤ 0),

−(N − 1)D ≤ 2Ll2l
−1
1 + s < −(N − 2)D (l2 ≥ 0),

(N = 1, 2, 3, . . .),

where s is the distance from Xi to the edge point d.
Taking the control surface abcda enclosing the body abcd, and calculating

the momentum flow per unit time through it with the velocity distribution
function obtained above, i.e., Eqs. (2.68)–(2.71), we obtain the force Fi acting on
the 
-shaped body abcd per unit length in the X3 direction as follows (Tanaka
& Sone [1987]):

F1[
(T1/T0)1/2 − 1

]
p0D

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α2

1(1 − α1)
π

∞∑
j=1

(1 − α1)j−1jArctan
(

2L

jD

)
(α1 �= 0),

0 (α1 = 0),

F2 = F3 = 0.

The force F1 vs α1 for various L/D is shown in Fig. 2.10 (b).
The shape of the outer surface of the body is not important, if it is convex

and cannot be seen from inside of the mouth ad, as shown in Fig. 2.9 (b).
All the molecules impinging on the outer surface come from infinity, and their
velocity distribution is given by Eq. (2.68); thus, the velocity distribution of the
molecules leaving there is given by Eq. (2.69). These give a force normal to
the surface element and uniform over the outer surface, and thus its integration
over the outer surface is independent of its shape. For the above class of the
outer surface, the molecules entering the mouth ad are not affected by the outer
surface and all come from infinity as in the original 
-shaped body. Therefore,
the force on the body is independent of its shape.

Let us consider the physical mechanism by which a propulsion force acts on
a heated nonconvex body. The average of the kinetic energy of a molecule in
a gas at rest is proportional to the temperature of the gas. Thus, the average
speed of the molecules that have made the diffuse reflection on the heated body
is faster than that of the molecules at infinity. Hereafter, for simplicity, we
call them fast molecules. The molecules coming, from outside, to the control
surface abcda enclosing the 
-shaped body are all from infinity in the uniform
equilibrium state, and their momentum flow through the control surface is zero.
According to the Maxwell-type boundary condition, the α1 part of the molecules
going out from the part ab, bc, and cd of the control surface are fast molecules.
These are the molecules that have made the diffuse reflection on the body.
The molecules that make the specular reflection keep their speed. Some of
the molecules entering through the mouth ad collide with the inner surface of
the body more than once before they go out through the mouth ad. When
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molecules collide with the body, the fast molecules remain fast, but the α1 part
of the slow molecules become fast. Thus, the fast molecules increase at every
collision. Therefore, more than the α1 part of the molecules entering the mouth
ad become fast when they go out there. Owing to the extra fast molecules, the
momentum outflow through the control surface abcda by the molecules going out
there has a −X1 component. No momentum flow being carried by the incoming
molecules, the above momentum outflow is the total momentum outflow from
abcda by all the molecules passing the control surface. As its reaction, the body
is subject to a force in the X1 direction. For the specular reflection (α1 = 0),
all the molecules are not subject to change of their speed by collision with the
body, and the velocity distribution function is the uniform Maxwellian given by
that at infinity; for the diffuse reflection (α1 = 1), all the molecules become fast
by the first collision with the body, and thus there is no effect of multicollisions.
Therefore, the force on the body vanishes in the two limiting cases.

Two other examples are given here.
V-shaped body Consider a uniformly heated V-shaped body with temper-
ature T1 and accommodation coefficient α1 in a gas at temperature T0 and
pressure p0 shown in Fig. 2.11 (a). The force Fi acting on the body per unit
length in the X3 direction is given as

F1[
(T1/T0)1/2 − 1

]
p0D

=
α1

4π

⎛⎝(2 − α1)
m∑

j=1

(1 − α1)j−1(π − jφ)(1 + cos jφ)

− α1 cot
φ

2

m∑
j=1

(1 − α1)j−1(π − jφ) sin jφ

⎞⎠ ,

F2 = F3 = 0,

where D and φ are, respectively, the width of the mouth and the opening
angle of the two plates, and m is the maximum positive integer smaller than
π/φ (Tanaka & Sone [1987]). The force F1 vs α1 for various φ is shown in
Fig. 2.11 (b).
Cylindrical shell The force acting on a uniformly heated cylindrical shell
[Fig. 2.12 (a)] is shown in Fig. 2.12 (b), where Fi = (F1, 0, 0) is the force on
the shell per unit length in the X3 direction, T1, α1, r, and θ are, respectively,
the temperature, accommodation coefficient, radius, and opening angle of the
cylindrical shell, and T0 and p0 are, respectively, the temperature and pressure
of the gas at infinity (Aoki, Sone & Ohwada [1986]).

Heated body in a gas bounded by a plane wall

Consider a semi-infinite expanse of a uniform gas (pressure p0 and temperature
T0) bounded by a plane wall W with temperature T0 and accommodation coef-
ficient αw, which is also constant. A heated (or cooled) flat plate P (width L,
length infinite, temperature T1, and accommodation coefficient αp; T1 and αp :
constants) lies in the gas, parallel to the wall and at the distance D from the
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Figure 2.11. Heated V-shaped body and the force acting on it. (a) V-shaped body
and (b) the force acting on it.

1
1

Figure 2.12. Cylindrical shell and the force acting on it. (a) Cylindrical shell and
(b) the force acting on it.
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Figure 2.13. Flat plate in a gas bounded by a plane wall and the force acting on the
plate. (a) A flat plate in a gas bounded by a plane wall and (b) the force acting on
the plate.

wall [Fig. 2.13 (a)]. The force Fi acting on the plate per unit length in the X3

direction is obtained analytically in the following form:

F2[
(T1/T0)1/2 − 1

]
p0L

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
αp(2 − αp)(1 − αw)

π

∞∑
n=0

rnArctan
L

2(n + 1)D
(αp �= 0 or αw �= 0),

0 (αp = αw = 0),

F1 = F3 = 0,

where
r = (1 − αp)(1 − αw),

and F2 is the component normal to the plate in the direction from the wall
to the plate. The force F2[(T1/T0)1/2 − 1]−1(p0L)−1 vs αp for L/D = 2 and
L/D = 20 and for various αw is shown in Fig. 2.13 (b).

When the plate is heated (T1 > T0), some of the fast molecules that have
made diffuse reflection on the wall side of the plate P return to the plate after
being reflected on the wall W. Those that have made specular reflection return
with the same speed as before. These faster molecules give extra impulse to the
wall side of the plate.

The analytical result when the plate is inclined is given in Sone & Tanaka
[1986].
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Figure 2.14. System of four cylinders.

Interaction force between heated bodies

Consider the system consisting of four cylinders shown in Fig. 2.14. The force
(F1, F2) acting on each cylinder per its unit length is shown in Table 2.1 for
the case where its temperature is shown in the figure (Aoki, Sone & Ohwada
[1986]). In the table, (F̂1, F̂2) is the nondimensional force defined by

(F̂1, F̂2) =
(F1, F2)[

(Tc/T0)1/2 − 1
]
p0r

.

With the aid of the formula (2.55), the results for arbitrary combination of the
temperatures of the cylinders can be obtained from the data in the table.

2.6 Effect of intermolecular collisions

Up to this point in the chapter, we have discussed the free molecular gas, where
the intermolecular collisions are neglected. In this section, we will discuss the
correction to the free molecular solution due to molecular collisions when the
Knudsen number is large but finite.

The solution f̂ of the Boltzmann equation (1.47a) for large Knudsen numbers
(or k � 1) is looked for in a power series of k−1, i.e.,

f̂ = f̂F +
1
k

f̂1 + · · · , (2.72)
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Table 2.1. Forces acting on the four cylinders (see Fig. 2.14).

h/r = 0.8 h/r = 1.5 h/r = 2

α F̂1 F̂ 2 F̂1 F̂ 2 F̂ 1 F̂2

0.25 0.1249 0 0.0425 0 0.0257 0

C1 0.5 0.1215 0 0.0471 0 0.0294 0

0.75 0.0707 0 0.0296 0 0.0190 0

1 0 0 0 0 0 0

0.25 −0.1217 0.2141 −0.0819 0.1140 −0.0674 0.0872

C2 0.5 −0.2180 0.3016 −0.1513 0.1859 −0.1252 0.1473

0.75 −0.2942 0.3404 −0.2088 0.2300 −0.1735 0.1875

1 −0.3537 0.3537 −0.2547 0.2547 −0.2122 0.2122

0.25 −0.1955 0 −0.1089 0 −0.0842 0

C3 0.5 −0.2748 0 −0.1791 0 −0.1433 0

0.75 −0.3150 0 −0.2249 0 −0.1845 0

1 −0.3390 0 −0.2547 0 −0.2122 0

where f̂F is the solution of the free molecular gas, i.e., ∂f̂F /∂t̂+ ζi∂f̂F /∂xi = 0.

Then, f̂1 is determined by the equation

∂f̂1

∂t̂
+ ζi

∂f̂1

∂xi
= Ĵ(f̂F , f̂F ), (2.73)

where the Strouhal number Sh is taken to be unity. Integrating along the char-
acteristic (xi − ζit̂ =const) of Eq. (2.73), we have

f̂1(x, ζ, t̂) = f̂1(x − ζ(t̂ − t̂0), ζ, t̂0) +
∫ t̂

t̂0

Ĵ(f̂F , f̂F )(x−ζ(t̂−τ),ζ,τ)dτ, (2.74)

where the subscript (x − ζ(t̂ − τ), ζ, τ) indicates that the standard argument
(x, ζ, τ) of Ĵ(f̂F , f̂F ) is replaced by it, and t̂0 is given in the following way:
Let (x, ζ, t̂) be given. If we trace back a particle with velocity ζ from (x, t̂),
we encounter some point on the boundary at some time t̂B(x, ζ, t̂) before the
initial time t̂ = 0, or do not encounter any point on the boundary until the
initial time.15 We take t̂0 = t̂B in the former case and t̂0 = 0 in the latter. In a
time-independent case, the corresponding expression is

f̂1(x, ζ) = f̂1(x − sBζ/ζ, ζ) +
∫ sB

0

1
ζ
Ĵ(f̂F , f̂F )(x−sζ/ζ,ζ)ds, (2.75)

where the subscript (x − sζ/ζ, ζ) indicates that the standard argument (x, ζ)
of Ĵ(f̂F , f̂F ) is replaced by it, and sB is the distance from x to the nearest

15In this process, no molecular collision is considered. That is, we trace back the character-
istic of Eq. (2.73) (see, e.g., Courant & Hilbert [1961], Garabedian [1964], or Zachmanoglou
& Thoe [1986] for the definition of the characteristic).
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point on the boundary in the −ζ direction. The first term on the right-hand
side of Eq. (2.74) or (2.75) is the velocity distribution function in the initial or
boundary condition. The integral equation for the velocity distribution function
of the molecules impinging on (or the molecules leaving) the boundary is derived
in the way that the corresponding equation in the free molecular gas is done
(Sections 2.3.3 and 2.4); a new term determined by the free molecular solution
f̂F enters the equation as an inhomogeneous term.

There are some points to be discussed in this solution by simple pertur-
bation. The integral in Eq. (2.75) obviously diverges as ζ → 0.16 Thus, the
velocity distribution function is singular, and therefore it deviates largely from
the free molecular solution f̂F for small ζ. This is because the free path for slow
molecules is so small even for large Knudsen numbers that the collision effect
is not negligible (the effective Knudsen number for slow molecules is not large
but even small). The macroscopic variables, obtained by integrating the veloc-
ity distribution function over the molecular velocity ζ space, are finite for sB

bounded or in bounded-domain problems, because three-dimensional integration
of a function with the singularity ζ−1 over the space ζ converges. The singular-
ity in the velocity distribution function appears in the macroscopic variables as
the singularity x lnx (x : the distance from the boundary) in a neighborhood of
the boundary (Grad [1969], Sone [1964, 1965]).

The singular character of small effective Knudsen number for slow molecules
spreads out over fast molecules in infinite-domain problems, where molecules
travelling long distances have many chances of molecular collision. Consider a
time-independent solution in an infinite domain. Unless the gas is in an equi-
librium state [Ĵ(f̂F , f̂F ) �= 0] at infinity, the integral in Eq. (2.75) diverges for
x and ζ for which sB = ∞. Thus, the free molecular solution f̂F is not taken
as the zeroth-order solution, however large the Knudsen number may be. This
situation occurs when we consider the case where the bodies in the gas extend
up to infinity, for example, in a half-space problem.17 Next, consider the case
where the gas is in a uniform equilibrium state (say, f̂F∞) at infinity and bod-
ies are arranged in a bounded region. Then, f̂F at an arbitrary point deviates
from f̂F∞ only for the molecules coming from the body region, which is only
within the solid angle viewing the bodies. This solid angle vanishes with dis-
tance from the bodies as (x2

1 + x2
2)

−1/2 in the two-dimensional problem18 and
as (x2

1 + x2
2 + x2

3)
−1 in the three-dimensional case, and therefore, the moment

of the difference f̂F − f̂F∞ with respect to ζ decays similarly. The collision
integral Ĵ(f̂F , f̂F ) in the integral in Eq. (2.75) has both features of f̂F − f̂F∞
and its moment, i.e., a finite difference within a small limited range of the

16When the time-independent solution is derived from Eq. (2.74), we have to trace back
until the particle reaches the boundary without limiting t̂0 at t̂0 = 0. The integral diverges
as ζ → 0, because t̂0 → −∞ as ζ → 0, if x is not on the boundary. Incidentally, the
integral in Eq. (2.74) diverges as t̂ → ∞. Thus, the solution is, naturally, well described by
the perturbation only for a finite time.

17Its examples are given in the last paragraph but one of Section 2.3.3.
18In the two-dimensional problem, the bodies lie in a bounded region in the two-dimensional

space (x1, x2). They extend up to infinity in the x3 direction.
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direction of ζ and the small difference of integrated quantities.19 The perturba-
tions of macroscopic variables, corresponding to f̂1, are obtained by integrating
Ĵ(f̂F , f̂F ) over the whole molecular velocity space and along the characteristic.
In the two-dimensional case, the integration of Ĵ(f̂F , f̂F ) over the molecular
velocity space vanishes as (x2

1 + x2
2)

−1/2 with the increase of (x2
1 + x2

2)
1/2, and

therefore its integration along the characteristic diverges, and so do the pertur-
bations of macroscopic variables. On the other hand, the integral converges in
the three-dimensional case.

In the above discussion, the effect of molecular collisions is evaluated by
the first collisions using the free molecular velocity distribution. In an infinite-
domain problem, however, a molecule makes many collisions while travelling an
infinite distance from a boundary point to another (i.e., from a body to infinity,
from infinity to a body, and from infinity to infinity). The effect should be
more carefully evaluated using the velocity distribution function affected by the
previous collisions. The perturbation in the two-dimensional case may really
diverge or may converge depending on situations. The divergence means that
the perturbation, if it is finite, is larger than the order of k−1. In fact, it is
k−1 ln k term. We will show this under the assumption that the solution is
expressed by a perturbation, i.e., f̂ = f̂F + f̂1, where f̂1 → 0 as k → ∞.

Take Eq. (1.47a), without ∂/∂t̂, that is rewritten in the form (A.166)

ζi
∂f̂

∂xi
+

ν̂c

k
f̂ =

1
k

ĴG, (2.76)

where ν̂c and ĴG are, respectively, the corresponding nondimensional forms of
νc and JG [Eqs. (1.50)–(1.51b)]. Here, we evaluate ν̂c and ĴG using f̂F for f̂ and
denote them by ν̂F and ĴF

G , respectively. The leading equation for f̂ is given by

ζi
∂f̂

∂xi
+

ν̂F

k
f̂ =

1
k

ĴF
G . (2.77)

Let x and ζ be, respectively, the position and the molecular velocity under
consideration. The velocity distribution function f̂ at (x, ζ) is obtained by inte-
grating Eq. (2.77) along its characteristic x− sζ/ζ. Let sB , finite or infinite, be
the distance from the point x under consideration to the nearest boundary point
in the direction of −ζ/ζ and f̂sB be f̂ at that point. The velocity distribution
function f̂ is expressed in the following form depending on whether sB is finite
or infinite:

f̂(x, ζ) = f̂sB exp(−tB/kζ) +
1
kζ

∫ tB

0

ĴF
G (x − sζ/ζ, ζ)

1
ν̂F

exp(−t/kζ)dt

for finite sB , (2.78a)

f̂(x, ζ) =
1
kζ

∫ ∞

0

ĴF
G (x − sζ/ζ, ζ)

1
ν̂F

exp(−t/kζ)dt for infinite sB , (2.78b)

19The former character comes from the loss term ĴL. Confirmation of the moment character
of the gain term ĴG requires the discussion taking into account the relation between (“, “∗)
and (“′, “′∗) [see Eq. (1.48f) or more detailed explanation in Section A.2.1].
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Figure 2.15. Diagram of the situation where the effect of intermolecular collisions
is estimated. The point x under consideration and the bodies are confined in the
bounded region surrounded by the dot-dash line. The circle of radius s0 shown by
the dashed line is taken much larger than the region surrounded by the dot-dash line.
The shaded region is a body, where sB is finite. The integrals

R t0

0
and

R ∞
t0

correspond,

respectively, to the first and second terms after the second equality of Eq. (2.80).

where the arguments of ν̂F in the above integrals are the same as those of ĴF
G ,

that is, ν̂F (x − sζ/ζ, ζ), and

t =
∫ s

0

ν̂F (x − sζ/ζ, ζ)ds, tB =
∫ sB

0

ν̂F (x − sζ/ζ, ζ)ds. (2.79)

Now, take a point x in a finite region of the gas. All the bodies are within
a finite distance from x by assumption.20 The “finite” in the nondimensional
space variable means that size of the domain in which the point x under consid-
eration and the bodies lie is of the order of the reference length L in Eq. (1.43),
on which the Knudsen number Kn or k is based. Let s0 be such a distance from
the point x under consideration that all the bodies are well inside the sphere
with its center x and radius s0. This situation is depicted in Fig. 2.15.

For sB = ∞, the integral is divided into the two ranges (0, t0) and (t0,∞),
i.e.,

f̂(x, ζ) =
1
kζ

∫ ∞

0

ĴF
G (x − sζ/ζ, ζ)

1
ν̂F

exp(−t/kζ)dt

=
1
kζ

∫ t0

0

+
1
kζ

∫ ∞

t0

for infinite sB , (2.80)

where t0 is the value of t that corresponds to s0, i.e., t0 = t(s0). The first term

20See Footnote 18 in this section.
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(say, I) in the last expression of Eq. (2.80) is bounded as

I =
1
kζ

∫ t0

0

= O

(
1
kζ

)
.

For evaluation of the second term (say II), the estimate of the integrand is
required. We are considering the case where Ĵ(f̂F , f̂F ) = 0 at infinity, and
therefore,

ĴF
G∞ = ν̂F∞f̂∞.

From the behavior of f̂F for large s, explained in the fourth paragraph in this
section, we see that ĴF

G , whose character is similar to the moment of f̂F with
respect to ζ,21 approaches ĴF

G∞(or ν̂F∞f̂∞) with speed s−1 when s → ∞. Thus,
it is expressed as

ĴF
G (x − sζ/ζ, ζ) = ν̂F∞f̂∞ +

Â1

s
+ Res(ĴF

G ),

|Res(ĴF
G )| <

CG

sm
(m > 1),

⎫⎪⎬⎪⎭ (2.81a)

where Â1 is noted to depend on ζ but to be independent of x. Similarly,

ν̂F = ν̂F∞[1 + Res(ν̂F )], t = ν̂F∞s[1 + Res(t)],

|Res(ν̂F )| ≤ Cνs−1, |Res(t)| ≤ Cts
−1 ln s.

}
(2.81b)

With this expression in the second term of Eq. (2.80),

II =
∫ ∞

t0

ν̂F∞f̂∞
exp(−t/kζ)

kζν̂F
dt +

∫ ∞

t0

Â1

t

exp(−t/kζ)
kζ

dt

+
∫ ∞

t0

(
Res(ĴF

G ) +
ν̂F∞Â1

t
[Res(t) − Res(ν̂F )]

)
exp(−t/kζ)

ν̂F kζ
dt.

The last term II3 of II is simply estimated as

|II3| ≤
1
kζ

∫ ∞

t0

∣∣∣∣∣Res(ĴF
G ) +

ν̂F∞Â1

t
[Res(t) − Res(ν̂F )]

∣∣∣∣∣ 1
ν̂F

dt = O

(
1
kζ

)
.

The first term II1 and the second term II2 of II are evaluated as

II1 = f̂∞[1 + O(1/kζ)],

II2 =
1
kζ

∫ ∞

t0/kζ

Â1

x
exp(−x)dx =

Â1

kζ
ln

kζ

t0
+ O

(
1
kζ

)
=

Â1

kζ
ln kζ + O

(
1
kζ

)
.

21See Footnote 19 in this section.
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Combining the results for I and II, we have

f̂(x, ζ) = f̂∞ +
Â1

kζ
ln kζ + O

(
1
kζ

)
= f̂F (x, ζ) +

Â1

kζ
ln kζ + O

(
1
kζ

)
for infinite sB , (2.82)

where the last relation holds because f̂F (x, ζ) = f̂∞ for the present direction
of ζ, for which the characteristic extends to infinity. The k−1 ln k term is inde-
pendent of the position x, if it is finite. This does not mean that the velocity
distribution function f̂ is independent of x, because the direction for which we
can see infinity depends on x.

For ζ for which sB is finite, each term of f̂ , given by Eq. (2.78a), is estimated
as

f̂sB exp(−tB/kζ) = f̂sB + O(1/kζ),

1
kζ

∫ tB

0

ĴF
G (x − sζ/ζ, ζ)

1
ν̂F

exp(−t/kζ)dt = O

(
1
kζ

)
.

In view of the estimate (2.82) of f̂ for infinite sB , the boundary data f̂sB is
consistently taken to be22

f̂sB = f̂FsB + O((kζ)−1 ln kζ).

Therefore,

f̂(x, ζ) = f̂FsB + O

(
ln kζ

kζ

)
= f̂F + O

(
ln kζ

kζ

)
for finite sB , (2.83)

where f̂FsB is the value of f̂F at the point sB , which is equal to f̂F at the point
under consideration.

The above estimate of f̂ is based on Eq. (2.77) or Eqs. (2.78a) and (2.78b),
where the exact ĴG and ν̂c are replaced by ĴF

G and ν̂F respectively. If the
difference between f̂ and f̂F is of the order of k−1 ln k, so are the differences
between ĴG and ĴF

G and between ν̂c and ν̂F . Then, the contribution of these
differences when we replace ĴF

G and ν̂F by ĴG and ν̂c in Eqs. (2.78a) and (2.78b)
does not require the correction to Eqs. (2.82) and (2.83).23

22The f̂sB is determined by f̂ for sB finite and infinite. The above is an estimate by
consistency. Consider the case of the diffuse-reflection condition for simplicity.

23Rigorously, the integralZ ∞

0
Ĵ1

G(x − s“/ζ, “)
1

ν̂F
exp(−t/kζ)dt,

where Ĵ1
G = ĴG(f̂F , f̂1), of the correction f̂1 of the order of k−1 ln k is to be shown to be

o(ln k). For this, f̂1 for large |x| or as |x| → ∞ is to be estimated to decay fast enough as
|x| → ∞ with the aid of Eqs. (2.78a) and (2.78b).
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Now we find that the leading correction to the free molecular solution f̂F at
a point in a finite region is of the order of k−1 ln k and that it is independent of
s0. The macroscopic variables, given by the moments of f̂ , have the correction
term O(k−1 ln k). Hasegawa & Sone [1991a] considered the flow through a slit
induced by the pressure difference between the two regions separated by the
slit wall. On the slit, all the molecules come from infinity, and therefore the
correction of the macroscopic variables of the order of k−1 ln k is independent
of the position on the slit.24

Let us take simple model examples that well explain the structure of the
nearly free molecular solutions for three different cases discussed above.
Model 1. Consider the following simple ordinary differential equation in the
semi-infinite domain 0 < x < ∞:

dy

dx
− εay = ε, (2.84)

where ε is a small parameter and a is a positive constant of the order of unity.
We examine the solution y that tends to zero as x → ∞. The inhomogeneous
term does not vanish as x → ∞, and the equation does not have a solution that
vanishes as x → ∞. �
Model 2. Consider the equation where the inhomogeneous term of Eq. (2.84)
is replaced by ε/(1 + x), i.e.,

dy

dx
− εay =

ε

1 + x
. (2.85)

We examine the solution y that tends to zero as x → ∞. The solution for ε = 0 is
obviously y = 0. First try to solve the problem in terms of a simple power-series
expansion in ε, i.e.,

y = y0 + εy1 + · · · .

Substituting this form into Eq. (2.85), we have

y0 = 0,
dy1

dx
=

1
1 + x

.

Thus, we cannot have the solution y1 that vanishes at infinity. The perturbation
analysis fails.

On the other hand, Eq. (2.85) has the exact solution of the form

y = −ε

∫ ∞

0

exp(−εas)
1 + x + s

ds, (2.86)

which vanishes as x → ∞. We will examine the correction to y0(= 0) for small ε
on the basis of this exact solution. Split the range of integration into two parts,
0 < s ≤ 1 + x and 1 + x < s < ∞ :∫ ∞

0

exp(−εas)
1 + x + s

ds =
∫ 1+x

0

exp(−εas)
1 + x + s

ds +
∫ ∞

1+x

exp(−εas)
1 + x + s

ds. (2.87)

24See preceding Footnote 23.
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Each term is estimated or transformed as

0 <

∫ 1+x

0

exp(−εas)
1 + x + s

ds <

∫ 1+x

0

1
1 + x

ds = 1, (2.88)

and∫ ∞

1+x

exp(−εas)
1 + x + s

ds =
∫ ∞

1+x

exp(−εas)
s

ds − (1 + x)
∫ ∞

1+x

exp(−εas)
(1 + x + s)s

ds. (2.89)

The second term of Eq. (2.89) is bounded by unity, i.e.,

(1 + x)
∫ ∞

1+x

exp(−εas)
(1 + x + s)s

ds < (1 + x)
∫ ∞

1+x

1
s2

ds = 1. (2.90)

The first term of Eq. (2.89) is transformed by putting t = εas as∫ ∞

1+x

exp(−εas)
s

ds =
∫ ∞

εa(1+x)

exp(−t)
t

dt

= − exp[−εa(1 + x)] ln[εa(1 + x)] +
∫ ∞

εa(1+x)

ln t exp(−t)dt.

(2.91)

The second term of the last expression is bounded by a constant as∣∣∣∣∣
∫ ∞

εa(1+x)

ln t exp(−t)dt

∣∣∣∣∣ <

∫ ∞

0

| ln t exp(−t)|dt,

and the leading term for small ε of the first term − exp[−εa(1+x)] ln[εa(1+x)]
is − ln ε for a finite value of x.

With these estimates, we find that the leading correction to y0(= 0) is ε ln ε,
which is independent of a. �
Model 3. Consider the equation where the inhomogeneous term of Eq. (2.84)
is replaced by ε/(1 + x)2, i.e.,

dy

dx
− εay =

ε

(1 + x)2
. (2.92)

Here the inhomogeneous term decays faster than that of Eq. (2.85) as x → ∞.
The solution y that tends to zero as x → ∞ is given by

y = −ε

∫ ∞

0

exp(−εas)
(1 + x + s)2

ds

=
−ε

1 + x
+ ε2a

∫ ∞

0

exp(−εas)
1 + x + s

ds, (2.93)

where the integral in the second term in the last expression is the same as that in
the solution (2.86) of Eq. (2.85). Therefore, the leading correction is −ε/(1+x),
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and −aε2 ln ε appears before the ε2-order term. The leading correction can be
obtained by a simple expansion in a power series of ε, and a logarithmic term
appears in the next order and depends on a. �

The set of three simple ordinary differential equations, Eqs. (2.84), (2.85),
and (2.92), whose homogeneous parts are common, has a qualitative similarity
to Eq. (2.77) by the following correspondence:

y ⇐⇒ f̂ ,
dy

dx
⇐⇒ −ζi

ζ

∂f̂

∂xi
=

∂f̂

∂s
(i.e., x ⇐⇒ s), a ⇐⇒ ν̂F

ζ
,

ε ⇐⇒ 1/k, [the inhomogeneous term] ⇐⇒ −ĴF
G/ζ, 0 ⇐⇒ f̂∞,

where [the inhomogeneous term] is 1 in Model 1, 1/(1 + x) in Model 2, and
1/(1+x)2 in Model 3. Model 1 corresponds to the case Ĵ(f̂F , f̂F ) �= 0 at infinity,
Model 2 to the two-dimensional case, and Model 3 to the three-dimensional case.
From the solutions of the model equations, we can understand the behavior (or
singularity) of the nearly free molecular solutions.



Chapter 3

Slightly Rarefied Gas:
Asymptotic Theory of the
Boltzmann System for
Small Knudsen Numbers

When the mean free time and the mean free path of the gas molecules
become smaller, the contribution of the collision term in the Boltzmann equa-
tion becomes larger, and the velocity distribution function will approach a local
Maxwellian. Then, the behavior of the gas may be considered to admit a macro-
scopic description, because the distribution function is determined by the five
macroscopic variables. In fact, the asymptotic theory of the Boltzmann sys-
tem for small mean free time and small mean free path is developed for an
initial-value problem (Grad [1963a]) and for time-independent boundary-value
problems in arbitrary domains (see Sone [2002]). According to it, the overall
behavior of the gas is described by fluid-dynamic-type equations with initial
conditions or boundary conditions given by prescribed formulas. The correc-
tions to the overall solution are required in a thin layer near the initial state or
the boundary (or initial or Knudsen layer) and in a shock layer. The correction
formulas are established.

In this chapter we first consider the time-independent boundary-value prob-
lem of the Boltzmann equation in an arbitrary domain except that the shape of
the boundary is smooth, and investigate the asymptotic behavior of the solu-
tion for small Knudsen numbers. Besides the fundamental formulas mentioned
above, e.g., fluid-dynamic-type equations and their associated boundary condi-
tions where the effect of gas rarefaction is taken into account, what is specially
to be mentioned here is that there are important classes of problems where
the classical fluid dynamics is incomplete in describing the behavior of a gas
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in the continuum limit.1 Then we extend the asymptotic analysis to the time-
dependent problem. In this chapter, except Section 3.3, we consider the case
where the external force is absent. The results presented here are not compli-
cated, but the analysis requires a lengthy manipulation, and the comprehensive
discussion of the time-independent problem is given in the monograph Sone
[2002]. Thus, the description of the analysis is intended not to be too compli-
cated, and only its outline is given; the details are left to the monograph.

3.1 Linear problem

3.1.1 Problem

First, we consider the case where the behavior of the gas deviates only slightly
from a uniform equilibrium state at rest, and develop the asymptotic theory on
the basis of the linearized Boltzmann equation (1.96). The basic equation is

ζi
∂φ

∂xi
=

1
k
L(φ). (3.1)

The boundary condition [Eq. (1.107) or (1.112)] is here expressed in an abstract
form

φ = φw (ζini > 0), (3.2)

on the boundary, where φw may depend on φ (ζini < 0) linearly.2

We will investigate the asymptotic behavior of φ for small k. The method of
analysis is due to Sone [1969, 1971]. The notation defined by Eq. (1.74) is used
in this section (Section 3.1). The fundamental linearized relations are listed in
Section 1.11.

3.1.2 Grad–Hilbert expansion and fluid-dynamic-type
equations

Putting aside the boundary condition, we look for a moderately varying solution
of Eq. (3.1), whose length scale of variation is of the order of the characteristic
length L of the system [or ∂φ/∂xi = O(φ)], in a power series of k, i.e.,

φG = φG0 + φG1k + φG2k
2 + · · · , (3.3)

1The “continuum limit” means the limit that the mean free time and the mean free path
both tend to zero. There is confusion in some textbooks of classical gas dynamics, where
the motion of a gas in the continuum limit is discussed. They confuse the gas under their
discussion with a wider class of a gas treated in kinetic theory, in which the number of
molecules is so large that the macroscopic variables, such as the density, flow velocity, and
temperature, can be defined as continuous functions of position and time. Thus they classify
rarefied gas dynamics (or the system described by the Boltzmann equation) as a subject
where the behavior of ensemble of much less number of molecules is discussed. This wrong
explanation at introductory part of textbooks spreads long-lasting serious misunderstanding
among fluid-dynamicists.

2As noted just after Eq. (2.6), the velocity uwi of the boundary must satisfy the condition
uwini = 0 for the state to be time-independent.
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where the subscript G is attached to discriminate this class of solution.3 The
solution or expansion is called the Grad–Hilbert solution or Grad–Hilbert expan-
sion. Corresponding to this expansion, the macroscopic variables ω, ui, τ, etc.
[Eqs. (1.97a)–(1.97f)] are also expanded in k as

hG = hG0 + hG1k + hG2k
2 + · · · , (3.4)

where h represents ω, ui, τ, etc. The hGm is related to φGm by Eqs. (1.97a)–
(1.97f) with φ = φGm and h = hGm. Substituting the series (3.3) into the
linearized Boltzmann equation (3.1) and arranging the terms by the order of k,
we obtain a series of integral equations for φGm, i.e.,

L(φG0) = 0, (3.5)

L(φGm) = ζi
∂φGm−1

∂xi
(m = 1, 2, 3, . . .). (3.6)

The homogeneous equation (3.5) has five independent solutions 1, ζi, and
ζ2
j (Section A.2.2). In view of the relations (1.97a)–(1.97c) with φ = φG0, the

solution φG0 is expressed as

φG0 = ωG0 + 2ζiuiG0 +
(

ζ2
j − 3

2

)
τG0. (3.7)

From the condition for Eq. (1.83) to hold, the inhomogeneous term ζi∂φGm−1/∂xi

of (3.6) must satisfy the condition (solvability condition)∫
ϕζi

∂φGm−1

∂xi
Edζ = 0, (3.8)

where
ϕ = 1, ζj , or ζ2

k , (3.9)

for the inhomogeneous equation (3.6) to have a solution. Then, in view of the
relation between hGm and φGm, the solution φGm is given in the form

φGm = ωGm + 2ζiuiGm +
(

ζ2
j − 3

2

)
τGm + φ̂Gm, (3.10)

where φ̂Gm is the particular solution of Eq. (3.6) orthogonal to ϕ, i.e.,∫
φ̂GmϕEdζ = 0. (3.11)

3(i) The linearized Boltzmann equation is derived under the assumption that the size δ of
the perturbation φ is so small that its square and higher-order terms can be neglected. The
solution (3.3) retains the quantities of the order of δkn (n = 0, 1, 2, . . .). This means that the
perturbation is required to be much smaller than the Knudsen number (δ � kn, and thus, ω,
ui, τ, etc. � kn).

(ii) From the preceding discussion, the state in the continuum limit is a uniform state
at rest. When the linearized Boltzmann equation being discussed exclusively, the term of φ
of the order of unity in k is, sometimes, conveniently called the continuum limit, and the
contribution from higher-order terms is called the effect of rarefaction of a gas for economy of
words, the size of φ mentioned above being put aside (see also Section 3.6).
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From the integral equation (3.6) up to the m-th order, together with the
solutions (3.7) and (3.10) and the orthogonal relation (3.11), it is seen that
φ̂Gm is expressed in a linear combination of the (m − s)-th partial derivatives
of ωGs, uiGs, and τGs with respect to xj (j = 1, 2, or 3; s = 0, 1, . . . , m −
1), whose coefficients are functions of ζi. Further, from isotropic property of
the collision operator L (Sections A.2.5 and A.2.6), these coefficient functions
are polynomials of ζi (i = 1, 2, and 3), whose coefficients are functions of ζ.
Substituting this form of φGm (without the explicit forms of the latter coefficient
functions) into the solvability condition (3.8), we obtain the following series of
the Stokes set of partial differential equations:

∂PG0

∂xi
= 0, (3.12)

∂uiGm

∂xi
= 0, (3.13a)

∂PGm+1

∂xi
= γ1

∂2uiGm

∂x2
j

, (3.13b)

∂2τGm

∂x2
j

= 0, (3.13c)

(m = 0, 1, 2, . . .),

where
PGm = ωGm + τGm, (3.14)

and γ1 is a constant related to the collision integral and to be given in Eq. (3.24).
The full process of derivation of the Stokes set of equations is given in Sone
[2002]. Equation (3.12) corresponds to the solvability condition (3.8) with m = 1
for ϕ = ζi, and the two relations of the solvability condition (3.8) with m = 1
for ϕ = 1 and ζ2

i degenerate into a single equation (3.13a) with m = 0. Equation
(3.13a) for m = n corresponds to the solvability condition (3.8) with m = n + 1
for ϕ = 1, and Eqs. (3.13b) and (3.13c) with m = n correspond, respectively, to
the conditions (3.8) with m = n+2 for ϕ = ζi and ζ2

i . Owing to the degeneracy of
the solvability conditions, the staggered combination of the solvability conditions
with respect to m gives the consistent sets of equations to determine ωGm,
uiGm, τGm, and PGm+1 successively from the lowest order. As is obvious from
its derivation, the Stokes set of equations corresponds to the linearized version
(1.99)–(1.101) of the conservation equations (1.12)–(1.14), i.e., Eq. (3.13a) to
Eq. (1.99), Eqs. (3.12) and (3.13b) to Eq. (1.100), and Eq. (3.13c) to Eq. (1.101).

When the solvability condition is satisfied, the solution φGm is given in the
form

φG0 = φeG0, (3.15)

φG1 = φeG1 − ζiζjB(ζ)
∂uiG0

∂xj
− ζiA(ζ)

∂τG0

∂xi
, (3.16)
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Table 3.1. Functions A(ζ), B(ζ), etc. for a hard-sphere gas (Ohwada & Sone [1992]).

ζ A(ζ) B(ζ) D1(ζ) D2(ζ) F (ζ)

0.0 −6.137070 3.510384 −2.970357 5.094481 10.446110
0.2 −6.000493 3.488592 −2.929588 5.016259 10.125883
0.4 −5.601358 3.426008 −2.810643 4.796309 9.217954
0.6 −4.968023 3.330004 −2.622546 4.472115 7.857892
0.8 −4.138507 3.210186 −2.377495 4.089129 6.213220
1.0 −3.152155 3.076042 −2.088289 3.687574 4.437018
1.2 −2.044107 2.935479 −1.766585 3.296146 2.644323
1.4 −0.843026 2.794342 −1.422149 2.931792 0.909371
1.6 0.428951 2.656552 −1.062759 2.602411 −0.726525
1.8 1.755233 2.524509 −0.694443 2.310013 −2.244748
2.0 3.123547 2.399517 −0.321799 2.053253 −3.640744
2.2 4.524827 2.282139 0.051699 1.829137 −4.917909
2.4 5.952341 2.172469 0.423445 1.634051 −6.083685
2.6 7.401032 2.070310 0.791504 1.464336 −7.147220
2.8 8.867055 1.975305 1.154458 1.316567 −8.118052
3.0 10.347443 1.887008 1.511283 1.187672 −9.005409
3.2 11.839877 1.804946 1.861263 1.074970 −9.817868
3.4 13.342516 1.728639 2.203918 0.976148 −10.563225
3.6 14.853884 1.657625 2.538948 0.889234 −11.248471
3.8 16.372779 1.591466 2.866195 0.812552 −11.879827
4.0 17.898215 1.529757 3.185604 0.744679 −12.462804
4.2 19.429375 1.472124 3.497204 0.684411 −13.002275
4.4 20.965572 1.418224 3.801083 0.630726 −13.502544
4.6 22.506231 1.367745 4.097373 0.582757 −13.967417
4.8 24.050858 1.320404 4.386241 0.539765 −14.400261
5.0 25.599033 1.275944 4.667874 0.501122 −14.804060

φG2 = φeG2 − ζiζjB(ζ)
∂uiG1

∂xj
− ζiA(ζ)

∂τG1

∂xi
+

1
γ1

ζiD1(ζ)
∂PG1

∂xi

+ ζiζjζkD2(ζ)
∂2uiG0

∂xj∂xk
− ζiζjF (ζ)

∂2τG0

∂xi∂xj
, (3.17)

where

φeGm = ωGm + 2ζiuiGm +
(

ζ2 − 3
2

)
τGm, (3.18)

and the functions A(ζ), B(ζ), D1(ζ), D2(ζ), and F (ζ) are related to the func-
tions A(ζ, a), B(0)(ζ, a), etc. defined by the integral equations in Section A.2.9
as4

A(ζ) = A(ζ, 1), B(ζ) = B(0)(ζ, 1), F (ζ) = B(1)(ζ, 1),
D1(ζ) = T (0)

1 (ζ, 1), D2(ζ) = T (0)
2 (ζ, 1).

}
(3.19)

The numerical data of A(ζ), B(ζ), D1(ζ), D2(ζ), and F (ζ) for a hard-sphere gas
are tabulated in Table 3.1 (see Pekeris & Alterman [1957] for various properties
of these functions). For the BKW model,

A(ζ) = ζ2 − 5
2 , B(ζ) = 2, D1(ζ) = −1, D2(ζ) = 2, F (ζ) = −ζ2 + 5

2 . (3.20)

4The functions A(ζ), B(ζ), etc. [thus, γ1, γ2, etc. to be defined in Eq. (3.24)]depend on the
parameter U0/kBT0 (Footnote 22 in Section 1.9) except for a hard-sphere molecular gas and
the BKW model.
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3.1.3 Stress tensor and heat-flow vector of the
Grad–Hilbert solution

From φGm in Eqs. (3.15)–(3.17) with the aid of the self-adjoint property (1.81),
i.e.,

∫
[ψL(φ)−φL(ψ)]Edζ= 0 with ψ = ζiA(ζ) or (ζiζj− 1

3ζ2δij)B(ζ), Eqs. (3.19),
and (A.123)–(A.125), we obtain the stress tensor and heat-flow vector of the
Grad–Hilbert solution as follows:

PijG0 = PG0δij , PijG1 = PG1δij + γ1SijG0,

PijG2 = PG2δij + γ1SijG1 + γ3
∂2τG0

∂xi∂xj
,

PijG3 = PG3δij + γ1SijG2 + γ3
∂2τG1

∂xi∂xj
− 2γ6

∂

∂xi

∂2ujG0

∂x2
k

= PG3δij + γ1SijG2 + γ3
∂2τG1

∂xi∂xj
− 2γ6

γ1

∂2PG1

∂xi∂xj
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.21)

QiG0 = 0, QiG1 =
5
4
γ2GiG0,

QiG2 =
5
4
γ2GiG1 +

γ3

2
∂2uiG0

∂x2
j

=
5
4
γ2GiG1 +

γ3

2γ1

∂PG1

∂xi
,

QiG3 =
5
4
γ2GiG2 +

γ3

2
∂2uiG1

∂x2
j

=
5
4
γ2GiG2 +

γ3

2γ1

∂PG2

∂xi
.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.22)

Here,

SijGm = −
(

∂uiGm

∂xj
+

∂ujGm

∂xi

)
, GiGm = −∂τGm

∂xi
, (3.23)

and the nondimensional transport coefficients γ1, γ2, γ3, and γ6 are defined by

γ1 = I6(B), γ2 = 2I6(A),

γ3 = I6(AB) = 5I6(D1) + I8(D2) = −2I6(F ),

γ6 = 1
2I6(BD1) + 3

14I8(BD2),

⎫⎪⎪⎬⎪⎪⎭ (3.24)

where In(Z), with Z = A,B, . . ., is the integral

In(Z) =
8

15
√

π

∫ ∞

0

ζnZ(ζ) exp(−ζ2)dζ. (3.25)

Incidentally, γ1, γ2, and γ3 are related to Γ1(a), Γ2(a), and Γ3(a) defined in
Section A.2.9 as

γ1 = Γ1(1), γ2 = Γ2(1), γ3 = Γ3(1). (3.26)

For a hard-sphere gas,

γ1 = 1.270 042 427, γ2 = 1.922 284 066,

γ3 = 1.947 906 335, γ6 = 1.419 423 836.

}
(3.27)
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For the BKW model,
γ1 = γ2 = γ3 = γ6 = 1. (3.28)

It can be shown generally that γ1 and γ2 are positive (see Section A.2.9).
In the stress formula (3.21), the term proportional to SijGm corresponds to

the viscous stress in the classical fluid dynamics, the higher-order term propor-
tional to ∂2τGm/∂xi∂xj is called thermal stress, and the term proportional to
∂2PG1/∂xi∂xj may be called pressure stress. At the second and higher orders
in the heat-flow formula (3.22), QiGm depends on a pressure gradient as well as
a temperature gradient. A numerical example of the heat flow proportional to
the pressure gradient in the Poiseuille flow is given in Section 4.2.2.

The thermal stress in Eq. (3.21) disappears in Eq. (3.13b) owing to Eq. (3.13c).
This means that the thermal stress integrated over a closed surface (or a control
surface) vanishes. That is, the thermal stress is balanced over the surface. This
situation is violated if the part of the surface is on a simple boundary or an
interface of the gas and its condensed phase, because, as we will see in Section
3.1.4, the Grad–Hilbert solution is subject to a correction in the neighborhood
of these boundaries. Thus, a flow is induced owing to thermal stress, which will
be discussed in Section 5.1.2.

3.1.4 Analysis of Knudsen layer

The Grad–Hilbert solution obtained in Section 3.1.2 does not have enough free-
dom to be fitted to the kinetic boundary condition (3.2), because each term of
the expansion is of a special form in ζi, i.e., a polynomial of ζi with its coeffi-
cients of functions of ζ. Therefore, the solution of the boundary-value problem
cannot be expressed only with the Grad–Hilbert solution.

The problem is resolved by introducing the Knudsen-layer correction near
the boundary. That is, the asymptotic solution is obtained as the sum of two
terms, the overall solution φG (Grad–Hilbert solution) and its correction φK in
a neighborhood of the boundary, i.e.,

φ = φG + φK , (3.29)

where φK is appreciable only in a thin layer (Knudsen layer), with thickness
of the order of the mean free path, adjacent to the boundary and makes an
appreciable change in the direction normal to the boundary over the distance
of the order of the mean free path [or kni∂φK/∂xi = O(φK)]. The φG is called
the fluid-dynamic part, and φK is the Knudsen-layer part (or Knudsen-layer
correction). In the linearized problem, the equation for φK is the same as
Eq. (3.1). That is,

ζi
∂φK

∂xi
=

1
k
L(φK). (3.30)

Here, we introduce natural variables, Knudsen-layer variables, (η, χ1, χ2) in
describing the Knudsen layer, i.e.,

xi = kηni(χ1, χ2) + xwi(χ1, χ2), (3.31)
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where xi = xwi(χ1, χ2) is the boundary surface, η is a stretched coordinate nor-
mal to the boundary, χ1 and χ2 are (unstretched) coordinates within a surface
η = const, and the normal vector ni is a function of χ1 and χ2. With these
variables, Eq. (3.30) is rewritten as

ζini
∂φK

∂η
= L(φK) − kζi

(
∂χ1

∂xi

∂φK

∂χ1
+

∂χ2

∂xi

∂φK

∂χ2

)
. (3.32)

The Knudsen-layer correction φK is also expanded in a power series of k,
i.e.,

φK = φK0 + φK1k + · · · . (3.33)

Corresponding to the expansion, the Knudsen-layer corrections of the macro-
scopic variables are also expanded, i.e.,

hK = hK0 + hK1k + · · · ,

where h represents ω, ui, τ, etc. and hK = h − hG. The hKm is related to
φKm by Eqs. (1.97a)–(1.97f) with φ = φKm and h = hKm. Substituting the
expansion (3.33) into Eq. (3.32) and arranging the same-order terms in k, we
obtain a series of spatially one-dimensional (homogeneous or inhomogeneous)
linearized Boltzmann equations for φKm, i.e.,

ζini
∂φK0

∂η
= L(φK0), (3.34)

ζini
∂φK1

∂η
= L(φK1) − ζi

[(
∂χ1

∂xi

)
0

∂φK0

∂χ1
+
(

∂χ2

∂xi

)
0

∂φK0

∂χ2

]
, (3.35)

where the parentheses ( )0 with the subscript 0 indicate that the quantities in
them are evaluated at η = 0.

The boundary condition for φKm at η = 0 is

φKm = φwm − φGm (ζini > 0), (3.36)

where φwm is defined by5

φw = φw0 + φw1k + · · · . (3.37)

Because φK is assumed to be the correction to φG, the condition at infinity is

φKm → 0 as η → ∞, (3.38)

5The boundary data may have some undetermined factor, which depends on the Knudsen
number, e.g., the surface temperature of a particle set freely in a gas. To include the case,
uwi, τw, ωw, and Pw are expanded in the power series of k, i.e.,

hw = hw0 + hw1k + · · · ,

where hw represents uwi, τw, ωw, and Pw. Even when these quantities are independent of k,
φw generally depends on k, because φw depends on φ (ζini < 0).
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where the decay is assumed to be faster than any inverse power of η.6 This
is verified in the existence and uniqueness theorem explained in the paragraph
after next.

The boundary condition (3.36) contains undetermined boundary values of
uiGm, τGm, and ωGm, as well as the boundary data of the (m − s)-th partial
derivatives of uiGs, τGs, and ωGs (s < m) at the previous stages of approxima-
tion, through φGm.7 On the basis of the Grad–Bardos theorem (Grad [1969],
Bardos, Caflisch & Nicolaenko [1986], Coron, Golse & Sulem [1988], Golse &
Poupaud [1989])8 for the half-space problem to be explained in the next para-
graph, we will show that the above undetermined boundary values must satisfy
some relations for the half-space boundary-value problem for φKm [Eqs. (3.34)
or (3.35), (3.36), and (3.38)] to have the solution for the cases of the diffuse-
reflection and complete-condensation boundary conditions and give a comment
for the general case. The resulting relations serve as the boundary condition for
the Stokes set of equations (3.12)–(3.13c).

The existence and uniqueness theorem (the Grad–Bardos theorem) for the
half-space problem of the linearized Boltzmann equation with or without an
inhomogeneous term [Eqs. (3.34) or (3.35), (3.36), and (3.38)] is as follows. Let
the boundary condition for Eq. (3.34) or (3.35) at η = 0 be given by

φKm = c0 + ci(ζi − ζjnjni) + c4ζ
2
j + f(ζi) (ζini > 0), (3.39)

where c0, ci, and c4 are undetermined constants, which are practically four
because of no contribution of cini to Eq. (3.39), and f(ζi) is a given function.
The solution vanishes as η → ∞. Then the solution of this boundary-value
problem, where exponential decay of the inhomogeneous term as η → ∞ is
assumed, exists uniquely when and only when the four undetermined constants
c0, ci − cjnjni, and c4 take a special set of values. It is also shown that the
speed of decay of the solution as η → ∞ is exponential.9

In Eq. (3.36) for the complete condensation, where φw is given by Eq. (1.111),
the boundary data ωwm−ωGm−3(τwm−τGm)/2, 2[uwim−(uiGm−ujGmnjni)],
τwm−τGm, and −2ζiujGmninj−φ̂Gm correspond, respectively, to c0, ci−cjnjni,
c4, and f(ζi) in Eq. (3.39). Thus, the solution φKm and the boundary data
ωwm − ωGm, uwim − (uiGm − ujGmnjni), and τwm − τGm are determined by
2ζiujGmninj + φ̂Gm and φKr (r < m) in the inhomogeneous term of Eq. (3.35)

6If the decay is proportional to some inverse power of η, the separation of φG and φK

becomes vague. That is, if φK0 decays as η−m, it cannot be discriminated from φGm term,
because η−m = [(xi − xwi)ni]

−mkm.
7For simplicity, consider the case of the diffuse-reflection condition or the complete-

condensation condition. In the case of specular-reflection condition or the Maxwell-type
condition where the accommodation coefficient α is much smaller than the Knudsen num-
ber or k (α � k), the uiGm, τGm, and ωGm terms (or φeGm term) contained in φGm cancel
out in Eq. (3.36). Thus, the following analysis does not apply to this case, and a different
analysis is required (Sone & Aoki [1977a], Aoki, Inamuro & Onishi [1979]).

8The form of the existence and uniqueness theorem of the solution of the half-space problem
given in the next paragraph was first conjectured by Grad [1969].

9This guarantees the exponential decay of the inhomogeneous term in the next-order
Knudsen-layer equation.
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or its higher-order equations. In view of the form of φ̂Gm [see Eqs. (3.10),
(3.15)–(3.17)], the way that φKm is determined from φKr (r < m), and the
linear property of the problem, the undetermined boundary data ωwm − ωGm,
uwim − (uiGm −ujGmnjni), and τwm − τGm and the solution φKm are expressed
by linear combinations of the boundary values of ujGmnj and the (m − r)-th
or the lower-order partial derivatives of ωGr, uiGr, and τGr (r < m), where the
coefficients in the expression for φKm are functions of η and ζi. The expressions
for ωwm−ωGm, uwim−(uiGm−ujGmnjni), and τwm−τGm are the four relations
among the five undetermined boundary values of ωGm, uiGm, and τGm. These
relations serve as the boundary condition for the Stokes set of equations on an
interface where the complete-condensation condition is applied.10

Equation (3.36) for the diffuse reflection, where φw is given by Eq. (1.105a),
is of the form that ωwm in Eq. (3.36) for the complete condensation is simply
replaced by σ̌wm, where σ̌wm is the component function of the expansion of σ̌w

in k. Therefore, σ̌wm − ωGm, uwim − (uiGm − ujGmnjni), and τwm − τGm, as
well as φKm, are determined by 2ζiujGmninj + φ̂Gm and φKr (r < m), and they
are expressed by linear combinations of the boundary values of ujGmnj and the
(m− r)-th or the lower-order partial derivatives of ωGr, uiGr, and τGr (r < m),
where the coefficients in the expression for φKm are functions of η and ζi. In
addition, σ̌wm is related to φGm + φKm (ζini < 0) by Eq. (1.105b). That is,

σ̌wm−ωGm = −1
2
(τwm−τGm)−

√
πuiGmni−2

√
π

∫
ζjnj<0

ζini(φ̂Gm +φKm)Edζ,

where the integral of φeGm part of φGm is carried out. Eliminating σ̌wm−
ωGm from its two expressions, and substituting the above-explained form of
τwm − τGm, φ̂Gm, and φKm there, we obtain the expression of uiGmni that is
given by the data of the previous stages of approximation. Thus, together with
the expressions of uwim − (uiGm − ujGmnjni) and τwm − τGm, we find that the
boundary values of uiGm −uwim and τGm − τwm are determined by the (m− r)-
th or the lower-order partial derivatives of ωGr, uiGr, and τGr (r < m). These
relations serve as the boundary condition for the Stokes set on a boundary where
the diffuse reflection is taking place.11

For more general boundary conditions such as Eqs. (1.107) and (1.112), we
need the Grad–Bardos theorem to be generalized so as to include the linear
functional of φKm(ζini < 0) on the right-hand side of Eq. (3.39). On the basis
of the generalized theorem, we can derive the boundary condition for the Stokes
set in a way similar to that shown in the preceding two paragraphs (see Sone
[2002] for more details).

10Hereafter, Pwm − PGm, where Pwm = ωwm + τwm in the linear theory, will be used
instead of ωwm − ωGm in most cases.

11Technically, the condition on uiGmni can be obtained in a simpler way. Multiply-
ing Eq. (3.34) or (3.35), etc. by E(ζ) and integrating over the whole space of ζi, we
have ∂uiKmni/∂η = F (φKn) (n ≤ m − 1). With the aid of the condition at infin-
ity, uiKmni =

R η
∞ F (φKn)dη. From the condition (uini = 0) on a simple boundary,

uiGmni =
R∞
0 F (φKn)dη. Especially, uiG0ni = 0 for m = 0, because F (φKn) = 0. Thus,

uiG0 − ujG0njni = uwi0, i.e., uiG0 = uwi0, and τG0 = τw0.
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For a simple boundary (see Section 1.6.1), it is easily seen with the aid of
the discussion on the linearized part in Section 4.4 that uiG0 = uwi0, τG0 =
τw0, and φK0 = 0 are the unique solution for the general kinetic boundary
condition (1.64), including the diffuse-reflection condition. Thus, the Knudsen-
layer correction starts from φK1 and the inhomogeneous term of Eq. (3.35) for
φK1 vanishes.12

3.1.5 Slip boundary condition and Knudsen-layer
correction

Here we summarize the boundary condition for the Stokes set of equations on
a simple boundary or on an interface of a gas and its condensed phase and
the Knudsen-layer correction to its solution. The formulas apply to a locally
isotropic boundary,13 where the reflection law is expressed by Eq. (1.107) with a
finite diffuse reflection part or by Eq. (1.112) with a finite complete condensation
part.14 The boundary condition is called the slip or jump condition.

On a simple solid boundary

On a simple solid boundary, the slip boundary condition and the Knudsen-layer
correction are given as follows (Sone [1969, 1971, 2002]):

uiG0 − uwi0 = 0, (3.40a)

τG0 − τw0 = 0, (3.40b)

uiK0 = ωK0 = τK0 = 0, (3.40c)

[
(uiG1 − uwi1)ti

uiK1ti

]
= SijG0nitj

[
k0

Y0(η)

]
+ GiG0ti

[
K1

1
2Y1(η)

]
, (3.41a)[

uiG1ni

uiK1ni

]
= 0, (3.41b)⎡⎣ τG1 − τw1

ωK1

τK1

⎤⎦ = −GiG0ni

⎡⎣ d1

Ω1(η)
Θ1(η)

⎤⎦ , (3.41c)

12The equation and the boundary condition for φK1 on a simple boundary are

ζini∂φK1/∂η = L(φK1), φK1 = φw1 − φeG1 − 1
2
ζiζjB(ζ)SijG0 − ζiA(ζ)GiG0 (ζini > 0).

The Knudsen layer and the slip condition depend linearly on SijG0 and GiG0 on the boundary.
From the preceding Footnote 11, uiG1ni = 0 on the boundary.

13The “locally isotropic boundary” means that the scattering kernel K̂B(“, “∗, x, t̂) or

K̂I(“, “∗, x, t̂) and the inhomogeneous function ĝI(x, “, t̂) in the kinetic boundary condition
(1.64) or (1.69) are invariant for the following two kinds of transformations of “ − v̂w and
“∗ − v̂w: a rotation around the normal vector ni to the boundary and the reflection with

respect to a plane containing the normal vector ni. In the linearized case, K̂B0 in Eq. (1.107)

or K̂I0 in Eq. (1.112) is invariant in the above two kinds of transformations of “ and “∗.
14This is the case where the uiGm, τGm, and ωGm terms are not canceled out and remain

with finite magnitudes in Eq. (3.36). See Footnote 7 in Section 3.1.4 and Sone [2002].
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[
(uiG2 − uwi2)ti

uiK2ti

]
= SijG1nitj

[
k0

Y0(η)

]
+

∂SijG0

∂xk
njnkti

[
a1

Ya1(η)

]
+ κ̄SijG0nitj

[
a2

Ya2(η)

]
+ κijSjkG0nkti

[
a3

Ya3(η)

]
+

∂GiG0

∂xj
njti

[
a4

Ya4(η)

]
+ κ̄GiG0ti

[
a5

Ya5(η)

]
+ κijGjG0ti

[
a6

Ya6(η)

]
− ∂τw1

∂xi
ti

[
K1

1
2Y1(η)

]
, (3.42a)

⎡⎣ uiG2ni

uiK2ni

⎤⎦ =
∂SijG0

∂xk
ninjnk

⎡⎣ b1

1
2

∫ η

∞
Y0(η0)dη0

⎤⎦
+
(

∂GiG0

∂xj
ninj + 2κ̄GiG0ni

)⎡⎣ b2

1
2

∫ η

∞
Y1(η0)dη0

⎤⎦ , (3.42b)

⎡⎣ τG2 − τw2

ωK2

τK2

⎤⎦ = −GiG1ni

⎡⎣ d1

Ω1(η)
Θ1(η)

⎤⎦− ∂SijG0

∂xk
ninjnk

⎡⎣ d4

Ω4(η)
Θ4(η)

⎤⎦
−∂GiG0

∂xj
ninj

⎡⎣ d3

Ω3(η)
Θ3(η)

⎤⎦− κ̄GiG0ni

⎡⎣ d5

Ω5(η)
Θ5(η)

⎤⎦ . (3.42c)

Here, the following notes (i)–(vii) are given for the above formulas:
(i) As already explained, uwim and τwm are the component functions of the
expansions of uwi and τw, where (2RT0)1/2uwi (uwini = 0)15 and T0(1 + τw)
are, respectively, the velocity and temperature of the boundary,16 i.e.,

uwi = uwi0 + uwi1k + · · · , τw = τw0 + τw1k + · · · . (3.43)

(ii) The ti is a unit vector tangential to the boundary.
(iii) The κ̄ and κij are defined by

κ̄ =
1
2
(κ1 + κ2), κij = κ1lilj + κ2mimj , (3.44)

where κ1/L and κ2/L are the principal curvatures of the boundary, with κ1 or
κ2 being taken negative when the corresponding center of curvature lies on the
side of the gas, the li and mi are the direction cosines of the principal directions
corresponding to κ1 and κ2 respectively. The curvature tensor κij is related to
the variation of the normal vector ni as

κij =
(

∂χ1

∂xi

)
0

∂nj

∂χ1
+
(

∂χ2

∂xi

)
0

∂nj

∂χ2
. (3.45)

15See Footnote 2 in Section 3.1.1.
16See Eq. (1.74) and Footnote 5 in Section 3.1.4.
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(iv) The quantities with the subscript G are evaluated on the boundary; and
SijGm and GiGm are defined by Eq. (3.23).
(v) The k0, K1, a1, . . . , a6, b1 [= 1

2

∫∞
0

Y0(η0)dη0], b2 [= 1
2

∫∞
0

Y1(η0)dη0], d1,
d3, d4, and d5 are constants called slip coefficients, determined by the molec-
ular model (e.g., hard-sphere, BKW) and the reflection law on the boundary
(e.g., diffuse reflection); Y0(η), Y1(η), Ω1(η), Θ1(η), etc. are functions of η,
called Knudsen-layer functions, whose functional forms are determined by the
molecular model and the reflection law.17

(vi) In some literature, a temperature jump term proportional to SijG0ninj is
retained in τG1 − τw1 of Eq. (3.41c). However, SijG0ninj = 0 on a simple solid
boundary with the aid of Eqs. (3.13a) and (3.40a).18

(vii) For the specular reflection or the Maxwell-type condition with the accom-
modation coefficient α much smaller than the Knudsen number or k (α � k),
the formulas take different forms (Sone & Aoki [1977a], Aoki, Inamuro & Onishi
[1979]) by the reason noted in Footnote 7 in Section 3.1.4.19

For a hard-sphere gas under the diffuse reflection, the first-order slip coef-
ficients and Knudsen-layer functions and some of them of the second order are
obtained as

k0 = −1.2540, K1 = −0.6463, d1 = 2.4001,

a4 = 0.0330, b1 = 0.1068, b2 = 0.4776,

⎫⎬⎭ (3.46)

and the corresponding Knudsen-layer functions Y0(η), Y1(η), Ω1(η), Θ1(η) , and
Ya4(η) are tabulated in Table 3.2 (Sone, Ohwada & Aoki [1989a], Ohwada, Sone
& Aoki [1989a], Ohwada & Sone [1992]).20 For the BKW model under the diffuse
reflection, the slip coefficients and Knudsen-layer functions are obtained up to

17The slip coefficients and Knudsen-layer functions generally depend on the reference tem-
perature T0 (or the parameter U0/kBT0) except for a hard-sphere molecular gas and the BKW
model (see Footnote 22 in Section 1.9).

18See Footnote 13 in Section 3.4 of Sone [2002].
19In a special situation (Section 5.1.1), the thermal creep flow, to be mentioned in the next

paragraph, appears with a different value (but of the same order) of the slip coefficient owing
to degeneracy of various terms (Sone [1970]), in contrast to general situations in the above
references. That is, the terms that determine the slip boundary condition degenerate, and
it is determined by the terms of the order of α, which is of higher order or infinitesimal, in
the special situation (the ghost effect of infinitesimal accommodation coefficient). This is an
example showing that the limiting state with two or more parameters involved depends on the
relative speed of the parameters that tend to the limit. This is discussed in detail in Section
3.3 and Chapter 9.

20(i) The corresponding results for the Maxwell-type boundary condition are given in Wak-
abayashi, Ohwada & Golse [1996] and Ohwada & Sone [1992] (see also Table 3.4 in Sone &
Aoki [1994]).

(ii) Some works, e.g., Loyalka & Hickey [1989], are not literally for a hard-sphere gas.
The Boltzmann equation for a hard-sphere gas is transformed considerably (see Wakabayashi,
Ohwada & Golse [1996]), and the numerical computation is carried out for the resulting
equation. Thus, the solutions there are those of model equations such as the BKW equation.
In fact, the Knudsen layer in Loyalka & Hickey [1989] differs considerably from that of Ohwada,
Sone & Aoki [1989a]. Its naming without notes on the difference between the two equations
is misleading in those days when accurate computation was possible.
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Table 3.2. Knudsen-layer functions for the Boltzmann equation for a hard-sphere gas
under the diffuse-reflection condition or under the complete-condensation condition.
The functions of the same symbol, i.e., Y0, Y1, Ω1, and Θ1, are common to the diffuse
reflection and the complete condensation.

η Y0(η) Y1(η)/2 Ω1(η) −Θ1(η) HA(η) HB(η) Ya4(η) Ω∗
4 (η) Θ∗

4 (η)

0.0000 0.34522 0.44508 0.51641 0.73783 0.13384 1.38948 0.29625 0.37815 0.05206
0.02503 0.30466 0.41870 0.46886 0.67376 0.12660 1.28950 0.28278 0.33624 0.04783
0.05011 0.28008 0.40046 0.43974 0.63360 0.12161 1.22172 0.27284 0.31065 0.04490
0.10108 0.24424 0.37107 0.39661 0.57323 0.11350 1.11477 0.25613 0.27306 0.04026
0.15138 0.21806 0.34744 0.36451 0.52766 0.10689 1.03068 0.24218 0.24538 0.03662
0.20226 0.19691 0.32686 0.33809 0.48977 0.10107 0.95884 0.22971 0.22286 0.03352
0.30081 0.16525 0.29328 0.29753 0.43097 0.09143 0.84434 0.20878 0.18886 0.02861
0.41305 0.13848 0.26186 0.26200 0.37886 0.08226 0.74030 0.18860 0.15979 0.02420
0.60049 0.10657 0.21995 0.21757 0.31303 0.06979 0.60615 0.16086 0.12468 0.01862
0.76791 0.08628 0.19014 0.18766 0.26839 0.06076 0.51404 0.14059 0.10205 0.01487
0.99185 0.06653 0.15806 0.15673 0.22204 0.05089 0.41800 0.11827 0.07973 0.01107
1.17977 0.05426 0.13621 0.13625 0.19136 0.04409 0.35452 0.10280 0.06570 0.00865
1.40407 0.04310 0.11471 0.11642 0.16171 0.03731 0.29358 0.08733 0.05279 0.00641
1.66967 0.03327 0.09416 0.09766 0.13382 0.03078 0.23688 0.07233 0.04130 0.00443
1.81952 0.02891 0.08444 0.08879 0.12072 0.02767 0.21058 0.06515 0.03615 0.00356
1.98156 0.02493 0.07517 0.08032 0.10828 0.02468 0.18585 0.05826 0.03142 0.00277
2.54689 0.01523 0.05063 0.05759 0.07538 0.01672 0.12204 0.03977 0.01974 0.00094
2.99541 0.01052 0.03733 0.04484 0.05739 0.01237 0.08856 0.02959 0.01397 0.00015
3.50590 0.00702 0.02658 0.03410 0.04257 0.00883 0.06213 0.02125 0.00960 –0.00035
4.08156 0.00453 0.01825 0.02528 0.03076 0.00607 0.04209 0.01471 0.00642 –0.00060
6.21632 0.00099 0.00472 0.00883 0.00993 0.00157 0.01057 0.00390 0.00167 –0.00054
7.97384 0.00030 0.00160 0.00385 0.00414 0.00053 0.00355 0.00135 0.00062 –0.00031
9.96662 0.00008 0.00048 0.00154 0.00159 0.00016 0.00106 0.00042 0.00022 –0.00015

15.00000 0.00000 0.00002 0.00016 0.00016 0.00001 0.00005 0.00003 0.00002 –0.00002
20.77429 0.00000 0.00000 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 –0.00000
25.39373 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

the second order in Sone [1969, 1971]. The slip coefficients are

k0 = −1.01619, K1 = −0.38316, d1 = 1.30272,

a1 = 0.76632, a2 = 0.50000, a3 = −0.26632,

a4 = 0.27922, a5 = 0.26693, a6 = −0.76644,

b1 = 0.11684, b2 = 0.26693, d3 = 0,

d4 = 0.11169, d5 = 1.82181,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.47)

and the Knudsen-layer functions Ya1 etc. can be or are put in the form

Ya1 = −Y1, Ya2 = −2Ỹ0, Ya3 = −Y1 − k0Y0,

Ya4 = 0, Ya5 = Y2 − Ỹ1, Ya6 = 1
2Y2 − (K1 + 1

4 )Y0,

Ω3 = Θ3 = 0, (Ω4, Θ4) = (− 1
4Ω∗

4,− 1
4Θ∗

4),

⎫⎪⎬⎪⎭ (3.48)

and the functions on the right-hand sides are tabulated in Table 3.3.
The conditions (3.40a) and (3.40b) are called nonslip condition. The sec-

ond term on the right-hand side of Eq. (3.41a) shows that a flow is induced
over a wall with a temperature gradient along it. The flow is called thermal
creep flow (Maxwell [1879], Kennard [1938], Sone [1966b, 1970], Ohwada, Sone
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Table 3.3. Knudsen-layer functions for the BKW equation under the diffuse-reflection
condition or under the complete-condensation condition. The functions of the same
symbol, i.e., Y0, Y1, Ω1, and Θ1, are common to the diffuse reflection and the complete
condensation.

η Y0 Y1 Y2 Ỹ0 Ỹ1

Z ∞

η

Y0dη0

Z ∞

η

Y1dη0

0.00 0.30908 0.54777 0.92525 0.3907 1.1922 0.23368 0.53385
0.05 0.25727 0.48117 0.83415 0.3569 1.1004 0.21974 0.50837
0.10 0.22827 0.43961 0.77446 0.3350 1.0391 0.20764 0.48539
0.20 0.18878 0.37876 0.68370 0.3017 0.9439 0.18693 0.44465
0.40 0.14003 0.29679 0.55502 0.2536 0.8032 0.15449 0.37770
0.60 0.10929 0.24081 0.46264 0.2181 0.6970 0.12976 0.32425
0.80 0.08773 0.19932 0.39151 0.1898 0.6115 0.11017 0.28042
1.00 0.07175 0.16720 0.33475 0.1666 0.5403 0.09430 0.24390
1.20 0.05948 0.14167 0.28842 0.1471 0.4800 0.08123 0.21310
1.40 0.04982 0.12096 0.25000 0.1305 0.4281 0.07033 0.18691
1.60 0.04209 0.10394 0.21777 0.1162 0.3832 0.06117 0.16447
1.80 0.03580 0.08978 0.19048 0.1038 0.3439 0.05340 0.14514
2.00 0.03063 0.07790 0.16720 0.0930 0.3093 0.04677 0.12841
2.50 0.02118 0.05551 0.12224 0.0712 0.2393 0.03399 0.09543
3.00 0.01498 0.04028 0.09068 0.0551 0.1870 0.02506 0.07172
4.00 0.00787 0.02206 0.05153 0.0338 0.1164 0.01407 0.04157
5.00 0.00434 0.01256 0.03023 0.0212 0.0740 0.00815 0.02474

10.00 0.00032 0.00104 0.00277 0.0025 0.0092 0.00071 0.00236

(η lnη)∗ 0.39894 0.40540 0.50519 0.2027 0.5052 0 0

η Ω1 −Θ1 Ω∗
4 Θ∗

4 × 10

Z ∞

η

(Ω1 + Θ1)dη0

Z ∞

η

(Ω∗
4 + Θ∗

4 )dη0

0.00 0.34771 0.44920 0.36303 0.3717 −0.11609 0.23886
0.05 0.29177 0.38521 0.28722 0.3771 −0.11123 0.22106
0.10 0.26121 0.34842 0.24683 0.3639 −0.10672 0.20592
0.20 0.21987 0.29703 0.19399 0.3328 −0.09852 0.18060
0.40 0.16877 0.23114 0.13269 0.2757 −0.08466 0.14249
0.60 0.13610 0.18770 0.09669 0.2297 −0.07331 0.11479
0.80 0.11276 0.15607 0.07296 0.1927 −0.06385 0.09377
1.00 0.09507 0.13181 0.05634 0.1627 −0.05587 0.07738
1.20 0.08118 0.11258 0.04424 0.1382 −0.04908 0.06438
1.40 0.06999 0.09700 0.03519 0.1180 −0.04325 0.05392
1.60 0.06080 0.08417 0.02828 0.1012 −0.03822 0.04542
1.80 0.05315 0.07345 0.02293 0.0871 −0.03387 0.03844
2.00 0.04671 0.06440 0.01872 0.0752 −0.03007 0.03267
2.50 0.03442 0.04717 0.01156 0.0528 −0.02254 0.02210
3.00 0.02588 0.03521 0.00735 0.0376 −0.01707 0.01523
4.00 0.01524 0.02042 0.00315 0.0198 −0.01004 0.00754
5.00 0.00932 0.01231 0.00143 0.0108 −0.00606 0.00389

10.00 0.00107 0.00134 0.00004 0.0007 −0.00063 0.00021

(η lnη)∗ 0.46451 0.47587 0.63047 −0.5610 0 0

η Ω5 Θ5 −Ω6 −Θ6 Ω7 Θ7

0.00 0.3516 −0.5956 0.31622 0.21690 0.5166 0.3136
0.05 0.2853 −0.4931 0.26242 0.19447 0.4441 0.2837
0.10 0.2452 −0.4292 0.23040 0.17970 0.3999 0.2640
0.20 0.1883 −0.3368 0.18563 0.15738 0.3364 0.2340
0.40 0.1153 −0.2163 0.12971 0.12619 0.2529 0.1916
0.60 0.0686 −0.1383 0.09488 0.10417 0.1976 0.1611
0.80 0.0363 −0.0838 0.07112 0.08746 0.1577 0.1375
1.00 0.0130 −0.0444 0.05413 0.07428 0.1276 0.1186
1.20 −0.0040 −0.0154 0.04161 0.06363 0.1043 0.1030
1.40 −0.0166 0.0061 0.03220 0.05487 0.0859 0.0900
1.60 −0.0260 0.0222 0.02501 0.04758 0.0712 0.0791
1.80 −0.0328 0.0341 0.01947 0.04146 0.0592 0.0697
2.00 −0.0378 0.0428 0.01515 0.03626 0.0495 0.0617
2.50 −0.0444 0.0550 0.00799 0.02632 0.0320 0.0459
3.00 −0.0460 0.0587 0.00400 0.01943 0.0209 0.0346
4.00 −0.0420 0.0545 0.00052 0.01097 0.0091 0.0203
5.00 −0.0349 0.0452 −0.00050 0.00643 0.0039 0.0122

10.00 −0.0093 0.0116 −0.00027 0.00061 −0.0001 0.0012

(η lnη)∗ 0.4291 −0.6043 0.34843 0.11459 0.4646 0.1528

∗ The Knudsen-layer functions generally have the singularity ηlnη at η = 0. Its coefficient is
shown in this row.
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& Aoki [1989a]), whose simple experimental demonstration is given in Sone
[1991b] and Sone, Sawada & Hirano [1994]. The fifth term on the right-hand
side of Eq. (3.42a) shows the existence of another type of flow, called thermal-
stress slip flow (Sone [1972]). These flows, not expected in the classical fluid
dynamics and to be discussed in more detail in Section 5.1, are typical examples
of flows induced by the effect of gas rarefaction21 and they are important in the
Knudsen compressor (Section 5.5) and thermophoresis22(Section 5.3). The sec-
ond term on the right-hand side of the slip condition (3.42c) is a temperature
jump proportional to the normal gradient of the normal viscous stress. Thus,
even in the case where the boundary temperature is uniform and the flow speed
(or Mach number) is so small that its square may be neglected and the linear
theory may be applicable, the temperature of the gas is nonuniform because of
this jump. This phenomenon is called thermal polarization (Bakanov, Vysotskij,
Derjaguin & Roldughin [1983], Takata, Sone & Aoki [1993]; see Section 4.5).

The Knudsen-layer corrections of the stress tensor Pij and the heat-flow
vector Qi are given by

PijK0 = 0, (3.49)

PijK1 = −3
2
GkG0nk[Ω1(η) + Θ1(η)](δij − ninj), (3.50)

PijK2nitj =
3
2

(
∂GiG0

∂xj
nitj + GiG0κijtj

)∫ η

∞
[Ω1(η0) + Θ1(η0)]dη0, (3.51a)

PijK2ninj = −3κ̄GiG0ni

∫ η

∞
[Ω1(η0) + Θ1(η0)]dη0, (3.51b)

QiK0 = 0, (3.52)

QiK1ni = 0, QiK1ti = −SijG0tinjHA(η) − GiG0tiHB(η), (3.53)

QiK2ni = −1
2

∂SijG0

∂xk
ninjnk

∫ η

∞
HA(η0)dη0

−
(

∂GiG0

∂xj
ninj + 2κ̄GiG0ni

)∫ η

∞
HB(η0)dη0, (3.54)

where the quantities with the subscript G are evaluated on the boundary, and
the functions HA(η) and HB(η) for a hard-sphere gas are shown in Table 3.2.
For the BKW model,

HA(η) =
1
2
Y0(η), HB(η) =

1
4
Y1(η) +

1√
π

∫ ∞

0

exp
(
−y2 − η

y

)
dy. (3.55)

21See Footnote 3 in Section 3.1.2. This use comes from the fact that the leading-order
fluid-dynamic-type equations and the boundary conditions derived by the asymptotic theory
is the same as those of classical fluid dynamics (see also Section 3.6).

22Thermophoresis is a phenomenon that a body in a rarefied gas (or a small particle in a
gas) with a temperature gradient is subject to a force and drifts in the gas.
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On an interface of a gas and its condensed phase with evaporation
or condensation

The boundary condition for the Stokes set of equations and the Knudsen-layer
correction for the macroscopic variables on an interface of a gas and its con-
densed phase are given as follows (Sone & Onishi [1978], Sone [2002]):

(uiG0 − uwi0)ti = 0, (3.56a)

uiK0 = 0, (3.56b)⎡⎢⎢⎣
PG0 − Pw0

τG0 − τw0

ωK0

τK0

⎤⎥⎥⎦ = uiG0ni

⎡⎢⎢⎣
C∗

4

d∗
4

Ω∗
4(η)

Θ∗
4(η)

⎤⎥⎥⎦ , (3.56c)

[
(uiG1 − uwi1)ti

uiK1ti

]
= SijG0nitj

[
k0

Y0(η)

]
+ GiG0ti

[
K1

1
2Y1(η)

]
+ tj

∂

∂xj
(uiG0ni)

[
K2

YK2(η)

]
, (3.57a)

uiK1ni = 0, (3.57b)⎡⎢⎢⎣
PG1 − Pw1

τG1 − τw1

ωK1

τK1

⎤⎥⎥⎦ = uiG1ni

⎡⎢⎢⎣
C∗

4

d∗4
Ω∗

4(η)
Θ∗

4(η)

⎤⎥⎥⎦− GiG0ni

⎡⎢⎢⎣
C1

d1

Ω1(η)
Θ1(η)

⎤⎥⎥⎦

− SijG0ninj

⎡⎢⎢⎣
C6

d6

Ω6(η)
Θ6(η)

⎤⎥⎥⎦− 2κ̄uiG0ni

⎡⎢⎢⎣
C7

d7

Ω7(η)
Θ7(η)

⎤⎥⎥⎦ . (3.57c)

Here, the following notes (i)–(v) are given for the above formulas:
(i) See the note (i) after Eq. (3.42c) for uwim and τwm; the Pwm is the component
function of the expansion of Pw, where p0(1 + Pw) is the saturated gas pressure
at temperature T0(1 + τw),23 i.e.,

Pw = Pw0 + Pw1k + · · · . (3.58)

(ii) The ti is a unit vector tangential to the boundary.
(iii) The κ̄/L is the mean curvature of the boundary.24

(iv) The quantities with the subscript G are evaluated on the interface; and
SijGm and GiGm are defined by Eq. (3.23).
(v) The slip coefficients C∗

4 , d∗4, K2, C1, C6, C7, d6, and d7, as well as k0, K1,
and d1, are constants determined by the molecular model and the reflection

23See Eq. (1.74) and Footnote 5 in Section 3.1.4.
24See the note (iii) after Eq. (3.42c).
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law on the boundary; the Knudsen-layer functions Ω∗
4(η), Θ∗

4(η), YK2(η), Ω6(η),
Θ6(η), Ω7(η), and Θ7(η), as well as Y0(η), Y1(η), Ω1(η), and Θ1(η), are functions
of η, whose functional forms are determined by the molecular model and the
reflection law. The coefficients k0, K1, and d1 and the functions Y0, Y1, Ω1,
and Θ1 appear commonly in the formulas on a simple boundary and those on
an interface. Naturally they are not common because the reflection conditions
are different. The common notation is used because the physical situation is
common to these slips (or jumps) and Knudsen-layer corrections, e.g., the term
proportional to SijG0nitj . However, when the condition on a simple boundary
is the diffuse reflection and that on an interface is the complete condensation,
they are common. That is, k0, K1, d1, Y0, Y1, Ω1, and Θ1 in Eqs. (3.57a)
and (3.57c) under the complete-condensation condition are the same as those
in Eqs. (3.41a)–(3.42c) under the diffuse-reflection condition.

For a hard-sphere gas under the complete-condensation condition,

C∗
4 = −2.1412, d∗4 = −0.4557, C1 = 1.0947, (3.59)

and the corresponding Knudsen-layer functions Ω∗
4(η) and Θ∗

4(η) are tabulated
in Table 3.2 (Sone, Ohwada & Aoki [1989b]). For the BKW model under the
complete-condensation condition, the slip (or jump) coefficients and Knudsen-
layer functions are obtained up to the first order in Sone & Onishi [1978]. The
slip coefficients are

C1 = 0.55844, C∗
4 = −2.13204, C6 = 0.82085, C7 = −0.38057,

K2 = −0.79519, d∗4 = −0.44675, d6 = 0.33034, d7 = −0.13157,

⎫⎬
⎭ (3.60)

and the Knudsen-layer functions, among which YK2 is given by

YK2 = 2Y0 +
1
2
d∗4Y1, (3.61)

are tabulated in Table 3.3.
The Knudsen-layer corrections of the stress tensor Pij and the heat-flow

vector Qi are given by

PijK0 =
3
2
ukG0nk[Ω∗

4(η) + Θ∗
4(η)](δij − ninj), (3.62)

PijK1ninj = 3κ̄uiG0ni

∫ η

∞
[Ω∗

4(η0) + Θ∗
4(η0)]dη0, (3.63a)

PijK1nitj = −3
2

∂uiG0ni

∂xj
tj

∫ η

∞
[Ω∗

4(η0) + Θ∗
4(η0)]dη0, (3.63b)

QiK0 = 0, (3.64)

QiK1ni = 0, (3.65)

where the quantities with the subscript G are evaluated on the boundary.
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� �

Figure 3.1. Discontinuity of the velocity distribution function in a gas around a
convex boundary. At point xi, the velocity distribution function is discontinuous on
the shaded cone in ζi space.

3.1.6 Discontinuity of the velocity distribution function
and S layer

The Boltzmann equation (3.1) determines the variation of the velocity distribu-
tion function φ in the ζi direction (or along the characteristic of the equation)
in xi space. Thus, if there is a discontinuity of φ at (xi = x

(0)
i , ζi = ζ

(0)
i ), then

the discontinuity propagates from x
(0)
i in the direction of ζ

(0)
i .25 This disconti-

nuity decays owing to molecular collisions over the distance of the order of the
free path of the molecules with ζi = ζ

(0)
i . From this property, we find that the

velocity distribution function has discontinuities in a gas around a boundary
with a convex part [e.g., around a closed (or bounded) body], irrespective of the
continuity of the boundary data, by the following reason. The velocity distri-
bution of the molecules (ζini > 0) leaving the boundary, which is determined
by the boundary condition (3.2), is different in nature from that of the imping-
ing molecules (ζini < 0), which is formed by the interaction with surrounding
molecules. Thus, the velocity distribution function generally has discontinuity
at the velocity (ζini = 0) tangent to the boundary. This discontinuity propa-
gates into the gas on the convex part of the boundary (Fig. 3.1; Sugimoto &
Sone [1992], Sone & Takata [1992]). On a concave part of the boundary, on
the other hand, the characteristic does not enter the gas region, and therefore
the discontinuity does not propagate into the gas (Sone & Takata [1992]). The
discontinuity of the velocity distribution function around a convex body is an-

25(i) The differential operator ζi∂/∂xi is the derivative in the direction of ζi. Thus, Eq. (3.1)
imposes no condition on the variation of φ in the direction normal to ζi. For characteristics
and propagation of discontinuity, see, e.g., Courant & Hilbert [1961], Garabedian [1964], or
Zachmanoglou & Thoe [1986].

(ii) The discontinuity of the velocity distribution function is not particular to the linearized
or time-independent problem. Examples of the discontinuity in flows are given in Sections
6.2–6.4 (time-independent problems) and Sections 4.8 and 6.1 (time-dependent problems).
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Knudsen layer

S layer

Figure 3.2. Transition region and the region where the discontinuity of the velocity
distribution function is appreciable. The discontinuity is tangent to the boundary and
at the velocity of the molecules leaving the boundary along this line. The discontinuity
decays with distance from the boundary owing to molecular collisions; it is appreciable
on the solid line with length O(�), and negligible farther away on the vanishing dotted
line. For � ∼ Rw [panel (a)], the discontinuity extends to a region, shown by the dot-
dash line, of O(�) from the boundary. For small �/Rw [panel (b)], the discontinuity is
in a thin layer, shown by the dot-dash line, with thickness δ = O(�2/Rw); the region,
bounded by the dashed line, of O(�) from the boundary is the Knudsen layer.

alyzed by detailed numerical computation in drag and thermal force problems
around a sphere and in a strong evaporation problem from a spherical or cylin-
drical condensed phase (Sugimoto & Sone [1992], Sone & Takata [1992], Sone
& Sugimoto [1993, 1994, 1995], Takata, Sone & Aoki [1993], Sone, Takata &
Wakabayashi [1994], Takata, Aoki & Sone [1994], and Takata & Sone [1995]; see
Sections 6.2–6.4). Contrasting examples where the discontinuity of the velocity
distribution function stays only on a plane boundary and does not exist in a gas
are given in Sone, Ohwada & Aoki [1989a, 1989b, 1991] and Ohwada, Sone &
Aoki [1989a, 1989b].

When the mean free path  of the gas molecules is comparable to or larger
than the radius Rw of the curvature of a convex body, the discontinuity is ap-
preciable in the region where the distance from the boundary is of the order of
the mean free path [Fig. 3.2 (a)].26 This is the transition region where the gas
molecules leaving the boundary are accommodated to the state of the surround-
ing gas by molecular collisions. That is, if /Rw (Knudsen number based on
the radius of curvature) is not small, the region with the discontinuity extends
in the same area as the transition region. On the other hand, if /Rw is small,

26Rigorously, the distance is the free path of each molecule and depends on its speed.
Generally, it is longer for faster molecules, the number of which decays rapidly with their
speed.
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the discontinuity line is almost parallel to the boundary at the distance of the
order of several mean free paths along the discontinuity, where the discontinuity
has almost vanished. Thus, the discontinuity extends only in the region within
O(2/Rw) from the boundary [Fig. 3.2 (b)]. The discontinuity exists only at
the bottom of the transition region (called Knudsen layer for small Knudsen
numbers).

The discontinuity of the velocity distribution function requires corrections
to the result of the asymptotic analysis.27 That is, in a thin layer with thickness
of the order of 2/Rw at the bottom of the Knudsen layer on a convex boundary,
macroscopic variables are generally subject to corrections at the order next to
that where the Knudsen-layer correction first appears (at the order of k2 for the
diffuse reflection or at the order of k for the complete-condensation condition).
However, the corrections to the slip condition and the variables uini, Pijnj , and
Qini are of the higher order, and therefore their formulas given in Section 3.1.5
do not need any correction (Sone & Takata [1992]). The second boundary layer
at the bottom of the Knudsen layer on a convex boundary is called S layer, which
was found in the flow outside a circular cylinder with a temperature gradient
along it by Sone [1973].28 The numerical demonstration of the S layer is given
in Sone & Takata [1992], where the correction of uini is shown to be of the
higher order in contrast to other variables.

Now it is clear that there is generally a discontinuity of the velocity distri-
bution function in a gas. Thus, the proof by Arkeryd [1972] that the equality
in Eq. (1.34b) holds only when the velocity distribution function is Maxwellian
for a wide class of functions where discontinuous functions are included29 is
essential to the statement of the H theorem. This is an example showing that
theorems apparently only of mathematical interest are very important in phys-
ical statements.

3.1.7 Force and mass and energy transfers on a
closed body

Consider the total force, total moment of force, and total mass and energy
transfers on a closed (or bounded) body in a gas. These global quantities can
be obtained only by the knowledge of the fluid-dynamic part as follows. The
body may be the condensed phase of the gas; there may be other bodies in the
gas, or the domain may be enclosed by a boundary. The proof is given in Sone
[1984c, 2002].
Proposition 3.1.1. The force Fi and the moment MOi of force (around the
origin) acting on a closed body in a gas are expressed by the fluid-dynamic part

27We have to take into account the discontinuity of the velocity distribution function in the
analysis of the Knudsen layer.

28In the paper, two flows, the flow outside the cylinder and the flow inside the cylinder, are
studied for small k. In the latter, where the discontinuity is absent, the result agrees with
that obtained by the asymptotic theory described in Sections 3.1.2–3.1.5, but in the former,
the correction is required at the order of k2.

29See the fourth paragraph of Section A.7.1.
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PijG of the stress tensor Pij as follows:

Fi = −p0L
2

∫
S

PijGn̂jdS, (3.66)

MOi = −p0L
3

∫
S

εilkxlPkjGn̂jdS, (3.67)

where the surface S of integration is a closed surface enclosing only the body
under consideration, n̂i is the outward unit normal vector to the surface S, dS
is the surface element (in the nondimensional xi space) for integration, and εijk

is Eddington’s epsilon.30

Proposition 3.1.2. The mass MF and the energy ET transferred to a closed
body in a gas per unit time are expressed by the fluid-dynamic parts uiG and
QiG of the flow velocity ui and heat-flow vector Qi as follows:

MF = −ρ0(2RT0)1/2L2

∫
S

uiGn̂idS, (3.68)

ET = −p0(2RT0)1/2L2

∫
S

(QiG +
5
2
uiG)n̂idS, (3.69)

where the definitions of S, dS, and n̂i are the same as in Proposition 3.1.1.
As for the contribution of the thermal stress and “pressure stress” on the

force and the moment of force, we have the following proposition.
Proposition 3.1.3. The thermal stress ∂2τG/∂xi∂xj and the “pressure stress”
∂2PG/∂xi∂xj in the stress tensor PijG do not contribute to the force and the
moment of force acting on a closed body.

3.1.8 Summary

Solving the Stokes set of equations (3.12)–(3.13c) under the slip boundary con-
ditions on a simple boundary or on an interface given in Section 3.1.5 from
the zeroth order, we obtain the fluid-dynamic parts of the density, flow veloc-
ity, and temperature of the gas and, on the basis of these information, their
Knudsen-layer corrections from the formulas there. Further, we can obtain the
stress tensor and heat-flow vector with the aid of Eqs. (3.21), (3.22), and (3.49)–
(3.54) or (3.62)–(3.65). Thus the problem for the time-independent behavior of
a slightly rarefied gas is reduced to solving the Stokes set of equations under the
slip boundary condition. That is, a problem for a slightly rarefied gas can be
treated with the same ease as the corresponding classical fluid-dynamic problem.

30Eddington’s epsilon εijk is defined by the rules

ε123 = 1 and εijk = −εjik = −εikj .

More plainly, it is specified by the rules: (i) if any two of the i, j, k are equal, εijk = 0;
(ii) if they are all different and occur in succession in the order 123123..., εijk = 1; (iii)
if they are all different and occur in succession in the order 213213..., εijk = −1. That is,
ε123 = ε231 = ε312 = 1, ε213 = ε132 = ε321 = −1.
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In the linearized problem, which we have treated in this section, the fluid-
dynamic-type equations (i.e., the Stokes set of equations) remain in the same
form when we advance the degree of approximation. Thus, the effect of gas
rarefaction on the density, flow velocity, temperature, and pressure enters only
through the slip boundary condition. The thermal creep flow and thermal-
stress slip flow, which appear, respectively, in the first and second-order slip
conditions, are flows peculiar to a rarefied gas and will be discussed in more
detail in Section 5.1.

The theory just developed or to be developed in this chapter is the asymp-
totic theory for small Knudsen numbers. That is, if the analysis is advanced up
to the arbitrarily high power order of the Knudsen number or k, and the solu-
tion of a problem is obtained up to so high an order, it does not give the correct
answer at a finite or infinite value of the Knudsen number [see the paragraph con-
taining Eq. (4.16a) in Section 4.1], but it only describes the behavior for small
Knudsen numbers more accurately. In the analysis, we neglected the terms
smaller than any power order of k, e.g., exp(−1/k), thus exp[−(xi − xwi)ni/k]
for finite (xi − xwi)ni. These terms are not small for a finite or infinite value of
k. The second expression shows that the tail of a Knudsen layer is not small on
a boundary of a finite distance from the boundary on which the Knudsen layer
stands. It is neglected in the analysis. Roughly speaking, among the molecules
that leave a point of the boundary, those that reach other points on the bound-
ary of a finite distance from their origin without collision with other molecules
are exponentially small for small Knudsen numbers and are neglected in the
analysis, but they are finite when the Knudsen number is not small.

3.1.9 Supplement: viscosity and thermal conductivity

Up to now we have discussed the problem in nondimensional variables, and
we have not given the formulas of viscosity and thermal conductivity, though
we have mentioned them. They are simply obtained by rewriting the formulas
for the stress tensor and heat-flow vector in the dimensional variables and by
comparing them with Eq. (1.16). Then, the viscosity μ and the thermal conduc-
tivity λ are expressed in terms of the mean free path 0 of the gas molecules as
follows:31

μ =
√

π

2
γ1p0(2RT0)−1/20, (3.70)

λ =
5
√

π

4
γ2Rp0(2RT0)−1/20. (3.71)

There are two important parameters in the classical fluid dynamics, the
Reynolds number Re and the Mach number Ma, which are defined by

Re =
UL

μ/ρ0
, Ma =

U

(γRT0)1/2
, (3.72)

31The relations generally hold, not limited to the time-independent linearized Boltzmann
equation, if all the quantities are taken as the corresponding local values (note the analyses
in Sections 3.2.2, 3.3.2, 3.4.1, 3.5.1, 3.7.1, and 3.7.2).
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where U is a characteristic flow speed of the system and γ is the specific-heat
ratio (5/3 for a monatomic gas).32 Incidentally, the Prandtl number Pr, defined
by cpμ/λ (cp : specific heat at constant pressure; Pr = 5Rμ/2λ for the present
monatomic gas), is given by

Pr =
γ1

γ2
. (3.73)

With the data of γ1 and γ2 given in Eqs. (3.27) and (3.28), the Prandtl numbers
for a hard-sphere gas and the BKW model are given by33

Pr = 0.660694 (hard sphere), Pr = 1 (BKW).

Owing to the relation (3.70) between the viscosity and the mean free path, the
three parameters, Knudsen number Kn, Reynolds number Re, and Mach number
Ma, are not independent but are related as

Ma =
(

3π

40

)1/2

γ1ReKn, (3.74)

which is sometimes called the von Karman relation (von Karman [1963]).
In the linearized theory, we neglected the nonlinear terms of the Mach num-

ber, but retained the quantities of the order of MaKnn.34 This means that
Ma� Kn or Re � Kn. The Stokes set of equations in Section 3.1.2 reflects this
situation.

3.2 Weakly nonlinear problem

3.2.1 Problem

According to the discussion in Section 3.1.9, the asymptotic theory of the lin-
earized Boltzmann equation developed in the preceding section (Section 3.1) is
applicable only to the case where the Reynolds number is very small. In the
present section, we extend the asymptotic theory, according to Sone [1971], so
as to be applicable to the case where the Reynolds number takes a finite value.

When the Reynolds number is finite, the Mach number is of the same order
as the Knudsen number owing to Eq. (3.74). This fact is introduced in the
analysis in the following way: the Mach number is one of the scales that indicate
the deviation of the system from a uniform equilibrium state at rest, and this
is extended to the velocity distribution function. That is, in this section, we

32The (γRT0)1/2 is the speed of propagation of a small disturbance (or the speed of sound
or sound wave or the sonic speed) in a gas at temperature T0 governed by the Euler set of
equations.

33For the Maxwell molecule (see Section A.2.4), Pr = 2/3 (Maxwell [1867], Boltzmann [1872,
1896–98]). The experimental data for monatomic gases are around 2/3 (see, e.g., Kennard
[1938]). This is one of the reasons that some do not favor the BKW equation. However, many
important theoretical results for the standard Boltzmann equation have been developed on
the basis of the studies of the BKW equation.

34See Footnote 3 in Section 3.1.2.
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consider the case where the deviation of the velocity distribution function from
a uniform equilibrium state at rest is of the order of the Knudsen number. By
this assumption, we extend the range of the velocity distribution function a little
beyond that of the linearized theory. In terms of the macroscopic parameters,
this is not only the condition on the Mach number but also the condition that
the variation of the temperature, etc. is of the order of the Knudsen number.
Elimination of the latter condition is discussed in Section 3.3, from which a
very interesting fact will come out. In view of the above situation, we use the
notation introduced in Section 1.10 in the following discussion.

Under the condition mentioned above, we investigate the asymptotic behav-
ior for small Knudsen numbers of the time-independent boundary-value problem
of the Boltzmann equation. We cannot neglect the nonlinear terms of the (per-
turbed) velocity distribution function φ [see Eq. (1.74)] when powers of k are
considered, because φ = O(k) by the assumption. Thus, the basic equation is
the (nonlinear) Boltzmann equation (1.75a) without ∂/∂t̂ term, i.e.,

ζi
∂φ

∂xi
=

1
k

[L(φ) + J (φ, φ)]. (3.75)

The boundary condition [Eq. (1.64) or (1.69)] is written in an abstract form,
i.e.,

φ = φw (ζini > 0). (3.76)

3.2.2 S expansion and fluid-dynamic-type equations

As in Section 3.1.2, we first look for a moderately varying solution of Eq. (3.75),
whose length scale of variation is of the order of the characteristic length L of
the system [∂φ/∂xi = O(φ)], in a power series of k, i.e.,

φS = φS1k + φS2k
2 + · · · , (3.77)

where the series starts from the first-order term in k because φ = O(k), and
φSm = O(1) in contrast to φGm. The subscript S is attached to discriminate
this class of solution. The solution or expansion is called the S solution or S
expansion. Corresponding to the expansion (3.77), the macroscopic variables ω,
ui, τ , etc. are also expanded in k, i.e.,

hS = hS1k + hS2k
2 + · · · , (3.78)

where h represents ω, ui, τ , etc. The relation between hSm and φSm is obtained
by expanding Eqs. (1.78a)–(1.78f) with φ = φS and h = hS , but their relation
is a little complicated owing to the nonlinearity, in contrast to that of hGm and
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φGm. For example,

ωS1 =
∫

φS1Edζ, (3.79a)

uiS1 =
∫

ζiφS1Edζ, (3.79b)

3
2
τS1 =

∫ (
ζ2
i − 3

2

)
φS1Edζ, (3.79c)

PS1 = ωS1 + τS1, (3.79d)

PijS1 = 2
∫

ζiζjφS1Edζ, (3.79e)

QiS1 =
∫

ζiζ
2
j φS1Edζ − 5

2
uiS1, (3.79f)

ωS2 =
∫

φS2Edζ, (3.80a)

uiS2 =
∫

ζiφS2Edζ − ωS1uiS1, (3.80b)

3
2
τS2 =

∫ (
ζ2
i − 3

2

)
φS2Edζ − u2

iS1 −
3
2
ωS1τS1, (3.80c)

PS2 = ωS2 + τS2 + ωS1τS1, (3.80d)

PijS2 = 2
∫

ζiζjφS2Edζ − 2uiS1ujS1, (3.80e)

QiS2 =
∫

ζiζ
2
j φS2Edζ − 5

2
uiS2 − ujS1PijS1 −

3
2
uiS1PS1. (3.80f)

Substituting the series (3.77) into Eq. (3.75) and arranging the same-order
terms in k, we obtain a series of linear integral equations for φSm, i.e.,

L(φS1) = 0, (3.81)

L(φSm) = ζi
∂φSm−1

∂xi
−

m−1∑
r=1

J (φSm−r, φSr) (m = 2, 3, . . .). (3.82)

These are the same type of system as Eqs. (3.5) and (3.6) in the linear theory; the
difference is the J terms in the inhomogeneous term.35 From the last paragraph

35The collision term of the BKW equation is not in a bilinear form, and its expansion is
more complicated than that shown here. The second term on the right-hand side is more
complicated and should be taken as a symbol of the terms of expansion at this order as a
whole. The linear part of the perturbation is given by Eq. (1.103). These comments apply to
the whole discussion relating to expansion of the collision integral in the other parts of this
book.
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of Section A.2.2 and the relations (3.79a)–(3.79c), the solution φS1 of Eq. (3.81)
is given by

φS1 = ωS1 + 2ζiuiS1 +
(

ζ2
i − 3

2

)
τS1. (3.83)

From the condition for Eq. (1.83) to hold and the relation (1.84), the inhomo-
geneous term ζi∂φSm−1/∂xi of Eq. (3.82) must satisfy the condition (solvability
condition) ∫

ϕζi
∂φSm−1

∂xi
Edζ = 0 (m = 2, 3, . . .), (3.84)

where
ϕ = 1, ζj , or ζ2

k ,

for the integral equation (3.82) to have a solution. Then, in view of the relation
between hSm and φSm, the solution of Eq. (3.82) is uniquely expressed in the
following form:

φSm = φ̂Sm + ωSm + 2ζi

(
uiSm +

m−1∑
r=1

ωSruiSm−r

)

+
(

ζ2
j − 3

2

) {
τSm +

m−1∑
r=1

[
ωSrτSm−r

+
2
3

(
uiSruiSm−r +

m−1−r∑
h=1

ωSruiShuiSm−r−h

)]}
, (3.85)

where φ̂Sm is the particular solution of Eq. (3.82) orthogonal to ϕ, i.e.,

∫
ϕφ̂SmEdζ = 0. (3.86)

From the solvability condition (3.84), we obtain the following series of the
Navier–Stokes-type set of equations for ωSm, uiSm, τSm, and PSm:

∂PS1

∂xi
= 0, (3.87)

∂uiS1

∂xi
= 0, (3.88a)

ujS1
∂uiS1

∂xj
= −1

2
∂PS2

∂xi
+

1
2
γ1

∂2uiS1

∂x2
j

, (3.88b)

ujS1
∂τS1

∂xj
=

1
2
γ2

∂2τS1

∂x2
j

, (3.88c)
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∂ujS2

∂xj
= −ujS1

∂ωS1

∂xj
, (3.89a)

ujS1
∂uiS2

∂xj
+ (ωS1ujS1 + ujS2)

∂uiS1

∂xj

= −1
2

∂

∂xi

(
PS3 +

2γ3

3
∂2τS1

∂x2
j

)
+

γ1

2
∂

∂xj

(
∂uiS2

∂xj
+

∂ujS2

∂xi
− 2

3
∂ukS2

∂xk
δij

)
+

1
2
γ4

∂

∂xj

[
τS1

(
∂uiS1

∂xj
+

∂ujS1

∂xi

)]
, (3.89b)

ujS1
∂τS2

∂xj
+ (ωS1ujS1 + ujS2)

∂τS1

∂xj
− 2

5
ujS1

∂PS2

∂xj

=
1
5
γ1

(
∂uiS1

∂xj
+

∂ujS1

∂xi

)2
+

1
2

∂2

∂x2
j

(
γ2τS2 +

1
2
γ5τS1

2

)
, (3.89c)

where, from Eqs. (3.79d) and (3.80d),

PS1 = ωS1 + τS1, PS2 = ωS2 + τS2 + ωS1τS1, (3.90)

and the nondimensional transport coefficients γn’s are constants related to the
collision integral [γ1, γ2, and γ3 are defined in Eq. (3.24); γ4 and γ5 will be
defined in Eq. (3.98)].36

Equation (3.87) corresponds to the solvability condition (3.84) with m = 2
for ϕ = ζi, and the two relations of the solvability condition (3.84) with m = 2 for
ϕ = 1 and ζ2

i degenerate into a single equation (3.88a). Equations (3.88b) and
(3.88c) correspond, respectively, to the conditions (3.84) with m = 3 for ϕ = ζi

and ζ2
i . Equation (3.89a) corresponds to the solvability condition (3.84) with

m = 3 for ϕ = 1, and Eqs. (3.89b) and (3.89c) correspond, respectively, to the
conditions (3.84) with m = 4 for ϕ = ζi and ζ2

i . Owing to the degeneracy of the
solvability conditions, the staggered combination of the solvability conditions
with respect to m gives the consistent sets of equations to determine ωSm,
uiSm, τSm, and PSm+1 successively from the lowest order. In deriving those
equations, as in the linear theory, we make use of the property that φSm takes
a special form in ζi owing to the isotropic property of the collision operators L
and J (Sections A.2.5 and A.2.6). As is obvious from its derivation, the above
Navier–Stokes-type set of equations corresponds to the conservation equations,
i.e., Eqs. (3.88a) and (3.89a) to Eq. (1.12) or (1.87); Eqs. (3.87), (3.88b), and
(3.89b) to Eq. (1.13) or (1.88); and Eqs. (3.88c) and (3.89c) to Eq. (1.14) or
(1.89). The order of the above differential system remains unchanged if the level
of approximation is advanced, in contrast to the Chapman–Enskog expansion
(Chapman & Cowling [1952]) explained briefly in Section B.4.

The velocity distribution function φSm is given in the following form:

φS1 = φeS1, (3.91)

φS2 = φeS2 − ζiζjB(ζ)
∂uiS1

∂xj
− ζiA(ζ)

∂τS1

∂xi
, (3.92)

36See Footnote 4 in Section 3.1.2.
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where

φeS1 = ωS1 + 2ζiuiS1 +
(

ζ2
j − 3

2

)
τS1,

φeS2 = ωS2 + 2ζiuiS2 +
(

ζ2
j − 3

2

)
τS2

+ 2ζiωS1uiS1 +
(

ζ2
j − 3

2

)(
2
3
u2

iS1 + ωS1τS1

)
+ 2

(
ζiζj −

1
3
ζ2
kδij

)
uiS1ujS1 + 2ζi

(
ζ2
j − 5

2

)
uiS1τS1

+
(

1
2
ζ2
i ζ2

j − 5
2
ζ2
i +

15
8

)
τ2
S1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.93)

and A(ζ) and B(ζ) are defined by Eq. (3.19) or (A.130). The φeS1 and φeS2 are
the first two component functions of the expansion of the local Maxwellian in
the power series of k, i.e.,

E(1 + φeS) =
1 + ωS

π3/2(1 + τS)3/2
exp

(
− (ζi − uiS)2

1 + τS

)
= E(1 + φeS1k + φeS2k

2 + · · ·). (3.94)

The coefficient functions of the S expansion of the stress tensor Pij and
heat-flow vector Qi are given as follows:

PijS1 = PS1δij ,

PijS2 = PS2δij − γ1

(
∂uiS1

∂xj
+

∂ujS1

∂xi

)
,

PijS3 = PS3δij − γ1

(
∂uiS2

∂xj
+

∂ujS2

∂xi
− 2

3
∂ukS2

∂xk
δij

)
−γ4τS1

(
∂uiS1

∂xj
+

∂ujS1

∂xi

)
+ γ3

(
∂2τS1

∂xi∂xj
− 1

3
∂2τS1

∂x2
k

δij

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.95)

QiS1 = 0,

QiS2 = −5
4
γ2

∂τS1

∂xi
,

QiS3 = −5
4
γ2

∂τS2

∂xi
− 5

4
γ5τS1

∂τS1

∂xi
+

1
2
γ3

∂2uiS1

∂x2
j

,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3.96)

where γ1, γ2, and γ3 are defined in Eq. (3.24), and γ4 and γ5 are defined as
follows. Functions C(ζ), D(ζ), and G(ζ) of ζ are first defined by the equations

2J
(
ζ2 − 3

2 , ζiζjB(ζ)
)

= ζiζjC(ζ) + δijD(ζ),

2J
(
ζ2 − 3

2 , ζiA(ζ)
)

= ζiG(ζ).

}
(3.97)

These forms of equations are compatible owing to the isotropic property of the
collision operator J . With A(ζ), B(ζ), C(ζ), and G(ζ), the nondimensional
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transport coefficients γ4 and γ5 are defined by the equations

γ4 = − 5
2γ1 + I8(B) + 1

2I6(BC),

γ5 = −6γ2 + 2I8(A) + 2I4(AG),

}
(3.98)

where In is defined by Eq. (3.25). For a hard-sphere gas,37

γ4 = γ1/2 = 0.635021, γ5 = γ2/2 = 0.961142, (3.99)

and for the BKW model,
γ4 = γ5 = 1. (3.100)

The last term of PijS3, i.e., γ3[∂2τS1/∂xi∂xj − 1
3 (∂2τS1/∂x2

k)δij ], is the ther-
mal stress. The thermal stress is no longer balanced over a closed surface (or a
control surface) in the gas in contrast to the case of the linearized theory (see
the last paragraph of Section 3.1.3), but it can be treated by the combination
with PS3 unless the boundary condition on PS3 is involved, that is, the sum
PS3 + 2

3γ3∂
2τS1/∂x2

j can be taken as a single variable (a modified pressure) [see
Eq. (3.89b)]. The term 1

2γ3∂
2uiS1/∂x2

j in QiS3 is not reduced only to the pres-
sure gradient because of the convection term ujS1∂uiS1/∂xj in Eq. (3.88b). The
terms with γ4 and γ5 are due to the dependence of the viscosity and thermal
conductivity on the temperature of the gas.

3.2.3 Knudsen layer and slip boundary condition

The S solution φS , as the Grad–Hilbert solution φG, does not have enough
freedom to be fitted to the kinetic boundary condition (3.76), because each
term φSm of the expansion is of a special form of ζi. Thus, we put the solution
φ of the boundary-value problem (3.75) and (3.76) as the sum of two terms, the
overall solution φS (S solution) and its correction φK in a neighborhood of the
boundary, i.e.,

φ = φS + φK , (3.101)

where φK is assumed to have the behavior [kni∂φK/∂xi = O(φK)] similar to
that of φK in Section 3.1.4, that is, φK is appreciable only in a thin layer,
with thickness of the order of the mean free path, adjacent to the boundary
and decays very rapidly in the layer in the direction normal to the boundary.38

The φS is called the fluid-dynamic part, and φK is the Knudsen-layer part
(or correction).39 Substituting Eq. (3.101) into Eq. (3.75) and noting that φS

37See Footnote 10 in Section 4.3 of Sone [2002] about the relation between γ1 and γ4 and
that between γ2 and γ5.

38The decay faster than any inverse power of η, defined in Eq. (3.103), is assumed, which is
required for clear separation of φS and φK . See Footnote 6 in Section 3.1.4.

39The φS (and f̂SB in Section 3.3.2, f̂h and f̂V in Section 3.4.1, or f̂H in Section 3.5.1)
is a solution of the Boltzmann equation or a closed function by itself. The corresponding
macroscopic variables are related to it by Eqs. (1.78a)–(1.78f) [and by Eqs. (1.54a)–(1.54f)].

The Knudsen-layer correction φK (and f̂K in Section 3.3.2, 3.4.1, or 3.5.1) is defined as the

remainder. Thus, the equation for φK (and f̂K in Section 3.3.2, 3.4.1, or 3.5.1) contains φS

(and f̂SB , f̂V , or f̂H). Similar statements apply to the macroscopic variables.
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satisfies Eq. (3.75), we obtain

ζini
∂φK

∂η
= L(φK) + 2J (φS , φK) + J (φK , φK)

− kζi

(
∂χ1

∂xi

∂φK

∂χ1
+

∂χ2

∂xi

∂φK

∂χ2

)
. (3.102)

Here, the Knudsen-layer variables (η, χ1,χ2) are introduced [Eq. (3.31) and its
explanation], i.e.,

xi = kηni(χ1, χ2) + xwi(χ1, χ2), (3.103)

where xi = xwi(χ1, χ2) is the boundary surface.
The equation (3.102) contains the product term of φS and φK in contrast to

the linear theory. In the product term, the series expansion of φS with respect
to η, i.e.,

φS = (φS)0 +
(

∂φS

∂xi

)
0

nikη + · · ·

= (φS1)0k +
[
(φS2)0 +

(
∂φS1

∂xi

)
0

niη

]
k2 + · · ·, (3.104)

where the quantities in the parentheses ( )0 with subscript 0 are evaluated
at η = 0, can be used owing to the assumption of the fast decay of φK with η.
In the expansion, η always appears in the form kη and this leads to a reshuffle
of the order of k in the expansion of φS . The φK is also expanded in the power
series of k, i.e.,

φK = φK1k + φK2k
2 + · · · . (3.105)

Substituting the expansions (3.104) and (3.105) into Eq. (3.102) and arranging
the same-order terms in k, we obtain a series of one-dimensional (homogeneous
or inhomogeneous) linearized Boltzmann equations for φKm, i.e.,

ζini
∂φK1

∂η
= L(φK1), (3.106)

ζini
∂φK2

∂η
= L(φK2) + 2J ((φS1)0, φK1) + J (φK1, φK1)

− ζi

[(
∂χ1

∂xi

)
0

∂φK1

∂χ1
+
(

∂χ2

∂xi

)
0

∂φK1

∂χ2

]
. (3.107)

In the Knudsen-layer equations, the terms relating to φS are evaluated at η = 0,
which makes the analysis simple.

Corresponding to Eq. (3.101), the Knudsen-layer corrections ωK , uiK , τK ,
etc. of the macroscopic variables ω, ui, τ , etc. are defined as the remainders
ωK = ω −ωS , uiK = ui − uiS , τK = τ − τS , etc. The Knudsen-layer corrections
hK (= h − hS) of the macroscopic variables are also expanded, i.e.,

hK = hK1k + hK2k
2 + · · · , (3.108)
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where h represents ω, ui, τ, etc. The Knudsen-layer correction hK depends on
φS as well as φK because the relations between the macroscopic variables and
the velocity distribution function φ, i.e., Eqs. (1.78a)–(1.78f), are nonlinear.40

For example,

uiK =
1

1 + ωS + ωK

(∫
ζiφKEdζ − uiSωK

)
,

or

uiK1 =
∫

ζiφK1Edζ,

uiK2 =
∫

ζiφK2Edζ − (ωS1)0uiK1 − (uiS1)0ωK1 − ωK1uiK1.

⎫⎪⎬
⎪⎭ (3.109)

The boundary condition for φKm is as follows: at η = 0,

φKm = φwm − φSm (ζini > 0), (3.110)

where φwm is the expansion coefficient of φw, i.e.,

φw = φw1k + φw2k
2 + · · · , (3.111)

and as η → ∞,

φKm → 0, (3.112)

where the decay is assumed to be faster than any inverse power of η. This
assumption is verified in Bardos, Caflisch & Nicolaenko [1986].

From the analysis of the half-space problem of the linearized (homogeneous
or inhomogeneous) Boltzmann equation [Eq. (3.106) or (3.107) and Eqs. (3.110)
and (3.112)], we obtain the slip boundary condition for the Navier–Stokes-type
set of equations and the Knudsen-layer correction by a process similar to that
explained in the latter half part of Section 3.1.4.

Here are summarized the slip boundary condition and the Knudsen-layer cor-
rection for the macroscopic variables on a simple boundary and on an interface
of a gas and its condensed phase (Sone [1971, 1991a, c], Onishi & Sone [1979],
Sone [2002]). The formulas apply to a locally isotropic boundary,41 where the
reflection law is expressed by Eq. (1.64) with a finite diffuse reflection part or
by Eq. (1.69) with a finite complete condensation part.42

On a simple solid boundary

uiS1 − uwi1 = 0, (3.113a)

τS1 − τw1 = 0, (3.113b)

uiK1 = ωK1 = τK1 = 0, (3.113c)

40See the preceding Footnote 39.
41See Footnote 13 in Section 3.1.5.
42See Footnote 14 in Section 3.1.5.
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⎡⎣ (uiS2 − uwi2)ti

uiK2ti

⎤⎦ = SijS1nitj

⎡⎣ k0

Y0(η)

⎤⎦+ GiS1ti

⎡⎣ K1

1
2Y1(η)

⎤⎦ , (3.114a)

⎡⎣ uiS2ni

uiK2ni

⎤⎦ = 0, (3.114b)

⎡⎢⎢⎣
τS2 − τw2

ωK2

τK2

⎤⎥⎥⎦ = −GiS1ni

⎡⎢⎢⎣
d1

Ω1(η)

Θ1(η)

⎤⎥⎥⎦ , (3.114c)

SijSm = −
(

∂uiSm

∂xj
+

∂ujSm

∂xi

)
, GiSm = −∂τSm

∂xi
,

where the ti is a unit vector tangential to the boundary, uwim and τwm are
the component functions of the expansions of uwi (uwini = 0) and τw, i.e.,
uwi = uwi1k + uwi2k

2 + · · · and τw = τw1k + τw2k
2 + · · · , the slip coefficients

k0, K1, and d1 and the Knudsen-layer functions Y0(η), Y1(η), Ω1(η), and Θ1(η)
are the same as those in the linear theory, and the quantities with the subscript
S are evaluated on the boundary.

The Knudsen-layer parts of the stress tensor Pij and the heat-flow vector Qi

are

PijK1 = 0, (3.115)

PijK2 = − 3
2GkS1nk[Ω1(η) + Θ1(η)](δij − ninj), (3.116)

QiK1 = 0, (3.117)
QiK2ni = 0, QiK2ti = −SijS1tinjHA(η) − GiS1tiHB(η), (3.118)

where HA(η) and HB(η) are the same as those in the linear theory, and the
quantities with the subscript S are evaluated on the boundary.

The slip boundary condition and the Knudsen-layer correction up to the
second order of k are essentially the same as those (up to the first order of k)
in the linear theory.

On an interface of a gas and its condensed phase

(uiS1 − uwi1)ti = 0, (3.119a)

uiK1 = 0, (3.119b)⎡⎢⎢⎢⎢⎢⎣
PS1 − Pw1

τS1 − τw1

ωK1

τK1

⎤⎥⎥⎥⎥⎥⎦ = uiS1ni

⎡⎢⎢⎢⎢⎢⎣
C∗

4

d∗
4

Ω∗
4(η)

Θ∗
4(η)

⎤⎥⎥⎥⎥⎥⎦ , (3.119c)
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⎡⎣ (uiS2 − uwi2)ti

uiK2ti

⎤⎦ = SijS1nitj

⎡⎣ k0

Y0(η)

⎤⎦+ GiS1ti

⎡⎣ K1

1
2Y1(η)

⎤⎦
+ tj

∂

∂xj
(uiS1ni)

⎡⎣ K2

YK2(η)

⎤⎦ , (3.120a)

uiK2ni = −(uiS1ni)2Ω∗
4(η), (3.120b)⎡⎢⎢⎣

PS2 − Pw2

τS2 − τw2

ωK2

τK2

⎤⎥⎥⎦ = uiS2ni

⎡⎢⎢⎣
C∗

4

d∗4
Ω∗

4(η)
Θ∗

4(η)

⎤⎥⎥⎦− GiS1ni

⎡⎢⎢⎣
C1

d1

Ω1(η)
Θ1(η)

⎤⎥⎥⎦

−SijS1ninj

⎡⎢⎢⎣
C6

d6

Ω6(η)
Θ6(η)

⎤⎥⎥⎦− 2κ̄uiS1ni

⎡⎢⎢⎣
C7

d7

Ω7(η)
Θ7(η)

⎤⎥⎥⎦

+(uiS1ni)2

⎡⎢⎢⎣
C8

d8

Ω8(η)
Θ8(η)

⎤⎥⎥⎦+ τw1uiS1ni

⎡⎢⎢⎣
C9

d9

Ω9(η)
Θ9(η)

⎤⎥⎥⎦

+Pw1uiS1ni

⎡⎢⎢⎣
C10

d10

Ω10(η)
Θ10(η)

⎤⎥⎥⎦ , (3.120c)

where Pwm, similarly to uwim and τwm, is the component function of the expan-
sion of Pw, i.e., Pw = Pw1k + Pw2k

2 + · · · , the slip (jump) coefficients C∗
4 , d∗4,

k0, K1, K2, C1, d1, C6, d6, C7, and d7 and the Knudsen-layer functions Ω∗
4(η),

Θ∗
4(η), Y0(η), Y1(η), YK2(η), Ω1(η), Θ1(η), Ω6(η), Θ6(η), Ω7(η), and Θ7(η) are

the same as those in the linear theory,43 and the quantities with the subscript
S are evaluated on the interface. The κ̄/L is the mean curvature of the bound-
ary.44 The leading terms of the slip condition and the Knudsen-layer correction
are essentially the same as those in the linear theory.

For the BKW equation under the complete-condensation condition, the re-
maining coefficients C8, d8, C9, d9, C10, and d10 and the Knudsen-layer functions
Ω8(η), Θ8(η), Ω9(η), Θ9(η), Ω10(η), and Θ10(η) are obtained (Onishi & Sone
[1979]).45 The slip coefficients are

C8 = 2.320074, C9 = 1.066019, C10 = C∗
4 ,

d8 = −0.0028315, d9 = −0.223375, d10 = 0.

}
(3.121)

43See the note (v) after Eq. (3.57c).
44See the note (iii) after Eq. (3.42c).
45In Onishi & Sone [1979],

R η
0 [1+ω(η0)]dη0 instead of η is used as a Knudsen-layer variable.

The difference affects (Ω8, Θ8), (Ω9, Θ9), and (Ω10, Θ10) (Footnote 18 in Chapter 4 of Sone
[2002] needs correction).
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The Knudsen-layer parts of the stress tensor Pij and the heat-flow vector Qi

are given by

PijK1 = 3
2ukS1nk[Ω∗

4(η) + Θ∗
4(η)](δij − ninj), (3.122)

PijK2ninj = 3κ̄uiS1ni

∫ η

∞
[Ω∗

4(η0) + Θ∗
4(η0)]dη0, (3.123a)

PijK2nitj = − 3
2 tj

∂uiS1ni

∂xj

∫ η

∞
[Ω∗

4(η0) + Θ∗
4(η0)]dη0, (3.123b)

QiK1 = 0, (3.124)

QiK2ni = (ukS1nk)2
(
Ω∗

4(η) − 3
2Θ∗

4(η)
)
, (3.125)

where uiS1ni is evaluated on the interface.

3.2.4 Rarefaction effect of a gas

The equations (3.88a)–(3.88c) are apparently the Navier–Stokes set of equations
for an incompressible fluid.46 By closer examination, Eq. (3.88c) is a little dif-
ferent from the energy equation in the Navier–Stokes set of equations for an
incompressible fluid [vi∂ρ/∂Xi = 0 (or ui∂ω/∂xi = 0)] under the present situa-
tion with a small velocity (ui � 1 or small Mach number), a small temperature
variation (τ � 1), and a finite Reynolds number. In the latter, the convection
term ujS1∂τS1/∂xj in Eq. (3.88c) should be replaced by (3/5)ujS1∂τS1/∂xj .
This difference comes from the fact that the work done by pressure on a vol-
ume of the gas is of higher order in the incompressible fluid under the present
situation.47 That is, an effect of compressibility enters Eq. (3.88c). However, if
we consider an incompressible fluid with the internal energy multiplied by 5/3

46The definition of incompressible fluid is that the density ρ of a given mass of fluid is
invariable with change of its state. Thus, in a fluid in motion, the density is invariable
along the fluid-particle path, i.e., ∂ρ/∂t + vi∂ρ/∂Xi = 0. It is a kind of the equation of
state. Then, the conservation equation (1.12) of mass for an incompressible fluid reduces to
∂vi/∂Xi = 0 irrespective of a time-independent or time-dependent state. The Navier–Stokes
set of equations for an incompressible fluid is the set of equations (1.12)–(1.14) with Eq. (1.16)
supplemented by the above equation as the equation of state. Incidentally, there are sometimes
found erroneous discussions where another equation of state, e.g., the equation of perfect gas
p = RρT , is used in addition to the incompressibility condition.

47Let −p0(2RT0)1/2L2Wp be the work done per unit time by the pressure on a domain
V of the gas. Then, Wp =

∫
∂V (1 + P )uin̂idS =

∫
V ∂(1 + P )ui/∂xidx, where n̂i is the

outward unit normal vector to the boundary ∂V of V. In the weakly nonlinear problem,
this is rewritten as Wp = k2

∫
V ∂uiS2/∂xidx + · · · , because of the relation (1 + P )ui =

uiS1k + (uiS2 + PS1uiS1)k2 + · · · and Eqs. (3.87) and (3.88a). Noting Eqs. (3.87), (3.89a),
and (3.90), we find that Wp = k2

∫
V (uiS1∂τS1/∂xi)dx + · · · . Whereas, the work Wp is

O(|ui|3) in an incompressible fluid, because ∂ui/∂xi = 0 and ∂P/∂xi is O(|ui|2) from the
momentum equation. This agrees with the difference of the two equations because Eq. (3.88c)
is 2/5 of the energy conservation equation (1.89). The gas under consideration, generally the
gas discussed in this book, is not incompressible because the variation ω of the density is of
the same order as that τ of the temperature. However, under the situation of the S expansion,
the fluid-dynamic-type equations for the flow velocity at the leading order are of the same
form as the equations for an incompressible fluid.
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(or with the thermal conductivity multiplied by 3/5), the set (3.87)–(3.88c) is
the same as the incompressible Navier–Stokes set.48 For economy of words, we
will, hereafter, call the set of equations “the Navier–Stokes set of equations for
an incompressible fluid” or “the incompressible Navier–Stokes set of equations”
with the quotation mark.

The next-order equations (3.89a)–(3.89c) [together with Eqs. (3.87), (3.88a)–
(3.88c)] are very much like the Navier–Stokes set of equations for a slightly
compressible fluid, but there is a difference. Substituting the Mach number
expansion of the macroscopic variables in the Navier–Stokes set of equations
for a compressible fluid49 and transforming the Mach number expansion to the
Knudsen number expansion with the aid of Eq. (3.74), then we successively
obtain the equations (3.87), (3.88a)–(3.88c), and (3.89a)–(3.89c) with γ3 = 0.
The difference comes from the thermal stress in PijS3 in Eq. (3.95). Introducing
a new variable P ∗

S3:

P ∗
S3 = PS3 +

2γ3

3
∂2τS1

∂x2
i

, (3.126)

we can incorporate the γ3 term in the pressure term. Thus, Eqs. (3.89a)–
(3.89c) are apparently of the same form as the expansion of the Navier–Stokes
set of equations. Further the slip conditions in Eqs. (3.113a)–(3.114c) or in
Eqs. (3.119a)–(3.120c) do not contain PS3. Thus, we have the proposition
Proposition 3.2.1. Except for the Knudsen-layer correction, the macroscopic
variables of a slightly rarefied gas are obtained correctly up to the second or-
der of the Knudsen number (i.e., up to ωS2, uiS2, τS2, etc.) by solving the
Navier–Stokes sets of equations for a slightly compressible fluid (giving up to
the corresponding order) under the slip boundary conditions in Eqs. (3.113a)–
(3.114c) or in Eqs. (3.119a)–(3.120c). The effect of rarefaction of the gas comes
in only through the slip boundary conditions.50

3.2.5 Force and mass and energy transfers on a
closed body

We will give the extension of the propositions on the force and the moment of
force or the mass and energy transfers on a closed (or bounded) body in the
linear theory (Section 3.1.7) to the present weakly nonlinear case. The proof is
given in Sone & Aoki [1987] and Sone [2002].

Consider the total force, total moment of force, and total mass and energy
transfers on a closed (or bounded) body in a gas. These global quantities can
be obtained only by the knowledge of the fluid-dynamic part as follows. The

48The difference is more serious in a time-dependent problem (see Section 3.7.2). It is widely
said that the small Mach number limit of the compressible Navier–Stokes set of equations gives
the incompressible Navier–Stokes set, but it is not exact from the above comment.

49The temperature variation in the gas relative to its temperature is assumed to be of the
order of the Mach number in accordance with the discussion in this section (or Section 3.2).

50The fluid-dynamic-type system for a nontrivial state being the same as that of classi-
cal fluid dynamics, ‘the effect of rarefaction of a gas’ is used for the next and higher-order
contribution, though the nontrivial leading-order term is of the order of k (see Section 3.6).
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body may be the condensed phase of the gas; there may be other bodies in the
gas, or the domain may be enclosed by a boundary.
Proposition 3.2.2. The force Fi and the moment MOi of force (around the
origin) acting on a closed body in a gas are expressed by the fluid-dynamic part
ψijS [= PijS +2(1+ωS)uiSujS ] of the (nondimensional) momentum-flow tensor
as follows:

Fi = −p0L
2

∫
S

ψijSn̂jdS, (3.127)

MOi = −p0L
3

∫
S

εilkxlψkjSn̂jdS, (3.128)

where the surface S of integration is a closed surface enclosing only the body
under consideration, n̂i is the outward unit normal vector to the surface S, dS
is the surface element (in the nondimensional xi space) for integration, and εijk

is Eddington’s epsilon.51

Corollary. On a simple boundary, Fi/p0L
2 and MOi/p0L

3 are expressed only
by PijS up to the third order of k.
Proposition 3.2.3. The mass MF and the energy ET transferred to a closed
body in a gas per unit time are expressed by the fluid-dynamic parts ψm

iS [= (1+
ωS)uiS ] and ψe

iS [=
∫

ζiζ
2
j φSEdζ= 5

2uiS +ujSPijS + 3
2PSuiS +(1+ωS)uiSu2

jS +
QiS ] of the (nondimensional) mass-flow and energy-flow vectors as follows:

MF = −ρ0(2RT0)1/2L2

∫
S

ψm
iSn̂idS, (3.129)

ET = −p0(2RT0)1/2L2

∫
S

ψe
iSn̂idS, (3.130)

where the definitions of S, dS, and n̂i are the same as in Proposition 3.2.2.
Consider the contribution of the thermal stress. First rewrite the expression

of PijS3 given by Eq. (3.95) using P ∗
S3 defined by Eq. (3.126) as follows:

PijS3 = P ∗
S3δij − γ1

(
∂uiS2

∂xj
+

∂ujS2

∂xi
− 2

3
∂ukS2

∂xk
δij

)
− γ4τS1

(
∂uiS1

∂xj
+

∂ujS1

∂xi

)
+ γ3

(
∂2τS1

∂xi∂xj
− ∂2τS1

∂x2
k

δij

)
. (3.131)

We will call this expression the stress in the P ∗
S3 system. In this system the

thermal stress (non-Newtonian stress) may be taken as

γ3

(
∂2τS1

∂xi∂xj
− ∂2τS1

∂x2
k

δij

)
. (3.132)

Proposition 3.2.4. The non-Newtonian stress in the P ∗
S3 system contributes

neither to the force nor to the moment of force on a closed body in a gas.
From Propositions 3.2.1 and 3.2.4, we have

51See the definition in Footnote 30 in Section 3.1.7.
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Proposition 3.2.5. Under the condition of Proposition 3.2.1, the force and the
moment of force on a closed body can be obtained up to the third order of k in
the expressions Fi/p0L

2 and MOi/p0L
3 by the classical gas dynamic calculation

where the slip condition is taken into account. Here we mean by the classical gas
dynamic calculation that the force or the moment of force is calculated with the
aid of the Newtonian stress from the flow velocity and pressure fields obtained
by solving the Navier–Stokes set of equations under the slip boundary condition.

3.2.6 Summary

In this section we have discussed the asymptotic behavior of a gas for small
Knudsen numbers in the case where the deviation from a uniform equilibrium
state at rest is of the order of the Knudsen number. The outline of deriva-
tion and the formulas (up to the second order of the Knudsen number) of the
fluid-dynamic-type equations and their associated slip boundary conditions were
shown. It should be noted that the fluid-dynamic-type equations that are to be
used with the slip conditions (3.114a)–(3.114c) or (3.120a) and (3.120c) are not
the Navier–Stokes set of equations but contain the thermal stress term. After
the discussion of Sections 3.2.4 and 3.2.5, it is found that the behavior of a gas
up to this order can be treated by the Navier–Stokes set with the replacement
(3.126). Incidentally, in the case where the temperature variation in a gas is not
small (Section 3.3), the thermal-stress term cannot be included in the pressure
term. This introduces an interesting result peculiar to a rarefied gas. More-
over, a serious result about the behavior of a gas in the continuum limit (or
incompleteness of the classical fluid dynamics) is derived there.

In the situation of the present section, where the Mach number is of the
order of the Knudsen number, the nonlinear effect cannot be neglected for any
small Mach number because “the incompressible Navier–Stokes equations” are
the leading-order fluid-dynamic-type equations. This is also shown by the nu-
merical analysis of the BKW equation in Sone, Kataoka, Ohwada, Sugimoto
& Aoki [1994]. In some infinite domain problems, the variation of the veloc-
ity distribution function becomes more and more moderate in the far field or
the length scale of variation becomes larger and larger there. Accordingly, the
effective Knudsen number becomes smaller and smaller, and a situation where
the Mach number is comparable to the effective Knudsen number takes place,
however small the Mach number may be. Thus, the nonlinear effect cannot be
neglected for any small Mach number, and the linearized Boltzmann equation
does not give a uniformly valid solution over the whole domain (Sone [1978],
Onishi & Sone [1983]; see Section 7.2).

The fluid-dynamic-type equations derived by the S expansion are a series of
the Navier–Stokes-type sets of equations with “the incompressible Navier–Stokes
set of equations” as their leading set, and do not have the inconvenience that
the degree of differentiation increases with the progress of approximation, which
is encountered in the Chapman–Enskog expansion (Chapman & Cowling [1952]
and Section B.4). Further the assumption that the velocity distribution function
depends on the space variables only through the five macroscopic variables and
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their derivatives is unnecessary, and it comes out as a result. The difficulty
of the Chapman–Enskog expansion in the boundary-value problem is discussed
in Cercignani [1988]. Incidentally, an ill-posed equation is derived from this
expansion (see Tamada & Sone [1966], Sone [1968, 1984b]).52

52i) An initial or boundary-value problem of a partial differential equation is called a well-
posed problem if (a) a solution exists, (b) the solution is unique, and (c) the solution depends
continuously on the initial or boundary data of the problem; it is called ill-posed if it is not
well posed (see Garabedian [1964], Zachmanoglou & Thoe [1986]). The equation derived does
not satisfy the condition (c).

ii) Owing to the character of the fluid-dynamic-type equations derived by the Chapman–
Enskog expansion that the order of the differential system increases with the advance of
approximation, the sizes of the terms in the equations derived by that expansion increase
with the advance of the approximation for sharply varying components, sharper than the
length scale of variation of the order of k, in the initial condition or in the solution; for
the time-independent equations, more and more freedoms with the length scale of variation
of the order of k are introduced in the solution with the advance of approximation, and
their sizes in the equations remain of the same order in their higher-order terms. Thus, the
analysis neglecting these contributions results in the incorrect behavior of the sharply varying
components and the awkward behavior of the solution. The following equation is derived by
the Chapman–Enskog expansion from the linearized Boltzmann equation for a case with a
special symmetry [let φ in Eq. (1.96) with Sh = 1 spatially depend only on x2 and be odd in
ζ1, and transcript t̂ → t, x2 → x, and u1 → u]:

∂u/∂t = k
PN

n=1c2nk2(n−1)∂2nu/∂x2n, (∗)
where c2 = γ1/2 > 0 in general [see Eqs. (3.26) and (A.136)], and c4 = 0.190 (a hard-sphere
gas) and c4 = 1/4 (the BKW model). When N = 1 (Navier–Stokes level), it is the heat-
conduction equation, and when N = 2 (superBurnett level), it is an ill-posed equation. The
above-mentioned feature of the Chapman–Enskog solution is clear in Eq. (∗).

We will discuss the solution of the initial-value problem of Eq. (∗) more explicitly. Let the
initial condition be given by

u =
P∞

m=0Um cos mx. (∗∗).
The solution is expressed as

u =
P∞

m=0Um cos mx exp
h“PN

n=1(−1)nc2n(km)2n
”

(t/k)
i

. (#)

Let us evaluate the contribution to the solution from different n terms when k � 1. For
m = O(1), the terms in the second

P
sign become smaller by the factor k2 with advance of

n by one, and the number of such terms is finite. Thus, the contribution of the terms with
finite m in the solution u decays by the factor k2 as n increases by one for 0 < t < o(1/k). For
km being of the order of unity, all the terms in the second

P
sign are of the equal order, i.e.,

of the order of unity, and the size of the exponent is of the order of Nt/k. Depending on its
sign determined by N , the exponential function diverges or decays in a small time t (but � k;
e.g., t = k1/2). For larger m, i.e., km � 1, the last term (−1)N c2N (km)2N in the second

P
sign is dominant, and the behavior of the exponential function is determined by the term. If
(−1)N c2N > 0, the function grows very rapidly with respect to t. Consider the case in which
Um is of the order of 1/mS with S ≥ 2N +2, for which the initial function (∗∗) has its smooth
derivatives up to the 2N order of the order of unity. Even for such a moderate initial condition,
the Fourier coefficients diverge exponentially even for small time t (but t/k > k−1/s; s > 1)
because it is bounded from below by (t/k)−sS(km)−S exp[(−1)N (c2N/2)(km)2N (t/k)]. Thus,
the solution of the initial-value problem of Eq. (∗) with (−1)N c2N > 0 diverges in an infinitely
short time even for moderately varying initial data. That is, the problem is ill-posed.

From the discussion, we see that the higher-order equation contributes to the lower-order
solution and that the behavior of the solution differs drastically with N. The series of equations
is not an appropriate form as that for successive approximation. Careful interpretation and
applications of the expansion are required.
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3.3 Nonlinear problem I: Finite temperature
variations and ghost effect

3.3.1 Problem

In Section 3.2, we discussed the case where the deviation of the system from a
uniform equilibrium state at rest is of the order of the Knudsen number and de-
rived a series of fluid-dynamic-type equations with “the incompressible Navier–
Stokes set of equations”53 as the leading set of equations. In this system, the
variation of temperature of the gas (compared with the average temperature of
the system) as well as the flow Mach number is limited to be a small quantity
of the order of the Knudsen number. In the present section, we eliminate the
restriction on the temperature variation, keeping the restriction on the flow ve-
locity. The result is not just an extension of the formulas but contains a very
important fact concerning the behavior of a gas in the continuum limit. That is,
the classical fluid dynamics is found to be incomplete to describe the behavior
of a gas in the continuum limit, in contradiction with its purpose. This problem
will be discussed in Section 3.3.4. For the later application, we consider the
system subject to a weak external force independent of molecular velocity, such
as weak gravity.54 Here, we use the notation introduced in Section 1.9.

The basic equation is the Boltzmann equation (1.47a) for a time-independent
state, i.e.,

ζi
∂f̂

∂xi
+ F̂i

∂f̂

∂ζi
=

1
k

Ĵ(f̂ , f̂). (3.133)

The boundary condition is symbolically expressed as

f̂(xi, ζi) = f̂w (ζjnj > 0). (3.134)

On a simple boundary the boundary condition is generally given by Eq. (1.64)
or more simply by the diffuse-reflection condition (1.63a) with (1.63b). On an
interface of the gas and its condensed phase, the condition is given by Eq. (1.69)
or more simply by the complete-condensation condition (1.68).

The additional conditions on the flow velocity v̂i and the external force F̂i,
which characterize the problem discussed in this section, are specified as∫

ζif̂dζ = O(k), (3.135a)

F̂i = O(k2). (3.135b)

We consider this weak external force because bifurcation in the Bénard problem
(Section 8.2) takes place for this size of the gravity.

53See Section 3.2.4 for the meaning of the quotation mark.
54The external force is considered in this section for application to the Bénard problem in

Section 8.2, because this gives an interesting example concerning the behavior of a gas in the
continuum limit.
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We will discuss the asymptotic behavior for small Knudsen numbers (or small
k) of the boundary-value problem of the Boltzmann equation, i.e., Eqs. (3.133)
and (3.134), under the assumptions (3.135a) and (3.135b).55

In the following analysis, the boundary data T̂w, v̂wi, p̂w, as well as f̂w, are
considered to depend on k and expanded in k, i.e.,

T̂w = T̂w0 + T̂w1k + · · · ,

v̂wi = v̂wi1k + v̂wi2k
2 + · · · ,

p̂w = p̂w0 + p̂w1k + · · · ,

f̂w = f̂w0 + f̂w1k + · · · ,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.136)

where v̂wi is required to start from the term of the order of k owing to the
assumption (3.135a).

3.3.2 Outline of the analysis

We will outline the analysis of the boundary-value problem described in Section
3.3.1, referring to the principal results summarized in Section 3.3.3.

The behavior of the gas is expressed as the sum of the two terms, the overall
solution or the fluid-dynamic part and the Knudsen-layer correction,

f̂ = f̂SB + f̂K , (3.137)

where the overall solution f̂SB is a solution of Eq. (3.133), subject to Eqs. (3.135a)
and (3.135b) but with Eq. (3.134) put aside, whose length scale of variation is
the reference length of the system, i.e., ∂f̂SB/∂xi = O(f̂SB).56 The Knudsen-
layer correction f̂K is appreciable only in a thin layer, with thickness of the
order of the mean free path, adjacent to the boundary and decays very rapidly
in the layer in the direction normal to the boundary.57

The solution f̂SB , to be called SB solution, is obtained in a power series of
k, i.e.,

f̂SB = f̂SB0 + f̂SB1k + · · · , (3.138)

where the subscript SB is attached to discriminate the SB solution. Correspond-
ing to this expansion, the macroscopic variables ρ̂, v̂i, T̂ , etc. are also expanded
in k, i.e.,

ĥSB = ĥSB0 + ĥSB1k + · · · , (3.139)

where ĥ represents ρ̂, v̂i, T̂ , etc. The analysis of f̂SBm is essentially the same as in
the previous sections (Sections 3.1.2 and 3.2.2). Substituting the series (3.138)

55This is the extension of the work by Sone & Wakabayashi [1988] for the BKW equation
to that for the standard Boltzmann equation with the weak external force (see Sone [2002]
and Sone & Doi [2003a] for the details of analysis).

56See the first two sentences of Footnote 39 in Section 3.2.3.
57In addition to the condition kni∂f̂K/∂xi = O(f̂K), the decay faster than any inverse

power of η, defined in Eq. (3.147), is assumed, which is required for clear separation of f̂SB

and f̂K . See Footnote 6 in Section 3.1.4.
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into the Boltzmann equation (3.133), we obtain a series of integral equations
for f̂SBm,58 i.e.,

Ĵ(f̂SB0, f̂SB0) = 0, (3.140)

2Ĵ(f̂SB0, f̂SBm) = ζi
∂f̂SBm−1

∂xi
−

m−1∑
r=1

Ĵ(f̂SBr, f̂SBm−r)

+ H3(m)F̂i2
∂f̂SBm−3

∂ζi
(m ≥ 1), (3.141)

where F̂i2 = F̂i/k2, the
∑

term is absent when m = 1, and H3(m) = 1 for
m ≥ 3 and H3(m) = 0 for m ≤ 2.

From the last paragraph of Section A.7.1, the leading distribution f̂SB0 is
Maxwellian, i.e.,

f̂SB0 =
ρ̂SB0

(πT̂SB0)3/2
exp

(
− (ζi − v̂iSB0)2

T̂SB0

)
. (3.142)

From the assumption (3.135a),

v̂iSB0 = 0. (3.143)

With this condition, we proceed with the analysis under the assumption that
the parametric functions ρ̂SB0 and T̂SB0 in the Maxwellian are of the order of
unity. From the condition for Eq. (1.83) to hold and the relation (1.53),59 the
inhomogeneous term of the integral equation (3.141) must satisfy the following
relation (solvability condition) for Eq. (3.141) to have a solution:∫

ψrζk
∂f̂SBm−1

∂xk
dζ −H3(m)IFr = 0, (3.144)

where

ψ0 = 1, ψi = ζi, ψ4 = ζ2
k ,

IF0 = 0, IFi = F̂i2ρ̂SBm−3, IF4 = 2F̂j2

m−4∑
n=0

ρ̂SBnv̂jSBm−3−n.

In IF4, the convention
∑−1

n=0 ρ̂SBnv̂jSBm−3−n = 0 is used. Let the solvability
condition (3.144) be indicated by SCr

m. The conditions SC0
1 and SC4

1 reduce to
identities, and from SCi

1 and SCi
2, p̂SB0 and p̂SB1 are constants [Eqs. (3.153) and

(3.154) in Section 3.3.3]. Owing to the degeneracy, staggered combination with

58In view of Eq. (A.116), the collision operator Ĵ(f̂SB0, ∗) [or Ĵ(f̂h0, ∗), Ĵ(f̂V 0, ∗), etc.] is
reduced to the linearized one La(†). Thus, Eq. (3.141) is practically of the same form as
Eq. (3.82). For the BKW equation, see also Footnote 35 in Section 3.2.2 and Eq. (A.113).

59See Footnote 58 and note that Eq. (1.83) holds when and only when ϕ(“) is a linear
combination of 1, ζi, and ζ2

i .
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respect to m of the solvability conditions gives a series of sets of equations that
determines the macroscopic variables consistently from the lowest order. That
is, SC0

2, SC4
2, and SCi

3 correspond, respectively, to Eqs. (3.155), (3.157), and
(3.156). Generally, the set of equations derived from the solvability conditions
SC0

m+2, SC4
m+2, and SCi

m+3 contains the functions ρ̂SBm, T̂SBm, v̂iSBm+1, and
p̂SBm+2 as well as functions appeared in the equations at the previous stages [or
the functions ρ̂SBn, T̂SBn, v̂iSBn+1, and p̂SBn+2 (n ≤ m−1)]. Thus, with the aid
of the expanded form of the equation of state p̂SB = ρ̂SBT̂SB, the staggered com-
bination of functions ρ̂SBm, T̂SBm, v̂iSBm+1, and p̂SBm+2 is determined consis-
tently and successively from the lowest order by the rearranged sets of equations
given by the solvability condition (3.144).

Noting the condition (1.66c) or (1.71c) with the uniqueness comment for the
boundary condition (1.64) or (1.69), we find that the Maxwellian (3.142) with
Eq. (3.143) can be matched with the boundary condition (1.64) or (1.69), if we
take

T̂SB0 = T̂w0, (3.145)

on a simple boundary, or if we take

T̂SB0 = T̂w0, p̂SB0 = p̂w0, (3.146)

on the interface.60 Equations (3.145) and (3.146), respectively, give the bound-
ary condition for T̂SB0 on the simple boundary and that for T̂SB0 and p̂SB0 on
the interface. For the higher orders, we have to introduce the Knudsen-layer
correction f̂K to make the solution satisfy the boundary condition (3.134). The
analysis is similar to that in Section 3.2.3.

Substitute Eq. (3.137) into the Boltzmann equation (3.133) and rewrite it
with the Knudsen-layer variables (η, χ1, χ2) introduced in Eq. (3.31), i.e.,

xi = kηni(χ1, χ2) + xwi(χ1, χ2), (3.147)

where xi = xwi(χ1, χ2) is the boundary surface. Then, the equation for f̂K is

60From the above discussion, this is one choice. This can be shown to be unique. That is, we
introduce the Knudsen-layer correction that is introduced in the higher-order analysis at this
step and apply the result in Section 4.4 (for a simple boundary) and Golse’s result mentioned
there (for the complete-condensation condition) to the Knudsen-layer problem. The process
from introduction of the Knudsen layer to the problem in Section 4.4 is similar to that in the
paragraph containing Eqs. (3.222)–(3.224b) in Section 3.5.1. Then, we find that the condition
(3.145) or (3.146) must be satisfied and that the Knudsen-layer correction vanishes. The proof
is not yet complete. A solution with a length scale of variation other than the Knudsen layer
may be possible, as we will find the viscous boundary layer, the solution in the intermediate
region between the overall region and the Knudsen layer, in Section 3.4.1. However, according
to the analysis similar to that in Section 3.4.1, it is found that a solution with a shorter scale
of variation than the Knudsen layer is uniform with respect to the new coordinate, which
contradicts the assumption on the length scale of variation, and that a solution with a longer
scale cannot be made to connect smoothly to the solution f̂SB .
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given in the form

ζini
∂f̂K

∂η
= 2Ĵ(f̂SB , f̂K) + Ĵ(f̂K , f̂K) − kF̂i

∂f̂K

∂ζi

− kζi

(
∂χ1

∂xi

∂f̂K

∂χ1
+

∂χ2

∂xi

∂f̂K

∂χ2

)
, (3.148)

where the terms consisting only of f̂SB are absent because f̂SB satisfies Eq. (3.133),
and f̂SB appears as the product with f̂K .61

The Knudsen-layer correction f̂K is expanded in a power series of k starting
from the first order of k, i.e.,

f̂K = f̂K1k + · · · . (3.149)

The series expansions of f̂SB and f̂K in k, i.e., Eqs. (3.138) and (3.149), are put
into Eq. (3.148). In this process, the series expansion of the series (3.138) of f̂SB

with respect to η, i.e.,

f̂SB = (f̂SB0)0 +
[
(f̂SB1)0 + (∂f̂SB0/∂xi)0niη

]
k + · · · , (3.150)

where the quantities in the parentheses with subscript 0 are evaluated on the
boundary, is applied as in Section 3.2.3, because f̂SB appears only as the product
with the rapidly decaying f̂K in Eq. (3.148). Then, we obtain the equation for
f̂Km, which is a (homogeneous or inhomogeneous) linearized one-dimensional
Boltzmann equation. For example,

ζini
∂f̂K1

∂η
= 2Ĵ((f̂SB0)0, f̂K1). (3.151)

The boundary condition for f̂K1 is

f̂K1 = f̂w1 − (f̂SB1)0 (ζini > 0) at η = 0, (3.152a)

f̂K1 → 0 as η → ∞. (3.152b)

The boundary-value problem (3.151)–(3.152b) is practically the same as that
for φK1 with φK0 = 0 discussed in Section 3.1.4 (see Section A.11). Thus, as the
condition that the problem has a solution f̂K1 (the Grad–Bardos theorem), the
conditions on the boundary values of v̂iSB1 and T̂SB1 on a simple boundary or
those among v̂iSB1, T̂SB1, and p̂SB1 on an interface are obtained (see also Sone
[2002]).

61See Footnote 39 in Section 3.2.3.
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3.3.3 Fluid-dynamic-type equations and their
boundary conditions

We summarize the result of analysis in the preceding subsection (Section 3.3.2),
i.e., the fluid-dynamic-type equations and their associated boundary conditions
that describe the behavior of a gas in the continuum limit.

The fluid-dynamic-type equations are

p̂SB0 = p̂0, (3.153)

p̂SB1 = p̂1, (3.154)

∂ρ̂SB0v̂iSB1

∂xi
= 0, (3.155)

ρ̂SB0v̂jSB1
∂v̂iSB1

∂xj

= −1
2

∂p̂∗SB2

∂xi
+

1
2

∂

∂xj

[
Γ1(T̂SB0)

(
∂v̂iSB1

∂xj
+

∂v̂jSB1

∂xi
− 2

3
∂v̂kSB1

∂xk
δij

)]

+
1

2p̂0

∂

∂xj

⎧⎨⎩Γ7(T̂SB0)

⎡⎣∂T̂SB0

∂xi

∂T̂SB0

∂xj
− 1

3

(
∂T̂SB0

∂xk

)2
δij

⎤⎦⎫⎬⎭+ ρ̂SB0F̂i2,

(3.156)

ρ̂SB0v̂iSB1
∂T̂SB0

∂xi
=

1
2

∂

∂xi

(
Γ2(T̂SB0)

∂T̂SB0

∂xi

)
, (3.157)

where p̂0 and p̂1 are constants, ρ̂SB0 and p̂∗SB2 are

ρ̂SB0 =
p̂0

T̂SB0

, (3.158a)

p̂∗SB2 = p̂SB2 +
2

3p̂0

∂

∂xk

(
Γ3(T̂SB0)

∂T̂SB0

∂xk

)
, (3.158b)

and the nondimensional transport coefficients Γ1(T̂SB0), Γ2(T̂SB0), Γ3(T̂SB0),
and Γ7(T̂SB0) are the functions of T̂SB0 defined by Eq. (A.131) in Section A.2.9,
whose functional forms are determined by the molecular model. Incidentally,
for a hard-sphere gas,

Γ1(a)/a1/2 = 1.270 042 427, Γ2(a)/a1/2 = 1.922 284 066,

Γ3(a)/a = 1.947 906 335, Γ7(a) = 1.758 705,

and for the BKW model,

Γ1(a)/a = Γ2(a)/a = Γ3(a)/a2 = Γ7(a)/a = 1.
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The thermal-stress term (or the third term on the right-hand side) in Eq. (3.156)
can be reduced to the first order with the aid of Eq. (3.157). That is, with the
new modified pressure p̂†SB2 defined by

p̂†SB2 = p̂SB2 +
2

3p̂0

∂

∂xk

(
Γ3(T̂SB0)

∂T̂SB0

∂xk

)
− Γ7(T̂SB0)

6p̂0

(
∂T̂SB0

∂xk

)2

= p̂∗SB2 −
Γ7(T̂SB0)

6p̂0

(
∂T̂SB0

∂xk

)2
, (3.159)

Eq. (3.156) is rewritten in the following form with the first-order thermal-stress
term:

ρ̂SB0v̂jSB1
∂v̂iSB1

∂xj

= −1
2

∂p̂†SB2

∂xi
+

1
2

∂

∂xj

[
Γ1

(
∂v̂iSB1

∂xj
+

∂v̂jSB1

∂xi
− 2

3
∂v̂kSB1

∂xk
δij

)]

+

⎡⎣Γ7

Γ2

v̂jSB1

T̂SB0

∂T̂SB0

∂xj
+

Γ2
2

4p̂0

dΓ7/Γ2
2

dT̂SB0

(
∂T̂SB0

∂xj

)2⎤⎦ ∂T̂SB0

∂xi
+ ρ̂SB0F̂i2,

(3.160)

where Γ1 = Γ1(T̂SB0), Γ2 = Γ2(T̂SB0), and Γ7 = Γ7(T̂SB0) for short.
The boundary conditions on a simple boundary are

T̂SB0 = T̂w0, (3.161a)

(v̂jSB1 − v̂wj1)(δij − njni)

T̂
1/2
w0

= −K̂1

p̂0

∂T̂SB0

∂xj
(δij − njni),

v̂jSB1nj = 0,

⎫⎪⎬⎪⎭ (3.161b)

and those on an interface are

T̂SB0 = T̂w0, (3.162a)
p̂SB0 = p̂w0, (3.162b)

(v̂jSB1 − v̂wj1)(δij − njni)

T̂
1/2
w0

= − K̂1

p̂w0

∂T̂SB0

∂xj
(δij − njni), (3.162c)

p̂SB1 − p̂w1

p̂w0
= Ĉ∗

4

v̂jSB1nj

T̂
1/2
w0

+
Ĉ1

p̂w0

∂T̂SB0

∂xj
nj , (3.162d)

where the slip coefficients K̂1, Ĉ1, and Ĉ∗
4 , derived by the Knudsen-layer analy-

sis, are functions of T̂w0, whose functional forms are determined by the molecular
model and kinetic boundary condition (3.134). They are related to the slip co-
efficients K1, C1, and C∗

4 in the linear theory (Section 3.1.5). Their relations
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are discussed in Section A.11. In the diffuse reflection or complete-condensation
condition, the relations are, for a hard-sphere gas,

K̂1 = K1 (= −0.6463), Ĉ1 = C1 (= 1.0947), Ĉ∗
4 = C∗

4 (= −2.1412),

and for the BKW model,

K̂1/T̂
1/2
w0 = K1 (= −0.38316), Ĉ1/T̂

1/2
w0 = C1 (= 0.55844),

Ĉ∗
4 = C∗

4 (= −2.13204).

The effect of molecular property enters the above system only through the
transport coefficients Γ1, Γ2, and Γ7 and the slip coefficients K̂1, Ĉ1, and Ĉ∗

4 .
Thus, the fundamental structure of the equations and boundary conditions is
generally common to molecular models.

It may be better to add a comment on the process of determination of
the macroscopic variables when the boundary is an interface of a gas and
its condensed phase. From Eq. (3.153) and the boundary condition (3.162b),
p̂SB0 = p̂0 = p̂w0, which requires that p̂w0 is uniform. From the set of equations
(3.155), (3.156) [or (3.160)], and (3.157) with Eq. (3.158a) and the boundary
conditions (3.162a), (3.162c), and (3.162d), the variables T̂SB0, ρ̂SB0, v̂iSB1, and
p̂SB2 are determined with the constant p̂1 in Eq. (3.154) as a parameter, leav-
ing an undetermined integration constant (say, p̂2) in p̂SB2; the parameter p̂1

enters the variables T̂SB0, ρ̂SB0, v̂iSB1, and p̂SB2 through p̂SB1 (= p̂1) in the
boundary condition (3.162d). The constant p̂1 cannot be arbitrary, because it
is determined by the condition at infinity in an unbounded-domain problem, or
because the quantity ρ̂SB0v̂iSB1ni integrated over the boundary must be zero
from Eq. (3.155) in a bounded-domain problem. The present system is formally
consistent, but a note should be made here. The saturated gas pressure p̂w is
generally an increasing function of temperature T̂w. Thus, T̂w0 is required to be
uniform because p̂w0 is uniform as shown above. In a bounded-domain problem,
the system for T̂SB0, ρ̂SB0, v̂iSB1, and p̂SB2 has a solution with T̂SB0 = const
and ρ̂SB0 = const; this case corresponds to that discussed in Section 3.2. In
an unbounded-domain problem, the pressure p̂∞ at infinity should be close to
p̂w0 (with difference of the order of k) for Eq. (3.135a) or (3.143) to hold, but
the temperature T̂∞ at infinity may be arbitrary, for which the result of the
present section is required. In this case, the gas is highly undersaturated or
supersaturated at infinity.

3.3.4 Ghost effect and incompleteness of the classical
gas dynamics

The system of equations (3.155)–(3.157) has a striking feature. It determines
T̂SB0, ρ̂SB0, v̂iSB1, and p̂SB2 simultaneously. That is, the temperature field
T̂SB0 in the continuum limit (k → 0) cannot be independent of the component
function v̂iSB1 at the first order of k. This is strange from the classical fluid-
dynamic point of view. In the world of k = 0+ or Kn = 0+ (in the world of the
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continuum limit), one has no way to perceive the infinitesimal velocity v̂iSB1k
and thus, the quantity v̂iSB1. The temperature field is affected by something
that does not exist in the world, which may be called a ghost effect.62 The
convection effect of the infinitesimal velocity cannot be neglected in Eq. (3.157),
and the thermal stress of the second-order infinitesimal must be retained in
Eq. (3.156) to determine v̂iSB1. Thus, the temperature field T̂SB0 is affected by
non-Navier–Stokes stress (non-Navier–Stokes effect in the continuum limit).63

In the classical fluid dynamics, the temperature field of a gas at rest is ob-
tained from the heat-conduction equation, i.e., Eq. (3.157) with v̂iSB1 = 0. This
is allowed only in special cases. We will discuss the condition that is required for

62The ghost effect, a finite effect produced by an infinitesimal quantity, is not unique to
the present system. The corresponding situations are encountered in asymptotic analyses
around singular points in various systems. Consider the following differential system for (u, v)
containing a small parameter ε: the equations are symbolically given by

F1(u, v) + εH1(u, v) = 0, F2(u, v) + εH2(u, v) = 0, (∗)
where F1(0, v) = 0 and F2(0, v) = 0 for any v, and the boundary conditions for u and v are

u = εU, v = V.

To make the discussion simpler, F1 and F2 are assumed to be bilinear with respect to u and
v. Here, we look for the solution (u, v) in the power series of ε, i.e.,

u = u0 + εu1 + · · · , v = v0 + εv1 + · · · .

Then, the leading-order equations are

F1(u0, v0) = 0, F2(u0, v0) = 0,

and the boundary conditions are
u0 = 0, v0 = V0, (∗∗)

where V = V0 + εV1 + · · · . The set (0, v0), where v0 is an arbitrary function that satisfies the
boundary condition (∗∗), is a solution. When u0 = 0, the next-order equations are

F1(u1, v0) + H1(0, v0) = 0, F2(u1, v0) + H2(0, v0) = 0, (#)

and the boundary conditions are

u1 = U1, v0 = V0,

where U = U1 + · · · . The function u1 cannot generally be zero owing to the boundary
condition for u1 and the terms H1(0, v0) and H2(0, v0) in Eq. (#). The leading-order function
v0 is determined together with the first-order function u1 from Eq. (#). In other words, in
the limiting world that ε → 0, the infinitesimal field u produces a finite effect on the field
v. There are various physical mechanisms that cause the field u. In the limit that ε → 0, we
cannot perceive the infinitesimal quantity u. Thus, the corresponding results in the field v are
called their ghost effects.

63The non-Navier–Stokes effect and the ghost effect should not be confused. As is obvious
from the discussion in the following paragraphs in the present subsection, thermal creep flow
and nonlinear-thermal-stress flow, the latter of which contributes to the non-Navier–Stokes
effect, are not required for the existence of the ghost effect (see also Sections 8.2 and 8.3). Ko-
gan and Fridlender, who proposed the nonlinear-thermal-stress flow in a different way (Kogan,
Galkin & Fridlender [1976]), misunderstand our claim in the way that nonlinear-thermal-stress
flow = the ghost effect → ghost (what does not exist) and seem to be unhappy. It cannot
be imagined that such a misunderstanding takes place from our various past descriptions
and direct explanations. Expressions (definition, concept, and statement) should be taken
precisely.
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v̂iSB1 = 0. First, from the boundary condition (3.161b) with (3.161a) or (3.162c)
with (3.162a), it is required that [v̂wj1T̂

−1/2
w0 −(K̂1/p̂0)∂T̂w0/∂xj ](δij−njni) = 0.

This condition may be conveniently split into the two conditions
(i) v̂wi1 = 0,
(ii) (δij − njni)∂T̂w0/∂xj = 0,

because (δij − njni)v̂wj1 and (δij − njni)∂T̂w0/∂xj may be chosen arbitrarily.
That is, if the condition (i) or (ii) is not satisfied, v̂iSB1 does not generally
vanish. Secondly, owing to the thermal stress term in Eq. (3.160), there is
another condition that is required for v̂iSB1 = 0. That is, eliminating p̂†SB2

from Eq. (3.160) by taking its curl and putting v̂iSB1 = 0 in the result, we have
the condition
(iii)

∂ T̂SB0

∂xi

∂

∂xj

(
∂ T̂SB0

∂xk

)2
− ∂ T̂SB0

∂xj

∂

∂xi

(
∂ T̂SB0

∂xk

)2

+
4p̂2

0

fΓ(T̂SB0)

(
∂

∂xj

F̂i2

T̂SB0

− ∂

∂xi

F̂j2

T̂SB0

)
= 0, (3.163)

where fΓ(T̂SB0) = Γ2
2d(Γ7/Γ2

2)/dT̂SB0.
The condition (ii) requires that the temperature be uniform on each bound-

ary; the condition (iii) means that the isothermal lines are parallel when F̂i2 =
0.64 The flow induced when the condition (iii) is not satisfied is called nonlinear-
thermal-stress flow (see Section 5.1.3). These conditions are satisfied only in
very special cases. For example, when F̂i2 = 0, this type of temperature field
is possible in a gas between two parallel plane walls, coaxial cylinders, or con-
centric spheres with uniform temperature on each boundary. Even in the case
of a gas between two parallel plane walls with uniform temperature on each
boundary, the solution with nonzero v̂iSB1 is possible in a system under grav-
ity (Bénard problem), and the temperature field is strongly distorted by the
infinitesimal flow. This interesting example is discussed in Section 8.2.

In this way, we find that the flow v̂iSB1(�= 0) or a flow of the order of Kn is
naturally induced by a nontrivial temperature field. The thermal creep flow (an
effect of slip condition of the order of Kn) and the nonlinear thermal stress flow
of the order of Kn (non-Navier–Stokes effect or an effect of nonlinear thermal
stress of the second order of Kn) produce finite effects on the temperature field.
That is, the situation considered in this section, i.e., Eq. (3.135a), is not a special
situation but naturally occurs. The condition (i) or the component v̂wi1 cannot
be identified in a gas in the continuum limit. That is, the temperature field
is indefinite in the world of the continuum limit (or in the continuum world).
The famous Taylor–Couette problem with different cylinder temperatures and
infinitesimal speeds of rotation of the cylinders is an interesting example of this
case, where the infinitesimal speeds of rotation of the cylinders induce strongly

64From Eq. (3.163), (∂ T̂SB0/∂xk)2 is a function of T̂SB0 when F̂i2 = 0 (see discussions
related to the implicit function theorem in a standard textbook of analysis, e.g., Buck [1965],
Takagi [1961], and Bronshtein & Semendyayev [1997]).
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distorted temperature fields and the fields are subject to non-Navier–Stokes
effect, as shown in Section 8.3. In a real gas the mean free path is not exactly
zero, however small it may be. Then, a very small motion of the boundary
(of the order of Kn) affects the temperature field considerably (of the order of
unity).

We have seen the discrepancy of the classical fluid dynamics (or Navier–
Stokes system) in describing the behavior of the temperature field of a gas at
rest in the continuum limit (Kn = 0+). This discrepancy can be seen from the
Navier–Stokes set of equations itself if we look at the set a little carefully.

The energy equation of the Navier–Stokes set of equations is given as follows:

5
2
ρvi

∂RT

∂Xi
= · · · + ∂

∂Xi
λ

∂T

∂Xi
, (3.164)

where only the essential terms in the discussion are shown and λ is the thermal
conductivity. In discussing the temperature field of a gas at rest, one usually
puts vi = 0 and solves the heat-conduction equation ∂(λ∂T/∂Xi)/∂Xi = 0.
However, we have to examine the equation (3.164) a little more carefully.

According to a very crude estimate by elementary kinetic theory (e.g., Ken-
nard [1938], Vincenti & Kruger [1965]), or as we have seen in Eqs. (3.70) and
(3.71), the viscosity μ and thermal conductivity λ of a gas are related to the
mean free path  of the gas, i.e.,

μ/ρ = f(T )(2RT )1/2, λ/ρ = g(T )(2RT )1/2R, (3.165)

where f and g are nondimensional functions of T, whose functional forms are
determined by the molecular model. For example, for a hard-sphere gas, f =
0.56277 and g = 2.1295. With the above order of λ, let us estimate the orders
of the main terms of Eq. (3.164), the convection term on the left-hand side
(say, Evec) and the conduction term, the last term, on the right-hand side (say,
Educ). They are

O(Evec) = ρVRT/L, O(Educ) = ρ(RT )3/2/L2,

where V and L are, respectively, the characteristic flow speed and the length
scale of variation of the gas temperature, and the temperature variation is as-
sumed to be of the same order as the temperature itself (a fundamental as-
sumption in this section). The two terms are comparable when the flow speed
V is of the order of (RT )1/2/L. Thus, the flow vanishing as  → 0 cannot be
neglected in the energy equation. As a flow of this magnitude, we know the
thermal creep flow or nonlinear-thermal-stress flow, which is inevitable except
special cases. Thus, the heat-conduction equation is inappropriate in describing
the temperature field of a gas at rest in the continuum limit.

Next, for the above size of flow speed, i.e., V = O[(RT )1/2/L], let us es-
timate the orders of the main terms, the convection term (say, Mvec) and the
viscous term (say, Visc), of the momentum equation of the Navier–Stokes set

ρvj
∂vi

∂Xj
= · · · + ∂

∂Xj
μ

(
∂vi

∂Xj
+

∂vj

∂Xi
− 2

3
∂vk

∂Xk
δij

)
.
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Figure 3.3. Geometry. In this example, the behavior of a gas between two parallel
plane walls with the periodic temperature distribution Tw = T0(1− Δτw cos 2πX1/L)
is considered.

The order of the convection term on the left-hand side and that of the viscous
term, the last term, on the right-hand side are

O(Mvec) = ρV2/L = (ρRT/L)(/L)2, O(Visc) = (ρRT/L)(/L)2.

Both are of the second order of the Knudsen number. Thus, a stress pij of
the order of ρRT (/L)2 should be retained in the above equation. The thermal
stress and the weak external force in Eq. (3.156) are a stress and force of this
order. Another non-Navier–Stokes stress is shown in Chapter 9. Thus, we see
the incompleteness of the Navier–Stokes set in describing the behavior of a gas
in the continuum limit.

The ghost effect in the sense that something that does not exist in the
world of a gas in the continuum limit produces a finite effect in this world is
found in the flow-velocity field in the cylindrical Couette flow with evaporation
or condensation on the cylinders in Sone, Takata & Sugimoto [1996], which is
explained in Section 8.4.2 (see also Sone [1997, 2002]). The ghost effect appears
combined with bifurcation of a flow in the famous Bénard and Taylor–Couette
problems. These problems are discussed in Sections 8.2 and 8.3. A geometric
parameter of the system such as infinitesimal curvature of the boundary can
be a source of ghost and non-Navier–Stokes effects, which will be discussed in
Chapter 9.

As we have seen, the classical fluid dynamics is incomplete. In order to
analyze the ghost effect and to find the correct behavior of a gas in the continuum
limit (Kn = 0+), we have to rely on molecular gas dynamics or kinetic theory.
This is a new important role of molecular gas dynamics.
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Figure 3.4. Comparison of the three kinds of solutions for the problem shown in
Fig. 3.3 with Δτw = 0.5 I : Temperature distributions along X2/L = 0.1696 and
X2/L = 0.5 and flow-speed distribution along X2/L = 0.0227. The solid lines ——:
the BKW equation for Kn= 0.005, 0.01, 0.02, and 0.05, the dot-dash lines – -–: the
asymptotic theory, and the dashed lines - - -: the heat-conduction equation. Note the
difference of the ordinate of T/T0 from that of (v2

i )1/2/(2RT0)
1/2. The solution of the

kinetic equation converges to the solution by the asymptotic theory.

3.3.5 Illustrative example

In order to understand the situation more clearly, we take a simple example and
compare three kinds of solutions: the solution of the heat-conduction equation,
the solution of the system derived by the asymptotic analysis [Eqs. (3.155)–
(3.157), (3.161a), and (3.161b)], and the numerical solutions of the Boltzmann
equation for various small Knudsen numbers. The example considered here is a
gas between two parallel plane walls at X2 = 0 and X2 = L in the absence of
external force (Fi = 0); both walls are at rest65 and have a common temperature
distribution Tw = T0(1 − Δτw cos 2πX1/L), where T0 and Δτw are constants
(Fig. 3.3). We look for the periodic solution with period L with respect to
X1. In Figs. 3.4 and 3.5, the three kinds of solutions for Δτw = 0.5 are com-
pared, where the BKW equation (and the corresponding asymptotic and heat-
conduction equations) and the diffuse-reflection condition are used for simplicity

65The solution is indefinite unless v̂wi1 is specified as explained in Section 3.3.4. Thus, we
consider the case v̂wi1 = 0 as well as v̂wi0 = 0.
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Figure 3.5. Comparison of the three kinds of solutions for the problem shown
in Fig. 3.3 with Δτw = 0.5 II : Temperatures at (X1/L, X2/L) = (0, 0.1696) and
(0, 0.5) and flow speed at (X1/L, X2/L) = (0.25, 0.0227) vs Kn. The white sym-
bols (◦, ♦, ˜): T/T0 at (X1/L, X2/L) = (0, 0.5), the black symbols (•, ˇ, ¨):
T/T0 at (X1/L, X2/L) = (0, 0.1696), and the circled pluses ⊕: (v2

i )1/2/(2RT0)
1/2 at

(X1/L, X2/L) = (0.25, 0.0227); the circles (◦, •, ⊕): the BKW equation, the dia-
monds (♦, ˇ): the asymptotic theory, and the squares (˜, ¨): the heat-conduction
equation; the dot-dash line – -–: |(v̂iSB1+v̂iK1)k| in the asymptotic theory (the explicit
formula for v̂iK1 is not given in the main text, because it is not necessary for its pur-
pose). Note the difference of the ordinate of T/T0 from that of (v2

i )1/2/(2RT0)
1/2. The

solution of the kinetic equation converges to the solution by the asymptotic theory.

of numerical computation of the kinetic equation, because the principal features
of the previous discussion are the same for the BKW equation and the standard
Boltzmann equation. The temperature distributions along X2/L = 0.1696 and
X2/L = 0.5, and the flow speed distribution along X2/L = 0.0227 are shown
in Fig. 3.4; the temperature at (X1/L,X2/L) = (0, 0.1696) and (0, 0.5) and the
flow speed at (0.25, 0.0227) vs Kn are shown in Fig. 3.5. The flow speed attains
roughly the maximum value at this point. The Knudsen number Kn here is
defined by the mean free path of the average density of the gas in the domain
and the channel width L. From Figs. 3.4 and 3.5, it is clear that the temperature
field of the kinetic equation approaches that of the system of the asymptotic
theory and not that of the heat-conduction equation and that the flow vanishes
as the Knudsen number tends to zero. In Figs. 3.6 (a) and (b), a comparison of
the solution of the asymptotic system and that of the heat-conduction equation
for a hard-sphere gas is shown for the same problem. The data in this subsection
are taken from Sone, Aoki, Takata, Sugimoto & Bobylev [1996]. Incidentally,



126 Chapter 3. Slightly Rarefied Gas

� � � �
� � � �

� 	 


�

� � �

� �
�

� � 

�

� � � � � � � � �
� � � �

� � �

� � �

� � � �
� � � �

� � 


� � �

�

� � �

�
� �

� � � � � � � �

� � � � � � � � � �

Figure 3.6. Comparison of the solutions of the asymptotic theory and heat-
conduction equation for a hard-sphere gas in the problem shown in Fig. 3.3 with
Δτw = 0.5. (a) The isothermal lines T/T0 = 0.6 + 0.1m (m = 0, 1, ..., 8) and 1.05. (b)
The temperature distributions along X2/L = 0.175 and X2/L = 0.5. Here, the dot-
dash lines – .–: asymptotic theory and the dashed lines - - -: heat-conduction equation.

examples of the ghost effect on flow velocity fields are given in Section 8.4.2.

3.4 Nonlinear problem II: Flow with a finite
Mach number around a simple boundary

3.4.1 Problem and the outline of analysis

Up to now, we have considered the cases where the Mach number Ma of a
gas flow is a small quantity much smaller than or of the same order as the
Knudsen number Kn. In this section a flow with a finite Mach number around
a simple boundary is considered. In this case, from the von Karman relation
(3.74), the Reynolds number Re of the flow is very large, and in view of the
result for the Navier–Stokes system,66 a viscous boundary layer (or Prandtl
boundary layer) with thickness of the order of Re−1/2L or Kn1/2L for a finite
Ma is expected outside the Knudsen layer. Thus, the asymptotic analysis for
small Knudsen numbers is developed by introducing an intermediate anisotropic
layer with thickness of the order of Kn1/2L. In order to express this layer, the
velocity distribution function and macroscopic variables are expanded in power

66The discussion of the viscous boundary layer in the Navier–Stokes system is found in
most textbooks of classical fluid dynamics, e.g., Prandtl [1952], Tietjens [1957], Liepmann &
Roshko [1957], Schlichting [1979], and Chorin & Marsden [1997]. The first stresses on the
physical aspect and the last stresses on the mathematical aspect. Incidentally, asymptotic
analyses of various problems in classical fluid dynamics are discussed in Zeytounian [2002,
2003].
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series of Kn1/2 or k1/2,67 in contrast to the cases discussed in the foregoing
sections, where they are expanded in power series of k. The analysis for a finite
Mach number, with this anisotropy, does not cover the analyses in the foregoing
sections, but this is a special case with a very large Reynolds number to be
treated separately.

The problem is the asymptotic analysis for small Knudsen numbers (or small
k) of the time-independent boundary-value problem of the Boltzmann equation
(1.47a) with the boundary condition (1.64), or more simply the diffuse-reflection
condition (1.63a) with (1.63b) on a simple boundary when the flow Mach number
or v̂i is of the order of unity (Sone, Bardos, Golse & Sugimoto [2000]). The
nondimensional Boltzmann equation is

ζi
∂f̂

∂xi
=

1
k

Ĵ(f̂ , f̂). (3.166)

The boundary condition is symbolically expressed as

f̂(xi, ζi) = f̂w (ζjnj > 0). (3.167)

Here, the boundary data v̂wi and T̂w are taken to be independent of k for
simplicity.68

We will outline the analysis of the boundary-value problem, referring to the
principal results summarized in Section 3.4.2.

The boundary condition being put aside, the solution [∂f̂/∂xi = O(f̂)] de-
scribing the overall behavior of the gas is obtained in the power-series expansion
in k1/2, i.e.,

f̂ = f̂h = f̂h0 + f̂h1ε + · · · , (3.168)

where ε = k1/2 and the subscript h is attached to discriminate the expansion in
ε.69 Corresponding to the expansion of the velocity distribution function, the
boundary data f̂w and the macroscopic variables ρ̂, v̂i, T̂ , etc. are also expanded
in ε, i.e.,

f̂w = f̂w0 + f̂w1ε + · · · , (3.169)

ĥh = ĥh0 + ĥh1ε + · · · , (3.170)

where ĥ represents ρ̂, v̂i, T̂ , etc. Substituting the expansion (3.168) into Eq. (3.166)
and arranging the same-order terms in ε, we obtain a series of integral equations

67The length scale of variation of the variables in the viscous boundary layer is Re−1/2L
or Kn1/2L for a finite Ma. Thus, Kn1/2 or k1/2 is the fundamental parameter instead of k.
The solutions in the other regions are required to be expanded in k1/2 in harmony with the
solution in the layer.

68The boundary function f̂w depends on k even when v̂wi and T̂w are independent of k,
because f̂w depends on f̂ (ζini < 0).

69See the first two sentences of Footnote 39 in Section 3.2.3.
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for f̂hm, which are linear for m ≥ 1, as in the previous analyses,70 i.e.,

Ĵ(f̂h0, f̂h0) = 0, (3.171a)

Ĵ(f̂h0, f̂h1) = 0, (3.171b)

2Ĵ(f̂h0, f̂hm) = ζi
∂f̂hm−2

∂xi
−

m−1∑
s=1

Ĵ(f̂hs, f̂hm−s) (m = 2, 3, . . .). (3.171c)

The leading term f̂h0 of the expansion is the local Maxwellian, as f̂SB0 in
Section 3.3.2, i.e.,

f̂h0 =
ρ̂h0

(πT̂h0)3/2
exp

(
− (ζi − v̂ih0)2

T̂h0

)
. (3.172)

The ε-order term f̂h1 being artificially introduced for adjusting f̂h to the vis-
cous boundary-layer solution to be discussed, the sum f̂h0 + f̂h1ε is practically
Maxwellian, i.e.,

f̂h0+f̂h1ε =
ρ̂h0 + ρ̂h1ε

[π(T̂h0 + T̂h1ε)]3/2
exp

(
− [ζi − (v̂ih0 + v̂ih1ε)]2

T̂h0 + T̂h1ε

)
+O(ε2). (3.173)

We advance the analysis to the higher orders. From the condition for Eq. (1.83)
to hold and the relation (1.53),71 the condition (solvability condition)∫

(1, ζi, ζ
2
k)ζj

∂f̂hm−2

∂xj
dζ = 0 (m = 2, 3, . . .) (3.174)

is required for Eq. (3.171c) to have a solution. From Eq. (3.174) with m = 2,
the Euler set of equations for ρ̂h0, v̂ih0, and T̂h0 in the Maxwellian (3.172) is
derived [Eqs. (3.192a)–(3.192c) in Section 3.4.2]. From Eq. (3.174) with m = 3,
the linearized Euler set of equations for ρ̂h1, v̂ih1, and T̂h1, linearized around
ρ̂h0, v̂ih0, and T̂h0, is derived [Eqs. (3.194a)–(3.194c)].72

The leading Maxwellian f̂h0 can apparently be made to satisfy the boundary
condition (3.167) by taking v̂ih0 = v̂wi and T̂h0 = T̂w, but these conditions are
too strong as the boundary conditions for the Euler set, a set of the first-order
equations. Thus, we have to loosen the assumption ∂f̂/∂xi = O(f̂) on the solu-
tion in a neighborhood of the boundary. The solution is looked for by inserting
a layer expressing the viscous boundary layer with thickness of the order of εL.
In the layer, we assume that the behavior of the gas varies appreciably within
the layer in the direction normal to the boundary, i.e., εni∂f̂/∂xi = O(f̂), and
introduce the variables (y, χ1, χ2) natural to this variation, i.e.,

xi = εyni(χ1, χ2) + xwi(χ1, χ2), (3.175)
70See Footnote 58 in Section 3.3.2.
71See Footnote 59 in Section 3.3.2.
72The ρ̂h0 + ρ̂h1ε, v̂ih0 + v̂ih1ε, and T̂h0 + T̂h1ε, where the ε-order terms are artificially

introduced in connection with the viscous boundary layer, are practically governed by the
Euler set.
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where xi = xwi(χ1, χ2) is the boundary surface and y is a stretched coordinate
normal to the boundary. In this coordinate system, the Boltzmann equation
(3.166) is rewritten as

1
ε
ζini

∂f̂V

∂y
+ ζi

(
∂χ1

∂xi

∂f̂V

∂χ1
+

∂χ2

∂xi

∂f̂V

∂χ2

)
=

1
ε2

Ĵ(f̂V , f̂V ), (3.176)

where the subscript V is attached to discriminate the viscous boundary-layer
solution.73

The solution f̂V in the layer, for which ∂f̂V /∂y = O(f̂V ), is looked for in a
power series of ε, i.e.,

f̂V = f̂V 0 + f̂V 1ε + · · · . (3.177)

Corresponding to this expansion, the macroscopic variables ρ̂, v̂i, T̂ , etc. are
also expanded in power series of ε, i.e.,

ĥV = ĥV 0 + ĥV 1ε + · · · , (3.178)

where ĥ represents ρ̂, v̂i, T̂ , etc. Substituting the expansion (3.177) into Eq. (3.176)
and arranging the same-order terms, we obtain a series of integral equations for
f̂V m, which are linear for m ≥ 1, as in the previous analyses,74 i.e.,

Ĵ(f̂V 0, f̂V 0) = 0, (3.179a)

2Ĵ(f̂V 0, f̂V m) = Ihvm (m ≥ 1), (3.179b)

where Ihvm is the inhomogeneous term determined by f̂V n (n < m), e.g., Ihv1 =
ζini∂f̂V 0/∂y.

The leading term f̂V 0 of the expansion is the local Maxwellian as f̂h0, i.e.,

f̂V 0 =
ρ̂V 0

(πT̂V 0)3/2
exp

(
− (ζi − v̂iV 0)2

T̂V 0

)
. (3.180)

The Maxwellian f̂V 0 can be made to satisfy the boundary condition (3.167) by
choosing the boundary values of the parameters v̂iV 0, T̂V 0 as75

v̂iV 0 = v̂wi, T̂V 0 = T̂w at y = 0. (3.181)

From the condition for Eq. (1.83) to hold and the relation (1.53),76 the following
condition SCVr

m (solvability condition) is required for Eq. (3.179b) for f̂V m (m ≥
1) to have a solution:

SCVr
m :

∫
ψrIhvmdζ = 0 (ψ0 = 1, ψi = ζi, ψ4 = ζ2

k),

73See the first two sentences of Footnote 39 in Section 3.2.3.
74See Footnote 58 in Section 3.3.2.
75(i) See Footnote 60 in Section 3.3.2.

(ii) The equations derived later are compatible with this nonslip condition in contrast to

the Euler set for ρ̂h0, v̂ih0, and T̂h0.
76See Footnote 59 in Section 3.3.2.



130 Chapter 3. Slightly Rarefied Gas

from which relations among ρ̂V n, v̂iV n, T̂V n, p̂V n (n ≤ m − 1) are derived.
The solvability conditions SCV0

1 and SCVi
1ni give, respectively,

∂ρ̂V 0v̂iV 0ni

∂y
= 0 and

∂p̂V 0

∂y
+

∂2ρ̂V 0(v̂iV 0ni)2

∂y
= 0. (3.182)

From the first relations of Eq. (3.182) and Eq. (3.181), we find

v̂iV 0ni = 0, thus
∂p̂V 0

∂y
= 0, (3.183)

because v̂wini = 0.77 With this result,78 the other conditions of SCVr
1 are re-

duced to identities. Then, Eq. (3.179b) with m = 1 for f̂V 1 is solved. The
analysis proceeds with repetition of derivation of the solvability condition and
solution of the integral equation. Owing to the above degeneracy, the series of
equations determines the component functions of the expansions of ρ̂V , v̂iV , T̂V ,
and p̂V in a staggered combination of different order of the expansions.79 That
is, from the set of SCVj

1nj , SCV0
2, SCVj

2(δij − ninj), and SCV4
2, the equations

for ρ̂V 0, v̂iV 1ni, v̂jV 0(δij − ninj), p̂V 0, and T̂V 0 are obtained, from the set of
SCVj

2nj , SCV0
3, SCVj

3(δij − ninj), and SCV4
3, the equations for ρ̂V 1, v̂iV 2ni,

v̂jV 1(δij − ninj), p̂V 1, and T̂V 1 are obtained, and so on. The derivation of
the explicit equations requires a tedious lengthy manipulation and the result is
also very lengthy. Thus, the result is summarized in Section 3.4.2 for the two-
dimensional case (see Sone, Bardos, Golse & Sugimoto [2000] or Sone [2002] for
the details of the analysis and the general results).

We could make f̂V 0 satisfy the boundary condition (3.167) at the order of
unity. To construct the solution that satisfies the boundary condition at the
higher orders, we have to introduce the Knudsen-layer correction f̂K , for which
ε2ni∂f̂K/∂xi = O(f̂K). That is, the solution is put in the form80

f̂ = f̂V + f̂K . (3.184)

The Knudsen-layer correction f̂K is expanded in a power series of ε starting
from the first order of ε, i.e.,

f̂K = f̂K1ε + · · · , (3.185)

for which the Knudsen-layer variables (η, χ1, χ2) introduced in Eq. (3.31), i.e.,

xi = ε2ηni(χ1, χ2) + xwi(χ1, χ2),

77In Sone [2002] (Sone, Bardos, Golse & Sugimoto [2000]), the statement v̂iV 0ni = 0 on page
177 (ûiV 0ni = 0 on page 335) should be put before ∂p̂V 0/∂y = 0, i.e., Eq. (6.53) [Eq. (52)].

78The lengthy manipulation becomes much lengthier unless the relation is not used in the
early stage of analysis.

79Note that Eq. (1.54d), i.e., p̂ = ρ̂T̂ , is implicitly used in the following discussion, in
addition to the relations referred to.

80See Footnote 39 in Section 3.2.3.
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are natural variables. We can proceed with the analysis in the same way as in
Sections 3.1.4, 3.2.3, and 3.3.2 and obtain the (homogeneous or inhomogeneous)
linearized one-dimensional Boltzmann equation for f̂Km

ζini
∂f̂Km

∂η
= 2Ĵ((f̂V 0)0, f̂Km) + Ihkm (m ≥ 1), (3.186)

where the quantities in the parentheses with subscript 0 are evaluated on the
boundary, and Ihkm (Ihk1 = 0) is the inhomogeneous term determined by the
solution of the previous stages. The boundary condition for f̂Km is

f̂Km = f̂wm − f̂V m (ζini > 0) at η = 0, (3.187a)

f̂Km → 0 as η → ∞. (3.187b)

The speed of decay of f̂Km is assumed to be faster than any inverse power of η.81

The boundary-value problem (3.186)–(3.187b) is practically the same as that of
the linear theory discussed in Section 3.1.4 (see Section A.11). According to the
Grad–Bardos theorem, the slip conditions for v̂iV m and T̂V m on the boundary
are derived as the conditions that the problem (3.186)–(3.187b) has the solution
f̂Km.82

As the final step of analysis, the condition to connect the overall solution
f̂h with the viscous boundary-layer solution f̂V is discussed. In the viscous
boundary layer with (nondimensional) thickness of the order of ε, the expansion
of the overall solution f̂h

f̂h = (f̂h0)0 +
[
(f̂h1)0 + (∂f̂h0/∂xi)0niy

]
ε + · · · , (3.188)

can be applied. Put the viscous boundary-layer solution f̂V in the form

f̂V = f̂h + f̂V C . (3.189)

If the residue f̂V C decays rapidly (or faster than any inverse power of y) as
y → ∞,83 the connection of f̂V and f̂h can be done. Consider Eq. (3.189) in
the region where y is very large but εy is very small.84 The residue f̂V C is

81The fast decay with η is required for clear separation of f̂V and f̂K . See Footnote 6 in
Section 3.1.4.

82The solution v̂iKmni can be obtained without full solution of the system in the same way
as uiKmni is done in Footnote 11 in Section 3.1.4. That is, integrating Eq. (3.186) over the
whole space of “ and noting that the integral of the collision term vanishes by integration, we
obtain a simple equation for v̂iKmni, e.g., ∂ρ̂V 0v̂iK1ni/∂η = 0. Thus, from the condition at
η = ∞, v̂iK1ni = 0. Then, from the condition v̂ini = 0 [or (v̂iV 1 + v̂iK1)ni = 0] on a simple
boundary, we have v̂iV 1ni = 0 there.

83The fast decay with y is required for clear separation of f̂h and f̂VC . See Footnote 6 in
Section 3.1.4.

84For example, y = ε−1/n (for arbitrarily large n). Then, f̂V C is smaller than any inverse

power of ε there, because of the assumption of the rapid decay of f̂V C as y → ∞. Further,
this choice does not mix up the power terms of y in f̂h that are of different order in ε for finite
y [or terms of different orders in ε in Eq. (3.188) are not mixed up in the region].
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negligibly small there. Comparing the two solutions f̂V and f̂h in this region
with Eq. (3.188) in mind, we find that the two solutions match if the following
conditions are satisfied:

ρ̂V 0 ∼ (ρ̂h0)0 as y → ∞, (3.190a)

v̂iV 0 ∼ (v̂ih0)0 as y → ∞, (3.190b)

T̂V 0 ∼ (T̂h0)0 as y → ∞, (3.190c)

ρ̂V 1 ∼ (ρ̂h1)0 + ynj

(
∂ρ̂h0

∂xj

)
0

as y → ∞, (3.191a)

v̂iV 1 ∼ (v̂ih1)0 + ynj

(
∂v̂ih0

∂xj

)
0

as y → ∞, (3.191b)

T̂V 1 ∼ (T̂h1)0 + ynj

(
∂T̂h0

∂xj

)
0

as y → ∞, (3.191c)

and so on.

3.4.2 Fluid-dynamic-type equations and their boundary
conditions and the recipe for solution

Here we summarize the equations and boundary conditions that determine the
behavior of the gas up to the order of ε and describe the recipe for solution of the
system. The viscous boundary-layer equations for the general three-dimensional
case are complicated to see their character; thus, we here list the equations and
boundary conditions in the two-dimensional case. In the viscous boundary-layer
system, the quantities are assumed to be uniform along the χ2 coordinate, and
χ1 is simply denoted by χ. For simplicity, the components of v̂iV m along χ and
η coordinates are denoted, respectively, by um and vm. Generally, the order of
expansion is denoted by the subscript of each quantity, and the subscript V is
omitted.
System in the overall region:

The fluid-dynamic-type equations that determine the behavior of a gas in
the overall region are the Euler set of equations at the leading order, i.e.,

∂ρ̂h0v̂ih0

∂xi
= 0, (3.192a)

ρ̂h0v̂jh0
∂v̂ih0

∂xj
+

1
2

∂p̂h0

∂xi
= 0, (3.192b)

ρ̂h0v̂jh0
∂

∂xj

(
v̂2

ih0 +
5
2
T̂h0

)
= 0, (3.192c)

where
p̂h0 = ρ̂h0T̂h0.
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The boundary condition on a simple boundary is

v̂ih0ni = 0, (3.193)

which is derived from Eqs. (3.183) and (3.190b).
Solving the above system, we proceed to the analysis of the viscous boundary-

layer equations at the leading order (see the next item). After that, we return to
the analysis of the next order. The equations at the next order are the linearized
Euler set of equations, linearized around ρ̂h0, v̂ih0, and T̂h0, i.e.,

∂(ρ̂h0v̂ih1 + ρ̂h1v̂ih0)
∂xi

= 0, (3.194a)

ρ̂h0v̂jh0
∂v̂ih1

∂xj
+ (ρ̂h0v̂jh1 + ρ̂h1v̂jh0)

∂v̂ih0

∂xj
+

1
2

∂p̂h1

∂xi
= 0, (3.194b)

ρ̂h0v̂jh0
∂

∂xj

(
2v̂ih0v̂ih1 +

5
2
T̂h1

)
+ (ρ̂h0v̂jh1 + ρ̂h1v̂jh0)

∂

∂xj

(
v̂2

ih0 +
5
2
T̂h0

)
= 0,

(3.194c)

where
p̂h1 = ρ̂h0T̂h1 + ρ̂h1T̂h0.

The boundary condition for the equations are derived from the viscous boundary-
layer solution v1 at the leading order [see Eq. (3.199)] and the connection con-
dition (3.191b) as

(v̂ih1)0 ni = −
∫ ∞

0

[(
∂v̂ih0

∂xj

)
0

ninj +
1

(ρ̂h0)0
∂ρ̂0u0

∂χ

]
dy. (3.195)

Here, we move to the analysis of the viscous boundary layer.
System in the viscous boundary layer:

From Eq. (3.183) with the connection conditions (3.190a) and (3.190c), v0

and p̂0 are known, i.e.,

v0 = 0, p̂0 = p̂0(χ) = (p̂h0)0. (3.196)

The variables u0, T̂0, and v1 are determined by the following system:

ρ̂0

(
u0

∂u0

∂χ
+ v1

∂u0

∂y

)
= −1

2
dp̂0

dχ
+

1
2

∂

∂y

(
Γ1(T̂0)

∂u0

∂y

)
, (3.197)

3
2
ρ̂0

(
u0

∂T̂0

∂χ
+ v1

∂T̂0

∂y

)
= −p̂0

(
∂u0

∂χ
+

∂v1

∂y

)
+ Γ1(T̂0)

(
∂u0

∂y

)2

+
5
4

∂

∂y

(
Γ2(T̂0)

∂T̂0

∂y

)
, (3.198)
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v1 = − 1
ρ̂0

∫ y

0

∂ρ̂0u0

∂χ
dy, (3.199)

where

ρ̂0 = p̂0/T̂0. (3.200)

Their boundary conditions are

u0 = v̂witi, T̂0 = T̂w at y = 0, (3.201)

u0 ∼ (v̂ih0)0ti, T̂0 ∼ (T̂h0)0 as y → ∞, (3.202)

where ti is a unit vector tangent to the χ coordinate on the boundary, thus,
ti = ti(χ), and Γ1(T̂0) and Γ2(T̂0) are positive functions of T̂0 whose functional
forms are determined by the molecular model (see Section A.2.9). Equations
(3.197) and (3.198) are, respectively, SCVi

2ti and SCV4
2; Eq. (3.199) is derived

from SCV0
2 and the boundary condition for v1 (= 0) obtained by the Knudsen-

layer analysis.85 The boundary conditions (3.201) and (3.202) correspond, re-
spectively, to Eq. (3.181) and the connection conditions (3.190b) and (3.190c).

After solving this system, we return to the analysis of the system (3.194a)–
(3.195) for ρ̂h1, v̂ih1, and T̂h1. After that, we analyze the following viscous
boundary-layer system at the next order. The equations are86

ρ̂0u0
∂u1

∂χ
+ (ρ̂0u1 + ρ̂1u0)

∂u0

∂χ
+ ρ̂0v1

∂u1

∂y

+ (ρ̂0v2 + ρ̂1v1)
∂u0

∂y
− κρ̂0u0v1 + κyρ̂0u0

∂u0

∂χ

= −1
2

(
∂p̂1

∂χ
+ κy

dp̂0

dχ

)

+
1
2

∂

∂y

[
Γ1(T̂0)

(
∂u1

∂y
+ κu0

)
+ T̂1

dΓ1(T̂0)
dT̂0

∂u0

∂y

]

− κΓ1(T̂0)
∂u0

∂y
, (3.203)

∂p̂1

∂y
= −2κρ̂0u0

2, (3.204)

85See Footnote 82 in Section 3.4.1.
86Equation (3.204) being first solved with the connection conditions (3.191a) and (3.191c),

p̂1 is obtained independently of the other quantities, which is the same situation as that of
p̂0.
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3
2
ρ̂0v1

∂T̂1

∂y
+

3
2
(ρ̂0v2 + ρ̂1v1)

∂T̂0

∂y

+
3
2
ρ̂0u0

∂T̂1

∂χ
+

3
2
(ρ̂0u1 + ρ̂1u0)

∂T̂0

∂χ
+

3
2
κyρ̂0u0

∂T̂0

∂χ

= −p̂0

[
∂v2

∂y
+

∂u1

∂χ
+ κ

(
y
∂u0

∂χ
− v1

)]
− p̂1

(
∂v1

∂y
+

∂u0

∂χ

)

+

[
2Γ1(T̂0)

(
∂u1

∂y
+ κu0

)
+ T̂1

dΓ1(T̂0)
dT̂0

∂u0

∂y

]
∂u0

∂y

+
5
4

∂

∂y

[
Γ2(T̂0)

∂T̂1

∂y
+ T̂1

dΓ2(T̂0)
dT̂0

∂T̂0

∂y

]
− 5

4
κΓ2(T̂0)

∂T̂0

∂y
, (3.205)

v2 = − ρ̂1v1

ρ̂0
− 1

ρ̂0

∫ y

0

(
∂(ρ̂0u1 + ρ̂1u0)

∂χ
− κρ̂0v1 + κy

∂ρ̂0u0

∂χ

)
dy, (3.206)

where κ/L is the curvature of the boundary taken negative when the center of
the curvature lies on the side of the gas, and ρ̂1 is given by

ρ̂1 =
p̂1 − ρ̂0T̂1

T̂0

. (3.207)

Equations (3.203), (3.204), and (3.205) are, respectively, SCVi
3ti, SCVi

2ni, and
SCV4

3, and Eq. (3.206) is derived from SCV0
3 and the boundary value of v2

obtained by the Knudsen-layer analysis.87 The boundary conditions at y = 0,
derived by the Knudsen-layer analysis, are

u1 = − k̂0

ρ̂0

∂u0

∂y
, T̂1 =

d̂1

ρ̂0

∂T̂0

∂y
, (3.208)

where the slip coefficients k̂0 and d̂1 are related to those k0 and d1 in the linear
theory in Section 3.1.5.88 Their relations are discussed in Section A.11. For the
diffuse-reflection condition, the relations are

k̂0 = k0 (= −1.2540), d̂1 = d1 (= 2.4001) (hard-sphere gas),

k̂0/T̂ 1/2
w = k0 (= −1.01619), d̂1/T̂ 1/2

w = d1 (= 1.30272) (BKW model).

87See Footnote 82 in Section 3.4.1.
88The thermal creep flow appears at the order of ε2, because the variations of the variables

along the boundary are O(ε) times smaller than those normal to the boundary in the viscous
boundary layer.
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The conditions at infinity are

ρ̂1 ∼ (ρ̂h1)0 + ynj

(
∂ρ̂h0

∂xj

)
0

as y → ∞, (3.209a)

u1 ∼ (v̂ih1)0 ti + ynj

(
∂v̂ih0

∂xj

)
0

ti as y → ∞, (3.209b)

T̂1 ∼
(
T̂h1

)
0

+ ynj

(
∂T̂h0

∂xj

)
0

as y → ∞, (3.209c)

which are the connection conditions (3.191a)–(3.191c).
The Knudsen-layer correction for the macroscopic variables is given as

ρ̂K1 =
1

T̂w

(
∂T̂0

∂y

)
0

Ω̂1 (η̃) , (3.210a)

v̂iK1ti = − 1
(ρ̂0)0

(
∂u0

∂y

)
0

Ŷ0 (η̃) , v̂iK1ni = 0, (3.210b)

T̂K1 =
1

(ρ̂0)0

(
∂T̂0

∂y

)
0

Θ̂1 (η̃) , (3.210c)

where η̃ = (ρ̂0)0η and the Knudsen-layer functions Ŷ0 (η̃) , Ω̂1 (η̃) , and Θ̂1 (η̃)
are related to those Y0(η), Ω1(η), and Θ1(η) in Section 3.1.5 and the relations,
which depend on the choice of the reference quantities, are discussed in Section
A.11.

The viscous boundary-layer equations (3.197)–(3.200) and boundary condi-
tions (3.201) and (3.202) at the leading order are the same as those for the
Navier–Stokes equations for a compressible fluid (the compressible fluid ver-
sion of the Prandtl boundary-layer equations and their boundary conditions).
Equations (3.203)–(3.207) for the next-order variables also do not contain the
non-Navier–Stokes stress and heat-flow terms. The term containing T̂1dΓ1/dT̂0

or T̂1dΓ2/dT̂0 is due to the fact that the viscosity or thermal conductivity of
the gas depends on its temperature. These equations are derived by a power
series expansion in the inverse Re−1/2 of the square root of the Reynolds num-
ber Re from the Navier–Stokes set of equations for a compressible fluid where
the coordinate normal to the boundary is stretched by the factor of Re1/2 [note
the relation (3.74) for the transform from the Re−1/2-expansion to ε-expansion].
The result does not support the claim by Darrozes [1969] that the boundary-
layer equations describing the leading effect of gas rarefaction (or ρ̂1, u1, v1,
p̂1, and T̂1) should contain a non-Navier–Stokes stress term. (In his paper no
explicit equations are given.) Owing to the anisotropic character of the viscous
boundary layer, a higher-order quantity, or v2, which is expressed by lower-order
quantities, enters the equations that determine the behavior of ρ̂1, u1, p̂1, and
T̂1. However, in view of the fact that its boundary value (v2)0 vanishes owing to
the displacement effect of the Knudsen layer being of higher order, the contribu-
tions up to the order of Kn1/2 are included in the system of the Navier–Stokes
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equations (in the nonexpanded original form) and the (correspondingly rear-
ranged) slip conditions consisting of tangential velocity slip due to the shear
of flow and temperature jump due to the temperature gradient normal to the
boundary.

In a system where the Euler set of equations is the leading set of the fluid-
dynamic-type equations, a kinetic transition layer or shock layer, corresponding
to a shock wave (Section 4.7), may appear in a gas (Grad [1969]). At the zeroth
approximation, the solutions of the Euler set of equations across the shock layer
are connected by the Rankine–Hugoniot relation for a plane shock wave, and
the smooth transition between the two solutions is expressed by the solution of
a plane shock wave.

3.5 Nonlinear problem III: Flow with a finite
speed of evaporation or condensation

3.5.1 Problem and the outline of analysis

In Section 3.4, we discussed a flow with a finite Mach number around a simple
boundary, across which there is no mass flux. In the present section (Section
3.5), we consider a flow of a gas around its condensed phase where evaporation
or condensation with a speed of a finite Mach number is taking place. Owing to
the convection effect of condensing or evaporating flow of a finite Mach number,
the viscous boundary layer, which appears in a flow with a finite Mach number
around a simple boundary (Section 3.4),89 shrinks to merge into the Knudsen
layer over a condensing boundary, or the layer spreads into the whole flow field
(or the Euler region) over an evaporating boundary and the viscous effect is
reduced to a secondary one there. The Euler region is connected directly to the
Knudsen layer. Instead, the Knudsen layer is governed by a nonlinear equation
in contrast to that in the foregoing sections.

Consider a time-independent system composed of a gas and its condensed
phase of smooth shape, on the surface of which evaporation or condensation is
taking place. The Mach number of the speed of evaporation and condensation
of the gas on the interface of the gas and its condensed phase is of the order of
unity. We will outline the asymptotic analysis of this system for small Knudsen
numbers (see Sone [2002] for the details).

The problem is the time-independent boundary-value problem of the Boltz-
mann equation (1.47a) with the boundary condition (1.69), or more simply the
complete-condensation condition (1.68). The nondimensional Boltzmann equa-
tion is

ζi
∂f̂

∂xi
=

1
k

Ĵ(f̂ , f̂), (3.211)

89The viscous boundary layer appears when Ma � Kn or Re � 1 even if Ma � 1 (see Sone,
Bardos, Golse & Sugimoto [2000] or Sone [2002]).
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and the boundary condition is symbolically expressed as

f̂(xi, ζi) = f̂w (ζjnj > 0). (3.212)

The solution of the boundary-value problem is expressed as the sum of the two
terms, the overall solution and the Knudsen-layer correction, i.e.,

f̂ = f̂H + f̂K , (3.213)

where the overall solution f̂H is a solution of Eq. (3.211), with Eq. (3.212) put
aside, whose length scale of variation is the reference length of the system, i.e.,
∂f̂H/∂xi = O(f̂H).90 The Knudsen-layer correction f̂K is appreciable only in
a thin layer, with thickness of the order of the mean free path, adjacent to
the boundary and decays rapidly in the layer in the direction normal to the
boundary.91

The solution f̂H is obtained in a power series of k, i.e.,

f̂H = f̂H0 + f̂H1k + · · · , (3.214)

where the subscript H is the symbol showing the original Hilbert expansion
(Hilbert [1912]). Corresponding to this expansion, the boundary data f̂w and
the macroscopic variables ρ̂, v̂i, T̂ , etc. are also expanded in power series of k,
i.e.,

f̂w = f̂w0 + f̂w1k + · · · , (3.215)

ĥH = ĥH0 + ĥH1k + · · · , (3.216)

where ĥ represents ρ̂, v̂i, T̂ , etc. The analysis of f̂Hm is essentially the same
as the previous analyses in Sections 3.1.2, 3.2.2, 3.3.2, and 3.4.1. The series
(3.214) being substituted into Eq. (3.211), a series of integral equations for f̂Hm

is derived,92 i.e.,

Ĵ(f̂H0, f̂H0) = 0, (3.217a)

2Ĵ(f̂H0, f̂Hm) = ζi
∂f̂Hm−1

∂xi
−

m−1∑
s=1

Ĵ(f̂Hs, f̂Hm−s) (m = 1, 2, . . .), (3.217b)

where the
∑

term is absent when m = 1.

The leading distribution f̂H0 is Maxwellian, i.e.,

f̂H0 =
ρ̂H0

(πT̂H0)3/2
exp

(
− (ζi − v̂iH0)2

T̂H0

)
. (3.218)

90See the first two sentences of Footnote 39 in Section 3.2.3.
91In addition to the condition kni∂f̂K/∂xi = O(f̂K), the decay faster than any inverse

power of η, defined by Eq. (3.147), is assumed, which is required for clear separation of f̂H

and f̂K . See Footnote 6 in Section 3.1.4.
92See Footnote 58 in Section 3.3.2.
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We advance the analysis without limiting the parametric functions ρ̂H0, v̂iH0,
and T̂H0 in the Maxwellian to special values (e.g., v̂iH0 = 0 in Section 3.3,
or ρ̂H0 and T̂H0 are uniform in addition to v̂iH0 = 0 in Section 3.2). From
the condition for Eq. (1.83) to hold and the relation (1.53),93 the condition
(solvability condition)∫

(1, ζi, ζ
2
k)ζj

∂f̂Hm−1

∂xj
dζ = 0 (m = 1, 2, . . .) (3.219)

is required for Eq. (3.217b) to have a solution. From Eq. (3.219) with m = 1,
the equations that determine the variation of ρ̂H0, v̂iH0, and T̂H0, which are
the Euler set of equations, are derived. In the higher-order analysis, a series of
linearized Euler sets of equations, linearized around (ρ̂H0, v̂iH0, T̂H0), with ad-
ditional inhomogeneous terms is obtained. In the present case, no degeneration
of the solvability condition occurs in contrast to the cases of φG, φS , f̂SB , and
f̂V (see Sections 3.1.2, 3.2.2, 3.3.2, and 3.4.1).

When evaporation or condensation of a finite Mach number, or v̂iH0ni �= 0, is
taking place on the interface, noting the condition (1.71c) with the uniqueness
comment, we find that the Maxwellian (3.218) cannot be matched with the
boundary condition (3.212). Thus, we have to introduce the Knudsen-layer
correction f̂K from the leading order. Substituting Eq. (3.213) into Eq. (3.211)
and rewriting the result in the Knudsen-layer variables (3.147), we find that the
Knudsen-layer correction f̂K is governed by Eq. (3.148) with Eq. (3.147) where
F̂i is put zero and f̂SB is replaced by f̂H . The function f̂K is expanded in a
power series of k, i.e.,

f̂K = f̂K0 + f̂K1k + · · · . (3.220)

The series (3.214) and (3.220) are substituted into the above-mentioned equation
for f̂K and the same-order terms in k are arranged. In this process, the following
expansion of f̂H with respect to η is used:

f̂H = (f̂H0)0 +
[
(f̂H1)0 + (∂f̂H0/∂xi)0niη

]
k + · · · , (3.221)

where the quantities in the parentheses with subscript 0 are evaluated on the
interface, because f̂H appears only as the product with f̂K in the equation for
f̂K . Then, we obtain the equation for f̂Km. With the new function f̂HK defined
by

f̂HK = (f̂H0)0 + f̂K0, (3.222)

the leading-order Knudsen-layer equation is given in the form

ζini
∂f̂HK

∂η
= Ĵ(f̂HK , f̂HK). (3.223)

93See Footnote 59 in Section 3.3.2.
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The boundary condition for f̂HK is

f̂HK = f̂w0 (ζini > 0) at η = 0, (3.224a)

f̂HK → (p̂H0)0
π3/2(T̂H0)

5/2
0

exp

(
− [ζi − (v̂iH0)0]2

(T̂H0)0

)
as η → ∞. (3.224b)

The Knudsen layer is determined by the half-space problem of the original
nonlinear Boltzmann equation, in contrast to that of the linearized Boltzmann
equation for the Knudsen layer in the previous cases (Sections 3.1.4, 3.2.3, 3.3.2,
and 3.4.1). The (nonlinear) half-space problem, i.e., Eqs. (3.223)–(3.224b), is
studied analytically (Sone [1978b], Sone, Golse, Ohwada & Doi [1998]; see Chap-
ter 7) and numerically (Sone, Aoki & Yamashita [1986], Sone, Aoki, Sugimoto
& Yamada [1988], Sone & Sugimoto [1990], Aoki, Sone & Yamada [1990], and
Aoki, Nishino, Sone & Sugimoto [1991]; see Section 6.1). The extensive numer-
ical studies on the basis of the BKW equation and the complete-condensation
condition give the comprehensive feature of the solution; the analytical studies
clarify the key characteristics of the solution. According to them, for the half-
space problem to have a solution, the parameters (p̂H0)0, (v̂iH0)0, and (T̂H0)0
in Eq. (3.224b) and the boundary data p̂w, v̂wi, and T̂w of the interface must
satisfy some relations.94 The relations among (p̂H0)0, (v̂iH0)0, (T̂H0)0, and the
boundary data give the boundary conditions for the Euler set of equations on
the interface. They are summarized in the next subsection.

3.5.2 System of fluid-dynamic-type equations and
boundary conditions in the continuum limit

Here we summarize the fluid-dynamic-type equations and their associated bound-
ary conditions on the interface at the leading order of the expansion. We use
the dimensional variables without the subscripts concerning the expansion.

The fluid-dynamic-type equations are the Euler set of equations

∂ρvi

∂Xi
= 0, (3.225a)

ρvj
∂vi

∂Xj
+

∂p

∂Xi
= 0, (3.225b)

94(i) The boundary data p̂w, v̂wi, and T̂w are assumed to be independent of k for simplicity,
because only the leading-order term is obtained explicitly here.

(ii) The mathematical theory, as the Grad–Bardos theorem in the linearized problem, is not
developed yet for this nonlinear problem except for the analysis in Chapter 7. Thus, extensive
numerical computation is carried out to derive the result given in Section 3.5.2. That is,
the time-dependent behavior of a gas in the half-space domain (η > 0) is studied for many
situations, and possible kinds of time-dependent solutions and their limiting time-independent
solutions are examined, from which the relations between the condition of the condensed phase
and that of the gas at infinity are found. The process of analysis is explained for the special
case (v̂iH0 − v̂jH0njni)0 = 0 and v̂wi = 0 in Section 6.1. The case (v̂iH0 − v̂jH0njni)0 	= 0
or v̂wi 	= 0 (v̂wini = 0) is studied in Aoki, Nishino, Sone & Sugimoto [1991].
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Table 3.4. The functions h1(Mn) and h2(Mn) (BKW and complete condensation;
Sone & Sugimoto [1990, 1993]).

Mn h1 h2 Mn h1 h2 Mn h1 h2

0.0000 1.0000 1.0000 0.4000 0.4900 0.8470 0.8000 0.2695 0.7088
0.04999 0.9083 0.9798 0.4400 0.4593 0.8326 0.8400 0.2553 0.6956
0.07998 0.8582 0.9679 0.4800 0.4310 0.8184 0.8800 0.2420 0.6824
0.1200 0.7966 0.9521 0.5200 0.4050 0.8043 0.9200 0.2297 0.6693
0.1600 0.7404 0.9365 0.5600 0.3809 0.7904 0.9600 0.2182 0.6563
0.2000 0.6891 0.9212 0.6000 0.3586 0.7765 0.9700 0.2155 0.6530
0.2400 0.6421 0.9060 0.6400 0.3380 0.7628 0.9800 0.2128 0.6498
0.2800 0.5991 0.8910 0.6800 0.3189 0.7492 0.9900 0.2101 0.6466
0.3200 0.5596 0.8761 0.7200 0.3012 0.7356 1.0000 0.2075 0.6434
0.3600 0.5233 0.8615 0.7600 0.2848 0.7222

vj
∂

∂Xj

(
5
2
RT +

1
2
v2

i

)
= 0, (3.225c)

where
p = RρT. (3.226)

The boundary condition for the Euler set of equations on the interface to
which the complete-condensation condition applies is given in the following form,
where the notation

Mn =
vini

(5RT/3)1/2
, M t =

|vi − vjnjni − vwi|
(5RT/3)1/2

, (3.227)

with vwi (vwini = 0) being the velocity of the interface, is used.

(a) In the case of evaporation (Mn ≥ 0)

p/pw = h1(Mn), T/Tw = h2(Mn), M t = 0 when 0 ≤ Mn ≤ 1, (3.228a)

No solution exists when Mn > 1, (3.228b)

where pw is the saturated gas pressure at the temperature Tw of the condensed
phase. The functions h1(Mn) and h2(Mn) for the BKW equation with the
complete-condensation condition are tabulated in Table 3.4.
(b) In the case of condensation (Mn < 0)

p/pw = Fs(Mn, M t, T/Tw) when − 1 < Mn < 0, (3.229a)

p/pw > Fb(Mn,M t, T/Tw) when Mn < −1, (3.229b)

p/pw ≥ Fb(−1−, M t, T/Tw) = Fs(−1+, M t, T/Tw). (3.229c)

Examples of the functions Fs and Fb for the BKW equation with the complete-
condensation condition are given in Figs. 3.7 and 3.8 (see also Tables 6.1 and
6.2 in Section 6.1 and more data in Sone, Aoki & Yamashita [1986], Aoki, Sone
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Figure 3.7. Fs(Mn, M t, T/Tw) (BKW & complete condensation). (a) T/Tw = 0.5,
(b) T/Tw = 1.0, (c) T/Tw = 1.5, and (d) T/Tw = 2.0.

& Yamada [1990], and Aoki, Nishino, Sone & Sugimoto [1991]).95 The bounds
of the functions h1, h2, Fs, and Fb are discussed in Sone, Takata & Sugimoto
[1996], Sone, Takata & Golse [2001], and Bobylev, Grzhibovskis & Heintz [2001]
(see also Sone [2002]).

The boundary conditions for evaporation and condensation for the complete-
condensation condition can be generalized by a simple transformation to a more
general mixed-type condition [Eqs. (1.28a) and (1.28b) with α = 1 and αc being
arbitrary] (Section 6.6; see also Section 7.6 of Sone [2002]). This generalization

95Numerical computations of the subsonic condensation for hard-sphere molecules for the
cases Mt = 0 and T/Tw = 0.5, 1, 2 (Sone & Sasaki [unpublished]) show that their relative
differences of p/pw from the above BKW results are less than 1% except in the range −1 ≤
Mn ≤ −0.9 at T/Tw = 0.5, where the differences are bounded by 5%. The equivalent
statement in Footnote 6 of Chapter 7 in Sone [2002] contains a misprint, where Mn should be
replaced by −Mn.
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Figure 3.8. Fb(Mn, M t, T/Tw) (BKW & complete condensation). (a) T/Tw = 0.5,
(b) T/Tw = 1.0, (c) T/Tw = 1.5, and (d) T/Tw = 2.0.

is not limited to the BKW equation but also applies to the standard Boltzmann
equation. According to it, the solution has the same feature as the solution
under the complete-condensation condition when the condensation coefficient
αc (≤ 1) is larger than some value (αc > αcr

c ), but no solution exists in a band
region around Mn = −1 (say, c1 ≤ −Mn ≤ c2; 0 < c1 ≤ 1, c2 ≥ 1) when
αc ≤ αcr

c .

The boundary condition on an interface shows qualitatively different charac-
ters depending on evaporation, subsonic condensation, or supersonic condensa-
tion. In the four-dimensional space (Mn, M t, p/pw, T/Tw), the boundary data
are given on a hyper-curve for evaporation, on a hyper-surface for subsonic
condensation, and in a domain for supersonic condensation. The analytical
structure of this transition will be explained in Chapter 7 on the basis of Sone
[1978b] and Sone, Golse, Ohwada & Doi [1998]. The mathematical study of the



144 Chapter 3. Slightly Rarefied Gas

half-space problem is in progress, but some difficulty has to be overcome (Ukai,
Yang & Yu [2003, 2004], Bardos, Golse & Sone [2006]).

As in the case of Section 3.4, a shock layer may appear in a flow of the
present problem. An example is given in Section 6.3.

3.6 Review of the fluid-dynamic-type systems

3.6.1 Classification

In Sections 3.1–3.5, we have discussed the time-independent behavior of a gas for
small Knudsen numbers for various physical situations on the basis of the Boltz-
mann system. The fluid-dynamic-type equations and their associated boundary
conditions (or fluid-dynamic-type system) derived in the continuum limit differ
considerably depending on the situations. It may be in order to summarize
these results.

The velocity distribution function describing the overall behavior of the gas
approaches a Maxwell distribution fe, whose parameters depend on the posi-
tion in the gas, in the continuum limit. The fluid-dynamic-type equations that
determine the macroscopic variables in the limit differ considerably depending
on the character of the Maxwellian. The systems are classified by the size of
|fe − fe0|/fe0, where fe0 is the stationary Maxwellian

fe0 =
ρ0

(2πRT0)3/2
exp

(
− ξ2

i

2RT0

)
.

Here, ρ0 and T0 are, respectively, the characteristic values of the density and
temperature in the gas. The systems are classified as follows:
(i) |fe − fe0|/fe0 = O(Kn) : The continuum limit is a uniform state at rest. The
nonuniform state of the first order of Knudsen number is described by the system
derived in Section 3.2, where the leading set of equations is the incompressible
Navier–Stokes set with the energy equation modified. (S system, for short)
(i′) |fe−fe0|/fe0 = o(Kn) : The system is reduced to the linear system discussed
in Section 3.1, where the fluid-dynamic-type equations are given by the Stokes
set.
(ii) |fe−fe0|/fe0 = O(1) with |vi|/(2RT )1/2 = O(Kn) (vi and T are the velocity
and temperature of fe, respectively): The behavior of the gas is described by
the system derived in Section 3.3, where the temperature and density of the gas
in the continuum limit are determined together with the flow velocity of the
first order of Kn amplified by 1/Kn (the ghost effect), and the thermal stress of
the order of (Kn)2 must be retained in the momentum equations (a non-Navier–
Stokes effect). The thermal creep in the boundary condition must be taken into
account. (SB system)
(iii) |fe − fe0|/fe0 = O(1) with |vi|/(2RT )1/2 = O(1) :
(a) The behavior of the gas around a simple boundary is described by the

system derived in Section 3.4, where the leading fluid-dynamic-type set is the
combination of the Euler and viscous boundary-layer sets. (E+VB system)
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(b) The behavior of the gas around the condensed phase of the gas, where
evaporation or condensation of a finite Mach number, i.e., |vini|/(2RT )1/2 =
O(1), is taking place, is described by the system derived in Section 3.5, where the
leading fluid-dynamic-type set is the Euler set. The Knudsen-layer correction
is given by the nonlinear Boltzmann equation in contrast to the other cases,
in which the Knudsen layer is governed by the linearized Boltzmann equation.
(E system)

The fluid-dynamic-type equations describing the nontrivial leading-order be-
havior of a gas are further subclassified in marginal cases. For example, take the
edge of Case (iii) between Cases (i) and (iii) where the difference |fe − fe0|/fe0

is small but finite or much larger than the Knudsen number in the way that
Mach number of the flow is so. The Euler set of equations in Case (iii) reduces
to the incompressible Euler set.96 In flows around a simple boundary [Case
(iii-a)], the viscous boundary-layer equations reduce to the “incompressible vis-
cous boundary-layer equations”.97 In flows with evaporation or condensation
on an interface [Case (iii-b)], the Knudsen layer on an evaporating interface
(the nonlinear half-space problem of the nonlinear Boltzmann equation) simply
reduces to the Knudsen layer in the linearized problem (the half-space problem
of the linearized Boltzmann equation); on the other hand, the Knudsen layer on
a condensing interface (the corresponding nonlinear half-space problem) splits
into two layers, i.e., the suction boundary-layer98 and the Knudsen layer in the
linearized problem. The thickness of the suction boundary layer is of the order
of the mean free path divided by the Mach number. This separation is compared
with that of the viscous boundary layer and the Knudsen layer in Case (iii-a).
The analysis of the Knudsen layer in the linearized problem gives the boundary

96The work done by pressure, explained in Footnote 47 in Section 3.2.4 for Case (i), con-
tributes to the energy equation but in a degenerate way. A constant is multiplied to that for
an incompressible fluid. In both the cases, the variation of the temperature in the direction
of the flow velocity vanishes.

97(i) The quotation mark has the same meaning as that explained in Section 3.2.4. That
is, there is a difference by the work done by pressure in the energy equation.

(ii) The rescalings of the thickness of the viscous boundary layer and thus the velocity
component normal to the boundary are required. For example, when the Mach number is
small but finite [say, O(δ)], the thickness of the viscous boundary layer is thicker by the factor
δ−1/2, that is, ε in Eq. (3.175) is to be replaced by ε/δ1/2 and thus, v1 in Eq. (3.199) is of the
order of δ1/2 [consider the balance between the first term in the parentheses on the left-hand
side and the second term on the right-hand side of Eq. (3.197), and estimate the size of v1

using Eq. (3.199)]. The discussion for other relative sizes of Mach and Knudsen numbers is
given in Sone, Bardos, Golse & Sugimoto [2000]. In this discussion, the continuum limit is
a uniform state at rest, and the fluid-dynamic-type equations, though similar to the present
ones, describe the nontrivial leading-order state. The equations in the present case describe
the behavior in the continuum limit.

98The half-space problem with suction on the boundary is studied by the Navier–Stokes
equations and is called the suction boundary layer (see Schlichting [1979]). The above is the
corresponding problem in the kinetic theory, which is explained in Section 7.2 in detail. The
bifurcation of solution on the transition from evaporation to condensation on the interface is
seen in this half-space problem. An example of flows with the suction boundary layer is given
in Sone & Doi [2000] (see also Sone [2002]), where a flow between coaxial circular cylindrical
condensed phases is studied and the bifurcation of solution is shown to occur under the axially
symmetric and uniform condition (see also Section 8.4.2).
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Figure 3.9. Fluid-dynamic-type systems describing the behavior of a gas of small
Knudsen numbers (Kn� 1) in the parameter plane (Re, δTw/Tw). In the region SB,
the classical gas dynamics is inapplicable.

condition for the Euler set on the evaporating interface and that for the suction-
boundary-layer equations on the condensing interface. The connection of the
solution of the Euler set and that of the suction-boundary-layer equations is
done in the same way as that of the Euler equations and the viscous-boundary-
layer equations. The equations in the marginal case have mixed features of
Cases (i) and (iii). The difference between Cases (iii-a) and (iii-b) is the sizes
of the velocity component normal to the boundary. Thus, as |vini|/(2RT )1/2

decreases from O(1), the nonlinear Knudsen layer in Case (iii-b) separates into
a suction boundary layer and linear Knudsen layer with increasing the thickness
of the former, and deforms into viscous boundary layer.

In view of the relation among the Mach number Ma, the Knudsen number
Kn, and the Reynolds number Re noted in Section 3.1.9, i.e.,

Ma =
(

3π

40

)1/2

γ1ReKn,

the fluid-dynamic-type systems are classified in terms of the Reynolds number
and the relative temperature variation of the boundary. Let Tw and δTw be,
respectively, the characteristic values of the temperature of the boundary and
its variation, and let the Reynolds number Re be defined by UL/(μ0/ρ0), where
U is the characteristic speed of the boundary (including infinity) and μ0 is
the reference viscosity. Then, the nontrivial leading-order fluid-dynamic-type
systems for small Knudsen numbers are classified in the (Re, δTw/Tw) plane
as shown in Fig. 3.9, where S corresponds to the S system of Case (i) in the
paragraph before the preceding one, SB corresponds to the SB system of Case
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(ii), E+VB and E correspond, respectively, to E+VB and E systems in Case
(iii). It may be noted here that when δTw/Tw is of the order of unity, the
thermal creep or nonlinear-thermal-stress flows can be much larger than the
boundary speed or U, e.g., in the case U = 0. In this case, the Reynolds number
based on the boundary speed does not reflect the characteristic flow speed of
the gas. When δTw/Tw is of the order of unity in the SB region of Fig. 3.9, the
Reynolds number based on the characteristic speed of the gas is generally of the
order of unity. In the SB region, the Mach number is small, i.e., O(Kn). In the S
region, the temperature variation δTw/Tw as well as the Mach number is small,
i.e., O(Kn), that is, nontrivial variations of variables are of the order of Kn. In
the E or E+VB region, the Mach number is of the order of unity. Thus, the
(nondimensional) temperature variation in the gas can be of the order of unity
irrespective of δTw/Tw.

The above classification is done for a general geometry. In some special ge-
ometries, the main equations degenerate, and the behavior in the continuum
limit is determined by higher-order terms.99 For example, in plane or cylindri-
cal Couette flow, owing to the degeneracy of the convection effect, the viscous
effect spreads over the whole field, and the Euler region disappears. A geomet-
rical parameter of the system can be a source of the ghost effect. If a special
geometry is considered, new non-Navier–Stokes and ghost effects, different from
those mentioned above, enter the leading-order system. In Chapter 9, where
the plane Couette flow is considered as the limit that the radii of the cylinders
tend to infinity in the cylindrical Couette flow, the infinitesimal curvature of
the boundary produces a finite effect on the flow, and in addition, the limit-
ing equations contain a new non-Navier–Stokes term, i.e, the stress quadratic
of the shear of flow, as well as nonlinear thermal stress term. In the (axially
symmetric and uniform) cylindrical Couette flow with evaporation and conden-
sation on the cylinders made of the condensed phase of the gas, the ghost effect
on the circumferential flow field is produced by infinitesimal evaporation and
condensation,100 which will be discussed in Section 8.4.2.

In this way, the behavior for small Knudsen numbers depends largely on
the behavior of the other parameters, and various kinds of equations appear
as those governing the limiting behavior. Obviously, from the above discussion
and Fig. 3.9, there are important classes of problems to which the classical fluid
dynamics is inapplicable. That is, the classical fluid dynamics, which aims
to describe the behavior of a gas in the continuum limit, fails to describe it
correctly. The ghost effect and non-Navier–Stokes effect present themselves
in well-known problems in the classical fluid dynamics, e.g., Bénard problem,
Taylor–Couette problem with different boundary temperatures, which will be
discussed in Sections 8.2 and 8.3. Thus, kinetic theory plays an essential role
in correct understanding of the behavior of a gas that has been treated in the
classical gas dynamics.

The asymptotic behavior for small Knudsen numbers is sometimes described
99See also Footnote 62 in Section 3.3.4.

100The infinitesimal evaporation and condensation are naturally established for a wide range
of the parameters when the outer cylinder is rotating.
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in the following way. In the continuum limit, the behavior of the macroscopic
variables is determined by the Euler equations, their behavior at the next step
of gas rarefaction is determined by the Navier–Stokes equations, their behav-
ior at the further step by the Burnett equations, and so on. Clearly from the
asymptotic analysis of this chapter, this is not a correct description. The con-
tinuum limit is not a point where the Knudsen number is zero, but it should be
understood as a space where the further classification is required. Further, the
combination of the fluid-dynamic-type equations and their associated boundary
conditions is sometimes discussed carelessly. The correct combination is deter-
mined by the systematic asymptotic analysis of the Boltzmann system as shown
in this chapter. These notes also apply to the time-dependent problem to be
discussed in Section 3.7.

3.6.2 Supplementary discussion

It may be better to add some comments on the continuum limit for the cases
of the S system of the weakly nonlinear theory and the Stokes system of the
linear theory. The variation of solutions from a uniform state is of the order
of the Knudsen number in the S system, and the variation of solutions is much
smaller than the Knudsen number in the Stokes system.101 In these cases,
the state literally in the continuum limit, where the quantities of the order of
the Knudsen number or smaller are neglected, is a uniform equilibrium state
expressed with a uniform Maxwellian. When we mention nontrivial states, i.e.,
those other than uniform equilibrium states, of a gas in these cases, we take into
account the effect of nonzero Knudsen number, i.e., the effect of gas rarefaction.
The quantities of the order of the Knudsen number or smaller are of interest in
discussing the behavior of a gas of a small Knudsen number.

When analyzing gas dynamic problems by the Navier–Stokes equations, peo-
ple think that they are discussing the behavior of a gas in the continuum limit
and do not think that they are discussing the effect of gas rarefaction. When
they analyze problems of a gas in the atmospheric condition, where the Knudsen
number is small but finite, on the basis of the Navier–Stokes equations, they
think that the equations are for the case in the continuum limit but that the
equations describe the system of finite variations very well because the Knudsen
number is very small. However, it is not the case when the Reynolds number
is small or of the order of unity. It is easily seen if we examine the data of our
surroundings.

Take a system whose characteristic length is about 1 cm, e.g., a flow past a
sphere of radius 1 cm and a flow through a channel of width 1 cm. The mean
free path of the gas is 6×10−8 m at the atmospheric condition,102 and therefore,
the Knudsen number Kn is about 6 × 10−6. If the flow speed is about 1 cm/s,
the Mach number Ma is about 3 × 10−5. The Mach number and the Knudsen
101See Footnote 3 in Section 3.1.2.
102The data for the air are given for a clear intuitive picture of the sizes of variables, although

the air is not a single-component monatomic gas and does not correspond exactly to the gas
described by the Boltzmann equation discussed in this book.
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number are comparably small (Ma/Kn ≈ 5). This is the case to which the S
system can be applied and the variation of the variables in the gas is of the
order of the Knudsen number. When the characteristic length is about 0.3 mm
and the flow speed is about 0.3 mm/s, the Knudsen number is about 2 × 10−4

and the Mach number is 1×10−6. Both are small but the Mach number is much
smaller than the Knudsen number (Ma/Kn ≈ 5× 10−3). These flows with small
Mach numbers, of the order of the Knudsen number or much smaller, are well
perceived by us.

When we treat a real gas of small mean free path (e.g., a gas under the
atmospheric condition), we easily use the terminology ‘the continuum limit.’ It
should be noted that we are not always discussing quantities of the order of
unity but that the quantities of our interest are of the order of the Knudsen
number or smaller in a large class of problems.

The conditions (3.12), (3.87), (3.153), and (3.154), i.e., the requirement of
uniform pressure, may be strange or seem to be too strong to those who are
working with the classical fluid-dynamic equations. These conditions are almost
obvious if one examines the sizes of the quantities in the classical fluid-dynamic
equations, paying attention to the relation (3.70) between the mean free path
and viscosity. They are the conditions that the solutions satisfying the original
setup of the problems can be obtained. That is, much larger flow velocity
than that assumed before the analysis is induced if the pressure conditions are
not satisfied. In other words, the pressure differences induced by such flows
are higher-order quantities. This is not noticed very well but requires some
care. For example, according to Eq. (3.22), the heat flow is proportional to the
temperature gradient, but there is no heat flow due to the pressure gradient
at the leading order; there is a heat flow due to the pressure gradient at the
next order. This is of higher order only because the pressure gradient is of
higher order; the coefficients are of the same order. Thus, we have to examine
the higher-order heat flow in the discussion related to the coefficients. This
discussion on the basis of a concrete example is given in the second part of
Footnote 8 in Section 4.2.2.

3.7 Time-dependent problem

To extend the process in Sections 3.1.2, 3.2.2, 3.3.2, 3.4.1, and 3.5.1 to ob-
tain the fluid-dynamic-type equations to time-dependent problems is simple
and straightforward. We have only to carry out a similar expansion retaining
the time-derivative term in the Boltzmann equation with some care about the
time scale of variation of the velocity distribution function. We will explain only
the outline of the time-dependent analysis because the analysis can be carried
out parallel to the time-independent case.

We consider the case where the collision term is dominant in the Boltzmann
equation as in the time-independent analysis, i.e., the time-derivative term as
well as the space-derivative term in the Boltzmann equation is much smaller
than its collision term. In the nondimensional form of the Boltzmann equation
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(1.47a), (1.75a), or (1.96), k (or Kn) and kSh are both small; thus Sh, the Strouhal
number defined by Eq. (1.48a), is of the order of unity or small. The condition
on kSh corresponds to the condition that the mean free time (the inverse of the
mean collision frequency) is much smaller than the time scale of variation of the
velocity distribution function.

When Sh [= L/t0(2RT0)1/2] is of the order of unity, the time scale t0 of
variation is t0 ∼ L/(2RT0)1/2 and the ratio103 of the time-derivative term to
the collision term is of the order of k. This time scale t0 is a time of the order
that the sound wave propagates over the distance of the reference length L.
Thus, wave propagation is described by this time scale. On the other hand,
when Sh is small and of the order of k, the time scale t0 is t0 ∼ L2/0(2RT0)1/2

and the ratio of the time-derivative term to the collision term is of the order
of k2. In view of the relation between the viscosity μ0 or thermal conductivity
λ0 and the mean free path 0 at the reference state, i.e., Eq. (3.70) or (3.71),
t0 ∼ ρ0L

2/μ0 or t0 ∼ Rρ0L
2/λ0. This is the characteristic time scale of viscous

or thermal diffusion.104

When the time scale t0 of variation is of the order of the time required for
the gas flow to traverse the distance L, i.e., t0 = L/U (U : a characteristic flow
speed), then Sh = O(Ma). In view of the von Karman relation (3.74), this time
scale is comparable to the second one when the Reynolds number is finite (the
case related to Sections 3.2 and 3.3); it is much longer than the second when
the Reynolds number is small (the case related to Section 3.1, i.e., the linear
theory); it is comparable to the first one when the Mach number is of the order
of unity (the case related to Sections 3.4 and 3.5).

3.7.1 Fluid-dynamic-type equations I: Sh = O(1)

Consider the case where Sh is of the order of unity. We can take Sh = 1
[t0 = L/(2RT0)1/2] without loss of generality. Then, the relation between the
nondimensional time variable t̂ and the original dimensional time variable t is
t̂ = t/L(2RT0)−1/2.

Linear problem

First consider the linear problem in Section 3.1. Take the linearized Boltzmann
equation (1.96) with the time-derivative term ∂φ/∂t̂

∂φ

∂t̂
+ ζi

∂φ

∂xi
=

1
k
L(φ), (3.230)

103In Eq. (1.47a), the ratio is (Sh ∂f̂/∂t̂)/[Ĵ(f̂ , f̂)/k], where ∂f̂/∂t̂ and Ĵ(f̂ , f̂) are nondimen-
sionalized so as to be of the order of unity by choosing the reference variables.
104The time scale of variation of the solution of the heat-conduction equation 5

2
ρ0∂RT/∂t =

λ0∂2T/∂X2
i , which corresponds to Eq. (3.258c) if the boundary condition on PG0 there is

time-independent, is Rρ0L2/λ0. The diffusion of vorticity of a parallel flow vi = (v1(X2), 0, 0)
by viscosity is determined by ρ0∂v1/∂t = μ0∂2v1/∂X2

2 . The time scale of variation of the
solution is given by ρ0L2/μ0.
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where Sh is taken to be unity. Put the distribution function φ in a power series
of k, i.e.,

φ = φG = φG0 + φG1k + φG2k
2 + · · · . (3.231)

Corresponding to this expansion, the macroscopic variables ω, ui, τ, etc., defined
by Eqs. (1.97a)–(1.97f), are also expanded in k as

hG = hG0 + hG1k + hG2k
2 + · · · , (3.232)

where h = ω, ui, τ, etc. The hGm is related to φGm by Eqs. (1.97a)–(1.97f) with
φ = φGm and h = hGm. The relation is the same as in the time-independent case.
The analysis goes parallel to that in Section 3.1.2, with the additional ∂φGm/∂t̂
term. Substituting the expansion (3.231) into Eq. (3.230) and arranging the
same-order terms in k, we obtain a series of integral equations for φGm, i.e.,

L(φG0) = 0, (3.233)

L(φGm) =
∂φGm−1

∂t̂
+ζi

∂φGm−1

∂xi
(m = 1, 2, 3 . . .), (3.234)

where the conditions ∂φG/∂t̂ = O(φG) and ∂φG/∂xi = O(φG) are used.
The equation for φGm (and that for φSm, f̂SBm, or f̂Hm to appear in the

following analyses) has the same character as the corresponding equation in
time-independent case. The homogeneous part of the equation is the same and
the difference is the time-derivative term in its inhomogeneous term. Therefore,
the analysis is carried out in a similar way with the repetition of solution of
the equation and derivation of the solvability condition of the next-order equa-
tion. The solvability condition is in the form with the time-derivative term
∂φGm−1/∂t̂ added to ζi∂φGm−1/∂xi in Eq. (3.8) (and similar modification in
the other cases).

The leading-order solution φG0 is the local Maxwellian in its linearized form,
i.e.,

φG0 = ωG0 + 2ζiuiG0 +
(

ζ2
j − 3

2

)
τG0. (3.235)

From the solvability condition on the inhomogeneous term in Eq. (3.234) with
m = 1, the set of equations that determines the macroscopic variables ωG0,
uiG0, and τG0 is derived as

∂ωG0

∂t̂
+

∂uiG0

∂xi
= 0, (3.236a)

∂uiG0

∂t̂
+

1
2

∂PG0

∂xi
= 0, (3.236b)

3
2

∂PG0

∂t̂
+

5
2

∂uiG0

∂xi
= 0, (3.236c)

where
PG0 = ωG0 + τG0.
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Equations (3.236b) and (3.236c) are the acoustic equations for uiG0 and PG0

describing the propagation of sound waves. The other variables ωG0 and τG0

are obtained from PG0 by the equations

∂ωG0

∂t̂
=

3
5

∂PG0

∂t̂
, τG0 = PG0 − ωG0.

Proceeding to the higher-order analysis, we obtain the equations for ωGm, uiGm,
and τGm, where the operator for ωGm, uiGm, and τGm is the same as that
for ωG0, uiG0, and τG0 in Eqs. (3.236a)–(3.236c) and there are inhomogeneous
terms consisting of the viscous and heat-conduction terms etc. expressed with
the macroscopic variables at the preceding stage. For example,

∂ωG1

∂t̂
+

∂uiG1

∂xi
= 0, (3.237a)

∂uiG1

∂t̂
+

1
2

∂PG1

∂xi
=

γ1

2
∂

∂xj

(
∂uiG0

∂xj
+

∂ujG0

∂xi
− 2

3
∂ukG0

∂xk
δij

)
, (3.237b)

3
2

∂PG1

∂t̂
+

5
2

∂uiG1

∂xi
=

5γ2

4
∂2τG0

∂x2
j

, (3.237c)

where
PG1 = ωG1 + τG1.

Weakly nonlinear problem

Consider the case where the perturbed velocity distribution function φ is of the
order of k. This case corresponds to Section 3.2. Take the Boltzmann equation
(1.75a) with the time-derivative term ∂φ/∂t̂

∂φ

∂t̂
+ ζi

∂φ

∂xi
=

1
k

[L(φ) + J (φ, φ)]. (3.238)

The distribution function φ is expanded in the form

φ = φS = φS1k + φS2k
2 + · · · . (3.239)

Corresponding to this expansion, the macroscopic variables ω, ui, τ , etc. are
also expanded in k, i.e.,

hS = hS1k + hS2k
2 + · · · , (3.240)

where h = ω, ui, τ, etc. The relation between hSm and φSm is obtained by
expanding Eqs. (1.78a)–(1.78f) with φ = φS and h = hS . It is the same as in
the time-independent case [see Eqs. (3.79a)–(3.80f)]. Substituting the expansion
(3.239) into Eq. (3.238), we obtain a series of integral equations for φSm, i.e.,

L(φS1) = 0, (3.241a)

L(φSm) =
∂φSm−1

∂t̂
+ ζi

∂φSm−1

∂xi
−

m−1∑
r=1

J (φSm−r, φSr) (m = 2, 3, . . .),

(3.241b)
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where the conditions ∂φS/∂t̂ = O(φS) and ∂φS/∂xi = O(φS) are used. These
are the same type of equations as Eqs. (3.233) and (3.234) in the linear theory;
the difference is the J terms in the inhomogeneous term.105

The leading-order solution φS1 is given by

φS1 = ωS1 + 2ζiuiS1 +
(

ζ2
i − 3

2

)
τS1. (3.242)

From the solvability condition of Eq. (3.241b) with m = 2 for φS2, the equations
that determine ωS1, uiS1, and τS1 are derived as

∂ωS1

∂t̂
+

∂uiS1

∂xi
= 0, (3.243a)

∂uiS1

∂t̂
+

1
2

∂PS1

∂xi
= 0, (3.243b)

3
2

∂PS1

∂t̂
+

5
2

∂uiS1

∂xi
= 0, (3.243c)

where
PS1 = ωS1 + τS1.

They are the same as Eqs. (3.236a)–(3.236c) for ωG0, uiG0, and τG0. That is,
Eqs. (3.243b) and (3.243c) are the acoustic equations describing the propa-
gation of sound waves. The equations for the higher-order ωSm, uiSm, and
τSm, the operator for which is the same as that for ωS1, uiS1, and τS1 in
Eqs. (3.243a)–(3.243c), have inhomogeneous terms consisting of the viscous and
heat-conduction terms etc. expressed with the macroscopic variables at previous
stages. For example,

∂ωS2

∂t̂
+

∂uiS2

∂xi
= −∂ωS1uiS1

∂xi
, (3.244a)

∂uiS2

∂t̂
+

1
2

∂PS2

∂xi
= −∂ωS1uiS1

∂t̂
− ∂ujS1uiS1

∂xj

+
γ1

2
∂

∂xj

(
∂uiS1

∂xj
+

∂ujS1

∂xi
− 2

3
∂ukS1

∂xk
δij

)
, (3.244b)

3
2

∂PS2

∂t̂
+

5
2

∂uiS2

∂xi
= −∂u2

iS1

∂t̂
− 5

2
∂PS1ujS1

∂xj
+

5γ2

4
∂2τS1

∂x2
j

, (3.244c)

where
PS2 = ωS2 + τS2 + ωS1τS1.

Nonlinear problem

Consider the case where any special condition on the velocity distribution func-
tion, like Eq. (3.135a), is not imposed. Take the Boltzmann equation (1.47a) in
the absence of an external force F̂i = 0
105See the explanation at the beginning of the paragraph next to that containing Eq. (3.234).
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∂f̂

∂t̂
+ ζi

∂f̂

∂xi
=

1
k

Ĵ(f̂ , f̂). (3.245)

The distribution function f̂ is expanded in a power series of k, i.e.,

f̂ = f̂H = f̂H0 + f̂H1k + · · · . (3.246)

Corresponding to the expansion (3.246), the macroscopic variables ρ̂, v̂i, T̂ , etc.
[see Eqs. (1.54a)–(1.54f)] are also expanded in k, i.e.,

ĥH = ĥH0 + ĥH1k + · · · , (3.247)

where ĥ = ρ̂, v̂i, T̂ , etc. Substituting the series (3.246) into Eq. (3.245), we
obtain a series of integral equations for f̂Hm, i.e.,

Ĵ(f̂H0, f̂H0) = 0, (3.248a)

2Ĵ(f̂H0, f̂Hm) =
∂f̂Hm−1

∂t̂
+ ζi

∂f̂Hm−1

∂xi
−

m−1∑
s=1

Ĵ(f̂Hs, f̂Hm−s) (m = 1, 2, . . .),

(3.248b)

where
∑

term is absent when m = 1, and the conditions ∂f̂H/∂t̂ = O(f̂H) and
∂f̂H/∂xi = O(f̂H) are used in the derivation.

From Eq. (3.248a), we have

f̂H0 =
ρ̂H0

(πT̂H0)3/2
exp

(
− (ζi − v̂iH0)2

T̂H0

)
. (3.249)

From the solvability condition of Eq. (3.248b) with m = 1 for f̂H1, the equations
for ρ̂H0, v̂iH0, and T̂H0 are obtained as106

∂ρ̂H0

∂t̂
+

∂ρ̂H0v̂iH0

∂xi
= 0, (3.250a)

∂ρ̂H0v̂iH0

∂t̂
+

∂ρ̂H0v̂jH0v̂iH0

∂xj
+

1
2

∂p̂H0

∂xi
= 0, (3.250b)

∂

∂t̂

[
ρ̂H0

(
v̂2

iH0 +
3
2
T̂H0

)]
+

∂

∂xj

[
ρ̂H0v̂jH0

(
v̂2

iH0 +
5
2
T̂H0

)]
= 0, (3.250c)

where
p̂H0 = ρ̂H0T̂H0.

Equations (3.250a)–(3.250c) are called the Euler set of equations. The higher-
order equations are the linearized Euler set of equations, linearized around
ρ̂H0, v̂iH0, and T̂H0, with inhomogeneous terms including viscous and heat-
conduction terms, etc. For example,
106See the explanation at the beginning of the paragraph next to that containing Eq. (3.234).
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∂ρ̂H1

∂t̂
+

∂ρ̂H0v̂iH1

∂xi
+

∂ρ̂H1v̂iH0

∂xi
= 0, (3.251a)

∂(ρ̂H v̂iH)1
∂t̂

+
∂(ρ̂H v̂jH v̂iH)1

∂xj
+

1
2

∂p̂H1

∂xi

=
1
2

∂

∂xj

[
Γ1(T̂H0)

(
∂v̂iH0

∂xj
+

∂v̂jH0

∂xi
− 2

3
∂v̂kH0

∂xk
δij

)]
, (3.251b)

∂

∂t̂

[
ρ̂H0

(
2v̂iH0v̂iH1 +

3
2
T̂H1

)
+ ρ̂H1

(
v̂2

iH0 +
3
2
T̂H0

)]
+

∂

∂xj

[
ρ̂H0v̂jH0

(
2v̂iH0v̂iH1 +

5
2
T̂H1

)
+ (ρ̂H v̂jH)1

(
v̂2

iH0 +
5
2
T̂H0

)]
=

∂

∂xj

[
Γ1(T̂H0)v̂iH0

(
∂v̂iH0

∂xj
+

∂v̂jH0

∂xi
− 2

3
∂v̂kH0

∂xk
δij

)]
+

5
4

∂

∂xi

(
Γ2(T̂H0)

∂T̂H0

∂xi

)
, (3.251c)

where
p̂H1 = ρ̂H0T̂H1 + ρ̂H1T̂H0,

and (ρ̂H v̂jH)1 and (ρ̂H v̂jH v̂iH)1 are the abbreviations

(ρ̂H v̂jH)1 = ρ̂H0v̂jH1 + ρ̂H1v̂jH0,

(ρ̂H v̂jH v̂iH)1 = ρ̂H0v̂jH0v̂iH1 + ρ̂H0v̂jH1v̂iH0 + ρ̂H1v̂jH0v̂iH0.

The present case is the original Hilbert expansion (Hilbert [1912]).

3.7.2 Fluid-dynamic-type equations II: Sh= O(k)

Consider the case where Sh is of the order of k. We can take Sh = k [i.e.,
t0 = L/k(2RT0)1/2] without loss of generality. Then, the relation between
the nondimensional time variable t̂ and the original dimensional time variable
t is t̂ = t/L(2RT0)−1/2k−1. To avoid the confusion with the case Sh = O(1),
we use the different notation t̃ for t̂, i.e., t̃ = t/L(2RT0)−1/2k−1. Naturally,
∂f̂/∂t̃ = O(f̂) or ∂φ/∂t̃ = O(φ).

Linear problem

With Sh= k and the new notation t̃, the linearized Boltzmann equation (1.96)
is given as

k
∂φ

∂t̃
+ ζi

∂φ

∂xi
=

1
k
L(φ), (3.252)
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where ∂φ/∂t̃ = O(φ) and ∂φ/∂xi = O(φ). The distribution function φ is ex-
panded in a power series of k, i.e.,

φ = φG = φG0 + φG1k + φG2k
2 + · · · . (3.253)

Corresponding to the above expansion of φ, the macroscopic variables ω, ui, τ,
etc., defined by Eqs. (1.97a)–(1.97f), are also expanded in k as

hG = hG0 + hG1k + hG2k
2 + · · · , (3.254)

where h = ω, ui, τ, etc. Substituting the series (3.253) into Eq. (3.252), we
obtain a series of integral equations for φGm (m = 0, 1, 2, . . .) as

L(φG0) = 0, (3.255a)

L(φG1) = ζi
∂φG0

∂xi
, (3.255b)

L(φGm) =
∂φGm−2

∂t̃
+ζi

∂φGm−1

∂xi
(m = 2, 3 . . .). (3.255c)

Repeating the process of solution and solvability condition, we obtain φGm

and a series of the sets of equations for hGm.107 From Eqs. (3.255a) and (3.255b),
it is seen that φG0 and φG1 are formally the same as those in the time-independent
case, i.e.,

φG0 = ωG0 + 2ζiuiG0 +
(

ζ2
j − 3

2

)
τG0, (3.256a)

φG1 = ωG1 + 2ζiuiG1 +
(

ζ2
j − 3

2

)
τG1 − ζiζjB(ζ)

∂uiG0

∂xj
− ζiA(ζ)

∂τG0

∂xi
,

(3.256b)

where φG0 is the linearized form of the Maxwellian. The fluid-dynamic-type
equations that determine the macroscopic variables up to hG1 are

∂PG0

∂xi
= 0, (3.257)

∂ujG0

∂xj
= 0, (3.258a)

∂uiG0

∂t̃
= −1

2
∂PG1

∂xi
+

γ1

2
∂2uiG0

∂x2
j

, (3.258b)

5
2

∂τG0

∂t̃
− ∂PG0

∂t̃
=

5γ2

4
∂2τG0

∂x2
j

, (3.258c)

107See the explanation at the beginning of the paragraph next to that containing Eq. (3.234).
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∂ujG1

∂xj
= −∂ωG0

∂t̃
, (3.259a)

∂uiG1

∂t̃
= −1

2
∂PG2

∂xi
+

γ1

2
∂

∂xj

(
∂uiG1

∂xj
+

∂ujG1

∂xi
− 2

3
∂ukG1

∂xk
δij

)
− γ3

3
∂

∂xi

∂2τG0

∂x2
j

, (3.259b)

5
2

∂τG1

∂t̃
− ∂PG1

∂t̃
=

5γ2

4
∂2τG1

∂x2
j

, (3.259c)

where
PGm = ωGm + τGm.

The time-derivative terms ∂uiG0/∂t̃ in Eq. (3.258b) and (5/2)∂τG0/∂t̃ −
∂PG0/∂t̃ in Eq. (3.258c) in the set of equations (3.257)–(3.258c) are the correc-
tions to Eqs. (3.12)–(3.13c) with m = 0 in the corresponding time-independent
case. These equations are similar to the Stokes set of equations for an incom-
pressible fluid, but there is a difference in Eq. (3.258c). Rewriting the time-
derivative terms in Eq. (3.258c) in the form

5
2

∂τG0

∂t̃
− ∂PG0

∂t̃
=

3
2

∂τG0

∂t̃
− ∂ωG0

∂t̃
,

and neglecting the last term −∂ωG0/∂t̃, we obtain the energy equation of the
Stokes set for an incompressible fluid. From Eq. (3.259a) and the discussion
in Footnote 47 in Section 3.2.4, ∂ωG0/∂t̃ is the corresponding contribution to
Eq. (3.258c) of the work done by pressure on a volume of a gas, which vanishes in
an incompressible fluid in the present situation.108 In Eq. (̇3.259b), the thermal
stress term appears in contrast to the time-independent case, but it can be
incorporated in the pressure term as was done by Eq. (3.126) in Section 3.2.4.

In Eqs. (3.257)–(3.259c), the variable PGm appears in somewhat awkward
way, i.e., in a staggered combination with the other variables. This character is
common to the weakly nonlinear problem and the first case of the nonlinear one
to be discussed. The PG0 in Eq. (3.258c) is already determined by Eq. (3.257)
with an additive arbitrary function of t̃, which is determined by the boundary
condition in the process of solution of Eq. (3.258c).109 From Eqs. (3.258a) and
(3.258b), uiG0 and PG1 (except an additive function of t̃) are determined. The
additive function in PG1 is determined by the boundary condition in the pro-
cess of solution of Eq. (3.259c). In this way, we can consistently determine the
solution. The boundary conditions on a simple boundary or an interface for
Eqs. (3.257)–(3.259c) are given in Section 3.7.3.

108The relation ∂ωGm/∂t̃ = 0 is the linearized form of the condition of incompressibility
∂ρ/∂t + vi∂ρ/∂Xi = 0.
109The pressure PGm is not specified on a simple boundary. However, its value at infinity

is specified in an infinite domain problem or the total mass is invariant in time (and thus
specified) in a closed domain problem.
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Weakly nonlinear problem

Consider the case where φ = O(k). This case corresponds to Section 3.2. With
Sh = k and the new notation t̃, the Boltzmann equation (1.75a) is given as

k
∂φ

∂t̃
+ ζi

∂φ

∂xi
=

1
k

[L(φ) + J (φ, φ)]. (3.260)

The distribution function φ is expanded in a power series of k, i.e.,

φ = φS = φS1k + φS2k
2 + · · · . (3.261)

Corresponding to the expansion (3.261), the macroscopic variables ω, ui, τ , etc.
are also expanded in k, i.e.,

hS = hS1k + hS2k
2 + · · · , (3.262)

where h = ω, ui, τ , etc. Substituting the series (3.261) into Eq. (3.260), we
obtain a series of integral equations for φSm (m = 1, 2, . . .), i.e.,

L(φS1) = 0, (3.263a)

L(φS2) = ζi
∂φS1

∂xi
− J (φS1, φS1), (3.263b)

L(φSm) =
∂φSm−2

∂t̃
+ ζi

∂φSm−1

∂xi
−

m−1∑
r=1

J (φSm−r, φSr) (m = 3, 4, . . .).

(3.263c)

Repeating the process of solution and solvability condition, we obtain φSm

and a series of the sets of equations for hSm.110 From Eqs. (3.263a) and (3.263b),
it is seen that φS1 and φS2 are formally the same as those in the time-independent
case, i.e.,

φS1 = ωS1 + 2ζiuiS1 +
(

ζ2
j − 3

2

)
τS1, (3.264a)

φS2 = φeS2 − ζiζjB(ζ)
∂uiS1

∂xj
− ζiA(ζ)

∂τS1

∂xi
, (3.264b)

where φeS2 is the second-order component function of the expansion of the local
Maxwellian in k [see Eq. (3.94)], i.e.,

φeS2 = ωS2 + 2ζiuiS2 +
(

ζ2
j − 3

2

)
τS2 + 2ζiωS1uiS1

+
(

ζ2
j − 3

2

)(
2
3
u2

iS1 + ωS1τS1

)
+ 2

(
ζiζj −

1
3
ζ2

 δij

)
uiS1ujS1

+ 2ζi

(
ζ2
j − 5

2

)
uiS1τS1 +

(
1
2
ζ2
i ζ2

j − 5
2
ζ2
i +

15
8

)
τ2
S1.

110See the explanation at the beginning of the paragraph next to that containing Eq. (3.234).
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The fluid-dynamic-type equations that determine the macroscopic variables up
to hS2 are

∂PS1

∂xi
= 0, (3.265)

∂uiS1

∂xi
= 0, (3.266a)

∂uiS1

∂t̃
+ ujS1

∂uiS1

∂xj
= −1

2
∂PS2

∂xi
+

γ1

2
∂2uiS1

∂x2
j

, (3.266b)

5
2

∂τS1

∂t̃
− ∂PS1

∂t̃
+

5
2
ujS1

∂τS1

∂xj
=

5γ2

4
∂2τS1

∂x2
j

, (3.266c)

∂uiS2

∂xi
= −∂ωS1

∂t̃
− ∂ωS1uiS1

∂xi
, (3.267a)

∂uiS2

∂t̃
+ ujS1

∂uiS2

∂xj
+ ujS2

∂uiS1

∂xj

= −1
2

(
∂PS3

∂xi
− ωS1

∂PS2

∂xi

)
+

γ1

2
∂

∂xj

(
∂uiS2

∂xj
+

∂ujS2

∂xi
− 2

3
∂ukS2

∂xk
δij

)
− γ1ωS1

2
∂2uiS1

∂x2
j

+
γ4

2
∂

∂xj

[
τS1

(
∂uiS1

∂xj
+

∂ujS1

∂xi

)]
− γ3

3
∂

∂xi

∂2τS1

∂x2
j

,

(3.267b)

3
2

∂PS2

∂t̃
+

3
2
ujS1

∂PS2

∂xj
+

5
2

(
∂PS1ujS2

∂xj
− ∂ωS2

∂t̃
− ∂(ωS2ujS1 + ωS1ujS2)

∂xj

)
=

5γ2

4
∂2τS2

∂x2
j

+
5γ5

4
∂

∂xj

(
τS1

∂τS1

∂xj

)
+

γ1

2

(
∂uiS1

∂xj
+

∂ujS1

∂xi

)2
, (3.267c)

where
PS1 = ωS1 + τS1, PS2 = ωS2 + ωS1τS1 + τS2. (3.268)

The time-derivative terms ∂uiS1/∂t̃ in Eq. (3.266b) and 5∂τS1/2∂t̃−∂PS1/∂t̃
in Eq. (3.266c) in the set of equations (3.265)–(3.266c) are the corrections to
Eqs. (3.87)–(3.88c) in the corresponding time-independent case. These equa-
tions are similar to the Navier–Stokes set of equations for an incompressible
fluid, but there is a difference in Eq. (3.266c). Rewriting the left-hand side of
Eq. (3.266c) with the aid of Eqs. (3.265) and (3.268) in the form

5
2

∂τS1

∂t̃
− ∂PS1

∂t̃
+

5
2
ujS1

∂τS1

∂xj

=
3
2

∂τS1

∂t̃
+

3
2
ujS1

∂τS1

∂xj
−
(

∂ωS1

∂t̃
+ ujS1

∂ωS1

∂xj

)
,
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and neglecting the last term ∂ωS1/∂t̃ + ujS1∂ωS1/∂xj , we obtain the energy
equation of the Navier–Stokes set of equations for an incompressible fluid. From
Eqs. (3.266a), (3.267a), and the discussion in Footnote 47 in Section 3.2.4,
∂ωS1/∂t̃ + ujS1∂ωS1/∂xj is the corresponding contribution to Eq. (3.266c) of
the work done by pressure on a volume of a gas, which vanishes in an incom-
pressible fluid.111 An example showing a decisive difference of the solution of
Eqs. (3.265)–(3.266c) and that of the corresponding Navier–Stokes equations for
incompressible fluid is given in Sone [2002].

In Eqs. (3.265)–(3.267c), the variable PSm appears in a staggered combina-
tion with the other variables. The PS1 in Eq. (3.266c) is determined, except
an additive arbitrary function of t̃, by Eq. (3.265) in the preceding step. The
arbitrary function is determined by the boundary condition in the process of so-
lution of uiS1, τS1, ωS1, and PS2 from Eqs. (3.266a)–(3.266c), where an arbitrary
function of t̃ in PS2 is left undetermined.112 An additive arbitrary function of
t̃ in PS2 is determined by the boundary condition in the process of solution of
uiS2, τS2, ωS2, and PS3 from Eqs. (3.267a)–(3.267c), where an arbitrary func-
tion of t̃ in PS3 is left undetermined. In this way, we can consistently determine
the solution. The boundary conditions on a simple boundary or an interface for
Eqs. (3.265)–(3.267c) are given in Section 3.7.3.

Nonlinear problem

First consider the case where the condition∫
ζif̂dζ = O(k), (3.269)

which is introduced in Section 3.3, is imposed. With Sh= k and the new notation
t̃, the Boltzmann equation (1.47a) in the absence of an external force F̂i = 0 is
given as

k
∂f̂

∂t̃
+ ζi

∂f̂

∂xi
=

1
k

Ĵ(f̂ , f̂). (3.270)

The distribution function f̂ is expanded in a power series of k, i.e.,

f̂ = f̂SB = f̂SB0 + f̂SB1k + · · · . (3.271)

Corresponding to the expansion (3.271), the macroscopic variables ρ̂, v̂i, T̂ , etc.
(see Section 1.9) are also expanded in k, i.e.,

ĥSB = ĥSB0 + ĥSB1k + · · · , (3.272)

111The relation ∂ωS1/∂t̃ + ujS1∂ωS1/∂xj = 0 is the condition of incompressibility.
112See Footnote 109 in this subsection.
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where ĥ = ρ̂, v̂i, T̂ , etc. Substituting the series (3.271) into Eq. (3.270), we
obtain a series of integral equations for f̂SBm (m = 0, 1, . . .), i.e.,

Ĵ(f̂SB0, f̂SB0) = 0, (3.273a)

2Ĵ(f̂SB0, f̂SB1) = ζi
∂f̂SB0

∂xi
, (3.273b)

2Ĵ(f̂SB0, f̂SBm) =
∂f̂SBm−2

∂t̃
+ ζi

∂f̂SBm−1

∂xi
−

m−1∑
r=1

Ĵ(f̂SBr, f̂SBm−r) (m ≥ 2).

(3.273c)

Repeating the process of solution and solvability condition, we obtain f̂SBm

and a series of the sets of equations for ĥSBm.113 The leading-order solution
f̂SB0 is the Maxwellian

f̂SB0 =
ρ̂SB0

(πT̂SB0)3/2
exp

(
− ζ2

i

T̂SB0

)
, (3.274)

where the condition (3.269) is used. The set of equations that determines the
leading-order macroscopic variables is given by

p̂SB0 = p̂0, (3.275)
p̂SB1 = p̂1, (3.276)

∂ρ̂SB0

∂t̃
+

∂ρ̂SB0v̂iSB1

∂xi
= 0, (3.277a)

∂ρ̂SB0v̂iSB1

∂t̃
+

∂ρ̂SB0v̂jSB1v̂iSB1

∂xj

= −1
2

∂p̂∗SB2

∂xi
+

1
2

∂

∂xj

[
Γ1(T̂SB0)

(
∂v̂iSB1

∂xj
+

∂v̂jSB1

∂xi
− 2

3
∂v̂kSB1

∂xk
δij

)]

+
1

2p̂0

∂

∂xj

⎧⎨⎩Γ7(T̂SB0)

⎡⎣∂T̂SB0

∂xi

∂T̂SB0

∂xj
− 1

3

(
∂T̂SB0

∂xk

)2

δij

⎤⎦⎫⎬⎭ , (3.277b)

3
2

∂ρ̂SB0T̂SB0

∂t̃
+

5
2

∂ρ̂SB0v̂iSB1T̂SB0

∂xi
=

5
4

∂

∂xi

(
Γ2(T̂SB0)

∂T̂SB0

∂xi

)
, (3.277c)

where p̂0 and p̂1 depend only on t̃, and

ρ̂SB0 =
p̂0

T̂SB0

, (3.278a)

p̂∗SB2 = p̂SB2 +
2

3p̂0

∂

∂xk

(
Γ3(T̂SB0)

∂T̂SB0

∂xk

)
. (3.278b)

113See the explanation at the beginning of the paragraph next to that containing Eq. (3.234).
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The time-derivative terms ∂ρ̂SB0/∂t̃ in Eq. (3.277a), ∂ρ̂SB0v̂iSB1/∂t̃ in Eq.
(3.277b), and (3/2)∂ρ̂SB0T̂SB0/∂t̃ in Eq. (3.277c) in the set of equations (3.275)–
(3.278b) are the corrections to Eqs. (3.153)–(3.158b) in the corresponding time-
independent case. The ghost and non-Navier–Stokes effects are the feature of
this system as in the time-independent problem.

In Eqs. (3.275)–(3.277c), the variable p̂SBm appears in a staggered combina-
tion with the other variables. The arbitrary function p̂0 of t̃ is determined by
the boundary condition in the process of solution of v̂iSB1, T̂SB0, ρ̂SB0, and p̂SB2

from Eqs. (3.277a)–(3.277c), where an arbitrary function of t̃ in p̂SB2 is left un-
determined.114 The process of solution can be advanced in a similar way. The
boundary conditions on a simple boundary or an interface for Eqs. (3.277a)–
(3.277c) are given in Section 3.7.3.

Next, consider the case where the condition (3.269) is eliminated and
∫

ζif̂dζ
is a quantity of the order unity. The process is similar to the preceding case with
the formally same relations from Eq. (3.270) to Eq. (3.273c) where the subscript
SB is replaced by H. Equation (3.274) is replaced by

f̂H0 =
ρ̂H0

(πT̂H0)3/2
exp

(
− (ζi − v̂iH0)2

T̂H0

)
. (3.279)

The set of equations for ρ̂H0, v̂iH0, and T̂H0 is simply

∂ρ̂H0v̂iH0

∂xi
= 0, (3.280a)

∂ρ̂H0v̂jH0v̂iH0

∂xj
+

1
2

∂p̂H0

∂xi
= 0, (3.280b)

∂

∂xj

[
ρ̂H0v̂jH0

(
v̂2

iH0 +
5
2
T̂H0

)]
= 0, (3.280c)

where
p̂H0 = ρ̂H0T̂H0.

This result is easily understood from the results (3.250a)–(3.250c) in the case
Sh = O(1). The time-derivative terms in these equations are reduced to a higher
order and do not enter Eqs. (3.280a)–(3.280c). The time variation of this system
is determined by that of the data in the boundary conditions (or the connecting
condition with the viscous boundary-layer solution).

The role of the uniform pressure conditions, i.e., Eqs. (3.257), (3.265), (3.275),
and (3.276), is similar to that of Eqs. (3.12), (3.87), (3.153), and (3.154) dis-
cussed in the last paragraph of Section 3.6.2 for time-independent problems.
Unless the conditions (3.257), (3.265), (3.275), and (3.276) are satisfied, flow
fields with faster time variation (Section 3.7.1) or larger flow velocity than those
of the setups of analysis are induced.

Some mathematical theories for initial-value problems are developed for lin-
ear and weakly nonlinear problems by Bardos, Golse & Levermore [1998, 2000]
114See Footnote 109 in this subsection.
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and Golse & Saint-Raymond [2004] (see also the article by Golse in Bouchut,
Golse & Pulvirenti [2000]).

3.7.3 Slip boundary condition and Knudsen-layer
correction

We first discuss the boundary condition for the fluid-dynamic-type equations
derived in the case Sh = O(k) of Section 3.7.2. Naturally, the condition of a
boundary (e.g., the boundary temperature), a simple boundary or an interface,
is assumed to vary in such a time scale t0 that Sh = O(k). Here, the shape of
the boundary is taken to be invariant and its velocity component normal to it
to be zero (uwini = 0 or v̂wini = 0).

To make the fluid-dynamic-type solution φG, φS , or f̂SB match the kinetic
boundary condition, we introduce the Knudsen-layer correction

φ = φG + φK , φ = φS + φK , f̂ = f̂SB + f̂K .

It is seen from Eqs. (3.255a) and (3.255b) for φG0 and φG1, Eqs. (3.263a) and
(3.263b) for φS1 and φS2, or Eqs. (3.273a) and (3.273b) for f̂SB0 and f̂SB1 that
the fluid-dynamic parts φG0 and φG1, φS1 and φS2, or f̂SB0 and f̂SB1 are of the
same form as those in the time-independent case discussed in Section 3.1.2, 3.2.2,
or 3.3.2, though the macroscopic variables contained in them parametrically are
time-dependent. With this preliminary information, we will discuss the equation
and boundary condition for the Knudsen-layer correction.

The boundary condition for the Knudsen-layer correction is determined by
the original kinetic boundary condition for the full solution and the boundary
data of the fluid-dynamic part φG, φS , or f̂SB , which contains undetermined
quantities. That is, the boundary condition given by the scattering kernel on
a simple boundary or on an interface (see Sections 1.9 and 1.11) is expressed
symbolically in the form

ϕKm = K(ϕKm) + K(ϕFm) + gm − ϕFm (ζini > 0),

where

ϕFm = φGm, φSm, or f̂SBm,

ϕKm = φKm (for φGm and φSm) or f̂Km,

K(∗) is a linear integral operator, and gm is determined by the boundary pa-
rameter [and φSn, f̂SBn, and ϕKn (n < m) for φS and f̂SB ]. The Knudsen-layer
correction φKm (for φGm and φSm) or f̂Km vanishes as η → ∞. From the
property of the fluid-dynamic part φG, φS , or f̂SB noted above, the boundary
conditions for the Knudsen-layer corrections φK0 and φK1 (corresponding to
φG), φK1 and φK2 (corresponding to φS), or f̂K1 are of the same form as those
in the time-independent case.115

115The Knudsen-layer correction f̂K starts from the first order of k, i.e., f̂K = f̂K1k + · · · ,
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The equation for the Knudsen layer is derived in the same way as in the time-
independent problem by introducing the Knudsen-layer variables [Eq. (3.31)].
Assuming that the correction φK or f̂K varies in such a time scale t0 that
Sh = O(k), we find that the relative size of the time-derivative term to the
collision and the spatial derivative terms116 is of the order of k2. It should be
noted that there is another time-dependent contribution from the φS and f̂SB .
That is, in splitting the Boltzmann equation into that for the fluid-dynamic
part and the remaining equation for the Knudsen-layer correction, we have to
handle J (φS , φK) or Ĵ(f̂SB , f̂K) term. This process can be carried out in the
same way as in the time-independent case (see Sections 3.2.3 and 3.3.2). There
is no contribution of φS to the equation for φK1, and φS1 enters the equation
for φK2. Only f̂SB0 enters the equation for f̂K1. Thus, the equations for φK0,
φK1 (corresponding to φG), φK1, φK2 (corresponding to φS), and f̂K1 are of
the same form as those in the time-independent case. For this form of equation,
the solution varies in such a time scale t0 that Sh = O(k), if the boundary
condition varies similarly. Thus, the assumption introduced at the beginning of
this paragraph is verified.

From the above discussion on the equation and boundary condition for the
Knudsen-layer correction, we find that the time-independent results for the slip
conditions and Knudsen-layer corrections derived in Sections 3.1, 3.2, and 3.3
apply to the time-dependent equations derived in Section 3.7.2 up to some stage.
That is,

Linear problem
The first two stages of the slip boundary conditions and the Knudsen-layer
corrections in Section 3.1.5, i.e., Eqs. (3.40a)–(3.40c), (3.41a)–(3.41c) on a simple
boundary and Eqs. (3.56a)–(3.56c), (3.57a)–(3.57c) on an interface of the gas and
its condensed phase, apply to the fluid-dynamic-type equations determining the
macroscopic variables up to hG1, i.e., Eq. (3.257), Eqs. (3.258a)–(3.258c), and
Eqs. (3.259a)–(3.259c).

Weakly nonlinear problem
The first two stages of the slip boundary conditions and the Knudsen-layer
corrections in Section 3.2.3, i.e., Eqs. (3.113a)–(3.113c), (3.114a)–(3.114c) on
a simple boundary and Eqs. (3.119a)–(3.119c), (3.120a)–(3.120c) on an inter-
face, apply to the fluid-dynamic-type equations determining the macroscopic
variables up to hS2, i.e., Eq. (3.265), Eqs. (3.266a)–(3.266c), and Eqs. (3.267a)–
(3.267c).

Nonlinear problem 1
Equations (3.161a) and (3.161b) on a simple boundary and Eqs. (3.162a)–(3.162d)
on an interface apply to the set of equations (3.277a)–(3.278b).

irrespective of a simple boundary or an interface, because f̂SB0 is a Maxwellian with zero
velocity and the kinetic boundary condition is satisfied by taking T̂SB0 = T̂w0 as in the time-
independent case. Incidentally, for a simple boundary, we can take φK0 = 0 for φG and
φK1 = 0 for φS as in the time-independent case.
116In the Knudsen layer, the spatial derivative term is upgraded by the factor 1/k.
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The fluid-dynamic-type equations derived in the case Sh = O(1) and in the
last problem of the case Sh = O(k) are the first-order equations of the Euler
type. Generally, a viscous boundary layer or a suction boundary layer intervenes
between the Euler region and the Knudsen layer, as discussed in Section 3.4 or
in Sone & Doi [2000] for time-independent problems. Applicability of the slip
condition obtained for the time-independent case to time-dependent problems
can be discussed similarly.

When evaporation or condensation with a finite Mach number is taking
place on an interface of a gas and its condensed phase, the behavior of the
gas is described by the Euler set of equations (3.250a)–(3.250c) or (3.280a)–
(3.280c) with nonlinear Knudsen-layer corrections as in the time-independ-
ent case in Section 3.5. By a similar argument, we obtain the following re-
sult.

Nonlinear problem 2
Equations (3.228a)–(3.229c) apply to the set of equations (3.250a)–(3.250c) or
(3.280a)–(3.280c) on an interface where evaporation or condensation of a finite
Mach number is taking place.

3.7.4 Initial layer and others

Consider an initial-value problem in an infinite domain without a boundary,
where Knudsen number or k based on the reference length L determined by
the initial condition is small. When the initial velocity distribution function is
not close to a local Maxwellian, the collision term Ĵ(f̂ , f̂)/k in the Boltzmann
equation (1.47a) [or L(φ)/k + J (φ, φ)/k in Eq. (1.75a) or L(φ)/k in Eq. (1.96)]
is of the order of 1/k. Then, the time-derivative term Sh∂f̂/∂t̂ (or Sh∂φ/∂t̂) is of
the order of k−1. Thus, for the time scale of variation of the velocity distribution
function or the time scale for which ∂f̂/∂t̂ (or ∂φ/∂t̂) is of the order of unity,
the Strouhal number Sh is of the order of 1/k, that is, t0 ∼ 0/(2RT0)1/2 ∼ τ̄c,
where τ̄c is the mean free time (see Section 1.5). That is, the state of the gas
varies in the time scale of the mean free time. As time goes on, the molecules
undergo molecular collisions, many collisions after many τ̄c’s, and the velocity
distribution function approaches a local Maxwellian. Then, the collision term,
and thus the time-derivative term, degrades to the order of unity, which is the
order of the space-derivative term.117 That is, Sh is of the order of unity or the
time scale of variation of the distribution function is t0 ∼ L/(2RT0)1/2, which
is the time of the order that the sound wave propagates over the distance of the
reference length L. This is the case discussed in Section 3.7.1, where the fluid-
dynamic-type equations describing propagation of waves are derived. As time
further goes on, the wave fronts escape from the field, and the spatial variation
of the variables, as well as the collision term, becomes moderate. With decay of
the combination of the spatial derivative and collision terms, the time-derivative

117A shock wave (Section 4.7), where the length scale of variation is of the order of the mean
free path, may be formed locally as time goes on.
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term in the Boltzmann equation becomes smaller. When it reduces to the order
of k, the time scale t0 of the variation of variables becomes t0 ∼ ρ0L

2/μ0 or t0 ∼
Rρ0L

2/λ0, and the macroscopic variables are determined by the fluid-dynamic-
type equations derived in Section 3.7.2. The first region with the time scale τ̄c is
called an initial layer, the second region with the time scale t0 ∼ L/(2RT0)1/2

an Euler or inviscid region, and the last region with t0 ∼ ρ0L
2/μ0 a diffusion

or viscous region.118

The initial-value problem in an infinite domain without a boundary is stud-
ied by Grad [1963a]. In this pioneering work of modern kinetic theory, the
initial layer is introduced, and its general theory is developed to connect a
smooth initial condition to the fluid-dynamic-type equations in the region with
Sh = O(1). An example showing the behavior of a gas in a longer time scale,
Sh = O(k), is given in Sone & Shibata [1965] and Sone [1968]. In an initial
and boundary-value problem, where there is a boundary, the interaction of the
initial layer with the boundary has to be discussed. Some simple examples
have been studied (Sone [1964, 1965, 1966a]). Mathematical study of the time-
evolution process through the initial layer to the fluid-dynamic region for a
simple example is carried out by Ha, Liu & Yu [2006] (see the last paragraph of
Section 4.7).

Recently, Liu & Yu [2004b, 2006a] derived the Green function of the lin-
earized Boltzmann equation for an initial-value problem. Their rigorous math-
ematical work clarifies the structure of the time evolution of the solution of
the Boltzmann equation, especially the character in the regions Sh = O(1)
and Sh = O(k). Their study of the Green function is progressing to initial and
boundary-value problems (e.g., Liu & Yu [2006b]).

Solutions with discontinuities can be constructed from the Euler set of equa-
tions where the conservations of mass, momentum, and energy fluxes (and the
condition of nondecrease of the entropy along a fluid-particle path) hold across
the discontinuity. These solutions are called weak solutions of the Euler set (Lax
[1957], Liu [1975], Smoller [1983], Sone [1987]). The discontinuities are of two
kinds, shock wave and contact discontinuity (see, e.g., Courant & Friedrichs
[1948] and Liepmann & Roshko [1957]). There is no mass flux across the con-
tact discontinuity, where the pressure is continuous but the temperature and
the density or the flow velocity parallel to it or both are discontinuous. In
the Boltzmann system, the contact discontinuity, if any at some instant, be-
gins to diffuse immediately (thus may be called contact layer) and the varia-
tion extends to a wide range in a long time Sh = O(k). On the other hand,
the shock wave, to be discussed in Section 4.7, is a thin layer with thickness
of the order of the mean free path and can persist, depending on situations,
for a long time up to the region Sh = O(k), without broadening. Thus, a
smooth solution described by the Euler set coexists with shock waves of in-
finitesimal thickness. Yu [2005] extended the Hilbert expansion in Section 3.7.1
in such a way that the shock wave can be incorporated into the expansion.
Numerical examples of the time evolution of shock waves and contact layers

118See Footnote 104 at the beginning of this section.
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are given in Sections 4.8, 6.1.2, and 6.1.3. Examples of the contact layer of
flow velocity parallel to the layer are given in Sone & Shibata [1965], Sone
[1968], and Aoki, Nishino, Sone & Sugimoto [1991], in the first two of which
the diffusion of an initial vortex layer (or discontinuity of tangential velocity)
is discussed.



Chapter 4

Simple Flows

In this chapter, we discuss various fundamental physical problems of simple
geometry, such as unidirectional flows, quasi-unidirectional flows, a uniform
flow past a sphere, and a plane shock wave. Various fundamental properties of
the solution of the Boltzmann equation are provided in these examples.

4.1 Couette-flow and heat-transfer problems
between two parallel plates

Consider a gas between two parallel plane walls, one at X2 = 0 is at rest
and is kept at a uniform temperature T0, and the other at X2 = L is moving
with velocity (U, 0, 0) and is kept at another uniform temperature T1. We are
interested in the time-independent behavior of the gas when the wall speed |U |
and the temperature difference |T1 − T0| are small, i.e., |U |/(2RT0)1/2 � 1 and
|T1−T0|/T0 � 1. The linearized Boltzmann equation and the linearized diffuse-
reflection condition are applied. The solution that is uniform with respect to
X1 and X3 is looked for here. We use the notation in Section 1.10 and the
relation in Section 1.11, where the temperature T0 of the wall at X2 = 0 and
the average density of the gas over the channel are taken, respectively, as the
reference temperature T0 and the reference density ρ0 in the definition of the
nondimensional variables.

The linearized Boltzmann equation is given as

ζ2
∂φ

∂x2
=

1
k
L(φ),

and the boundary conditions are, at x2 = 0,

φ(x2, ζi) = −2
√

π

∫
ζ2<0

ζ2φEdζ (ζ2 > 0), (4.1)
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and at x2 = 1,

φ(x2, ζi) = σ̌w + 2ζ1Δu +
(

ζ2
j − 3

2

)
Δτ (ζ2 < 0), (4.2a)

σ̌w = −1
2
Δτ + 2

√
π

∫
ζ2>0

ζ2φEdζ, (4.2b)

where
Δu =

U

(2RT0)1/2
, Δτ =

T1

T0
− 1.

In view of the discussion of the similarity solution in Section A.5, we put φ
in the form

φ = Δuζ1ΦC(x2, ζ2, ζ) + ΔτΦH(x2, ζ2, ζ), ζ = (ζ2
i )1/2. (4.3)

Then the problem is split into two independent problems, one for ΦC (plane-
Couette-flow problem) and the other for ΦH (heat-transfer problem), i.e., the
equations are

ζ2
∂ΦC

∂x2
=

1
kζ1

L(ζ1ΦC), ζ2
∂ΦH

∂x2
=

1
k
L(ΦH), (4.4)

and the boundary conditions are

ΦC = 0 (ζ2 > 0) at x2 = 0, (4.5a)
ΦC = 2 (ζ2 < 0) at x2 = 1, (4.5b)

ΦH = −2
√

π

∫
ζ2<0

ζ2ΦHEdζ (ζ2 > 0) at x2 = 0, (4.6a)

ΦH = 2
√

π

∫
ζ2>0

ζ2ΦHEdζ + ζ2 − 2 (ζ2 < 0) at x2 = 1. (4.6b)

The macroscopic variables, i.e., density ρ, velocity vi, temperature T, stress
tensor pij , and heat-flow vector qi, corresponding to ΦC are expressed as

v1C

U
=
∫

ζ2
1ΦC(x2, ζ2, ζ)Edζ,

p12C

p0
=

p21C

p0
=

2U

(2RT0)1/2

∫
ζ2
1ζ2ΦC(x2, ζ2, ζ)Edζ,

q1C

p0U
=
∫

ζ2
1ζ2ΦC(x2, ζ2, ζ)Edζ − 5

2
v1C

U
,

where p12C is independent of x2 owing to the conservation equation (1.100). In
view of the parity (even or odd) of ζ1ΦC with respect to ζ1 and ζ3, the other
quantities, i.e.,

v2C, v3C, ρC/ρ0 − 1, TC/T0 − 1,

pijC − p0δij except (i, j) = (1, 2) and (2, 1), q2C, q3C,
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all vanish. The macroscopic variables corresponding to ΦH are

ρH

ρ0
− 1 = Δτ

∫
ΦHEdζ,

TH

T0
− 1 = Δτ

∫ (
2
3
ζ2 − 1

)
ΦHEdζ,

p22H

p0
− 1 = 2 Δτ

∫
ζ2
2ΦHEdζ,

p11H

p0
− 1 =

p33H

p0
− 1 = 2 Δτ

∫
ζ2
1ΦHEdζ,

q2H

p0(2RT0)1/2
= Δτ

∫
ζ2ζ

2ΦHEdζ,

where p22H and q2H are independent of x2 owing to the conservation equations
(1.100) and (1.101). The other quantities, i.e.,

viH, pijH (i �= j), q1H, q3H,

all vanish. The conservation equation (1.99) and the condition of a simple
boundary are used to derive v2H = 0. To summarize, the macroscopic variables
for the original problem are given as

v1 = v1C, v2 = v3 = 0, ρ = ρH, T = TH,

p11 = p33 = p11H (= p33H), p22 = p22H,

p12 = p21 = p12C (= p21C), p13 = p31 = p23 = p32 = 0,

q1 = q1C, q2 = q2H, q3 = 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.7)

The solution for small k of the Couette-flow problem can be easily obtained
by the asymptotic theory in Section 3.1.1 The analysis can be easily extended
to any order of k for the present simple problem. The function ΦCG

ΦCG = c1x2 + c0 −
1
2
kc1ζ2B(ζ), (4.8)

where c0 and c1 are constants and B(ζ) is defined in Section A.2.9, satisfies
the equation for ΦC in Eq. (4.4) for arbitrary k [see Eq. (3.19) or (A.130) and
Eq. (A.124) with (A.128a)]. Let uCG =

∫
ζ2
1ΦCGEdζ. Then

uCG = (c1x2 + c0)/2. (4.9)

The solution ΦC satisfying the boundary conditions (4.5a) and (4.5b) is looked
for in the form

ΦC = ΦCG + ΦCK(η) + Φ−
CK(η−),

where ΦCK is the Knudsen-layer correction in the neighborhood of the wall on
x2 = 0 and Φ−

CK is the one in the neighborhood of x2 = 1, and the arguments
η and η− are the corresponding Knudsen-layer variables, i.e., η = x2/k and

1According to Footnote 3 in Section 3.1.2, it is required that |U |/(2RT0)1/2 � kn and
|T1 − T0|/T0 � kn. Similar assumptions apply to the results for small Knudsen numbers on
the basis of the linearized Boltzmann equation.
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η− = (1−x2)/k. Obviously, from the equation for ΦC in Eq. (4.4), the equations
for ΦCK and Φ−

CK are

ζ2
∂ζ1ΦCK

∂η
= L(ζ1ΦCK), − ζ2

∂ζ1Φ−
CK

∂η−
= L(ζ1Φ−

CK). (4.10)

From Eqs. (4.5a), (4.5b), and (4.8), the boundary conditions are2

ΦCK = −c0 + 1
2c1ζ2B(ζ)k (ζ2 > 0) at η = 0,

Φ−
CK = 2 − c0 − c1 + 1

2c1ζ2B(ζ)k (ζ2 < 0) at η− = 0,

⎫⎬⎭ (4.11)

ΦCK → 0 as η → ∞, Φ−
CK → 0 as η− → ∞. (4.12)

The above system (4.10)–(4.12) for ζ1ΦCK or ζ1Φ−
CK is a special form of that

for the Knudsen-layer correction φK1 on a simple boundary in Section 3.1.4.3

The ζ1ΦCG is the corresponding Grad–Hilbert part and (uCG, 0, 0) is its flow
velocity. Applying the relation of the system for φK1 and the slip condition
(3.41a) to the system for ζ1ΦCK on x2 = 0, we find that the constant c0 is
related to c1 as

c0 = −c1k0k, (4.13)

where k0 is the slip coefficient defined in Section 3.1.5. Similarly for the Knudsen
layer on x2 = 1, we have

2 − c1 − c0 = −c1k0k. (4.14)

From Eqs. (4.13), (4.14),

c1 =
2

1 − 2k0k
, c0 = − 2k0k

1 − 2k0k
.

Thus, from (4.8),

ΦCG =
2

1 − 2k0k

[
x2 −

(
k0 +

1
2
ζ2B(ζ)

)
k

]
. (4.15)

Noting the correspondence between the system for φK1 in Footnote 12 in
Section 3.1.4 and the Knudsen-layer corrections (3.41a), (3.50), and (3.53), we
find the expression of the Knudsen-layer parts for v1C, p12C, and q1C. Collecting
the results, we have

v1C

U
=

1
1 − 2k0k

(
X2

L
− [k0 + Y0(η) − Y0(η−)]k

)
, (4.16a)

p12C

p0U(2RT0)−1/2
= − γ1k

1 − 2k0k
, (4.16b)

q1C

p0U
=

k

1 − 2k0k
[HA(η) − HA(η−)], (4.16c)

2The decay of ΦCK (Φ−
CK) as η (η−) → ∞ is assumed to be faster than any inverse power

of η (η−) as in the Knudsen-layer analyses in Chapter 3, which is assured by the Grad–Bardos
theorem. Thus, the error of the boundary condition for ΦCK (Φ−

CK) owing to the tail of the

Knudsen layer Φ−
CK (ΦCK) on the other boundary is smaller than any power of k.

3See Footnote 12 in Section 3.1.4.
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where γ1 is the nondimensional viscosity defined in Section 3.1.3, and Y0(η)
and HA(η) are Knudsen-layer functions defined in Section 3.1.5. The solution,
i.e., Eqs. (4.16a)–(4.16c), where the terms of arbitrary order of k are taken into
account, is inapplicable for a finite value of k. In fact, the limiting values as
k → ∞ of the results (4.16a)–(4.16c) do not agree with the corresponding free
molecular results to be given by Eq. (4.17).4 The reason is that for a finite
k, η (η−) is finite at the other wall for which the boundary condition as η
(η−) → ∞ in Eq. (4.12) is inapplicable. In other words, the above result is
the asymptotic solution where the terms as exp(−1/k) are neglected5 and these
terms are smaller than any power of k for a small k but are finite for a finite
k. Physically, the asymptotic analysis neglects the effect of molecules impinging
on a wall directly from the other wall.

The solution for the free molecular case (k = ∞) is easily obtained (see
Section 2.3.3) as

v1C

U
=

1
2
,

p12C

p0U(2RT0)−1/2
= − 1√

π
,

q1C

p0U
= 0. (4.17)

The state of the gas is uniform.
The numerical results for a hard-sphere gas of the profiles v1C/U and q1C/p0U

vs X2/L and the variations of p12C/p0U(2RT0)−1/2 and
∫ L/2

0
q1CdX2/p0UL

with k are shown in Figs. 4.1, 4.2, 4.3, and 4.4 (Sone, Takata & Ohwada [1990]).
There is a heat flow in the absence of temperature gradient. More detailed
information of the flow including the velocity distribution function is given in
the above paper.

The solution for small k of the heat-transfer problem can be easily obtained
by the asymptotic theory in Section 3.1. The analysis can be easily extended
to any order of k for the present simple problem. The analysis goes parallel to
that for ΦC by putting

ΦH = ΦHG + ΦHK(η) + Φ−
HK(η−),

where ΦHG = (ζ2−5/2)(c̄1x2 + c̄0)+ c̄2− c̄1ζ2A(ζ)k (c̄0, c̄1, c̄2 : constants). The
results are

ρH − ρ0

ρ0(T1/T0 − 1)
=

1
1 + 2d1k

(
1
2
− X2

L
+ [Ω1(η) − Ω1(η−)]k

)
, (4.18a)

TH − T0

T0(T1/T0 − 1)
=

1
1 + 2d1k

(
X2

L
+ [d1 + Θ1(η) − Θ1(η−)]k

)
, (4.18b)

q2H

p0(2RT0)1/2(T1/T0 − 1)
= −5γ2

4
k

1 + 2d1k
, (4.18c)

where γ2, the nondimensional thermal conductivity, is defined in Section 3.1.3
and d1, the slip coefficient, and Ω1(η) and Θ1(η), Knudsen-layer functions, are
defined in Section 3.1.5.

4The limiting value of p12C as k → ∞ of Eq. (4.16b) does not agree with p12C in Eq. (4.17).
The same thing applies to q2H in Eqs. (4.18c) and (4.19).

5See Footnote 2 in this section.
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Figure 4.1. The velocity distribution, v1C/U vs X2/L, in the plane Couette flow (a
hard-sphere gas).
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Figure 4.2. The heat-flux distribution, q1C/p0U vs X2/L, in the plane Couette flow
(a hard-sphere gas).
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Figure 4.3. The shear stress, p12C/p0U(2RT0)
−1/2 vs k, in the plane Couette flow (a

hard-sphere gas). The white circles ◦ indicate the numerical solution, the solid line
—– indicates the asymptotic solution (4.16b) for small k, and the dashed line – – –
indicates the solution of the free molecular flow (k = ∞).
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Figure 4.4. The heat-flow rate,
R L/2

0
q1CdX2/p0UL vs k, through the half of the

channel in the plane Couette flow (a hard-sphere gas). The white circles ◦ indicate the
solution and the solid line —– indicates the asymptotic solution for small k derived
from Eq. (4.16c). The heat flow vanishes in the free molecular flow (k = ∞).
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Figure 4.5. The density distribution, (ρH − ρ0)/ρ0(T1/T0 − 1) vs X2/L, in the heat-
transfer problem between two parallel plane walls (a hard-sphere gas).

The solution for the free molecular case (k = ∞) is easily obtained (see
Section 2.3.3) as

ρH

ρ0
= 1,

TH

T0
= 1 +

T1 − T0

2T0
,

q2H

p0(2RT0)1/2
= −T1 − T0√

πT0
. (4.19)

The state of the gas is uniform.
The numerical results (Ohwada, Aoki & Sone [1989]) for a hard-sphere gas

of the profiles (ρH−ρ0)/ρ0(T1/T0−1) and (TH−T0)/(T1−T0) vs X2/L and the
variation of q2H/p0(2RT0)1/2(T1/T0 − 1) with k are shown in Figs. 4.5 and 4.6
and Table 4.1, in the last of which the data by Eq. (4.18c) are supplemented.

The case where the plate speed |U | is not small, i.e., |U |/(2RT0)1/2 = O(1),
is analyzed for small k in Sone & Yamamoto [1970], where the nonlinear effect
on the slip condition and the Knudsen layer appears in the second order of k.
Other aspects of the Couette flow, mainly not related to the direct effect of the
boundaries, are discussed in the monograph by Garzó & Santos [2003].
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Figure 4.6. The temperature distribution, (TH −T0)/(T1 −T0) vs X2/L, in the heat-
transfer problem between two parallel plane walls (a hard-sphere gas).

Table 4.1. Heat transfer, q2H/p0(2RT0)
1/2 vs k, between the two parallel walls in the

heat transfer problem (a hard-sphere gas). The data in parentheses are the results by
the asymptotic theory, i.e., Eq. (4.18c).

k
−2q2H

p0(2RT0)1/2

(
T1

T0
− 1

) k
−2q2H

p0(2RT0)1/2

(
T1

T0
− 1

)
0.033 0.1377 (0.1369) 5 1.046
0.1 0.3246 (0.3247) 6.310 1.061
0.1585 0.4329 (0.4326) 8 1.073
0.2512 0.5492 (0.5473) 10 1.083
0.3981 0.6637 (0.6572) 15.85 1.098
0.5 0.7170 (0.7067) 20 1.104
0.6310 0.7682 (0.7527) 25.12 1.109
1 0.8577 (0.8285) 40 1.116
1.585 0.9304 50 1.118
2 0.9609 63.10 1.120
2.512 0.9871 100 1.123
3.981 1.030 ∞ 1.128
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4.2 Flows through a channel or pipe I:
Straight pipe

4.2.1 Analysis by a similarity solution

Consider a gas in an infinitely long channel or pipe with a uniform cross section.
The shape of the cross section may be arbitrary. Let the X1 axis be parallel to
the channel or pipe. The temperature Tw of the channel or pipe is given by

Tw = T0 +
dTw

dX1
X1,

where T0 and dTw/dX1 are constants, and the gas is subject to a pressure
gradient.6 We assume that the temperature and pressure gradients are small,
i.e.,

L

T0

∣∣∣∣dTw

dX1

∣∣∣∣ � 1,
L

p0

∣∣∣∣ dp

dX1

∣∣∣∣ � 1, (4.20)

where L is a characteristic size of the cross section and p0 is a characteristic
value of the pressure in the gas, and analyze the time-independent behavior of
the gas on the basis of the linearized Boltzmann equation (1.96) introduced in
Section 1.11.7 As the boundary condition, we take the diffuse-reflection condi-
tion (1.105a) with (1.105b) for simplicity. Similar formulation can be carried
out for the general boundary condition (1.107). Incidentally, the flow induced
through a channel or pipe by a pressure gradient along it is called Poiseuille
flow and the flow through a channel or pipe by a temperature gradient along it
thermal transpiration.

With the notation introduced in Section 1.10, the linearized Boltzmann equa-
tion is given by

ζi
∂φ

∂xi
=

1
k
L(φ), (4.21)

and the diffuse-reflection condition on the channel or pipe surface is

φ(xi, ζi) = σ̌w +
(

ζ2
j − 3

2

)
τw (ζjnj > 0), (4.22a)

σ̌w = −1
2
τw − 2

√
π

∫
ζknk<0

ζjnjφEdζ. (4.22b)

6In contrast to the temperature distribution on the channel or pipe, we cannot impose the
pressure gradient arbitrarily, though we can impose some pressure gradient. We will find that
there is a solution that has a uniform pressure over a cross section and a uniform pressure
gradient along the channel or pipe.

7(i) To be definite, the average pressure over the cross section at X1 = 0 may be taken as
the reference pressure p0.

(ii) The pressure or temperature becomes infinite at infinity, however small the pressure
or temperature gradient may be. From the discussion in Sections 4.2.3 and 4.3, the result in
this section will be found to be valid locally [or up to |X1| = O(L)] when the gradients are
small, i.e., Eqs. (4.20) holds. When k is small, we have to be more careful to the use of the
linearized equation [see Footnote 3 in Section 3.1.2 and Footnote 8 (ii) in Section 4.2.2].
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In this subsection, τw is given by

τw = (dτw/dx1)x1, dτw/dx1 : a constant,

and ni is the unit normal vector to the channel or pipe surface, pointed to the
gas region. Here n1 is zero, i.e., ni = (0, n2, n3).

We put the solution φ in the form

φ = x1Φ0(ζ, ζ2, ζ3) + ζ1Φ1(x2, x3, ζ, ζ2, ζ3), (4.23)

which is a similarity solution in Section A.5. Substituting Eq. (4.23) into the
linearized Boltzmann equation (4.21) and the boundary condition (4.22a) with
(4.22b), we have

L(Φ0(ζ, ζ2, ζ3)) = 0, (4.24a)

ζ2
∂Φ1

∂x2
+ ζ3

∂Φ1

∂x3
− 1

kζ1
L(ζ1Φ1) = −Φ0, (4.24b)

and

Φ0 =
(
ζ2 − 2

) dτw

dx1
− 2

√
π

∫
ζ2n2+ζ3n3<0

(ζ2n2 + ζ3n3)Φ0Edζ

(ζ2n2 + ζ3n3 > 0), (4.25a)
Φ1 = 0 (ζ2n2 + ζ3n3 > 0). (4.25b)

It is easily seen that the function Φ0 of the form

Φ0 = c0 +
(

ζ2 − 5
2

)
dτw

dx1
, (4.26)

where c0 is an arbitrary constant, satisfies Eqs. (4.24a) and (4.25a).
The perturbed density ω, temperature τ, pressure P, and flow velocity ui

corresponding to the solution (4.23) with (4.26) are given as

ω =
(

c0 −
dτw

dx1

)
x1, τ =

dτw

dx1
x1, P = c0x1, (4.27a)

u1 =
∫

ζ2
1Φ1Edζ, u2 = u3 = 0. (4.27b)

The density, temperature, and pressure are uniform over the cross section, and
c0 is

c0 =
dP

dx1
=

L

p0

dp

dX1
.

With this relation, the solution Φ0 is expressed as

Φ0 =
L

p0

dp

dX1
+
(

ζ2 − 5
2

)
L

T0

dTw

dX1
. (4.28)
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The other solution Φ1, the solution of Eq. (4.24b) with the inhomogeneous
term (4.28), is expressed as

Φ1 =
(

L

p0

dp

dX1

)
ΦP +

(
L

T0

dTw

dX1

)
ΦT, (4.29)

where ΦP and ΦT are the solutions of the following two-dimensional inhomoge-
neous Boltzmann equations over the cross section:

ζ2
∂ΦP

∂x2
+ ζ3

∂ΦP

∂x3
− 1

kζ1
L(ζ1ΦP) = −1, (4.30a)

ζ2
∂ΦT

∂x2
+ ζ3

∂ΦT

∂x3
− 1

kζ1
L(ζ1ΦT) = −

(
ζ2 − 5

2

)
, (4.30b)

and the boundary condition

ΦP = 0 (ζ2n2 + ζ3n3 > 0), (4.31a)
ΦT = 0 (ζ2n2 + ζ3n3 > 0), (4.31b)

where the solutions ΦP and ΦT are functions of x2, x3, ζ2, ζ3, ζ, and k, and
their functional forms are determined by the shape of the cross section. In the
cases of a channel between two parallel plates and a circular pipe, the problem
reduces to a spatially one-dimensional problem.

The flow velocity v1 [= (2RT0)1/2u1] and the heat flow q1 [= p0(2RT0)1/2Q1]
are expressed as

v1

(2RT0)1/2
=
(

L

p0

dp

dX1

)
uP +

(
L

T0

dTw

dX1

)
uT, (4.32a)

q1

p0(2RT0)1/2
=
(

L

p0

dp

dX1

)
QP +

(
L

T0

dTw

dX1

)
QT, (4.32b)

where

uP =
∫

ζ2
1ΦPEdζ, uT =

∫
ζ2
1ΦTEdζ, (4.33a)

QP =
∫

ζ2
1ζ2ΦPEdζ − 5

2
uP, QT =

∫
ζ2
1ζ2ΦTEdζ − 5

2
uT. (4.33b)

The mass flow M per unit time (mass-flow rate) through the pipe defined by

M =
∫

cross section

(∫
ξ1fdξ

)
dX2dX3

is expressed as follows:

M

2p0L2/(2RT0)1/2
=
(

L

p0

dp

dX1

)
M̂P +

(
L

T0

dTw

dX1

)
M̂T, (4.34)

where

M̂P =
∫

S

∫
ζ2
1ΦPEdζdx2dx3, M̂T =

∫
S

∫
ζ2
1ΦTEdζdx2dx3, (4.35)

with S representing the cross section in the nondimensional (x2, x3) space.



4.2. Flows through a channel or pipe I: Straight pipe 181

4.2.2 Example

As an example, consider the flow between two parallel plates, one at X2 = 0
and the other at X2 = L, where the state is uniform with respect to X3. The
problem is one-dimensional. The problem is to solve the following boundary-
value problems of the inhomogeneous one-dimensional Boltzmann equation

ζ2
∂ΦP

∂x2
− 1

kζ1
L(ζ1ΦP) = −1, (4.36a)

ζ2
∂ΦT

∂x2
− 1

kζ1
L(ζ1ΦT) = −

(
ζ2 − 5

2

)
, (4.36b)

under the boundary conditions at x2 = 0 and x2 = 1

ΦP = 0 (ζ2 > 0 at x2 = 0 and ζ2 < 0 at x2 = 1 ), (4.37a)
ΦT = 0 (ζ2 > 0 at x2 = 0 and ζ2 < 0 at x2 = 1 ). (4.37b)

The flow velocity v1 [= (2RT0)1/2u1], the heat flow q1 [= p0(2RT0)1/2Q1],
and the mass flow M per unit time (or mass-flow rate) for unit width (in the
X3 direction) of the channel defined by M =

∫ L

0

(∫
ξ1fdξ

)
dX2 are expressed as

v1

(2RT0)1/2
=
(

L

p0

dp

dX1

)
uP +

(
L

T0

dTw

dX1

)
uT, (4.38a)

q1

p0(2RT0)1/2
=
(

L

p0

dp

dX1

)
QP +

(
L

T0

dTw

dX1

)
QT, (4.38b)

M

2p0L/(2RT0)1/2
=
(

L

p0

dp

dX1

)
M̂P +

(
L

T0

dTw

dX1

)
M̂T, (4.38c)

where

uP =
∫

ζ2
1ΦPEdζ, uT =

∫
ζ2
1ΦTEdζ, (4.39a)

QP =
∫

ζ2
1ζ2ΦPEdζ − 5

2
uP, QT =

∫
ζ2
1ζ2ΦTEdζ − 5

2
uT, (4.39b)

and M̂P and M̂T, defined by Eq. (4.35), are modified as

M̂P =
∫ 1

0

∫
ζ2
1ΦPEdζdx2, M̂T =

∫ 1

0

∫
ζ2
1ΦTEdζdx2. (4.40)

The solution for small Knudsen numbers (or k � 1) is easily obtained with
the aid of the asymptotic theory discussed in Section 3.1. That is,

uP = − 1
2γ1k

{x2(1 − x2) − [k0 + Y0(η) + Y0(η−)]k

+2[a1 + Ya1(η) + Ya1(η−)]k2
}

, (4.41a)

QP = − 1
2γ1

{HA(η) + HA(η−) − [γ3 + HA2(η) + HA2(η−)]k}, (4.41b)

M̂P = − 1
2γ1k

(
1
6
− k0k + 2(a1 − 2b1)k2

)
, (4.41c)
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and

uT = −
(

K1 +
1
2
Y1(η) +

1
2
Y1(η−)

)
k, (4.42a)

QT = −
(

5
4
γ2 − HB(η) − HB(η−)

)
k, (4.42b)

M̂T = −(K1 + 2b2k)k. (4.42c)

Here,

η =
x2

k
, η− =

1 − x2

k
;

the nondimensional viscosity γ1, thermal conductivity γ2, and thermal stress
coefficient γ3 are defined in Section 3.1.3; the slip coefficients k0, K1, a1, b1, and
b2 and the Knudsen-layer functions Y0(η), Ya1(η), HA(η), Y1(η), and HB(η) are
defined in Section 3.1.5; and the function HA2(η) is the Knudsen-layer function
related to QiK2ti, which is determined by φK2 (but is not shown explicitly) in
Section 3.1.4. The solutions ΦP and ΦT for k � 1 on the basis of the asymptotic
theory can be extended to any order of k by an argument similar to that in the
Couette flow (Section 4.1).8 The results (4.41a)–(4.41c) and (4.42a)–(4.42c) are
the extended ones, which does not mean that the results are applicable to a
finite Knudsen number, as noted in Section 4.1.

The asymptotic results for large Knudsen numbers (or k � 1) for the BKW
model are obtained by Cercignani & Daneri [1963] for M̂P and by Niimi [1971]
for M̂T as

M̂P ∼ −(2
√

π)−1 ln k, (4.43a)

M̂T ∼ (4
√

π)−1(ln k − 3γe/2 + 1/2), (4.43b)

where γe (= 0.57721 · · · ) is the Euler constant. The logarithmic singularity in

8(i) The Grad–Hilbert solutions ΦPG and ΦTG, corresponding to ΦCG or ΦHG in Section
4.1, are taken as

ΦPG = γ−1
1 {(x2 − 1

2
)2k−1 − b(x2 − 1

2
)ζ2B(ζ) + [D1(ζ) + ζ2

2D2(ζ)]k} + c0,

ΦTG = c̄0 − A(ζ)k,

where b, c0, and c̄0 are undetermined constants and A(ζ), B(ζ), D1(ζ), and D2(ζ) are intro-
duced in Eq. (3.19). The Knudsen-layer corrections are made to ΦPG and ΦTG. The constants
b, c0, and c̄0 are determined together with the Knudsen-layer corrections.

(ii) The uP diverges, i.e., O(1/k), as k → 0, that is, a flow is induced by a smaller pressure
gradient by the order k, i.e., (L/p0)(dp/dX1) = O(u1k), which corresponds to Eq. (3.12).
This difference of size should be noted in the heat flow due to temperature and pressure
gradients. The coefficients of the temperature gradient and the pressure gradient for the heat
flow outside the Knudsen layer are of the same order [see the γ3 and γ2 terms in Eqs. (4.41b)
and (4.42b)], but the heat flow itself due to the pressure gradient is smaller by the order k
than that due to the temperature gradient, because the pressure gradient is required to be
smaller by the order k than other variables (see the discussion of the last paragraph of Section
3.6.2). Correspondingly, the contribution of HA2 reduces to the order of k2.

(iii) See Footnote 3 in Section 3.1.2 for the condition on the size of (L/p0)(dp/dX1) and
(L/T0)(dTw/dX1) when k � 1 and the higher order terms of k are interested in.
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the thermal transpiration for a hard-sphere gas is proved in Chen, Chen, Liu &
Sone [2006].9

The numerical solution of the above system for a hard-sphere gas is obtained
in Ohwada, Sone & Aoki [1989b]. The profiles of uP and QP in the channel and
M̂P vs k for the Poiseuille flow are shown, respectively, in Table 4.2, Fig. 4.7, and
Table 4.3; the profiles of uT and QT in the channel and M̂T vs k for the thermal
transpiration in Table 4.4, Fig. 4.8, and Table 4.3. The nondimensional mass-
flow rate M̂P of the Poiseuille flow takes the minimum value around k = 0.8,
which is called Knudsen minimum. It may be noted that the heat flow is not
zero (QP �= 0) in the gas with a uniform temperature.

The Poiseuille flow and thermal transpiration through a pipe are studied for
various cross sections (Sone & Hasegawa [1987], Hasegawa & Sone [1988]; see
Section 5.4.3 for a square cross section). A software that gives the flow profiles
and mass-flow rates of the Poiseuille flow and thermal transpiration through
a circular pipe or through a channel between parallel plates for BKW model
immediately after inputting desired Knudsen numbers can be downloaded from
http://fd.kuaero.kyoto-u.ac.jp/members/sone or http://www.users.kudpc.kyoto-
u.ac.jp/˜a51424/Sone/database-e.html (see Section B.3). The software is based
on the data prepared by the modified Knudsen number expansion (see Section
B.3). The counterpart of the Poiseuille flow or thermal transpiration through an
infinitely long channel is the flow induced by pressure or temperature difference
between two reservoirs joined by a slit (or infinitely short channel). These flows

9The free-molecular-flow solutions for ΦP and ΦT, i.e., the solutions at k = ∞, can be
easily obtained from Eqs. (4.36a)–(4.37b) as

ΦP = −ζ−1
2 x2 (ζ2 > 0), ΦP = −ζ−1

2 (x2 − 1) (ζ2 < 0),

ΦT = −ζ−1
2 (ζ2 − 5/2)x2 (ζ2 > 0), ΦT = −ζ−1

2 (ζ2 − 5/2)(x2 − 1) (ζ2 < 0),

both of which have the nonintegrable singularity ζ−1
2 at ζ2 = 0. Owing to this singularity,

M̂P and M̂T diverge. On the other hand, in the corresponding flow through a pipe, ΦP and
ΦT have the integrable singularity (ζ2

2+ ζ2
3 )−1/2 at (ζ2

2+ ζ2
3 )1/2 = 0 [see Eqs. (4.30a) and

(4.30b)]. The difference between the two cases, the channel and the pipe, can be understood
in the following way.

In the free molecular flows, the molecules reaching a point under consideration come from
the channel or pipe wall or from infinity without collision with other molecules. The difference
of states between the point (say, x1 = 0) under consideration and the point at x1 = xd is
proportional to xd (for example, the temperature difference). Thus, the average effect of a
molecule coming from x1 = xd is proportional to xd. The number of molecules coming from
the region x1 > xd is proportional to the solid angle Ωxd viewing the portion of the channel
or the pipe for x1 > xd, including infinity, from x1 = 0; the angle Ωxd is proportional to 1/xd

for the channel and to 1/x2
d for the pipe; and more molecules come from a long distance in

the channel than in the pipe, because the side wall is absent for the channel. Thus, the effect
of the molecules coming from the region x1 > xd is proportional toZ ∞

xd

x1dΩx1 .

In view of the size of Ωxd , this diverges for the channel, but converges for the pipe.
The collision effect is not negligible for the molecules travelling for a long distance for large

but finite Knudsen numbers, which is discussed in Section 2.6. As the combined effect of
these contributions, the logarithmic singularity appears in M̂P and M̂T of the flow through
the channel.
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Table 4.2. The profiles of the nondimensional flow velocity uP in the Poiseuille flow
between two parallel plates (a hard-sphere gas).

−uP

X2/L k = 0.1 k = 0.4 k = 1 k = 4 k = 10
0 0.3784 0.4363 0.5129 0.6932 0.8530
0.0125 0.4843 0.4852
0.025 0.5580 0.5196
0.0375 0.6219 0.5489
0.05 0.6800 0.5750 0.6123 0.7662 0.9179
0.1 0.8779 0.6602 0.6736 0.8121 0.9592
0.15 1.0404 0.7262 0.7205 0.8473 0.9909
0.2 1.1765 0.7792 0.7578 0.8752 1.0161
0.25 1.2895 0.8218 0.7876 0.8974 1.0362
0.3 1.3809 0.8555 0.8109 0.9149 1.0519
0.35 1.4515 0.8810 0.8285 0.9280 1.0637
0.4 1.5018 0.8990 0.8408 0.9371 1.0720
0.45 1.5318 0.9096 0.8481 0.9425 1.0768
0.5 1.5418 0.9132 0.8505 0.9443 1.0785

Figure 4.7. The profiles of the nondimensional heat flow QP in the Poiseuille flow
between two parallel plates (a hard-sphere gas).
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Table 4.3. Nondimensional mass-flow rates M̂P and M̂T (a hard-sphere gas). The
data in parentheses are the results (4.41c) and (4.42c) by the asymptotic theory. The
last term of M̂P [Eq. (4.41c)] is not included.

k −M̂P M̂T k −M̂P M̂T

0.05 (1.8060) (0.0299) 1 0.7574 0.2140
0.1 1.1930 0.0553 1.5 0.7771 0.2477

(1.1498) (0.0551) 2 0.7991 0.2724
0.15 0.9938 0.0761 3 0.8398 0.3082

(0.9311) (0.0755) 4 0.8749 0.3345
0.2 0.8999 0.0935 6 0.9321 0.3730

(0.8218) (0.0911) 8 0.9778 0.4015
0.3 0.8152 0.1209 10 1.0159 0.4242
0.4 0.7801 0.1419 15 1.0908 0.4669
0.6 0.7562 0.1730 20 1.1479 0.4984
0.8 0.7533 0.1958

Table 4.4. The profiles of the nondimensional flow velocity uT in the thermal tran-
spiration between two parallel plates (a hard-sphere gas).

uT

X2/L k = 0.1 k = 0.4 k = 1 k = 4 k = 10
0 0.0202 0.0719 0.1337 0.2542 0.3468
0.0125 0.0287 0.0836
0.025 0.0337 0.0914
0.0375 0.0375 0.0978
0.05 0.0406 0.1034 0.1677 0.2869 0.3778
0.1 0.0490 0.1208 0.1878 0.3072 0.3974
0.15 0.0540 0.1334 0.2029 0.3226 0.4124
0.2 0.0573 0.1430 0.2146 0.3348 0.4243
0.25 0.0594 0.1504 0.2239 0.3445 0.4337
0.3 0.0609 0.1561 0.2310 0.3520 0.4411
0.35 0.0618 0.1603 0.2364 0.3577 0.4467
0.4 0.0624 0.1633 0.2401 0.3617 0.4506
0.45 0.0628 0.1650 0.2423 0.3640 0.4529
0.5 0.0629 0.1655 0.2430 0.3648 0.4536



186 Chapter 4. Simple Flows

Figure 4.8. The profiles of the nondimensional heat flow QT in the thermal transpi-
ration between two parallel plates (a hard-sphere gas).

are studied in Hasegawa & Sone [1991a,b].

4.2.3 Slowly varying approximation

The similarity solution can be applied locally to a more general case where the
temperature or pressure gradient is not uniform along the pipe, if the state of
the gas is slowly varying along the pipe (or with respect to x1). In order to
make this point clearer and to show the procedure to the higher-order analysis,
we will analyze the flow through a straight pipe systematically for the slowly
varying situation. The temperature Tw or τw of the pipe is assumed to depend
only on x1.

The state of the gas is assumed here to be slowly varying with respect to
x1, i.e., the length scale of variation in the X1 direction is much larger than the
characteristic size of the cross section. We introduce a shrunk variable χ1

χ1 = εx1,

where ε is a small quantity (0 < ε � 1), e.g., (L/Tw)|dTw/dX1| or |dτw/dx1|.
Then, ∂φ/∂χ1 = O(φ). With the new variable, the linearized Boltzmann equa-
tion is rewritten as

εζ1
∂φ

∂χ1
+ζ2

∂φ

∂x2
+ζ3

∂φ

∂x3
=

1
k
L(φ). (4.44)

We look for the solution φ in a power series of ε, i.e.,

φ = φ0(χ1, x2, x3, ζi) + φ1(χ1, x2, x3, ζi)ε + · · · . (4.45)
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Substituting this series into Eq. (4.44) and arranging the same-order terms in ε,
we have

ζ2
∂φ0

∂x2
+ζ3

∂φ0

∂x3
− 1

k
L(φ0) = 0, (4.46a)

ζ2
∂φ1

∂x2
+ζ3

∂φ1

∂x3
− 1

k
L(φ1) = −ζ1

∂φ0

∂χ1
. (4.46b)

From the boundary condition (4.22a) with (4.22b) and the expansion (4.45),

φ0 = σ̄w0 +
(

ζ2
j − 3

2

)
τ̄w(χ1) (ζ2n2 + ζ3n3 > 0), (4.47a)

σ̄w0 = −1
2
τ̄w − 2

√
π

∫
ζ2n2+ζ3n3<0

(ζ2n2 + ζ3n3)φ0Edζ, (4.47b)

φ1 = σ̄w1 (ζ2n2 + ζ3n3 > 0), (4.48a)

σ̄w1 = −2
√

π

∫
ζ2n2+ζ3n3<0

(ζ2n2 + ζ3n3)φ1Edζ, (4.48b)

where
τ̄w(χ1) = τw(x1).

The boundary-value problem for φ0, i.e., the system (4.46a), (4.47a), and
(4.47b), has the following solution:10

φ0 =
(

ζ2
j − 5

2

)
τ̄w(χ1) + C̄0(χ1)

=
(

ζ2
j − 5

2

)
τw(x1) + C0(x1), (4.49)

where C̄0(χ1) is an arbitrary function of χ1 and C0(x1) = C̄0(χ1). The solu-
tion φ0 agrees with x1Φ0 in Eq. (4.23) with (4.26) through the correspondence
[τw(x1), C0(x1)] ⇐⇒ [(dτw/dx1)x1, c0x1].

With the above φ0 in Eq. (4.46b), we have

ζ2
∂φ1

∂x2
+ζ3

∂φ1

∂x3
− 1

k
L(φ1) = −ζ1

[(
ζ2
j − 5

2

)
dτ̄w

dχ1
+

dC̄0

dχ1

]
. (4.50)

Putting φ1 in the form

φ1 = ζ1Φ1(χ1, x2, x3, ζ2, ζ3, ζ), (4.51)

and substituting Eq. (4.51) into Eqs. (4.50), (4.48a), and (4.48b), we obtain the
equation and boundary condition for Φ1, that is, the equation for Φ1 is

ζ2
∂Φ1

∂x2
+ζ3

∂Φ1

∂x3
− 1

kζ1
L(ζ1Φ1) = −

[(
ζ2 − 5

2

)
dτ̄w

dχ1
+

dC̄0

dχ1

]
, (4.52)

10The solution is shown to be unique in Section A.12. The proof is given for the three-
dimensional problem. The proof is easily transferred to the one- and two-dimensional cases.
The solution φ1 as well as φ0 is also unique. So is the solution in Section 4.1, etc.
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and the boundary condition on the pipe is

Φ1 = 0 (ζ2n2 + ζ3n3 > 0). (4.53)

In the boundary-value problem, Eqs. (4.52) and (4.53), the variable χ1 works
as a parameter, and the problem is reduced to a two-dimensional problem over
a cross section of the pipe. Comparing Eqs. (4.52) and (4.53) with Eqs. (4.24b),
(4.25b), and (4.26), we find that the solution Φ1 is expressed with ΦP and
ΦT introduced in Section 4.2.1 as the solutions of Eq. (4.30a) with (4.31a) and
Eq. (4.30b) with (4.31b) in the following form:

Φ1 = ε−1

(
dC0

dx1
ΦP +

dτw

dx1
ΦT

)
. (4.54)

The density, temperature, and pressure up to the order of ε are given by

ω =
∫

φ0Edζ = C̄0(χ1) − τ̄w(χ1) = C0(x1) − τw(x1), (4.55a)

τ =
∫ (

2
3
ζ2 − 1

)
φ0Edζ = τ̄w(χ1) = τw(x1), (4.55b)

P = ω + τ = C̄0(χ1) = C0(x1), (4.55c)

because φ1 is odd with respect to ζ1. These variables are uniform over the cross
section. The flow velocity ui is given by

u1 = ε

∫
ζ2
1Φ1Edζ =

dP

dx1

∫
ζ2
1ΦPEdζ +

dτw

dx1

∫
ζ2
1ΦTEdζ, u2 = u3 = 0.

(4.56)
The solution φ0 + εφ1 for arbitrary temperature and pressure distributions

τw(x1) and C0(x1) is determined by the local temperature and pressure and
their first derivatives. It is locally expressed with the similarity solution linear
in x1, i.e., x1Φ0 + ζ1Φ1 in Eq. (4.23), discussed in Section 4.2.1.

We can control the temperature distribution along the pipe at our disposal,
but the pressure in the gas is not such a quantity. We may impose the average
pressure gradient, but cannot control the pressure locally. The variation of
pressure along the pipe is determined by the solvability condition of the next-
order equation. The equation and boundary condition for φ2 are given by

ζ2
∂φ2

∂x2
+ζ3

∂φ2

∂x3
− 1

k
L(φ2) = −ζ1

∂φ1

∂χ1
, (4.57)

and

φ2 = σ̄w2 (ζ2n2 + ζ3n3 > 0), (4.58a)

σ̄w2 = −2
√

π

∫
ζ2n2+ζ3n3<0

(ζ2n2 + ζ3n3)φ2Edζ. (4.58b)
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Multiplying Eq. (4.57) by E, integrating it over the whole space of ζ and over
a cross section S of the pipe, and noting Eq. (1.83), we have, with the aid of
Gauss’s divergence theorem,

−
∫

∂S

∫
(ζ2n2 + ζ3n3)φ2Edζds = −

∫
S

∫
ζ1

∂φ1

∂χ1
Edζdx2dx3, (4.59)

where ∂S is the boundary curve of the cross section S and ds is its line element
of integration. From the boundary condition, i.e., Eqs. (4.58a) and (4.58b), the
left-hand side of Eq. (4.59) vanishes. Thus, for Eq. (4.57) to have a solution φ2,
the solution φ1 must satisfy the condition∫

S

∫
ζ1

∂φ1

∂χ1
Edζdx2dx3 = 0. (4.60)

Substituting φ1 given by Eqs. (4.51), (4.54), and (4.55c) into Eq. (4.60), we
obtain

M̂P
dP

dx1
+ M̂T

dτw

dx1
= const, (4.61)

where M̂P and M̂T are defined by Eq. (4.35). This condition (4.61) corresponds
to the conservation of mass-flow rate through the pipe.11 That is, nonuniform
mass-flow rate due to nonuniform temperature gradient is compensated by in-
duction of the pressure gradient dP/dx1 satisfying the condition (4.61).

4.3 Flow through a channel or pipe II:
Quasi-unidirectional flow

In Section 4.2, the problem is analyzed on the basis of the linearized Boltzmann
equation under the assumption that the state is close to an equilibrium state
at rest, and further the analysis is limited to a straight pipe of a uniform cross
section. Here, we will eliminate these restrictions. In this section we use the
notation defined in Section 1.9. We consider a gas in a nearly straight channel
or pipe (say, in the X1 direction) under the assumptions: (i) the pipe surface is
nearly parallel to the X1 axis, and (ii) the state of the gas is slowly varying with
respect to X1. That is, let ε be a small quantity (ε � 1). Then, ∂f̂/∂x1 = O(εf̂),
n1 = O(ε), and ∂ni/∂x1 = O(ε), where ni is the unit normal vector to the pipe
surface. This allows the case where the state of the gas, e.g., the temperature,
pressure, and the size and direction12 of the pipe may differ considerably between

11Without proceeding to the second-order analysis, we can simply obtain the condition
(4.60) by applying the law of the conservation of mass. However, the condition should be
derived naturally in the process of solving the Boltzmann equation. The present analysis is
given to show this procedure. Now that we know the role of the conservation law in the
process of the solution, we will use the law for simplicity of analysis in Section 4.3.

12The following analysis can be carried out in the same way and the same form of results is
obtained when xi (or Xi) is an orthogonal curvilinear coordinate system with small curvature
O(ε) and with the x1 (or X1) coordinate being the coordinate in the direction of the pipe
(e.g., along the center of the cross section). See Footnote 13 in this section.
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two points far apart. In the following discussion, we first analyze the case where
the temperature Tw of the pipe depends only on X1 and the pipe wall is at rest,
and then extend the results to a case with weaker restrictions where Tw has a
small variation along the circumference of the cross section and the pipe wall is
making a time-independent nonuniform slow motion.

The basic equation is the Boltzmann equation (1.47a), i.e.,

ζi
∂f̂

∂xi
=

1
k

Ĵ(f̂ , f̂), (4.62)

and as the boundary condition, the diffuse-reflection condition, Eq. (1.63a) with
(1.63b), is used for simplicity of explanation, i.e., on the pipe wall,

f̂(xi, ζi) =
σ̂w

(πT̂w)3/2
exp

(
− (ζi − v̂wi)2

T̂w

)
(ζjnj > 0), (4.63a)

σ̂w = −2
(

π

T̂w

)1/2 ∫
ζjnj<0

ζjnj f̂(xi, ζi)dζ. (4.63b)

It is not difficult to extend the analysis to the more general condition (1.26) or
(1.64). For the moment we leave the reference temperature T0 and reference
pressure p0 unspecified.

First, the analysis is carried out under the assumptions that the temperature
Tw of the pipe [or T̂w in the boundary condition (4.63a) with (4.63b)] depends
only on X1 (or x1) and that the pipe wall is at rest, i.e., vwi = 0.

According to the slowly varying assumption, the same shrunk variable χ1 as
in Section 4.2.3, i.e.,

χ1 = εx1,

is used. We look for the solution in a power series of ε, i.e.,

f̂ = f̂0 + f̂1ε + · · · . (4.64)

Here, f̂0 is assumed to be independent of x2 and x3 in view of the result in the
preceding section. The analysis will be seen to be carried out consistently under
this assumption. Substituting these expressions into Eq. (4.62) and arranging
the same-order terms in ε, we have

Ĵ(f̂0, f̂0) = 0, (4.65)

ζ2
∂f̂1

∂x2
+ ζ3

∂f̂1

∂x3
− 2

k
Ĵ(f̂0, f̂1) = −ζ1

∂f̂0

∂χ1
. (4.66)

From Eq. (4.65), the leading term f̂0 is the Maxwellian uniform with respect
to x2 and x3; the following Maxwellian f̂0 at rest with (nondimensional) tem-
perature T̂w(x1) and pressure p̂0(x1) satisfies the boundary condition (4.63a)
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with (4.63b) and is the desired solution:13

f̂0 =
p̂0(x1)

π3/2[T̂w(x1)]5/2
exp

(
− ζi

2

T̂w(x1)

)
, (4.67)

where p̂0 is defined as the leading-order component function of expansion of p̂:

p = p0 + p1ε + · · · , p̂ = p/p0 = p̂0 + p̂1ε + · · · .

With Eq. (4.67), the inhomogeneous term of Eq. (4.66) is expressed as

−ζ1
∂f̂0

∂χ1
= −ζ1f̂0

[(
ζi

2

T̂w

− 5
2

)
1

T̂w

dT̂w

dχ1
+

1
p̂0

dp̂0

dχ1

]
. (4.68)

Substituting the expansion (4.64) into the boundary condition (4.63a) with
(4.63b), and noting that f̂0 given by Eq. (4.67) satisfies Eq. (4.63a) with (4.63b)
and that the first component n1 of the normal vector to the boundary is of the
order of ε, we have the boundary condition on f̂1 as

f̂1 =
σ̂w1

[πT̂w(x1)]3/2
exp

(
− ζi

2

T̂w(x1)

)
(ζ2n2 + ζ3n3 > 0), (4.69a)

σ̂w1 = −2

(
π

T̂w(x1)

)1/2 ∫
ζ2n2+ζ3n3<0

(ζ2n2 + ζ3n3)f̂1dζ. (4.69b)

In the boundary-value problem, Eqs. (4.66)–(4.69b), the variable χ1 or x1

works as a parameter and the problem for f̂1 is a two-dimensional boundary-
value problem of the inhomogeneous linearized Boltzmann equation over a cross
section of the pipe.14 When the problem is considered on a cross section, we can
conveniently choose Tw(X1) and p0(X1) as the reference temperature T0 and the
reference pressure p0 respectively. This simplifies the expressions considerably,
e.g., f̂0 = E(ζ) and 2Ĵ(f̂0, f̂1) = EL(φ) with φ = f̂1/f̂0. Noting that the
inhomogeneous term (4.68) is odd in ζ1 and that 2Ĵ(f̂0, f̂1) [= EL(φ)] is odd
in ζ1 if f̂1 is odd in ζ1 [see Section A.2.7 about the parity of L(φ)], we can put
f̂1/f̂0 consistently in the form

f̂1/f̂0 = ζ1Φ1(χ1, x2, x3, ζ, ζ2, ζ3). (4.70)

13For the Maxwellian (4.67), the curvature contribution vanishes in the equation for f̂1 in
the curvilinear system introduced in Footnote 12 in this section, and it is of the same form as
Eq. (4.66).

14For analysis up to higher orders, we should use a curvilinear coordinate system with the
pipe surface on a coordinate surface (and with a nearly straight coordinate corresponding to
the X1 axis). At the present order, the equation and boundary condition remain in the same
form. At the higher orders, the treatment of the boundary condition, especially the range of
integration, becomes obscure.
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X1

ni

∫
ξinif dξ= 0

∫
ξ1fdξ

∫
ξinif dξ= 0

∫
ξ1fdξ

Figure 4.9. Conservation of mass. The law of the conservation of mass is applied to
the control surface consisting of the dashed lines - - - in the gas and the surface of the
pipe between them.

Then, Eq. (4.66) and Eq. (4.69a) with (4.69b) are, respectively, reduced to

ζ2
∂Φ1

∂x2
+ ζ3

∂Φ1

∂x3
− 1

kζ1
L(ζ1Φ1) = −ε−1

[(
ζ2 − 5

2

)
L

Tw

dTw

dX1
+

L

p0

dp0

dX1

]
,

(4.71)
and

Φ1(χ1, x2, x3, ζ, ζ2, ζ3) = 0 (ζ2n2 + ζ3n3 > 0). (4.72)

Comparing Eqs. (4.71) and (4.72) with Eqs. (4.52) and (4.53) and noting the
solution (4.54) of the latter, we find that Φ1 is expressed with ΦP and ΦT

introduced in Section 4.2.1 as

εΦ1 =
(

L

p0(X1)
dp0(X1)

dX1

)
ΦP +

(
L

Tw(X1)
dTw(X1)

dX1

)
ΦT. (4.73)

The solution f̂0(1 + ζ1Φ1ε + · · · ) agrees, locally with respect to X1, with the
result of the linearized Boltzmann equation for a straight pipe up to the order
of ε [or (L/Tw)(dTw/dX1), (L/p0)(dp0/dX1)].

In the analysis in Section 4.2.3, we saw that the solvability condition of the
second-order equation corresponds to the conservation of mass. This condition
adds a condition on the solution at the first order obtained. Here we examine the
mass conservation condition instead of carrying out the second-order analysis,
because the analysis is simpler.15 Take a control surface consisting of two cross
sections (two planes normal to the X1 axis) and the pipe surface as shown in
Fig. 4.9. There is no mass flow across the pipe surface. Therefore, the mass-flow
rate through a cross section is invariant. That is,∫

cross section

(∫
ξ1fdξ

)
dX2dX3 = const,

15See Footnote 11 in Section 4.2.3.
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where the integration is carried out over the whole space of ξ and over a cross
section. Accordingly,

2p0(X1)L2ε

[2RTw(X1)]1/2

∫
S

(∫
ζ1f̂1dζ

)
dx2dx3 = const,

where S is the cross section in the (x2, x3) plane at X1 under consideration.
From Eqs. (4.70) and (4.73),

ε

∫
ζ1f̂1dζ =

(
L

p0

dp0

dX1

)∫
ζ2
1ΦPEdζ +

(
L

Tw

dTw

dX1

)∫
ζ2
1ΦTEdζ.

Therefore,[(
L

p0

dp0

dX1

)∫
S

∫
ζ2
1ΦPEdζdx2dx3 +

(
L

Tw

dTw

dX1

)∫
S

∫
ζ2
1ΦTEdζdx2dx3

]
× 2p0(X1)L2

[2RTw(X1)]1/2
= const.

To summarize the results, the macroscopic variables, the temperature T, the
pressure p, the velocity vi, the heat-flow vector qi, and the mass-flow rate M,
(up to the order of ε) are expressed in the same form as those in Section 4.2.1,
i.e.,

T (X1) = Tw(X1), p(X1) = p0(X1), (4.74)

where there is no contribution from f̂1, and

v1

(2RTw)1/2
=
(

L

p0

dp0

dX1

)
uP +

(
L

Tw

dTw

dX1

)
uT, v2 = v3 = 0, (4.75a)

q1

p0(2RTw)1/2
=
(

L

p0

dp0

dX1

)
QP +

(
L

Tw

dTw

dX1

)
QT, q2 = q3 = 0, (4.75b)

M

2p0L2/(2RTw)1/2
=
(

L

p0

dp0

dX1

)
M̂P +

(
L

Tw

dTw

dX1

)
M̂T, (4.75c)

where

uP =
∫

ζ2
1ΦPEdζ, uT =

∫
ζ2
1ΦTEdζ, (4.76a)

QP =
∫

ζ2
1ζ2ΦPEdζ − 5

2
uP, QT =

∫
ζ2
1ζ2ΦTEdζ − 5

2
uT, (4.76b)

M̂P =
∫

S

∫
ζ2
1ΦPEdζdx2dx3, M̂T =

∫
S

∫
ζ2
1ΦTEdζdx2dx3, (4.76c)

and the subsidiary condition

2p0(X1)L2

[2RTw(X1)]1/2

[(
L

p0

dp0

dX1

)
M̂P +

(
L

Tw

dTw

dX1

)
M̂T

]
= const. (4.77)
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Apparently, the formulas are the same as those in Section 4.2.1, but some care
is required about the reference quantities. In the transformation from Eq. (4.66)
to Eq. (4.71) [or more directly to Eqs. (4.30a) and (4.30b)], the local variables
Tw(X1) and p0(X1) are chosen as the reference T0 and p0. The reference L may
be chosen universally or locally. The Knudsen number or k that appears in
Eqs. (4.30a) and (4.30b) and thus in ΦP and ΦT is a local quantity with respect
to X1.

Up to this point, we have considered the case where the temperature of the
pipe or channel is uniform along the circumference of each cross section, i.e.,
Tw is a function of X1 only, and the pipe is at rest, i.e., vwi = 0. We will
slightly loosen this restriction. Let the surface of the channel or pipe be mov-
ing with slowly varying time-independent small velocity tangent to the surface,
i.e., v̂wi [= vwi/(2RT0)1/2] = O(ε), ∂v̂wi/∂x1 = O(εv̂wi), ∂v̂wi/∂t̂ = 0, and
v̂wini = 0, and let the temperature Tw(X1) [or T0T̂w(x1)] of the pipe be slightly
generalized as Tw(X1)[1 + τw(xi)] (or T0T̂w(x1)[1 + τw(xi)]), where τw = O(ε)
and ∂τw/∂x1 = O(ετw). According to Eq. (1.63a) with (1.63b), the boundary
condition (4.63a) with (4.63b) is modified as

f̂ =
σ̂w

[πT̂w(1 + τw)]3/2
exp

(
− (ζi − v̂wi)2

T̂w(1 + τw)

)
(ζjnj > 0), (4.78a)

σ̂w = −2

(
π

T̂w(1 + τw)

)1/2 ∫
ζjnj<0

ζjnj f̂(xi, ζi)dζ. (4.78b)

Put the solution f̂ in the form with a correction f̂C

f̂ = f̂0 + εf̂1 + εf̂C + · · · , (4.79a)

εf̂C = f̂0(ζ1ϕa + ϕb), (4.79b)

where f̂0 and εf̂1 are the solutions obtained previously [i.e., Eqs. (4.67), (4.70),
and (4.73)], and ϕa and ϕb are even functions in ζ1. Substituting this form
of solution into Eqs. (4.62), (4.78a), and (4.78b), noting that f̂0 + εf̂1 satisfies
Eqs. (4.62), (4.78a), and (4.78b) with v̂wi = 0 and τw = 0 up to the order of ε,
and arranging the same-order terms in ε, we obtain the two independent systems
for ϕa and ϕb. They are the two-dimensional boundary-value problems of the
linearized Boltzmann equation on each cross section, where the variable χ1 or
x1 works as a parameter. Thus, we take the local quantities Tw(X1) and p0(X1)
as the reference temperature and pressure respectively. Then, the systems are
given as follows: The equation for ϕa is

ζ2
∂ϕa

∂x2
+ ζ3

∂ϕa

∂x3
− 1

kζ1
L(ζ1ϕa) = 0, (4.80)

and its boundary condition on the pipe is

ϕa = 2v̂w1(x1, x2, x3) (ζ2n2 + ζ3n3 > 0), (4.81)
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and the equation for ϕb is

ζ2
∂ϕb

∂x2
+ ζ3

∂ϕb

∂x3
− 1

k
L(ϕb) = 0, (4.82)

and its boundary condition is

ϕb = �b + 2(ζ2v̂w2 + ζ3v̂w3) + (ζi
2 − 2)τw (ζ2n2 + ζ3n3 > 0), (4.83a)

�b = −2
√

π

∫
ζ2n2+ζ3n3<0

(ζ2n2 + ζ3n3)ϕbE(ζ)dζ. (4.83b)

The corrections v1C, q1C, and MC to the velocity v1, the heat-flow vector q1,
and the mass-flow rate M are determined only by ϕa as

v1C

(2RTw)1/2
=
∫

ζ2
1ϕaEdζ, (4.84a)

q1C

p0(2RTw)1/2
=
∫

ζ2
1

(
ζ2 − 5

2

)
ϕaEdζ, (4.84b)

MC

2p0L2/(2RTw)1/2
=
∫

S

∫
ζ2
1ϕaEdζdx2dx3. (4.84c)

The above quantities are to be added to Eqs. (4.75a)–(4.75c). The subsidiary
condition (4.77) is modified as

2p0(X1)L2

[2RTw(X1)]1/2

[(
L

p0

dp0

dX1

)
M̂P +

(
L

Tw

dTw

dX1

)
M̂T + M̂C

]
= const, (4.85)

where

M̂C =
MC

2p0L2/(2RTw)1/2
.

The flow field (v2, v3) and the corrections to the temperature T (X1) [= Tw(X1)]
and the pressure p(X1) [= p0(X1)] in a cross section are determined by ϕb. Let
the temperature and the pressure on a cross section be Tw(X1)(1 + τ) and
p0(X1)(1 + P ), respectively. Then, v2, v3, τ, and P are expressed with ϕb as

vi

(2RTw)1/2
=
∫

ζiϕbEdζ (i = 2 and 3),

τ =
∫ (

2
3
ζ2 − 1

)
ϕbEdζ, P =

2
3

∫
ζ2ϕbEdζ.

Naturally, the temperature and pressure are no longer uniform over a cross
section. It may be repeated that the slowly varying restriction on v̂wi and τw

that ∂v̂wi/∂x1 = O(εv̂wi) and ∂τw/∂x1 = O(ετw) is required for the extended
analysis to be valid.

From the analysis in this section, it is clear that the results by the similarity
solutions of the Poiseuille flow and thermal transpiration in Section 4.2.1 and
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those of the Couette-flow and heat-transfer problems in Section 4.1 have univer-
sal importance.16 The rarefied-gas problems corresponding to the lubrication
problems discussed in classical fluid dynamics (Sommerfeld [1964]), which has
important applications in micro flows,17 e.g., design of the system of a magnetic
disk and sliders, can be discussed by simple application of the result in this
section with the data in Sections 4.1 and 4.2.

Finally, we should make a comment on the behavior for small Knudsen
numbers or small k. We have seen that the asymptotic behavior for small Knud-
sen numbers depends on the other parameters in Chapter 3 (see, especially,
Section 3.6.1). In the present section, the analysis for small ε is carried out for
a given finite k. When we are interested in the asymptotic behavior for small ε
and k, their relative size is important. An interesting related example is given
in Chapter 9. The small ε represents the scale characterizing the deviation of
the nearly straight channel or pipe from a straight one as well as the scale of the
(nondimensional) temperature or pressure gradient or v̂wi. The latter three are
related to the scale of the flow speed |v̂1|.18 Consider the former size separately
and let it be ε̄. Take the product of the reference curvature and the reference
width of the boundary as ε̄. In Chapter 9, a nearly parallel flow through a
channel is considered and its behavior is investigated in the limit that ε̄ and k
tend to zero simultaneously with ε, the order of v̂1, fixed.19 This concerns with
flows of a gas in the continuum limit through a straight channel. The limiting
behavior depends on the speed that ε̄ vanishes relative to k. When ε̄ tends
to zero not faster than the order of (k/ε)2, the limiting behavior depends on
the infinitesimal curvature of the boundary. That is, the infinitesimal curvature
produces a finite effect on the parallel flow. Thus, the limiting behavior for
k → 0 requires careful examination. One often refers to the continuum limit
loosely in real situations, but careful classification should be done according to
the data of the situations (see Section 3.6.2).

4.4 Gas over a plane wall

Concerning the behavior of a semi-infinite expanse of a gas bounded by a plane
wall (a half-space problem), the following uniqueness statement is strangely
unknown, and incorrect discussion is sometimes made. It may be in order to
give its proof.

Consider semi-infinite expanse of a gas (X1 > 0) bounded by a stationary
plane wall with a uniform temperature Tw at X1 = 0. There is no external force
acting on the gas. The state of the gas is time-independent and uniform with

16Some engineers do not like the similarity solution because it is unbounded or it is the
solution of the linearized equation.

17In a system whose characteristic size L is of the order of micron or smaller (but much
larger than the molecular size), the mean free path is not negligible compared with L in the
atmospheric condition. Thus, the kinetic theory analysis is required.

18As k → 0, |v̂1| is not of the order of the temperature or pressure gradient [see Section
4.2.2, including Footnote 8 (ii) and (iii) there].

19For simplicity, consider the case where v̂wi = O(ε) (see the preceding Footnote 18).
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respect to X2 and X3, i.e., f = f(X1, ξ), and it approaches an equilibrium state
as X1 → ∞, i.e.,

f → ρ∞
(2πRT∞)3/2

exp
(
− (ξi − vi∞)2

2RT∞

)
as X1 → ∞, (4.86)

where ρ∞, vi∞, and T∞ are bounded. The plane wall is a simple boundary
where the boundary condition is given by Eq. (1.26) with the conditions (1.27a)–
(1.27c), i.e.,

f(0, ξ) =
∫

ξ1∗<0

KB(ξ, ξ∗)f(0, ξ∗)dξ∗ (ξ1 > 0). (4.87)

We will show20 that the solution of the Boltzmann equation (1.5), i.e.,

ξ1
∂f

∂X1
= J(f, f), (4.88)

describing the above situation exists only when

vi∞ = 0, T∞ = Tw,

and that the solution is uniquely given by the Maxwellian

f =
ρ∞

(2πRTw)3/2
exp

(
− ξ2

i

2RTw

)
. (4.89)

From the integral of the Boltzmann equation (4.88) over the whole space of
ξ [or the conservation equation (1.12)], i.e.,

d
dX1

(∫
ξ1fdξ

)
= 0,

and the condition (ρv1 =
∫

ξ1fdξ = 0 at X1 = 0) of a simple boundary that the
mass flux through the boundary vanishes, we find that the mass flux vanishes
for X1 ≥ 0, i.e., ∫

ξ1fdξ = 0 (0 ≤ X1 < ∞). (4.90)

With this result in the condition (4.86) at infinity, it is easily found that∫
ξ1ξ

2
i fdξ = 0 at infinity. (4.91)

The integral of the Boltzmann equation (4.88) multiplied by ξ2
j over the whole

space of ξ [or the conservation equation (1.14)] gives

d
dX1

(∫
ξ1ξ

2
j fdξ

)
= 0. (4.92)

20This is an extension of Golse’s proof in Bardos, Golse & Sone [2006] for a similar problem
under the complete-condensation condition. He proved the same statement for the complete-
condensation condition on the plane wall and a Maxwellian with v1 = 0 at infinity.
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Thus, from Eqs. (4.91) and (4.92), we have∫
ξ1ξ

2
j fdξ = 0 (0 ≤ X1 < ∞). (4.93)

For the boundary condition (1.26) with the conditions (1.27a)–(1.27c), the
following inequality (Darrozes & Guiraud [1966]) holds at X1 = 0 [Eq. (A.262)
in Section A.10]: ∫

ξ1f ln(f/c0)dξ ≤
∫

ξ1f ln(f0/c0)dξ, (4.94)

where f0 is a Maxwellian with the temperature Tw and the velocity vwi (= 0)
of the wall and an arbitrary density ρ0, i.e.,

f0 =
ρ0

(2πRTw)3/2
exp

(
− ξ2

i

2RTw

)
,

and c0 is a constant to make f/c0 and f0/c0 in the argument of the ln(∗)
function dimensionless whose choice does not influence the result. With the aid
of Eqs. (4.90) and (4.93),∫

ξ1f ln(f/c0)dξ ≤
∫

ξ1f ln(f0/c0)dξ

= − 1
2RTw

∫
ξ1ξ

2
i fdξ = 0 at X1 = 0. (4.95)

On the other hand, from the H theorem, i.e., Eq. (1.36), in a time-independent
one-dimensional case,

−
∫

ξ1f ln(f/c0)dξ

∣∣∣∣
X1=0

+
∫

ξ1f ln(f/c0)dξ

∣∣∣∣
X1=∞

=
∫ ∞

0

GdX1 ≤ 0, (4.96)

where

G = − 1
4m

∫
(f ′f ′

∗ − ff∗) ln
(

f ′f ′
∗

ff∗

)
BdΩdξ∗dξ ≤ 0.

From Eqs. (4.86), (4.90), and (4.91), the second term on the left-hand side of
Eq. (4.96) vanishes, that is,

−
∫

ξ1f ln(f/c0)dξ

∣∣∣∣
X1=0

=
∫ ∞

0

GdX1 ≤ 0. (4.97)

Combining the two inequalities (4.95) and (4.97), we have

0 ≤ −
∫

ξ1f ln(f/c0)dξ

∣∣∣∣
X1=0

=
∫ ∞

0

GdX1 ≤ 0.

Therefore, we have ∫ ∞

0

GdX1 = 0, (4.98)
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and ∫
ξ1f ln(f/c0)dξ

∣∣∣∣
X1=0

= 0.

From Eq. (4.98), f is Maxwellian in 0 < X1 < ∞, and Eq. (4.88) is reduced
to ξ1∂f/∂X1 = 0. That is, f is a uniform Maxwellian. From the condition (4.86)
at infinity and Eq. (4.90),

f =
ρ∞

(2πRT∞)3/2
exp

(
−ξ2

1 + (ξ2 − v2∞)2 + (ξ3 − v3∞)2

2RT∞

)
(0 < X1 < ∞).

From the condition (1.27c) with its note,

v2∞ = v3∞ = 0, Tw = T∞.

Thus, the solution should be in the form (4.89), which is really a solution.
The same statement holds for the linearized Boltzmann equation with the

corresponding general boundary condition (A.252) on a simple boundary. The
temperature Tw of the wall and the density ρ∞ at infinity being, respectively,
taken as the reference temperature T0 or τw = 0 and the reference density ρ0 or
ω∞ = 0, the linearized Boltzmann equation is given in the form

ζ1
∂φ

∂η
= L(φ) (0 < η < ∞), (4.99)

and the boundary condition is expressed in the scattering kernel K̂B0

E(ζ)φ(η, ζ) =
∫

ζ1∗<0

K̂B0(ζ, ζ∗)φ(η, ζ∗)E(ζ∗)dζ∗ (ζ1 > 0) at η = 0,

(4.100a)

φ(η, ζ) → 2ζiui∞ +
(

ζ2
i − 3

2

)
τ∞ as η → ∞, (4.100b)

where ui∞ and τ∞ are some constants and η = x1/k (= 2X1/
√

π0). Then, the
solution of the boundary-value problem (4.99)–(4.100b) exists when and only
when

ui∞ = 0 and τ∞ = 0,

and the unique solution is given by

φ = 0.

The proof can be given in the same way as the preceding proof for the
nonlinear case on the basis of the three relations: one is the equality∫

ζ1φ
2Edζ = 0 at infinity,
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which is derived from the conservation equation (1.99), the condition of a simple
boundary (u1 =

∫
ζ1φEdζ= 0 at η = 0), and the boundary condition (4.100b)

at infinity; the second is the inequality∫
ζ1φ

2Edζ ≤ 0 at η = 0, (4.101)

which is proved in the second part of Section A.10; and the third is the linearized-
Boltzmann-equation version of the equation for the H function given by Eq. (1.115),
i.e.,

∂

∂η

∫
ζ1φ

2Edζ = LG, (4.102)

where

LG = −1
2

∫
EE∗(φ′ + φ′

∗ − φ − φ∗)2B̂dΩdζ∗dζ ≤ 0.

4.5 Uniform flow past a sphere with a uniform
temperature

Consider a uniform flow of a gas with density ρ0, flow velocity (U, 0, 0), and
temperature T0 past a sphere of radius L with a uniform surface temperature
T0, that is, the behavior of a gas disturbed by the sphere from the uniform flow,
i.e., the Maxwellian with the above macroscopic variables. Taking the case
where the flow is slow, i.e., U/(2RT0)1/2 � 1, we analyze the time-independent
behavior of the gas on the basis of the linearized Boltzmann equation and the
diffuse-reflection boundary condition (see Section 1.11). We use the notation in
Section 1.10, with L, ρ0, and T0 as the reference quantities, and the spherical
coordinates

x1 = r̂ cos θ, x2 = r̂ sin θ cos ϕ, x3 = r̂ sin θ sin ϕ,

where the origin is at the center of the sphere. The linearized Boltzmann equa-
tion for the perturbed velocity distribution function φ in the spherical coor-
dinates for a time-independent axially symmetric state [Eq. (A.164) in Section
A.3)] is

ζr
∂φ

∂r̂
+

ζθ

r̂

∂φ

∂θ
+

ζ2
θ + ζ2

ϕ

r̂

∂φ

∂ζr
+

(
ζ2
ϕ

r̂
cot θ − ζrζθ

r̂

)
∂φ

∂ζθ

−
(

ζθζϕ

r̂
cot θ +

ζrζϕ

r̂

)
∂φ

∂ζϕ
− 1

k
L(φ) = 0. (4.103)

The diffuse-reflection condition on the sphere is

φ = −2
√

π

∫
ζr<0

ζrφEdζ (ζr > 0) at r̂ = 1, (4.104)
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and the condition at infinity, or the Maxwellian state, is

φ = 2U(2RT0)−1/2ζ1 = 2U(2RT0)−1/2(ζr cos θ − ζθ sin θ) as r̂ → ∞. (4.105)

In view of the boundary conditions (4.104) and (4.105), the similarity solu-
tion (A.205) in Section A.5 can be applied. We put the solution in the form21

φ = U(2RT0)−1/2[Φc(r̂, ζr, ζ) cos θ + ζθΦs(r̂, ζr, ζ) sin θ]. (4.106)

Then, Eq. (4.103) is reduced to the equations that do not include the θ variable

Dc(Φc, Φs) =
1
k

Fc, Ds(Φc, Φs) =
1
k

Fs, (4.107)

where

Dc(Φc,Φs) = ζr
∂Φc

∂r̂
+

ζ2 − ζ2
r

r̂

∂Φc

∂ζr
+

ζ2 − ζ2
r

r̂
Φs, (4.108a)

Ds(Φc,Φs) = ζr
∂Φs

∂r̂
+

ζ2 − ζ2
r

r̂

∂Φs

∂ζr
− ζr

r̂
Φs −

1
r̂
Φc, (4.108b)

and
Fc(r̂, ζr, ζ) = L(Φc), ζθFs(r̂, ζr, ζ) = L(ζθΦs). (4.109)

The boundary condition (4.104) is reduced to22

Φc = −2
√

π

∫
ζr<0

ζrΦcEdζ, Φs = 0 (ζr > 0) at r̂ = 1, (4.110)

and the condition (4.105) is reduced to

Φc → 2ζr, Φs → −2 as r̂ → ∞. (4.111)

The problem is reduced, without approximation, to a spatially one-dimensional
one.

21The velocity distribution function φ around a sphere has discontinuities (see Fig. 3.1). Its
discontinuities are on the cone ζr/ζ = (r̂2−1)1/2/r̂ (ζr > 0), which is independent of θ in the
present variables. The form of φ given by Eq. (4.106) is compatible with the discontinuities at
the above position. In fact, the above discontinuities are on the characteristic of Eq. (4.107)
for Φc and Φs.

22For a function f of ζr and ζ, like Φc, it is convenient to introduce the spherical coordinate
expression (ζ, θζ , ψ) for “ with the r̂ direction (the radial direction) as its polar direction, i.e.,

ζr = ζ cos θζ , ζθ = ζ sin θζ cos ψ, ζϕ = ζ sin θζ sin ψ

(0 ≤ ζ < ∞, 0 ≤ θζ ≤ π, 0 ≤ ψ < 2π).

In these variables, f(ζr, ζ)d“ =f(ζ cos θζ , ζ)ζ2 sin θζdζdθζdψ.
(i) The intuitive image is simpler for such a velocity distribution function.
(ii) In carrying out the integral of f(ζr, ζ) with respect to “ for ζr 7 0 or the whole space,
the three-dimensional integral is reduced to a two-dimensional one. For example,Z

ζr<0
f(ζr, ζ)d“ = 2π

Z ∞

0

Z π

π/2
f(ζ cos θζ , ζ)ζ2 sin θζdθζdζ.
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As shown in Section A.5, the macroscopic variables, i.e., density ρ, flow
velocity (vr, vθ, vϕ), temperature T, etc., have a simple dependence on θ, i.e.,

ρ − ρ0

ρ0 cos θ
,

vr

(2RT0)1/2 cos θ
,

vθ

(2RT0)1/2 sin θ
,

T − T0

T0 cos θ
,

prr − p0

p0 cos θ
,

prθ

p0 sin θ
,

pθθ − p0

p0 cos θ
,

pϕϕ − p0

p0 cos θ
,

qr

p0(2RT0)1/2 cos θ
,

qθ

p0(2RT0)1/2 sin θ

are independent of θ, and vϕ = prϕ = pθϕ = qϕ = 0.23

For small Knudsen numbers (k � 1), we can make use of the asymptotic
theory explained in Section 3.1.24 According to it,25

ρ − ρ0

U(2RT0)−1/2ρ0 cos θ
= −3γ1

2
k

r̂2
+
[
−
(

3γ1k0

2
+ 6d4

)
1
r̂2

+ 6Ω4(η)
]

k2 + · · · ,

(4.112a)

vr

U cos θ
= 1 − 1

2

(
3
r̂
− 1

r̂3

)
− 3k0

2

(
1
r̂
− 1

r̂3

)
k

+
(

2Ad
1
r̂

+ 2Bd
1
r̂3

−3
∫ η

∞
Y0(η0)dη0

)
k2 + · · · , (4.112b)

vθ

U sin θ
= −1 +

1
4

(
3
r̂

+
1
r̂3

)
+

3
4

[
k0

(
1
r̂

+
1
r̂3

)
+ 2Y0(η)

]
k

+
(
−Ad

1
r̂

+ Bd
1
r̂3

+ Yd(η)
)

k2 + · · · , (4.112c)

T − T0

U(2RT0)−1/2T0 cos θ
= 6

(
d4

r̂2
+ Θ4(η)

)
k2 + · · · , (4.112d)

p − p0

U(2RT0)−1/2p0 cos θ
=−3γ1

2
k

r̂2

(
1 + k0k − 4

3
Adk2

)
+ 6[Ω4(η)+Θ4(η)]k2+ · · · ,

(4.112e)

qr

p0U cos θ
=
(

3γ3

2r̂3
+ 3

∫ η

∞
HA(η0)dη0

)
k2 + · · · , (4.112f)

Ad = − 1
4

(
9k2

0 − 12a1 + 3a2 + 3a3 + 6b1

)
,

Bd = 1
4

(
9k2

0 − 12a1 + 3a2 + 3a3 − 6b1

)
,

Yd(η) = 1
2 [9k0Y0(η) − 12Ya1(η) + 3Ya2(η) + 3Ya3(η)],

η = (r̂ − 1)/k.

23The symbols vr, . . . , prr, prθ, . . . , qr, . . . are the corresponding spherical components
of vi, pij , and qi. That is, their relations to the velocity distribution function are given by
Eqs. (1.2b), (1.2f), and (1.2g) with the subscript i or j being replaced by r, θ, or ϕ.

24See Footnote 3 in Section 3.1.2.
25As noted in Section 3.1.6, the macroscopic variables except vr and qr are subject to the

S-layer correction at the order of k2 at the bottom of the Knudsen layer or in the neighborhood
η = O(k) of the boundary.
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Here, the nondimensional transport coefficients γ1 and γ3 are defined in Sec-
tion 3.1.3; the slip coefficients k0, d4, a1, a2, a3, and b1 and the Knudsen-layer
functions Ω4(η), Y0(η), Θ4(η), HA(η), Ya1(η), Ya2(η), and Ya3(η) are introduced
in Section 3.1.5; the fluid-dynamic part of p is given up to the order of k3 to
obtain the force acting on the sphere in harmony with the other variables;26

and qr/p0U cos θ is shown because it is important in Section 4.6. With the aid
of the discussion of Section 3.1.7, the force Fi acting on the sphere is obtained
from these macroscopic variables as

F1

p0UL2/(2RT0)1/2
= 6πγ1k

(
1 + k0k − 4

3
Adk2 + · · ·

)
, F2 = F3 = 0.

(4.113)
For the free molecular case (k = ∞), the solution φ (or Φc and Φs) is easily

obtained by the simple recipe given in Section 2.3.2 as

Φc =

⎧⎪⎪⎨
⎪⎪⎩

2ζ cos θζ [Arcsin(1/r̂) < θζ ≤ π],

−√
π[cos θζ(1 − r̂2 sin2 θζ)1/2 + r̂ sin2 θζ ]

[0 ≤ θζ < Arcsin(1/r̂)],

(4.114a)

Φs =

⎧⎪⎪⎨
⎪⎪⎩

−2 [Arcsin(1/r̂) < θζ ≤ π],

−√
πζ−1[r̂ cos θζ − (1 − r̂2 sin2 θζ)1/2]

[0 ≤ θζ < Arcsin(1/r̂)],

(4.114b)

where θζ =Arccos(ζr/ζ), from which the macroscopic variables are obtained as

ρ − ρ0

U(2RT0)−1/2ρ0 cos θ
= −

√
π

6

[(
1 +

6
π

)
1
r̂2

+ 2r̂ −
(

2r̂ +
1
r̂

) (
1 − 1

r̂2

)1/2
]

,

(4.115a)

vr

U cos θ
=

1
8

[
3 − 1

r̂2
− 2

r̂3
+ 4

(
1 − 1

r̂2

)3/2

+
r̂

2

(
1 − 1

r̂2

)2

ln
r̂ + 1
r̂ − 1

]
, (4.115b)

vθ

U sin θ
= − 1

16

[
5 +

1
r̂2

+
2
r̂3

+ 8
(

1 − 1
r̂2

)1/2 (
1 +

1
2r̂2

)

+
r̂

2

(
3 +

1
r̂2

) (
1 − 1

r̂2

)
ln

r̂ + 1
r̂ − 1

]
, (4.115c)

T − T0

U(2RT0)−1/2T0 cos θ
= − 1

3
√

πr̂2
, (4.115d)

qr

p0U cos θ
=

1
16

[
1 +

1
r̂2

+
2
r̂3

− r̂

2

(
1 − 1

r̂2

)2

ln
r̂ + 1
r̂ − 1

]
. (4.115e)

26From the argument in Section 3.1.7 and the formulas of stress tensor in Section 3.1.3,
we can obtain the force on a closed body up to the order of k3 of the nondimensional force
Fi/p0L2 with the additional information PG3. The Knudsen-layer part PK3, which does not
contribute to the force, is not shown in Eq. (4.112e).
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Especially, qr at r̂ = 1, which is important to construct the solution of a uniform
flow past a sphere with an arbitrary thermal conductivity in Section 4.6, is

qr

p0U cos θ
=

1
4
. (4.116)

The force Fi acting on the sphere is

F1

p0UL2/(2RT0)1/2
=

2
3
√

π(π + 8), F2 = F3 = 0. (4.117)

The boundary-value problem for Φc and Φs is solved numerically for a hard-
sphere gas in Takata, Sone & Aoki [1993]. The density, temperature, and ve-
locity profiles are shown for k = 0.1, 1, and 10 in Figs. 4.10 and 4.11 (see the
paper for more detailed data). The force Fi [= (F1, 0, 0)] acting on the sphere
is obtained from prr and prθ. The result, i.e., F1 vs k, is shown in Fig. 4.12
and tabulated as F

(d)
1 later (in Section 4.6.3) in Table 4.5. The free molecular

solution (k = ∞) and the asymptotic solution for k = 0 or small k of a hard-
sphere gas are also shown in Figs. 4.10–4.12. In the numerical computation, the
discontinuity in the velocity distribution function, explained in Section 3.1.6,
should be taken into account.27 The behavior of the discontinuity, as well as
other more detailed data, is shown in the above-mentioned paper.28

It may be noted that the temperature is not uniform except for the case
k = 0 [Fig. 4.10(b) and Eq. (4.112d)]. In a rarefied gas (k �= 0), the temperature
is related to the velocity even in the linear theory. In classical fluid dynamics,
the slow motion of the gas does not produce any effect on the temperature field.
In a rarefied gas, a nonuniform temperature field is induced by a slow motion
of the gas [thermal polarization; see the paragraph next to that of Eq. (3.48)].

We have discussed the case where the temperature of the sphere is kept at
the same temperature as T0 at infinity. When the surface temperature is kept
at a uniform temperature Tw [= T0(1 + τw)] different from T0, the solution
can be obtained simply by the superposition of the above result and that of a
uniformly heated (or cooled) sphere in the gas at rest. That is, let φd be the
solution φ of the problem discussed in this section, and let φh be the solution φ
of the problem where the sphere with the temperature T0(1 + τw) lies in a gas
at rest with temperature T0 and density ρ0. Then, the desired solution is given
by φd + φh. The solution φh being spherically symmetric, the flow velocity and
the force on the sphere are those given by φd. The numerical solution φh for a
hard-sphere gas is found in Takata, Sone, Lhuillier & Wakabayashi [1998].

The corresponding problems where the sphere is made of the condensed
phase of the gas and condensation or evaporation is taking place on the surface
of the sphere are studied in Sone, Takata & Wakabayashi [1994] and Takata,

27The method of numerical computation in a similar situation, where the velocity distri-
bution function has a discontinuity, is outlined in Section 6.2.2 (see the original paper for
the details and also Sone, Ohwada & Aoki [1989a] and Ohwada, Sone & Aoki [1989a] for the
computation of the linearized collision integral).

28Examples of the velocity distribution function with a discontinuity are given for more
interesting situations in Sections 6.2, 6.3, and 6.4.
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Figure 4.10. The density and temperature profiles in a uniform flow past a sphere
with a uniform temperature (a hard-sphere gas). (a) (ρ/ρ0 − 1)/U(2RT0)

−1/2 cos θ
vs r̂ (= r/L) and (b) (T/T0 − 1)/U(2RT0)

−1/2 cos θ vs r̂. The solid lines —— are
the numerical solution and the black circles • indicate the values on the sphere. The
dashed line – – – is the asymptotic solution (4.112a) or (4.112d) with k = 0, the former
of which coincides with the thick upper frame and is invisible, and the dot-dash lines
– -– are the free molecular solution (4.115a) or (4.115d).



206 Chapter 4. Simple Flows

Figure 4.11. The velocity profile in a uniform flow past a sphere with a uniform
temperature (a hard-sphere gas). (a) vr/U cos θ vs r̂ (= r/L) and (b) vθ/U sin θ vs r̂.
The solid lines —– are the numerical solution and black circles • indicate the values
on the sphere. The dashed lines – – – are the asymptotic solution (4.112b) or (4.112c)
with k = 0, and the dot-dash lines – -– are the free molecular solution (4.115b) or
(4.115c).
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Figure 4.12. The force, F1/p0UL2(2RT0)
−1/2 vs k, acting on the sphere with a uni-

form temperature in a uniform flow (a hard-sphere gas). The white circles ◦ are the
numerical solution, the solid line —– is the asymptotic solution (4.113) up to the order
of k2, and the dashed line – – – indicates the free molecular solution (4.117).

Sone, Lhuillier & Wakabayashi [1998]. Incidentally, in the latter paper, where
a uniformly heated (or cooled) sphere made of the condensed phase of the gas
is considered, the Onsager relation is confirmed between the fluxes of mass and
energy from the sphere and their associated forces for the whole range of the
Knudsen number numerically. The Onsager relation in relation to solutions of
the linearized Boltzmann equation is also discussed in Sharipov [1994a, 1994b].

4.6 Uniform flow past a sphere with an
arbitrary thermal conductivity

4.6.1 Formulation

In the preceding section (Section 4.5), the surface temperature of the sphere is
kept at a uniform temperature T0. Here, we extend the analysis to the case where
the sphere is a uniform solid body with a uniform thermal conductivity. Then,
the temperature field inside the sphere is determined by the heat-conduction
equation

1
r̂2

∂

∂r̂

(
r̂2 ∂τp

∂r̂

)
+

1
r̂2 sin θ

∂

∂θ

(
sin θ

∂τp

∂θ

)
= 0 (r̂ < 1), (4.118)
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where T0(1 + τp) is the temperature inside the sphere and the axial symmetry
(∂/∂ϕ = 0) of the field is taken into account.

The equation for the perturbed velocity distribution function φ of the gas
and its boundary condition at infinity are the same as those in Section 4.5, i.e.,

ζr
∂φ

∂r̂
+

ζθ

r̂

∂φ

∂θ
+

ζ2
θ + ζ2

ϕ

r̂

∂φ

∂ζr
+

(
ζ2
ϕ

r̂
cot θ − ζrζθ

r̂

)
∂φ

∂ζθ

−
(

ζθζϕ

r̂
cot θ +

ζrζϕ

r̂

)
∂φ

∂ζϕ
− 1

k
L(φ) = 0, (4.119)

and
φ = 2U(2RT0)−1/2(ζr cos θ − ζθ sin θ) as r̂ → ∞. (4.120)

On the surface of the sphere, in addition to the diffuse-reflection condition

φ = (ζ2 − 2)τp − 2
√

π

∫
ζr<0

ζrφEdζ (ζr > 0) at r̂ = 1, (4.121)

the condition of continuity of the energy flux through the surface is required,

−λpT0

L

∂τp

∂r̂
= qr at r̂ = 1, (4.122)

where λp is the thermal conductivity of the sphere.
We put the solution φ in the sum

φ = φd + cDU(2RT0)−1/2φ1. (4.123)

Here, φd is the solution for a uniform flow past a sphere with a uniform temper-
ature T0 in Section 4.5, cD is an undetermined constant,29 and φ1 is a function
to be determined. Then, φ1 and τp of the similarity form30

φ1 = Φ(1)
c (r̂, ζr, ζ) cos θ + ζθΦ(1)

s (r̂, ζr, ζ) sin θ, (4.124a)

τp = cDU(2RT0)−1/2r̂ cos θ, (4.124b)

are easily seen to be consistent with the equations and the boundary condi-
tions. The equations for Φ(1)

c (r̂, ζr, ζ) and Φ(1)
s (r̂, ζr, ζ) are given by Eqs. (4.107)–

(4.109) with (Φc,Φs) = (Φ(1)
c ,Φ(1)

s ), i.e.,

Dc(Φ(1)
c ,Φ(1)

s ) =
1
k

Fc, Ds(Φ(1)
c , Φ(1)

s ) =
1
k

Fs, (4.125)

where

Dc(Φ(1)
c , Φ(1)

s ) = ζr
∂Φ(1)

c

∂r̂
+

ζ2 − ζ2
r

r̂

∂Φ(1)
c

∂ζr
+

ζ2 − ζ2
r

r̂
Φ(1)

s , (4.126a)

Ds(Φ(1)
c , Φ(1)

s ) = ζr
∂Φ(1)

s

∂r̂
+

ζ2 − ζ2
r

r̂

∂Φ(1)
s

∂ζr
− ζr

r̂
Φ(1)

s − 1
r̂
Φ(1)

c , (4.126b)

29The temperature on the surface of the particle is not known (or specified) beforehand.
The constant cD in Eq. (4.124b) is introduced for this reason, but this constant in Eq. (4.123)
is just for convenience.

30See Footnote 21 in Section 4.5.
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and
Fc(r̂, ζr, ζ) = L(Φ(1)

c ), ζθFs(r̂, ζr, ζ) = L(ζθΦ(1)
s ). (4.127)

The boundary conditions on the sphere (r̂ = 1), corresponding to Eqs. (4.121)
and (4.122), are given by

Φ(1)
c = ζ2 − 2 − 2π3/2

∫ ∞

0

∫ π

π/2

ζ3 sin 2θζΦ(1)
c Edθζdζ (ζr > 0), (4.128a)

Φ(1)
s = 0 (ζr > 0), (4.128b)

and

cD = −4π

5
λg

kγ2λp

∫ ∞

0

∫ π

0

ζ5 sin 2θζ(Φ(d)
c |r̂=1 + cDΦ(1)

c |r̂=1)Edθζdζ, (4.129)

where θζ = Arccos(ζr/ζ),31 Φ(d)
c is Φc in Eq. (4.106) for the flow past the sphere

with the uniform surface temperature T0 in Section 4.5, and the thermal con-
ductivity λg of the gas is introduced with the aid of the relation λgT0/L =
5kγ2p0(2RT0)1/2/4 [see Eq. (3.71)] for the convenience of comparison with con-
ventional formulas. The condition at infinity is

Φ(1)
c → 0 and Φ(1)

s → 0 as r̂ → ∞. (4.130)

From the condition (4.129), the undetermined constant cD is determined as

cD = − C
(d)
q

5kγ2λp/4λg + C
(1)
q

, (4.131)

where

C(d)
q = π

∫ ∞

0

∫ π

0

ζ5 sin 2θζΦ(d)
c |r̂=1Edθζdζ =

q
(d)
r |r̂=1

p0U cos θ
, (4.132a)

C(1)
q = π

∫ ∞

0

∫ π

0

ζ5 sin 2θζΦ(1)
c |r̂=1Edθζdζ =

q
(1)
r |r̂=1

p0(2RT0)1/2 cos θ
. (4.132b)

Here, q
(d)
r and q

(1)
r are qr’s32 corresponding to φd and φ1 respectively. The C

(d)
q

and C
(1)
q are determined by k.

The velocity distribution function φ1 given by Eq. (4.124a) with the solution
(Φ(1)

c , Φ(1)
s ) of Eq. (4.125) with (4.126a)–(4.127) under the boundary conditions

(4.128a), (4.128b), and (4.130) is the solution of the case where the sphere
with its surface temperature T0(1 + cos θ) lies in an infinite expanse of a gas
at rest with density ρ0 and temperature T0. Thus, the desired solution of the
problem introduced at the beginning of this section is given by the sum (4.123)
of the two solutions, one is the solution for the uniform flow past the sphere
with the uniform surface temperature, obtained in Section 4.5, and the other
is the solution (4.124a) for a gas around the sphere whose surface temperature
T0(1 + τw) is given by T0(1 + cos θ) or τw = cos θ.

31See Footnote 22 in Section 4.5.
32See Footnote 23 in Section 4.5.
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4.6.2 A gas around a sphere with a nonuniform
temperature

The solution for the gas around the sphere with the nonuniform temperature
τw = cos θ also plays an important role in thermophoresis to be discussed in
Section 5.3. Thus, it may be in order to summarize the result. Let us repeat
the problem briefly. In an infinite expanse of a gas at rest with density ρ0

and temperature T0, there lies a sphere whose surface temperature is given by
T0(1 + cos θ). The behavior of the gas is governed by the linearized Boltzmann
equation and the diffuse-reflection condition. The solution φ is expressed in the
form33

φ = Φc(r̂, ζr, ζ) cos θ + ζθΦs(r̂, ζr, ζ) sin θ, (4.133)

and Φc(r̂, ζr, ζ) and Φs(r̂, ζr, ζ) are governed by Eq. (4.125) with (4.126a)–(4.127)
with Φ(1)

c and Φ(1)
s replaced by Φc and Φs. The boundary conditions for them

are Eqs. (4.128a), (4.128b), and (4.130) with the same replacement, i.e.,

Φc = ζ2 − 2 − 2π3/2

∫ ∞

0

∫ π

π/2

ζ3 sin 2θζΦcEdθζdζ (ζr > 0), (4.134a)

Φs = 0 (ζr > 0), (4.134b)

and
Φc → 0 and Φs → 0 as r̂ → ∞. (4.135)

The solution for small Knudsen numbers (k � 1) is easily obtained by the
asymptotic theory in Section 3.1 as34

vr

(2RT0)1/2 cos θ
= −K1

(
1
r̂
− 1

r̂3

)
k +

(
2At

r̂
+

2Bt

r̂3
−
∫ η

∞
Y1(η0)dη0

)
k2 + · · · ,

(4.136a)

vθ

(2RT0)1/2 sin θ
=

1
2

[
K1

(
1
r̂

+
1
r̂3

)
+Y1(η)

]
k+

(
−At

r̂
+

Bt

r̂3
+ Yt(η)

)
k2 + · · · ,

(4.136b)

ρ − ρ0

ρ0 cos θ
= − 1

r̂2
+ 2

(
d1

r̂2
− Ω1(η)

)
k +

(
−K1γ1 + Dt

r̂2
+ Ωt(η)

)
k2 + · · · ,

(4.136c)

T − T0

T0 cos θ
=

1
r̂2

− 2
(

d1

r̂2
+ Θ1(η)

)
k +

(
Dt

r̂2
+ Θt(η)

)
k2 + · · · , (4.136d)

p − p0

p0 cos θ
= −2[Ω1(η) + Θ1(η)]k +

(
−K1γ1

r̂2
+ Ωt(η) + Θt(η)

)
k2

+
2Atγ1

r̂2
k3 + · · · , (4.136e)

qr

p0(2RT0)1/2 cos θ
=

5γ2

2r̂3
k −

(
5γ2d1

r̂3
− 2

∫ η

∞
HB(η0)dη0

)
k2 + · · · , (4.136f)

33See Footnote 21 in Section 4.5.
34See Footnotes 3 in Section 3.1.2 and 25 in Section 4.5.
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At = − 1
2 (b2 + 3K1k0 −3a4 + a5 + a6),

Bt = 1
2 (−b2 + 3K1k0 −3a4 + a5 + a6),

Dt = 4d2
1 + 6d3 − 2d5,

Yt(η) = 3K1Y0(η) − 3Ya4(η) + Ya5(η) + Ya6(η),
Ωt(η) = 4d1Ω1(η) + 6Ω3(η) − 2Ω5(η),
Θt(η) = 4d1Θ1(η) + 6Θ3(η) − 2Θ5(η),
η = (r̂ − 1)/k.

Here, the nondimensional viscosity γ1 and thermal conductivity γ2 are defined
in Section 3.1.3; the slip coefficients K1, k0, a4, a5, a6, b2, d1, d3, and d5 and
the Knudsen-layer functions Y0(η), Y1(η), Ya4(η), Ya5(η), Ya6(η), Ω1(η), Ω3(η),
Ω5(η), Θ1(η), Θ3(η), Θ5(η), and HB(η) are introduced in Section 3.1.5; the
fluid-dynamic part of the pressure (p − p0)/p0 cos θ is given up to the order of
k3 to obtain the force acting on the sphere in harmony with other variables;35

and qr/p0(2RT0)1/2 cos θ is shown because it is important in Sections 4.6.3 and
5.3.2. The force Fi on the sphere is

F1

p0L2
= 4πγ1(K1k

2 − 2Atk
3) + · · · , F2 = F3 = 0. (4.137)

The free molecular solution (k = ∞) of the problem is given as follows:

Φc =

⎧⎪⎪⎨
⎪⎪⎩

0 [Arcsin(1/r̂) < θζ ≤ π],

(ζ2 − 2)[r̂ sin2 θζ + cos θζ(1 − r̂2 sin2 θζ)1/2]

[0 ≤ θζ < Arcsin(1/r̂)],

(4.138a)

Φs =

⎧⎪⎪⎨
⎪⎪⎩

0 [Arcsin(1/r̂) < θζ ≤ π],

ζ−1(ζ2 − 2)[r̂ cos θζ − (1 − r̂2 sin2 θζ)1/2]

[0 ≤ θζ < Arcsin(1/r̂)],

(4.138b)

where θζ =Arccos(ζr/ζ), and

ρ − ρ0

ρ0 cos θ
= − 1

12

[
2r̂ −

(
2r̂ +

1
r̂

) (
1 − 1

r̂2

)1/2

+
1
r̂2

]
, (4.139a)

T − T0

T0 cos θ
=

1
6

[
2r̂ −

(
2r̂ +

1
r̂

) (
1 − 1

r̂2

)1/2

+
1
r̂2

]
, (4.139b)

vr = vθ = 0, (4.139c)

qr

p0(2RT0)1/2 cos θ
=

1
4
√

π

[
1 +

1
r̂2

+
2
r̂3

− r̂

2

(
1 − 1

r̂2

)2

ln
r̂ + 1
r̂ − 1

]
. (4.139d)

Especially, qr at r̂ = 1, which is important in Eq. (4.132b), is
35See Footnote 26 in Section 4.5.
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Figure 4.13. Density and temperature profiles in a gas around a sphere with a nonuni-
form temperature (a hard-sphere gas). (a) Density and (b) temperature. The solid
lines —– are the numerical solution, the dashed lines – – – are the asymptotic solution
(4.136c) or (4.136d) with k = 0, and the dot-dash lines – -– are the free molecular
solution (4.139a) or (4.139b). The black circles • indicate the values on the sphere.
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Figure 4.14. Velocity profiles in a gas around a sphere with a nonuniform temperature
(a hard-sphere gas). (a) vr and (b) vθ. The solid lines —– are the numerical solution.
The flow vanishes for the asymptotic solution (4.136a) and (4.136b) with k = 0 and
the free molecular solution (k = ∞). In (b) the values on the sphere of the numerical
results are marked by ˜ for k = 0.05, ¨ for k = 0.1, 	 for k = 0.2, N for k = 0.4, O
for k = 0.6, H for k = 1, � for k = 2, and ˇ for k = 10.
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Figure 4.15. Streamlines of flow (in a plane containing x1 axis) in a gas around a
sphere with a nonuniform temperature (a hard-sphere gas). (a) k = 0.05, (b) k = 0.2,
(c) k = 1, and (d) k = 2. The ordinates in the figures are commonly (x2

2 + x2
3)

1/2.
The streamlines Ψ = 4 × 10−3n (n = 0, 1, 2, . . .) are shown in solid lines, the thick
lines of which indicate the cases n = 0, 5, 10, . . . , and the lines Ψ = 4 × 10−3(n/5)
(n = 1, 2, 3, and 4) are shown in dashed lines, where Ψ is the Stokes stream function
defined by vr/(2RT0)

1/2 = (r̂2 sin θ)−1∂Ψ/∂θ and vθ/(2RT0)
1/2 = −(r̂ sin θ)−1∂Ψ/∂r̂.

A streamline closer to the sphere takes smaller value of Ψ; Ψ = 0 for the line on the
x1 axis. The arrows indicate the direction of the flow.
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Figure 4.16. The heat flow, qr/p0(2RT0)
1/2 cos θ at r̂ = 1 vs k, from a sphere with

a nonuniform temperature in a gas (a hard-sphere gas). The black circles • are the
numerical solution for a hard-sphere gas, the white circles ◦ are the numerical solution
for the BKW model, the solid line —– is the asymptotic solution for a hard-sphere gas
for small k [Eq. (4.136f) up to the order of k2], and the dot-dash line – -– indicates the
free molecular solution (4.140). In the above figure, the data for the BKW model are
those where the original k is replaced by 1.922284k (see Footnote 37 in Section 4.6.2).

qr

p0(2RT0)1/2 cos θ
=

1√
π

. (4.140)

The force Fi (F2 = F3 = 0) acting on the sphere is given by

F1

p0L2
= −π

3
. (4.141)

The solution of the problem is obtained numerically for a hard-sphere gas in
Takata & Sone [1995].36 The profiles of the density, temperature, and velocity
fields are shown in Figs. 4.13 and 4.14. A flow is induced owing to the nonuniform
temperature on the sphere. Some examples of the streamlines are shown in
Fig. 4.15. The heat transfer on the sphere (per unit time) and the force acting
on the sphere are shown in Figs. 4.16 and 4.17, where the results for the BKW
model are also shown for comparison.37

36See Footnote 27 in Section 4.5.
37The way of comparing the results of different molecular models is not unique. The

present problem contains the parameter k. The parameter can be replaced by μg/ρ0L(RT0)1/2,
λg(RT0)1/2/p0LR, or (μgλg)1/2T0

1/2/p0L, where μg and λg are, respectively, the viscosity
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Figure 4.17. The force, F1/p0L
2 vs k, acting on a sphere with a nonuniform temper-

ature in a gas (a hard-sphere gas). The black circles • are the numerical solution for a
hard-sphere gas, the white circles ◦ are the numerical solution for the BKW model, the
solid line —– is the asymptotic solution for a hard-sphere gas for small k [Eq. (4.137)
up to the order of k2], and the dot-dash line – -– indicates the free molecular solution
(4.141). In the above figure, the data for the BKW model are those where the original
k is replaced by 1.562492k (see Footnote 37 in Section 4.6.2).

A flow is induced around the sphere from the colder to the hotter side. The
leading terms of Eqs. (4.136a) and (4.136b) for k � 1 are due to the thermal
creep flow noted in Section 3.1.5 and to be discussed in more detail in Section

and thermal conductivity of the gas at the reference state [see Eqs. (3.70) and (3.71)]. The
result of comparison depends on the choice of the parameter, because the relation between
the mean free path 	0 and μg, λg, or (μgλg)1/2 depends on molecular models owing to the de-
pendence of γ1 and γ2 in Eqs. (3.70) and (3.71) on molecular models. When μg/ρ0L(RT0)1/2

(or μg) is taken as the basic parameter instead of k (or 	0), γ1k is invariant among molecular
models, that is, the relation between k’s of a hard-sphere gas and the BKW model is

k (BKW) = 1.270042k (hard sphere);

when λg(RT0)1/2/p0LR (or λg) is taken, γ2k is invariant, that is, the relation is

k (BKW) = 1.922284k (hard sphere);

when (μgλg)1/2T0
1/2/p0L [or (μgλg)1/2] is taken, (γ1γ2)1/2k is invariant, that is, the relation

is
k (BKW) = 1.562492k (hard sphere).

The second relation is chosen in Fig. 4.16, and the third is chosen in Fig. 4.17. There are mis-
prints in this kind of note after Eq. (25) in Takata & Sone [1995], that is, the correspondences
are transposed.
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5.1.1. In the free molecular case (k = ∞), no flow is induced. This is an example
of the general proposition (see Section 2.5.4) for the class of solutions given in
Section 2.5.

4.6.3 Solution for a sphere with an arbitrary
thermal conductivity

The solution for a uniform flow past a sphere with an arbitrary thermal con-
ductivity is obtained in the form (4.123), i.e.,

φ = φd + cDU(2RT0)−1/2φ1, (4.142)

where φd is φ given in Section 4.5 and φ1 is given by Eq. (4.124a). The constant
cD in Eq. (4.142) is given by Eq. (4.131), i.e.,

cD = − C
(d)
q

5kγ2λp/4λg + C
(1)
q

. (4.143)

Corresponding to Eq. (4.142), the perturbed macroscopic variables (correspond-
ing to φ)38

ρ − ρ0, vr, vθ, T − T0, prr − p0, prθ, pθθ − p0, pϕϕ − p0, qr, qθ,

are given by Eq. (4.142) where φ, φd, and φ1 are replaced by the macroscopic
variables corresponding to φ, φd, and φ1 respectively. That is, the nondimen-
sional macroscopic variables (say, h = ω, ui, etc.) expressed by the distribution
function φ by Eqs. (1.97a)–(1.97f) are expressed by

h = hd + cDU(2RT0)−1/2h1, (4.144)

where hd and h1 are, respectively, given by Eqs. (1.97a)–(1.97f) with φ replaced
by φd and φ1.

For k � 1, with the aid of Eqs. (4.112f) and (4.136f),

cD =
−6

(
γ3 − 2

∫ ∞

0

HA(η)dη

)
k

5γ2(λp/λg + 2)
+ · · · . (4.145)

For k = ∞, with the aid of Eqs. (4.116) and (4.140),

cD = 0. (4.146)

In the two limiting cases, k = 0 and k = ∞, the solution reduces to the solution
around the sphere with the uniform temperature T0.

The numerical data of C
(d)
q and C

(1)
q vs k, defined by Eqs. (4.132a) and

(4.132b), are given for a hard-sphere gas in Table 4.5, from which the coefficient
cD is determined by Eq. (4.143). When λp/λg → ∞, cD reduces to zero and the

38See Footnote 23 in Section 4.5.
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Table 4.5. The numerical data of C
(d)
q and C

(1)
q [or q

(d)
r /p0U cos θ and

q
(1)
r /p0(2RT0)

1/2 cos θ at r̂ = 1] and F
(d)
1 /p0UL2(2RT0)

−1/2 and F
(1)
1 /p0L

2 (a hard-
sphere gas).

k C
(d)
q C

(1)
q

F
(d)
1

p0UL2/(2RT0)1/2

F
(1)
1

p0L2

0 0 0 0 0
0.05 0.0053 0.1859 1.1091 −0.0228
0.1 0.0189 0.2952 2.1168 −0.0788
0.2 0.0535 0.4048 3.8110 −0.2241
0.4 0.1118 0.4819 6.2292 −0.4694
0.6 0.1492 0.5097 7.7951 −0.6254
1 0.1887 0.5318 9.5625 −0.7908
2 0.2226 0.5480 11.2772 −0.9327
4 0.2386 0.5561 12.2333 −0.9994
6 0.2432 0.5588 12.5557 −1.0187
10 0.2464 0.5609 12.8071 −1.0321
∞ 0.25 0.5642 13.1653 −1.0472

solution φ reduces to φd, i.e., the solution for the case of the uniform temperature
in Section 4.5.

The force Fi (F2 = F3 = 0) acting on the sphere is given as

F1

p0UL2/(2RT0)1/2
=

F
(d)
1

p0UL2/(2RT0)1/2
+

cDU

(2RT0)1/2

F
(1)
1

p0UL2/(2RT0)1/2

=
F

(d)
1

p0UL2/(2RT0)1/2
+

cDF
(1)
1

p0L2
, (4.147)

where F
(d)
1 is F1 in Section 4.5 and F

(1)
1 is F1 in Section 4.6.2.

For small Knudsen numbers (k � 1), there is no contribution up to the order
of k2 from the second term on the right-hand side of Eq. (4.147), i.e.,

F1

p0UL2/(2RT0)1/2
= 6πγ1k

[
1 + k0k − 4

(
Ad

3
+

K1[γ3 − 2
∫∞
0

HA(η)dη]
5γ2(λp/λg + 2)

)
k2

]
+ · · · . (4.148)

For the free molecular case (k = ∞), the second term vanishes because cD = 0,
i.e.,

F1

p0UL2/(2RT0)1/2
=

2
3
√

π(π + 8). (4.149)

The force F1 is independent of λp/λg for k = ∞.
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Figure 4.18. The force (or drag), F1/p0UL2(2RT0)
−1/2 vs k, acting on a sphere with

arbitrary thermal conductivity in a uniform flow of a gas (a hard-sphere gas). The
white circles ◦ are the numerical solution for λp/λg = ∞ (or for the sphere with a
uniform temperature) and the stars ∗ are the numerical solution for λp/λg = 1. The
solid line —– is the asymptotic solution for small k [Eq. (4.148) up to the order of
k2], and the dot-dash line – -– indicates the free molecular solution (4.149); they are
independent of λp/λg.

The numerical data of F
(d)
1 /p0UL2(2RT0)−1/2 and F

(1)
1 /p0L

2 in the formula
(4.147) are given for a hard-sphere gas in Table 4.5. The force F1 vs k for a hard-
sphere gas obtained from these data is shown in Fig. 4.18, where Eq. (4.149) for
k = ∞ and Eq. (4.148) for small k up to the order of k2 are also shown. The
effect of λp/λg is small.

4.7 Shock wave

Consider a time-independent unidirectional flow (say, in the X1 direction) in an
infinite expanse of a gas, where the states at infinities, or as X1 → −∞ and
as X1 → ∞, are both uniform, say [ρ−∞, v1−∞(> 0), T−∞, p−∞(= Rρ−∞T−∞)]
and [ρ∞, v1∞, T∞, p∞(= Rρ∞T∞)]. The states at infinities being uniform, their
velocity distribution functions are Maxwellian. That is,

f → ρ−∞
(2πRT−∞)3/2

exp
(
− (ξi − v1−∞δi1)2

2RT−∞

)
as X1 → −∞, (4.150a)



220 Chapter 4. Simple Flows

f → ρ∞
(2πRT∞)3/2

exp
(
− (ξi − v1∞δi1)2

2RT∞

)
as X1 → ∞. (4.150b)

The two states at infinities cannot be chosen arbitrarily. According to the
conservation equations (1.12)–(1.14), they are related as

ρ−∞v1−∞ = ρ∞v1∞, (4.151a)

ρ−∞v2
1−∞ + p−∞ = ρ∞v2

1∞ + p∞, (4.151b)

ρ−∞v1−∞

(
v2
1−∞ +

5p−∞
ρ−∞

)
= ρ∞v1∞

(
v2
1∞ +

5p∞
ρ∞

)
. (4.151c)

These relations are rewritten in the form

p∞
p−∞

=
5M2

−∞ − 1
4

, (4.152a)

ρ∞
ρ−∞

=
v1−∞
v1∞

=
4M2

−∞
M2−∞ + 3

, (4.152b)

T∞
T−∞

=
(5M2

−∞ − 1)(M2
−∞ + 3)

16M2−∞
, (4.152c)

where
M−∞ =

v1−∞
(5RT−∞/3)1/2

.

These conditions are called the shock condition or the Rankine–Hugoniot re-
lation (Courant & Friedrichs [1948], Liepmann & Roshko [1957]). The ratios
of the downstream and upstream data of pressure, density, flow velocity, and
temperature are expressed in terms of the upstream Mach number M−∞. It
may be noted that Eqs. (4.152a)–(4.152c) with the subscripts ∞ and −∞ in-
terchanged also hold because Eqs. (4.151a)–(4.151c) are symmetric with respect
to the subscripts ∞ and −∞, and that the possible ranges of M−∞ and M∞
are M2

−∞ ≥ 1/5 and M2
∞ ≥ 1/5 because the pressure and temperature should

be non-negative. The downstream Mach number M∞ (= v1∞/
√

5RT∞/3) is
related to the upstream one as

M2
∞ − 1 = −4(M2

−∞ − 1)
5M2−∞ − 1

, (4.153)

which shows that M2
∞ < 1 or M2

∞ > 1 depending on M2
−∞ > 1 or M2

−∞ < 1
and that M2

∞ = 1 corresponds to M2
−∞ = 1.

According to the H theorem [or Eqs. (1.33)–(1.34b) in Section 1.7],

H1∞ − H1−∞ ≤ 0, (4.154)

where H1 =
∫

ξ1f ln(f/c0)dξ. At infinities, f being Maxwellian, H1∞ and H1−∞
are expressed with the H function H [=

∫
f ln(f/c0)dξ; see Eq. (1.32)] as H1∞ =

H∞v1∞ and H1−∞ = H−∞v1−∞. Thus, the inequality (4.154) is reduced to

H∞
ρ∞

− H−∞
ρ−∞

≤ 0. (4.155)
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On the other hand, for the Mawellians at infinities,

H∞
ρ∞

− H−∞
ρ−∞

= −3
2

[
ln
(

p∞
p−∞

)
− 5

3
ln
(

ρ∞
ρ−∞

)]
,

where p∞/p−∞ and ρ∞/ρ−∞ are expressed in terms of M2
−∞ by Eqs. (4.152a)

and (4.152b). The difference ΔH = H∞/ρ∞ − H−∞/ρ−∞ is zero at M2
−∞ = 1

and is monotonically decreasing in the range M2
−∞ ≥ 1/5, because

dΔH

dM2−∞
= −3

2
(M2

−∞ − 1)2

M2−∞(M2−∞ − 1
5 )(M2−∞ + 3)

≤ 0.

Thus, by the condition (4.155), M2
−∞ ≥ 1, that is, the upstream state is super-

sonic. From the statement just after Eq. (4.153), 1/5 ≤ M2
∞ ≤ 1, that is, the

downstream state is subsonic. Incidentally, the ratios of the downstream and
upstream data of pressure, density, flow velocity, and temperature are all unity
when M2

−∞ = 1; the ratios of the downstream and upstream data of pressure
and temperature are infinite (p∞/p−∞ = T∞/T−∞ = ∞), but those of density
and flow velocity are finite (ρ∞/ρ−∞ = v1−∞/v1∞ = 4) when M2

−∞ = ∞.
Our interest is the time-independent solution that connects the two states at

infinities, which is called shock wave or shock layer. In the Euler set of equations
in the classical fluid dynamics, the shock wave is treated as a discontinuity with
the above-mentioned shock condition as the connection condition. Its internal
structure is discussed by the Navier–Stokes set of equations. However, the
thickness of the shock wave is of the order of the mean free path, and therefore,
it is not correctly discussed by the Navier–Stokes set and should be discussed
by the Boltzmann equation.

Obviously, when the two states at infinities are equal, the uniform state is
a solution. The mathematical theory of the existence of a nontrivial solution is
studied by Caflisch & Nicolaenko [1982] and Liu & Yu [2004a], and the existence
and uniqueness of a weak shock wave solution, where the two uniform states
at infinities are very close or 0 < M2

−∞ − 1 � 1, are proved. Its profile is
given in Grad [1969]. It is obtained from the Boltzmann equation as a slowly
varying solution and the velocity distribution function is expressed by the local
Maxwellian and the parametric macroscopic variables are determined by fluid-
dynamic-type equations (see the discussion of a slowly varying solution in a
transonic region in Section 7.3.2). In Liu & Yu [2004a], besides their simple and
clear description, they also demonstrated that the velocity distribution function
is positive in the shock layer and that the solution is stable.

There are many numerical works on the shock wave structure (e.g., Mott-
Smith [1951], Liepmann, Narashimha & Chahine [1962], Salwen, Grosch & Zier-
ing [1964], Holway Jr. [1965], Bird [1965, 1967, 1994], Elliot & Baganoff [1974],
Erwin, Pham-Van-Diep & Muntz [1991], Ohwada [1993], Cercignani, Frezzotti
& Grosfils [1999], Takata, Aoki & Cercignani [2000]), among which the pio-
neering work by Mott-Smith [1951] is well known (see Section B.2.2). Many
are discussions of their numerical or approximate works rather than the phys-
ical discussion of shock waves. When the strength of a shock wave is strong,
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the profile of the temperature field is reported not to be monotonic; it first in-
creases from the upstream value, reaches the maximum value, and decreases to
the downstream value, though the overshoot is small. This is mainly discussed
from the former point noted above. In the limit that the strength of the shock
wave becomes infinite or the upstream Mach number becomes infinite, the width
of the velocity distribution function at upstream infinity becomes diminishingly
small compared with the scale of the flow velocity there, or the velocity distri-
bution function at upstream infinity approaches a delta function on the scale of
the flow velocity there. Grad [1969] proposed a method to approach this case.
Takata, Aoki & Cercignani [2000] carried out the analysis on the basis of Grad
[1969] and Caflisch [1985] for a hard-sphere gas, according to which the trace
of the singular character at upstream infinity remains at downstream infinity.
Ivanov and his collaborators (e.g., Ivanov, Markelov, Kudryavtev & Gimelshein
[1998]) are actively carrying out engineering computation of flows with shock
waves, especially the interaction of shock wave and boundary layer by DSMC
method (see Section B.1).

Recently, Yu [2005] reported a very interesting mathematical work. The
behavior of a gas where the length scale and the time scale of variation of the
state are, respectively, much larger than the mean free path and the mean free
time of the gas is studied by the Hilbert expansion. The leading term of the
velocity distribution function is Maxwellian and its parameters, i.e., the density,
velocity, and temperature, are governed by the Euler set of equations. The
solution of the Euler set may contain discontinuity, which is determined by the
shock condition mentioned above. Yu [2005] extended the Hilbert expansion to
the case where there is shock-wave discontinuity in the solution. He constructed
the systematic procedure to carry out the Hilbert expansion (the generalized
Hilbert expansion) with shock waves for spatially one-dimensional problems.
Further, he gave the rigorous mathematical proof that the solution thus obtained
approximates the solution of the Boltzmann equation when the strength of the
shock wave is weak. This restriction is a technical problem and not an essential
one. Ha, Liu & Yu [2006] considered a spatially one-dimensional initial-value
problem and studied the formation of a shock wave mathematically. That is,
the two equilibrium states whose macroscopic variables are related by the shock
condition are in contact with each other initially. The solution of the Euler
set of equations for this initial condition is simply the propagation of the initial
shock discontinuity, where no expansion wave appears. Thus, the time-evolution
of the solution of the Boltzmann equation is the formation of a shock layer
through the initial layer and its propagation. They studied this process by
rigorous mathematical analysis. This supplements Yu’s above-mentioned work
(Yu [2005]).

4.8 Formation and propagation of a shock wave

As an example showing the formation of a shock wave and its propagation, we
consider a semi-infinite expanse (X1 > 0) of a gas bounded by a plane wall at
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rest with temperature T0 at X1 = 0. Initially, the gas is in equilibrium with the
wall at pressure p0 and temperature T0. At time t = 0, the temperature of the
wall is suddenly changed to another value T1 and is kept at T1 for subsequent
time. The time evolution of the behavior of the gas is studied numerically on
the basis of the BKW equation and the diffuse-reflection condition on the wall.

The present spatially one-dimensional BKW system can be reduced to a sim-
pler system where two molecular velocity components are eliminated. Here, we
take 0, the mean free path of the gas in the equilibrium state at rest with density
ρ0 (= p0/RT0) and temperature T0, as the reference length L and 0/(2RT0)1/2

as the reference time t0, and use the notation introduced in Section 1.9. Then,
the BKW system is transformed into the following system for the marginal ve-
locity distribution functions g and h (see Section A.6): The marginal velocity
distribution functions g and h are defined by

g =
∫ ∫

f̂dζ2dζ3, h =
∫ ∫

(ζ2
2 + ζ2

3 )f̂dζ2dζ3, (4.156)

and the macroscopic variables ρ̂, v̂1, and T̂ are given as

ρ̂ =
∫

gdζ1, v̂1 =
1
ρ̂

∫
ζ1gdζ1, T̂ =

2
3ρ̂

∫
[(ζ1 − v̂1)2g + h]dζ1. (4.157)

The BKW equation is reduced to

∂

∂t̂

[
g
h

]
+ ζ1

∂

∂x1

[
g
h

]
=

2√
π

ρ̂

[
G − g
H − h

]
, (4.158)

where [
G
H

]
=

ρ̂

(πT̂ )1/2

[
1
T̂

]
exp

(
− (ζ1 − v̂1)2

T̂

)
.

The boundary condition on the wall is[
g
h

]
=

σ̂1

(πT̂1)1/2

[
1
T̂1

]
exp

(
− ζ2

1

T̂1

)
(ζ1 > 0) at x1 = 0, (4.159a)

σ̂1 = −2
(

π

T̂1

)1/2 ∫
ζ1<0

ζ1gdζ1, (4.159b)

where T̂1 = T1/T0, and the condition at infinity is[
g
h

]
→ 1√

π

[
1
1

]
exp(−ζ2

1 ) as x1 → ∞. (4.160)

The initial condition at t̂ = 0 is[
g
h

]
=

1√
π

[
1
1

]
exp(−ζ2

1 ) (x1 > 0). (4.161)

The marginal velocity distribution functions g and h have discontinuity at
the corner (x1, t̂) = (0, 0) of the domain (x1 > 0, t̂ > 0) for ζ1 > 0. In fact,
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taking the limits of g and h (ζ1 > 0) in the two different orders, i.e., first t̂ → 0+

and then x1 → 0+ and first x1 → 0+ and then t̂ → 0+, we have

lim
x1→0+

(
lim

t̂→0+

[
g
h

])
=

1√
π

[
1
1

]
exp(−ζ2

1 ),

lim
t̂→0+

(
lim

x1→0+

[
g
h

])
=

σ̂1+

(πT̂1)1/2

[
1
T̂1

]
exp

(
− ζ2

1

T̂1

)
,

where σ̂1+ = limt̂→0+
σ̂1. The two limits do not agree unless T̂1 = 1. The

differences of the above two kinds of the limits, i.e., the discontinuities of g and
h at the corner (x1, t̂) = (0, 0), propagate in the direction of the characteristic
x1 − ζ1t̂ = 0 of Eq. (4.158) and decay owing to the collision term on its right-
hand side. The direction of the propagation depends on ζ1. For ζ1 < 0, the
characteristic starts from infinity, where g and h are continuous, and therefore
they are continuous for all x1 and t̂. In the numerical computation, the standard
finite-difference scheme has a difficulty that it involves differentiation processes
across the discontinuity; some improvement is required.

In the numerical computation of a time-evolution problem, the distributions
g and h for each ζ1 at the time step t̂ = t̂i+1 are obtained from the data of the
previous stages independently of those for the other values of ζ1, because the
interaction between different ζ1’s enters through ρ̂, v̂1, and T̂ in G and H for
which the data at t̂ = t̂i and before are used. Thus, the discontinuity is only
on the line x1 − ζ1t̂ = 0 (with ζ1 under concern), and this enables us a simple
modification to treat the discontinuity with a good accuracy.

For ζ1 < 0, there is no discontinuity, and g and h at t̂ = t̂i+1 are computed
by a standard finite-difference scheme from x1 = ∞ to x1 = 0. For ζ1 > 0, we
have to take care of the discontinuity x1 − ζ1t̂ = 0. When the standard finite-
difference formula to obtain g and h at (t̂i+1, x1j) contains the lattice points only
on the same side of the discontinuity, we can use this formula to obtain the data
at (t̂i+1, x1j). The approach for the other case is explained for the first-order
implicit scheme. First compute the data on both sides x1 − ζ1t̂i = 0± of the
discontinuity by extrapolation from the data on the lattice points along t̂ = t̂i.
With these as the initial data, integrate Eq. (4.158) along its characteristic (or
the discontinuity) x1−ζ1t̂ = 0 up to t̂ = t̂i+1, and prepare the data of g and h at
the point where the characteristic crosses the lattice lines. If the point (t̂i, x1j)
is on the other side of (t̂i+1, x1j) across the discontinuity, let the time derivatives
of g and h be expressed by the data at (t̂i+1, x1j) and at (t̂D+, x1j), which is
the point on the discontinuity on the side x1 − ζ1t̂ = 0−. If the point (t̂i+1,
x1j−1) is on the other side of (t̂i+1, x1j) across the discontinuity, which appears
in the implicit formula, let the space derivatives of g and h be expressed by the
data at (t̂i+1, x1j) and at (t̂i+1, x1D+), which is the point x1 − ζ1t̂i+1 = 0+

on the discontinuity. Thus, we obtain a hybrid difference scheme consisting of
the standard finite-difference scheme and the characteristic method. The more
explicit description of the hybrid scheme, which is devised by Sone & Sugimoto
[1990], is given in Aoki, Sone, Nishino & Sugimoto [1991].

Two examples of the numerical computation of the problem in Aoki, Sone,
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Figure 4.19. Formation of a shock wave by a sudden change of the wall temperature
from T0 to 2T0 at time t = 0 I: Initial stage.
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Figure 4.20. Formation of a shock wave by a sudden change of the wall temperature
from T0 to 2T0 at time t = 0 II: Intermediate stage.
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Figure 4.21. Formation of a shock wave by a sudden change of the wall temperature
from T0 to 2T0 at time t = 0 III: Long-time behavior.
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Figure 4.22. Discontinuity of the marginal velocity distribution function g by a sud-
den change of the wall temperature from T0 to 2T0 at time t = 0.
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Figure 4.23. Formation of an expansion wave by a sudden change of the wall tem-
perature from T0 to T0/2 at time t = 0 I: Initial stage.
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Figure 4.24. Formation of an expansion wave by a sudden change of the wall tem-
perature from T0 to T0/2 at time t = 0 II: Intermediate stage.
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Figure 4.25. Formation of an expansion wave by a sudden change of the wall tem-
perature from T0 to T0/2 at time t = 0 III: Long-time behavior.
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Nishino & Sugimoto [1991], where the plate is suddenly heated and cooled, are
shown here. The case where the temperature of the wall is suddenly raised from
T0 to T1 = 2T0 is given in Figs. 4.19–4.22. In Figs. 4.19–4.21, the time evolution
of the temperature T, pressure p, and velocity v1 fields are plotted.39 With
the sudden rise of the wall temperature, the gas close to the wall is heated and
accordingly the pressure rises sharply near the wall, which pushes the gas away
from the wall and a shock wave (or compression wave) propagates into the gas.
As time goes on, the gas moves away from the wall but there is no gas supply
from the wall, and the heat transferred from the wall to the gas decreases owing
to the rise of the temperature of the gas near the wall. Accordingly, the pressure
decrease due to the escape of the gas is not compensated by the heating, and
the pressure gradually decreases. As a result, an expansion wave propagates
toward the shock wave from behind and attenuates the shock wave together
with another dissipation effect. The main temperature rise of the gas occurs
gradually well after the shock wave passed; this process is due to the conduction
of heat. In Fig. 4.22, the marginal velocity distribution function g at various
X1/L is plotted for t/t0 = 0.5, 2, and 10. The marginal velocity distribution
function g has discontinuity at (t, X1) = (0, 0) as shown above. As time goes
on, the position of the discontinuity shifts to X1 = ζ1t(2RT0)1/2, and the size
of the discontinuity decreases owing to molecular collisions.

The corresponding results for the case where the temperature of the wall is
suddenly lowered from T0 to T1 = T0/2 are given in Figs. 4.23–4.25, where the
roughly opposite process occurs (compression wave → expansion wave). That
is, by the cooling of the gas near the wall, the pressure decreases there and
an expansion wave propagates into the gas. The expansion wave sends a gas
towards the wall. As time goes on, with the decrease of the temperature of the
gas near the wall, the suction of heat from the gas by the wall decreases and
thus the pressure decrease becomes weaker. Thus, the gas begins to accumulate
near the wall, because there is no suction on the wall and the pressure drop by
cooling is not strong enough to compensate the gas flow. Then, a compression
wave chases the expansion wave to attenuate. The main temperature drop of
the gas occurs gradually well after the expansion wave passed, as in the first
example.

When the temperature rise or drop of the wall is small, i.e., |T1/T0−1| � 1,
the problem is studied analytically on the basis of the linearized BKW equation
(Sone [1965]), which is compared with the numerical result for small data for
|T1/T0 − 1| in Aoki, Sone, Nishino & Sugimoto [1991].

39The time is measured in the scale of the mean free time in the computation. In the
atmospheric condition the mean free time is about 2 × 10−10 s. Thus, one second is a very
long time (more than t/t0 = 109) in the reference time of the above computation. See Footnote
102 in Section 3.6.2.



Chapter 5

Flows Induced by
Temperature Fields

In the framework of the classical fluid dynamics, no time-independent flow is
induced in a gas without an external force, such as the gravity, by the effect of
its temperature field. In a rarefied gas, on the other hand, the temperature field
of a gas (often in combination with a solid boundary) plays an important role
in inducing time-independent flows. Two examples were discussed in Sections
4.2, 4.3, and 4.6.2. In this chapter, we will discuss various flows induced by
temperature fields and their application to a vacuum pump without a moving
part.

5.1 Flows in a slightly rarefied gas

In Chapter 3, we carried out the asymptotic analysis of the Boltzmann system
for small Knudsen numbers and derived the fluid-dynamic-type equations and
their associated boundary conditions that describe the behavior of a gas for small
Knudsen numbers. From this system we can find flows induced by temperature
fields, as we have already pointed out. These are characterized by the local
behavior of the temperature field of the gas.

5.1.1 Thermal creep flow

According to the slip boundary condition derived in Chapter 3, i.e., Eq. (3.41a),
(3.57a), (3.114a), (3.120a), (3.161b), or (3.162c), a flow velocity along a bound-
ary is imposed as the boundary condition for the fluid-dynamic-type equations
in Sections 3.1.2, 3.2.2, or 3.3.3 when the temperature of the boundary is not
uniform. This flow characterized by the temperature gradient of the boundary
along it is called thermal creep flow.

Consider a gas (X2 > 0) bounded by a plane wall at X2 = 0 with a small
temperature gradient dTw/dX1 along the wall. According to the Stokes set of
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Figure 5.1. Radiometer.

equations in Section 3.1.2 and the slip boundary condition in Section 3.1.5, the
velocity and temperature fields are found to be given as follows:1

v1 = −
(

πRT0

2

)1/2
0
T0

dTw

dX1
[K1 + 1

2Y1(2X2/
√

π0)],

v2 = v3 = 0,

T = T0 +
dTw

dX1
X1,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.1)

where Tw is the temperature of the wall and T0 is the temperature at X1 = 0.
The flow is in the direction of the temperature gradient of the wall2 and uniform
except in the neighborhood of the plane wall of the order of the mean free path
0, and the temperature of the gas is uniform with respect to X2.

The thermal creep flow is known for a long time (Maxwell [1879]), but its
rigorous formulation on the basis of the Boltzmann equation is done much later
(Sone [1966b, 1970]).3 The rotation of the windmill in the famous radiometer

1We are interested in the range |X1| < X0 of a gas over a plane wall, where X0 � 	0. When
the temperature variation in the range is small, i.e., (X0/T0)|dTw/dX1| � 	0/X0, the Stokes
set of equations and their associated boundary conditions can be applied in the range of the
gas, and the flow field is expressed by Eq. (5.1). The present situation corresponds to the case
where dp/dX1 = 0 and the wall at X2 = L goes to infinity (or L → ∞ and accordingly k → 0)
in Section 4.2.2.

2This is the case of a hard-sphere gas or the BKW model, for which K1 is negative.
3In these papers, the problem over a plane wall is directly studied without using the

asymptotic theory. Owing to the degeneracy due to the simple geometry, the thermal creep
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Figure 5.2. Experimental apparatus for the thermal creep flow.

(Fig. 5.1)4 is explained by the thermal creep flow in, e.g., Kennard [1938]. This
is not a direct demonstration of a flow induced along a wall with a temperature
gradient. An experiment is devised to show this clearly by Sone [1991b].5 The
experimental apparatus as shown in Fig. 5.2 is prepared. A rectangular glass
plate (70×200 mm) is set in space with its longer sides in the vertical direction,
and an electric heater of Nichrome wire is placed near the lower end of the
back of the plate. A windmill with cellophane vanes to detect vertical flow is
placed in front of the plate. The whole system is placed in a cylindrical vacuum
chamber (diameter 250 mm, height 300 mm) of a glass bell jar on a steel base,
where the pressure can be controlled from the atmospheric condition down to
several pascals (Pa = kg/m s2). When the plate is heated, the temperature of
the plate is about 34◦C near its upper end, 65◦C at the height of the windmill,
and 140◦C in the heated region. When the plate is not heated, the windmill
remains at rest for the whole pressure range. When the plate is heated and the
gas is at the atmospheric condition, the windmill rotates at 110 rpm (revolutions

flow appears with a different value (but of the same order) of the slip coefficient also in the
limit that the accommodation coefficient α in the Maxwell-type boundary condition tends
to zero, in contrast to the case of general situation. See the note (vii) after Eq. (3.42c) and
compare Sone [1970] and the references there.

4A set of vanes blackened on one side is suspended on an axis in an exhausted glass vessel.
The vanes rotate on exposure to sunlight. It is now sold as an ornament.

5The video file of the experiment can be downloaded at http://fd.kuaero.kyoto-
u.ac.jp/members/sone.
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Figure 5.3. A plate with a heater and a movable windmill.

per minute), from which an upward flow is seen to be induced in front of the
plate. This flow is attributed to natural convection. As the pressure in the
chamber is decreased, the rotation of the windmill becomes gradually slower
and stops at about 1400 Pa. As the pressure is decreased further, the windmill
begins to rotate again at about 40 Pa but in the opposite direction, and its
speed increases and reaches about 60 rpm at 13 Pa and about 140 rpm at 3 Pa.
From the direction of rotation of the windmill, the flow is downwards or in the
direction of the temperature gradient. Incidentally, the mean free path at 13
Pa is about 0.5 mm. The experiment, though only qualitative with rough data
for reference, clearly demonstrates a flow induced by the temperature gradient
of a wall in a simple way. The flow in a rarefied gas makes good contrast to the
natural convection in atmospheric condition.

The above experiment is made a little quantitative by a simple improvement
in Sone, Sawada & Hirano [1994], where the dependence of the flow on the
temperature gradient of the wall and on the pressure of the gas is examined. A
rectangular glass plate (70 × 200 × 5 mm) is set in space with its 70 mm side
in the vertical direction, and an electric heater (70 × 32 mm) of Nichrome wire
is attached on the back of one of the horizontal end of the plate. A track of a
HO gauge model railway is placed parallel to and at the back of the plate. A
truck with an electric motor and an arm stretching to the front side of the plate
is on the track (Fig. 5.3). Thus, the position of the windmill along the plate
can be adjusted freely by moving the truck. Polypropylene vanes (5.1 mg) of
the windmill are suspended on a needle and rotate when there is a horizontal
flow. The vane-tip speed is 57 mm/s when the vanes rotate at 100 rpm. The
whole system is placed in a vacuum chamber of the bell jar used in the preceding
experiment (Fig. 5.2). The temperature gradient is in the horizontal direction
and decreases with the distance from the heater. Shifting the position of the
truck and observing the speed of rotation of the windmill, we find the relation
between the speed of rotation and the temperature gradient along the wall. The
experimental result of the relation is given in Fig. 5.4. The experiment is done
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Figure 5.4. The speed of rotation (rpm) vs the temperature gradient (◦C/mm) along
the plate. Each mark shows the average value of several experiments. The two parallel
bars on a mark show the variation of the data. The black circle • is the data at 6.7
Pa; ◦ : at 13.3 Pa; ˇ : at 26.7 Pa; and � : at 53 Pa. The vane-tip speed is 57 mm/s
when the vanes rotates at 100 rpm.

in the pressure range 6 – 55 Pa, which is in a slip flow regime. The speed of
rotation is roughly linear in the local temperature gradient of the plate. The
slope of the approximate line, i.e., the speed of rotation vs the temperature
gradient, is nearly inversely proportional to the pressure of the gas (or nearly
proportional to the mean free path).

In order to understand the physical mechanism of the thermal creep flow,
consider a gas at rest with a temperature gradient in the two situations shown
in Figs. 5.5 (a) and (b), in the latter of which the gas is bounded by a wall. Let
us examine the momentum transmitted by the molecules impinging on a small
area dS from its upper side. The molecules impinging on dS come from various
directions directly (or without molecular collisions) over a distance of the order
of the mean free path, keeping the property of their origins. The average speed
of molecules arriving from the hotter region is larger than that from the colder
region. In the gas at rest, the pressure is uniform and the density is lower in the
hotter side; the number of the molecules impinging on dS from the hotter side
per unit time is the same as that from the colder side. Thus, the momentum
transferred to dS by the molecules impinging on it has a component in the
direction opposite to the temperature gradient, because the average speed of
molecules from the hotter side is larger.

When the area dS lies in the middle of the gas [Fig. 5.5 (a)], where the state
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dS

dS

∇T ∇T

(a) (b)

Figure 5.5. A gas with a temperature gradient. (a) A gas without a boundary and
(b) a gas bounded by a wall.

is symmetric with respect to the dotted line, the molecules impinging on dS
from its lower side carry the momentum in the direction opposite to the tem-
perature gradient from the lower side to the upper side. Therefore, there is no
exchange of momentum through dS. On the other hand, when the area dS is
on the wall [Fig. 5.5 (b)], the situation is quite different. The contribution of
the molecules leaving the wall to the tangential component of the momentum
transfer is nothing in the case of the diffuse reflection. (Generally except in the
specular reflection, the velocity distribution function of the molecules leaving
the wall, characterized by the wall condition, is qualitatively different from that
of the impinging molecules, formed by collisions of surrounding gas molecules.
Thus the two contributions are generally different.) Thus, a momentum in the
direction opposite to the temperature gradient is transferred to dS from the
gas. As its reaction, the gas is subject to a force in the direction of the tem-
perature gradient, and a flow is induced in that direction. In a gas in motion,
a momentum in the direction of motion is transferred to the wall or dS. Thus,
a time-independent flow is established when the two contributions of momen-
tum transfer balance. Obviously from the above explanation, the boundary
(or the qualitative difference between the velocity distribution functions of the
molecules impinging on the boundary and of those leaving there) plays an es-
sential role in inducing the thermal creep flow. Incidentally, by simple physical
discussions similar to the above, we can easily understand flows induced over a
wall in different situations, a straightforward extension of the thermal creep flow
or a new situation. A flow induced over a wall with a discontinuous tempera-
ture distribution is the former example,6 whose numerical example by the BKW
equation is given in Aoki, Takata, Aikawa & Golse [2001]. The latter example
that is not expected before is the thermal edge flow explained in Section 5.1.4.

6Needless to say, the discontinuity itself is not essential to induction of flow.
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Figure 5.6. Thermal stress slip on a boundary with a uniform temperature. When the
isothermal lines are not parallel in a neighborhood of the boundary, the thermal-stress
slip flow is induced as shown by the white arrow.

5.1.2 Thermal-stress slip flow

This flow was pointed out on the basis of the asymptotic theory in Sone [1971].
In the slip boundary conditions (3.42a) and (3.42b) at the second order in k,
there are various terms determined by the temperature field. However, all of
them except the term a4njti∂GiG0/∂xj in Eq. (3.42a) vanish when the tempera-
ture of the boundary is uniform, i.e., ti∂τw/∂xi = 0, or when the thermal creep
flow is absent. Corresponding to this remaining term, another type of flow,
different from the thermal creep flow, is induced by the temperature field in the
gas. Over a boundary of a uniform temperature, the term a4njti∂GiG0/∂xj is
rewritten as

a4
∂GiG0

∂xj
njti = −a4

∂2τG0

∂xi∂xj
njti = −a4tj

∂

∂xj

(
ni

∂τG0

∂xi

)
,

because the derivative of ni along the boundary is parallel to the boundary.
When the temperature gradient ni∂τG0/∂xi normal to the boundary is not uni-
form over the boundary or the isothermal surface (τG0 = const) is not parallel to
the boundary, a flow is induced in the direction that the isothermal surfaces are
diverging or converging, depending on whether the temperature of the bound-
ary is lower or higher than that of the surrounding gas (Fig. 5.6).7 The flow
is called thermal-stress slip flow because the slip velocity a4njti∂GiG0/∂xj is
proportional to the thermal stress given in Eq. (3.21) and due to the thermal
stress as explained below. One may naturally think that the flow is a kind of
thermal creep flow due to the modified temperature field induced by the first-
order temperature jump (3.41c); but this is in the direction opposite to the
thermal-stress slip flow, and therefore the thermal-stress slip flow is a new type
of flow. Several examples of the flow have been studied (Sone [1972, 1974], Sone

7This is the case of a hard-sphere gas or the BKW model under the Maxwell-type condition
as well as the diffuse-reflection condition, for which a4 in Eq. (3.42a) is positive (Sone, Aoki
& Onishi [1977], Ohwada & Sone [1992]).
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T1
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T
−1
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dS

Figure 5.7. Source of thermal stress. The stress on the surface element dS is the
momentum flux through dS. The difference of the average molecular speeds among
the molecules arriving at the surface element dS from various directions (say from A,
B, C, D) owing to their different temperatures at their origins causes a stress on dS.

& Tanaka [1980]).
Consider a small area dS in a gas with a nonuniform temperature gradient

as shown in Fig. 5.7 and examine the momentum transfer through dS. The
molecules impinging on dS come from various directions directly (or without
molecular collisions) over a distance of the order of the mean free path , keeping
the property of their origins. The average speed of molecules arriving from
the hotter region is larger than that from the colder region. In view of the
temperature field around dS, the molecules impinging on dS may be represented
by those from the four points A, B, C, and D about one mean free path away
from dS in the figure. By a discussion similar to that in the thermal creep flow
(Section 5.1.1), the momentum transferred by the molecules from A, B, C, or D,
compared with the uniform temperature case, is proportional to the temperature
difference between the point A, B, C, or D and dS. Therefore, noting the sign
of contribution, as discussed in Section 5.1.1, and the distance of A, B, C, or D
from dS, we can estimate the tangential stress, i.e., the tangential momentum
flux through dS from its lower side to it upper side, as

Stress ∼ TA − TB + TC − TD ∼ 2
∂2T

∂X1∂X2
,

where the temperature T0 at dS is cancelled out. This conforms with the thermal
stress in Eq. (3.21).

Now, we consider how the thermal-stress slip flow is induced by the ther-
mal stress. Take a control surface ABCD in a gas at rest with a nonuniform
temperature gradient as shown in Fig. 5.8 (a). The contribution of the thermal
force on the volume of the gas surrounded by ABCD vanishes when integrated
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C D
T0

T1

(a)

AB

C D
T0

T1

(b)

Figure 5.8. Control surface ABCD for explanation of the cause of thermal-stress slip
flow. (a) The control surface is in a gas and (b) the part CD of the control surface is
on a wall.

over ABCD if the linear theory in Section 3.1.3 is applicable.8 When the gas is
bounded by a wall as shown in Fig. 5.8 (b), the situation is different. The most
part of the sides BC and AD (thus, AB) being taken outside the Knudsen layer,
the thermal stress (the momentum transfer owing to the temperature variation)
is roughly the same as before on AB, BC, and AD, but the momentum trans-
fer on the wall (or CD) is quite different from that in the gas. The momentum
transfer due to the molecules impinging on CD, which corresponds to the contri-
bution TA−TB in the preceding paragraph, is roughly a half of the total transfer
on CD in the gas, and the transfer due to the molecules leaving CD on the wall
has no tangential contribution in case of the diffuse reflection. Therefore, the
momentum transfer on CD is reduced to about a half by replacing CD in the
gas [Fig. 5.8 (a)] by a wall [Fig. 5.8 (b)]. Thus, the balance of the thermal stress
on ABCD is violated and a flow is induced. This is the thermal-stress slip flow.
As in the thermal creep flow, the boundary wall (or the qualitative difference
between the velocity distribution functions of the molecules impinging on the
boundary and of those leaving there) plays an essential role in inducing the flow.

As an example of the thermal-stress slip flow, consider a gas between two
parallel noncoaxial circular cylinders with different uniform temperatures T1

and T2 (Sone & Tanaka [1980]). Then, no thermal creep flow is induced because
of uniform temperature on each cylinder. The isothermal surfaces being not
parallel between the noncoaxial cylinders, the thermal-stress slip flow is induced
between the cylinders as shown in Fig. 5.9, where streamlines are shown with
arrows indicating the direction of flow when the outer cylinder is heated (T2 >
T1).9 The thermal-stress slip flow plays an important role in causing negative
thermophoresis (see Section 5.3).

8The thermal stress in Eq. (3.21) integrated over ABCD is seen to vanish with the aid of
Eq. (3.13c). This corresponds to the absence of a thermal stress term in Eq. (3.13b) of the
Stokes set of equations.

9The flow velocity differs only by a factor a4 for different molecular models and kinetic
boundary conditions. Thus, the profile of the streamlines is the same with the difference of a
factor of their values.



242 Chapter 5. Flows Induced by Temperature Fields

�
�

�
�

Figure 5.9. Thermal-stress slip flow induced in a gas between parallel noncoaxial
circular cylinders with different uniform temperatures T1 and T2. The direction of
flow is shown by arrows on streamlines when the temperature T2 of the outer cylinder
is higher than the temperature T1 of the inner (T2 > T1).

5.1.3 Nonlinear-thermal-stress flow

In Section 3.3.4, we have seen that even in the absence of an external force, a
gas cannot be at rest unless the isothermal lines are parallel or unless

∂ T̂SB0

∂xi

∂

∂xj

(
∂ T̂SB0

∂xk

)2
− ∂ T̂SB0

∂xj

∂

∂xi

(
∂ T̂SB0

∂xk

)2
= 0. (5.2)

The flow is called nonlinear-thermal-stress flow.
In a gas with a temperature variation, a stress, i.e., thermal stress, is in-

duced. In the linear problem discussed in Section 3.1, the stress over a control
surface in the gas balances10 and there is no contribution to the Stokes set of
equations (3.12)–(3.13c). In the weakly nonlinear problem in Section 3.2, there
is a contribution to Eq. (3.89b) as

−γ3

3
∂

∂xi

∂2τS1

∂x2
j

.

This term is, however, incorporated in the pressure term, and thus, does not
work to induce a flow [see Sections 3.2.2 (the last paragraph) and 3.2.4].11 When

10See Footnote 8 in Section 5.1.2.
11When the boundary is a simple boundary at rest and the flow speed at infinity vanishes

(or no flow is imposed at infinity) if the domain extends to infinity, ∂2τS1/∂x2
j itself vanishes.

In fact, from Eqs. (3.88a), (3.88b), (3.113a), and the condition at infinity, uiS1 = 0 and PS2 =
const [the uniqueness of solution is assumed; the uniqueness holds for a bounded domain (see
Temam [1984])]. Thus, from Eq. (3.88c), ∂2τS1/∂x2

j = 0.
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T = T1

T = T0

Figure 5.10. Body force due to the nonlinear thermal stress not incorporated in
pressure term for v̂jSB1 = 0, i.e., the contribution of the second term in the square
brackets in the expression (5.4). The force acting on the shaded portion of the gas is
shown by the arrow for a hard-sphere gas and the BKW model when T1 > T0.

the temperature variation is not small, the thermal stress appears in Eq. (3.160):

ρ̂SB0v̂jSB1
∂v̂iSB1

∂xj
= −1

2
∂p̂†SB2

∂xi
+ ρ̂SB0F̂i2

+
1
2

∂

∂xj

[
Γ1

(
∂v̂iSB1

∂xj
+

∂v̂jSB1

∂xi
− 2

3
∂v̂kSB1

∂xk
δij

)]

+

⎡⎣Γ7

Γ2

v̂jSB1

T̂SB0

∂T̂SB0

∂xj
+

Γ2
2

4p̂0

dΓ7/Γ2
2

dT̂SB0

(
∂T̂SB0

∂xj

)2⎤⎦ ∂T̂SB0

∂xi
, (5.3)

where a part of the thermal stress is incorporated in the pressure term p̂†SB2, as
shown in Eq. (3.159), and the remaining part of the thermal stress is the last
term on the right-hand side.

Comparing ρ̂SB0F̂i2 and the thermal stress term, we find that

T̂SB0k
2

p̂0

⎡⎣Γ7

Γ2

v̂jSB1

T̂SB0

∂T̂SB0

∂xj
+

Γ2
2

4p̂0

dΓ7/Γ2
2

dT̂SB0

(
∂T̂SB0

∂xj

)2⎤⎦ ∂T̂SB0

∂xi
(5.4)

is the force acting on unit mass of the gas divided by 2RT0/L. At each point,
the gas is subject to a force parallel to the temperature gradient (Fig. 5.10).12

In the absence of a flow (v̂iSB1 = 0), the thermal stress can be incorporated
into the pressure term if the condition (5.2) is satisfied. If not, v̂iSB1 = 0 is
inconsistent with Eq. (5.3) for F̂i2 = 0; that is, a flow is induced in the gas in
the absence of an external force. This is the nonlinear-thermal-stress flow. The

12The factor Γ2
2d(Γ7/Γ2

2)/dT̂SB0 in (Γ2
2/4p̂0)[d(Γ7/Γ2

2)/dT̂SB0](∂T̂SB0/∂xj)
2 term in

Eq. (5.4) is −Γ7/T̂SB0 (= −1.758705/T̂SB0) for a hard-sphere gas and −1 for the BKW model.
Thus, the force in the absence of a flow is in the direction opposite to the temperature gradient
for these molecular models.
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Figure 5.11. Nonlinear-thermal-stress flow induced between two coaxial elliptic cylin-
ders with different uniform temperatures for a hard-sphere gas (T1/T0 = 5; T0 : tem-
perature of the inner cylinder and T1 : temperature of the outer cylinder). In view of
the symmetry situation, the result in the first quadrant is shown. The arrows indicate
the flow velocity v̂iSB1 [= limk→0 v/(2RT0)

1/2k] at their starting points and the scale
0.1 of (v̂2

iSB1)
1/2 is shown in the right upper space in the figure. The symbol ◦ repre-

sents the point of the maximum speed. As is apparent in the figure, L is the half length
of the minor axis of the outer ellipse. See the corresponding flow at various Knudsen
numbers in Fig. 5.13 and note the direction of the flow. (The numerical computation
of the asymptotic equations in Section 3.3.3 is carried out by Doi.)

temperature field in the gas is the cause of the nonlinear-thermal-stress flow.
The boundary wall plays only an indirect role to form such a temperature field
in contrast to the thermal creep and thermal-stress slip flows.

An example of the nonlinear-thermal-stress flow is shown in Fig. 5.11. This
example is chosen for comparison with the flow for finite Knudsen numbers in
Section 5.2.

5.1.4 Thermal edge flow

We have discussed flows induced by temperature fields for small Knudsen num-
bers on the basis of the asymptotic theory explained in Chapter 3 and found
the thermal creep flow and the nonlinear-thermal-stress flow at the first order of
the Knudsen number and the thermal-stress slip flow at the second order of the
Knudsen number. In the asymptotic theory, the shape of the boundary is as-
sumed to be smooth, i.e., the Knudsen number based on the radius of curvature
of the boundary is small. Thus the case where the boundary has a sharp edge is
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BA

T1

isothermal line

Figure 5.12. The temperature field near a uniformly heated plate. A flow is induced
near the edge of the plate in the direction of the arrows. The points A and B are
about one mean free path away from the edge.

excluded. Here, we will examine the possibility of a temperature-induced flow
due to a sharp edge of a boundary.

Consider a uniformly heated plate in a gas, where the mean free path is
much smaller than the size of the plate. In the neighborhood of the plate far
away (on the scale of the mean free path) from its edges, the temperature of
the gas is uniform along the plate, and the isothermal surfaces are parallel
(Fig. 5.12). There is no cause of a flow along the plate. Near the edges of
the plate, the isothermal surfaces are sharply curved. Kinetic theory approach
of the field around the heated edge is not available. Thus we estimate the
temperature field around the edge by the heat-conduction equation, though it
is not guaranteed that the heat-conduction equation describes the field exactly
even in the continuum limit (see Section 3.3). Then, it is given by T1[1 −
ar1/2 sin(θ/2)+· · · ], where T1 is the temperature of the plate and a is a constant
(a > 0 for a heated plate), and (r, θ) is the plane polar coordinates with its origin
at the edge and θ = 0 on the plate. In this temperature field, the temperatures
TA at A and TB at B in Fig. 5.12, where A and B are at about one mean
free path 1 away from the edge, are, respectively, roughly estimated to be
T1[1−(α0+α1)

1/2
1 ] and T1[1−(α0−α1)

1/2
1 ], where α0 and α1 are some constants

(α0 > α1 > 0 for a heated plate). The character of the group of molecules
impinging on the edge region is roughly represented by the combination of two
groups: one from A and the other from B. The situation is similar to that over a
plane wall with the temperature gradient (TB − TA)/

√
21 ∼ α1T1

−1/2
1 , where

the thermal creep flow is induced. Thus a flow proportional to the square root
of the mean free path (∼ 

1/2
1 ) is induced near the edge, and the flow direction is

from A to B as shown by the arrows in Fig. 5.12. The flow is called thermal edge
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flow. In fact, the flow is confirmed experimentally by Sone & Yoshimoto [1997]13

as well as numerically by Aoki, Sone & Masukawa [1995] (see Sone [2002] for
more detail). This flow is applied to the driving mechanism of a pump without
a moving part (see Section 5.5.4).

5.2 Flow between elliptic cylinders with
different temperatures

In Section 4.2.2, the thermal transpiration through a channel between two par-
allel plates is discussed for the whole range of the Knudsen number. The flow
induced is unidirectional in the direction of the temperature gradient of the chan-
nel wall, though the flow profile varies considerably depending on the Knudsen
number. Here, we present an example of non-unidirectional flows and examine
its variation with the Knudsen number.

Consider a gas between two coaxial elliptic cylinders with different uniform
temperatures. The major axes of the two ellipses are set orthogonal (Fig. 5.13).
The temperature of the inner cylinder is kept at T0 and the outer at T1, whose
difference |T1 − T0|/T0 is of the order unity. In this example, no thermal creep
flow is induced because the temperature on each of the cylinders is uniform,
but the nonlinear-thermal-stress flow is to be induced because the isothermal
lines are not parallel and the temperature difference |T1 − T0|/T0 is not small.
The time-independent behavior of the gas consisting of hard-sphere molecules
is studied by the DSMC method (see Section B.1) under the diffuse-reflection
condition for various Knudsen numbers in Aoki, Sone & Waniguchi [1998]. Some
of the results are shown in Fig. 5.13.

The size and arrangement of the elliptic cylinders are obvious from the figure.
The Knudsen number Kn is defined by av/L, where L is the half length of the
minor axis of the outer ellipse and av is the mean free path of the gas in the
equilibrium state at rest with the average gas density ρav in the whole domain.
The flow velocity fields for T1/T0 = 5 are shown in Figs. 5.13 (a.1)–(b), where
the arrows indicate the flow velocity v with v3 = 0 at their starting points and
the scale 0.01 of |v|/(2RT0)1/2 is shown in each panel, and the white circles ◦
indicate the point with the maximum speed |v|max/(2RT0)1/2 whose value is
given in the caption. In view of the symmetry of the situation, the computation
is carried out by the DSMC method in the first quadrant, which is divided
into 775 cells and 1000 particles are put in each cell on the average or 775,000
particles in total in the cases (a.1)–(a.5), and 546 cells, 1000 particles in a cell,
and 546,000 total number of particles in the case (b).

Figures 5.13 (a.1)–(a.5) show the variation of the flow field with the Knud-
sen number for a given set of elliptic cylinders. At Kn = 0.1 [Fig. 5.13 (a.1)], a
clockwise circulating flow is induced along the inner cylinder and is dominant
in the flow field. If we observe a little carefully, we notice that a slow counter-

13The video file of the experiment can be downloaded at http://fd.kuaero.kyoto-
u.ac.jp/members/sone.



5.2. Flow between elliptic cylinders with different temperatures 247

� �
�

� �
�

�
� � � 	

�
�

� �
�

�



�
�

�
� �

	

� � � �  � � � � � �
�

�

� �
�

� �
�

�
� � � 	

�
�

� �
�

�



�
�

�
� �

	

� � � �  � � � � � �
�

�

� �
�

� �
�

�
� � � 	

�
�

� �
�

�



�
�

�
� �

	

� � � �  � � � � � �

� �
�

� �
�

�
� � � 	

�
�

� �
�

�



�
�

�
� �

	

� � � �  � � � � � �

� �
�

� �
�

�
� � � 	

�
�

� �
�

�



�
�

�
� �

	

� � � �  � � � � � �

� �
�

� �
�

�
� � � 	

�
�

� �

�
�

�

�
�

�
� �

	

� � � �  � � � � � �
�

�

� � �
� � � � �

� �

� � �
� � � � �

� �

� � �
� � � � �

Figure 5.13. Flows induced between two coaxial elliptic cylinders with different uni-
form temperatures for a hard-sphere gas (T1/T0 = 5). (a.1) Kn= 0.1, (a.2) Kn= 0.5,
(a.3) Kn= 1, (a.4) Kn= 2, (a.5) Kn= 5, and (b) the case with the inner cylinder
being replaced by a circular cylinder, Kn= 0.5. The arrows indicate the flow velocity
v with v3 = 0 at their starting points and the scale 0.01 of |v|/(2RT0)

1/2 is shown in
each panel. The white circles ◦ indicate the points with the maximum speed |v|max,
and the values of |v|max/(2RT0)

1/2 are 5.72 × 10−3 (Kn= 0.1) in (a.1), 6.58 × 10−3

(Kn= 0.5) in (a.2), 7.30 × 10−3 (Kn= 1) in (a.3), 5.72 × 10−3 (Kn= 2) in (a.4),
3.69×10−3 (Kn= 5) in (a.5), and 8.64×10−3 (Kn= 0.5) in (b). See the corresponding
nonlinear-thermal-stress flow in Fig. 5.11 and note the direction of the flow.
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clockwise circulating flow is also induced along the outer cylinder. At Kn = 0.5
[Fig. 5.13 (a.2)], the flow speed is increased on the whole; in particular, the flow
along the outer cylinder is intensified significantly. As Kn increases to 1, the
inner clockwise flow weakens considerably, whereas the counter-clockwise flow
still grows slightly. With the further increase of Kn (Kn= 1 → 2 → 5), the
inner flow attenuates rapidly, but the decay of the outer flow is slow. The flow
vanishes in the free molecular case (Kn= ∞), which is proved in more general
situation in Section 2.5. When the inner elliptic cylinder is replaced by a circular
cylinder [Fig. 5.13 (b)], the flow induced near the inner cylinder weakens owing
to its mild curvature, and the flow induced near the outer cylinder dominates
over the whole domain.

According to the asymptotic theory for small Knudsen numbers in Section
3.3, the nonlinear-thermal-stress flow of the first order of the Knudsen number is
induced as shown in Fig. 5.11 in Section 5.1.3. The flow is in the direction oppo-
site to the main flow in Fig. 5.13 (a.1). The gas between the cylinders is at rest
at Kn = 0. First, the nonlinear-thermal-stress flow is induced as Kn increases,
but the flow is reversed and the flow in Fig. 5.13 (a.1) is established when Kn is
further increased up to Kn = 0.1. At Kn = 0.1, the local mean free path loc is
about a half of av near the top of the inner cylinder of the lower temperature,
because the density is about 2ρav there. In the range of the order of the corre-
sponding local mean free path near the top of the inner cylinder, the isothermal
lines are well curved, and the molecules directly (or without intermolecular colli-
sion) impinging on the cylinder well perceive the curved isothermal lines. Thus,
the discussion for the thermal edge flow in Section 5.1.4 applies to the present
situation and the flow shown in Fig. 5.13 (a.1) is induced near the inner cylin-
der. The flow for intermediate or large Knudsen numbers requires more detailed
discussion by taking account of the global feature of the field, which is made in
Aoki, Sone & Waniguchi [1998].

Another similar example showing the flow induced between two parallel non-
coaxial circular cylinders with slightly different uniform temperatures is studied
for the whole range of the Knudsen number by a finite-difference numerical anal-
ysis of the integral equation form of the linearized BKW equation (see Section
A.4.2) in Aoki, Sone & Yano [1989]. The flow for small Knudsen numbers is the
thermal-stress slip flow explained in Section 5.1.2 with a figure of its stream-
lines (Fig. 5.9). The discussion on the flow for intermediate or large Knudsen
numbers is made in a little different way in Aoki, Sone & Yano [1989] from that
in Aoki, Sone & Waniguchi [1998].

5.3 Thermophoresis

Thermophoresis is a phenomenon of temperature-induced flows that has long
been of interest, especially in the field of aerosol sciences, where the size of an
aerosol particle is so small that the mean free path of the gas molecules of the
surrounding gas is comparable to it and the effect of a finite Knudsen number
is important. When a particle lies in a gas with a temperature gradient, a flow
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is induced and the particle is subject to a force, called thermal force. If the
particle is left free in the gas, it drifts because of the thermal force. These as
a whole are called thermophoresis. There are a lot of attempts to attack this
problem (e.g., Epstein [1929], Bakanov & Deryaguin [1959], Waldmann [1959],
Schmitt [1959], Schadt & Cadle [1961], Brock [1962], Jacobsen & Brock [1965],
Derjaguin, Storozhilova & Rabinovich [1966], Sone [1972], Phillips [1975], Sone
& Aoki [1977a,b, 1979, 1981, 1983], Prodi, Santachiara & Prodi [1979], Beresnev
& Chernyak [1985], Bakanov [1991], Takata, Aoki & Sone [1994], Takata & Sone
[1995]). Most of the theoretical and numerical works discuss the thermophoresis
of a spherical particle on the basis of the linearized Boltzmann equation and try
to obtain a reasonable solution under various simplifying assumptions. The lim-
itation to the linearized equation is legitimate in aerosol problems because the
Mach number of a flow induced and the temperature variation, characterized
by the surrounding temperature, over the distance of the particle size are both
very small in such a small system. Recent development of computers made an
accurate numerical analysis of the problem on the basis of the Boltzmann equa-
tion possible. Here, we will discuss the thermophoresis of a spherical particle
with an arbitrary thermal conductivity. As in our discussion of a uniform flow
past a sphere in Sections 4.5 and 4.6, we will discuss the problem on the basis
of Takata & Sone [1995] in two steps.

5.3.1 A spherical particle with a uniform temperature

In this subsection, we discuss the thermophoresis of a spherical particle (or a
sphere of radius L) kept at a uniform temperature T0 in a gas at rest with a
uniform pressure p0 and a small temperature gradient [say, (∂T/∂X1)∞]. That
is, the state of gas is given by vi = 0, p = p0, and T = T0 + (∂T/∂X1)∞X1,
where (LO/T0)(∂T/∂X1)∞ � 1 for LO � L, in the absence of the particle, and
the particle is at Xi = 0; the time-independent behavior of the gas disturbed
by the presence of the particle is studied on the basis of the linearized Boltz-
mann equation and the diffuse-reflection condition on the surface of the particle
(Section 1.11).14 We use the notation in Section 1.10, with L, T0, and p0 as the
reference quantities, and the spherical coordinate system

x1 = r̂ cos θ, x2 = r̂ sin θ cos ϕ, x3 = r̂ sin θ sin ϕ,

where the origin is at the center of the sphere. The linearized Boltzmann equa-
tion for the perturbed velocity distribution function φ with axial symmetry

14(i) The LO is so large that the perturbations by the sphere are negligibly small compared
with (LO/T0)(∂T/∂X1)∞ in the region |Xi| s LO. Then, the linearized Boltzmann equation
and the boundary condition, especially at infinity shown below, is applicable.

(ii) When the temperature at X1 = 0 of the gas unperturbed by the sphere is different
from T0 [say, T1, i.e., T = T1 + (∂T/∂X1)∞X1], the solution is obtained by simply adding
the spherically symmetric solution with temperature T1 at infinity as explained in the drag
problem (see the last paragraph but one of Section 4.5).
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(∂/∂ϕ = 0) in the spherical coordinates [Eq. (A.164) in Section A.3] is

ζr
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∂r̂
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ζθ

r̂
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+
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ϕ
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−
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)
∂φ

∂ζϕ
− 1

k
L(φ) = 0, (5.5)

and the diffuse-reflection condition is

φ = −2
√

π

∫
ζr<0

ζrφEdζ (ζr > 0) at r̂ = 1. (5.6)

Take the distribution function, say φ∞, in the form

φ∞ =
L

T0

(
∂T

∂X1

)
∞

[(
ζ2 − 5

2

)
x1 − kζ1A(ζ)

]
, (5.7)

where A(ζ) is equal to the function A(ζ, 1) defined in Section A.2.9. It is easily
seen that this φ∞ satisfies the linearized Boltzmann equation (5.5) [more easily
seen by the rectangular coordinate expression ζi∂φ/∂xi = L(φ) /k] and that it
expresses the state at rest with temperature T0 + (∂T/∂X1)∞X1 and pressure
p0. Therefore, the distribution function φ of the present thermophoresis problem
approaches Eq. (5.7) at infinity. That is, the boundary condition of φ at infinity
is given by φ∞, i.e.,

φ → L

T0

(
∂T

∂X1

)
∞

[(
ζ2 − 5

2

)
r̂ cos θ − k(ζr cos θ − ζθ sin θ)A(ζ)

]
as r̂ → ∞.

(5.8)
The distribution function φ in the similarity form (Case 4 of Section A.5)15

φ =
L

T0

(
∂T

∂X1

)
∞

[Φc(r̂, ζr, ζ) cos θ + ζθΦs(r̂, ζr, ζ) sin θ],

is compatible with Eqs. (5.5), (5.6), and (5.8). The equation for Φc(r̂, ζr, ζ) and
Φs(r̂, ζr, ζ) are given in Case 4 of Section A.5 [or by Eqs. (4.107)–(4.109)]. From
the boundary condition (5.6),

Φc = −2
√

π

∫
ζr<0

ζrΦcEdζ, Φs = 0 (ζr > 0) at r̂ = 1, (5.9)

and from the condition (5.8) at infinity,

Φc →
(

ζ2 − 5
2

)
r̂ − kζrA(ζ), Φs → kA(ζ) as r̂ → ∞. (5.10)

15See Footnote 21 in Section 4.5.
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As shown in Section A.5, the macroscopic variables, i.e., density ρ, flow
velocity (vr, vθ, vϕ), temperature T, etc., have a simple dependence on θ, i.e.,

ρ − ρ0

ρ0 cos θ
,

vr

(2RT0)1/2 cos θ
,

vθ

(2RT0)1/2 sin θ
,

T − T0

T0 cos θ
,

prr − p0

p0 cos θ
,

prθ

p0 sin θ
,

pθθ − p0

p0 cos θ
,

pϕϕ − p0

p0 cos θ
,

qr

p0(2RT0)1/2 cos θ
,

qθ

p0(2RT0)1/2 sin θ
,

are independent of θ, and vϕ = prϕ = pθϕ = qϕ = 0.16

For small k, we can make use of the asymptotic theory in Section 3.1.17 The
solution can be easily obtained as18

vr

(2RT0)1/2 cos θ
=

L

T0

(
∂T

∂X1

)
∞

[
−3a4

(
1
r̂
− 1

r̂3

)
k2 + · · ·

]
, (5.11a)

vθ

(2RT0)1/2 sin θ
=

L

T0

(
∂T

∂X1

)
∞

[
3
2
a4

(
1
r̂

+
1
r̂3

)
+ 3Ya4(η)

]
k2 + · · · , (5.11b)

ρ − ρ0

ρ0 cos θ
=

L

T0

(
∂T

∂X1

)
∞

[
−r̂ +

1
r̂2

+
(
−3d1

r̂2
+ 3Ω1(η)

)
k

+
(
−Dth

r̂2
+ Ωth(η)

)
k2 + · · ·

]
, (5.11c)

T − T0

T0 cos θ
=

L

T0

(
∂T

∂X1

)
∞

[
r̂ − 1

r̂2
+
(

3d1

r̂2
+ 3Θ1(η)

)
k

+
(

Dth

r̂2
+ Θth(η)

)
k2 + · · ·

]
, (5.11d)

p − p0

p0 cos θ
=

L

T0

(
∂T

∂X1

)
∞

(
3
[
Ω1(η) + Θ1(η)

]
k + [Ωth(η) + Θth(η)] k2

−3a4γ1

r̂2
k3 + · · ·

)
, (5.11e)

qr

p0(2RT0)1/2 cos θ
=

L

T0

(
∂T

∂X1

)
∞

[
−5γ2

4

(
1 +

2
r̂3

)
k +

15γ2d1

2r̂3
k2 + · · ·

]
,

(5.11f)

16See Footnote 23 in Section 4.5.
17See Footnote 3 in Section 3.1.2.
18As noted in Section 3.1.6, the macroscopic variables except vr and qr are subject to the

S-layer correction at the order of k2 at the bottom of the Knudsen layer or in the neighborhood
η = O(k) of the boundary.
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with

Dth = −6d2
1 − 6d3 + 3d5,

Ωth(η) = −6d1Ω1(η) − 6Ω3(η) + 3Ω5(η),

Θth(η) = −6d1Θ1(η) − 6Θ3(η) + 3Θ5(η),

η = (r̂ − 1)/k.

Here, γ1 and γ2 are the nondimensional viscosity and thermal conductivity
defined in Section 3.1.3 (see also Section 3.1.9); a4, d1, d3, and d5 are the slip
coefficients and Ya4(η), Ω1(η), Ω3(η), Ω5(η), Θ1(η), Θ3(η), and Θ5(η) are the
Knudsen-layer functions introduced in Section 3.1.5. The fluid-dynamic part of
the pressure (p − p0)/p0 cos θ is given to the order of k3 to obtain the thermal
force on the sphere in harmony with the other variables;19 qr/p0(2RT0)1/2 cos θ
is also given because it is important in Section 5.3.2.20 The flow induced is
proportional to a4 and is a thermal-stress slip flow. The force Fi acting on the
particle is given by

F1 =
λgL

2

(2RT0)1/2

(
∂T

∂X1

)
∞

(
48πa4 Pr

5
k2 + · · ·

)
, F2 = F3 = 0,

where λg is the thermal conductivity of the gas [see Eq. (3.71)] and Pr (= γ1/γ2)
is the Prandtl number introduced in Section 3.1.9.21

The free-molecular-flow limit (k → ∞), where the particle radius is negligibly
small compared with the mean free path of the gas, is studied in Bakanov &
Deryaguin [1959] and Waldmann [1959], where φ∞ given by Eq. (5.7) is taken
as φ for the molecules impinging on the particle.22 Then, the force Fi acting on
the particle, the thermal force, is given as

F1 =
λgL

2

(2RT0)1/2

(
∂T

∂X1

)
∞

[
−4π

γ2
I5(A)

]
, F2 = F3 = 0,

19See Footnote 26 in Section 4.5.
20The expression −3 − 6d1k in the corresponding formula to qr at r̂ = 1 for small k in the

footnote to Table II in Takata & Sone [1995] should be −3 + 6d1k.
21In the formula, the mean free path 	, thus k, is hidden in λg [see Eq. (3.71)].
22The situation they considered is as follows. There is an infinite expanse of a gas with

a small temperature gradient. The small temperature gradient means that the variation of
temperature of the gas over the distance of the mean free path is much smaller than the
temperature of the gas. Then, the distribution function φ of the gas molecules is given by
Eq. (5.7). A small particle in the gas is considered here. The small particle means that the
size of the particle is much smaller than the mean free path. In a region far away from the
particle in the scale of the size of the particle but close to it in the scale of the mean free path,
the molecules from the particle come directly or without collision, and the relative number
of these molecules is negligibly small. Thus the gas in this region is nearly the same as the
gas in the absence of the particle. The molecules impinging on the particle from this region
arrive at the particle directly or without molecular collision. Thus, in the limit k → ∞, the
distribution function φ in Eq. (5.7) at r̂ = 0 can be taken as the distribution function of the
molecules impinging on the particle, because the difference between φ at r̂ = 0 and φ at r̂ =
1 is of higher order. The terminology “free-molecular-flow limit” is used to mean that the
particle is much smaller than the mean free path. Molecular collisions are taken into account
in the background gas as is seen from the function A(ζ) in Eq. (5.7).
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where γ2 is defined by Eq. (3.24) and I5(A) is the integral (3.25) of the function
A(ζ).23 The quantity in the square brackets is −1.94228 for a hard-sphere gas
and −16

√
π/15 (= −1.89062) for the BKW model.

The problem, i.e., Eqs. (4.107)–(4.109) with the boundary conditions (5.9)
and (5.10), is solved numerically for a hard-sphere gas in Takata, Aoki & Sone
[1994].24 Some of the profiles of the macroscopic variables are shown in Figs. 5.14
and 5.15. The force Fi acting on the particle, the thermal force, is expressed as

F1 =
λgL

2

(2RT0)1/2

(
∂T

∂X1

)
∞

h(th), F2 = F3 = 0, (5.12)

and the force coefficient h(th) is tabulated later (in Section 5.3.2) in Table 5.1.
The force coefficient h(th) for k � 1 or k → ∞ is given, from the above-
mentioned formulas of the force Fi, as

h(th) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
48πa4 Pr

5
k2 + · · · (k � 1),

−4π

γ2
I5(A) (k → ∞).

(5.13)

5.3.2 A spherical particle with an arbitrary
thermal conductivity

Here, we extend the analysis to the case where the sphere is a uniform solid
body with a uniform thermal conductivity. Then, the temperature field inside
the particle is determined by the heat-conduction equation

1
r̂2

∂

∂r̂

(
r̂2 ∂τp

∂r̂

)
+

1
r̂2 sin θ

∂

∂θ

(
sin θ

∂τp

∂θ

)
= 0 (r̂ < 1), (5.14)

where T0(1 + τp) is the temperature inside the particle and the axial symmetry
(∂/∂ϕ = 0) of the field is taken into account.

The equation for the perturbed velocity distribution function φ in the gas
and its boundary condition at infinity are the same as those in Section 5.3.1, that
is, the equation is Eq. (5.5) and the boundary condition at infinity is Eq. (5.8).
On the surface of the spherical particle, in addition to the diffuse-reflection
condition

φ = (ζ2 − 2)τp − 2
√

π

∫
ζr<0

ζrφEdζ (ζr > 0) at r̂ = 1, (5.15)

23The somewhat strange expression, containing quantities related to the collision integral,
in the square brackets of the thermal force for the free-molecular-flow limit is due to the two
reasons: γ2 comes from the choice of the conventional force formula with the thermal con-
ductivity λg, and I5(A) comes from the collision effect in the infinite space of the background
gas.

24See Footnote 27 in Section 4.5.
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Figure 5.14. Velocity profiles in thermophoresis around a spherical particle with a
uniform temperature for various k (a hard-sphere gas). (a) vr and (b) vθ. The solid
lines —– are the numerical solution, and the dashed lines - - - are the asymptotic
solution (5.11a) or (5.11b) with k = 0. In (b), the values on the sphere are marked by
• for k = 0.1, ¨ for k = 0.2, ˜ for k = 0.3, ˇ for k = 0.4, N for k = 0.6, H for k = 1,
O for k = 2, M for k = 4, and � for k = 10.
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Figure 5.15. Density and temperature profiles in thermophoresis around a spherical
particle with a uniform temperature for various k (a hard-sphere gas). (a) Density
and (b) temperature. The solid lines —– are the numerical solution, and the dashed
lines - - - are the asymptotic solution (5.11c) or (5.11d) with k = 0. The black circle •
indicate the values on the sphere.
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the condition of continuity of the energy flux through the surface of the particle
is required,

−λpT0

L

∂τp

∂r̂
= qr at r̂ = 1, (5.16)

where λp is the thermal conductivity of the spherical particle.
Here, we put the solution φ in the sum

φ = φth + cTh
L

T0

(
∂T

∂X1

)
∞

φ1, (5.17)

where φth is the solution of the thermophoresis of a spherical particle with the
uniform surface temperature T0 in Section 5.3.1, and cTh is an undetermined
constant.25 Then, the equation for φ1 is Eq. (5.5) with φ = φ1, and its condition
at infinity is

φ1 → 0 as r̂ → ∞. (5.18)

We put φ1 and τp in the similarity form26

φ1 = Φ(1)
c (r̂, ζr, ζ) cos θ + ζθΦ(1)

s (r̂, ζr, ζ) sin θ, (5.19a)

τp = cTh
L

T0

(
∂T

∂X1

)
∞

r̂ cos θ, (5.19b)

which is easily seen to be consistent with the equations and the boundary condi-
tions. The equations for Φ(1)

c (r̂, ζr, ζ) and Φ(1)
s (r̂, ζr, ζ) are given by Eqs. (4.107)–

(4.109) with (Φc,Φs) = (Φ(1)
c ,Φ(1)

s ), i.e.,

Dc(Φ(1)
c ,Φ(1)

s ) =
1
k

Fc, Ds(Φ(1)
c , Φ(1)

s ) =
1
k

Fs, (5.20)

where

Dc(Φ(1)
c , Φ(1)

s ) = ζr
∂Φ(1)

c

∂r̂
+

ζ2 − ζ2
r

r̂

∂Φ(1)
c

∂ζr
+

ζ2 − ζ2
r

r̂
Φ(1)

s , (5.21a)

Ds(Φ(1)
c , Φ(1)

s ) = ζr
∂Φ(1)

s

∂r̂
+

ζ2 − ζ2
r

r̂

∂Φ(1)
s

∂ζr
− ζr

r̂
Φ(1)

s − 1
r̂
Φ(1)

c , (5.21b)

and
Fc(r̂, ζr, ζ) = L(Φ(1)

c ), ζθFs(r̂, ζr, ζ) = L(ζθΦ(1)
s ). (5.22)

The boundary conditions on the sphere (r̂ = 1), corresponding to Eqs. (5.15)
and (5.16), are reduced to

Φ(1)
c = ζ2 − 2 − 2π3/2

∫ ∞

0

∫ π

π/2

ζ3 sin 2θζΦ(1)
c Edθζdζ (ζr > 0), (5.23a)

Φ(1)
s = 0 (ζr > 0), (5.23b)

25The temperature on the surface of the particle is not known (or specified) beforehand.
The constant cTh in Eq. (5.19b) is introduced for this reason, but this constant in Eq. (5.17)
is just for convenience.

26See Footnote 21 in Section 4.5.
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and

cTh = −4π

5
λg

kγ2λp

∫ ∞

0

∫ π

0

ζ5 sin 2θζ(Φ(th)
c + cThΦ(1)

c )r̂=1Edθζdζ, (5.24)

where θζ = Arccos(ζr/ζ),27 Φ(th)
c is Φc for the thermophoresis of a spheri-

cal particle with the uniform temperature T0 in Section 5.3.1, and the ther-
mal conductivity λg of the gas is used with the aid of the relation λgT0/L =
5kγ2p0(2RT0)1/2/4 (see Section 3.1.9). From Eq. (5.18), the condition at infinity
is

Φ(1)
c → 0 and Φ(1)

s → 0 as r̂ → ∞. (5.25)

The problem for (Φ(1)
c , Φ(1)

s ), i.e., Eqs. (5.20), (5.23a), (5.23b), and (5.25),
is the same as that for (Φc,Φs) in Section 4.6.2, where a sphere whose surface
temperature is given by T0(1 + cos θ) lies in a gas at rest with temperature T0

and pressure p0. That is, φ1 is φ in Section 4.6.2. From the condition (5.24),
the constant cTh is determined as

cTh = − C
(th)
q

5kγ2λp/4λg + C
(1)
q

, (5.26)

where

C(th)
q = π

∫ ∞

0

∫ π

0

ζ5 sin 2θζΦ(th)
c |r̂=1Edθζdζ

=
q
(th)
r |r̂=1

p0(2RT0)1/2(L/T0)(∂T/∂X1)∞ cos θ
, (5.27a)

C(1)
q = π

∫ ∞

0

∫ π

0

ζ5 sin 2θζΦ(1)
c |r̂=1Edθζdζ

=
q
(1)
r |r̂=1

p0(2RT0)1/2 cos θ
. (5.27b)

Here, q
(th)
r and q

(1)
r are qr’s corresponding to φth and φ1 respectively; C

(1)
q and

q
(1)
r are those in Sections 4.6.1 and 4.6.3. With this cTh, the solution φ of

thermophoresis of a spherical particle with an arbitrary thermal conductivity is
obtained by Eq. (5.17) with φth (φ in Section 5.3.1) and φ1 (φ in Section 4.6.2).

Corresponding to Eq. (5.17), the perturbed macroscopic variables (corre-
sponding to φ)

ρ − ρ0, vr, vθ, T − T0, prr − p0, prθ, pθθ − p0, pϕϕ − p0, qr, qθ,

are given by Eq. (5.17) where φ, φth, and φ1 are replaced by the macroscopic
variables corresponding to φ, φth, and φ1 respectively. That is, the nondimen-
sional macroscopic variables (say, h = ω, ui, etc.) expressed by the distribution

27See Footnote 22 in Section 4.5.
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function φ by Eqs. (1.97a)–(1.97f) are expressed by

h = hth + cTh
L

T0

(
∂T

∂X1

)
∞

h1, (5.28)

where hth and h1 are, respectively, given by Eqs. (1.97a)–(1.97f) with φ replaced
by φth and φ1.

The C
(th)
q and C

(1)
q in Eqs. (5.27a) and (5.27b) are functions of k that de-

termine cTh. When k is small, from the results in Sections 4.6.2 and 5.3.1, they
are

C(th)
q =

15
4

γ2k(−1 + 2d1k + · · · ),

C(1)
q =

5γ2

2
k −

(
5γ2d1 + 2

∫ ∞

0

HB(η)dη

)
k2 + · · · ,

and, therefore,

cTh =
3

2 + λp

λg

⎡⎣1 − 2

2 + λp

λg

(
d1λp

λg
− 4

5γ2

∫ ∞

0

HB(η)dη

)
k + · · ·

⎤⎦ . (5.29)

When k → ∞,

C(th)
q → −5

8
γ2k, C(1)

q → 1√
π

,

and, therefore,

cTh → λg

2λp
. (5.30)

The numerical data of C
(th)
q and C

(1)
q vs k are tabulated for a hard-sphere gas

in Table 5.1. When λp/λg → ∞, cTh reduces to zero irrespective of k and
the solution φ reduces to the solution φth for the particle with the uniform
temperature T0 discussed in Section 5.3.1.

The force Fi (F2 = F3 = 0) on the sphere, or the thermal force on a sphere
with an arbitrary thermal conductivity, is given as

F1

λgL2

(2RT0)1/2

(
∂T

∂X1

)
∞

=
F

(th)
1

λgL2

(2RT0)1/2

(
∂T

∂X1

)
∞

+
cThL

T0

(
∂T

∂X1

)
∞

F
(1)
1

λgL2

(2RT0)1/2

(
∂T

∂X1

)
∞

= h(th) +
4cTh

5γ2k

F
(1)
1

p0L2
, (5.31)

where F
(th)
1 is F1 in Section 5.3.1, F

(1)
1 is F1 in Section 4.6.2, and h(th) is defined

in Eq. (5.12), i.e.,

F
(th)
1 =

λgL
2

(2RT0)1/2

(
∂T

∂X1

)
∞

h(th). (5.32)
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Table 5.1. The numerical data of C
(th)
q , 4C

(th)
q /5γ2k, C

(1)
q , h(th), and F

(1)
1 /p0L

2 for
a hard-sphere gas.

k C
(th)
q

4
5γ2k

C
(th)
q C

(1)
q h(th) F

(1)
1

p0L2

0 0 −3 0 0 0
0.05 −0.2878 −2.3955 0.1859 −0.0068 −0.0228
0.1 −0.4757 −1.9797 0.2952 −0.0457 −0.0788
0.2 −0.7166 −1.4911 0.4048 −0.2075 −0.2241
0.4 −1.0348 −1.0766 0.4819 −0.6017 −0.4694
0.6 −1.301 −0.9025 0.5097 −0.9034 −0.6254
1 −1.802 −0.7500 0.5318 −1.2585 −0.7908
2 −3.019 −0.6282 0.5480 −1.6001 −0.9327
4 −5.430 −0.5649 0.5561 −1.7818 −0.9994
6 −7.836 −0.5435 0.5588 −1.8399 −1.0187

10 −12.64 −0.5262 0.5609 −1.8838 −1.0321
∞ −∞ −0.5 0.5642 −1.9423 −1.0472

From Eq. (5.26), the factor 4cTh/5γ2k is given by28

4cTh

5γ2k
= − 4C

(th)
q /5γ2k

5kγ2λp/4λg + C
(1)
q

. (5.33)

For small k, the formula (5.33) is reduced to

4cTh

5γ2k
=

12

5γ2(2 + λp

λg
)k

⎡⎣1 − 2

2 + λp

λg

(
d1λp

λg
− 4

5γ2

∫ ∞

0

HB(η)dη

)
k + · · ·

⎤⎦ ,

and, therefore, the thermal force Fi is given as

F1

λgL
2

(2RT0)1/2

(
∂T

∂X1

)
∞

=
48π Pr

5

(
K1

2 + λp/λg
k + (a4 − ATh)k2 + · · ·

)
, (5.34)

where

ATh =
2At

2 + λp

λg

+
2K1

(2 + λp

λg
)2

(
d1

λp

λg
− 4

5γ2

∫ ∞

0

HB(η)dη

)
.

For k → ∞, from Eq. (5.30),
4cTh

5γ2k
→ 0,

28The extra factor 4/5γ2k of the linear combination in the thermal force formula, compared
with Eq. (5.28), is due to the conventional force formula containing thermal conductivity.
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Figure 5.16. Thermal force [Eq. (5.31)] on a spherical particle with an arbitrary ther-
mal conductivity: F1/λgL2(2RT0)

−1/2(∂T/∂X1)∞ vs k (a hard-sphere gas). Here, ¨
indicates the numerical solution for λp/λg = ∞, ◦ for 10, and • for 1 (Takata &
Sone [1995]). The solid lines — are the asymptotic solutions for small k [from the top,
λp/λg = ∞ (correct up to the order of k2) in Ohwada & Sone [1992], 10 and 1 (correct
up to the order of k) in Takata & Sone [1995]]. The dot-dash line – -– indicates the
free molecular limit k → ∞ in Waldmann [1959] and Bakanov & Deryaguin [1959].
Experimental data are shown by smaller symbols: × indicates the case λp/λg = 475
(Hg in Air), 	 263 (NaCl in Air), N 8.14 (tricresyl phosphate in Air) in Schadt & Ca-
dle [1961]; O 366 (NaCl in Ar) in Jacobsen & Brock [1965]; • 8.14 (tricresyl phosphate
in Air) in Phillips [1975]; + 7.41 (Oil in Ar) in Schmitt [1959].

and thus, thermal force Fi is reduced to that in Section 5.3.1 [see Eqs. (5.12)
and (5.13)], i.e.,

F1

λgL
2

(2RT0)1/2

(
∂T

∂X1

)
∞

= −4π

γ2
I5(A). (5.35)

The numerical data of 4C(th)
q /5γ2k in Eq. (5.33), h(th) defined by Eq. (5.32), and

F
(1)
1 /p0L

2 in the formula (5.31) vs k are given for a hard-sphere gas in Table
5.1. The force F1 vs k for a hard-sphere gas obtained from these data is shown
in Fig. 5.16. Equation (5.35) for k → ∞ and Eq. (5.34) for small k up to the
order of k for finite λp/λg and up to the order of k2 for infinite λp/λg are also
shown in Fig. 5.16.

The thermal force depends considerably on the ratio λp/λg of the thermal
conductivities of the particle and the gas as well as on the Knudsen number (or
k). The ratio λp/λg is generally a large number. The force is in the direction
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opposite to the temperature gradient for most of the range of k. When k � 1,
the particle with a uniform temperature or very large λp/λg [O(k−2) or the
larger] is subject to a force in the direction of the temperature gradient for a
hard-sphere gas and the BKW model [see Eq. (5.34)]. This is due to the thermal-
stress slip flow discussed in Section 5.1.2. This case is specifically called negative
thermophoresis.

5.4 One-way flows induced through a pipe
without average pressure and temperature
gradients

5.4.1 Background

In Section 4.2.2, we saw a flow induced through a channel between two plates
with a temperature gradient along the plates. Generally, a flow is induced along
a pipe with a temperature gradient. The flow is in the direction of the tem-
perature gradient. This phenomenon is known as thermal transpiration for a
long time (e.g., Maxwell [1879], Knudsen [1910a, 1910b], Kennard [1938], Loeb
[1961], Sone [2000a]). Its application to a pumping system is considered by
connecting two reservoirs with a pipe with a temperature gradient. However,
to obtain a large pressure difference between the reservoirs, the temperature
gradient of the pipe is to be large or the pipe is to be long, which makes the
temperature difference at the two ends of the pipe large. This is not practi-
cal and some cascade process is required. As early as 1910, Knudsen devised
an experiment with a cascade system to obtain a pressure ratio as large as
ten (Knudsen [1910b]). No big progress was made for a while, but more at-
tention to engineering application of the flow has been paid anew recently, for
example, in relation to micro-mechanical systems (Huber [1995], Pham-Van-
Diep, Keeley, Muntz & Weaver [1995], Sone, Waniguchi & Aoki [1996], Vargo &
Muntz [1997], Hudson & Bartel [1999], Sone & Sato [2000], Aoki, Sone, Takata,
Takahashi & Bird [2001], Sone, Fukuda, Hokazono & Sugimoto [2001], Sone &
Sugimoto [2002, 2003], Young, Han, Muntz, Shiflett, Ketsdever & Green [2003],
Karniadakis, Beskok & Aluru [2005], Sugimoto & Sone [2005], etc.).

One of the basic problems of the cascade system is to investigate the pos-
sibility of a one-way flow through an infinite pipe under a periodic condition
along the pipe or through a finite pipe with its two ends at an equal pressure and
temperature. We will discuss this problem in this section, and its application
to a Knudsen compressor in Section 5.5.

5.4.2 Pipe with ditches

It is “almost sure” that a one-way flow cannot be induced in a straight pipe with
a uniform cross section by devising the temperature distribution along it. This
is shown mathematically by Golse [unpublished] (see his proof in Appendix A.4
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Figure 5.17. Channel configuration. (a) Channel between two parallel walls with
ditches dug periodically and (b) its wall temperature distribution.

of Sone [2002]), numerically in Sone, Waniguchi & Aoki [1996] and Aoki, Sone,
Takata, Takahashi & Bird [2001], and experimentally in Sone & Sato [2000].
The “almost sure” means that the mathematical proof is done on the basis of
the linearized Boltzmann equation and, thus, a one-way flow due to a nonlinear
effect is not excluded and that the numerical computation and experiment are
done only for limited cases, though they are done in a nonlinear region.

Consider a rarefied gas in a channel between two parallel walls with ditches
dug periodically and with a saw-like temperature distribution as shown in
Fig. 5.17. The time-independent solution periodic in the direction of the chan-
nel is studied for a hard-sphere gas numerically by the DSMC method (see
Section B.1) in Sone, Waniguchi & Aoki [1996] for various sets of parameters
of the system. In the following discussion, the Knudsen number Kn is defined
by av/D, where av is the mean free path of the gas in the equilibrium state
at rest with the average density ρav over the whole gas domain. A one-way
flow is shown to be induced in the X1 direction as shown in Fig. 5.18. Locally,
flows are induced in the direction of the temperature gradient of the wall, but
the flow induced in the −X1 direction on the bottom of a ditch is blocked by
the side wall of the ditch, and therefore, a one-way flow is induced in the X1

direction. Let Mf be the average mass flux over the cross section of the main
part of the pipe or channel. That is, DMf is the mass flow per unit time (or
the mass-flow rate) through the channel with unit width in X3 direction. The
nondimensional average mass flux Mf/ρav(2RT0)1/2 vs Kn is shown in Fig. 5.19.
When there are no ditches on the walls (d = 0), the one-way flow or the mass
flow through the channel vanishes although a local flow is induced. An example
of the flow pattern is given in Fig. 5.20. The corresponding Mf/ρav(2RT0)1/2

is 2.064× 10−4, which is zero within the error of the numerical computation. A
shallow ditch helps to induce a considerable one-way flow. For example, when
the depth of the ditch is reduced to half of Fig. 5.18 (d/D = 1/2 → 1/4, with
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T1/T0 = 3 Kn = 0.5

0 0.5 2X1/D

−1

−0.5
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D

0.1

2.5

2.4

1.3

1.4

2.2 2.3

Figure 5.18. One-way flow induced in the channel with ditches in Fig. 5.17 (L/D = 2,
b/D = 1/2, d/D = 1/2, T1/T0 = 3, Kn= 0.5). The arrows indicate the flow velocity
vi at their starting points; the scale 0.1 of (v2

i )1/2/(2RT0)
1/2 is shown near the right

lower corner in the figure. The solid curves indicate the isothermal lines T/T0 = 1.3,
1.4, . . . , 2.5. Here the Knudsen number is defined by Kn= �av/D, where �av is the
mean free path of the equilibrium state at rest with the average density ρav over the
channel.

4 50 1 2
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1

2

3

0.5 1.5

Figure 5.19. Mass flux Mf through the channel or the pipe with the periodic ditches
(L/D = 2, b/D = 1/2, d/D = 1/2, T1/T0 = 3) : Mf/ρav(2RT0)

1/2 vs Kn, where DMf
is the mass-flow rate through the channel with unit width in X3 direction, πD2Mf/4
is the mass-flow rate through the pipe, and ρav is the average density of the gas over
the domain. The symbol • : the channel, ◦ : the pipe.
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Figure 5.20. Flow field in a channel without a ditch in Fig. 5.17 (L/D = 2, b/D = 1/2,
d/D = 0, T1/T0 = 3, Kn= 0.5). The arrows indicate the flow velocity vi at their
starting points; the scale 0.01 of (v2

i )1/2/(2RT0)
1/2 is shown near the right lower corner

in the figure. The solid curves indicate the isothermal lines T/T0 = 1.5, 1.6, . . . , 2.4.
Here the Knudsen number is defined by Kn= �av/D, where �av is the mean free path of
the gas in the equilibrium state at rest with the average density ρav over the channel.

common L/D = 2, b/D = 1/2), Mf/ρav(2RT0)1/2 is reduced only by 15% of
the original value when Kn = 0.5 and T1/T0 = 3.

If the system is closed at X1 = 0 and X1 = NL (N : a positive integer)
with walls at temperature T1, the flow is blocked and the pressure difference
is induced between the two ends. The pressure variation along the channel is
shown in Fig. 5.21, where the average pressure PD/5 in the central part of the

channel of width D/5, i.e., PD/5 = (5/D)
∫D/10

−D/10
pdX2, instead of the local pres-

sure, is shown and the Knudsen number Kn is based on the average density ρav

over the domain 0 < X1 < NL. Some irregular behaviors are seen in the first
and last sectors owing to the end effect. Let us define a semi-local Knudsen
number KnL(X1) at X1 on the basis of the mean free path at the average den-
sity over the interval (X1, X1 + L). It is a decreasing function of X1 as shown
in Fig. 5.21. Thus, PD/5 is expressed as a function of KnL. The two relations,
PD/5(∗ + L)/PD/5(∗) vs KnL(∗) (the variation of the compression ratio with
the semi-local Knudsen number) and KnL(∗ + L) vs KnL(∗) (the relation be-
tween the neighboring semi-local Knudsen numbers), obtained from the data
for various global Knudsen number Kn are shown in Fig. 5.22. They are on a
smooth curve except the data on the end units, from which we can get the in-
formation of the effective range of the pump and its pumping strength. Further,
the n-stage pressure ratio PD/5(nL)/PD/5(0) can be obtained easily from the
two curves with the aid of the subsidiary curve KnL(∗ + L) = KnL(∗). That is,
let KnL(0) be given. Read PD/5(L)/PD/5(0) and KnL(L) on the two curves.
With the aid of the subsidiary curve KnL(∗ + L) = KnL(∗), shift the ordinate
KnL(L) to the abscissa. Continue this process and obtain PD/5(2L)/PD/5(L),
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Figure 5.21. The distribution of the average pressure PD/5 and the semi-local Knud-
sen number KnL in the channel closed with the walls with temperature T1 at X1 = 0
and X1 = NL (L/D = 2, b/D = 1/2, d/D = 1/2, T1/T0 = 3, Kn= 0.5). The average
pressure PD/5 is the average of the local pressure in the central part of the channel

of width D/5, i.e., PD/5 = (5/D)
R D/10

−D/10
pdX2, and the semi-local Knudsen number

KnL(X1) at X1 is defined on the basis of the mean free path at the average density
over the interval (X1, X1 + L).
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Figure 5.22. PD/5(∗ + L)/PD/5(∗) and KnL(∗ + L) vs KnL(∗) for the closed channel
(L/D = 2, b/D = 1/2, d/D = 1/2, T1/T0 = 3). The data for various global Knudsen
number Kn over the domain for the closed pipe N = 10 are shown. The data that
divert from the main smooth curve are those taken from the end sectors of each pipe.
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Table 5.2. The comparison of the average mass flux Mf through the pipe for various
depths of the ditches (Kn= 0.5, T1/T0 = 3, L/D = 2, and b/D = 1/2).

d/D 0 1/8 1/4 1/2 1

[Mf/ρav(2RT0)1/2] × 102 6.790 × 10−3 1.040 1.506 1.863 1.921
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Figure 5.23. Experimental apparatus demonstrating a one-way flow induced in a
pipe without average pressure and temperature gradients.

PD/5(3L)/PD/5(2L), . . . . Then we obtain PD/5(nL)/PD/5(0) by their product.
The corresponding analysis for a circular pipe with the periodic ditches is

carried out in Aoki, Sone, Takata, Takahashi & Bird [2001], and one-way flows
are shown to be induced through the pipe. The average mass flux Mf over
the cross section of the main part through the pipe, from which the mass-flow
rate through the pipe is given by πD2Mf/4, is compared with that through the
channel in Fig. 5.19. The one-way flow is stronger in the case of the channel.
The pumping effect is, however, found to be stronger for the pipe because of
larger resistance to a pressure gradient. According to the method explained in
the preceding paragraph, it is estimated that, for example, the pressure ratio
about 15 is obtained with N = 40 for the pipe system (L/D = 2, b/D = 1/2,
d/D = 1/2, T1/T0 = 3) operated in the range 1 ≤KnL(0) ≤ 1.5 of the semi-local
Knudsen number at the low-pressure end, while the pressure ratio about 5 is
obtained for the corresponding channel system. As in the case of the channel,
a one-way flow is not induced, within the error of the numerical computation,
when there are no ditches. Here, we list the data showing the effect of the
depth of the ditches on the one-way flow in Table 5.2. Even a shallow ditch has
a considerable effect, i.e., Mf/ρav(2RT0)1/2 for d/D = 1/8 is 56% of that for
d/D = 1/2.

The one-way flow induced by a ditch is demonstrated by a simple experiment
(Sone & Sato [2000]).29 The experiment is done in the vacuum chamber in

29The video file of the experiment can be downloaded at http://fd.kuaero.kyoto-
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heater

shelf

S sector N sector

Figure 5.24. A pipe with a shelf put up in its half part.

Section 5.1.1. The pipe system consists of two circular glass pipes of different
inner diameters, 12 and 24 mm, and of length 60 mm each (Fig. 5.23). They
are connected with a brass joint, and the joint is heated to about 110◦C with a
Nichrome wire around it. At each of the other ends of the two pipes, a copper
plate 4-mm thick is attached to keep the temperatures of both ends nearly the
same. In fact the temperatures are about 20◦C, and the difference is at most
1◦C. The flow is detected by windmills set at both ends of the polycarbonate
guides. The windmills rotate with speed about 180 rpm at 5 Pa, 110 rpm at
10 Pa, 60 rpm at 20 Pa, and 25 rpm at 40 Pa in the direction that the flow
is from the thinner pipe to the thicker. At 100 Pa and above, no motion is
observed. When only the thinner pipe is set, the speed is about 190 rpm at 10
Pa. When the pipe is of a uniform cross section, no flow is naturally induced.
If the position of the heater is shifted away from the middle point of the pipe
of a uniform cross section, no flow is induced.

5.4.3 Pipe with shelves

If we examine the mass-flow rate formulas for the Poiseuille flow and the thermal
transpiration through a uniform straight pipe for small Knudsen numbers, we
notice that a one-way flow can be induced in a pipe with a shelf (or shelves)
partially put up in the half of the pipe as shown in Fig. 5.24, where the part
with a shelf will be called S sector and the part without a shelf N sector. The
mass-flow rates of the two flows are easily obtained by the asymptotic theory in
Section 3.1 as

MP = −cP pS2

μRTw

dp

dX1
, MT =

cT pS

Tw

√
RTw

dTw

dX1
,

where MP is the mass-flow rate through the pipe in the X1 direction (or the axis
of the pipe) of the Poiseuille flow and MT is that of the thermal transpiration;
Tw is the temperature of the pipe, p is the pressure, μ is the viscosity, and 
is the mean free path of the gas; S is the cross-sectional area of the pipe; cP

is a constant depending on the shape of the cross section and cT is a constant

u.ac.jp/members/sone.
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depending on the molecular model and the kinetic boundary condition, and R
is the specific gas constant. It may be noted that the mass flow of the Poiseuille
flow is proportional to S2 and that of the thermal transpiration is proportional to
S. When the pipe is heated in the middle of the pipe, the thermal transpiration
is induced in both sides of the heater in the opposite directions, but the mass-
flow rate is the same whether the pipe passage is divided by thin shelves into
several (say, n) parts or not because (S÷n)×n = S. The two flows encounter in
the middle and the pressure there increases and a pressure gradient is induced
in each sector of the pipe, which induces a flow away from the middle part of
the pipe. This flow is weaker in the S sector because (S ÷ n)2 × n = S2/n.30

Therefore, a one-way flow is induced from the S sector to the N sector. More
about the mass-flow and the pumping effect along this line are given in Sone
[2002]. Here, we will extend the discussion when operated in larger Knudsen
numbers.

According to Section 4.2.1, the mass-flow rate M through a straight pipe
induced by the two effects, the pressure gradient in the gas and the temperature
gradient on the pipe, is expressed in the form [Eq. (4.34)]

M

2p0L2/(2RT0)1/2
=
(

L

p0

dp

dX1

)
M̂P(k) +

(
L

T0

dTw

dX1

)
M̂T(k), (5.36)

where M̂P (< 0) and M̂T (> 0) are determined by the Knudsen number (or
k) and the shape of the cross section, and L is the reference size of the cross
section. We will consider the case with a rectangular cross section to avoid the
complexity coming from the shape difference when shelves are put up. Let this
formula be for the N sector. Then the mass-flow rate Msh through each passage
of the pipe divided by shelves into n × n passages is given as follows:

Msh

2p0L2/n2(2RT0)1/2
=

1
n

[(
L

p0

dp

dX1

)
M̂P(nk) +

(
L

T0

dTw

dX1

)
M̂T(nk)

]
, (5.37)

because the reference length of the thinner pipe is L/n and thus, k is factored by
n. This naturally agrees with the discussion in the preceding paragraph because
M̂P(k) ∝ 1/k and M̂T(k) ∝ k for k � 1 (note that n2 corresponds to n in the
discussion there).

Let the length of the S sector be LS and that of the N sector be LN. The
temperature at the heater is kept at T1 and the temperature at both ends of
the pipe is at T0. The pressure at the ends is p0 and that at the heater is p1,
which is unknown. Then, the mass-flow rate MS through the S sector and that
MN through the N sector are given, respectively, as

MS

2p0L2/(2RT0)1/2
=

1
n

(
(p1 − p0)L

p0LS
M̂P(nk) +

(T1 − T0)L
T0LS

M̂T(nk)
)

, (5.38a)

MN

2p0L2/(2RT0)1/2
= − (p1 − p0)L

p0LN
M̂P(k) − (T1 − T0)L

T0LN
M̂T(k). (5.38b)

30We neglect the effect of the shape constant cP because we can choose a pipe of a rectan-
gular cross section as an example and divide it into similar rectangular sections.
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Owing to the conservation of mass-flow rate, these quantities, MS and MN, are
equal, from which the unknown p1 is determined as

(p1 − p0)
p0

(
LS

LN
+

M̂P(nk)
nM̂P(k)

)
= − (T1 − T0)

T0

M̂T(k)
M̂P(k)

(
LS

LN
+

M̂T(nk)
nM̂T(k)

)
.

With this p1 − p0 in Eq. (5.38a) or (5.38b), we obtain the mass-flow rate M
(= MS = MN) through the pipe as

M = MS0
mT

n

1 − mP

mT

1 +
mP

n

LN

LS

, (5.39)

where

MS0

2p0L2/(2RT0)1/2
=

(T1 − T0)L
T0LS

M̂T(k), (5.40a)

mT =
M̂T(nk)
M̂T(k)

, mP =
M̂P(nk)
M̂P(k)

. (5.40b)

Unless mP/mT = 1, a one-way flow is induced in this system consisting of the S
and N sectors. When k � 1, M̂T(k) ∝ k and M̂P(k) ∝ 1/k. Thus, for nk � 1,
mT = n and mP = 1/n, and, therefore,

M = MS0
n2 − 1

n2 + (LN/LS)
. (5.41)

The formula in Sone [2002] is its special case with LN/LS = 1. The numerical
data of M̂T(k) and M̂P(k) for a square cross section with the length of its side
taken as L (BKW model, the diffuse reflection), taken from Sone & Hasegawa
[1987], are shown in Table 5.3. The M̂T(k) increases monotonically with k;
|M̂P(k)| first decreases as k increases, reaching the minimum value around k =√

π or Kn = 2 (Knudsen minimum) and increases slightly to the value at k = ∞.
The data in the paper shows a similar behavior for the rectangular cross sections
L × 2L and L × 4L.31

31In Sone & Hasegawa [1987], the area S of the cross section is used instead of L2 on the
left-hand side of Eq. (5.36). Thus, the right-hand side expresses the average mass-flow rate
per unit area (or the average mass flux) divided by 2p0/(2RT0)1/2. The length of the shorter
side of the rectangular cross section being taken as the reference length, the average mass flux
for the Poiseuille flow or the thermal transpiration increases as the aspect ratio of the cross
section increases. In the channel or L × ∞, the average mass flux diverges as k → ∞ (see

Section 4.2.2). Incidentally, the ratio M̂T/M̂P → −1/2 as k → ∞, irrespective of the shape of
cross section including the channel [see Eqs. (4.43a) and (4.43b) in Section 4.2.2], from which
the condition that no mass flow is induced in a free molecular gas is derived. The result is
the linearized version of the condition (2.56) in Section 2.5.6. It may be noted that a half of
the length of the shorter side of the cross section is taken as the reference length L in Sone &
Hasegawa [1987] and that some care is required to transform the numerical data from it. The
factor 4 in the table is for that reason.
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Table 5.3. M̂P(k) and M̂T(k) for a square cross section.

4k/
√

π −4M̂P 4M̂T 4k/
√

π −4M̂P 4M̂T

0.05 7.457 0.0319 0.8 1.704 0.2806
0.06 6.467 0.0379 1 1.643 0.3147
0.07 5.708 0.0437 2 1.542 0.4226
0.08 5.119 0.0488 4 1.522 0.5250
0.09 4.686 0.0544 6 1.530 0.5789
0.1 4.337 0.0601 8 1.540 0.6137
0.2 2.800 0.1095 10 1.550 0.6386
0.3 2.298 0.1503 20 1.581 0.7038
0.4 2.047 0.1835 40 1.611 0.7515
0.5 1.905 0.2129 100 1.639 0.7923
0.6 1.814 0.2383 ∞ 1.677 0.8386
0.7 1.751 0.2607

The first factor MS0 in Eq. (5.39), or Eq. (5.40a), is the mass-flow rate
through the pipe only of the S sector with the shelves eliminated, where the
temperature is different at the two ends, i.e., T0 and T1. The combination of
the first and second factors, i.e., MS0mT/n, in Eq. (5.39) is the mass-flow rate
through the pipe only of the S sector with shelves. From the data of M̂T(k)
shown above, this is generally smaller than MS0 and approaches MS0 as k → 0
with a fixed n; it decreases as n increases with a fixed k. The last factor, i.e.,
(1 − mP/mT)/(1 + mPLN/nLS), which is smaller than unity for a finite k, ex-
presses the reduction of the mass-flow rate by attaching the N sector to make the
end conditions equal. For nk � 1, this factor reduces to (n2 − 1)/(n2 +LN/LS)
and approaches unity as n → ∞.

When a pipe with a temperature gradient is closed at their ends (or when
M = 0), a pressure gradient is induced according to Eq. (5.36) as

dp

dX1
= − p0

T0

dTw

dX1

M̂T(k)
M̂P(k)

.

Applying this formula to the present pipe consisting of the S and N sectors
having the opposite temperature gradients, we find that there is a pressure rise

−T1 − T0

T0

M̂T(nk)
M̂P(nk)

p0

in the S sector and that there is a pressure drop

−T1 − T0

T0

M̂T(k)
M̂P(k)

p0

in the N sector. Therefore, the pressure difference between the two ends of the
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guide
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pipe

heater
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Figure 5.25. The pipe system with S and N sectors. In this figure, the S sector has
two shelves.

pipe is given by

p2 − p0

p0
= −T1 − T0

T0

M̂T(k)
M̂P(k)

(
mT

mP
− 1

)
, (5.42)

where p0 is the pressure at the end of the S sector and p2 is the pressure at the
end of the N sector. In the limiting case that nk → 0, the factor mT/mP − 1
approaches n2 − 1, and the formula (5.42) reduces to that given in Sone [2002];
the effect of the shelves on the pressure rise (or the pumping effect) increases
indefinitely as n → ∞. When k is a finite value, mT/mP is bounded with respect
to n; so is the effect of the shelves on the pressure rise.

The foregoing analysis to estimate a one-way flow, proposed by the author
quite a long time ago, is based on the results for a slowly varying pipe flow
along a pipe discussed in Section 4.2. At the connection point of the S and N
sectors, the temperature gradient is discontinuous and the number of passage
of flow changes from n2 to one. Some correction is required for the formulas.
The correction becomes larger when the length of the sectors decreases to a size
comparable to the cross section of the pipe. From the simple analysis, however,
a one-way flow is seen to be induced only by changing the number of passages
in a part of a straight pipe, and the strength of the flow can be estimated.

The one-way flow induced in a pipe with the S and N sectors is demonstrated
in a simple experiment (Sone, Fukuda, Hokazono & Sugimoto [2001]).32 The
pipe system consisting of S and N sectors shown in Fig. 5.25 is prepared. The
inner diameter of the pipe is 11.5 mm and the length of sector S or N is 65 mm.
The system is put in a vacuum chamber of the bell jar shown in Section 5.1.1,
and a flow induced through the pipe is observed by windmills at the entrance
of the pipe (Fig. 5.25). The windmill rotates with speed, for example, 34 rpm

32The video file of the experiment can be downloaded at http://fd.kuaero.kyoto-
u.ac.jp/members/sone.
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Figure 5.26. Pump unit of the Knudsen compressor. (a) Overall view and (b) closer
view.

at 40 Pa and 94 rpm at 10 Pa for the S sector with one shelf and 48 rpm at 40
Pa and 120 rpm at 10 Pa for the S sector with two shelves in the direction that
the flow is from the S sector to the N sector, when the temperature of the pipe
at the heater is 95◦C and that at the entrance is 28◦C.

A model of a pump without a moving part is constructed using the above-
described system by Sone & Sugimoto [2002, 2003] (see the next section). Hud-
son & Bartel [1999] proposed to make use of an effect of accommodation in the
kinetic boundary condition.

5.5 Compressors without a moving part

5.5.1 Knudsen compressor

Here, a simple pump model that demonstrates the pumping effect discussed in
the preceding section (Section 5.4) is described. A cascade pumping system
consisting of ten equal pump units is prepared by Sone & Sugimoto [2002, 2003]
in the following way. The unit is a circular glass pipe with a heater at its middle
position along its axis, and the pipe is divided into several passages on one side
of the heater. That is, a bundle of 18 glass pipes of inner diameter 1.6 mm
and length 15 mm is inserted in a half part of a circular glass pipe of inner
diameter 15 mm and length 30 mm; a heater of Nichrome wire is wound around
one end of each thinner pipe, and it is situated in the middle part of the pipe
of length 30 mm; and a copper plate of thickness 1 mm is attached at each end
of the unit (Fig. 5.26). The thinner-pipe side and the other side correspond,
respectively, to the S sector and to the N sector in the preceding subsection
(Section 5.4.3) and will also be called so here. The copper plate plays multiple
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Figure 5.27. Pump system consisting of the ten units in Fig. 5.26.

roles: it is the joint to the next unit and the support, which is fixed to the
base of a thick copper plate; the plate joined with the base serves to keep the
temperature of the ends of the pipe units at a constant temperature close to
the room temperature. In the real unit, the mass flow induced in the S sector
by the temperature gradient is smaller than the corresponding flow in the N
sector owing to the reduction of the cross-sectional area of the passage by the
thickness of thinner pipes. However, some of the mass flow in the N sector is
blocked by the change of cross section at the joint of the S and N sectors as in
the system in Section 5.4.2. The five units are connected at the copper plates in
a series and two of this series are joined with a glass pipe as shown in Fig. 5.27.
This forms the pumping system consisting of ten units.

The experiment to examine the performance of the pumping system is carried
out in the following system (Fig. 5.28). The pumping system is put in a glass
bell jar of diameter 250 mm and height 300 mm put on a steel base, and the
N-sector end of the pumping system is open in the bell jar. The pressure in
the bell jar is controlled from atmospheric pressure down to several pascals by
a rotary vacuum pump. The other end (or S-sector end) of the pumping system
is connected to a steel tank of 8 × 103 cm3 with a glass pipe of length 150 mm
and a steel pipe of length 550 mm. The bell jar and the tank serve as reservoirs.
The heating is controlled by electric current supplied from the outside of the
bell jar. The performance of the pumping system is how fast it pumps a gas
from the tank to the bell jar when the heater is put on.
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Figure 5.28. Experimental system. (a) Real system and (b) explanatory diagram.

5.5.2 Performance

The performance of the pumping system is examined in the following way. First,
keep the whole experimental system at a desired uniform pressure by adjusting
the valve between the rotary pump and the vacuum chamber. After confirming
that the stationary state at a desired pressure is established, put on the heater,
and observe the pressures in the vacuum chamber and in the tank and the
temperatures at the heater, at the two ends of the pumping system, and in the
tank. In this process, the pressure in the vacuum chamber is kept constant at
the initial pressure by adjusting the valve.

Some of the results of the performance experiment in Sone & Sugimoto [2003]
are presented here.33 The time variations of the pressures in the tank and in
the vacuum chamber (bell jar) are plotted in Fig. 5.29. In the experiments, the
pressure in the bell jar is kept at a constant value p0 within the error of ±1%.
The pressure in the tank during the initial period before the heater is put on
is sometimes a little higher (the pressure difference: −0.1 ∼ 0.4 Pa for p0 ≤ 20
Pa and −0.5 ∼ 0.8 Pa for p0 ≥ 40 Pa) than that in the bell jar. Owing to
the uncontrollable pressure variation in the bell jar and the conceivable errors
(2%) between the two pressure gauges, this difference cannot be given a definite
meaning for p0 ≥ 40 Pa, but the relative difference amounts to 2 ∼ 6 % for low
pressures and is appreciable [see Fig. 5.29 (a)]. This difference may be attributed
to desorption of gases from the tank or pumping system, because this difference
reduces in the experiments after the tank is baked or after repeated experiments.
The temperature difference between the two ends of the pumping system is less
than 2 K. The temperatures of the two ends of the pumping system gradually
increase after the heater is put on. Thus, a temperature gradient (20 K over 600

33The pump in this paper is a little improved from that in Sone & Sugimoto [2002].
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Figure 5.29. Time variation of the pressure p (Pa) in the tank and in the bell jar
for the heating of 39 W. The t is the time after the heater is put on. The p0 is the
pressure in the bell jar that is aimed to be kept at that value.

mm) is induced along the pipe between the pumping system and the tank. These
gradients are, however, too small to induce an appreciable flow. Incidentally,
the temperature of the heater increases rapidly to around 500 K in 100 s and
then gradually to about 550 K in 800 s.

The pumping speed [or the volume-flow rate (cm3/s)] from the tank vs the
pressure (Pa) in the tank during the pumping process at a constant pressure in
the bell jar, estimated from Fig. 5.29, is shown in Fig. 5.30.

The gas flow is visualized by a windmill at the bell-jar-side end of the pump-
ing system (Fig. 5.28). The performance (e.g., the pumping speed) is naturally
reduced in the presence of the windmill. The results in Figs. 5.29 and 5.30 are
for the experiments without the windmill.

5.5.3 Discussion

The above pump makes use of the features of the two kinds of flows: temperature-
induced flow and pressure-driven flow. The cascade system works effectively in
the model. The present system consists of ten equal units. Much larger pressure
ratio can be obtained in a system consisting of much more units. However, in
a system consisting of many units to obtain a large pressure ratio, the pressure
in a unit differs much depending on its position in the series of units. Thus, a
unit should be designed so as to work effectively in its pressure range with the
aid of the discussion and data in Section 5.4. For example, when p0 = 240 Pa,
the pressure drop of only about 5% is obtained in the case of Fig. 5.29. This is
expected to be improved, without losing mass-flow rate, by using more thinner
pipes for the S sector; in this case, in view of Fig. 5.30, the mass-flow rate is
enough as a pump unit in a series of other units working in a lower pressure
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Figure 5.30. Pumping speed [volume-flow rate (cm3/s) from the tank] vs the pres-
sure p in the tank during pumping process at a constant pressure p0 in the bell jar,
corresponding to the experiment shown in Fig. 5.29.
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Figure 5.31. Thermodynamic process.

range, though the volume-flow rate decreases considerably. The principle and
mechanism of the pump system is so simple that a larger system giving a larger
flow rate can be made without difficulty.

The pump was made to demonstrate that a simple pumping system without a
moving part has an appreciable pumping speed (volume-flow rate) and maintains
a considerable pressure ratio between two reservoirs. Thus, no attention is
paid to the energy efficiency of the system; any means is not taken to prevent
unnecessary heat escape for a generally inefficient heat system. Thus the energy
efficiency is expected to be very low. For example, in the experiment in Fig. 5.29
of 39 W (watt = kg m2/s3) electric supply, it takes 250 s to expand volume
V0 = 4.8 × 103 cm3 of air in the tank to the full volume 8 × 103 cm3 of the
tank when p0 = 40 Pa, and thus the energy required in this process is E = 39
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(a) (b)

Figure 5.32. Thermal edge flow. (a) Arrays of heated plates and unheated plates
and (b) isothermal lines and the thermal edge flow induced by the arrays of the plates
in panel (a). See Section 5.1.4.

W×250 s = 9800 J. Here, consider a thermodynamic process to expand a gas.
Take a heat-permeable cylinder with a piston in an infinite expanse of a gas
at pressure p0 and temperature T0 (Fig. 5.31).Initially, the piston contains the
same gas of the same pressure and temperature as the surrounding gas, and
the volume of the cylinder is V0. Then, move the piston so slowly to expand
the volume to V1 that the temperature of the gas in the piston is kept at T0

during the expansion. The work WT required to move the piston by an external
force during this process is given by p0V0[V1/V0 − 1− ln(V1/V0)]. The work WT

corresponding to the above example is WT = 0.03 J. Thus the ratio WT /E is
about 3×10−6, which is by far smaller (1/1000) than that of a commercial turbo-
molecular vacuum pump. However, the present system being very primitive,
there is enough allowance to improve its performance, i.e., the enforcement of
flow by devising the shape and size of the system and the prevention of heat
escape.

5.5.4 Thermal-edge compressor

The system introduced above makes use of the thermal transpiration as its
driving force. A temperature gradient along the pipe is essential, and heat flow
through the solid part of the pipe accompanies the gradient. This is a loss of
energy in the system. In order to reduce this energy loss considerably, we have
recently devised a new driving system using the thermal edge flow (Section 5.1.4)
as shown in Fig. 5.32 and made a prototype of the new pump system (Sugimoto
& Sone [2005]; the patent is applied for). The pump we made is as follows. A
short steel pipe, with bottom, of inner diameter 60 mm and length 15 mm is
prepared (Fig. 5.33). A square hole (38 × 38 mm) is made in the middle of the
bottom. The array of 18 unheated plates is set directly on the hole. The array of
19 heated plates is framed with heat insulator and is set on the cylinder bottom
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Figure 5.33. Pump unit of the thermal-edge compressor. The unheated plate is
ceramic and the array of heated plates is made of a Nichrome band heater. The
smaller holes are used as ducts for cooling water. The larger holes are for joint-bolts.

so as to be in the configuration as shown in Fig. 5.32 (a). This is a unit of the
pump. The heated plates are themselves a heater made of Nichrome ribbon,
and the unheated plates are made of ceramic. Smaller holes in the pipe are used
as ducts for cooling water, and larger holes are used to connect the units. Five
units are arranged in a series as shown in Fig. 5.34. The wires supply electric
current to the heater and the cooling water flowing through the ducts keeps the
pipe at a uniform and constant temperature. In the new system, which may be
called a thermal-edge compressor, the heat flow from the hotter plates to the
colder, which results in loss of energy, is determined by the heat flow through
the gas, which is much smaller owing to smaller heat conductivity of the gas.
Each of the plates is kept at (nearly) uniform temperature, and the heat flow
through the solid part is small. Thus, we can expect that the loss of energy
decreases considerably. Let the pressure at the entrance of the pump be p 1 and
that at the exit be p0. An example of the performance test, i.e., the relation
between the volume flow rate V1 of the gas at the entrance and the pressure
ratio p1/p0 for the energy supply 32.2 W, is shown in Fig. 5.35. Incidentally,
the temperature of a heated plate is about 419 K for p0 = 10 Pa and 444 K for
p0 = 4 Pa and that of a unheated plate is 319 K. The energy efficiency of the
new system is six times better than that of the system in Section 5.5.1.

In view of the decisive advantage of the system, clean and of very simple
structure without a moving part, and the performance of the Knudsen and
thermal-edge compressors, a pump without a moving part is promising as a real
one. These compressors can be also applied to a valve system or a drying system
working in low pressures because their structures are simple, their sizes can be
chosen freely, and the working condition can be simply controlled by electric
current.
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Figure 5.34. Pump system of the thermal-edge compressor. Five units are joined in
a series. The ducts prepared by the smaller holes in the unit are used to flow cooling
water to keep the pipe at a uniform and constant temperature. Electric current is
supplied with a wire to the heater. The connection of the units is made tight with
packing.

(b)

0.8 1.0
p1 p0

0

500

1000

1500

2000

V
1

(c
m
3
/s
e
c
)

p0 4 Pa

2 Pa

1.5 Pa

0.8 0.9 1.0
p1 p0

0

500

1000

1500

2000

V
1

(c
m
3
/s
e
c
)

p0 6 Pa

10 Pa

15 Pa

20 Pa

30 Pa

(a)

Figure 5.35. Performance of the pump driven by thermal edge flow (the volume flow
rate V1 and the pressure p1 of the gas at the entrance of the pump for various pressure
p0 at the exit, i.e., V1 vs p1/p0 for various p0). (a) Smaller p0 and (b) larger p0. The
energy supply is 32.2 W. Wide error bars in panel (a) are due to poor precision of the
mass flow meter for small mass-flow rate.
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5.6 Summary

In this chapter, various kinds of time-independent flows induced by tempera-
ture fields have been explained and some of them are demonstrated in simple
experiments. They are typical of a rarefied gas. That is, they disappear in the
continuum limit (or Kn→ 0).34 In the free molecular gas (Kn= ∞), they also
disappears in a bounded-domain system or in an unbounded-domain system
with a common uniform state at rest at infinities, as we have seen in Section
2.5. In the free molecular case, however, a heated (or cooled) body in the gas
at rest is generally subject to a force, in contrast to the case in the continuum
limit. As the experiments show, appreciable flows are very easily induced by
temperature fields, in contrast to general understanding. The flow velocity and
temperature fields are closely related in a rarefied gas. Thermal polarization
mentioned in Section 4.5 is another outcome of this relation.

Besides being interesting flows typical in a rarefied gas, the temperature-
induced flows have a very important effect on the behavior of a gas in the
continuum limit. Their infinitesimal trace in the continuum limit produces a
finite effect on the behavior of the gas in the limit. We discussed this effect or
the ghost effect in Section 3.3.4. Its examples in well-known problems in the
classical fluid dynamics will be given in Sections 8.2 and 8.3.

34The flows induced by temperature fields are absent for the leading-order term of φ with
respect to k in Sections 3.1 and 3.2.



Chapter 6

Flows with Evaporation and
Condensation

Simple but fundamental flows with evaporation and condensation on a boundary
are discussed in this chapter. Some examples are mentioned in Chapters 2 and
4, and those related to bifurcation of flows are discussed in Chapters 7 and 8.

6.1 Evaporation from or condensation onto a
plane condensed phase

6.1.1 Problem and basic equations

Consider a semi-infinite expanse (X1 > 0) of a gas bounded by its plane con-
densed phase at rest with temperature Tw at X1 = 0. Let the saturated gas
pressure at temperature Tw be pw. At time t = 0, the gas is in the uniform equi-
librium state with pressure p∞, temperature T∞, and flow velocity (v1∞, 0, 0),
which is not in equilibrium with the condensed phase. We discuss the time
evolution of the disturbance produced by the interaction of the gas with the
condensed phase on the basis of the numerical computation of the BKW equa-
tion and the complete-condensation condition.

As in Section 4.8, the present spatially one-dimensional BKW system can
be reduced to a simpler system where two molecular velocity components are
eliminated. Let w [= (8RTw/π)1/2/(Acpw/RTw)] be the mean free path of the
gas in the equilibrium state at rest with pressure pw and temperature Tw. We
take pw as the reference pressure p0, Tw as the reference temperature T0, w as
the reference length L, and tw = w/(2RTw)1/2 as the reference time t0, and use
the notation introduced in Section 1.9. Then, the BKW system is transformed
into the following system for the marginal velocity distribution functions g and
h (see Section A.6): The marginal velocity distribution functions g and h are
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defined by

g =
∫ ∫

f̂dζ2dζ3, h =
∫ ∫

(ζ2
2 + ζ2

3 )f̂dζ2dζ3, (6.1)

and the macroscopic variables ρ̂, v̂1, and T̂ are given as

ρ̂ =
∫

gdζ1, v̂1 =
1
ρ̂

∫
ζ1gdζ1, T̂ =

2
3ρ̂

∫
[(ζ1 − v̂1)2g + h]dζ1. (6.2)

The BKW equation is reduced to

∂

∂t̂

[
g
h

]
+ ζ1

∂

∂x1

[
g
h

]
=

2√
π

ρ̂

[
G − g
H − h

]
, (6.3)

where [
G
H

]
=

ρ̂

(πT̂ )1/2

[
1
T̂

]
exp

(
− (ζ1 − v̂1)2

T̂

)
. (6.4)

The boundary condition on the wall is, at x1 = 0,[
g
h

]
=

1√
π

[
1
1

]
exp

(
−ζ2

1

)
(ζ1 > 0), (6.5)

and the condition at infinity is, as x1 → ∞,[
g
h

]
→ p̂∞√

πT̂
3/2
∞

[
1
T̂∞

]
exp

(
− (ζ1 − v̂1∞)2

T̂∞

)
, (6.6)

where p̂∞ = p∞/pw, T̂∞ = T∞/Tw, v̂1∞ = v1∞/(2RTw)1/2. The initial condition
at t̂ = 0 is[

g
h

]
=

p̂∞√
πT̂

3/2
∞

[
1
T̂∞

]
exp

(
− (ζ1 − v̂1∞)2

T̂∞

)
(x1 > 0). (6.7)

In the following discussion we often use, instead of v̂1∞, the Mach number M∞

M∞ =
v1∞

(5RT∞/3)1/2
,

which is related to v̂1∞ as M∞ = (6/5)1/2v̂1∞/T̂
1/2
∞ .

The marginal velocity distribution functions g and h have discontinuity at
the corner (x1, t̂) = (0, 0) of the domain (x1 > 0, t̂ > 0) for ζ1 > 0. In fact,
taking the limits of g and h (ζ1 > 0) in the two different orders, i.e., first t̂ → 0+

and then x1 → 0+ and first x1 → 0+ and then t̂ → 0+, we have

lim
x1→0+

(
lim

t̂→0+

[
g
h

])
=

p̂∞√
πT̂

3/2
∞

[
1
T̂∞

]
exp

(
− (ζ1 − v̂1∞)2

T̂∞

)
,

and

lim
t̂→0+

(
lim

x1→0+

[
g
h

])
=

1√
π

[
1
1

]
exp

(
−ζ2

1

)
.
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The two kinds of limits do not agree unless p̂∞ = 1, T̂∞ = 1, and v̂1∞ = 0.
The differences of the above two kinds of limits, i.e., the discontinuities of g and
h at the corner (x1, t̂) = (0, 0), propagate in the direction of the characteristic
x1 − ζ1t̂ = 0 of Eq. (6.3) and decay owing to the collision term on its right-
hand side. The direction of the propagation depends on ζ1. For ζ1 < 0, the
characteristic starts at an interior point of the gas, where g and h are continuous,
and therefore they are continuous for all x1 and t̂. Owing to the discontinuity, the
standard finite-difference scheme has a difficulty in the differentiation process
across the discontinuity. A hybrid method to treat the discontinuity is explained
in Section 4.8, according to which the numerical computation is carried out here.

6.1.2 Behavior of evaporating flows

First, we discuss the behavior of the gas evaporating from the plane condensed
phase on the basis of the numerical computation by Sone & Sugimoto [1990].

Transient behavior

The transient behavior of the gas for M∞ = 0, p̂∞ (= p∞/pw) = 0.25, and
T̂∞ (= T∞/Tw) = 1 is shown in Figs. 6.1–6.3. Figure 6.1 shows the time evolu-
tion of disturbance at the initial stage, and Fig. 6.2 shows the separation process
of the disturbance into a shock layer, a contact layer, and a Knudsen layer, ac-
companying the development of uniform regions between the wave and layers.
The front of disturbances, which is confirmed by investigation of the long time
behavior to be propagating with its shape preserving at a constant speed, is
a shock layer; the layer slowly widening with time across which the pressure
is uniform or nearly uniform, the flow velocity varies slightly, and the temper-
ature (thus, density) varies considerably is a contact layer, corresponding to
a contact discontinuity of the Euler equations; and the thin layer adjacent to
the condensed phase is a Knudsen layer. The shock layer propagates at a su-
personic speed determined by its strength (Section 4.7), and the contact layer
shifts nearly at the flow speed1 accompanied by diffusion. The uniform regions
escape from the flow field and the Knudsen layer converges quickly to a time-
independent state. Finally, a time independent state with the uniform state
between the contact layer and the Knudsen layer as the state at infinity is estab-
lished. Figure 6.3 shows the decay of the discontinuity of the marginal velocity
distribution function g, where the discontinuity is invisible at t̂ (= t/tw) = 50.

The case with a smaller pressure ratio, i.e., M∞ = 0, p̂∞ (= p∞/pw) = 0.05,
and T̂∞ (= T∞/Tw) = 1 is shown in Figs. 6.4 and 6.5. Figure 6.4 is the flow
field after the separation of the shock layer, the contact layer, and the Knud-
sen layer, where uniform regions between the shock layer and the contact layer
and between the contact layer and the Knudsen layer are developing. Owing to

1If the profile of the layer is shifting without deformation, and if the density varies con-
siderably but the flow velocity is uniform across the layer, the shifting speed of the profile is
easily seen to be the same as the flow velocity of the gas from the conservation equation of
mass (1.12).
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Figure 6.1. Transient process of the evaporating flow from a plane condensed phase
for the initial condition (M∞ = 0, p∞/pw = 0.25, T∞/Tw = 1) I: Initial stage.
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Figure 6.2. Transient process of the evaporating flow from a plane condensed phase
for the initial condition (M∞ = 0, p∞/pw = 0.25, T∞/Tw = 1) II: Separation stage.
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Figure 6.3. Propagation and decay of the discontinuity of the marginal velocity dis-
tribution function g in the evaporating flow from a plane condensed phase for the
initial condition (M∞ = 0, p∞/pw = 0.25, T∞/Tw = 1).
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Figure 6.4. Transient process of the evaporating flow from a plane condensed phase
for the initial condition (M∞ = 0, p∞/pw = 0.05, T∞/Tw = 1). (Computed newly by
H. Sugimoto.)
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Figure 6.5. Shift of the supersonic region to infinity in the transient evaporating
flow from a plane condensed phase for the initial condition (M∞ = 0, p∞/pw = 0.05,
T∞/Tw = 1) I: v1/c vs X1/�w for various large values of t/tw. (a) Wider range of
X1/�w and (b) Knudsen-layer region. The region with v1/c > 1 is moving away to
infinity as time goes on [panel (a)]. A point with v1/c < 1 seems to converge to a
finite X1/�w [panel (b)]. The fine dotted line in panel (a) or (b) is the line v1/c = 1.
(Computed newly by H. Sugimoto up to much longer time than in Sone & Sugimoto
[1990] to show the limiting behavior more clearly.)
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Figure 6.6. Shift of the supersonic region to infinity in the transient evaporating
flow from a plane condensed phase for the initial condition (M∞ = 0, p∞/pw = 0.05,
T∞/Tw = 1) II: (∂Xc/∂t)/(2RTw)1/2 vs (v1 − c)/(2RTw)1/2 for various large values
of t/tw. The curve marked by t → ∞ is the limiting curve estimated by extrapolating
the data up to t/tw = 5×105. The ∂Xc/∂t converges to v1−c in the supersonic region
(v1 > c) and it converges to 0 in the subsonic region (v1 < c). The various limiting
curves estimated with data up to the smaller t/tw being compared, they are seen to
approach the above-mentioned limiting curve t → ∞ from below. (Computed newly
by H. Sugimoto up to much longer time than in Sone & Sugimoto [1990] to obtain the
limiting curve t → ∞ more accurately.)

the small pressure ratio, a strong evaporating flow is induced accompanied by
a large temperature drop in the neighborhood of the condensed phase, and a
strong shock wave is formed, across which there is a large temperature jump.
Thus, there is a large temperature difference across the contact layer. The vari-
ation of flow velocity across the contact layer being immaterial, there is large
increase of Mach number v1/c [c = (5RT/3)1/2]2 across it, and the flow becomes
supersonic behind the contact layer. The contact layer diffuses or its thickness
increases with time. This is also clearly seen, besides the temperature profile
itself, from widening of the region of nonuniform velocity in the contact layer
as time goes on. The transition region in the neighborhood of the condensed
phase is still in a time-dependent state in contrast to the preceding example,
though the uniform region between the transition region and the contact layer is
expanding. Figure 6.5 shows the profiles v1/c vs X1/w for various large values
of t/tw.3 The supersonic region (v1/c > 1) seems to shift to infinity, but a sub-

2See Footnote 32 in Section 3.1.9.
3The time is measured in the scale of the mean free time in the computation. In the

atmospheric condition the mean free time is about 2 × 10−10 s. Thus, one second is a very
long time (more than t/tw = 109) in the reference time of the above computation. See
Footnote 102 in Section 3.6.2.



290 Chapter 6. Flows with Evaporation and Condensation

sonic point (v1/c < 1) seems to converge to a finite X1/w. This is confirmed
numerically in the next paragraph. After the supersonic region escapes from
the flow field to infinity, time-independent Knudsen layer with sonic speed4 at
infinity is established.

Let Xc be the coordinate X1 of the nearest point to X1 = 0 where (v1 −
c)/(2RTw)1/2 takes a given value. It is a function of (v1 − c)/(2RTw)1/2 and
t/tw. Figure 6.6 shows ∂Xc/∂t vs (v1 − c)/(2RTw)1/2 [the shifting velocity of
Xc of a given (v1−c)/(2RTw)1/2 as a function of (v1−c)/(2RTw)1/2] for various
large values of t/tw. Its limiting curve as t → ∞ estimated by extrapolating the
data up to t/tw = 5 × 105 is ∂Xc/∂t = v1 − c for v1 > c (in the supersonic
region) and ∂Xc/∂t = 0 for v1 < c (in the subsonic region) with the errors
unrecognizable in the figure. Any supersonic Xc point is moving away from the
condensed phase at a speed larger than v1 − c, and therefore, the supersonic
region finally disappears from the flow field to infinity.

Figures 6.7 and 6.8 show the case with M∞ = 0.75, p∞/pw = 1, and
T∞/Tw = 1. The gas initially receding from the condensed phase, a rarefac-
tion region develops near the condensed phase, from which an expansion wave,
a contact layer, and a Knudsen layer are separated, and uniform regions develop
between the wave and layers.

Time-independent solution

From the long-time behavior of time-evolution solutions, time-independent so-
lutions are constructed. That is, we pursue the time evolution until a uniform
state ahead of the Knudsen layer develops enough and confirm that g and h
there correspond to those of a Maxwellian; if necessary, we introduce the fol-
lowing cut and patch process several times: replace the contact layer etc. ahead
of the nearly uniform region by a uniform state and pursue the time evolution.
Being interested only in a time-independent solution, we do not have to follow
the time evolution accurately, and the time-consuming hybrid method is unnec-
essary. Instead, various nonuniform initial conditions are tried in order to avoid
missing any possible stable time-independent solution.

From a large number of time-independent solutions, we find that p∞/pw and
T∞/Tw are determined by M∞, where p∞, T∞, and M∞ are the data at infinity
in the time-independent solution (but not those of the initial condition), i.e.,

p∞
pw

= h1(M∞),
T∞
Tw

= h2(M∞) (0 ≤ M∞ ≤ 1). (6.8)

The functions h1(M∞) and h2(M∞) are tabulated in Table 3.4, where Mn cor-
responds to M∞.5 No time-independent solution exists for M∞ > 1. Three
examples of the profiles of the flow velocity, pressure, and temperature of the
time-independent solutions are shown in Fig. 6.9, where the crosses × denote

4See Footnote 32 in Section 3.1.9.
5If the general case with v̂2, v̂3, v̂2∞, or v̂3∞ 	= 0 is considered, they all vanish in the

limiting time-independent state (Aoki, Nishino, Sone & Sugimoto [1991]). Thus, the results
are commonly given by Table 3.4.
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Figure 6.7. Transient process of the evaporating flow from a plane condensed phase
for the initial condition (M∞ = 0.75, p∞/pw = 1, T∞/Tw = 1) I: Initial stage.
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Figure 6.8. Transient process of the evaporating flow from a plane condensed phase
for the initial condition (M∞ = 0.75, p∞/pw = 1, T∞/Tw = 1) II: Separation stage.
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Figure 6.9. Profiles of flow velocity, pressure, and temperature, i.e., v1/(2RTw)1/2,
p/pw, and T/Tw vs X1/�w of time-independent solutions evaporating from a plane
condensed phase. (a) M∞ = 0.1, (b) M∞ = 0.5001, and (c) M∞ = 0.9897. The
crosses × are the values at X1/�w = 0, and the dashed lines – – – are the asymptotes
at infinity. The approach to the state at infinity becomes slower as M∞ tends to unity.

the values at X1/w = 0. The approach to the state at infinity becomes slower
as M∞ tends to unity. The pressure ratio p∞/pw takes the minimum value
0.2075 at M∞ = 1. No state with lower than this pressure is possible at infinity.
When the state at infinity is vacuum initially, it is filled up with the gas in the
final time-independent state. The situation is different in the evaporation from
a cylinder or sphere to be discussed in Sections 6.2 and 6.4.

The case where the flow has a component parallel to the plane condensed
phase initially and at infinity, or equivalently the condensed phase is moving
along it, is discussed in Aoki, Nishino, Sone & Sugimoto [1991]. In the limit
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t/tw → ∞, the parallel component vanishes or it approaches the motion of the
condensed phase. Thus, the relation (6.8) holds in this case.

6.1.3 Behavior of condensing flows

Next, we discuss the behavior of the gas condensing onto the plane condensed
phase on the basis of the numerical computation by Sone, Aoki & Yamashita
[1986], Sone, Aoki, Sugimoto & Yamada [1988], and Aoki, Sone & Yamada
[1990].

Transient behavior

The solution is obtained numerically by a finite difference method for many sets
of parameters M∞ (< 0), p∞/pw, and T∞/Tw, and is classified into the following
four types:
(I) The gas is compressed on the condensed phase, and the compression region
propagates or diffuses toward upstream. The speed of propagation, however,
slows down and finally vanishes. A time-independent state with the prescribed
condition at infinity (M∞, p∞/pw, T∞/Tw) is established. [I-type solution;
Fig. 6.10 (a)]
(II) The gas is compressed on the condensed phase, and the compression wave
(shock wave) propagates up to upstream infinity. The region behind the wave
approaches a time-independent state with a new subsonic state at infinity. [II-
type solution; Fig. 6.10 (b)]
(III) Rarefaction region develops on the condensed phase and diffuses as time
goes on. A time-independent state with the prescribed condition at infinity is
established finally. [III-type solution; Fig. 6.10 (c)]
(IV) Rarefaction region develops on the condensed phase, and an expansion
wave propagates up to infinity. The region behind the wave approaches a time-
independent state with a new subsonic or sonic state at infinity. [IV-type solu-
tion; Fig. 6.10 (d)]

The type of solution is determined by the initial and boundary data (M∞,
p∞/pw, T∞/Tw). The type of numerical solutions on the section of T∞/Tw = 1
of the space (M∞, p∞/pw, T∞/Tw) is shown in Fig. 6.11, where the points
that give the I-, II-, III-, and IV-type solutions are marked by ◦, •, 	, and
� respectively.6 From close examination of a large number of the data, the
regions I, II, III, and IV of the four types of solution are schematically given in
Fig. 6.12. The boundary between regions I and II and that between regions II
and IV intersect on the plane M∞ = −1. For p∞/pw larger than the intersection,
the region of the III-type solution appears between regions I and IV.

Supplementary explanation of the time evolution of solutions is given with
the aid of Figs. 6.10, 6.13, and 6.14. The time evolution of solution at the point A

6To be more precise, the region II is subdivided into two regions. For p∞/pw smaller
than some value that depends on M∞ and T∞/Tw [or in the region below the dashed line in
Figs. 6.11 (a) and 6.12], the gas evaporates from the condensed phase, although the gas flow
is blowing toward the condensed phase at infinity.
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Figure 6.10. Typical time evolution of a flow condensing onto a plane condensed
phase. (a) M∞ = −1.534, p∞/pw = 2, T∞/Tw = 1, (b) M∞ = −1.095, p∞/pw = 2,
T∞/Tw = 1, (c) M∞ = −1.03, p∞/pw = 17, T∞/Tw = 1, and (d) M∞ = −0.1095,
p∞/pw = 2, T∞/Tw = 1. The c∞ is the sonic speed at infinity, i.e., c∞ = (5RT∞/3)1/2.
The limiting profile at t/tw = ∞ is a time-independent solution. (Recomputed by
T. Doi for the figure.)
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Figure 6.11. Type of solution on the cross section (T∞/Tw = 1) in the space
(M∞, p∞/pw, T∞/Tw). (a) Smaller p∞/pw and (b) larger p∞/pw. Here, ◦, •, 	, and
N indicate the I-, II-, III-, and IV-type solutions respectively. In panel (a), the solid
line —– shows the analytical result for small |M∞| in Section 7.2 on which a time-
independent solution with (M∞, p∞, T∞) at infinity exists, and the dashed line - - -
indicates the boundary below which evaporation takes place on the condensed phase
(see Footnote 6 in this subsection).
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Figure 6.12. Schematic map of the type of solution and the existence range of a time-
independent solution on the cross section T∞/Tw = const in the three-dimensional
space (M∞, p∞/pw, T∞/Tw). The I-, II-, III-, and IV-type solutions evolve, respec-
tively, from the initial and boundary conditions in the regions marked by (I), (II),
(III), and (IV). The dashed line - - - - in (II) indicates the boundary below which evap-
oration takes place on the condensed phase (see Footnote 6 in this subsection). In
the case of the existence range of a time-independent solution, (M∞, p∞/pw, T∞/Tw)
is taken as (M, p/pw, T/Tw) at infinity. A time-independent solution exists on the
boundary between the regions II and IV and in the regions I and III.

in Fig. 6.11 (a) is given in Fig. 6.13 (a). The state approaches a time-independent
state very rapidly and the disturbances are confined in a narrow region owing
to strong convection of the flow from infinity. Only a partial profile (head) of
a shock wave is observed. At the point a in Fig. 6.11 (a), the propagation of
disturbance decelerates more slowly and almost the full profile of a shock wave
is seen ahead of a thin Knudsen layer adjacent to the condensed phase [Fig. 6.10
(a)]. At the point b (or d) in Fig. 6.11 (a), a shock wave (or an expansion
wave) propagates accompanied by a thin Knudsen layer on the condensed phase
[Fig. 6.10 (b) or (d)]. As |M∞| decreases from b or increases from d in Fig. 6.11
(a), the strength of the wave decreases. At some point [e in Fig. 6.11 (a)] in
the middle, the disturbance propagates with damping and no finite disturbance
propagates up to upstream infinity; the solution approaches a subsonic time-
independent solution with the prescribed data at infinity (Fig. 6.14). Figure
6.10 (c) with the initial data at c in Fig. 6.11 (b) is an example of the solutions
of type III, which is a supersonic accelerating flow. The time evolution of the
solution at the point D in Fig. 6.11 (b), large p∞/pw and M∞ close to −1, is
shown in Fig. 6.13 (b). Close examination as done in Fig. 6.6 in Section 6.1.2
shows that the solution slowly approaches a time-independent state with a sonic
condition at infinity.7

7See Footnote 3 in Section 6.1.2.
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Figure 6.13. Time evolution of solutions I. (a) M∞ = −3.286, p∞/pw = 2, T∞/Tw =
1 [solution starting at A in Fig. 6.11 (a)] and (b) M∞ = −0.98, p∞/pw = 16, T∞/Tw =
1 [solution starting at D in Fig. 6.11 (b)]. The c∞ is the sonic speed at infinity, i.e.,
c∞ = (5RT∞/3)1/2. (Recomputed by T. Doi for the figure.)

Time-independent solution

From the preceding discussion and extensive data of the numerical computation,
we find that a time-independent solution exists for the set of parameters in the
regions I and III and on the boundary between the regions II and IV (see
Fig. 6.12), i.e.,

p∞/pw = Fs(M∞, 0, T∞/Tw) (−1 < M∞ < 0), (6.9a)

p∞/pw > Fb(M∞, 0, T∞/Tw) (M∞ < −1), (6.9b)

p∞/pw ≥ Fb(−1−, 0, T∞/Tw) = Fs(−1+, 0, T∞/Tw) (M∞ = −1), (6.9c)

where M∞, p∞/pw, and T∞/Tw are, respectively, M, p/pw, and T/Tw at in-
finity (but not those in the initial condition). The Fs(M∞, 0, T∞/Tw) and
Fb(M∞, 0, T∞/Tw), which are special ones with M t = 0 of Fs(M∞,M t, T∞/Tw)
and Fb(M∞,M t, T∞/Tw) introduced in Eqs. (3.229a)–(3.229c), are tabulated in
Tables 6.1 and 6.2.8

8The data Fs and Fb with Mt 	= 0 obtained by a similar numerical computation are shown
in Figs. 3.7 and 3.8 in Section 3.5.2.
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Figure 6.14. Time evolution of solution II: M∞ = −0.330, p∞/pw = 2, T∞/Tw = 1
[solution starting at e in Fig. 6.11 (a)]. (a) Profiles for various t/tw and (b) the limiting
profile at t/tw = ∞, i.e., the time-independent profile. The c∞ is the sonic speed at
infinity, i.e., c∞ = (5RT∞/3)1/2. (Recomputed by T. Doi for the figure.)

The analytical structure of the boundary of the regions is discussed in Chap-
ter 7. The profiles at t/tw = ∞ in Figs. 6.10, 6.13, and 6.14 are time-independent
solutions. The profiles at t/tw = ∞ of the flows supersonic at infinity in
Figs. 6.10 (a), (c), and 6.13 (a) show the feature of the time-independent so-
lution clearly. Several examples of the flow subsonic at infinity are separately
shown in Fig. 6.15, because the variations in the profiles are confined in a narrow
region in Fig. 6.10, where most of the space is used to show the development of
a new uniform state behind a wave front.

The profiles in Fig. 6.15 depend largely on the temperature ratio T∞/Tw.
The flow can be accelerating or decelerating depending on T∞/Tw for each Mach
number M∞. Three types of profiles are found at M∞ = −0.3, but the type of
panel (a2) appears only for a narrow range of T∞/Tw, inside of 1.13 − 1.15. At
M∞ = −0.9, the type of panel (a1) does not appear even at T∞/Tw = 0.02, but
the type of (a2) appears. In the figures, the profiles are given as functions of
X1/w. If they are given as a function of X1/∞, where ∞ is the mean free path
of the gas in the equilibrium state at rest with pressure p∞ and temperature T∞
and is related to w as ∞ = (T∞/Tw)3/2w [see Eq. (1.41)], the thickness of the
transition region for a given M∞ is nearly common to the three T∞/Tw’s and
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Figure 6.15. Profiles of subsonic time-independent solutions condensing onto a plane
condensed phase. (a1) M∞ = −0.3 and T∞/Tw = 0.5 (thus, p∞/pw = Fs = 1.9126),
(a2) M∞ = −0.3 and T∞/Tw = 1.14 (thus, p∞/pw = Fs = 1.8696), (a3) M∞ = −0.3
and T∞/Tw = 2.5 (thus, p∞/pw = Fs = 1.9246), (b1) M∞ = −0.9 and T∞/Tw = 0.02
(thus, p∞/pw = Fs = 60.47), (b2) M∞ = −0.9 and T∞/Tw = 1 (thus, p∞/pw = Fs =
9.4508), (b3) M∞ = −0.9 and T∞/Tw = 2.5 (thus, p∞/pw = Fs = 8.7417). The c∞ is
the sonic speed at infinity, i.e., c∞ = (5RT∞/3)1/2. The crosses × indicate the values
at X1/�w = 0. (Computed by T. Doi for the figure.)
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Table 6.1. Fs(M∞, 0, T∞/Tw) (BKW and complete condensation). The superscript
asterisk ∗ indicates the limiting value as M∞ tends to zero. The solution at M∞ = 0
exists only for T∞/Tw = 1.

Fs

−M∞ T∞/Tw =0.5 0.75 1.0 1.5 2.0 3.0 4.0
0 1.000∗ 1.000∗ 1.000 1.000∗ 1.000∗ 1.000∗ 1.000∗
0.05 1.114 1.104 1.104 1.106 1.112 1.119 1.130
0.10 1.232 1.221 1.220 1.225 1.233 1.250 1.267
0.15 1.367 1.354 1.352 1.359 1.370 1.396 1.421
0.20 1.525 1.506 1.502 1.511 1.526 1.559 1.592
0.25 1.707 1.679 1.673 1.683 1.701 1.742 1.785
0.30 1.914 1.878 1.869 1.879 1.900 1.951 2.002
0.35 2.146 2.106 2.092 2.103 2.130 2.186 2.254
0.40 2.427 2.369 2.350 2.359 2.385 2.454 2.521
0.45 2.757 2.675 2.649 2.654 2.685 2.761 2.838
0.50 3.122 3.031 2.998 2.995 3.026 3.111 3.212
0.55 3.583 3.449 3.396 3.389 3.423 3.513 3.612
0.60 4.092 3.942 3.869 3.849 3.870 3.975 4.107
0.65 4.734 4.525 4.424 4.385 4.411 4.509 4.639
0.70 5.527 5.225 5.077 5.014 5.029 5.124 5.284
0.75 6.411 6.074 5.873 5.758 5.747 5.838 5.993
0.80 7.626 7.105 6.826 6.640 6.597 6.666 6.829
0.85 9.092 8.385 8.040 7.695 7.602 7.630 7.758
0.90 11.11 9.993 9.443 8.968 8.790 8.754 8.902
1− 17.32 13.56 12.41 11.92

Table 6.2. Fb(M∞, 0, T∞/Tw) (BKW and complete condensation).

Fb

−M∞ T∞/Tw =0.5 0.75 1.0 1.5 2.0
1.1 9.009 8.130 7.703 7.331 7.210
1.2 5.586 5.185 5.002 4.864 4.850
1.3 3.825 3.614 3.526 3.477 3.498
1.4 2.793 2.673 2.629 2.619 2.650
1.5 2.137 2.064 2.042 2.051 2.085
1.6 1.692 1.647 1.638 1.654 1.686
1.7 1.376 1.348 1.346 1.367 1.396
1.8 1.143 1.126 1.129 1.151 1.180
1.9 0.9666 0.9573 0.9623 0.9852 1.011
2.0 0.8296 0.8252 0.8318 0.8545 0.8797
2.1 0.7209 0.7199 0.7274 0.7496 0.7733
2.2 0.6331 0.6346 0.6428 0.6640 0.6861
2.3 0.5611 0.5644 0.5730 0.5936 0.6141
2.4 0.5014 0.5059 0.5145 0.5342 0.5534
2.5 0.4513 0.4566 0.4653 0.4841 0.5023
2.6 0.4086 0.4146 0.4231 0.4411 0.4583
2.7 0.3722 0.3799 0.3872 0.4044 0.4208
2.8 0.3407 0.3474 0.3557 0.3723 0.3879
2.9 0.3133 0.3202 0.3283 0.3443 0.3591
3.0 0.2893 0.2963 0.3043 0.3196 0.3338
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it shrinks with increase of |M∞| owing to convection. More detailed numerical
data and discussions are given in Sone, Aoki & Yamashita [1986], Sone, Aoki,
Sugimoto & Yamada [1988], Aoki, Sone & Yamada [1990], and Aoki, Nishino,
Sone & Sugimoto [1991]. In the last paper, the case where the flow has a
component parallel to the boundary is discussed.

6.2 Evaporation from a cylindrical condensed
phase into a vacuum

6.2.1 Problem and basic equation

Consider a time-independent evaporating flow of a gas from a circular cylinder
made of its condensed phase (radius : L, temperature : Tw, and the saturated
gas pressure at temperature Tw : pw) into an infinite expanse of a vacuum. Here,
we discuss the behavior of the flow around the circular cylinder for a wide range
of the Knudsen number Knw (the mean free path of the gas in the equilibrium
state at rest with temperature Tw and pressure pw divided by the radius of the
cylinder) mainly on the basis of numerical analysis (Sone & Sugimoto [1995]) of
the BKW equation and the complete-condensation condition. We consider the
simple case where the state of the gas is axially symmetric and uniform and the
flow is in the radial direction.

Basically, we use the notation introduced in Section 1.9 with L, pw, and Tw

as the reference length L, the reference pressure p0, and the reference temper-
ature T0 respectively. Owing to the cylindrical geometry, the cylindrical co-
ordinates (r, θ, z) and their nondimensional counterparts (r̂, θ, ẑ) are used here.
We further introduce new notation. Let (ζr, ζθ, ζz) be the cylindrical-coordinate
components of the nondimensional molecular velocity ζ, and let ζr and ζθ be
expressed as

ζr = ζρ cos θζ , ζθ = ζρ sin θζ . (6.10)

The range of the new variables is (0 ≤ ζρ < ∞, −π < θζ ≤ π, −∞ < ζz < ∞).
Owing to the symmetry of the problem, f̂ is even in θζ and the problem can be
considered in the range 0 ≤ θζ ≤ π. The BKW equation (1.61) for the present
situation is reduced to9

Dcf̂ =
2√

πKnw
ρ̂(f̂e − f̂), (6.11)

where

Dc = ζρ cos θζ
∂

∂r̂
− ζρ sin θζ

r̂

∂

∂θζ
, Knw =

w

L
,

f̂e =
ρ̂

(πT̂ )3/2
exp

(
−

ζ2
ρ + v̂2

r − 2v̂rζρ cos θζ + ζ2
z

T̂

)
,

9Equation (6.11) is derived easily from Eq. (A.157) in Section A.3. The former is simpler
in the sense that it contains the derivatives with respect to only r̂ and θζ .
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and

ρ̂ = 2
∫

ζρf̂dζρdθζdζz, (6.12a)

v̂r =
2
ρ̂

∫
ζ2
ρ f̂ cos θζdζρdθζdζz, (6.12b)

T̂ =
2
3ρ̂

(
2
∫

ζρ(ζ2
ρ + ζ2

z )f̂dζρdθζdζz − ρ̂v̂2
r

)
, (6.12c)

p̂ = ρ̂T̂ . (6.12d)

Here, w is the mean free path of the gas in the equilibrium state at rest with
pressure pw and temperature Tw [w = (8RTw/π)1/2/(Acρw); ρw = pw/RTw]
and the integration is carried out over the domain (0 ≤ ζρ < ∞, 0 ≤ θζ ≤ π,

−∞ < ζz < ∞), where the symmetry of f̂ with respect to θζ is taken into
account. The boundary conditions on the cylinder and at infinity are

f̂ =
1

π3/2
exp(−ζ2

ρ − ζ2
z ) (r̂ = 1, 0 ≤ θζ < π/2), (6.13a)

f̂ → 0 (r̂ → ∞, π/2 < θζ ≤ π). (6.13b)

We introduce the marginal velocity distribution functions (g, h)

(g, h) =
∫ ∞

−∞
(1, ζ2

z )f̂dζz, (6.14)

where the variable ζz is eliminated. Then, the equations for g and h are

Dc(g, h) =
2√

πKnw
ρ̂[(ge, he) − (g, h)], (6.15)

(ge, he) =
(

1
T̂

,
1
2

)
ρ̂

π
exp

(
−

ζ2
ρ + v̂2

r − 2v̂rζρ cos θζ

T̂

)
. (6.16)

The variables ρ̂, v̂r, and T̂ are expressed by g and h as

ρ̂ = 2
∫

ζρgdζρdθζ , (6.17a)

v̂r =
2
ρ̂

∫
ζ2
ρg cos θζdζρdθζ , (6.17b)

T̂ =
2
3ρ̂

(
2
∫

ζρ(ζ2
ρg + h)dζρdθζ − ρ̂v̂2

r

)
, (6.17c)

where the integrations with respect to ζρ and θζ are carried out over the domain
(0 ≤ ζρ < ∞, 0 ≤ θζ ≤ π). The boundary conditions on the cylinder and at
infinity are

(g, h) = (1, 1/2)π−1 exp(−ζ2
ρ) (r̂ = 1, 0 ≤ θζ < π/2), (6.18a)

(g, h) → (0, 0) (r̂ → ∞, π/2 < θζ ≤ π). (6.18b)
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Figure 6.16. Lattice system for the time-independent evaporating flow from a cylin-
der. The figure corresponds to the explanation (i)–(iv) in Section 6.2.2.

6.2.2 Outline of numerical computation

The boundary-value problem (6.15), (6.18a), and (6.18b) will be solved numer-
ically by a hybrid finite-difference method developed in Sugimoto & Sone [1992]
and Sone & Sugimoto [1995]. The outline of the method is as follows:
(i) In the numerical computation we consider the problem in a finite domain
(1 ≤ r̂ ≤ r̂D, 0 ≤ ζρ ≤ ζD, 0 ≤ θζ ≤ π) in (r̂, ζρ, θζ) space, where r̂D and
ζD are chosen properly depending on the situations (Fig. 6.16). The discrete
solution (g#, h#) of (g, h) at the lattice points in (r̂, ζρ, θζ) space is constructed
as the limit of the sequence (g(n)

# , h
(n)
# ) obtained as follows. The initial solution

(g(0)
# , h

(0)
# ) is chosen properly. Let the solution (g(n)

# , h
(n)
# ) be known. The

solution (g(n+1)
# , h

(n+1)
# ) for (π/2 ≤ θζ ≤ π) is constructed from r̂ = r̂D to r̂ = 1

(the solution in region I in Fig. 6.16) and then (g(n+1)
# , h

(n+1)
# ) for (0 ≤ θζ < π/2)

from r̂ = 1 to r̂ = r̂D (the solution in regions II1, II2, and III in Fig. 6.16) with
the aid of a finite-difference equation for Eq. (6.15), which is prepared in such a
way that (g(n+1)

# , h
(n+1)
# ) is constructed in the direction from (r̂ = r̂D, θζ = π)

to (r̂ = 1, θζ = π/2) in the region I and in the direction from (r̂ = 1, θζ = π/2)
to (r̂ = r̂D, θζ = 0) in the regions II1, II2, and III. This direction of construction
of solution conforms with the direction of the characteristics of Eq. (6.15) on the
average.
(ii) On the surface of the cylinder, the marginal velocity distribution functions
g and h are discontinuous at θζ = π/2 (or ζr = 0) because the nature of the



6.2. Evaporation from a cylindrical condensed phase into a vacuum 305

velocity distribution function of the impinging molecules (π/2 < θζ ≤ π or
ζr < 0) and that of the outgoing molecules (0 ≤ θζ < π/2 or ζr > 0) are
different. The discontinuity propagates into the gas along the characteristic of
Eq. (6.15). Therefore, the discontinuity of (g, h) lies on the surface

r̂ sin θζ = 1 (0 < θζ ≤ π/2). (6.19)

The position of the discontinuity is independent of the molecular speed ζρ. As
the distance r̂ increases, the discontinuity decays owing to molecular collisions.
When we discretize Eq. (6.15), which includes derivative terms ∂/∂r̂ and ∂/∂θζ ,
we should not apply finite-difference approximation for differentiation to these
terms across the discontinuity. Therefore, we divide (r̂, ζρ, θζ) space into two
regions (II1 and II2 in Fig. 6.16) by the discontinuity surface (6.19) and apply
a standard finite-difference approximation in each region. In this scheme, the
limiting values of (g(n)

# , h
(n)
# ) on the surface from both sides of it are needed as

the boundary condition. They are obtained separately along the characteristic
(6.19) as is done in Section 4.8. In the region where the discontinuity has decayed
sufficiently, we use a standard finite-difference scheme in the whole region for
efficiency.
(iii) The numerical computation is carried out over a finite domain (1 ≤ r̂ ≤
r̂D, 0 ≤ ζρ ≤ ζD, 0 ≤ θζ ≤ π) with the boundary condition at infinity applied
at r̂ = r̂D instead of the original infinite domain (1 ≤ r̂ < ∞, 0 ≤ ζρ < ∞, 0 ≤
θζ ≤ π).10 Because g and h are seen to decay rapidly with ζρ from numerical
tests, accurate computation of the problem can be carried out with a reasonable
size of ζD. On the other hand, approach to the state at infinity as r̂ → ∞ is
very slow, and therefore we carry out detailed tests for different large r̂D and
confirm the accuracy of the computation.
(iv) The marginal velocity distribution functions g and h in the far field are
concentrated around the characteristic r̂ sin θζ = const for 0 ≤ θζ ≤ π/2 in
evaporating flows into a vacuum, as you will see in the result to be shown. The
characteristic r̂ sin θζ = const for 0 ≤ θζ ≤ π/2 approaches the line θζ = 0
as r̂ → ∞. Therefore, g and h vary considerably in a narrow range of θζ

near θζ = 0 for large r̂. We need a fine lattice system in this region. Because a
rectangular lattice system in (r̂, θζ) is inconvenient for this purpose, we introduce
a characteristic coordinate system r̂ sin θζ = const and r̂ = const in the region
(r̂ ≥ r̂C , 0 ≤ θζ ≤ θζC , where r̂C and θζC are chosen properly) (region III in
Fig. 6.16) and integrate the finite-difference system written in the characteristic
coordinate system.

10One may suspect that it restricts the solution in a narrower class to apply the boundary
condition (6.18b) at r̂ = r̂D (� 1), instead of at r̂ = ∞, and that other solutions may
exist from the following argument. The boundary condition (g, h) = (g0(ζρ), h0(ζρ))r̂−1

D
(π/2 < θζ ≤ π) at r̂ = r̂D, for example, is compatible with the condition (6.18b) at r̂ = ∞
in the limit r̂D → ∞. The new boundary condition may allow another solution with different
mass and energy flows from those of the solution considered here, because the mass and
energy fluxes integrated around large circle r̂ = r̂D, which is introduced by the new boundary
condition, remain finite owing to the factor r̂D of the circumference. The discussion that this
is not the case is given in Sone & Sugimoto [1995]. A similar argument applies to the spherical
problem in Section 6.4.
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6.2.3 The behavior of the gas

Before presenting the result of numerical computation, we give the solution of
two limiting cases: the free molecular solution and that in the continuum limit.

Free molecular flow

The free molecular solution is easily obtained by the recipe in Chapter 2 as

f̂ =

⎧⎨⎩ π−3/2 exp(−ζ2
ρ − ζ2

z ) [0 ≤ |θζ | < Arcsin(L/r)],

0 [Arcsin(L/r) < |θζ | ≤ π],
(6.20)

and

(g, h) =

⎧⎨⎩ (1, 1/2)π−1 exp(−ζ2
ρ) [0 ≤ |θζ | < Arcsin(L/r)],

(0, 0) [Arcsin(L/r) < |θζ | ≤ π].
(6.21)

At a given point in the gas, only the molecules whose velocities are inside the
wedge |θζ | < Arcsin(L/r) or which come directly from the cylinder are present.
The height of f̂ is invariant with respect to the distance.

From the velocity distribution function f̂ , the macroscopic variables are eas-
ily obtained, e.g.,

ρ

ρw
=

L

πrx
,

vr

(2RTw)1/2
=

√
πx

2
, M =

(
10

3πx2
− 5

9

)−1/2

,

T

Tw
= 1 − πx2

6
,

Tr

Tw
= 1 − πx2

2
+ xy,

Tθ

Tw
= 1 − xy,

Tz

Tw
= 1,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.22)

where
x = (L/r)/Arcsin(L/r), y = [1 − (L/r)2]1/2,

M is the Mach number defined by

M = vr/(5RT/3)1/2, (6.23)

and the temperatures Tr, Tθ, and Tz in the r, θ, and z directions, which are
often referred to in experimental literatures, are defined by

RρTr =
∫∫∫

(ξr − vr)2fdξrdξθdξz, RρTθ =
∫∫∫

ξ2
θfdξrdξθdξz,

RρTz =
∫∫∫

ξ2
zfdξrdξθdξz, T =

1
3
(Tr + Tθ + Tz),

⎫⎪⎪⎬⎪⎪⎭
(6.24)

where (ξr, ξθ, ξz) are the cylindrical-coordinate components of the molecular
velocity ξ, corresponding to the nondimensional (ζr, ζθ, ζz).

The macroscopic variables vr, M, T, Tr, and Tz take nonzero values at
infinity, because x = 1 and y = 1 there, and ρ and Tθ vanish with speeds
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proportional to L/r and (L/r)2 respectively as r/L → ∞. The mass and energy
flows mf and ef from the cylinder per unit time and per unit area of the cylinder
(or the mass and energy fluxes from the cylinder) are

mf/ρw(2RTw)1/2 = 1/2
√

π, ef/pw(2RTw)1/2 = 1/
√

π. (6.25)

Flow in the continuum limit

The solution in the continuum limit can also easily be obtained with the aid
of the asymptotic theory described in Section 3.5. It is the solution of the
Euler set of equations (3.225a)–(3.225c) under the boundary conditions (3.228a)
and (3.228b) with its Knudsen layer flattened on the condensed phase. The
isentropic expanding flow into a vacuum, given by the Euler set of equations, is
supersonic (M ≥ 1). In view of the boundary conditions (3.228a) and (3.228b),
the solution of the Euler set should take the value M = 1 on the condensed
phase, from which the solution is given by the parametric expression in M as
follows:11

ρ

ρ∗
=

8
(3 + M2)3/2

,
vr

(5RT∗/3)1/2
=

2M

(3 + M2)1/2
,

T

T∗
=

4
3 + M2

,
r

L
=

(3 + M2)2

16M
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.26)

or for large r/L,

ρ

ρ∗
=

L

2r
,

vr

(5RT∗/3)1/2
= 2−3

(
L

16r

)2/3

,
T

T∗
= 4

(
L

16r

)2/3

, M =
(

16r

L

)1/3

,

where ρ∗ and T∗ are given by the functions h1(M) and h2(M) defined in Section
3.5.2 as

ρ∗ = h1(1)ρw/h2(1), T∗ = h2(1)Tw.

The effect of the molecular model enters only through h1(1) and h2(1). For the
BKW equation and the complete-condensation condition,

h1(1)/h2(1) = 0.3225, h2(1) = 0.6434.

The mass and energy flows mf and ef per unit time and per unit area from the
cylinder are

mf

ρw(2RTw)1/2
=
(

5
6

)1/2
h1(1)

h2(1)1/2
,

ef

pw(2RTw)1/2
= 4

(
5
6

)3/2

h1(1)h2(1)1/2.

(6.27)
For the BKW equation and the complete-condensation condition,

mf/ρw(2RTw)1/2 = 0.2361, ef/pw(2RTw)1/2 = 0.5065.

11The fundamental properties of the gas flow governed by the Euler set of equations are
discussed in Courant & Friedrichs [1948], Oswatitsch [1956], Liepmann & Roshko [1957], and
so on.
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In the far field from the cylinder, the length scale Lr of variation [e.g.,
ρ/(dρ/dr)] of the above solution in the continuum limit is of the order of r, i.e.,

Lr ∼ r,

and increases indefinitely with the distance from the cylinder. On the other
hand, the local mean free path lc is12

lc = vr/Acρ ∼ (5RT∗/3)1/2r/Acρ∗L ∼ wr/L.

Thus, the local Knudsen number Knr(= lc/Lr), which characterizes the feature
of the variation of the flow, is

Knr = lc/r ∼ w/L = Knw. (6.28)

That is, the local Knudsen number is invariant along the flow from the cylinder.
Therefore, the solution in the continuum limit is a good approximation for small
Knw up to downstream infinity, where the density vanishes. This result depends
on molecular models, for example, Knr increases indefinitely for a hard-sphere
gas with the distance from the cylinder.13 The above character applies to the
pseudo-Maxwell molecule (Section A.2.4) as well as the BKW model.

It may be noted that the Mach number M of the Euler solution is unity
at r = L and that dρ/dr, dvr/dr, etc. are infinite at r = L. This violates the
assumption imposed in the derivation of the Euler set of equations from the
Boltzmann or BKW equation, which requires further discussion.

Numerical solution

The boundary-value problem, Eqs. (6.15), (6.18a), and (6.18b), is solved numer-
ically for various Knudsen numbers by the finite-difference method outlined in
Section 6.2.2.

Macroscopic variables The global profiles of the density, flow velocity, tem-
perature, and Mach number, i.e., ρ/ρw, vr/(2RTw)1/2, T/Tw, and M as func-
tions of r/L, are shown in Figs. 6.17 and 6.18. The variables vary sharply near
the cylinder and then approach the state at infinity very slowly. The density,
which vanishes at infinity, is proportional to 1/r in the far field. This is found by
close examination of the slope of the curve ln(ρ/ρw) vs ln(r/L). From this fact
and the conservation of mass flow (ρvrr = const), vr approaches a finite value at
infinity. The speed of approach becomes extremely slow as the Knudsen number

12In a hypersonic region, the characteristic molecular speed in the flow direction is the flow
speed. Thus, in estimating the size of the transport term (say, ξr∂f/∂r) of the Boltzmann
equation, we have to choose the flow speed (vr) instead of the thermal speed (

√
2RT ). Thus,

the Knudsen number based on the mean free path calculated with the flow speed is appropriate
to represent the ratio of the collision term to the transport term in the Boltzmann equation.

13The mean collision frequency of a Maxwellian for a molecule whose intermolecular force ex-
tends only to a finite radius dm (e.g., a hard-sphere molecule with diameter dm) is given, irre-
spectively of its flow velocity, by 4(πRT )1/2d2

mρ/m (Section A.8). Thus, Knr ∼ Knw(r/L)1/3.
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Figure 6.17. The profile of the macroscopic variables for various Knudsen numbers
Knw of the evaporating flows from a cylinder into a vacuum I: density and temperature.
(a) ρ/ρw vs r/L and (b) T/Tw vs r/L. In panel (a), the data for Knw = 0 (the
continuum limit), 0.005, 0.01, 0.1, 1, 10, and ∞ are shown. In panel (b), the data for
Knw = 0, 0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10, and ∞ are shown.
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Figure 6.18. The profile of the macroscopic variables for various Knudsen numbers
Knw in the evaporating flow from a cylinder into a vacuum II: flow velocity and Mach
number. (a) vr/(2RTw)1/2 vs r/L and (b) M vs r/L. The data for Knw = 0, 0.01,
0.1, 0.2, 0.5, 1, 2, 5, 10, and ∞ are shown. The dashed lines in panel (a) indicate the
limiting values of vr (i.e., vr∞) as r/L → ∞ [Eq. (6.29)] for Knw = 0.01, 0.1, 1, and 10.
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Figure 6.19. The ratios Tθ/Tr and Tz/Tr in the evaporating flow from a cylinder
into a vacuum. (a) Tθ/Tr vs r/L and (b) Tz/Tr vs r/L. The data for Knw = 0, 0.01,
0.1, 0.2, 0.5, 1, 2, 5, 10, and ∞ are shown. The dashed lines in panel (a) indicate the
estimated values at infinity for Knw = 0.01, 0.1, and 0.2.

increases [note the abscissa of Fig. 6.18 (a)]. Thus, it is impossible to carry out
the computation up to the point where vr is close enough to its value at infinity.
Fortunately, by close examination of the numerical data of (ŵ− ρ̂v̂3

r)/ρ̂v̂r, where
pw(2RTw)1/2ŵ is the energy flux in the gas in the r direction, it is estimated to
vanish at infinity (see Sone & Sugimoto [1995]), from which

v̂2
r∞ = lim

r̂→∞
ŵ/ρ̂v̂r = lim

r̂→∞
2πr̂ŵ/2πr̂ρ̂v̂r = ρwef/pwmf .

Thus
vr∞ = (2ef/mf )1/2, (6.29)

where vr∞ = limr→∞ vr and v̂r∞ = limr̂→∞ v̂r. The limiting velocity vr∞,
calculated from mf and ef given below, is shown in dashed lines in Fig. 6.18
(a). The temperature of the gas decreases to vanish as r increases to infinity
except in the free molecular flow. Its speed of approach to zero is extremely
slow for moderate and large Knudsen numbers.

In experimental references, the temperatures Tr, Tθ, and Tz in the r, θ,
and z directions [see Eq. (6.24)] are often referred to. They are all equal in an
equilibrium state and thus, their ratios are a simple measure of deviation from
an equilibrium state. The ratios Tθ/Tr and Tz/Tr are shown in Figs. 6.19 (a)
and (b). Obviously, Tr, Tθ, and Tz vanish at infinity because T vanishes there.
The ratio Tθ/Tr approaches a value between 0 and 1, which depends on Knw.
The ratio Tz/Tr approaches unity irrespective of Knw except for Knw = ∞, but
the convergence is extremely slow for moderate and large Knudsen numbers.

The mass and energy flows mf and ef per unit time and per unit area from
the cylinder are shown in Table 6.3 as mf/ρw(2RTw)1/2 and ef/pw(2RTw)1/2

vs Knw.
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Table 6.3. mf/ρw(2RTw)1/2 and ef/pw(2RTw)1/2 vs Knw in the evaporating flow
from a cylinder into a vacuum.

Knw
mf

ρw(2RTw)1/2

ef

pw(2RTw)1/2
Knw

mf

ρw(2RTw)1/2

ef

pw(2RTw)1/2

0 0.2361 0.5065 0.5 0.2761 0.5591
0.005 0.2429 0.5169 1 0.2786 0.5615
0.01 0.2463 0.5220 2 0.2802 0.5628
0.02 0.2509 0.5286 5 0.2813 0.5636
0.05 0.2586 0.5392 10 0.2817 0.5640
0.1 0.2649 0.5471 ∞ 0.2821 0.5642
0.2 0.2706 0.5536

Velocity distribution function We will explain the behavior of the marginal
velocity distribution function g referring to Figs. 6.20 and 6.21. The cases with-
out figures can be inferred from these figures (see Sone & Sugimoto [1995]).

In the free molecular flow (Knw = ∞) at the beginning in this subsection, the
marginal velocity distribution function g is constant along the characteristics of
Eq. (6.15) (or r̂ sin θζ = const). The function g, given by Eq. (6.21), is localized
in the wedge 0 ≤ |θζ | < Arcsin(L/r) in the molecular velocity space. (All the
molecules in the gas come directly from the cylinder and there are no other
molecules.) The height of g is constant and the wedge becomes thinner and
thinner along the flow. Thus, the height and the radial width of g take finite
values at infinity.

For finite values of Knw, the above sharply localized distribution function is
deformed by molecular collisions. It is noted that the distribution function g for
outgoing molecules (0 ≤ θζ < π/2) on the cylinder (at r = L) is the same for
all Knw [Eq. (6.18a)] and that the nonzero part of g in the region π/2 < θζ ≤ π
is a result of molecular collisions.

At Knw = 10 (large Knw), the effect of molecular collisions in a region near
the cylinder is appreciable only for small ζρ, and very few molecules return to
the cylinder [Fig. 6.20 (a) at r/L = 1 and Fig. 6.20 (b) at r/L = 1.890], because
the molecules with small ζρ have small free path, but the other molecules do not
have much chance of collision in this distance from the cylinder.14 Because the
peak of g at r/L = 1 is at ζρ = 0, the peak or height of g is lowered considerably,
but other overall feature of g retains much of that of the free molecular flow
[note the dashed line in Fig. 6.20 (b)]. The effect of molecular collisions on g
appears gradually but appreciably in a long distance along the flow [Fig. 6.20
(c) at r/L = 11.96 and Fig. 6.20 (d) at r/L = 988.1]. The height and the radial
width of g decrease to vanish at infinity, which is confirmed by the test in Sone
& Sugimoto [1995]. Correspondingly, the size of the discontinuity decreases to
vanish, but its relative size to the height of g increases in the far field. The

14In the discussion of g and h, the free path in the z direction can be disregarded because
the information with respect to ζz is averaged [see Eq. (6.14)].
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Figure 6.20. The marginal velocity distribution function g at various points in the
evaporating flow from a cylinder into a vacuum I: Knw = 10. (a) r/L = 1, (b) r/L =
1.890, (c) r/L = 11.96, and (d) r/L = 988.1. The surface g is shown by two sets of
lines ζρ = const and θζ = const. Only the part for 0 ≤ θζ ≤ π is shown because g
is symmetric with respect to θζ . The vertical stripes show the discontinuity of g. The
dashed lines in (b) and (c) show the curve g along θζ = 0 at r/L = 1 for comparison.
Note that ζr = ζρ cos θζ and ζθ = ζρ sin θζ .
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Figure 6.21. The marginal velocity distribution function g at various points in the
evaporating flow from a cylinder into a vacuum II: Knw = 0.1. (a) r/L = 1, (b)
r/L = 1.219, (c) r/L = 119.4, and (d) r/L = 1125. The surface g is shown by two sets
of lines ζρ = const and θζ = const. Only the part for 0 ≤ θζ ≤ π is shown because g
is symmetric with respect to θζ . The vertical stripes show the discontinuity of g. Note
that ζr = ζρ cos θζ and ζθ = ζρ sin θζ .
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decrease of the radial width of g is very slow; only its sign is seen in Fig. 6.20
(a) at r/L = 1 → Fig. 6.20 (d) at r/L = 988.1, but the width can be seen to
vanish from the result that Tr → 0 as r/L → ∞. Over the whole flow field, the
distribution function g in the (ζρ cos θζ , ζρ sin θζ) plane is like a hill with large
dislocation at (r/L) sin θζ = 1, and consists of two different parts. At Knw = 1
(moderate Knw), the qualitative feature of g is similar to that at Knw = 10, but
the effect of molecular collisions is more pronounced [see Figs. 2 (a)–(d) in AIP
document no. PAPS PHFLE-7-2072-915].

At Knw = 0.1 (fairly small Knw), the molecules that return to the cylinder
by molecular collisions increase considerably, but the discontinuity of g is still
large on the cylinder [Fig. 6.21 (a)]. As in the cases of Knw = 1 and 10, the
distribution function g on the cylinder is a hill with large dislocation, consisting
of two different parts. The discontinuity decays rapidly along the flow and
practically vanishes in several mean free paths from the cylinder [Fig. 6.21 (b)
at r/L = 1.219]. The effect of molecular collisions prevails over the whole part of
g there, and the distribution function g is a natural hill without additional bump
[Fig. 6.21 (b)]. The distribution function is further deformed along the flow, but
large deformation is got under in a distance of about 100 radii of the cylinder.
Further downstream, its roughly shape-preserving deformation (or deformation
expressed by scale changes) proceeds, as confirmed in Sone & Sugimoto [1995],
and the height and expanse of g decrease more rapidly than in the case of
Knw = 1 [Fig. 6.21 (b) at r/L = 1.219 → Fig. 6.21 (d) at r/L = 1125]. Even
at this fairly small Knw, the flow deviates considerably from the corresponding
local equilibrium state over the whole flow field.

At Knw = 0.01 (small Knw), the molecules that return to the cylinder further
increase; the discontinuity of g on the cylinder shrinks but is still considerable.
The distribution function g is, as before, a hill with dislocation, consisting of two
different parts. The discontinuity practically vanishes in a very short distance
of the order of 2w/L. In this short distance, the deformation of g is limited
to small ζρ and the neighborhood of the discontinuity. Effects of molecular
collisions prevail over the whole distribution function down the flow, and the
distribution function becomes fairly close to a local equilibrium distribution in a
distance of about 10w from the cylinder. Further downstream, the distribution
function remains close to local equilibrium. The height of g decreases slower
but the expanse of g shrinks faster than in the case of Knw = 0.1.

The behavior of the field is proper to Knw. This is related to the relation
(6.28) of Knr to Knw, which depends on molecular models.16 The behavior
proper to Knw in the far field is a good contrast to the free molecular behavior
in the far field of the evaporating flow from a spherical condensed phase to be
discussed in Section 6.4.

15The supplement to Sone & Sugimoto [1995]. Order by PAPS number and journal reference
from AIP, Physics Auxiliary Publication Service, Carolyn Gehlbach, 500 Sunnyside Boulevard,
Woodbury, NY 11797-2999. Fax: 516-576-2223, e-mail: janis@aip.org.

16The relation is derived for a Maxwellian. Thus, the correct relation requires to be calcu-
lated on the basis of its proper velocity distribution function when Knw is not small.
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6.3 Evaporation from a cylindrical condensed
phase into a gas

6.3.1 Problem and basic equation

Consider a time-independent evaporating flow of a gas from a circular cylinder
made of its condensed phase (radius : L, temperature : Tw, and the saturated
gas pressure at temperature Tw : pw) into an infinite expanse of a gas at rest
(pressure p∞ and temperature T∞). We discuss the behavior of the flow around
the circular cylinder for a wide range of the pressure ratio p∞/pw and the Knud-
sen number Knw (the mean free path of the gas in the equilibrium state at rest
with temperature Tw and pressure pw divided by the radius of the cylinder) on
the basis of numerical analysis (Sugimoto & Sone [1992]) of the BKW equation
and the complete-condensation condition.

The equation for f̂ and the boundary condition on the cylinder are given by
Eqs. (6.11) and (6.13a). The boundary condition at infinity is

f̂ → p̂∞
π3/2T̂

5/2
∞

exp

(
−

ζ2
ρ + ζ2

z

T̂∞

)
, (6.30)

where p̂∞ = p∞/pw and T̂∞ = T∞/Tw. The equations for the marginal velocity
distribution functions g and h and their boundary conditions on the cylinder
are given by Eqs. (6.15) and (6.18a). Their boundary conditions at infinity are

(g, h) →
(

1
T̂∞

,
1
2

)
p̂∞

πT̂∞
exp

(
−

ζ2
ρ

T̂∞

)
. (6.31)

6.3.2 The behavior of the gas

Free molecular flow

The solution for the free molecular flow is obtained by a simple modification of
the solution given in Section 6.2.3. That is, the velocity distribution function
in the wedge region is the same as before, and that in the other region is given
by the Maxwell distribution at infinity.

The free molecular solution is isolated from the solution for a finite Knudsen
number. The length scale Lr of variation of variables [e.g., ρ/(dρ/dr)] becomes
longer and longer with the distance from the cylinder and it is infinite at infinity,
i.e., L∞ = ∞. Therefore, when the state at infinity is not vacuum (the density
ρ∞ at infinity is not zero), the effective Knudsen number Kn∞ (= ∞/L∞; ∞ :
the mean free path at infinity) at infinity vanishes, however small ρ∞ may be
[see Eqs. (1.22) and (1.41)]. The solution approaches a solution in the continuum
limit in the far field. Thus, the behavior of the solution for the free molecular
flow is different from that for a finite Knw. For example, the solution for the free
molecular flow exists for an arbitrary set of the parameters p̂∞ and T̂∞, but, as
will be shown in the followings, the solution for a finite Knw exists only when
some relation is satisfied between p̂∞ and T̂∞.



316 Chapter 6. Flows with Evaporation and Condensation

Flow in the continuum limit

According to the asymptotic theory in Section 3.5, the solution is given by the
Euler set of equations (3.225a)–(3.225c) with the boundary conditions (3.228a)
and (3.228b) on the cylinder and the conditions at infinity.17 Thus, the flow is
isentropic except for the shock layer (see Section 4.7), if any. The temperature
ratio T∞/Tw and the mass and energy flows mf and ef from the cylinder per
unit time and per unit area of the cylinder are determined by the pressure ratio
p∞/pw as follows. The temperature T∞ at infinity cannot be chosen at our
disposal. The flow velocity (vr∞, 0, 0) at infinity is imposed to vanish as the
boundary condition.
(i) For p∞/pw > (4/3)5/2h1(1) : The results are expressed with the aid of the
parameter Mc (the Mach number of the Euler solution on the condensed phase)
as

p∞
pw

=
(

M2
c

3
+ 1

)5/2

h1(Mc),
T∞
Tw

=
(

M2
c

3
+ 1

)
h2(Mc),

vr∞
(2RTw)1/2

= 0,

(6.32)

mf

ρw(2RTw)1/2
=
(

5
6

)1/2
Mch1(Mc)
h2(Mc)1/2

, (6.33a)

ef

pw(2RTw)1/2
=

1√
3

(
5
2

)3/2 (
M2

c

3
+ 1

)
Mch1(Mc)h2(Mc)1/2. (6.33b)

(ii) For 0 < p∞/pw < (4/3)5/2h1(1) : A shock layer stands between the cylin-
der and infinity. The Mach number on the condensed phase is unity, i.e., Mc = 1.
The quantities T∞/Tw , vr∞/(2RTw)1/2, mf/ρw(2RTw)1/2, and ef/pw(2RTw)1/2

are given by

T∞
Tw

=
4
3
h2(1) (= 0.8579),

vr∞
(2RTw)1/2

= 0, (6.34)

mf

ρw(2RTw)1/2
=
(

5
6

)1/2
h1(1)

h2(1)1/2
(= 0.2361), (6.35a)

ef

pw(2RTw)1/2
=

√
2
(

5
3

)3/2

h1(1)h2(1)1/2 (= 0.5065), (6.35b)

where the numerical data after the final equal sign in each equation are those
for the BKW equation and the complete-condensation condition. For this pres-
sure range, these quantities are independent of the pressure ratio p∞/pw. The
limiting values of vr∞/(2RTw)1/2 and T∞/Tw as p∞/pw → 0 do not approach
those of the flow into a vacuum in Section 6.2.3. These two cases are two dif-
ferent states derived from different processes in taking the limit that r/L → ∞
and p∞/pw → 0 : one is the state derived by taking first r/L → ∞ and then

17See Footnote 11 in Section 6.2.
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Figure 6.22. Temperature ratio T∞/Tw vs pressure ratio p∞/pw for various Knudsen
numbers Knw in the evaporating flow from a cylinder into a gas. The curve with the
mark A is the solution in the continuum limit, i.e., Eqs. (6.32) and (6.34).

p∞/pw → 0, and the other is the state derived by taking first p∞/pw → 0 and
then r/L → ∞. In the latter, the shock wave shifts to infinity and disappears
from the flow field in the first limit. Thus the state at infinity is ahead of the
shock wave. On the other hand, in the former, the state behind the shock wave
is chosen as the state at infinity in the first limit and then the pressure at infinity
is brought to zero in the second limit.

Numerical solution

The boundary-value problem, Eqs. (6.15), (6.18a), and (6.31), is solved numer-
ically for various Knudsen numbers by the finite-difference method outlined in
Section 6.2.2.

Macroscopic variables The solution of the problem is determined by speci-
fying the pressure ratio p∞/pw and the Knudsen number Knw. The temperature
ratio T∞/Tw is determined by them, i.e.,

T∞/Tw = T (p∞/pw, Knw). (6.36)

Their relation is shown in Fig. 6.22, where the solution in the continuum limit
is marked by A.

The profiles of the density, flow velocity, temperature, and Mach number,
i.e., ρ/ρw, vr/(2RTw)1/2, T/Tw, and M [= vr/(5RT/3)1/2] as functions of r/L,
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Figure 6.23. The profiles of the flow velocity vr, the pressure p, the temperature T,
and the Mach number M for various Knudsen numbers Knw in the evaporating flow
from a cylinder into a gas I: p∞/pw = 0.5. (a) vr/(2RTw)1/2 vs r/L, (b) p/pw vs r/L,
(c) T/Tw vs r/L, and (d) M vs r/L. The curves for Knw = 0 (the continuum limit),
0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, and 10 are shown. The data are arranged in
the order (or reverse order) of Knw except on or near the cylinder. The values on the
cylinder are shown by the same symbols for Knw as in Fig. 6.22. The curve with the
mark A is the solution in the continuum limit.

are shown for various values of the Knudsen number Knw in Figs. 6.23 and 6.24
representing two typical behaviors. Figure 6.23 is the case p∞/pw = 0.5. The
flow is accelerated near the cylinder and then is decelerated to the state at rest
at infinity. It is subsonic over the whole flow field. The acceleration near the
cylinder is smaller for larger Knudsen number. The pressure and temperature
for small Knw decrease sharply near the cylinder, overshooting the uniform state
at infinity, and then increase gradually to the state at infinity. As Knw becomes
larger, their overshoots disappear and they decrease moderately and monotoni-
cally to the state at infinity. With decrease of p∞/pw, the acceleration and the
overshoot are more intensified and extend in a wider region. At p∞/pw = 0.4260,
the flow (except for the Knudsen-layer correction) with Knw = 0 reaches sonic
(M = 1) on the cylinder, but the flow with Knw > 0 is subsonic over the whole
field. For smaller p∞/pw, the flow with small Knw is accelerated to supersonic
speed and then is decelerated sharply, and with increase of Knw, the acceleration
becomes weaker, its region shrinks, the deceleration becomes milder, and finally
the flow becomes subsonic over the whole field. As p∞/pw becomes smaller, the
flow is accelerated up to farther downstream and the acceleration to supersonic
state occurs in larger Knw. Figure 6.24 is the case p∞/pw = 0.05.
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Figure 6.24. The profiles of the flow velocity vr, the pressure p, the temperature T,
and the Mach number M for various Knudsen numbers Knw in the evaporating flow
from a cylinder into a gas II: p∞/pw = 0.05. (a) vr/(2RTw)1/2 vs r/L, (b) p/pw vs
r/L, (c) T/Tw vs r/L, and (d) M vs r/L. The curves for Knw = 0 (the continuum
limit), 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, and 10 are shown. The data are arranged
in the order (or reverse order) of Knw except on or near the cylinder. The values on
the cylinder are shown by the same symbols for Knw as in Fig. 6.22. The curve with
the mark A is the solution in the continuum limit, accompanied by discontinuity, i.e.,
a shock wave.

The variations of the mass and energy flows mf and ef per unit time
and per unit area from the cylinder with the pressure ratio are shown as
mf/ρw(2RTw)1/2 and ef/pw(2RTw)1/2 vs p∞/pw in Figs. 6.25 and 6.26.

Velocity distribution function We will explain the behavior of the marginal
velocity distribution function g referring to Figs. 6.27 and 6.28 with the aid
of the behavior of the macroscopic variables (Figs. 6.23 and 6.24). The cases
without figures can be inferred from these figures (see Sugimoto & Sone [1992]).

For p∞/pw = 0.05 and Knw = 0.01, the discontinuity of the distribution
function g is smoothed out by frequent molecular collisions in a short distance
with a shift of its center of mass corresponding to acceleration of the gas flow
[Fig. 6.27 (a) at r/L = 1 → Fig. 6.27 (b) at r/L = 1.105]. The center of mass of
the distribution function is further shifted and its extent shrinks, corresponding
to acceleration and temperature drop [Fig. 6.27 (b) at r/L = 1.105 → Fig. 6.27
(c) at r/L = 10.23; note the difference of the scale of the ordinate between
the figures (b) and (c)]. Then the peak of the distribution function is lowered
and another bump appears [Fig. 6.27 (c) at r/L = 10.23 → Fig. 6.27 (d) at
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Figure 6.25. The nondimensional mass flux mf/ρw(2RTw)1/2 versus the pressure
ratio p∞/pw for various Knudsen numbers Knw in the evaporating flow from a cylinder
into a gas. The same symbols as in Fig. 6.22 are used to indicate the Knudsen number.
The curve with the mark A is the solution in the continuum limit, i.e., Eqs. (6.32),
(6.33a), and (6.35a).

r/L = 12.03]. The peak disappears and a hill around the bump is established
[Fig. 6.27 (d) at r/L = 12.03 → Fig. 6.27 (e) at r/L = 13.02]. The process
Fig. 6.27 (c) → Fig. 6.27 (d) → Fig. 6.27 (e) corresponds to a shock wave, through
which the gas is decelerated and heated. For p∞/pw = 0.05 and Knw = 1, the
distribution function with a large discontinuity on the cylinder [Fig. 6.28 (a)
at r/L = 1] is deformed from small molecular speed side (or small ζρ side),
and the peak is formed in positive ζr (= ζρ cos θζ) region, which corresponds to
acceleration [Fig. 6.28 (a) at r/L = 1 → Fig. 6.28 (b) at r/L = 1.106]. Then the
peak is lowered gradually and the center of mass of the distribution function
moves toward the origin, corresponding to deceleration [Fig. 6.28 (b) at r/L =
1.106 → Fig. 6.28 (c) at r/L = 10.15 → Fig. 6.28 (d) at r/L = 19.98; note the
difference of the scale of the ordinate between the figures (b) and (c)]. There
still remain a discontinuity and a strong anisotropy of the distribution function
at r/L = 19.98.

When the pressure ratio is larger, the discontinuity of the distribution func-
tion is smaller and the variation is simple and no bump is formed corresponding
to the simple variation of the macroscopic variables. For p∞/pw = 0.5 and
Knw = 0.01, the velocity distribution function is smoothed out by frequent
molecular collisions in a short distance with a slight shift of its center of mass
corresponding to acceleration of the flow. The distribution function at about
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Figure 6.26. The nondimensional energy flux ef/pw(2RTw)1/2 versus the pressure
ratio p∞/pw for various Knudsen numbers Knw in the evaporating flow from a cylinder
into a gas. The same symbols as in Fig. 6.22 are used to indicate the Knudsen number.
The curve with the mark A is the solution in the continuum limit, i.e., Eqs. (6.32),
(6.33b), and (6.35b).

10 mean free paths and that about 150 mean free paths are quite similar. The
similarity shows that the gas is in the continuum region. The difference can be
figured out by the variation of the macroscopic variables in Fig. 6.23, e.g., the
shift of its center of mass toward the origin corresponding to deceleration. For
p∞/pw = 0.5 and Knw = 1, the discontinuity persists for a longer distance, and
the deformation starts in the neighborhood of ζρ = 0.

6.4 Evaporation from a spherical condensed
phase into a vacuum

6.4.1 Problem and basic equation

Consider a time-independent evaporating flow of a gas from a sphere made of its
condensed phase (radius : L, temperature : Tw, and the saturated gas pressure
at temperature Tw : pw) into an infinite expanse of a vacuum. Here, we discuss
the behavior of the flow around the sphere for a wide range of the Knudsen
number Knw (the mean free path of the gas in the equilibrium state at rest with
temperature Tw and pressure pw divided by the radius of the sphere) on the
basis of numerical analysis (Sone & Sugimoto [1993]) of the BKW equation and
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Figure 6.27. The marginal velocity distribution function g at various points in the
evaporating flow from a cylinder into a gas I: p∞/pw = 0.05 and Knw = 0.01. (a)
r/L = 1, (b) r/L = 1.105, (c) r/L = 10.23, (d) r/L = 12.03, and (e) r/L = 13.02. The
surface g is shown by two sets of lines ζρ = const and θζ = const. Only the part for
0 ≤ θζ ≤ π is shown because g is symmetric with respect to θζ . The vertical stripes
show the discontinuity of g. Note that ζr = ζρ cos θζ and ζθ = ζρ sin θζ .
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Figure 6.28. The marginal velocity distribution function g at various points in the
evaporating flow from a cylinder into a gas II: p∞/pw = 0.05 and Knw = 1. (a) r/L = 1,
(b) r/L = 1.106, (c) r/L = 10.15, and (d) r/L = 19.98. The surface g is shown by
two sets of lines ζρ = const and θζ = const. Only the part for 0 ≤ θζ ≤ π is shown
because g is symmetric with respect to θζ . The vertical stripes show the discontinuity
of g. Note that ζr = ζρ cos θζ and ζθ = ζρ sin θζ .



324 Chapter 6. Flows with Evaporation and Condensation

the complete-condensation condition. We consider the simple case where the
state of the gas is spherically symmetric and the flow is in the radial direction.

Basically, we use the notation introduced in Section 1.9 with L, pw, and Tw as
the reference length L, the reference pressure p0, and the reference temperature
T0. The spherical coordinates (r, θ, ϕ) and their nondimensional counterparts
(r̂, θ, ϕ) are used here. We further introduce new notation. Let (ζr, ζθ, ζϕ) be
the spherical components of the nondimensional velocity ζ, and let (ζr, ζθ, ζϕ)
be expressed as

ζr = ζ cos θζ , ζθ = ζ sin θζ cos ψ, ζϕ = ζ sin θζ sin ψ, (6.37)

where the range of (ζ, θζ , ψ) is (0 ≤ ζ < ∞, 0 ≤ θζ ≤ π, 0 ≤ ψ < 2π).18 The
velocity distribution function f̂ is independent of ψ owing to the symmetry of
the problem.19 The BKW equation (1.61) for the present situation is reduced
to20

Dsf̂ =
2√

πKnw
ρ̂(f̂e − f̂), (6.38)

where

Ds = ζ cos θζ
∂

∂r̂
− ζ sin θζ

r̂

∂

∂θζ
, Knw =

w

L
,

f̂e =
ρ̂

(πT̂ )3/2
exp

(
−ζ2 + v̂2

r − 2v̂rζ cos θζ

T̂

)
,

and

ρ̂ = 2π

∫
f̂ ζ2 sin θζdζdθζ , (6.39a)

v̂r =
2π

ρ̂

∫
f̂ ζ3 cos θζ sin θζdζdθζ , (6.39b)

T̂ =
2
3ρ̂

(
2π

∫
f̂ ζ4 sin θζdζdθζ − ρ̂v̂2

r

)
, (6.39c)

p̂ = ρ̂T̂ . (6.39d)

Here, w is the mean free path of the gas in the equilibrium state at rest with
pressure pw and temperature Tw [w = (8RTw/π)1/2/(Acρw); ρw = pw/RTw]
and the integration is carried out over the domain (0 ≤ ζ < ∞, 0 ≤ θζ ≤ π),
where the integration with respect to ψ has been carried out, because f̂ is

18See Footnote 22 in Section 4.5.
19In considering a spherical symmetry, it should be noted that the standard of direction

on a sphere is the class of great circles passing a common point, e.g., ϕ = const. Thus, the
velocity distribution function f̂ expressing a spherically symmetric state is a function only
of r̂, ζr, and ζ2

θ + ζ2
ϕ (and t̂ for time-dependent problems); otherwise the uniqueness of f̂ is

violated at the common point. Therefore, f̂ is a function of r̂, ζ, and θζ .
20Equation (6.38) is derived easily from Eq. (A.162) in Section A.3. The former is simpler

in the sense that it contains the derivatives with respect to only r̂ and θζ .
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independent of ψ. The boundary conditions on the cylinder and at infinity are

f̂ =
1

π3/2
exp(−ζ2) (r̂ = 1, 0 ≤ θζ < π/2),

f̂ → 0 (r̂ → ∞, π/2 < θζ ≤ π).

⎫⎬⎭ (6.40)

6.4.2 The behavior of the gas

Free molecular flow

The free molecular solution is easily obtained by the recipe in Chapter 2. The
velocity distribution function f̂ is

f̂ =

⎧⎨⎩ π−3/2 exp(−ζ2) [0 ≤ θζ < Arcsin(L/r)],

0 [Arcsin(L/r) < θζ ≤ π].
(6.41)

At a given point in the gas, only the molecules whose velocities are inside the
cone 0 ≤ θζ < Arcsin(L/r) or which come directly from the sphere are present.
The height of f̂ is invariant with respect to the distance. The density ρ, the flow
velocity vr, the temperatures T, and the parallel and normal temperatures21 T‖
and T⊥ to the flow are

ρ

ρw
=

1 − y

2
,

vr

(2RTw)1/2
=

1 + y√
π

,
T

Tw
= 1 − 2(1 + y)2

3π
,

T‖
Tw

=
(

1 − 2
π

)
(1 + y)2 − y,

T⊥
Tw

= 1 − 1
2
(y + y2),

(6.42)

where
y = [1 − (L/r)2]1/2.

The flow velocity vr, the temperature T, and the parallel temperature T‖ take
nonzero values at infinity, because y = 1 there, and ρ and T⊥ vanish with speeds
proportional to (L/r)2 as r/L → ∞. The mass and energy flows mf and ef per
unit time and per unit area from the sphere are

mf/ρw(2RTw)1/2 = 1/2
√

π, ef/pw(2RTw)1/2 = 1/
√

π. (6.43)

Flow in the continuum limit

The expanding isentropic flow into a vacuum is supersonic, and M = 1 on
the condensed phase (or sphere) as explained in the case of the cylindrical

21The parallel and normal temperatures (T‖, T⊥) are defined by

RρT‖ =

Z Z Z
(ξr − vr)2fdξrdξθdξϕ, 2RρT⊥ =

Z Z Z
(ξ2

θ + ξ2
ϕ)fdξrdξθdξϕ,

T = (T‖ + 2T⊥)/3,

where (ξr, ξθ, ξϕ) are the spherical-coordinate components of the molecular velocity ‰, corre-
sponding to the nondimensional (ζr, ζθ, ζϕ).
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condensed phase (Section 6.2.3). In view of this, the solution of the Euler set of
equations (3.225a)–(3.225c) with the boundary conditions (3.228a) and (3.228b)
that expresses expanding flows into a vacuum is obtained by the parametric
expression in M [= vr/(5RT/3)1/2] as22

ρ

ρ∗
=

8
(3 + M2)3/2

,
vr

(5RT∗/3)1/2
=

2M

(3 + M2)1/2
,

T

T∗
=

4
3 + M2

,
r

L
=

3 + M2

4M1/2
,

⎫⎪⎬⎪⎭ (6.44)

or for large r/L,

ρ

ρ∗
=

1
2

(
L

r

)2

,
vr

(5RT∗/3)1/2
= 2 − 3

(
L

4r

)4/3

,

T

T∗
= 4−1/3

(
L

r

)4/3

, M =
(

4r

L

)2/3

,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.45)

where ρ∗ and T∗ are given by the functions h1(M) and h2(M), defined in Section
3.5.2, as

ρ∗ = h1(1)ρw/h2(1), T∗ = h2(1)Tw,

where h1(1)/h2(1) = 0.3225 and h2(1) = 0.6434 for the BKW equation and the
complete-condensation condition. Incidentally,

T‖ = T⊥ = T,

because the velocity distribution function corresponding to the isentropic flow
is Maxwellian. The mass and energy flows mf and ef per unit time and per
unit area from the sphere are

mf

ρw(2RTw)1/2
=
(

5
6

)1/2
h1(1)

h2(1)1/2
,

ef

pw(2RTw)1/2
= 4

(
5
6

)3/2

h1(1)h2(1)1/2,

(6.46)
which are, respectively, 0.2361 and 0.5065 for the BKW equation and the
complete-condensation condition.

In addition to the point that dρ/dr, dvr/dr, etc. are infinite at r = L, which
is mentioned in Section 6.2.3, there is a more important point that requires
improvement of the isentropic solution. It is the behavior of the solution for
large r/L, where the density is low and the Mach number is large [Eq.(6.45)].
In the far field, the length scale Lr of variation of ρ etc., i.e., ρ/(dρ/dr) etc., is

Lr ∼ r,

and the local mean free path lc is

lc = vr/Acρ ∼ 4(5RT∗/3)1/2r2/Acρ∗L2 ∼ w(r/L)2,

22See Footnote 11 in Section 6.2.
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which is based on the flow speed instead of the thermal speed, because the far
field with high Mach number is considered.23 Thus, the local Knudsen number
Knr(= lc/Lr) for large r/L increases with r as24

Knr ∼ Knwr/L. (6.47)

The local Knudsen number Knr, which characterizes the variation of the flow, is
not uniformly small for small Knw, but it ranges from O(Knw) to ∞. Thus, the
solution (6.44) is a poor approximation for small but finite Knw in the far field.

When Knw is very small, there is a region where Knr is small but M is
large (e.g., take r/L =Kn−1/2

w ). Then, the isentropic solution is valid up to
this region, with the reservation of the first question raised in the preceding
paragraph. The behavior downstream of this region can be studied by the
hypersonic approximation (Hamel & Willis [1966] and Edwards & Cheng [1966];
see also Section B.5), where a simplification is made under the assumption that
the width of the velocity distribution function is much smaller than the flow
speed. According to Section B.5, the solution of the BKW equation under this
approximation of a spherically expanding flow is expressed by the confluent
hypergeometric functions as follows:

ρ̂ = c0r̂
−2, (6.48a)

v̂r = c1, (6.48b)

T̂ =
1
r̂2

[
c2U

(
2
3
, 3,

α

Knw r̂

)
+ c3M

(
2
3
, 3,

α

Knw r̂

)]
, (6.48c)

α = 2c0/
√

πc1,

where c0, c1, c2, and c3 are undetermined constants, and U(a, b, c) and M(a, b, c)
are Kummer’s functions (of the same notation as in Abramowitz & Stegun
[1972]; do not confuse with the Mach number M). The expansion for Knw r̂ � 1
(what is called the inner expansion in Van Dyke [1964], Cole [1968], etc.) of the
solution (6.48a)–(6.48c) is

ρ̂ = c0r̂
−2, v̂r = c1,

T̂ = c2

(
Knw

α

)2/3 1
r̂4/3

+
2c3

Γ(2/3)

(
Knw

α

)7/3

r̂1/3 exp
(

α

Knw r̂

)
,

⎫⎬⎭ (6.49)

where Γ(x) is the gamma function. Matching Eq. (6.49) with the expansion of
Eq. (6.44) for large r̂, i.e., Eq. (6.45), of the isentropic solution, we have25

c0 =
h1(1)
2h2(1)

, c1 =
(

10h2(1)
3

)1/2

, c2 =
(

3h1(1)2

40π

)1/3 1

Kn2/3
w

, c3 = 0.

(6.50)
23See Footnote 12 in Section 6.2.3.
24The relation depends on the molecular model. The relation applies to the pseudo-Maxwell

molecule as well as the BKW model. For a hard-sphere molecule (or a molecule with a finite
dm,

Knr ∼ Knw(r/L)5/3,

(see Footnote 13 in Section 6.2.3).
25The last condition c3 = 0 is required for the smooth connection of the two solutions.
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Figure 6.29. The profiles of the macroscopic variables for various Knudsen numbers
Knw in the evaporating flow from a sphere into a vacuum. I: density and temperature.
(a) ρ/ρw vs r/L and (b) T/Tw vs r/L. In panel (a), the curves for Knw = 0, 0.005,
0.01, 0.1, 1, 10, and ∞ are shown. In panel (b), the curves for Knw = 0, 0.005, 0.01,
0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, and ∞ are shown, and the dashed lines are the
solutions by the hypersonic approximation [Eq. (6.48c) with (6.50)].

The flow velocity does not vanish at infinity. From Eqs. (6.48c) and (6.50), we
have, for r/L → ∞,

T/Tw → A0Kn4/3
w , (6.51)

A0 =
(

5π

3

)2/3
h2(1)3

Γ(2/3)h1(1)4/3
= 4.828,

The temperature at infinity takes nonzero value except for Knw = 0. The normal
temperature T⊥ can be shown to decay as

T⊥/Tw → A1Kn1/3
w L/r, as Knwr/L → ∞, (6.52)

A1 =
(

5π

24

)1/6
h2(1)3/2

Γ(2/3)h1(1)1/3
= 0.5999.

Numerical solution

The boundary-value problem, Eqs. (6.38) and (6.40), is solved numerically for
various Knudsen numbers by a hybrid finite-difference method, which is practi-
cally the same as that outlined in Section 6.2.2.

Macroscopic variables The profiles of the density, flow velocity, tempera-
ture, and Mach number, i.e., ρ/ρw, vr/(2RTw)1/2, T/Tw, and M as functions of
r/L, are shown for various values of the Knudsen number Knw in Figs. 6.29 and
6.30. The data marked by Knw = 0 and those by Knw = ∞ are, respectively, the
solution of the Euler set with the Knudsen layer and the free molecular solution.
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Figure 6.30. The profiles of the macroscopic variables for various Knudsen numbers
Knw in the evaporating flow from a sphere into a vacuum II: flow velocity and Mach
number. (a) vr/(2RTw)1/2 vs r/L and (b) M vs r/L. In panel (a), the curves for
Knw = 0, 0.005, 0.01, 0.1, 1, 10, and ∞ are shown. In panel (b), the curves for
Knw = 0, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, and ∞ are shown.

The solution of the Euler set takes M = 1 at r/L = 1 but the Knudsen layer,
flattened on the sphere, has a finite amplitude. The part of the vertical line be-
low M = 1 in Fig. 6.30 (b) is the flattened Knudsen layer. More detailed profiles
of the above macroscopic variables near the sphere are given in Sone & Sugimoto
[1993]. The dashed lines in Fig. 6.29 (b) are the corresponding solutions by the
hypersonic approximation described above [Eq. (6.48c) with (6.50)].

The behavior of the gas varies very sharply near the sphere but approaches a
vacuum state at infinity slowly. The density vanishes as fast as r−α (α = 2.00)
for all Knudsen numbers. The flow velocity vr and temperature T approach
nonzero values at infinity (except for T at Knw = 0), which depend on the
Knudsen number. Their values vr∞/(2RTw)1/2 and T∞/Tw at infinity, the latter
of which is called frozen temperature, are tabulated in Table 6.4. The data in
Table 6.4 are determined by close examination of the behavior of the variation
of ρ, vr, and T for large r. That is, ln ρ, ln(dvr/dr), and ln(dT/dr) vs ln r are
found to be linear, with high accuracy, for large r, from which the asymptotic
forms of ρ, vr, and T are determined. Incidentally, the frozen temperatures for
Knw = 0.005 and 0.01 by the hypersonic approximation (6.51) are, respectively,
0.0041 and 0.0104, which are 0.0038 and 0.0086 by the numerical computation in
Table 6.4. The velocity vr∞/(2RTw)1/2 at infinity by the hypersonic expansion,
given by Eq. (6.48b) with (6.50), is 1.464, which agrees with the numerical value
at Knw = 0.

The normal and parallel temperatures, T⊥ and T‖, are often referred to in
experimental studies of nonequilibrium flows. From the numerical result, the
normal temperature T⊥ vanishes as r → ∞. From this result and Footnote 21
in this subsection,

T‖ → 3T as r → ∞.
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Table 6.4.
vr∞

(2RTw)1/2
,

T∞
Tw

, M∞,
mf

ρw(2RTw)1/2
, and

ef

pw(2RTw)1/2
vs Knw in the

evaporating flow from a sphere into a vacuum.

Knw
vr∞

(2RTw)1/2

T∞
Tw

M∞
mf

ρw(2RTw)1/2

ef

pw(2RTw)1/2

0 1.464 0 ∞ 0.2361 0.5065
0.005 1.4499 0.0038 26 0.2465 0.5222
0.01 1.4377 0.0086 17 0.2512 0.5290
0.02 1.4162 0.0183 11.5 0.2573 0.5374
0.05 1.3686 0.0406 7.44 0.2663 0.5487
0.1 1.3206 0.0630 5.76 0.2723 0.5554
0.2 1.2700 0.0867 4.72 0.2765 0.5596
0.5 1.2108 0.1141 3.927 0.2793 0.5616
1 1.1781 0.1290 3.593 0.2806 0.5628
2 1.1564 0.1388 3.400 0.2813 0.5634
5 1.1407 0.1458 3.273 0.2817 0.5637
10 1.1347 0.1484 3.227 0.2819 0.5640
∞ 1.1284 0.1512 3.179 0.2821 0.5642
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Figure 6.31. The profiles of the ratio T⊥/T‖ of the normal and parallel temperatures
in the evaporating flow from a sphere into a vacuum for various Knudsen numbers
Knw, i.e., Knw = 0, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, and ∞.

The ratio T⊥/T‖ is a measure of anisotropy of the velocity distribution function
around the flow velocity (T⊥/T‖ = 1 when it is isotropic). Its profile is shown in
Fig. 6.31. The ratio T⊥/T‖ vanishes for all Knw, except for Knw = 0, as r → ∞.
The velocity distribution function shows strong anisotropy over the whole flow
field except for very small Knudsen numbers.

The variations of the mass and energy flows mf and ef per unit time and
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per unit area from the sphere with the Knudsen number, i.e., mf/ρw(2RTw)1/2

and ef/pw(2RTw)1/2 vs Knw, are tabulated in Table 6.4. They increase mono-
tonically from the values at Knw = 0 to those at Knw = ∞. The contribu-
tions to mf and ef of the molecules leaving the sphere are equal to mf and
ef at Knw = ∞, respectively. Therefore, the differences from the free molec-
ular values, which are negative, are the contributions of the molecules arriv-
ing on the sphere. For example, mf (Knw = 0)/mf (Knw = ∞) = 0.8370 and
ef (Knw = 0)/ef (Knw = ∞) = 0.8977, and thus, 16.30% of the molecules leav-
ing the sphere return to the sphere, but only 10.23% of the energy leaving the
sphere return. This is because the returning molecules, on the average, have less
energy than the leaving molecules. The rate 16.30% of the returning molecules
at Knw = 0 is equal to that in the evaporating flow from a plane condensed
phase that reaches sonic speed at infinity. This is obvious from the structure of
the solution, i.e., the isentropic evaporating flow that is sonic on the condensed
phase and the Knudsen layer at the bottom of the isentropic flow.

Velocity distribution function We will explain the behavior of the velocity
distribution function f̂ referring to Figs. 6.32–6.36. The cases without figures
can be inferred from these figures (see Sone & Sugimoto [1993]).

At Knw = ∞ (free molecular flow), the molecular velocity is localized. That
is, at a point r, the molecules with velocity 0 ≤ θζ ≤ Arcsin (L/r) come di-
rectly from the sphere and there are no molecules with the other velocity. The
height of the velocity distribution function remains unchanged along the flow
[see Eq. (6.41)]. At Knw = 10 (large Knudsen number, Fig. 6.32), the feature
of the free molecular flow is well preserved and only local correction in the
[ζr, (ζ2

θ + ζ2
ϕ)1/2] plane is seen. The effect of molecular collision is more eminent

for smaller molecular speed (or small ζ) because of smaller free path. The height
of the distribution function decreases very slowly.

On the other hand, at Knw = 0.01 (very small Knudsen number, Figs. 6.33
and 6.34), the behavior is quite different. The discontinuity of the velocity distri-
bution function on the sphere decays in a very short distance (much shorter than
the mean free path w) [Fig. 6.33 (a) at r/L = 1 →Fig. 6.33 (c) at r/L = 1.0013].
The distribution function is transformed into a distribution fairly close to the
Maxwell distribution with the corresponding density, flow velocity, and temper-
ature (the local Maxwellian fe) in a distance of several mean free paths [Fig. 6.33
(a) at r/L = 1 →Fig. 6.33 (d) at r/L = 1.015 →Fig. 6.34 (a) at r/L = 1.264].
This is a kinetic transition process to a continuum region [Fig. 6.34 (a)]. The
transition region is the Knudsen layer and the region with the discontinuity
at the bottom of the Knudsen layer is the S layer, explained in Section 3.1.6.
Along the flow, the density of the gas decreases and the collision effect becomes
less important. Therefore, the velocity distribution function begins to deviate
from the Maxwellian, i.e., its width normal to the flow shrinks [Fig. 6.34 (a) at
r/L = 1.264 →Fig. 6.34 (b) at r/L = 5.063 →Fig. 6.34 (c) at r/L = 60.76]. In
this stage, the collision effect is still appreciable and the height of the distri-
bution function decreases considerably. Farther away from the sphere, where
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Figure 6.32. The velocity distribution function f̂ at various points in the evaporating
flow from a sphere into a vacuum at Knw = 10. (a) r/L = 1, (b) r/L = 2.205, and
(c) r/L = 99.94. The ζt is defined by ζt = (ζ2

θ + ζ2
ϕ)1/2. The vertical stripes show the

discontinuity of f̂ .
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Figure 6.33. The velocity distribution function f̂ at various points in the evaporating
flow from a sphere into a vacuum at Knw = 0.01 I. (a) r/L = 1, (b) r/L = 1.00008,
(c) r/L = 1.0013, and (d) r/L = 1.015. The ζt is defined by ζt = (ζ2

θ + ζ2
ϕ)1/2. The

vertical stripes show the discontinuity of f̂ .
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Figure 6.34. The velocity distribution function f̂ at various points in the evaporating
flow from a sphere into a vacuum at Knw = 0.01 II. (a) r/L = 1.264, (b) r/L = 5.063,
(c) r/L = 60.76, and (d) r/L = 255.9. The ζt is defined by ζt = (ζ2

θ + ζ2
ϕ)1/2.
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Figure 6.35. The velocity distribution function f̂ at various points in the evaporating
flow from a sphere into a vacuum at Knw = 1. (a) r/L = 1, (b) r/L = 1.544, (c)
r/L = 10.89, and (d) r/L = 109.8. The ζt is defined by ζt = (ζ2

θ + ζ2
ϕ)1/2. The vertical

stripes show the discontinuity of f̂ .
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Figure 6.36. The velocity distribution function f̂ at infinity in the neighborhood of
the discontinuity (r̂ sin θζ = 1 with 0 ≤ θζ < π/2) in the evaporating flow from a
sphere into a vacuum. (a) Knw = 0.01, (b) Knw = 0.2, (c) Knw = 1, and (d) Knw = 10.
The data are extrapolated from the data for large r/L. The surface f̂ is shown by
ζ = const and r̂ sin θζ = const, and the discontinuity by the vertical stripes. The
coordinate r̂ sin θζ (= r̂θζ + · · · ) is a coordinate stretched by r̂ (= r/L).
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the density of the gas is small, the height of the distribution function decreases
very slowly as in the nearly free molecular flow [Fig. 6.34 (c) at r/L = 60.76
→Fig. 6.34 (d) at r/L = 255.9].

At Knw = 0.1, the discontinuity decays in several mean free paths from the
sphere (r/L > 1.6). The distribution function there is of the shape with T⊥/T‖ <
1, and the ratio T⊥/T‖ decreases with the flow. That is, it is in a transition region
that corresponds to the transition region in the downstream of the continuum
region in the case Knw = 0.01. The behavior farther downstream is similar to the
case Knw = 0.01, i.e., a transition region is followed by a free molecular region.
There is no continuum region in the flow. At Knw = 1, a transition region with
large discontinuity [Fig. 6.35 (a) at r/L = 1 →Fig. 6.35 (c) at r/L = 10.89] is
followed by a free molecular region with a large discontinuity [Fig. 6.35 (c) at
r/L = 10.89 →Fig. 6.35 (d) at r/L = 109.8].

The transition to a free molecular flow region can be clearly seen from the
profile of the distribution function f̂ at a given ζ vs r̂ sin θζ for various r̂ (= r/L).
Because the characteristics of Eq. (6.38) are given by r̂ sin θζ = const, f̂ at a
given ζ is expressed by a single curve if the flow is free molecular. The flow ap-
proaches a free molecular condition for large r̂ even for Knw = 0.01. The discon-
tinuity of the velocity distribution function remains appreciable at r/L = 2000
even for Knw = 0.2. By extrapolation it is found to be appreciable at downstream
infinity. Some examples of extrapolated distribution function f̂ at infinity are
shown in Fig. 6.36 (Sone & Sugimoto [1993]). This free molecular character,
which is a good contrast to the evaporation from a cylindrical condensed phase
into a vacuum discussed in Section 6.2, is related to Eq. (6.47).26

Supplementary discussion The evaporating flow from a spherical condensed
phase into a vacuum is of free molecular type in the far field irrespective of Knw,
in contrast to that from a cylindrical condensed phase, where the flow is proper
to each Knw over the whole flow field.

In an apparently common situation, where the density of the gas and thus
molecular collisions become less and less indefinitely with flow, the cylindrical
and spherical flows into a vacuum show decisive difference in their behavior,
especially in their velocity distribution functions, in the far field. Their dif-
ference, explained as the difference of the local Knudsen number Knr, can be
explained more plainly as follows. The density of the gas decreases to vanish
proportionally to 1/r in the cylindrical flow, but to 1/r2 in the spherical flow.
Correspondingly, the mean free path , calculated with the flow speed as the
average molecular speed, increases proportionally to r in the former case, but to
r2 in the latter. The average number of collisions per molecule while it proceeds
from r0 to infinity is given by

∫∞
r0

−1dr.27 Therefore, it is infinite in the cylin-
drical flow, but finite in the spherical flow. Roughly speaking, in the spherical

26In view of Footnote 24 in this subsection, the tendency to the free molecular flow in the
far field is stronger for a hard-sphere gas.

27We are not tracing a particular particle, but are simply considering the sum of the local
expected number of collisions in the distance dr.
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flow, after some distance, which depends on Knw, away from the sphere, there
is no collision along the flow; therefore the flow shows free molecular behavior
in the far field. In the cylindrical flow, on the other hand, the collision effect
depends on Knw.

6.5 Negative temperature gradient phenomenon

Pao [1971] pointed out a phenomenon called the negative or inverted tempera-
ture gradient phenomenon in a flow of a gas between two parallel plates made of
its condensed phase with different temperatures, where evaporation and conden-
sation are taking place (two-surface problem of evaporation and condensation).
We will discuss this phenomenon in this section.

Consider a gas between its two parallel plane condensed phases at rest with
different temperatures T0 and T1 (T1 > T0).28 Let the condensed phase at
temperature T0 be placed at X1 = 0 and the other with T1 be at X1 = L.
We are interested in the time-independent behavior of the gas when the state
of the gas is uniform with respect to X2 and X3. The complete-condensation
condition (1.29) is taken as the boundary condition on the condensed phase.29

The saturated gas pressure pw in the complete-condensation condition is an
increasing function of the temperature of the condensed phase. Their relation is
determined by the Clausius–Clapeyron relation (Reif [1965], Landau & Lifshitz
[1963]).

First we consider the case where the temperature difference of the condensed
phases is small [(T1 − T0)/T0 � 1] and discuss the problem on the basis of
the linearized Boltzmann equation introduced in Section 1.11. We put T1 =
T0(1+Δτw) and pw(T1) = p0(1+ΔPw) with p0 = pw(T0) and use the notation in
Sections 1.10 and 1.11 with p0 and T0 defined above as the reference quantities.

The behavior when the Knudsen number is small is very simply obtained
by making use of the asymptotic theory for the linearized Boltzmann equa-
tion in Section 3.1. The macroscopic variables are governed by the Stokes set
of equations (3.12)–(3.13c). The boundary conditions, and the Knudsen-layer
corrections, for the set are given by Eqs. (3.56a)–(3.56c) for the leading-order
quantities. According to Eqs. (3.12) and (3.13a) with m = 0, PG0 = const
and u1G0 = const, because the quantities depend only on x1 (= X1/L). From
the boundary condition (3.56c) on each condensed phase, these constants are
determined as

PG0 = ΔPw/2, u1G0 = ΔPw/2C∗
4 . (6.53)

For a hard-sphere gas and the BKW model, the jump coefficient C∗
4 is negative.

Thus, u1G0 is negative, that is, evaporation takes place at x1 = 1, and condensa-
tion at x1 = 0. Corresponding to the condensation at x1 = 0 and the evaporation
at x1 = 1, according to the slip condition (3.56c), there are a temperature jump

28The inequality is introduced without loss of generality for convenience of explanation.
29The extension of the solution to a more general boundary condition is explained in Section

6.6 (v). From the relation of the two solutions, the negative temperature gradient phenomenon
is seen to take place also for the generalized boundary condition.
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τG0 = (d∗
4/2C∗

4 )ΔPw at x1 = 0 and a drop τG0 − Δτw = −(d∗
4/2C∗

4 )ΔPw at
x1 = 1. With these conditions at the condensed phases, τG0, the solution of
Eq. (3.13c) with m = 0, obviously varies linearly in x1 from (d∗

4/2C∗
4 )ΔPw to

Δτw − (d∗4/2C∗
4 )ΔPw as

τG0 =
d∗4

2C∗
4

ΔPw +
(

Δτw − d∗4
C∗

4

ΔPw

)
x1. (6.54)

If the condition ΔPw/Δτw > C∗
4/d∗4 (= 4.6992 for a hard-sphere gas, = 4.7723

for the BKW model) or

T0

pw(T0)

(
pw(T1) − pw(T0)

T1 − T0

)
>

C∗
4

d∗
4

, (6.55)

is fulfilled, which is so for many kinds of gases (see “Thermophysical Properties
of Fluid Systems” at http://webbook.nist.gov), then τG0 at x1 = 1 is smaller
than τG0 at x1 = 0, and therefore the temperature gradient in the gas is in the
direction opposite to that imposed between the two condensed phases. This
phenomenon, first pointed out by Pao [1971], is called negative (or inverted)
temperature gradient phenomenon.30

This phenomenon is due to the temperature drop or jump in the Knudsen
layer resulting from the evaporation from or the condensation onto the con-
densed phase. The jump condition (3.56c) is derived from the analysis of the
linearized Boltzmann equation of a half-space problem of weak evaporation and
condensation, where the condition at infinity is uniform.31 Thus, the negative
temperature gradient is the result of adjusting the overshooting in the Knudsen
layer (kinetic region) by the fluid-dynamic region. The condition (6.55) of the
negative temperature gradient is determined only by the relation between the
jump coefficients in the half-space problem and the Clausius–Clapeyron rela-
tion. Thus, this phenomenon is not limited to the gas between two plates. It is
also seen for other geometries (e.g., Sone & Onishi [1978]). In the region where
the negative temperature gradient is seen, the heat flow is in the direction from
x1 = 0 to x1 = 1 in the above example, but the energy flow, to which the mass
flow also contributes, is in the direction from x1 = 1 to x1 = 0 (the natural
direction).

When the Knudsen number is not small, the kinetic region extends over the
channel and the flow field is determined by the direct interaction of the kinetic
regions extending from each of the two boundaries. The solution of the linearized
Boltzmann equation for a hard-sphere gas is studied numerically for the whole
range of the Knudsen number (or k) in Sone, Ohwada & Aoki [1991]. Some of
the profiles of the density (p0/RT0)(1+ω) and the temperature T0(1+ τ) of the

30Overlooking the important condition in the Clausius statement, some people think that
the present result, where heat is transferred from the colder wall to the hotter, contradicts the
second law of thermodynamics. Clausius states that heat can in no way and by no process
be transported from a colder to a warmer body without leaving further changes, i.e., without
compensation (see Planck [1945]). In the present case, mass is transported.

31Some discussion about the jump or drop is made in Sone & Onishi [1978] and Sone [2002].
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gas are shown for the two typical cases, i.e., ΔPw/Δτw = 2 and ΔPw/Δτw = 12,
in Fig. 6.37, where the latter case satisfies the condition (6.55). Obviously, for
the free molecular gas, the state is uniform in the gas. In the present notation,
the flow velocity is expressed as (2RT0)1/2(u1, 0, 0). Let p0(2RT0)1/2(Q1, 0, 0)
and p0(2RT0)1/2(H1, 0, 0) be, respectively, the heat-flow vector and the energy-
flow vector. The mass-flow vector is given by (p0/RT0)(2RT0)1/2(u1, 0, 0) and
H1 = Q1 + 5u1/2 in the linearized problem. The variations of u1, Q1, and H1,
which are independent of x1 here, with k are shown in Fig. 6.38. The energy flow
H1 is from the hotter condensed phase to the colder one for ΔPw/Δτw = 2 and
12. On the other hand, the heat flow Q1 is in that direction for ΔPw/Δτw = 2
but in the opposite direction for ΔPw/Δτw = 12. The latter is the case where
τG0 in Eq. (6.54) has the negative temperature gradient. The energy flow H1

for ΔPw/Δτw = 12 takes the minimum value at an intermediate Knudsen num-
ber, as in the (nondimensional) mass-flow rate in the Poiseuille flow (Knudsen
minimum; see Section 4.2.2).

Limiting ourselves to the leading-order result for small Knudsen numbers,
we will discuss the behavior of the gas when the differences of temperature and
saturated gas pressure between the two condensed phases are larger. When
the differences Δτw and ΔPw are still small but one of them is comparable to
the Knudsen number, the behavior of the gas is easily obtained with the aid of
the weakly nonlinear theory in Section 3.2. The basic equations governing the
macroscopic variables are given by Eqs. (3.87)–(3.88c), and their boundary con-
ditions and the Knudsen-layer corrections are given by Eqs. (3.119a)–(3.119c).
The boundary conditions and the Knudsen-layer corrections are practically the
same as Eqs. (3.56a)–(3.56c) in the linear theory. Equations (3.88b) and (3.88c)
among the basic equations Eqs. (3.87)–(3.88c) are different from the correspond-
ing equations, Eqs. (3.13b) and (3.13c) with m = 0, in the linear theory, and
they have convection terms. As is obvious from the discussion in the linear
theory, the temperature jump in the present case is the same as in the linear
theory. It is determined before the temperature field is solved. That is, from
Eqs. (3.87), (3.88a), and (3.119c),

PS1k = ΔPw/2, u1S1k = ΔPw/2C∗
4 . (6.56)

With this u1S1 in the condition on τS1 in Eq. (3.119c), we find that there are a
temperature jump τS1k = (d∗4/2C∗

4 )ΔPw at x1 = 0 and a drop τS1k − Δτw =
−(d∗

4/2C∗
4 )ΔPw at x1 = 1. The temperature field τS1 connecting the two bound-

ary values is given by the solution of Eq. (3.88c), i.e.,

τS1k =
d∗4

2C∗
4

ΔPw +
(

Δτw − d∗4
C∗

4

ΔPw

)
1 − exp(ΔPwx1/γ2C

∗
4k)

1 − exp(ΔPw/γ2C∗
4k)

, (6.57)

where x1 in Eq. (6.54) is simply replaced by [1 − exp(ΔPwx1/γ2C
∗
4k)]/[1 −

exp(ΔPw/γ2C
∗
4k)]. The linear function is recovered if ΔPw/k � 1, which is the

assumption for the linear theory. The condition of the negative temperature
gradient is the same as Eq. (6.55) in the linear theory. The difference is that the
linear profile, negative or positive gradient, of the temperature field is curved by



6.5. Negative temperature gradient phenomenon 341

Figure 6.37. The distributions of the temperature τ and density ω in the gas for
k = 0.1, 1, and 10 in the negative temperature gradient problem (a hard-sphere gas).
(a) ΔPw/Δτw = 2 and (b) ΔPw/Δτw = 12. The profiles are antisymmetric with
respect to x1 = 0.5. Note the difference of the signs for the curves in panels (a) and
(b).
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Figure 6.38. The variations of u1, Q1, and H1 with k (a hard-sphere gas). (a)
ΔPw/Δτw = 2 and (b) ΔPw/Δτw = 12. The symbols ©, 	, ˜ : the numerical results,
the curves for small k : the analytical results by the asymptotic theory (Section 3.1),
and the straight lines for large k : those for the free molecular flow (Chapter 2). Note
the difference of the sign of Q1 in panels (a) and (b).
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the effect of convection of the flow. Thus, the negative temperature gradient is
also seen in other geometries (e.g., Onishi & Sone [1983]). When ΔPw � 1 but
ΔPw/k � 1, the weakly nonlinear theory is apparently inapplicable. However,
the variation of the temperature field is limited in the range x1 = O(k/ΔPw)
and it is practically uniform outside this range (or the variation is exponentially
small). This means that the length scale of variation of τS1 is kL/ΔPw, that is,
the ratio of ΔPw to the Knudsen number based on this length is of the order of
unity, for which the weakly nonlinear theory is applicable. Thus, Eq. (6.57) is
valid for any small ΔPw and Δτw irrespective of their relative size to k.

When ΔPw = O(1) and the Mach number of evaporating and condensing
flow induced is of the order of unity, the behavior of the gas is described by the
asymptotic theory in Section 3.5, where the macroscopic variables are governed
by the Euler equations (3.225a)–(3.225c) and their boundary conditions are
given by Eqs. (3.228a)–(3.229c). The solution of the one-dimensional Euler set
of equations is piecewise uniform; the flow cannot be supersonic owing to the
boundary conditions on the evaporating side. Thus, no shock wave exists in the
flow field, and therefore the flow field is uniform. Owing to stronger convection,
viscous effect is confined in a narrow region and merges into the Knudsen layer
on the condensing side. Thus, the Knudsen layer, governed by the nonlinear
Boltzmann equation, has some of the properties of the suction boundary layer32

or the viscous boundary layer. As a result, the boundary condition, derived by
the analysis of the Knudsen layer, is no longer symmetric on the condensing and
evaporating sides. The boundary condition on the condensing side is weaker,
that is, only one condition among the parameters, which is consistent with
the Euler equations, where the differential order is lower than that of the Stokes
equations or “the incompressible Navier–Stokes equations” in the previous cases.
The boundary conditions being expressed with functions given only numerically,
the solution of the problem requires some numerical computation, though the
solution of the Euler equations is a simple uniform solution. The solution for
the boundary conditions obtained by the BKW equation and the complete-
condensation condition is given in Aoki & Sone [1991] (see also Sone [2002]).

For a while, there were some discussions about the negative temperature gra-
dient phenomenon (Pao [1971], Matsushita [1976], Sone & Onishi [1978], Aoki &
Cercignani [1983], Koffman, Plesset & Lees [1984], Ytrehus & Aukrust [1986],
Hermans & Beenakker [1986], Mager, Adomeit & Wortberg [1989], Bedeaux,
Hermans & Ytrehus [1990], Sone, Ohwada & Aoki [1991], Aoki & Masukawa
[1994], Bobylev, Østomo & Ytrehus [1996], Ytrehus [1996]). However, the points
are as described above, and the essence is due to Pao [1971].33 For the system
of the Boltzmann equation for a hard-sphere gas (or the BKW equation) and

32See Footnote 98 in Section 3.6.1.
33There is a work that tries to attribute the negative temperature gradient phenomenon

to the nature of the solution of the Navier–Stokes equations under the assumption that the
qualitative behavior of the whole field is described by these equations. Obviously from the
above discussion, they assume the most important point that is to be investigated. The
essence is the temperature drop (jump) in the kinetic region on an evaporating (condensing)
boundary, whose mechanism is discussed in Sone & Onishi [1978] (see also Sone [2002]).
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the complete-condensation condition, the range where the negative temperature
gradient occurs is accurately obtained.34 The experiment by Shankar & Desh-
pande [1990] indicates a temperature drop on the evaporating side and its jump
on the condensing side.

Finally, it may be noted about the size of variables that we can perceive nat-
urally. Flow speeds 1 − 10 mm/s of a gas (e.g., air) can be perceived naturally,
which correspond to Mach numbers 3×10−6− 3×10−5 at room temperature.35

In the example of the negative temperature gradient phenomenon, the flow in-
duced is of the same order as the nondimensional temperature difference Δτw

between the two condensed phases. For the above size of the flow, the corre-
sponding temperature difference is of the order of 10−3−10−2 K. This difference
(thus the negative temperature gradient) cannot be perceived naturally. This
is not limited to the present problem. Let two (or more) physical variables be
related by a physical law and let the variations of their nondimensional quanti-
ties be of the same order. The variations are not necessarily perceived equally.
Some are perceived naturally but some are not. It is important to recognize
this in the formulation of problems and understanding of results.

6.6 Generalized kinetic boundary condition

Up to now in this chapter, we have studied the problems under the complete-
condensation boundary condition. The examples discussed are spatially one-
dimensional, i.e., the velocity distribution function depends only on one space
variable. In this case, we can extend the results to a more general boundary
condition for time-independent problems. The condition we take here is the
condition (1.67a) with α = 1, i.e.,

f̂(xi, ζi) =
αcρ̂w + (1 − αc)σ̂w

(πT̂w)3/2
exp

(
− (ζi − v̂wi)2

T̂w

)
(ζjnj > 0), (6.58a)

σ̂w = −2
(

π

T̂w

)1/2 ∫
ζjnj<0

ζjnj f̂(xi, ζi)dζ, (6.58b)

where αc (0 < αc ≤ 1), called the condensation coefficient, is determined by
the condition of the surface of the condensed phase, and v̂wini = 0 in the
time-independent problems. In this boundary condition, the 1 − αc part of
the impinging molecules makes diffuse reflection. The complete-condensation
condition is a special case of the above condition with αc = 1, i.e.,

f̂(xi, ζi) =
ρ̂w

(πT̂w)3/2
exp

(
− (ζi − v̂wi)2

T̂w

)
(ζjnj > 0). (6.59)

The difference between the two boundary conditions (6.58a) and (6.59) is
the factors αcρ̂w +(1−αc)σ̂w and ρ̂w, which are constant when the condition on

34The effects of the molecular model and the kinetic boundary condition are condensed in
the slip coefficients C∗

4 and d∗4.
35See Footnote 102 in Section 3.6.2.
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the boundary is uniform. Owing to this simple difference, a solution under the
generalized boundary condition is expressed with a solution under the complete-
condensation condition. This process for the cases of evaporation from and
condensation onto a plane condensed phase (the time-independent solution in
Section 6.1) is explained in Sone [2002]. The extension for the cases in Sections
6.2–6.5 is similarly carried out. However, for the convenience of the reader, we
will here explain the process of extension in a slightly different way.

The basic equation is the time-independent Boltzmann equation without
external force, i.e.,

ζi
∂f̂

∂xi
=

1
k

Ĵ(f̂ , f̂). (6.60)

Let f̂A be a solution of Eq. (6.60) with k = kA (or Kn = KnA).36 Then f̂B

defined by
f̂B = Γf̂A, (6.61)

where Γ is a constant, is a solution of the Boltzmann equation with k = kB =
ΓkA (or Kn = KnB = ΓKnA). Correspondingly, the extensive quantities ρ̂, p̂, p̂ij ,
and q̂i are related as

(ρ̂B , p̂B , p̂ijB , q̂iB) = Γ(ρ̂A, p̂A, p̂ijA, q̂iA), (6.62)

and the intensive quantities v̂i and T̂ remain unchanged, i.e.,

(v̂iB , T̂B) = (v̂iA, T̂A). (6.63)

In the half-space problems in Section 6.1, where the Knudsen number does
not enter the Boltzmann equation, the transformation (f̂B = Γf̂A, xiB = xi/Γ)
is convenient. Then, the set (f̂B , xiB) satisfies the same form of the Boltzmann
equation as (f̂A, xi), and the relations between the macroscopic variables are
the same as Eqs. (6.62) and (6.63).

On the basis of these general relations and the fact that Eq. (6.58a) differs
from Eq. (6.59) only by a factor independent of ζi, we will derive the relation
between the solution under the complete-condensation condition (6.59) and the
solution under the generalized condition (6.58a) with (6.58b).

Let f̂C be the solution for the complete-condensation condition. Put

f̂G = Γf̂C, KnG = ΓKnC (kG = ΓkC), (6.64)

where Γ is defined with the data of one of the boundaries by the first line of the
following expression:

Γ =
αc

1 +
2
√

π(1 − αc)

ρ̂wT̂
1/2
w

∫
ζini<0

ζinif̂C|wdζ

=
αc

αc + 2
√

π(1 − αc)m̂fCρ̂−1
w T̂

−1/2
w

, (6.65)

36It should be noted that there is another parameter U0/kBT0 in the problem (see Footnote
22 in Section 1.9 and more detailed discussion in Section A.2.4).
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where the vertical bar |w with subscript w indicates that the quantities with it
are evaluated on the boundary and

m̂f =
∫

ζinif̂ |wdζ.

The last expression in Eq. (6.65) is derived with the aid of the complete-condensation
condition (6.59) and the relation

m̂fC =
∫

ζinif̂C|wdζ =
∫

ζini>0

ζinif̂C|wdζ +
∫

ζini<0

ζinif̂C|wdζ.

In time-independent problems with one space variable (one-dimensional, axially
symmetric and uniform, or spherically symmetric case), Γ is a constant.

The function f̂G given by Eq. (6.64) is a solution of the Boltzmann equation
(6.60) with k = kG (or Kn = KnG). On the boundary,

f̂G = Γf̂C =
Γρ̂w

(πT̂w)3/2
exp

(
− (ζi − v̂wi)2

T̂w

)
(ζini > 0), (6.66a)

Γ =
αc

1 +
2
√

π(1 − αc)

ρ̂wT̂
1/2
w

∫
ζini<0

ζinif̂C|wdζ

. (6.66b)

From Eq. (6.66b) and the first relation of Eq. (6.64), we have another expression
of Γ

Γ = αc −
2
√

π(1 − αc)

ρ̂wT̂
1/2
w

∫
ζini<0

ζinif̂G|wdζ.

With this Γ, Eq. (6.66a) is rewritten in the form

f̂G =
αcρ̂w + (1 − αc)σ̂w

(πT̂w)3/2
exp

(
− (ζi − v̂wi)2

T̂w

)
(ζini > 0),

where

σ̂w = −2
(

π

T̂w

)1/2 ∫
ζini<0

ζinif̂G|wdζ.

The function f̂G satisfies the generalized boundary condition (6.58a) with (6.58b).
That is, f̂G is the desired solution of the problem. The relations of the macro-
scopic variables between the two solutions are

(ρ̂G, p̂G, p̂ijG, q̂iG) = Γ(ρ̂C, p̂C, p̂ijC, q̂iC), (6.67a)

(v̂iG, T̂G) = (v̂iC, T̂C). (6.67b)

Reversely, let f̂G be a solution for the generalized boundary condition. Then,
we will see in a similar way that f̂C given by

f̂C = Γ∗f̂G, KnC = Γ∗KnG, (kC = Γ∗kG),
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where

Γ∗ =
1

αc −
2
√

π(1 − αc)

ρ̂wT̂
1/2
w

∫
ζini<0

ζinif̂G|wdζ

=
αc

αc − 2
√

π(1 − αc)m̂fGρ̂−1
w T̂

−1/2
w

is the solution for the complete-condensation condition.
In the case of evaporation (m̂fC > 0), Γ takes a positive finite value. In

the case of condensation (m̂fC < 0), Γ can be negative. The Γ∗ always takes a
positive finite value because

∫
ζini<0

ζinif̂G|wdζ ≤ 0. Therefore, in evaporating
flows, there is one-to-one correspondence between the solutions for the complete-
condensation condition and those for the generalized condition. On the other
hand, in condensing flows, there is no solution for the generalized condition
corresponding to a solution for the complete-condensation condition when αc is
small enough.

In the linearized problem, where only the linear terms of the perturbation
around a uniform equilibrium state at rest are taken into account in the analysis,
the relations are simplified in the following way. Let us use the perturbed
quantities and linearized relations introduced in Sections 1.10 and 1.11. The
linearized form of Γ defined by Eq. (6.65) is given by37

Γ =
1

1 + 2
√

π(1 − αc)α−1
c m̂fCρ̂−1

w T̂
−1/2
w

= 1 + ΔΓ, (6.68a)

ΔΓ = −2
√

π(1 − αc)m̂fC

αc
. (6.68b)

The relations (6.64), (6.67a), and (6.67b) are reduced to

φG = φC + ΔΓ, KnG = KnC, (6.69a)
(ωG, PG, PijG, QiG) = (ωC + ΔΓ, PC + ΔΓ, PijC + ΔΓδij , QiC), (6.69b)
(uiG, τG) = (uiC, τC). (6.69c)

Here the results are summarized. In the cases (i), (ii), (iii), and (iv) of the
following examples (i)–(v), the temperature Tw of the condensed phase and the
corresponding saturated gas pressure pw and density ρw (or ρw = pw/RTw) are
taken as the reference quantities; thus, T̂w = 1, p̂w = 1, and ρ̂w = 1.
(i) Evaporation from or condensation onto a plane condensed phase

The two time-independent solutions evaporating from or condensing onto a
plane condensed phase discussed in Section 6.1 are related as

(f̂G, x1G) = (Γf̂C, x1/Γ), (6.70)

37The mass flux m̂fC is a small quantity and the leading term of ρ̂−1
w T̂

−1/2
w is unity.
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(ρ̂G, p̂G, q̂1G) = Γ(ρ̂C, p̂C, q̂1C), (6.71a)

(v̂1G, T̂G) = (v̂1C, T̂C), (6.71b)

where

Γ =
αc

1 + 2
√

π(1 − αc)
∫

ζ1<0

ζ1f̂C|x1=0dζ

=
αc

αc + 2
√

π(1 − αc)m̂fC
, (6.72)

with

m̂fC =
∫

all ζ

ζ1f̂C|x1=0dζ

= ρ̂∞Cv̂1∞C,

the last of which is the result of the conservation of mass flux, i.e., ρ̂v̂1 = ρ̂∞v̂1∞.
With the aid of Eqs. (6.70)–(6.71b), the expression of Γ in Eq. (6.72) is rewritten
as

Γ =
1

1 +
(

10π

3

)1/2 (1 − αc)M∞Cp̂∞C

αcT̂
1/2
∞C

=
1

1 +
(

10π

3

)1/2 (1 − αc)M∞Gp̂∞G

αcΓT̂
1/2
∞G

, (6.73)

which is used in the following discussion.
In view of the relation between the macroscopic variables of the two solu-

tions, the condition (6.8) among the parameters M∞, p̂∞, and T̂∞ under which
the half-space problem of time-independent evaporating flows has a solution is
transformed as

p̂∞G = Γh1(M∞G), T̂∞G = h2(M∞G) (0 ≤ M∞G ≤ 1). (6.74)

From Eqs. (6.73) and (6.74), the factor Γ is expressed with M∞G, i.e.,

Γ =
1

1 +
(

10π

3

)1/2 (1 − αc)M∞Gh1(M∞G)

αch
1/2
2 (M∞G)

, (6.75)

which is a positive finite value because M∞G ≥ 0. The curve p̂∞G (= Γh1) vs
M∞G for the BKW equation is shown in Fig. 6.39.
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Figure 6.39. The curve p̂∞G = Γh1(M∞G) for various αc (the BKW equation).

With the aid of the relations (6.71a), (6.71b), and (6.73), the conditions
(6.9a)–(6.9c) under which the half-space problem of time-independent condens-
ing flows has a solution are transformed as38

p̂∞G = ΓFs(M∞G, 0, T̂∞G) (−1 < M∞G < 0), (6.76a)

p̂∞G > ΓbFb(M∞G, 0, T̂∞G) (M∞G < −1), (6.76b)

p̂∞G ≥ ΓbFb(−1−, 0, T̂∞G) = ΓFs(−1+, 0, T̂∞G) (M∞G = −1). (6.76c)

Here, Γb is Γ in Eq. (6.73) where p̂∞C is replaced by its boundary value Fb; this
process is legitimate because Γ increases continuously from Γb to infinity as p̂∞C

increases from Fb to (3/10π)1/2αcT̂
1/2
∞C/(1 − αc)(−M∞C).39 The factor Γ or Γb

is expressed with M∞G and T̂∞G as

Γ =
1

1 +
(

10π

3

)1/2 (1 − αc)M∞GFs(M∞G, 0, T̂∞G)

αcT̂
1/2
∞G

(−1 ≤ M∞G < 0),

(6.77a)

Γb =
1

1 +
(

10π

3

)1/2 (1 − αc)M∞GFb(M∞G, 0, T̂∞G)

αcT̂
1/2
∞G

(M∞G ≤ −1). (6.77b)

In the condensing flow, Γ or Γb can be negative for small αc because M∞G <
0. Then, there is no corresponding solution f̂G because f̂G must be non-negative.

38Here, we do not have to limit the second variable Mt in Fs and Fb, first introduced in
Eqs. (3.229a)–(3.229c), to zero. Then, c1 and c2 to appear below depend also on Mt.

39The solution f̂C for the parameters M∞C = M∞G, T̂∞C = T̂∞G, and p̂∞C in the range

Fb(M∞G, 0, T̂∞G) < p̂∞C < (3/10π)1/2αcT̂
1/2
∞G /(1 − αc)(−M∞G) corresponds to the solution

f̂G in the range ΓbFb(M∞G, 0, T̂∞G) < p̂∞G < ∞.
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Figure 6.40. The section p̂∞G = ΓFs(M∞G, 0, 1) (−1 ≤ M∞G < 0) of the solution
surface and the section p̂∞G = ΓbFb(M∞G, 0, 1) (M∞G ≤ −1) of the boundary surface
at T̂∞G = 1 (the BKW equation). The dashed lines are the asymptotes of the curves
p̂∞G vs −M∞G. There is no solution between the two asymptotes when αc ≤ αcr

c =
0.9777 for which the two asymptotes degenerate into M∞G = −1.

Therefore, the diagram shown in Fig. 6.12 remains qualitatively unchanged when
the condensation coefficient αc (≤ 1) is larger than some value (αc > αcr

c ), but
there appears a band region or regions c1 ≤ −M∞G ≤ c2 where there is no
solution when αc ≤ αcr

c . When −M∞GFs is a decreasing function of M∞G,
−M∞GFb is its increasing function,40 and Fs(−1+, 0, T̂∞G) = Fb(−1−, 0, T̂∞G),
as in the case of the BKW model, the band region is around M∞G = −1
(c1 ≤ −M∞G ≤ c2; 0 < c1 ≤ 1, c2 ≥ 1), where c1 and c2 depend on T̂∞G as
well as αc. The section p̂∞G = ΓFs(M∞G, 0, 1) (−1 ≤ M∞G < 0) of the solution
surface and the section p̂∞G = ΓbFb(M∞G, 0, 1) (M∞G ≤ −1) of the boundary
surface at T̂∞G = 1 are shown for the BKW equation in Fig. 6.40. This feature
of the effect of incomplete condensation (αc < 1) on the existence range of
solution is similar to that of a noncondensable gas in a condensable gas (Sone,
Aoki & Doi [1992]).

In the linearized problem, the flow velocities u1G and u1C are constants owing
to the conservation of mass flux, i.e.,

m̂fG = u1G = u1∞G = u1∞C = u1C = m̂fC.

Correspondingly, from Eq. (6.68a) with (6.68b)

Γ = 1 − 2
√

π(1 − αc)u1∞C

αc
.

According to Eq. (3.56c),

P∞C = C∗
4Cu1∞C, τ∞C = d∗

4Cu1∞C.

40There are misprints in the corresponding statement on the fifth line of page 220 in Sone
[2002]. The Fs and Fb there should be, respectively, replaced by −MnFs and −MnFb.
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Then, with the aid of Eqs. (6.69b) and (6.69c), the relations corresponding to
those among M∞G, p̂∞G, and T̂∞G are, commonly for evaporation and conden-
sation, given by

P∞G = C∗
4Gu1∞G, τ∞G = d∗4Gu1∞G,

C∗
4G = C∗

4C − 2
√

π(1 − αc)
αc

, d∗
4G = d∗

4C.

⎫⎪⎬⎪⎭ (6.78)

If C∗
4C is negative, C∗

4G is also negative because 0 < αc ≤ 1.

(ii) Evaporation from a cylindrical condensed phase into a vacuum
The two solutions for evaporating flows from a cylindrical condensed phase

into a vacuum discussed in Section 6.2 are related as follows:

(f̂G, gG, hG,KnwG) = Γ(f̂C, gC, hC, KnwC), (6.79)

(ρ̂G, p̂G, q̂rG) = Γ(ρ̂C, p̂C, q̂rC), (6.80a)

(v̂rG, T̂G) = (v̂rC, T̂C), (6.80b)

where

Γ =
αc

1 + 2
√

π(1 − αc)
∫

ζr<0

ζrf̂C|r̂=1dζ

=
αc

αc + 2
√

π(1 − αc)m̂fC
, (6.81)

with
m̂fC =

∫
all ζ

ζrf̂C|r̂=1dζ.

(iii) Evaporation from a cylindrical condensed phase into a gas
In the evaporating flows from a cylindrical condensed phase into a gas in

Section 6.3, the same relations, Eqs. (6.79)–(6.81), as the flows into a vacuum
hold for the two solutions. Corresponding to the relation (6.36) at infinity, we
have

T̂∞G = T (p̂∞G/Γ, KnwG/Γ).

(iv) Evaporation from a spherical condensed phase into a vacuum
The two solutions for evaporating flows from a spherical condensed phase

into a vacuum discussed in Section 6.4 are related as follows:

(f̂G, KnwG) = Γ(f̂C, KnwC),

(ρ̂G, p̂G, q̂rG) = Γ(ρ̂C, p̂C, q̂rC),

(v̂rG, T̂G) = (v̂rC, T̂C),
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where

Γ =
αc

1 + 2
√

π(1 − αc)
∫

ζr<0

ζrf̂C|r̂=1dζ

=
αc

αc + 2
√

π(1 − αc)m̂fC
,

with
m̂fC =

∫
all ζ

ζrf̂C|r̂=1dζ.

(v) Two-surface problem of evaporation and condensation
Consider a gas between its two parallel condensed phases discussed in Section

6.5 without limiting to the linearized Boltzmann equation, where the conden-
sation coefficient αc of the wall at x1 = 0 is αc0, and that at x1 = 1 is αc1. Let
p1 = pw(T1), p̂1 = p1/p0, T̂1 = T1/T0, and ρ̂1 = p̂1/T̂1.

41

Let the solution of the two-surface problem for the complete-condensation
condition at Kn = KnC be f̂C with p̂1 = p̂1C and T̂1 = T̂1C (ρ̂1 = ρ̂1C = p̂1C/T̂1C).
Put

(f̂G,KnG) = Γ(f̂C,KnC), (6.82)

where
Γ =

αc0

αc0 + 2
√

π(1 − αc0)m̂fC
, (6.83)

with
m̂fC =

∫
all ζ

ζ1f̂C|x1=0dζ.

Then, f̂G is the solution of the Boltzmann equation with Kn = KnG = ΓKnC that
satisfies the generalized boundary condition on the wall at x1 = 0. On the wall
at x1 = 1,

f̂G|x1=1 = Γf̂C|x1=1 =
Γρ̂1C

(πT̂1C)3/2
exp

(
− ζ2

T̂1C

)
(ζ1 < 0). (6.84)

We will transform the expression Γρ̂1C as

Γρ̂1C = αc1Γ

[
ρ̂1C − 2(1 − αc1)

αc1

(
π

T̂1C

)1/2

m̂fC

]

+ (1 − αc1)Γ

[
ρ̂1C + 2

(
π

T̂1C

)1/2

m̂fC

]
. (6.85)

41(i) Here, T̂1 is not limited to T̂1 > 1, in contrast to the case in Section 6.5, where the
restriction is only for convenience of explanation.

(ii) The above definition of p̂1 and T̂1 corresponds to choosing the values p0 and T0 on
the wall at x1 = 0 as the reference pressure and temperature. Thus, Kn is made with these
quantities.
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Here, we note the following relation obtained with the aid of the conservation
of mass flux:

m̂fC =
∫

all ζ

ζ1f̂C|x1=0dζ =
∫

all ζ

ζ1f̂C|x1=1dζ

=
∫

ζ1>0

ζ1f̂C|x1=1dζ +
∫

ζ1<0

ζ1f̂C|x1=1dζ

=
1
Γ

∫
ζ1>0

ζ1f̂G|x1=1dζ − ρ̂1CT̂
1/2
1C

2
√

π
.

Using this relation in the second term of Eq. (6.85), we have

Γρ̂1C = αc1Γ

(
ρ̂1C − 2

√
π(1 − αc1)

αc1T̂
1/2
1C

m̂fC

)

− 2(1 − αc1)
(

π

T̂1C

)1/2 ∫
ζ1>0

(−ζ1)f̂G|x1=1dζ. (6.86)

Then, the boundary value of f̂G at x1 = 1 for the molecules leaving there is
expressed as

f̂G|x1=1 =
αc1ρ̂

∗
1 + (1 − αc1)σ̂1

(πT̂1C)3/2
exp

(
− ζ2

T̂1C

)
(ζ1 < 0), (6.87)

where

ρ̂∗1 = Γ

(
ρ̂1C − 2

√
π(1 − αc1)

αc1T̂
1/2
1C

m̂fC

)
, (6.88a)

σ̂1 = −2
(

π

T̂1C

)1/2 ∫
ζ1>0

(−ζ1)f̂G|x1=1dζ. (6.88b)

Equations (6.87)–(6.88b) show that f̂G satisfies the generalized boundary con-
dition at x1 = 1 if p̂1G and T̂1G are given by

p̂1G = Γ
(

p̂1C − 2
√

π(1 − αc1)
αc1

m̂fCT̂
1/2
1C

)
, (6.89)

T̂1G = T̂1C. (6.90)

That is, f̂G = Γf̂C is the solution of the two-surface problem at KnG = ΓKnC

under the generalized boundary condition (6.58a) with (6.58b) when p̂1G and
T̂1G are given, respectively, by Eqs. (6.89) and (6.90).

The solution thus obtained loses its meaning when f̂G < 0. In the above prob-
lem, we can assume m̂fC ≥ 0 without loss of generality. Then, from Eq. (6.83),
Γ > 0. Thus, the condition to be satisfied is the positivity of p̂1G, i.e.,

αc1 >
2
√

πm̂fCT̂
1/2
1C

p̂1C + 2
√

πm̂fCT̂
1/2
1C

.
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In the linearized problem, the relation

m̂fG = u1G = u1C = m̂fC

holds in addition to Eqs. (6.69a)–(6.69c), and the relations (6.89) and (6.90) are
reduced to

ΔPwG = ΔPwC − 2
√

π

(
1

αc1
+

1
αc0

− 2
)

m̂fC,

ΔτwG = ΔτwC,

where
ΔPw = (p1 − p0)/p0, Δτw = (T1 − T0)/T0.

They correspond to ΔPw and Δτw in Section 6.5.



Chapter 7

Bifurcation in the
Half-Space Problem of
Evaporation and
Condensation

In Section 3.5, we discussed the asymptotic behavior for small Knudsen numbers
of a gas around a condensed phase of the gas where evaporation or condensation
with a finite Mach number is taking place. In the continuum limit, the overall
behavior of the gas is described by the Euler set of equations, and its boundary
condition is derived from the analysis of the half-space problem of the Boltz-
mann equation. The boundary condition is qualitatively different depending
on whether evaporation, subsonic condensation, or supersonic condensation is
taking place. Here, we will discuss the transition from one type of the boundary
condition to another, which takes place from evaporation to subsonic condensa-
tion and from subsonic condensation to supersonic condensation, on the basis
of Sone [1978b, 2000b].

7.1 Problem

Consider a semi-infinite expanse (X1 > 0) of a gas in a time-independent state,
bounded by its plane condensed phase at X1 = 0. The plane condensed phase
is at rest and is kept at a uniform temperature Tw. The saturated gas pressure
at this temperature (or Tw) is pw. The state of the gas is uniform with respect
to X2 and X3 coordinates and approaches a uniform state with pressure p∞,
temperature T∞, and velocity vi∞ as X1 → ∞. We use the nondimensional
variables introduced in Sections 1.9 and 1.10 with pw and Tw as the reference
pressure p0 and the reference temperature T0 respectively. The problem contains
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no geometrical reference length. Thus, the nondimensional space coordinate η

η = 2X1/
√

πw, (7.1)

is used here, where w is the mean free path of the gas in the equilibrium state
at rest with pressure pw and temperature Tw. Then, the basic equation is given
as

ζ1
∂f̂

∂η
= Ĵ(f̂ , f̂), (7.2)

and the boundary condition for f̂ is

f̂ = f̂w (ζ1 > 0) at η = 0, (7.3a)

f̂ → p̂∞
π3/2T̂

5/2
∞

exp
(
− (ζi − v̂i∞)2

T̂∞

)
as η → ∞, (7.3b)

where f̂w is given by the corresponding nondimensional form of Eq. (1.30). The
typical example of f̂w is the complete-condensation condition (1.29), i.e.,

f̂w = E(ζ) =
1

π3/2
exp

(
−ζi

2
)
. (7.4)

The problem contains the five parameters p̂∞ (= p∞/pw), T̂∞ (= T∞/Tw), and
v̂i∞ [= vi∞/(2RTw)1/2]. The Mach number M∞ with sign

M∞ =
v1∞√

5RT∞/3

of the normal flow velocity v1∞ is also used instead of v̂1∞.
First, in Section 7.2, we consider the problem for weak evaporation or con-

densation and construct the solution by introducing a slowly varying solution,
for which nonlinear effect is of primary importance. The slowly varying solution
is found to be a source of the different features of the solutions of evaporation
and condensation. Then, in Section 7.3, where the restriction of weak flow is
eliminated, slowly varying solutions are found around the sonic condition, and
the structure of the transition from the solution of subsonic condensation to
that of supersonic one is clarified with the aid of the slowly varying solutions.

7.2 Transition from evaporation to condensation

7.2.1 Basic equation and boundary condition

In this section, we discuss the case of weak evaporation and condensation, that
is, (p∞ − pw)/pw, (T∞ − Tw)/Tw, and vi∞/

√
2RTw, denoted by P∞, τ∞, and

ui∞ respectively, are small quantities of the same order, say, of the order of ε.
In this case it is convenient for the analysis to rewrite the equation (7.2) and the
boundary conditions (7.3a) and (7.3b) in the notation defined in Section 1.10,
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where the perturbed velocity distribution function φ (= f̂/E−1) is introduced.
That is, the equation is

ζ1
∂φ

∂η
= L(φ) + J (φ, φ), (7.5)

where φ = f̂/E − 1, and the boundary condition is

φ = φw (ζ1 > 0) at η = 0, (7.6a)
φ → φe∞ as η → ∞, (7.6b)

where φw = f̂w/E − 1, especially for the complete-condensation condition,

φw = 0, (7.7)

and φe∞ is the perturbed velocity distribution function for the Maxwellian at
infinity, i.e.,

E(ζ)(1 + φe∞) =
1 + P∞

π3/2(1 + τ∞)5/2
exp

(
− (ζi − ui∞)2

1 + τ∞

)
. (7.8)

The small parameters P∞, τ∞, and ui∞ at infinity are expanded in ε, i.e.,

P∞ = P∞1ε + P∞2ε
2 + · · · , (7.9a)

τ∞ = τ∞1ε + τ∞2ε
2 + · · · , (7.9b)

ui∞ = ui∞1ε + ui∞2ε
2 + · · · . (7.9c)

Then,
φe∞ = φe∞1ε + · · · , (7.10)

where

φe∞1 = P∞1 + 2ζiui∞1 +
(

ζ2
i − 5

2

)
τ∞1. (7.11)

7.2.2 Slowly varying solution

The nonlinear terms with respect to φ, as well as (p∞−pw)/pw, (T∞−Tw)/Tw,
and vi∞/

√
2RTw, in the above system, i.e., Eqs. (7.5)–(7.6b), being neglected

formally under the assumption that they are small, the problem is reduced to
the half-space problem of the linearized Boltzmann equation. Then, according
to the Grad–Bardos theorem [see the paragraph containing Eq. (3.39) in Section
3.1.4], there exists a unique solution only when τ∞/P∞ and ui∞/P∞ take special
values. When there is a solution that varies very slowly, i.e., with the length
scale of variation of 1/ε, the differential term ζ1∂φ/∂η of Eq. (7.5) is of the order
of φ2 because ∂φ/∂η = O(εφ), and the linear collision term L(φ) is the only
term of the order of ε and thus should vanish. Therefore, φ is the linearized
version of a Maxwellian. The spatial variation of φ is determined by the terms



358 Chapter 7. Bifurcation in the Half-Space Problem

of the order of φ2. Therefore, we can expect a solution with a quite different
character from the solution of the linearized problem for the half-space problem.
Thus we try to examine the existence of the slowly varying solution.

For the convenience of the analysis of the slowly varying solution, we intro-
duce the shrunk variable x1

x1 = εη. (7.12)

Then, the condition of the slowly varying solution corresponds to

∂φs

∂x1
= O(φs), (7.13)

where the lowercase roman subscript s indicates the slowly varying solution.
With the new variable x1, Eq. (7.5) is rewritten as

ζ1
∂φs

∂x1
=

1
ε
[L(φs) + J (φs, φs)]. (7.14)

The slowly varying solution φs of Eq. (7.14), satisfying the condition (7.13), for
small ε is practically the same as the one-dimensional version of the S solution
discussed in Section 3.2.2. Thus, we can borrow the result with transcription of
the notation. The solution is obtained in a power series of ε, i.e.,

φs = φs1ε + φs2ε
2 + · · · . (7.15)

Corresponding to the expansion of φs, the nondimensional perturbed macro-
scopic variables ω, ui, τ, P, etc. are also expanded, i.e.,

hs = hs1ε + hs2ε
2 + · · · , (7.16)

where h represents ω, ui, τ, P, etc. The relations between these macroscopic
variables and the velocity distribution function are, for example,

ωs1 =
∫

φs1Edζ, (7.17a)

uis1 =
∫

ζiφs1Edζ, (7.17b)

3
2
τs1 =

∫ (
ζ2
i − 3

2

)
φs1Edζ, (7.17c)

Ps1 = ωs1 + τs1. (7.17d)

According to the results in Section 3.2.2, the component function φs1 of the
velocity distribution function is given as

φs1 = Ps1 + 2ζiuis1 +
(

ζ2
i − 5

2

)
τs1, (7.18)

and the functions Ps1, uis1, and τs1 in φs1 are determined by the following
equations [see Eqs. (3.87)–(3.88c)]:

dPs1

dx1
= 0, (7.19)
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du1s1

dx1
= 0, (7.20a)

u1s1
duis1

dx1
= −1

2
dPs2

dx1
δi1 +

1
2
γ1

d2uis1

dx2
1

, (7.20b)

u1s1
dτs1

dx1
=

1
2
γ2

d2τs1

dx2
1

. (7.20c)

The solution of equations (7.19)–(7.20c) satisfying the expanded form (7.9a)–
(7.9c) of the condition at infinity is given as follows:1

Ps1 = P∞1, (7.21a)
u1s1 = u1∞1, (7.21b)

and when u1∞1 ≥ 0

uis1 = ui∞1 (i = 2 and 3), (7.22a)
τs1 = τ∞1, (7.22b)

and when u1∞1 < 0

uis1 = ui∞1 − ci exp
(

2u1∞1

γ1
x1

)
(i = 2 and 3), (7.23a)

τs1 = τ∞1 − c4 exp
(

2u1∞1

γ2
x1

)
, (7.23b)

where ci and c4 are undetermined constants. In addition, we have Ps2 = P∞2,
which will be used in the higher-order analysis. When evaporation (u1∞1 ≥ 0)
is taking place, only a uniform solution is possible. On the other hand, when
condensation (u1∞1 < 0) is taking place, there is a slowly varying solution with
a structure and the solution has extra freedom.

7.2.3 Knudsen-layer correction

We will construct the solution of the half-space problem on the basis of the
slowly varying solution obtained in Section 7.2.2. The slowly varying solution
(7.18) cannot be made to satisfy the boundary condition (7.6a) on the con-
densed phase if evaporation or condensation is taking place, i.e., u1∞1 �= 0.2

The solution satisfying the condition on the condensed phase can be obtained
by introducing a correction (Knudsen-layer correction) to the slowly varying so-
lution in a neighborhood of the condensed phase. This is simply a transcription
of the analysis in Section 3.2.3. That is, we put

φ = φs + φK ,

1In the spatially one-dimensional problem, u1s1 is determined by Eq. (7.20a). Equation
(7.20b) with i = 1 works only to determine Ps2 in contrast to the two or three dimensional
problem.

2Consider the condition (7.7) for simplicity.



360 Chapter 7. Bifurcation in the Half-Space Problem

where φK has the length scale of variation of the order of the mean free path,
i.e., ∂φK/∂η = O(φK), and it is expanded as

φK = φK1ε + · · · .

Corresponding to the expansion of φK , the Knudsen-layer correction hK of a
nondimensional perturbed macroscopic variable h, i.e., hK = h − hs, where h
represents ω, ui, τ, P, etc. is also expanded, i.e.,

hK = hK1ε + hK2ε
2 + · · · .

The equation for φK1 is given by

ζ1
∂φK1

∂η
= L(φK1), (7.24)

and the boundary condition for φK1 is

φK1 = −φs1 + φw

= −Ps1 − 2ζ2u2s1 − 2ζ3u3s1 −
(

ζ2
i − 5

2

)
τs1 − 2ζ1u1s1 + φw

(ζ1 > 0) at η = 0, (7.25a)
φK1 → 0 as η → ∞. (7.25b)

According to the Grad–Bardos theorem, the solution φK1 exists when and only
when the boundary values of Ps1, uis1, and τs1 satisfy the relations

Ps1 = C∗
4u1s1, τs1 = d∗4u1s1, u2s1 = 0, u3s1 = 0 at x1 = 0, (7.26)

and the macroscopic variables of the Knudsen-layer correction are given by

uiK1 = 0, ωK1 = Ω∗
4(η), τK1 = Θ∗

4(η),

where the slip coefficients C∗
4 and d∗4 and the Knudsen-layer functions Ω∗

4(η) and
Θ∗

4(η), determined by the molecular model and kinetic boundary condition, are
the same as those in Sections 3.1.5 and 3.2.3. The relation (7.26) serves as the
boundary conditions for Eqs. (7.19)–(7.20c).

7.2.4 Solution

When u1∞1 ≥ 0, from Eqs. (7.21a)–(7.22b) and Eq. (7.26), the solution exists
only when the state at infinity satisfies the conditions

u1∞1 =
1

C∗
4

P∞1, u2∞1 = u3∞1 = 0, τ∞1 =
d∗
4

C∗
4

P∞1,

and the solution is given by

u1s1 =
1

C∗
4

P∞1, u2s1 = 0, u3s1 = 0, τs1 =
d∗4
C∗

4

P∞1.
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When u1∞1 < 0, from Eqs. (7.21a), (7.21b), (7.23a), (7.23b), and (7.26), the
solution exists only when the state at infinity satisfies the condition

u1∞1 =
1

C∗
4

P∞1,

and the solution is given by

u1s1 =
1

C∗
4

P∞1, uis1 = ui∞1

[
1 − exp

(
2u1∞1

γ1
x1

)]
(i = 2 and 3),

τs1 = τ∞1 +
(

d∗4
C∗

4

P∞1 − τ∞1

)
exp

(
2u1∞1

γ2
x1

)
.

The choice of the small parameter ε is not unique and can be chosen freely
if it is of the order of P∞. The ambiguity is compensated by the values of
P∞1, τ∞1, and ui∞1. In fact, the solution in the original variables Ps, τs, and
uis is expressed, with the error of O(ε2) neglected, as follows: Commonly for
P∞/(−C∗

4 ) ≤ 0 and P∞/(−C∗
4 ) > 0, the condition at infinity should satisfy the

condition
u1∞ =

1
C∗

4

P∞, (7.27)

and the variables Ps and u1s are given by

Ps = P∞, u1s =
1

C∗
4

P∞. (7.28)

When P∞/(−C∗
4 ) ≤ 0, the additional conditions

τ∞ =
d∗
4

C∗
4

P∞, u2∞ = u3∞ = 0 (7.29)

are required for the solution to exist, and the variables τs, u2s, and u3s are given
by

τs =
d∗
4

C∗
4

Ps, u2s = u3s = 0. (7.30)

When P∞/(−C∗
4 ) > 0, the variables τs, u2s, and u3s are given by

τs = τ∞ +
(

d∗
4

C∗
4

P∞ − τ∞

)
exp

(
2P∞
γ2C∗

4

η

)
,

uis = ui∞

[
1 − exp

(
2P∞
γ1C∗

4

η

)]
(i = 2, 3).

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (7.31)

To summarize, when P∞/(−C∗
4 ) ≤ 0, evaporation takes place (u1∞ ≥ 0),3

and the solution is determined by specifying only one parameter, e.g., P∞; and
3The slip coefficient C∗

4 is negative (C∗
4 < 0) for a hard-sphere gas and the BKW model

under the complete-condensation condition [Eqs. (3.59) and (3.60)]. As explained in Section
6.6, generally, if C∗

4 < 0 for the complete-condensation condition, it is also negative for its
generalized boundary condition (6.58a) with (6.58b) [see Eq. (6.78)].
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when P∞/(−C∗
4 ) > 0, condensation takes place (u1∞ < 0), and the solution

is determined by specifying four parameters P∞ (or u1∞), u2∞, u3∞, and τ∞.
The decisive difference of the character of the solution depending on evapora-
tion or condensation is due to whether there exists the slowly varying solution.
In the next section, we will discuss the existence of a slowly varying solution
when condensation is not weak, from which we can clarify the structure of the
transition from subsonic to supersonic condensation.

7.3 Transonic condensation

Now consider the half-space problem described in Section 7.1 without the re-
striction of weak evaporation or condensation. Instead, we consider the case
v̂i∞ = (v̂1∞, 0, 0) and analyze the problem under the restriction v̂i = (v̂1, 0, 0)
to avoid the complexity of expressions. The generalization to the case where v̂2

and v̂3 are not zero is straightforward with a note at the end of Section 7.3.2.

7.3.1 Preparation

In Sections 3.5.2 and 6.1.3, we explained, on the basis of a numerical study
(Sone, Aoki & Yamashita [1986]), that bifurcation occurs at the sonic speed4 in
a condensing flow, as well as the bifurcation in the case of the transition from
evaporation to condensation discussed in Section 7.2. The results, however, are
numerical ones, and thus are of limited nature. We will discuss the analytical
structure of the transition. First, the numerical results are summarized for the
convenience of explanation.

The half-space problem does not necessarily have a solution for an arbitrary
set of the three parameters (M∞, p∞/pw, T∞/Tw). As mentioned, the solution
exists in the following region (Fig. 7.1). For −1 < M∞ < 0, the solution exists
when and only when the set of the three parameters lies on a surface in the
(M∞, p∞/pw, T∞/Tw) space, or

p∞/pw = Fs(M∞, T∞/Tw). (7.32)

For M∞ ≤ −1, the solution exists in a three-dimensional domain in the (M∞,
p∞/pw, T∞/Tw) space, or

p∞/pw > Fb(M∞, T∞/Tw) (M∞ < −1), (7.33a)
p∞/pw ≥ Fb(−1, T∞/Tw), (7.33b)

where Fs and Fb are those in Sections 3.5.2 and 6.1.3 with Mt eliminated,
because the simpler case v̂i = (v̂1, 0, 0) is considered here. The boundary
p∞/pw = Fb(M∞, T∞/Tw) of the existence range of supersonic solutions is re-
lated to the surface p∞/pw = Fs(M∞, T∞/Tw). That is, a point on the bound-
ary surface p∞/pw = Fb(M∞, T∞/Tw) is related to some point on the surface

4See Footnote 32 in Section 3.1.9.
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Figure 7.1. A schematic view of the section T∞/Tw =const of the parameter space
(M∞, p∞/pw, T∞/Tw) showing the range where a solution exists. A solution exists on
the surface p∞/pw = Fs(M∞, T∞/Tw) and in the region p∞/pw ≥ Fb(M∞, T∞/Tw),
where the equal sign is applied only to the case M∞ = −1. A supersonic Knudsen-
layer-type solution exists on the surface p∞/pw = Fes(M∞, T∞/Tw).

(7.32) by the shock condition (or the Rankine–Hugoniot relation) introduced in
Section 4.7.

The length scale of variation of the subsonic solution (−1 < M∞ < 0) is of
the order of the mean free path or the proper variable is η defined by Eq. (7.1),
and the solution approaches the state at infinity exponentially fast, though
confirmed only numerically. The solution with exponential approach can be
extended to the supersonic range (M∞ ≤ −1), as shown in Fig. 7.2, which is
confirmed for the BKW equation (Sone, Golse, Ohwada & Doi [1998]).

The solution of the half-space problem shows a striking feature across the
sonic condition. Here, we will discuss the analytical structure of the solution
in the transonic region. More precisely, we assume that there exists a solution
on the surface p∞/pw = Fs(M∞, T∞/Tw) in −1 < M∞ < 0 that approaches
the state at infinity with exponential speed and that the solution with expo-
nential approach is extended in the supersonic range, that is, there exists a
solution with exponential approach on the surface p∞/pw = Fes(M∞, T∞/Tw)
in M∞ ≤ −1. These solutions with exponential approach to the state at infinity
will be called (subsonic or supersonic) Knudsen-layer-type solutions. Further,
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Figure 7.2. The surfaces Fs and Fes. (a) Fs and Fes in the neighborhood of M∞ = −1;
(b) Their sections T∞/Tw = 0.5, 0.65, 0.8, 1, 1.2, 1.5, and 2. In (a), the sonic line on
the surfaces is shown as B-curve. In (b), the data (�) for Fes lie on the extrapolated
curves (——) of the data (•) of Fs. The two surfaces are joined smoothly at the sonic
points (along the B-curve).
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we assume that the surface p∞/pw = Fs(M∞, T∞/Tw) intersects the plane
M∞ = −1 at a finite angle and that it is smoothly extended to the sur-
face p∞/pw = Fes(M∞, T∞/Tw). Let the curve formed by the intersection of
M∞ = −1 and p∞/pw = Fs(M∞, T∞/Tw) in the (M∞, p∞/pw, T∞/Tw) space
be called the B-curve. Under the assumptions stated above, we try to construct
the supersonic solution in a neighborhood of the B-curve and confirm the result
(7.33a) analytically.

The above numerical data are obtained for the complete-condensation con-
dition on the condensed phase. The solution of the half-space problem is simply
extended to the case of the boundary condition (1.28a) with α = 1 as explained
in Section 6.6. The extended solution has the same feature as the solution under
the complete-condensation condition when the condensation coefficient αc (≤ 1)
is larger than some value (αc > αcr

c ), but no solution exists in a band region or
regions c1 ≤ −M∞ ≤ c2 when αc ≤ αcr

c . When −M∞Fs is a decreasing functions
of M∞, −M∞Fb is its increasing function, and Fs(−1+, T̂∞) = Fb(−1−, T̂∞),
as for the BKW model, the band region is around M∞ = −1 (c1 ≤ −M∞ ≤ c2;
0 < c1 ≤ 1, c2 ≥ 1), where c1 and c2 depend on T̂∞ as well as αc (see Fig. 6.40
in Section 6.6). The effect of incomplete condensation (αc < 1) is similar to the
effect of a noncondensable gas component in the gas (Sone, Aoki & Doi [1992]).

7.3.2 Slowly varying solution

In Section 7.2, we have seen that a slowly varying solution expands the dimension
of the range of the parameter space where a solution exists. Thus, we examine
whether there is another slowly varying solution with a nonsmall upstream Mach
number.

Take an equilibrium state

f̂U =
p̂U

π3/2T̂
5/2
U

exp
(
− (ζi − v̂Uδi1)2

T̂U

)
, (7.34)

where p̂U , T̂U , and v̂U are constants. We consider the case where the state of
the gas is slightly perturbed from the uniform state (7.34) and the perturbation
is slowly varying with respect to the space variable η, that is, ∂f̂/∂η = O(εf̂),
where ε is the characteristic size of the perturbation. Using the shrunk variable
x1 defined by x1 = εη [Eq. (7.12)], we have

ζ1
∂f̂

∂x1
=

1
ε
Ĵ(f̂ , f̂). (7.35)

The slowly varying solution, discriminated by the subscript s, is looked for
in a power series of ε, i.e.,

f̂s − f̂U = f̂s1ε + f̂s2ε
2 + · · · . (7.36)

Correspondingly, the macroscopic variables ρ̂s, v̂1s, T̂s, and p̂s are also expanded
similarly, i.e.,

ĥs − ĥU = ĥs1ε + ĥs2ε
2 + · · · , (7.37)
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where ĥ represents any of ρ̂, v̂1, T̂ , and p̂. They are related to f̂s as

ρ̂s1 =
∫

f̂s1dζ, (7.38a)

ρ̂U v̂1s1 =
∫

(ζ1 − v̂U )f̂s1dζ, (7.38b)

3
2
ρ̂U T̂s1 =

∫ (
(ζi − v̂Uδi1)2 −

3
2
T̂U

)
f̂s1dζ, (7.38c)

p̂s1 = ρ̂s1 T̂U + ρ̂U T̂s1, (7.38d)

ρ̂s2 =
∫

f̂s2dζ, (7.39a)

ρ̂U v̂1s2 =
∫

(ζ1 − v̂U )f̂s2dζ − ρ̂s1 v̂1s1, (7.39b)

3
2
ρ̂U T̂s2 =

∫ (
(ζi − v̂Uδi1)2 −

3
2
T̂U

)
f̂s2dζ − ρ̂U v̂2

1s1 −
3
2
ρ̂s1 T̂s1, (7.39c)

p̂s2 = ρ̂s2 T̂U + ρ̂U T̂s2 + ρ̂s1 T̂s1. (7.39d)

Substituting the expansion (7.36) into Eq. (7.35), we obtain the integral equation
for f̂sm, i.e.,

Ĵ(f̂U , f̂s1) = 0, (7.40)

2Ĵ(f̂U , f̂sm) = ζ1
∂f̂sm−1

∂x1
−

m−1∑
l=1

Ĵ(f̂sl, f̂sm−l) (m ≥ 2). (7.41)

In view of Eqs. (7.38a)–(7.38d), the solution of Eq. (7.40) is expressed as

f̂s1 = f̂U

[
ρ̂s1

ρ̂U
+

2v̂1s1(ζ1 − v̂U )
T̂U

+
T̂s1

T̂U

(
(ζi − v̂Uδi1)2

T̂U

− 3
2

)]
. (7.42)

Then, f̂U + εf̂s1 is written as

f̂U +εf̂s1 =
p̂U + εp̂s1

π3/2(T̂U + εT̂s1)5/2
exp

(
− [ζi − (v̂U + εv̂1s1)δi1]2

T̂U + εT̂s1

)
+O(ε2). (7.43)

The slowly varying solution f̂s is Maxwellian up to the order of ε. This property
simplifies the later analysis and result considerably.

From the condition for Eq. (1.83) to hold and the relation (1.53),5 the con-
dition (solvability condition)∫

(1, ζ1, ζ
2
i )ζ1

∂f̂sm−1

∂x1
dζ = 0 (m ≥ 2) (7.44)

is required for Eq. (7.41) to have a solution. With Eq. (7.42), the condition
(7.44) for m = 2 is reduced to the following homogeneous linear equations for

5See Footnote 59 in Section 3.3.2.
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dρ̂s1/dx1, dv̂1s1/dx1, and dT̂s1/dx1:⎛⎝ v̂U ρ̂U 0
T̂U/2 ρ̂U v̂U ρ̂U/2

0 2ρ̂U v̂2
U 5ρ̂U v̂U/2

⎞⎠⎛⎝ dρ̂s1/dx1

dv̂1s1/dx1

dT̂s1/dx1

⎞⎠ =

⎛⎝ 0
0
0

⎞⎠ . (7.45)

For the homogeneous equations (7.45) to have a nontrivial solution, the deter-
minant composed of their coefficients must vanish, that is,

v̂U = 0, v̂U = ±(5T̂U/6)1/2. (7.46)

A slowly varying solution is possible only when the background uniform state is
at rest or at a sonic state, defined as the state that the flow speed |v1| is equal to
the sound speed (5RT/3)1/2. The former case corresponds to the case discussed
in Section 7.2.2. The solution of one of the latter cases, i.e., v̂U = ±(5T̂U/6)1/2,
is obviously obtained from the other only by replacing the variables x1 and v̂1s1

by −x1 and −v̂1s1 respectively. Thus, hereafter, we consider the case v̂U =
−(5T̂U/6)1/2 whose result is directly used in the later analysis.

Let this state be indicated by the subscript B instead of U. That is,

v̂U = v̂B = −(5T̂B/6)1/2, T̂U = T̂B ,

p̂U = p̂B , ρ̂U = ρ̂B = p̂B/T̂B ,

f̂U = f̂B =
p̂B

π3/2T̂
5/2
B

exp
(
− (ζi − v̂Bδi1)2

T̂B

)
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (7.47)

For this sonic background state, the three relations of the solvability condition
(7.45) degenerate into two, and the following two independent equations are
derived:

dρ̂s1

dx1
−
(

6
5T̂B

)1/2

ρ̂B
dv̂1s1

dx1
= 0, (7.48a)

dT̂s1

dx1
−
(

8T̂B

15

)1/2
dv̂1s1

dx1
= 0. (7.48b)

These equations are independent of molecular models. When Eqs. (7.48a) and
(7.48b) with Eq. (7.47) are satisfied, the solution f̂s2 is given in the form

f̂s2

f̂B

=
ρ̂s2

ρ̂B
+ 2ζ̃1

(
v̂1s2

T̂
1/2
B

+
ρ̂s1v̂1s1

ρ̂BT̂
1/2
B

)
+
(

ζ̃2 − 3
2

)(
T̂s2

T̂B

+
2v̂2

1s1

3T̂B

+
ρ̂s1T̂s1

ρ̂BT̂B

)

+ 2

(
ζ̃2
1 − ζ̃2

3

)
v̂2
1s1

T̂B

+ 2ζ̃1

(
ζ̃2 − 5

2

)
v̂1s1T̂s1

T̂
3/2
B

+
(

1
2
ζ̃4 − 5

2
ζ̃2 +

15
8

)
T̂ 2

s1

T̂ 2
B

−
(

ζ̃2
1 − 1

3
ζ̃2

)
B(0)(ζ̃, T̂B)

1

ρ̂BT̂
1/2
B

dv̂1s1

dx1
− ζ̃1A(ζ̃, T̂B)

1
ρ̂BT̂B

dT̂s1

dx1
, (7.49)
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where
ζ̃i = (ζi − v̂Bδi1)/T̂

1/2
B , ζ̃ = (ζ̃2

i )1/2, (7.50)

and A(ζ̃, T̂B) and B(0)(ζ̃, T̂B) are functions defined in Section A.2.9.
The solvability condition (7.44) for m = 3 with Eq. (7.49) for f̂s2 is reduced

to the following linear equations for dρ̂s2/dx1, dv̂1s2/dx1, and dT̂s2/dx1:⎛⎝ v̂B ρ̂B 0
T̂B/2 ρ̂B v̂B ρ̂B/2

0 2ρ̂B v̂2
B 5ρ̂B v̂B/2

⎞⎠⎛⎝ dρ̂s2/dx1

dv̂1s2/dx1

dT̂s2/dx1

⎞⎠

= −

⎛⎜⎜⎜⎜⎜⎜⎝

dρ̂s1v̂1s1

dx1

1
2

dρ̂s1T̂s1

dx1
+ (v̂B ρ̂s1 + ρ̂B v̂1s1)

dv̂1s1

dx1
− 2

3
Γ1

d2v̂1s1

dx2
1

ρ̂B v̂B
dv̂2

1s1

dx1
− 5

4
Γ2

d2T̂s1

dx2
1

− 4
3
Γ1v̂B

d2v̂1s1

dx2
1

⎞⎟⎟⎟⎟⎟⎟⎠ , (7.51)

where Γ1 and Γ2 are, respectively, the short forms of Γ1(T̂B) and Γ2(T̂B), func-
tions of T̂B determined by the molecular model, defined in Section A.2.9. The
coefficient matrix on the left-hand side is the same as that of Eq. (7.45) whose
determinant vanishes. Thus, the inhomogeneous terms must satisfy the follow-
ing condition for Eq. (7.51) to have a solution:

dv̂2
1s1

dx1
− 2Γ1 + Γ2

4ρ̂B

d2v̂1s1

dx2
1

= 0, (7.52)

where ρ̂s1 and T̂s1 are taken to be zero when v̂1s1 = 0 and thus, v̂1s1 = 0
is the sonic point. The condition (7.52) being satisfied, the three equations of
Eq. (7.51) degenerate into two equations for dρ̂s2/dx1, dv̂1s2/dx1, and dT̂s2/dx1.
Equation (7.52) together with Eqs. (7.48a) and (7.48b), the two relations derived
from the solvability condition (7.44) for m = 2, forms the set of equations for
ρ̂s1, v̂1s1, and T̂s1.

From Eq. (7.52), under the condition dv̂1s1/dx1 → 0 as x1 → ∞ or −∞,6

x1 =
1
a2

∫ v̂1s1 dv̂1s1

v̂2
1s1 − C2

, (7.53)

where
a2 = 4ρ̂B/(2Γ1 + Γ2),

and C (> 0) is an integration constant. Examining Eq. (7.53) with reference
to Fig. 7.3, we find that v̂1s1 = −C corresponds to x1 = ∞ (or v̂1s1 → −C as
x1 → ∞) and that v̂1s1 = C to x1 = −∞ (or v̂1s1 → C as x1 → −∞). The
flow direction determined by v̂B is shown by arrows in Fig. 7.3. There are three

6According to the last paragraph of Section A.2.9, Γ1 > 0 and Γ2 > 0.
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Figure 7.3. The integrand 1/(v̂2
1s1 − C2).

kinds of solutions that tend to a uniform state as x1 → ∞ or x1 → −∞, i.e.,

v̂1s1 = −C tanhX (−∞ < X < ∞), (7.54a)
v̂1s1 = −C coth X (0 < X < ∞), (7.54b)
v̂1s1 = −C coth X (−∞ < X < 0), (7.54c)

where
X + X0 = Ca2x1, (7.55)

with an arbitrary constant X0. The first solution (7.54a) is a weak shock wave
solution (Grad [1969], Caflisch & Nicolaenko [1982]) from x1 = ∞ to −∞,
the second solution (7.54b) in the region (X0/Ca2 < x1 < ∞) is a supersonic
accelerating flow from x1 = ∞, and the third solution (7.54c) in the region
(−∞ < x1 < X0/Ca2) is a subsonic accelerating flow to x1 = −∞. The last
two solutions diverge at a finite point X = 0 or x1 = X0/Ca2. We can put any
state in the range of X at the origin x1 = 0 by choosing X0 properly.

The other variables, i.e., ρ̂s1, T̂s1, and p̂s1, are easily obtained from v̂1s1 with
the aid of Eqs. (7.48a), (7.48b), and (7.38d) as

ρ̂s1 = − ρ̂B

v̂B
v̂1s1, (7.56a)

T̂s1 = −4v̂B

5
v̂1s1, (7.56b)

p̂s1 = −2ρ̂B v̂B v̂1s1, (7.56c)

v̂B = −(5T̂B/6)1/2. (7.56d)

As we have noted before, the reflection of the solution with respect to x1 = 0
(or X = 0) is the solution corresponding to v̂B = (5T̂B/6)1/2. Thus, when we
consider the half-space problem, there are four kinds of slowly varying solutions
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that approach a uniform state as x1 → ∞, two condensing flows (v̂1s < 0)
supersonic at infinity and two evaporating flows (v̂1s > 0) subsonic at infinity.
The two condensing flows are the weak shock wave and the supersonic acceler-
ating flow; the two evaporating flows are the weak shock wave and the subsonic
accelerating flow.

Here, we express the results in a form convenient for later application to
condensing flows (or v̂1s < 0), where the Mach number M∞

M∞ =
v1∞

(5RT∞/3)1/2
=

v̂1∞
(5T̂∞/6)1/2

< 0,

is used instead of v̂1∞; it has a sign in contrast to the conventional definition.
It is noted that the terms of the order of ε2 and higher are neglected in the
equations that hereafter appear in this subsection, and that they are correct
only up to the order of ε. The results are expressed with the same notation for
the quantities with difference O(ε2), e.g., v̂1s = v̂B + εv̂1s1. From Eqs. (7.37),
(7.54a), (7.54b), and (7.56b),

v̂1∞ = v̂B − εC, v̂1s = v̂B − εCŜ(X), T̂∞ = T̂B +
4εv̂B

5
C,

where Ŝ(X) is tanhX or coth X, and v̂B = −(5T̂B/6)1/2. Evaluating M∞ by
these relations, we find

εC =
3
4
v̂B(M∞ + 1),

from which M∞ < −1. Then, the slowly varying solution around a sonic condi-
tion flowing in the −X direction is expressed as follows:7

f̂s =
p̂s

π3/2T̂s
5/2

exp
(
− (ζi − v̂1sδi1)2

T̂s

)
, (7.57a)

v̂1s =

(
5T̂∞

6

)1/2 (
M∞ +

3
4
(M∞ + 1)[Ŝ(X) − 1]

)
, (7.57b)

ρ̂s = ρ̂∞

(
1 +

3
4
(M∞ + 1)[Ŝ(X) − 1]

)
, (7.57c)

T̂s = T̂∞

(
1 +

1
2
(M∞ + 1)[Ŝ(X) − 1]

)
, (7.57d)

p̂s = p̂∞

(
1 +

5
4
(M∞ + 1)[Ŝ(X) − 1]

)
, (7.57e)

Ms = M∞ + (M∞ + 1)[Ŝ(X) − 1], (7.57f)

X + X0 = −
√

15
2

ρ̂BT̂
1/2
B

2Γ1 + Γ2
(M∞ + 1)η =

√
15
2

ρ̂BT̂
1/2
B

2Γ1 + Γ2
x1, (7.57g)

7If ρ̂B and T̂B , including the arguments of Γ1 and Γ2, in Eq. (7.57g) are replaced by quan-

tities with difference of O(ε), e.g., by ρ̂∞ and T̂∞ respectively, the error in Eq. (7.57g) is O(ε)

for a finite x1, but the errors in Eqs. (7.57a)–(7.57f) are O(ε2) because Ŝ(X) in Eqs. (7.57b)–
(7.57f) is multiplied by the factor M∞ + 1 of O(ε).
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where M∞ < −1, Ms is the local Mach number given by v̂1s/(5T̂s/6)1/2; the
choice of ε, introduced in the definition of the shrunk variable x1, has a freedom
and |M∞ + 1| is taken as ε here; this difference appears only in the relation
between η and x1. When Ŝ(X) = tanhX, the above solution is a weak shock
wave, and when Ŝ(X) = cothX, it is a supersonic accelerating flow. From these
equations, the function Ŝ(X) is eliminated and the variables are expressed in
terms of Ms. For example,

p̂s = p̂∞gp(Ms,M∞), T̂s = T̂∞gT (Ms,M∞), (7.58)

where

gp(Ms,M∞) = 1 +
5
4
(Ms − M∞), (7.59a)

gT (Ms,M∞) = 1 +
1
2
(Ms − M∞). (7.59b)

It should be noted that a slowly varying solution expressing a flow in the −x1

direction exists only for M∞ < −1, and Ms ranges in the domain

M∞ ≤ Ms ≤ −M∞ − 2 (weak shock wave), (7.60a)
Ms ≤ M∞ (supersonic accelerating flow). (7.60b)

Owing to the freedom of arbitrary X0 in Eq. (7.57g), any set of the parameters
(Ms, p̂s, T̂s) satisfying the relation (7.58) can be located at the origin (η = 0 or
x1 = 0). For example, this is done by choosing X0 by the relation

S(−X0) = (Ms + 1)/(M∞ + 1). (7.61)

The foregoing analysis of a slowly varying solution can be easily extended
to the case where v̂2 and v̂3 are not zero. The solution is obtained by simply
adding constant velocity components v̂2 = v̂2∞ and v̂3 = v̂3∞, that is, f̂U + εf̂s1

is a local Maxwellian given by

f̂U + εf̂s1 =
p̂U + εp̂s1

π3/2(T̂U + εT̂s1)5/2
exp

(
− (ζi − v̂i)2

T̂U + εT̂s1

)
+ O(ε2), (7.62)

where
v̂1 = v̂U + εv̂1s1, v̂2 = v̂2∞, v̂3 = v̂3∞.

The other variables as well as v̂U and v̂1s1 are the same as in the foregoing
analysis.

7.3.3 Construction of the solution of the half-space
problem

We try to construct supersonic condensing solutions in a transonic region on
the basis of the slowly varying solution obtained in Section 7.3.2, as we have
obtained weakly condensing solutions in Sections 7.2.3 and 7.2.4.
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The slowly varying solution does not satisfy the boundary condition (7.3a),
especially Eq. (7.4), on the condensed phase. Thus, we try to find the solution
of the half-space problem by modifying the slowly varying function only in a
neighborhood of the condensed phase. That is, we put the solution in the form

f̂ = f̂s + f̂K , (7.63)

where the correction term f̂K is assumed to vary as ∂f̂K/∂η = O(f̂K), and
vanishes very rapidly (or faster than any inverse power of η) as η tends to
infinity (Knudsen-layer correction). We first rewrite Eq. (7.63) in the form

f̂ = f̂s − f̂e0 + f̂∗, (7.64)

with

f̂e0 =
(p̂s)0

π3/2(T̂s
5/2)0

exp

(
− [ζi − (v̂1s)0δi1]2

(T̂s)0

)
, (7.65a)

f̂∗ = f̂e0 + f̂K , (7.65b)

where the quantities in the parentheses with subscript zero ( )0 are evaluated at
x1 = 0, and f̂∗ converges to f̂e0 exponentially as η → ∞. The data (p̂s)0, (T̂s)0,
and (v̂1s)0 at x1 = 0 contain an arbitrary constant X0, which will be determined
later. It is noted that the Maxwellian f̂e0 agrees with (f̂s)0 up to the order of ε,

because f̂s is Maxwellian up to this order [see Eq. (7.43)]. Substituting Eq. (7.64)
into the Boltzmann equation (7.2), then we obtain the equation

ζ1
∂f̂∗

∂η
= Ĵ(f̂∗, f̂∗) + 2Ĵ(f̂s − f̂e0, f̂K). (7.66)

In this derivation, it is used that f̂s satisfies Eq. (7.2) and that Ĵ(f̂e0, f̂e0) = 0. In
the second term on the right-hand side of Eq. (7.66), the slowly varying function
f̂s − f̂e0 is multiplied by the rapidly decaying function f̂K , and therefore the
former can be replaced by its series expansion

f̂s = f̂B + ε(f̂s1)0 + ε2[(f̂s2)0 + η(∂f̂s1/∂x1)0] + · · · . (7.67)

From Eq. (7.67) and the fact that f̂s is Maxwellian up to the order of ε, the
difference f̂s − f̂e0 is O(ε2). Thus, we can estimate the second term on the
right-hand side of Eq. (7.66) as

Ĵ(f̂s − f̂e0, f̂K) = O(ε2f̂K). (7.68)

The integral Ĵ(f̂s − f̂e0, f̂K) is exponentially small outside the region η = O(1)
and is of the order of ε2 in the region η = O(1). Therefore, the function f̂∗,
whose variation is confined in this region, is given within an error O(ε2) by the
solution of the equation

ζ1
∂f̂∗

∂η
= Ĵ(f̂∗, f̂∗). (7.69)
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From Eqs. (7.3a) and (7.64),

f̂∗ = f̂w − [(f̂s)0 − f̂e0] (ζ1 > 0) at η = 0, (7.70)

where (f̂s)0 − f̂e0 is O(ε2). Thus, the difference of O(ε2) being neglected here,
the condition (7.70) at η = 0 is reduced to the condition

f̂∗ = f̂w (ζ1 > 0) at η = 0, (7.71)

especially for the complete-condensation condition,

f̂∗ = π−3/2 exp(−ζ2
i ) (ζ1 > 0) at η = 0. (7.72)

From Eq. (7.65b) and the condition that f̂K → 0 exponentially as η → ∞, f̂∗

approaches the Maxwellian f̂e0, i.e.,

f̂∗ → (p̂s)0
π3/2(T̂s)

5/2
0

exp

(
− [ζi − (v̂1s)0δi1]2

(T̂s)0

)
as η → ∞, (7.73)

exponentially fast.
In the present study we are interested in the quantities up to the order

of ε. Hereafter, we use the same notation for the quantities with difference
O(ε2), e.g., f̂s = f̂B + εf̂s1, (f̂s)0 = f̂e0, v̂1s = v̂B + εv̂1s1, p̂s = p̂B + εp̂s1,

T̂s = T̂B + εT̂s1. Thus, from the above discussion, f̂∗ is the solution of the
boundary-value problem (7.69), (7.71), and (7.73) that approaches the state at
infinity with an exponential speed. That is, f̂∗ is the (subsonic or supersonic)
Knudsen-layer-type solution in Section 7.3.1 where the parameters M∞, p∞/pw,

and T∞/Tw are, respectively, replaced by (Ms)0 (= (v̂1s)0/[5(T̂s)0/6]1/2), (p̂s)0,
and (T̂s)0. That is, the solution f̂∗ exists when and only when the parameters
(Ms)0, (p̂s)0, and (T̂s)0 satisfy the relation

(p̂s)0 = FS((Ms)0, (T̂s)0), (7.74)

where FS is Fs or Fes.
8 This relation serves as the equation for undetermined

X0, which is contained in (Ms)0, (p̂s)0, and (T̂s)0. If X0 is determined, (Ms)0,
(p̂s)0, and (T̂s)0 are determined. That is, the solution of the half-space problem
is determined. However, this equation may not always have a solution. To make
this point clear and to derive the existence range of the supersonic solution in
Fig. 7.1, we will construct a class of solutions of the half-space problem from a
given Knudsen-layer-type solution f̂∗ with the aid of the above discussion.

Let the values of M, p̂, and T̂ at infinity of a Knudsen-layer-type solution
f̂∗ be, respectively, (Ms)0, (p̂s)0, and (T̂s)0, which satisfy the relation (7.74).
Take the slowly varying solution f̂s with (Ms)0, (p̂s)0, and (T̂s)0 as the values
of Ms, p̂s, and T̂s at the origin. Then, the values Ms, p̂s, and T̂s at infinity, i.e.,

8Naturally, we are interested in the region in a neighborhood of the B-curve.
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M∞, p̂∞, and T̂∞, of this slowly varying solution are related to the values at
the origin by the relation (7.58) with Eqs. (7.59a) and (7.59b), that is,

(p̂s)0 = p̂∞gp((Ms)0,M∞), (T̂s)0 = T̂∞gT ((Ms)0,M∞), (7.75)

with

gp((Ms)0, M∞) = 1 +
5
4
((Ms)0 − M∞), (7.76a)

gT ((Ms)0, M∞) = 1 +
1
2
((Ms)0 − M∞), (7.76b)

where M∞ ≤ (Ms)0 ≤ −2 −M∞ for the weak shock wave and (Ms)0 ≤ M∞
for the supersonic accelerating flow. For a given [(Ms)0, (p̂s)0, (T̂s)0], the state
(M∞, p̂∞, T̂∞) allowed by the above relation is a one-parameter (say, M∞) fam-
ily, or a curve in (M∞, p̂∞, T̂∞) space, i.e.,

p̂∞ = (p̂s)0gp(M∞, (Ms)0), T̂∞ = (T̂s)0gT (M∞, (Ms)0), (7.77)

where the range of the parameter M∞ is M∞ ≤ min[(Ms)0,−2 − (Ms)0] for
the weak shock wave and (Ms)0 ≤ M∞ ≤ −1 for the supersonic accelerating
flow. It may be noted that the slowly varying solution in the half space (0 ≤
x1 < ∞) degenerates into the uniform state Ms = (Ms)0 in the two cases
M∞ = −2 − (Ms)0 for (Ms)0 ≥ −1 and M∞ = (Ms)0 for (Ms)0 ≤ −1. The
latter is obvious, and the former is because the downstream infinity is set at the
origin and the structure of the weak shock wave shifts to upstream infinity.

The solution f̂ of the original half-space problem is obtained with these
f̂∗ and f̂s by Eq. (7.64). As is obvious from Eqs. (7.64) and (7.65b), f̂ → f̂s

as x1 → ∞, and thus (M∞, p̂∞, T̂∞) given by Eq. (7.77) are the corresponding
values of f̂ . In view of the one-parameter family relation (7.77), the dimension of
the set (M∞, p̂∞, T̂∞) that allows a solution f̂ of the half-space problem is three,
because the set ((Ms)0, (p̂s)0, (T̂s)0) that allows a Knudsen-layer-type solution is
given by Eq. (7.74). In the two degenerate cases M∞ = −2−(Ms)0 [(Ms)0 ≥ −1]
and M∞ = (Ms)0 (≤ −1) mentioned at the end of the preceding paragraph, the
solution f̂ is given by f̂∗ itself, and no new flow is created. Especially, in the
former case, M of f̂ at infinity is given by M∞ [= −2 − (Ms)0] when M∞ is
approaching −2− (Ms)0, but M of f̂ at infinity is (Ms)0 at M∞ = −2− (Ms)0.
This fact is important to discuss the existence range of a solution in the next
section.

In Figs. 7.4 and 7.5, we give some examples of the solution constructed from a
subsonic or supersonic Knudsen-layer-type solution of the BKW equation under
the complete-condensation condition. In these figures, the results are compared
with the numerical results of the original half-space problem, i.e., Eqs. (7.2)–
(7.4). The figures are taken from Sone, Golse, Ohwada & Doi [1998] with
necessary transcriptions.

We can construct the solution of the half-space problem with nonzero v̂2∞
and v̂3∞ at infinity on the basis of Eq. (7.62) by a process similar to the foregoing
one (see Bardos, Golse & Sone [2006]).
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Figure 7.4. Various supersonic solutions generated from a subsonic Knudsen-layer-
type solution f̂∗ that takes (Ms)0 = −0.995 and (T̂s)0 = 1 [thus (p̂s)0 = 13.29786]
at η = ∞. The solid lines — indicate supersonic solutions for the BKW equation
constructed by the recipe explained in Section 7.3.3. The dashed lines - - - indicate
numerical solutions with the corresponding values of M∞, p∞/pw, and T∞/Tw.
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Figure 7.5. Various supersonic solutions generated from a supersonic Knudsen-layer-
type solution f̂∗ that takes (Ms)0 = −1.01 and (T̂s)0 = 1 [thus (p̂s)0 = 14.093889]
at η = ∞. The solid lines — indicate supersonic solutions for the BKW equation
constructed by the recipe explained in Section 7.3.3. The dashed lines - - - indicate
numerical solutions with the corresponding values of M∞, p∞/pw, and T∞/Tw. For the
present f̂∗, the slowly varying part of a solution is an accelerating flow if M∞ ≥ −1.01
and a weak shock wave if M∞ ≤ −1.01.
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7.3.4 Existence range of a solution

Now we will discuss the range of the parameters (M∞, p̂∞, T̂∞) in which the
half-space problem has a solution. Substituting the relation (7.75) into the
condition (7.74), we have

p̂∞gp((Ms)0, M∞) = FS((Ms)0, T̂∞gT ((Ms)0,M∞)).

The relation is simplified in a neighborhood of the B-curve (|Ms + 1| � 1,
|M∞ + 1| � 1) as

p̂∞ = FS +
∂FS

∂a1
(M∞+1)+

(
−5

4
FS +

∂FS

∂a1
+

1
2

∂FS

∂a2
T̂∞

)
[(Ms)0−M∞], (7.78)

where a1 and a2 are, respectively, the first and second arguments of FS , that is,
FS(a1, a2), and the function FS and its derivatives ∂FS/∂a1 and ∂FS/∂a2 are
evaluated at (a1, a2) = (−1, T̂∞). This is the relation among M∞, p̂∞, and T̂∞
for which a solution of the half-space problem exists. This equation contains
the parameter (Ms)0 of the slowly varying solution. According to Eqs. (7.60a)
and (7.60b), this parameter (Ms)0 may take any value in the range

M∞ ≤ (Ms)0 < −(2 + M∞) (weak shock wave), (7.79a)
(Ms)0 ≤ M∞ (supersonic accelerating flow), (7.79b)

where the case (Ms)0 = −(2+M∞), included in Eq. (7.60a), is excluded, because
the structure of the weak shock wave shifts to upstream infinity and no new
solution is created as explained in the paragraph containing Eq. (7.77) of Section
7.3.3. Thus, the solution exists in the domain of (M∞, p̂∞, T̂∞) given by the
relations

p̂∞ = FS + (M∞ + 1)
(

5
2
FS − ∂FS

∂a1
− ∂FS

∂a2
T̂∞

)
+ t

(
5
4
FS − ∂FS

∂a1
− 1

2
∂FS

∂a2
T̂∞

)
, (7.80a)

t > 0, (7.80b)

where the parameter t is related to the parameter (Ms)0 in Eq. (7.78) by t =
−(Ms)0 − (2 + M∞). Figure 7.1 corresponds to the case 5FS/2 − ∂FS/∂a1 −
T̂∞∂FS/∂a2 > 0 and 5FS/4 − ∂FS/∂a1 − (T̂∞/2)∂FS/∂a2 > 0. In the figure,
the region between p∞/pw = Fb and p∞/pw = Fes corresponds to 0 < t <
−2(1 + M∞), the surface p∞/pw = Fes to t = −2(1 + M∞), and the region
above p∞/pw = Fes to t > −2(1 + M∞). For the BKW equation under the
complete-condensation condition, ∂FS/∂a1 and ∂FS/∂a2 are both negative at
(a1, a2) = (−1, T̂∞) so that the coefficient of t in Eq. (7.80a) is positive. Thus
the solution exists in the region

p̂∞ > FS + (M∞ + 1)
(

5
2
FS − ∂FS

∂a1
− ∂FS

∂a2
T̂∞

)
. (7.81)
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As discussed in the last paragraph but two of Section 7.3.3, the state (M∞,
p̂∞, T̂∞) given by Eq. (7.80a) with t = 0 corresponds to the upstream infin-
ity of the weak shock wave whose downstream infinity is given by the state
[(Ms)0, (p̂s)0, (T̂s)0]. That is, a point on the surface p∞/pw = Fb(M∞, T∞/Tw)
in Fig. 7.1 is related to some point on the surface p∞/pw = Fs(M∞, T∞/Tw) by
the shock condition (or the Rankine–Hugoniot relation).

7.3.5 Supplementary discussion

In Sections 7.3.3 and 7.3.4, we constructed the solution with a slowly varying
part of the half-space problem from a given Knudsen-layer-type solution, from
which the range of the parameters where a solution exists is derived. On the
basis of these results, the solution of the half-space problem when the parameters
M∞, p̂∞, and T̂∞ at infinity are given is obtained in the following process. First
obtain t from Eq. (7.80a) for a given set of (M∞, p̂∞, T̂∞). If t ≤ 0, there is
no solution. In the other case (t > 0), obtain (Ms)0, (p̂s)0, and (T̂s)0 from the
relation (Ms)0 = −(2+M∞)−t and Eq. (7.75) with Eqs. (7.76a) and (7.76b), and
determine the value of X at which Ms takes the value (Ms)0 from Eq. (7.57f).
This X is chosen as −X0, and then the slowly varying solution takes (Ms)0,
(p̂s)0, and (T̂s)0 at x1 = 0. The desired slowly varying solution f̂s is given by
Eq. (7.57a) with Eqs. (7.57b)–(7.57g).9 The function Ŝ(X) there is tanhX for
0 < t < −2(1+M∞) or coth X for t > −2(1+M∞). The data (Ms)0, (p̂s)0, and
(T̂s)0 thus obtained satisfy the relation (7.74). Thus, the Knudsen-layer-type
solution f̂∗ exists.

Choose the condition (M∞, p̂∞, T̂∞) at infinity in the region where t >
−2(1 + M∞) and |1 + M∞| � |p̂∞ − p̂B |/p̂B , where p̂B = FS(−1, T̂∞). Then,
|1 + M∞| � |(Ms)0 − M∞|, because |(Ms)0 − M∞| is of the same order as
|p̂∞ − p̂B |/p̂B owing to Eq. (7.78). In view of this condition, from Eq. (7.57f),
Ŝ(X) = cothX � 1 near Ms = (Ms)0; thus, |X| � 1 and |dŜ/dX| � 1. The
slowly varying condition is violated there. Therefore, the analysis in Sections
7.3.2 and 7.3.3 is required refinement in the wedge region |1 + M∞| � |p̂∞ −
p̂B |/p̂B . Some information about the behavior of the solution in the wedge region
can be obtained from the result of Section 7.3.2, though it is incomplete in the
region. The function cothX being approximated by 1/X there, (1+M∞)/X =
Ms + 1 from Eq. (7.57f). Thus, from Eq. (7.57g), X0 = −(1 + M∞)/[(Ms)0 + 1]
at η = 0 and X = (1 + M∞){−c0η + [(Ms)0 + 1]−1} (c0: a positive constant).
Consider the range of η where |1+M∞|η � 1 as well as |1+M∞| � 1, for which
η can be very large. The function (1 + M∞)Ŝ(X) is 1/{−c0η + [(Ms)0 + 1]−1}.
The solution is expected to decay as 1/c0η.

9In the relation (7.57g) between X and x1, ρ̂B and T̂B , including the argument T̂B of Γ1

and Γ2, can be taken as ρ̂∞ and T̂∞ respectively in the present order of approximation (see
Footnote 7 in Section 7.3.2).



Chapter 8

Ghost Effect and
Bifurcation I: Bénard and
Taylor–Couette Problems

In this chapter, typical bifurcation problems in classical fluid dynamics, the
Bénard and Taylor–Couette problems, and related problems, are discussed on
the basis of kinetic theory. In addition to the study of the effect of gas rarefac-
tion in the Bénard problem, its behavior in the continuum limit is revisited in
the framework of the asymptotic theory in Section 3.3 and is shown not to be
correctly described by the classical fluid dynamics. In the Taylor–Couette prob-
lem, the effect of difference of the temperatures of the two cylinders is studied in
the continuum limit on the basis of the asymptotic theory, and as in the Bénard
problem, the classical fluid dynamics is shown to fail its correct description.
The ghost and non-Navier–Stokes effects discussed in Section 3.3 play a cen-
tral role in these bifurcations in the continuum limit. In the same geometrical
configuration as the Taylor–Couette problem, we consider the bifurcation when
the two cylinders are made of the condensed phase of the gas. Then, evapora-
tion and condensation take place on the cylinders. Owing to the evaporation
and condensation, bifurcation takes place in the simplest case where the field
is axially symmetric and uniform. When the restriction of axial uniformity is
eliminated, Taylor–Couette roll type of flow can stably exist in addition to the
axially uniform flow.

8.1 Bénard problem I: Finite Knudsen number

8.1.1 Introduction

The Bénard problem (Bénard [1901], Rayleigh [1916]) concerning the instability
of a layer of fluid heated from below has long been of interest to many scientists
and engineers. In addition to a lot of works on the basis of classical fluid
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dynamics (see, e.g., Chandrasekhar [1961], Koschmieder [1993], Bodenschatz,
Pesch & Ahlers [2000]), the problem is also studied on the basis of kinetic
theory (Garcia & Penland [1991], Stefanov & Cercignani [1992], Sone, Aoki,
Sugimoto & Motohashi [1995], Sone, Aoki & Sugimoto [1997, 1999], Sone & Doi
[2003a], etc.). The kinetic-theory works give not only the information of the gas
rarefaction but also the important results for a gas in the continuum limit which
are not reported in the classical fluid-dynamic approach or are not described
correctly by it. First, in Section 8.1, we will discuss the Bénard problem of
a gas of a finite Knudsen number. The behavior of the gas in the continuum
limit, which shows the incompleteness of the classical fluid dynamics, will be
discussed in the next section (Section 8.2).

Consider a gas in a rectangular domain (0 < X1 < L, 0 < X2 < D), where
the gas is subject to a uniform gravitational force in the negative X2 direction,
i.e., the acceleration gi of gravity is (0,−g, 0) with g > 0, the lower boundary
at X2 = 0 is at rest and is heated at a uniform temperature Th, and the upper
at X2 = D is at rest and is cooled at a uniform temperature Tc. We discuss the
behavior of the gas on the basis of the numerical analyses carried out by a finite-
difference method under the assumptions: (i) the behavior of the gas is described
by the BKW equation; (ii) the molecules make the diffuse reflection on the
upper and the lower boundaries; (iii) the molecules make the specular reflection
on the side boundaries; (iv) the initial condition is appropriately chosen; and
(v) the field of the gas is two dimensional, i.e., uniform in X3. Let us list the
basic equation and boundary conditions, which are given in Chapter 1, for the
convenience of explanation. The BKW equation with the gravity is

∂f

∂t
+ ξ1

∂f

∂X1
+ξ2

∂f

∂X2
− g

∂f

∂ξ2
= Acρ(fe − f), (8.1)

fe =
ρ

(2πRT )3/2
exp

(
− (ξi − vi)2

2RT

)
,

where ρ, vi, and T are determined by f. The boundary conditions on the lower
and upper boundaries are, at X2 = 0,

f(X1, 0, ξi, t) =
σh

(2πRTh)3/2
exp

(
− ξ2

i

2RTh

)
(ξ2 > 0), (8.2)

σh = −
(

2π

RTh

)1/2 ∫
ξ2<0

ξ2fdξ,

and, at X2 = D,

f(X1, D, ξi, t) =
σc

(2πRTc)3/2
exp

(
− ξ2

i

2RTc

)
(ξ2 < 0), (8.3)

σc =
(

2π

RTc

)1/2 ∫
ξ2>0

ξ2fdξ.
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The conditions on the side boundaries are commonly in the form

f(X1, X2, ξ1, ξ2, ξ3, t) = f(X1, X2,−ξ1, ξ2, ξ3, t)
(ξ1 > 0) at X1 = 0 and (ξ1 < 0) at X1 = L. (8.4)

The initial condition is

f(X1, X2, ξ1, ξ2, ξ3, 0) = f0 at t = 0,

where f0 is appropriately chosen depending on situations. The data in this
section (Section 8.1) are taken from Sone, Aoki, Sugimoto & Motohashi [1995]
and Sone, Aoki & Sugimoto [1997, 1999].

Let ρ0 be the average density of the gas over the domain. Taking D, Th, ρ0,
and D/(2RTh)1/2, respectively, as the reference length L, reference temperature
T0, reference density ρ0, and reference time t0 in Section 1.9, we find that the
problem is characterized by the initial condition and the four parameters

Knudsen number Kn : (8RTh/π)1/2/(Acρ0D) = 0/D,
Froude number Fr : 2RTh/Dg,
Temperature ratio : Tc/Th,
Aspect ratio : L/D,

⎫⎪⎪⎬⎪⎪⎭ (8.5)

where 0 is the mean free path of the gas in the equilibrium state at rest with
density ρ0 and temperature Th.

8.1.2 Existence range of nonstationary solutions and their
flow patterns

The system has a time-independent and spatially one-dimensional solution, uni-
form in X1 and X3, without flow (vi = 0) for any set of parameters. Let us call
the solution 1D solution and denote its velocity distribution function, density,
and temperature, respectively, by fU , ρU , and TU . Depending on the strength
of the gravity, the 1D solution fU is classified into three types, type I: for strong
gravity (or small Fr), the density ρU decreases as X2 increases; type II: for weak
gravity (or large Fr), ρU increases as X2 increases; and type III: for the grav-
ity of intermediate strength (or intermediate Fr), ρU first decreases, reaches its
minimum, and then increases as X2 increases.

Our interest is the possibility of another type of solution with nonzero flow
velocity. For this purpose, the initial and boundary-value problem of the BKW
equation stated in the preceding subsection (Section 8.1.1) is considered for the
initial condition f0

f0 =
ρ

(2πRT )3/2
exp

(
− ξ2

i

2RT

)
, (8.6a)

ρ = ρU (X2), T = TU (X2)
(

1 + ε cos
πX1

L
sin

πX2

D

)
. (8.6b)
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Incidentally, the Maxwell distribution with ρ and T given by Eq. (8.6b) is noted
not to satisfy the Boltzmann equation or BKW equation with the gravity.

The time evolution of the solution of the initial and boundary-value problem
is studied numerically. From the long-time behavior of the solution, it is found
that the solution approaches the 1D solution or a nonstationary solution de-
pending on the parameters chosen. The diagram of the type of solutions in the
case L/D = 1 and ε = 0.5 is shown for various Knudsen numbers in Fig. 8.1. For
these parameters, the nonstationary solutions are time-independent single-roll-
type solutions. In the figures, the symbol • indicates the 1D solution and ◦ the
time-independent solution with a convection roll. A time-independent solution
with a convection roll exists in a “triangular region” in the (Fr, Tc/Th) plane.
The region shrinks rapidly as the Knudsen number increases. According to the
linear stability analysis based on the Boussinesq approximation of the Navier–
Stokes equation, Rayleigh number Ra≈ 1700 is the critical value above which
the stationary solution is unstable (see, e.g., Chandrasekhar [1961]), where Ra
is defined by

Ra =
16

πFrKn2

(
Th

Tc
− 1

)
,

in terms of Tc/Th, Fr, and Kn. The curve Ra = 1700 is indicated by a dashed line
in Fig. 8.1.1 The dot-dash line in Fig. 8.1 indicates the approximate boundary
of type I and type III of the 1D solution explained above.

Figure 8.1 is based on a special initial condition, Eqs. (8.6a) and (8.6b) with
ε = 0.5, which is expected to induce a flow with a single roll. Therefore, in the
triangular region of ◦ sign, another type of flow may take place. Similarly, in the
region of • sign, the existence of a flow is not excluded. However, various tests,
though not systematic, using different types of initial condition show that it is
unlikely to exist in this region. The left-side boundary of two types of solutions,
• and ◦, is first pointed out by kinetic-theory analysis.

Examples of the field of the single roll-type flow are shown in Figs. 8.2 (a),
(b), and (c), where the fields of three Fr’s, corresponding to three types of the
1D solution, are compared.

8.1.3 Array of rolls and its stability

Let us consider a time-independent solution f(X1, X2, ξi) of the boundary-value
problem, Eqs. (8.1)–(8.4), for L = L0. Then, it can be shown with the help
of Eq. (8.1) and the boundary condition (8.4) that ∂2nf/∂X2n

1 are even and
∂2n+1f/∂X2n+1

1 are odd with respect to ξ1 at X1 = 0 and L0, where n =
0, 1, 2, . . . . Now let us extend the function f to the region 0 < X1 < 2L0 in
such a manner that the part for L0 < X1 < 2L0 is the mirror image of the part
0 < X1 < L0, namely, by the rule

f(X1, X2, ξ1, ξ2, ξ3) = f(2L0 − X1, X2,−ξ1, ξ2, ξ3) (L0 < X1 < 2L0). (8.7)
1The curve based on Boussinesq approximation has meaning only when |Tc/Th − 1| � 1.

Further, the extension of the curve away from Tc/Th = 1 is not unique because there is no
difference between (Tc − Th)/Th and (Tc − Th)/Tc in the Boussinesq approximation.
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Figure 8.1. The range of the parameters Fr and Tc/Th where a convection roll exists
(L/D = 1 and ε = 0.5). (a) Kn= 0.02, (b) Kn= 0.03, (c) Kn= 0.04, (d) Kn= 0.05,
and (e) Kn= 0.06. The white circle ◦ indicates that convection occurs there; the black
circle • indicates that no flow occurs. See the main text for the dashed line - - - and
the dot-dash line – -–.
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Figure 8.2. Flow velocity, isodensity lines, and isothermal lines (L/D = 1, Tc/Th =
0.4, Kn= 0.02). (a) Fr= 2, (b) Fr= 3, and (c) Fr= 7.5. The contours of ρ/ρ0 = 0.1n
and T/Th = 0.1m are shown in the figures. The arrows indicate the flow velocity at
their starting points; the scale (v2

i )1/2/(2RTh)1/2 = 0.1 is shown in the figures. The
arrow is not shown on the upper and lower boundaries.
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Then, from the property of ∂2nf/∂X2n
1 and ∂2n+1f/∂X2n+1

1 at X1 = L0, the
derivatives of the resulting function with respect to X1 are shown to be con-
tinuous in any order at X1 = L0. Therefore, the extended function gives a
time-independent solution of Eqs. (8.1)–(8.4) for L = 2L0, i.e., in the wider
domain 0 < X1 < 2L0. In general, by arranging a series of time-independent
solutions of a kind laterally in such a way that the adjacent solutions are the
mirror images of each other, we can generate a time-independent solution in a
wider domain. Therefore, the array fN

a of the N time-independent solutions of
a single roll f1

a in the domain with the aspect ratio L/D = a so arranged forms
a solution consisting of N rolls in the domain with L/D = Na. For example,
f4
3/4 and f3

1 are solutions consisting, respectively, of four and three rolls in the
domain with L/D = 3. Here, for even N, we should discriminate two types of
solutions, type A, where the leftmost roll is clockwise, and type B, where the
leftmost roll is anti-clockwise. Hereafter, the type A is denoted by fN

a and type
B by fN

a .
The multiroll solution thus constructed may be unstable, even when the

constituent single-roll solution is stable. We will discuss this problem. That is,
taking a perturbed velocity distribution function of a time-independent multi-
roll solution fN

a or fN
a as the initial condition f0, we pursue the time evolution

of the distribution f and examine whether the distribution returns to the orig-
inal multiroll solution or is transformed into a different flow pattern. As the
perturbed distribution of the multiroll distribution, the following distribution is
chosen: for even rolls (or even N),

f0 =
[
1 − ε sin

(
Nπ

L
X1

)]
fN

L/ND, (8.8)

and

=
[
1 − ε sin

(
Nπ

L
X1

)]
fN

L/ND, (8.9)

and for odd rolls (or odd N),

f0 =
[
1 + δ − ε sin

(
Nπ

L
X1

)]
fN

L/ND, (8.10)

where ε is a parameter characterizing the size of the perturbation, and δ is a
constant introduced to make the mass of the gas in the domain for the perturbed
distribution equal to that for the original distribution, and thus determined by
ε and fN

L/ND. It is noted that the flow velocity and temperature fields are not
perturbed for the above perturbed distributions (8.8)–(8.10).

The numerical computation of the stability analysis is carried out for the
two- to six-roll solutions (two kinds of solutions for the even-roll solutions) to
find the stable range with respect to the aspect ratio L/D of the domain with
the other parameters fixed at Fr = 3, Tc/Th = 0.4, and Kn = 0.02. The size ε of
the perturbation is taken to be 0.01 for Eqs. (8.8) and (8.9), and ε = 0.01 and
ε = −0.01 for Eq. (8.10) because the perturbations with ε of different signs have
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Table 8.1. Stability of 2-roll solutions f2
L/2D and f2

L/2D (Fr= 3, Tc/Th = 0.4, and

Kn = 0.02). The type of the limiting solution as t → ∞ from the initial condition
(8.8) or (8.9) is shown for various L/2D’s. The symbols S, D, and T show that the
limiting solution is fM

L/MD with M = 1, 2, and 3 respectively, and the bar over the

letter represents fM
L/MD.

L/2D
N 0.55 0.6 0.68 0.685 0.7 1.3 1.35 1.36
2 S D D D T
2 S D D D D

Table 8.2. Stability of N -roll solutions fN
L/ND and fN

L/ND (N = 3, 4, 5, 6; Fr= 3,

Tc/Th = 0.4, and Kn= 0.02). The type of the limiting solution as t → ∞ from
the initial condition (8.8), (8.9), or (8.10) is shown for various L/ND’s and N ’s. The
symbols D, T, Q, V, VI, VII, and VIII show that the limiting solution is fM

L/MD with

M = 2, 3, 4, 5, 6, 7, and 8, respectively, and the bar over the letter represents fM
L/MD.

L/ND
N 0.6 2/3 0.725 0.75 0.8 1.0 1.2 1.275 4/3 1.35
3+ D D T T T T T Q
3− D D T T T T T V
4 T T Q Q Q Q Q V
4 T T Q Q Q Q Q VI

5+ T Q V V V V V VI
5− Q Q V V V V V VII
6 T V VI VI VI VI VI VII
6 Q V VI VI VI VI VI VIII

different effects on the odd rolls. The basic method of numerical computation is
explained in Sone, Aoki & Sugimoto [1997]. In all the cases, the flow converges
to a time-independent multiroll solution consisting of single-roll solutions of an
equal size, i.e., fM

L/MD or fM
L/MD with M the same as or different from N in

the initial condition. The type of flow established finally is shown in Tables
8.1 and 8.2, where the following symbols for the flow patterns are used: S,
D, T, Q, V, VI, VII, and VIII show that the limiting solution is fM

L/MD

with M = 1, 2, 3, 4, 5, 6, 7, and 8, respectively, and the bar over the letter is
used to represent fM

L/MD. In the leftmost column, the initial condition (8.9) is
discriminated by the bar over the number N, and the positive or negative ε in
Eq. (8.10) is indicated by + or – after N. Examples of transition to a different
type of solution are shown in Figs. 8.3 and 8.4.



8.1. Bénard problem I: Finite Knudsen number 387

�
�

�� � � � � 	 
 � �  � 
 � � �

�

� �



� �� 
� � � � � 	 
 � �  � 
 � � � � �

� � � � � 	 
 � �  � 
 � � � � �

� � � � � 	 
 � �  � 
 � � � � �

� � � � � 	 
 � �  � 
 � � � � �

� � � � � 	 
 � �  � 
 � � � � �

� � � � � 	 
 � �  � 
 � � � � �

� � � � � 	 
 � �  � 
 � � � � � � � � � � � � 	

� � 	

�
�

�� � � � � 	 
 � �  � 
 � � �

�

� �



� �� 
� � � � � 	 
 � �  � 
 � � � � �

� � � � � 	 
 � �  � 
 � � � � �

� � � � � 	 
 � �  � 
 � � � � �

� � � � � 	 
 � �  � 
 � � � � �

� � � � � 	 
 � �  � 
 � � � � �

� � � � � 	 
 � �  � 
 � � � � �

� � � � � 	 
 � �  � 
 � � � � � � � � � � � � � 	

�  	

Figure 8.3. Transition process of the perturbed 6-roll solutions (8.8) and (8.9) with
ε = 0.01 (N = 6, L/D = 3.6, Fr= 3, Tc/Th = 0.4, and Kn= 0.02). (a) Initial condition
(8.8) and (b) initial condition (8.9). The arrows indicate the flow velocity (v1, v2) at
their starting points; the scale (v2

1 + v2
2)1/2/(2RTh)1/2 = 0.1 is shown in the figure.

The arrow is not shown when (v2
1 + v2

2)1/2/(2RTh)1/2 < 2 × 10−3. The arrows on the
upper and lower boundaries are omitted for clearness of the figure.
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Figure 8.4. Transition process of the perturbed 6-roll solution (8.9) with ε = 0.01
(N = 6, L/D = 8, Fr= 3, Tc/Th = 0.4, and Kn= 0.02). The arrows indicate the
flow velocity (v1, v2) at their starting points; the scale (v2

1 + v2
2)1/2/(2RTh)1/2 = 0.1 is

shown in the figure. The arrow is not shown when (v2
1 + v2

2)1/2/(2RTh)1/2 < 2× 10−3.
The arrows on the upper and lower boundaries are omitted for clearness of the figure.
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8.2 Bénard problem II: Continuum limit

8.2.1 Introduction

In Section 3.3, we explained that the classical fluid dynamics is incomplete in
describing the behavior of a gas in the continuum limit, that is, there is an
important class of problems of a gas in the continuum limit that cannot be
correctly described by the classical fluid dynamics. As its example, we will
discuss the Bénard problem for a gas in the continuum limit, one of the most
well-known and fundamental problems, on the basis of Sone & Doi [2003a] in
this section.

Consider a gas in a time-independent state under a uniform gravity between
two parallel plane walls at rest with different temperatures. The gravity is in the
direction normal to the wall. Let D, Th, Tc, ρ0, gi be, respectively, the distance
between the walls, the temperature of the lower wall, that of the upper, the
average density of the gas in the domain, and the acceleration of gravity (or
gravity). We use the nondimensional variables defined in Section 1.9, with D
and Th as the reference length and temperature, instead of L and T0 there. The
Knudsen number Kn, or k, is based on the mean free path of the gas in the
equilibrium state at rest with temperature Th and the average density ρ0 of the
gas over the domain and the reference length D. The nondimensional gravity
ĝi = giD/2RTh (see Section 3.3.1), whose magnitude (or |ĝi|) is the inverse
of the Froude number Fr in Eq. (8.5), is used here. The coordinate system is
taken in such a way that the lower wall is at x2 = 0 and the upper wall is at
x2 = 1 and the gravity ĝi is (0, ĝ2, 0) with ĝ2 < 0. We are interested in the time-
independent behavior of the gas in the limit that the Knudsen number Kn tends
to zero (or k → 0) for arbitrary values of Tc/Th under the assumptions that the
flow velocity v̂i is of the order of k and the gravity ĝ2 is of the second order of k
(or say, ĝ2 = −ĝk2), which corresponds to Fr = 1/ĝk2 [see Eq. (8.5)]. Then, the
behavior of the gas is described by the fluid-dynamic-type equations (3.155)–
(3.158a), with F̂i2 = −ĝδi2, and their associated boundary conditions (3.161a)
and (3.161b) given in Section 3.3. The assumptions on the flow velocity and
gravity are introduced by the following reasons: According to the discussion on
the ghost effect in Section 3.3.4, an infinitesimal flow velocity of the first order of
k produces a finite effect on the one-dimensional temperature field with parallel
isothermal lines and |Tc/Th−1| of the order unity, if it is induced by bifurcation.
In view of the fluid-dynamic-type equations mentioned above, the bifurcation is
expected to take place owing to the second-order infinitesimal gravity.

The analysis is limited to a two-dimensional case where the variables are
independent of x3 (or ∂/∂x3 = 0) and v̂3 = 0. The behavior in the limit that
Kn→ 0 being interested in, the variables T̂ , ρ̂, ui, and P (or P∗) and the
parameter T̂B are, respectively, used for T̂SB0, ρ̂SB0, v̂iSB1, and p̂SB2 (or p̂∗SB2)
and Tc/Th. Thus, ρ̂ = p̂0/T̂ . The parameters included in Eqs. (3.155)–(3.158a),
(3.161a), and (3.161b) are T̂B , ĝ, and p̂0. It may be better to add some comment
on the parameter p̂0. At present, p̂0 is not specified in the problem stated above.
The average density of the gas in the domain being taken as the reference density
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ρ0 in the definition of the nondimensional variables, the constant p̂0 is specified
with the other parameters T̂B and ĝ, but the explicit relation is given only after
the solution is obtained. That is,

p̂0 = 1
/(

1/T̂
)

, (8.11)

where the bar — over 1/T̂ indicates its average over the domain.

8.2.2 One-dimensional solution

First consider the case where the behavior of the gas is uniform in the direction
parallel to the walls (or ∂/∂x1 = ∂/∂x3 = 0). Then, the solution of Eqs. (3.155)–
(3.158a) under the boundary conditions (3.161a) and (3.161b) is expressed in
the form

T̂ = T̂U , ρ̂ = ρ̂U = p̂0/T̂U , (8.12a)
u1 = u2 = u3 = 0, (8.12b)

P = PU = −2ĝp̂0

∫ T̂U Γ2(t)
t

dt

/∫ T̂B

1

Γ2(t)dt , (8.12c)

where T̂U is given by the implicit function

x2 =
∫ T̂U

1

Γ2(t)dt

/∫ T̂B

1

Γ2(t)dt . (8.13)

The nondimensional thermal conductivity Γ2(t) is defined in Eq. (A.131). When
Γ2(t) = c2t

n [n = 1/2 (hard-sphere), n = 1 (BKW); c2: a constant; see
Eqs. (A.133) and (A.134)], the relation (8.13) can be made explicit, i.e.,

T̂U = [1 + (T̂n+1
B − 1)x2]1/(n+1). (8.14)

When the average density of the gas over the domain is taken as the refer-
ence density ρ0, the undetermined constant p̂0 is determined as follows: By the
definition of ρ0,

ρ0 =
1
D

∫ D

0

ρdX2 = ρ0

∫ 1

0

p̂0

T̂U

dx2, thus, p̂0 =
(∫ 1

0

1
T̂U

dx2

)−1

.

Substituting T̂U given by Eq. (8.13) into the above equation, we have

p̂0 =
∫ T̂B

1

Γ2(t)dt

/∫ T̂B

1

t−1Γ2(t)dt . (8.15)

The above one-dimensional solution with the subscript U will be called the 1D
solution for simplicity.

We will investigate the possibility of bifurcation from the 1D. In the following
analysis, as mentioned at the end of Section 8.2.1, we consider only the case
where the quantities are independent of x3 (∂/∂x3 = 0).
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8.2.3 Bifurcation from the one-dimensional solution

Consider a solution that is periodic, with period 2π/α, with respect to the x1

direction. We examine whether the periodic solution bifurcates from the 1D
solution [Eqs. (8.12a)–(8.13)]. Let the values of the parameters T̂B and ĝ at
a bifurcation point be T̂Bb and ĝb. The corresponding value of p̂0, given by
Eq. (8.15) for the 1D solution, is denoted by p̂0b. That is,

p̂0b =
∫ T̂Bb

1

Γ2(t)dt

/∫ T̂Bb

1

t−1Γ2(t)dt. (8.16)

For the solution periodic with respect to x1 to be considered hereafter, from
Eq. (8.11), p̂0 is given by

p̂0 =

(
α

2π

∫ 1

0

∫ 2π/α

0

1
T̂

dx1dx2

)−1

. (8.17)

For the present purpose, we try to find the solution (say, ĥ) as a perturbation to
the 1D solution (say, ĥUb) at the bifurcation point. Noting that the perturbation
is from the 1D solution, or the coefficients of the equations for the perturbation
are independent of x1, and examining the order of differential operators with
respect to x1, we can consistently express the bifurcated solution in the form

T̂ = T̂Ub(x2) + δT̂11(x2) cos αx1

+ δ2[T̂20(x2) + T̂21(x2) cos αx1 + T̂22(x2) cos 2αx1]

+ δ3[T̂30(x2) + T̂31(x2) cos αx1 + · · · + T̂33(x2) cos 3αx1] + · · · , (8.18a)
ρ̂ = ρ̂Ub(x2) + δρ̂11(x2) cos αx1

+ δ2[ρ̂20(x2) + ρ̂21(x2) cos αx1 + ρ̂22(x2) cos 2αx1]

+ δ3[ρ̂30(x2) + ρ̂31(x2) cos αx1 + · · · + ρ̂33(x2) cos 3αx1] + · · · , (8.18b)

u1 = δU11(x2) sin αx1 + δ2[U21(x2) sin αx1 + U22(x2) sin 2αx1]

+ δ3[U31(x2) sin αx1 + · · · + U33(x2) sin 3αx1] + · · · , (8.18c)

u2 = δV11(x2) cos αx1 + δ2[V20(x2) + V21(x2) cos αx1 + V22(x2) cos 2αx1]

+ δ3[V30(x2) + V31(x2) cos αx1 + · · · + V33(x2) cos 3αx1] + · · · , (8.18d)
u3 = 0, (8.18e)
P∗ = P∗

Ub(x2) + δP∗
11(x2) cos αx1

+ δ2[P∗
20(x2) + P∗

21(x2) cos αx1 + P∗
22(x2) cos 2αx1]

+ δ3[P∗
30(x2) + P∗

31(x2) cos αx1 + · · · + P∗
33(x2) cos 3αx1] + · · · , (8.18f)

where δ2 indicates the deviation from the bifurcation point, for example, δ2 =
[(T̂B − T̂Bb)2 + (ĝ − ĝb)2]1/2, but it is not necessary to be explicit here. Cor-
responding to the expansion using δ, the parameters T̂B and ĝ away from the
bifurcation point (T̂Bb, ĝb) are expressed as

T̂B = T̂Bb + δ2[(T̂B − T̂Bb)/δ2], ĝ = ĝb + δ2[(ĝ − ĝb)/δ2], (8.19)
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where (T̂B − T̂Bb)/δ2 and (ĝ − ĝb)/δ2 are quantities of the order of unity. The
difference between the order δ2 of the deviation of the point (T̂B , ĝ) under inter-
est from the bifurcation point and the order δ of the deviation of the bifurcated
solution from the 1D solution is understood with the aid of the implicit function
theorem.2

The basic equations are Eqs. (3.155)–(3.158a), with the new notation. It is,
however, convenient here to eliminate the p̂∗SB2 (or P∗) by taking the curl of
Eq. (3.156) because p̂∗SB2 (or P∗) does not appear in the boundary conditions
and it is not a quantity of physical interest here. Substituting the series (8.18a)–
(8.18e) and Eq. (8.19) into the basic equations (3.155), curl [Eq. (3.156)], (3.157),
and (3.158a) and arranging the same-order terms in δ, we obtain a series of
linear ordinary differential equations that determines the component functions
T̂mn, ρ̂mn, Umn, and Vmn. The P∗

mn is obtained from these quantities from
Eq. (3.156). In the series of equations, the component functions appear in such
a way that they can be formally determined successively from the lowest order
(or in the order of m). The leading-order component functions T̂11, U11, and V11

are governed by the following equations:

αU11 +
dV11

dx2
+

d lnρ̂Ub

dx2
V11 = 0, (8.20a)

d3U11

dx3
2

+ A1
d2U11

dx2
2

+ (A2 − α2)
dU11

dx2
− α2A1U11 + α

(
d2V11

dx2
2

− (A2 + α2)V11

)
+

α

p̂0b

(
B1

d2T̂11

dx2
2

+ B2
dT̂11

dx2
− (B3 − B4 + α2B1)T̂11

)
= 0, (8.20b)

− C1V11 +
d2T̂11

dx2
2

+ C2
dT̂11

dx2
+ (C3 − α2)T̂11 = 0, (8.20c)

where A1, B1, C1, etc. are expressed with the 1D solution and the nondimen-
sional transport coefficients Γ1, Γ2, etc., defined by Eq. (A.131), as

A1 =
2Γ̇1b

Γ1b

dT̂Ub

dx2
, A2 =

Γ̈1b

Γ1b

(
dT̂Ub

dx2

)2
+

Γ̇1b

Γ1b

d2T̂Ub

dx2
2

,

B1 =
Γ7b

Γ1b

dT̂Ub

dx2
, B2 =

Γ̇7b

Γ1b

(
dT̂Ub

dx2

)2
,

B3 =
Γ̇7b

Γ1b

dT̂Ub

dx2

d2T̂Ub

dx2
2

+
Γ7b

Γ1b

d3T̂Ub

dx3
2

, B4 =
2ĝb

Γ1b

(
p̂0b

T̂Ub

)2
,

C1 =
2ρ̂Ub

Γ2b

dT̂Ub

dx2
, C2 =

2Γ̇2b

Γ2b

dT̂Ub

dx2
, C3 =

Γ̈2b

Γ2b

(
dT̂Ub

dx2

)2
+

Γ̇2b

Γ2b

d2T̂Ub

dx2
2

,

2Consider two variables x and y related by f(x, y) = 0 with f(0, 0) = 0. According to the
implicit function theorem (see, e.g., Buck [1965], Takagi [1961]), y is uniquely determined by
x in a neighborhood of x = 0 unless ∂f/∂y = 0 at (x, y) = (0, 0). Thus, if (x, y) = (0, 0) is a
bifurcation point where ∂f/∂y = 0, y is expressed, for example, as y = x1/n + · · · with n > 1.
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with

Γ1b = Γ1(T̂Ub), Γ2b = Γ2(T̂Ub), Γ7b = Γ7(T̂Ub),

Γ̇mb =
(
dΓm/dT̂

)
T̂=T̂Ub

, Γ̈mb =
(
d2Γm/dT̂ 2

)
T̂=T̂Ub

.

The functions ρ̂11 and P∗
11 are expressed with T̂11, U11, and V11 as

ρ̂11 = − p̂0b

T̂Ub

T̂11

T̂Ub

, (8.21)

αP∗
11 =

4α2Γ1b

3
U11 − Γ̇1b

dT̂Ub

dx2

dU11

dx2
− Γ1b

d2U11

dx2
2

+ αΓ̇1b
dT̂Ub

dx2
V11 +

αΓ1b

3
dV11

dx2

+
α

p0b

⎧⎨⎩
⎡⎣2

3
Γ̇7b

(
dT̂Ub

dx2

)2
+ Γ7b

d2T̂Ub

dx2
2

⎤⎦ T̂11 +
1
3
Γ7b

dT̂Ub

dx2

dT̂11

dx2

⎫⎬⎭ .

From Eqs. (3.161a) and (3.161b), the boundary conditions for Eqs. (8.20a)–
(8.20c) are

T̂11 = U11 = V11 = 0 at x2 = 0 and x2 = 1. (8.22)

The boundary-value problem [(8.20a)–(8.20c) and (8.22)] is homogeneous.
Thus, the problem can, generally, have a nontrivial solution only when the
parameters T̂Bb, ĝb, and α satisfy some relation, say,

FBbif(T̂Bb, ĝb, α) = 0. (8.23)

This is the relation among the parameters T̂Bb, ĝb, and α for which the solution
(8.18a)–(8.18f) bifurcates from the one-dimensional solution (8.12a)–(8.13).

The relation (8.23), or the bifurcation relation, is studied numerically. The
process of numerical analysis is, in principle, as follows: For simplicity of expla-
nation, let T̂Bb and α be given, and try to obtain ĝb as their function. Choose
ĝb temporarily, and construct the three linearly independent solutions Sn(x2)
(n = 1, 2, 3) of Eqs. (8.20a)–(8.20c) satisfying the condition (8.22) only at x2 = 0
and one of the conditions (dT̂11/dx2,dU11/dx2,d2U11/dx2

2) = (1, 0, 0), (0, 1, 0),
or (0, 0, 1) at x2 = 0. Make their linear combination

∑3
n=1 cnSn (with c1 = 1)

satisfy the first two conditions of Eq. (8.22) at x2 = 1. Then, V11 at x2 = 1 is
generally nonzero. Thus, carrying out this computation for various values of
ĝb, obtain the variation of the value of V11 at x2 = 1 with ĝb, from which the
zero points of V11, i.e., the required values of ĝb, are roughly estimated. Then,
obtain accurate results of ĝb’s on the basis of the rough estimate. Some degen-
eracies occur for some parameters, for which some care should be taken. Each
computation is easy and the bifurcation relation has been obtained for various
cases.

The curve ĝb vs T̂Bb for a given α, which is obtained numerically for a
hard-sphere gas, is shown in Fig. 8.5, where the corresponding curve when the
thermal stress terms (the terms containing Γ7b and Γ̇7b through B1, B2, and
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Figure 8.5. Bifurcation curves I: ĝb vs T̂Bb for various α. (a) Wider range of ĝb

showing several branches and (b) magnified figure of the the first branch. The solid
lines —— indicate the bifurcation curve for a hard-sphere gas; the dashed lines – – –
indicate the corresponding curve when the thermal stress terms are neglected.
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Figure 8.6. Bifurcation curves II: The curves (ĝb)m and αm vs T̂Bb. (a) The two
curves (ĝb)m and αm vs T̂Bb and (b) a magnified figure of the curve (ĝb)m vs T̂Bb. The
solid lines —— indicate the bifurcation curve for a hard-sphere gas; the dashed lines
– – – indicate the corresponding curve when the thermal stress terms are neglected.

B3) in Eq. (8.20b) are neglected is shown in dashed lines for comparison. There
is appreciable difference between the two kinds of the curves for small T̂Bb. The
relation being expressed as ĝb = ĝb(T̂Bb, α), consider the minimum value of ĝb

with respect to α with T̂Bb being fixed and denote it by (ĝb)m and the minimum
point by αm. The curves (ĝb)m and αm vs T̂Bb are shown in Fig. 8.6.
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When the condition (8.23) is satisfied, the solution is determined except for
a constant factor. This factor is determined by the higher-order analysis, which
is only touched on here. The boundary-value problem for U21, V21, and T̂21 is
homogeneous and of the same form as that for U11, V11, and T̂11. The problem
for Um1, Vm1, and T̂m1 (m ≥ 3) is inhomogeneous, and its homogeneous part is
of the same form as that for U11, V11, and T̂11. Thus, its inhomogeneous part
must satisfy some relation (solvability condition) for the solution Um1, Vm1, and
T̂m1 to exist.3 The homogeneous part of the boundary-value problem for Umn,
Vmn, and T̂mn (n �= 1) generally has no nontrivial solution unless an additional
condition among T̂Bb, ĝb, and α is satisfied.

Let the undetermined constant factor (or the norm) of the set δ(U11, V11,

T̂11) be δA, where the norm may be defined, for example, as A = [
∫ 1

0
(U2

11+V 2
11+

T̂ 2
11)dx2]1/2. Then, the solvability condition of the boundary-value problem for

U31, V31, and T̂31 is expressed in the following form:

A[aT (T̂B − T̂Bb)/δ2 + ag(ĝ − ĝb)/δ2 − aOA2] = 0. (8.24)

Thus,

A2 =
aT

aO

(T̂B − T̂Bb)
δ2

+
ag

aO

(ĝ − ĝb)
δ2

, or A = 0,

where aT /aO and ag/aO are determined by T̂Bb, ĝb, and α. The first equa-
tion gives the amplitude of the bifurcated solution, and the second is the one-
dimensional solution. The bifurcated solution extends to the range

aT

aO
(T̂B − T̂Bb) +

ag

aO
(ĝ − ĝb) > 0, (8.25)

in the parameter plane (T̂B , ĝ), and the amplitude A remains zero along the
direction (T̂B − T̂Bb, ĝ − ĝb) given by

aT

aO
(T̂B − T̂Bb) +

ag

aO
(ĝ − ĝb) = 0. (8.26)

That is, this is the direction of the bifurcation curve FBbif(T̂Bb, ĝb, α) = 0 in the
(T̂Bb, ĝb) plane, which is shown in Fig. 8.5.

When aO = 0, the coefficients aT /aO and ag/aO are infinite. This indicates
that the amplitude δA is much larger than δ (the square root of the deviation
from the bifurcation point), and thus the preceding analysis should be reconsid-
ered. The solution bifurcating from the bifurcation point (T̂Bb, ĝb, α) where the
condition aO = 0 is satisfied can be obtained in the same way as the preceding
solution by modifying the power series (8.18a)–(8.18f) of δ to power series of

3The solution of the adjoint problem of Eqs. (8.20a)–(8.20c) and (8.22) should be orthogonal
to the inhomogeneous part. If the homogeneous system has no nontrivial solution, its adjoint
system has no nontrivial solution; if the homogeneous system has a nontrivial solution, its
adjoint system has a nontrivial solution. See, e.g., Coddington & Levinson [1955], Reid [1971],
and Kato [1976].
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δ1/2. That is,

f = fUb(x2) + δ1/2f11(x2) cos αx1

+ δ[f20(x2) + f21(x2) cos αx1 + f22(x2) cos 2αx1]

+ δ3/2[f30(x2) + f31(x2) cos αx1 + · · · + f33(x2) cos 3αx1]

+ δ2[f40(x2) + f41(x2) cos αx1 + · · · + f44(x2) cos 4αx1] + · · · , (8.27a)

u1 = δ1/2U11(x2) sin αx1 + δ[U21(x2) sin αx1 + U22(x2) sin 2αx1]

+ δ3/2[U31(x2) sin αx1 + · · · + U33(x2) sin 3αx1]

+ δ2[U41(x2) sin αx1 + · · · + U44(x2) sin 4αx1] + · · · , (8.27b)

where f = T̂ , u2, ρ̂, or P∗. The boundary-value problem for (U11, V11, T̂11)
is the same as that for (U11, V11, T̂11) in the preceding analysis, as should be.
In the higher-order analysis, the homogeneous part is the same as before but
some inhomogeneous terms degenerate because of the condition on aO, and
the amplitude of the solution (U11, V11, T̂11) is determined by the solvability
condition of the equations for (U51, V51, T̂51). As the result, the fourth power
A4, instead of A2 in the general case, of the amplitude of (U11, V11, T̂11) is
expressed by a linear combination of T̂B − T̂Bb and ĝ − ĝb.

When nα, as well as α, satisfies the bifurcation relation (8.23) for some set
of integer n (n∗), some comments are in order. Then the leading terms [the
terms of the order δ of Eqs. (8.18a)–(8.18f)] of the perturbation should be the
sum of corresponding Fourier components, that is,

δ
∑

n=(n∗)

f1n(x2) cos αn(x1 − cn) or δ
∑

n=(n∗)

U1n(x2) sin αn(x1 − cn),

where cn is some constant, and the following terms correspondingly consist of
more terms than before. With these modifications, the analysis can be carried
out in a similar way. Incidentally, if the neighboring integers (say m and m+1)
belong to the set (n∗), the corresponding amplitudes, say Am and Am+1, vanish.

8.2.4 Two-dimensional temperature field under
infinitesimal flow velocity

In the preceding subsection (Section 8.2.3), we have found that there is a bi-
furcation of temperature field under infinitesimal flow velocity (the first-order
infinitesimal) and gravity (the second-order infinitesimal) and that the nonlinear
thermal stress, which is the second-order infinitesimal, affects the bifurcation of
the temperature field. In this subsection, we will study the temperature field
away from bifurcation points by numerical analysis of the system, Eqs. (3.155)–
(3.158a), (3.161a), and (3.161b), summarized in Section 3.3.3.4

4Note that the simpler notation explained in the last paragraph of Section 8.2.1 is used
here.
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The numerical computation is carried out in the following way. Consider a
gas in the finite domain (0 < x1 < x1B , 0 < x2 < 1) and take the following
conditions on the side boundaries:

∂T̂

∂x1
= 0, u1 = 0,

∂u2

∂x1
= 0 at x1 = 0 and x1 = x1B , (8.28)

in addition to the conditions on the lower and upper boundaries, i.e.,

T̂ = 1, u1 = u2 = 0 at x2 = 0, and T̂ = T̂B , u1 = u2 = 0 at x2 = 1, (8.29)

and the condition corresponding to Eq. (8.17), i.e.,

p̂0 =
(

1
x1B

∫ 1

0

∫ x1B

0

1
T̂

dx1dx2

)−1

. (8.30)

Incidentally, from Eqs. (3.155) and (3.158a) and the boundary condition (8.28),
∂2u1/∂x2

1 = 0 at x1 = 0 and x1 = x1B , and then from Eq. (3.156) with i = 1,
∂P∗/∂x1 = 0 there.

Let a solution for x1B = π/α of the above problem in the rectangular domain
be S1. Then its mirror image with respect to the vertical boundary is also a
solution of the problem (say, S2). The two kinds of solutions S1 and S2 being
alternately arranged laterally, the resulting flow field is found to be two times
continuously differentiable across the vertical connection lines x1 = nπ/α (n =
0,±1,±2, . . .), because it satisfies Eqs. (3.155)–(3.158a) except on the connection
lines and satisfies the condition (8.28) at the connection lines (note the relations
derived in the preceding paragraph). That is, the flow field thus constructed is
a periodic solution with period 2π/α with respect to x1 in the infinite domain
between the two plane walls at x2 = 0 and x2 = 1.

The boundary-value problem, i.e., Eqs. (3.155)–(3.158a), (8.28)–(8.30), is
solved numerically by a finite-difference method. The solution of the boundary-
value problem for the finite-difference equations is obtained by the method of
iteration. In the computation, the equation derived from Eq. (3.156) by taking
its curl is used instead of Eq. (3.156) in order to eliminate the variable p̂∗SB2;
the vorticity ω = ∂u2/∂x1 − ∂u1/∂x2 and the stream function Ψ, in place of
the continuity equation (3.155), are introduced. The superscript with parenthe-
ses showing the step of iteration is attached to the resulting equations in the
following way:

∂

∂xi

(
Γ(n)

2

∂T̂ (n+1)

∂xi

)
= 2p̂

(n)
0

u
(n)
i

T̂ (n)

∂T̂ (n)

∂xi
, (8.31)

p̂
(n+1)
0 =

(
1

x1B

∫ 1

0

∫ x1B

0

1
T̂ (n+1)

dx1dx2

)−1

, (8.32)



398 Chapter 8. Ghost Effect and Bifurcation I: Bénard Problem, etc.

Γ(n+1)
1

(
∂2

∂x2
1

+
∂2

∂x2
2

)
ω(n+1) = − 2ĝp̂

(n+1)
0

(T̂ (n+1))2
∂T̂ (n+1)

∂x1
− Γ̇(n+1)

1

∂T̂ (n+1)

∂xi

∂ω(n)

∂xi

+
∂

∂xi

{
Γ̇(n+1)

1

[
∂T̂ (n+1)

∂x2

(
∂u

(n)
1

∂xi
+

∂u
(n)
i

∂x1

)
− ∂T̂ (n+1)

∂x1

(
∂u

(n)
2

∂xi
+

∂u
(n)
i

∂x2

)]}

+
1

p̂
(n+1)
0

∂

∂xi

[
− ∂

∂x1

(
Γ(n+1)

7

∂T̂ (n+1)

∂x2

∂T̂ (n+1)

∂xi

)

+
∂

∂x2

(
Γ(n+1)

7

∂T̂ (n+1)

∂x1

∂T̂ (n+1)

∂xi

)]

− 2p̂
(n+1)
0 u

(n)
i

(T̂ (n+1))2

(
∂u

(n)
2

∂xi

∂T̂ (n+1)

∂x1
− ∂u

(n)
1

∂xi

∂T̂ (n+1)

∂x2

)
+

2p̂
(n+1)
0

T̂ (n+1)

∂u
(n)
i ω(n)

∂xi
,

(8.33)(
∂2

∂x2
1

+
∂2

∂x2
2

)
Ψ(n+1) = − 1

T̂ (n+1)
ω(n+1)

+
1

(T̂ (n+1))2

(
u

(n)
2

∂

∂x1
− u

(n)
1

∂

∂x2

)
T̂ (n+1), (8.34)

u
(n+1)
1 = T̂ (n+1) ∂Ψ(n+1)

∂x2
, u

(n+1)
2 = −T̂ (n+1) ∂Ψ(n+1)

∂x1
, (8.35)

where

Γ(n)
2 = Γ2(T̂ (n)), Γ(n+1)

1 = Γ1(T̂ (n+1)), Γ(n+1)
7 = Γ7(T̂ (n+1)). (8.36)

Here, Eq. (8.31) corresponds to Eq. (3.157), Eq. (8.33) to the curl of Eq. (3.156),
Eq. (8.34) to the relation ω = ∂u2/∂x1 − ∂u1/∂x2, and Eq. (8.35) to the defini-
tion of the stream function Ψ.

The boundary conditions for Eq. (8.31) are

T̂ (n+1) = 1 at x2 = 0 and T̂ (n+1) = T̂B at x2 = 1, (8.37a)

∂T̂ (n+1)

∂x1
= 0 at x1 = 0 and x1 = x1B . (8.37b)

The boundary conditions for Eq. (8.33) are

ω(n+1) = ω(n) − ϑu
(n)
1 at x2 = 0, (8.38a)

ω(n+1) = ω(n) + ϑu
(n)
1 at x2 = 1, (8.38b)

ω(n+1) = 0 at x1 = 0 and x1 = x1B . (8.38c)

The boundary conditions for Eq. (8.34) are

Ψ(n+1) = 0 at x1 = 0, x1 = x1B , x2 = 0, and x2 = 1. (8.39)

These boundary conditions except Eqs. (8.38a) and (8.38b) are the straight-
forward results from the boundary conditions (8.28) and (8.29). When the
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iteration converges, the conditions (8.38a) and (8.38b), where ϑ is chosen ap-
propriately so as to make the iteration converge, are reduced to the conditions
u1 = 0 at x2 = 0 and x2 = 1, which are not guaranteed by the other boundary
conditions. The above equations for iterative computation are rewritten in a
finite-difference form.

The iteration process is carried out in the following way: (i) Choose an initial
set of (T̂ (0), p̂

(0)
0 , u

(0)
1 , u

(0)
2 , ω(0)). (ii) Obtain T̂ (n+1), p̂

(n+1)
0 , ω(n+1), Ψ(n+1),

u
(n+1)
1 , and u

(n+1)
2 successively using Eqs. (8.31)–(8.35) according to their order

with the set (T̂ (n), p̂
(n)
0 , ω(n), u

(n)
1 , u

(n)
2 ) obtained at the preceding stage (or given

as the initial set). That is, T̂ (n+1) from Eq. (8.31), p̂
(n+1)
0 from Eq. (8.32), ω(n+1)

from Eq. (8.33), Ψ(n+1) from Eq. (8.34), u
(n+1)
1 and u

(n+1)
2 from Eq. (8.35) using

the data obtained so far. (iii) Return to step (ii) and continue the process with
newly obtained (T̂ (n+1), p̂

(n+1)
0 , ω(n+1), u

(n+1)
1 , u

(n+1)
2 ) as (T̂ (n), p̂

(n)
0 , ω(n), u

(n)
1 ,

u
(n)
2 ). The essential problem at each step is to solve the Poisson equation.5

Some of the results of computation are shown for x1B = 1 in Figs. 8.7 and
8.8. When T̂B = 0.1 (Fig. 8.7), the bifurcated solution first extends to the
direction of smaller ĝ from the bifurcation point at ĝ = 341.28 and then to
larger ĝ after its amplitude grows to some size.6 At ĝ = 320 [panel (a) of
Fig. 8.7], there is no bifurcated solution for the system with the thermal stress
terms neglected, for which the bifurcation point is at ĝ = 364.96; at ĝ = 328
[panel (b) of Fig. 8.7], the maximum difference of the temperature of the system
without thermal stress from that of the correct system amounts to 20% of the
correct solution; and for ĝ = 1000 and 7000 [panels (c) and (d) of Fig. 8.7], slight
differences of isothermal lines are seen in the central regions. When T̂B = 0.5
(Fig. 8.8), the bifurcated solution extends to the direction of larger ĝ from the
bifurcation point at ĝ = 1162.28. At ĝ = 1170 [panel (a) of Fig. 8.8], there is no
bifurcated solution for the system without thermal stress; at ĝ = 1180 [panel
(b) of Fig. 8.8], there is clearly a difference between the two solutions with and
without thermal stress. The results clearly show that the Navier–Stokes system
fails to describe the temperature field in the continuum limit. The strongly
deformed temperature field in the absence of gas motion is the ghost effect.

8.2.5 Discussions

In this section, the Bénard problem of a gas in the continuum limit between two
parallel plane walls with different temperatures is studied on the basis of the
asymptotic fluid-dynamic-type equations and their associated boundary condi-
tions. The two-dimensional problem discussed in this work is, apparently, a
plain problem which has already been studied sufficiently, but the result is not
the one that is given by the classical fluid dynamics. In the problem the tem-
perature field is determined together with the infinitesimal velocity field. The

5The term ∂(Γ
(n)
2 ∂T̂ (n+1)/∂xi)/∂xi on the left-hand side of Eq. (8.31) can be transformed,

with replacement of Γ
(n)
2 by Γ

(n+1)
2 , into the form (∂2/∂x2

1 + ∂2/∂x2
2)
R T̂ (n+ 1)

Γ2dT̂ .
6One of the solutions for ĝ < ĝb cannot be obtained numerically.
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Figure 8.7. The bifurcated temperature field for a hard-sphere gas I: T̂B = 0.1 and
x1B = 1. (a) ĝ = 320, (b) ĝ = 328, (c) ĝ = 1000, (d) ĝ = 7000. The solid lines indicate
the isothermal lines [T̂ = 0.1n (n = 1, 2, . . . , 10) from the upper wall to the lower]; the
arrows indicate ui at their starting points and their scale is shown on the left shoulder
of the figure. The thin lines indicate the corresponding results with the thermal stress
effect neglected, and the dashed lines - - - indicate the 1D solution.

infinitesimal velocity is not perceived in the continuum world (or in the world of
the continuum limit). That is, the 1D temperature field bifurcates and its vari-
ous strongly distorted fields appear when there is no flow at all. The distorted
temperature field is determined by the infinitesimal flow velocity and gravity.
In other words, the correct behavior of a gas in the continuum limit cannot be
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Figure 8.8. The bifurcated temperature field for a hard-sphere gas II: T̂B = 0.5 and
x1B = 1. (a) ĝ = 1170, (b) ĝ = 1180, (c) ĝ = 2000, (d) ĝ = 30000. The solid lines
indicate the isothermal lines [T̂ = 0.05n+0.5 (n = 0, 1, . . . , 10) from the upper wall to
the lower]; the arrows indicate ui at their starting points and their scale is shown on
the left shoulder of each panel. The thin lines indicate the corresponding results with
the thermal stress effect neglected, and the dashed lines - - - indicate the 1D solution.

obtained only by the quantities perceptible in its world.
A bifurcated and distorted temperature field is also obtained with the aid

of the Navier–Stokes equations if the vanishing flow velocity is just retained.
However, it does not give the correct answer. In the asymptotic fluid-dynamic-
type equations, there is another contribution. It is the thermal stress. The
thermal stress is of the second order in the Knudsen number and the viscous
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stress is generally of the first order. In the present case, the velocity is of the
first order and therefore the viscous stress degenerates to the second order.
Thus the thermal stress should be retained together with the viscous stress.
The difference between the two results has been studied. The dashed lines in
Figs. 8.5 and 8.6 are the corresponding bifurcation curves for the set of equations
(3.155)–(3.158a) where the thermal stress terms [or the terms containing Γ7

in Eq. (3.156)] are eliminated. Some examples of isothermal lines for the two
results are compared in Figs. 8.7 and 8.8, where the results for the thermal stress
neglected are shown in thin solid lines. These results clearly show the ghost
effect and inappropriateness of the Navier–Stokes system for the description of
the behavior of a gas in the continuum limit.

In the atmospheric condition, the mean free path is very small but is not
exactly zero. Then, the flow velocity is nonzero for the bifurcated temperature
field. As an example, consider the following case: The distance D between
the two walls is 10 m; the temperature Tc of the upper wall is 300 K; the gas
between the channel is air (or nitrogen gas) and under atmospheric pressure.7

Then, the mean free path near the upper wall is roughly 6× 10−8 m. (i) When
Tc/Th (= T̂B) = 0.1, the mean free path near the lower wall is 6 × 10−7 m
and thus the Knudsen number is 6 × 10−8. The gravity |gi| at the bifurcation
point for α = π is |gi| = 2 × 10−7 m/s2, which is 2 × 10−8 of the gravity on
the earth. According to the numerical computation for x1B = 1, |ui| ≤ 5 for
ĝ = 320 or |ui| ≤ 17 for ĝ = 1000; that is, the flow velocity is, respectively,
less than 0.4 or 2 mm/s. The corresponding temperature field is given in panels
(a) and (c) of Fig. 8.7. In the case of Fig. 8.7 (a), there is no distortion of
the temperature field if the thermal stress terms [or the terms containing Γ7

in Eq. (3.156)] are neglected. (ii) When Tc/Th (= T̂B) = 0.5, the mean free
path near the lower wall is 10−7 m and thus the Knudsen number is 10−8.
The gravity |gi| at the bifurcation point for α = π is |gi| = 5 × 10−9 m/s2,
which is 5 × 10−10 of the gravity on the earth. According to the numerical
computation for x1B = 1, |ui| ≤ 1 for ĝ = 1170 or |ui| ≤ 10 for ĝ = 2000;
that is, the flow velocity is, respectively, less than 5 × 10−3 or 5 × 10−2 mm/s.
The corresponding temperature field is given in panels (a) and (c) of Fig. 8.8.
In the case of Fig. 8.8 (a), there is no distortion of the temperature field if the
thermal stress terms [or the terms containing Γ7 in Eq. (3.156)] are neglected.
In view of the temperature field and the scale of the system, the velocity is
practically a vanishingly small quantity. In the analysis, we considered the case
where the plane walls were at rest. Unless the motion of the walls is kept at rest
with accuracy much less than the above speed, the analysis taking into account
of this small motion (v̂wi1) into the boundary condition (3.161b) is required
for the correct description of the behavior of the temperature field. We have
considered a perfectly time-independent problem. Infinitesimal time-dependent
quantities (e.g., v̂wi1ni) may induce time-dependent or time-independent effect
on the behavior of a gas in the continuum limit.

The effect of infinitesimal velocity is more striking when we consider the

7See Footnote 102 in Section 3.6.2.
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Bénard problem with the diffuse reflecting side walls. That is, a one-dimensional
temperature field is impossible. In this case, from Eqs. (3.161a) and (3.161b),
the boundary conditions for the fluid-dynamic-type equations on the side walls
are given by

T̂ = T̂ws, u1 = 0,
u2

T̂
1/2
ws

= −K̂1

p̂0

dT̂ws

dx2
at x1 = 0 and x1 = x1B , (8.40)

where the slip coefficient K̂1 is related to that K1 in the linear theory in Sec-
tion 3.1.5 and their relation is discussed in Section A.11; x1 = 0 and x1 = x1B

are the positions of the side walls8 and T̂ws is the temperature of the side walls,
which cannot be uniform because the temperatures of the upper and lower walls
are different. Thus, u2 on the side wall is nonzero and therefore is so in the gas.
On the other hand, if T̂ (and therefore ρ̂) depends only on x2, then ρ̂u2 is in-
dependent of x1 from Eq. (3.157). Then ρ̂u1 is found to be a linear function of
x1 from Eq. (3.155), and therefore u1 = 0 from the boundary condition (8.40).
Then ρ̂u2 is zero from Eqs. (3.155) and (8.29). Therefore, the temperature field
T̂ cannot be one-dimensional even in the absence of gas motion in the con-
tinuum limit. That is, the thermal creep flow (Section 5.1.1), or the flow of
the order of the Knudsen number induced over a wall with nonuniform tem-
perature, influences the temperature field in the continuum limit and makes a
one-dimensional temperature field impossible. In classical fluid dynamics (the
Navier–Stokes equations under nonslip condition), the one-dimensional temper-
ature field given in Section 8.2.2 is possible when the temperature of the side
walls is given in harmony with the 1D solution. Thus, the results of the two
systems disagree at the starting point of the study of the Bénard problem.

The present study shows that the behavior of a gas in the continuum limit
cannot be described by the Navier–Stokes equations for an important class of
problems and that infinitesimal quantities play an important role for its descrip-
tion (ghost effect). Another example of the ghost effect owing to infinitesimal
motion of a boundary is given in Section 8.3.

8.3 Taylor–Couette problem

8.3.1 Problem and basic equation

The Taylor–Couette problem of a gas between two rotating coaxial circular
cylinders, as well as the Bénard problem, is one of the most famous problems of
bifurcation of flows (Taylor [1923], Chandrasekhar [1961], Koschmieder [1993],
Chossat & Iooss [1994]). Generally it is discussed for the case where the tem-
peratures of the two cylinders are equal. When the temperatures of the two

8The problem has the corners where the assumption of the asymptotic theory is violated.
If the corners are rounded, the asymptotic theory can be applied, which does not influence
the following discussion.
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cylinders are different, the bifurcation of the field is combined with the ghost
effect, as in the case of the Bénard problem, and the result gives important in-
formation on the fundamental property of a gas in the continuum limit. We will
discuss this problem on the basis of Sone, Handa & Doi [2003] in this section.

Consider a gas in a time-independent state between two rotating coaxial
circular cylinders. Let the radius, temperature, and circumferential velocity of
the inner cylinder be, respectively, LA, TA, and VθA, and let the corresponding
quantities of the outer cylinder be LB , TB , and VθB . Without loss of generality,
we can take VθA positive. We will investigate the asymptotic behavior of the
gas in the limit that the Knudsen number tends to zero under the following
assumptions: (i) the temperature difference of the two cylinders is finite, that is,
TB/TA−1 is of the order of unity; (ii) the speeds of rotation of the two cylinders
are small, that is, |VθA|/(2RTA)1/2 and |VθB |/(2RTA)1/2 are of the order of the
Knudsen number Kn of the system, where Kn = 0/LA with 0 being the mean
free path of the gas in the equilibrium state at rest with temperature TA and
the average density ρ0 of the gas over the domain. The second assumption is
made because the bifurcation is expected to occur at this range of the speeds of
the cylinders (see, e.g., Section 8.4.4) and discrimination of this order of speed
is required.

The limiting behavior of the system as Kn→ 0 is described by the fluid-
dynamic-type equations (3.155)–(3.158a) with F̂i2 = 0 and the boundary con-
ditions (3.161a) and (3.161b). It is convenient to use their cylindrical coordi-
nate expressions for the present problem. Let us introduce the following no-
tation: (LAr̂, θ, LAẑ) is the cylindrical coordinate system with its axial coor-
dinate LAẑ on the common axis of the cylinders; ρ0ρ̂, (2RTA)1/2(v̂r, v̂θ, v̂z),
TAT̂ , and Rρ0TAp̂ are, respectively, the density, the flow velocity in the cylin-
drical coordinate system, the temperature, and the pressure of the gas. The
fluid-dynamic-type equations are given as

1
r̂

∂ρ̂ur r̂

∂r̂
+

1
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∂ρ̂uθ

∂θ
+
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∂ẑ
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ρ̂ T̂ = p̂0, (8.46)

where

(ur, uθ, uz) = lim
k→0

(v̂r/k, v̂θ/k, v̂z/k), (8.47a)

ρ̂ and T̂ are their limiting values as k → 0, (8.47b)

p̂0 = lim
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p̂, p̂1 = lim
k→0
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In the above equations, the p̂0 and p̂1 are noted to be constants, which is the
result of the assumption (ii) [see Eqs. (3.153) and (3.154)], and Γ1, Γ̄7, etc. are
the functions of T̂ defined by Eq. (A.131). Incidentally, ρ̂, T̂ , p̂0, p̂1, p̂2, and
(ur, uθ, uz) are, respectively, ρ̂SB0, T̂SB0, p̂SB0, p̂SB1, p̂SB2, and the cylindrical
coordinate counterpart (v̂rSB1, v̂θSB1, v̂zSB1) of v̂iSB1 in Section 3.3.

The boundary conditions for these equations on the cylinders are

T̂ = 1, uθ = UA, ur = uz = 0 at r̂ = 1, (8.48)

and
T̂ = T̂B , uθ = UB , ur = uz = 0 at r̂ = r̂B , (8.49)

where T̂B = TB/TA, r̂B = LB/LA, and

UA = lim
k→0

VθA/(2RTA)1/2k, UB = lim
k→0

VθB/(2RTA)1/2k,

which are quantities of the order of unity. The parameter VθA (thus, UA) being
taken positive, the two cylinders are rotating in the same direction when UB > 0,
and in opposite directions when UB < 0. We specify the average density of
the gas over the domain and take it as the reference density, which is another
condition to fix the problem as shown in the process of analysis.

8.3.2 Analysis of bifurcation

Axially symmetric and uniform solution

The axially symmetric and uniform solution (∂/∂θ = ∂/∂ẑ = 0) of the fluid-
dynamic-type equations (8.41)–(8.46) and the boundary conditions (8.48) and
(8.49) is easily obtained as follows:

T̂ = T̂U (r̂), ρ̂ = ρ̂U (r̂) =
p̂0

T̂U (r̂)
, (8.50a)

uθ = uθU (r̂), ur = uz = 0, (8.50b)

where T̂U (r̂) is given implicitly by

r̂ = exp

⎛⎜⎜⎜⎝
(ln r̂B)
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1
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1

Γ2(T̂ )dT̂

⎞⎟⎟⎟⎠ , (8.51)

and uθU (r̂) is given, with the aid of the above result, by
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) r̂

∫ r̂
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1
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dr̂

+ UAr̂, (8.52)
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The nondimensional viscosity and thermal conductivity Γ1(T̂ ) and Γ2(T̂ ) are
defined in Eq. (A.131). The axially symmetric and uniform solution introduced
above will be called the ASU solution, for short. The thermal stress terms in
Eqs. (8.43) and (8.44) vanish owing to the axially symmetric and uniform field.

When Γ1(T̂ ) = c1T̂
n and Γ2(T̂ ) = c2T̂

n [n = 1/2 (hard-sphere), n = 1
(BKW); c1, c2 : constants; see Eqs. (A.133) and (A.134)], the relation (8.51) can
be made explicit, that is,

T̂U =
[
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(
T̂n+1

B − 1
) ln r̂

ln r̂B

]1/(n+1)

, (8.53)

and further, with this expression of T̂U in the integral
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1
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the relation (8.52) becomes explicit.
When the average density of the gas over the domain is taken as the reference

density ρ0, the undetermined p̂0 is determined as follows: By the definition of
ρ0,

ρ0 =
2ρ0

r̂2
B − 1

∫ r̂B

1

ρ̂r̂dr̂.

Substituting ρ̂ given by the second relation in Eq. (8.50a) into the above equa-
tion, we have
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r̂2
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2

(∫ r̂B

1

r̂

T̂U

dr̂

)−1

. (8.54)

Bifurcation from the axially symmetric and uniform solution

Consider an axially symmetric solution that is periodic, with period 2π/α, along
the axial direction ẑ. We are interested in the bifurcation of this class of solution
from the ASU solution, i.e., Eqs. (8.50a)–(8.52), and the behavior of the solution
in the neighborhood of the bifurcation point, if any. Let the values of the
parameters T̂B , UA, and UB at a bifurcation point be, respectively, T̂Bb, UAb,
and UBb, and let the ASU solution (T̂U , ρ̂U , uθU ) with these parameters be
denoted by (T̂U b, ρ̂Ub, uθUb). The corresponding value of the parameter p̂0,
given by Eq. (8.54) for the ASU solution, is denoted by p̂0b. That is,

p̂0b =
r̂2
B − 1

2
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dr̂

)−1

. (8.55)

For a solution periodic with respect to ẑ, to be considered hereafter, p̂0 is given
by

p̂0 =
π(r̂2
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α
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)−1

. (8.56)
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The solution that bifurcates from the ASU solution is obtained as a pertur-
bation to the ASU solution at the bifurcation point in the form9

T̂ = T̂Ub(r̂) + δT̂11(r̂) cos αẑ

+ δ2[T̂20(r̂) + T̂21(r̂) cos αẑ + T̂22(r̂) cos 2αẑ] + · · · , (8.57a)

ρ̂ = ρ̂Ub(r̂) + δρ̂11(r̂) cos αẑ

+ δ2[ρ̂20(r̂) + ρ̂21(r̂) cos αẑ + ρ̂22(r̂) cos 2αẑ] + · · · , (8.57b)

uθ = uθUb(r̂) + δU11(r̂) cos αẑ

+ δ2[U20(r̂) + U21(r̂) cos αẑ + U22(r̂) cos 2αẑ] + · · · , (8.57c)

ur = δV11(r̂) cos αẑ + δ2[V20(r̂) + V21(r̂) cos αẑ + V22(r̂) cos 2αẑ] + · · · ,
(8.57d)

uz = δW11(r̂) sin αẑ + δ2[W21(r̂) sin αẑ + W22(r̂) sin 2αẑ] + · · · , (8.57e)

where δ2 indicates the deviation from the bifurcation point, for example, δ2 =
[(T̂B−T̂Bb)2+(UA−UAb)2+(UB−UBb)2]1/2, but it is not necessary to be explicit
here. It is attached to make the size of a term explicit. Corresponding to the
expansion using δ, the parameters T̂B , UA, and UB away from the bifurcation
point (T̂Bb, UAb, UBb) are expressed as

T̂B = T̂Bb + δ2

(
T̂B − T̂Bb

δ2

)
,

UA = UAb + δ2

(
UA − UAb

δ2

)
,

UB = UBb + δ2

(
UB − UBb

δ2

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8.58)

where (T̂B − T̂Bb)/δ2, (UA − UAb)/δ2, and (UB − UBb)/δ2 are quantities of the
order of unity.

The basic equations are the conservation equations (8.41)–(8.45) and the
equation of state (8.46), where the derivatives with respect to θ vanish (∂/∂θ =
0). It is, however, convenient here to eliminate p̂�

2 from Eqs. (8.42) and (8.44),
because p̂�

2 does not appear in the boundary conditions and is not a quantity
of physical interest here. Substituting the series (8.57a)–(8.57e) and Eq. (8.58)
into the basic equations (8.41)–(8.46) with p̂�

2 eliminated and the conditions
(8.48), (8.49), and (8.56), and arranging the same-order terms in δ, we obtain
a series of the linear ordinary differential equations and boundary conditions
that determine the component functions T̂mn, ρ̂mn, Umn, Vmn, and Wmn. In
the series of equations, the component functions appear in such a way that they
can be formally determined successively from the lowest order (or in the order
of m).

9See Footnote 2 in Section 8.2.3.
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The leading-order component functions T̂11, ρ̂11, U11, V11, and W11 are gov-
erned by the equations

dV11

dr̂
+ A1V11 + αW11 = 0, (8.59a)
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dT̂11

dr̂
+ (C5 − α2C3)T̂11

)

+
d3W11

dr̂3
+ C6

d2W11

dr̂2
+ (C7 − α2)

dW11

dr̂
+ α2C8W11 = 0, (8.59c)

D1V11 +
d2T̂11

dr̂2
+ D2

dT̂11

dr̂
+ (D3 − α2)T̂11 = 0, (8.59d)

ρ̂11 = −ρ̂UbT̂11/T̂Ub, (8.59e)

where A1, B1, . . . , and D3 are determined by the ASU solution at the bifurcation
point as

A1 =
1

ρ̂Ubr̂

dρ̂Ubr̂

dr̂
, B1 =

Γ̇1b

Γ1b

dT̂Ub

dr̂
+

1
r̂
, B2 = −2ρ̂Ub

Γ1b

(
duθUb

dr̂
+

uθUb

r̂

)
,

B3 =
Γ̇1b

Γ1b

(
duθUb

dr̂
− uθUb

r̂

)
, B4 =

⎡⎣ Γ̈1b

Γ1b
−
(

Γ̇1b

Γ1b

)2⎤⎦dT̂Ub

dr̂

(
duθUb

dr̂
− uθUb

r̂

)
,

C1 =
4ρ̂UbuθUb

Γ1br̂
, C2 = − Γ̈1b

Γ1b

(
dT̂Ub

dr̂

)2
− Γ̇1b

Γ1b

(
d2T̂Ub

dr̂2
+

1
r̂

dT̂Ub

dr̂

)
− 1

r̂2
,

C3p̂0b =
Γ7b

Γ1b

dT̂Ub

dr̂
, C4p̂0b =

(
Γ̇7b

Γ1b

dT̂Ub

dr̂
+

Γ7b

Γ1br̂

)
dT̂Ub

dr̂
,

C5p̂0b = −
[

Γ7b

Γ1b

(
d3T̂Ub

dr̂3
+

1
r̂

d2T̂Ub

dr̂2
− 1

r̂2

dT̂Ub

dr̂

)
+

Γ̇7b

2Γ1b

d
dr̂

(
dT̂Ub

dr̂

)2

+
2(ρ̂UbuθUb)2

Γ1br̂

]
,

C6 =
2Γ̇1b

Γ1b

dT̂Ub

dr̂
+

1
r̂
, C7 =

Γ̈1b

Γ1b

(
dT̂Ub

dr̂

)2
+

Γ̇1b

Γ1b

(
d2T̂Ub

dr̂2
+

1
r̂

dT̂Ub

dr̂

)
− 1

r̂2
,

C8 = −2Γ̇1b

Γ1b

dT̂Ub

dr̂
, D1 = −2ρ̂Ub

Γ2b

dT̂Ub

dr̂
, D2 =

2Γ̇2b

Γ2b

dT̂Ub

dr̂
+

1
r̂
,

D3 =
Γ̈2b

Γ2b

(
dT̂Ub

dr̂

)2
+

Γ̇2b

Γ2b

(
d2T̂Ub

dr̂2
+

1
r̂

dT̂Ub

dr̂

)
,
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with

Γmb = Γm(T̂Ub), Γ̇mb =
(
dΓm/dT̂

)
T̂=T̂Ub

, Γ̈mb =
(
d2Γm/dT̂ 2

)
T̂=T̂Ub

.

Their boundary conditions are given by

T̂11 = U11 = V11 = W11 = 0 at r̂ = 1 and r̂B . (8.60)

The homogeneous boundary-value problem [Eqs. (8.59a)–(8.59d) and (8.60)]
can have a nontrivial solution only when the parameters T̂Bb, UAb, UBb, α, and
r̂B satisfy some relation among them, say,

FCbif(T̂Bb, UAb, UBb, α, r̂B) = 0. (8.61)

The relation (8.61), or the bifurcation relation, is studied numerically for a
hard-sphere gas; the process of the numerical analysis is similar to the corre-
sponding process in the Bénard problem in Section 8.2.3. In Fig. 8.9, the relation
UAb vs T̂Bb is shown for various α when UBb = 0 and r̂B = 2. There are infinitely
many UAb’s for a given T̂Bb,

10 the first three of which are shown in Fig. 8.9 (a).
The lowest branches of the curves are shown in a larger scale in Fig. 8.9 (b).
In this figure, the corresponding results for the system of equations without
the thermal stress terms [the terms coming from Γ7 in Eqs. (8.42)–(8.44)] are
shown in the dashed lines. The white and black circles in the figure indicate the
DSMC results by Aoki, Sone & Yoshimoto [1999] (see the caption for the precise
meaning). In Fig. 8.10, the relation UAb vs T̂Bb for the sets (r̂B , α) = (1.5, 2π)
and (2, π) is shown for various UBb. (There are infinitely many curves above the
curves in the figures.)

The result in this bifurcation analysis shows that the bifurcation occurs when
|VθA|/(2RTA)1/2 and |VθB |/(2RTA)1/2 are of the order of the Knudsen number,
which was expected at the beginning of the present study, and thus, the analysis
limited to the case where the gas flow is of the order of the Knudsen number
is appropriate to find the bifurcation point. In the world of the continuum
limit, where one cannot discriminate the size of the quantities of the order of
the Knudsen number, the bifurcation from the axially symmetric and uniform
solution occurs in a gas when the cylinders are at rest.

8.3.3 Bifurcated temperature field under infinitesimal
speeds of rotation of the cylinders

In the preceding subsection (Section 8.3.2), we have found that the bifurcation
of the temperature field occurs when the speeds of rotation of the cylinders
are the first-order infinitesimal and that the nonlinear thermal stress, which
is the second-order infinitesimal, affects its bifurcation. In this subsection, we
will study the bifurcated temperature field away from bifurcation points by
numerical computation of the system given in Section 8.3.1 under the restriction
that the solution is axially symmetric.

10“Infinitely many” is the plausible result suggested by detailed numerical study.
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Figure 8.9. Bifurcation curves for a hard-sphere gas I: UAb vs T̂Bb [Eq. (8.61)] with
UBb = 0 and r̂B = 2 for various α. For a given α, there are infinitely many branches.
(a) A wider range of UAb showing several branches and (b) a magnified figure of the
first branch. In panel (b), the solid lines —– indicate the bifurcation curves for the full
equations; the dashed lines – – – indicate the corresponding curves when the thermal
stress terms are neglected. The white and black circles indicate the DSMC results
with the specular-reflection condition at ẑ = 0 and ẑ = 1 at Kn= 0.02 in Aoki, Sone
& Yoshimoto [1999]; the white circles ◦ are the largest values of VθA/(2RTA)1/2k
where the ASU solution is stable, and the black circles • are the smallest values of
VθA/(2RTA)1/2k at which a roll-type solution exists; the data VθA/(2RTA)1/2 divided
by k (or 0.01

√
π) are shown as a rough estimate of the first-order coefficient of the

expansion in k [see Eq. (8.47a)].

The numerical computation is carried out in the following way. Consider a
gas in the finite domain in the ẑ direction (0 < ẑ < ẑB)11 and take the following
conditions on the boundaries at ẑ = 0 and ẑ = ẑB :

∂T̂

∂ẑ
= 0, uz = 0,

∂ur

∂ẑ
=

∂uθ

∂ẑ
= 0 at ẑ = 0 and ẑ = ẑB , (8.62)

in addition to the conditions on the cylinders [see Eqs. (8.48) and (8.49)], i.e.,

T̂ = 1, uθ = UA, ur = uz = 0 at r̂ = 1, (8.63)

T̂ = T̂B , uθ = UB , ur = uz = 0 at r̂ = r̂B , (8.64)

11See Fig. 8.19 for the related situation in Section 8.4.3.
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Figure 8.10. Bifurcation curves for a hard-sphere gas II: The first branches of UAb

vs T̂Bb [Eq. (8.61)] for various UBb. (a) r̂B = 1.5 and α = 2π and (b) r̂B = 2 and
α = π. The solid lines —– indicate the bifurcation curves for the full equations; the
dashed lines – – – indicate the corresponding curves when the thermal stress terms are
neglected.

and the condition corresponding to Eq. (8.56), i.e.,

p̂0 =
ẑB(r̂2

B − 1)
2

(∫ ẑB

0

∫ r̂B

1

r̂

T̂
dr̂dẑ

)−1

. (8.65)

Incidentally, from Eqs. (8.41) and (8.46) and the boundary condition (8.62),
∂2uz/∂ẑ2 = 0 at ẑ = 0 and ẑ = ẑB , and then from Eq. (8.44), ∂p̂�

2/∂ẑ = 0 there.
Let a solution of the above problem in the rectangular domain be S1. Then

its mirror image (say, S2) with respect to the boundary at ẑ = 0 or ẑ = ẑB

is also a solution of the problem. The two kinds of solutions S1 and S2 being
alternately arranged in the ẑ direction, the resulting function is found to be
two times continuously differentiable across the connection lines ẑ = nẑB (n =
0,±1,±2, . . .), because it satisfies Eqs. (8.41)–(8.46) except on the connection
lines and satisfies the condition (8.62) on the connection lines (note the relations
derived in the preceding paragraph). That is, the function thus constructed is
a periodic solution with period 2ẑB with respect to ẑ in the infinite domain
between the two coaxial circular cylinders at r̂ = 1 and r̂ = r̂B .

The boundary-value problem, i.e., Eqs. (8.41)–(8.46), (8.62)–(8.65), is solved



8.3. Taylor–Couette problem 413

numerically by a finite-difference method. The system where p̂�
2 is eliminated

by taking the difference of ∂[Eq. (8.42)]/∂ẑ and ∂[Eq. (8.44)]/∂r̂ is used in the
computation [Eq. (8.43) does not contain p̂�

2 because of the axial symmetry].
The solution of the system is obtained by the method of iteration similar to
that in the Bénard problem in Section 8.2.4 (see Sone, Handa & Doi [2003] for
the details).

Bifurcated temperature fields of a hard-sphere gas for three UA’s are com-
pared when T̂B = 0.1, UB = 0, r̂B = 2, and ẑB = 1 in Fig. 8.11. According to
the analysis in Section 8.3.2, bifurcation occurs at UA = 51.2239. The bifurcated
solution first extends from UA = 51.2239 to smaller values of UA and then to
larger UA.12 Figure 8.11 (a) is the field for UA = 51, where the isothermal lines
of the bifurcated field are shown in solid lines and those of the axially symmetric
and uniform field in dot-dash lines. The system where the thermal stress terms
are neglected has no bifurcated solution at this value of UA. Incidentally, the
bifurcation occurs at UA = 52.2640 for the system without the thermal stress.
Figure 8.11 (b) is the field for UA = 53, and Fig. 8.11 (c) is the field for UA = 100.
In these cases, the system with the thermal stress terms neglected has bifur-
cated solutions, whose isothermal lines are shown in dashed lines there. The
(ur, uz), i.e., the infinitesimal velocity amplified by 1/k [or limk→0(v̂r/k, v̂z/k)],
is shown by arrows in these figures. The isothermal lines are strongly distorted
by the infinitesimal flow. The difference between the correct temperature field
and that of the Navier–Stokes equation with the infinitesimal velocity retained
amounts to about 10% at UA = 53 in Fig. 8.11 (b).

Figure 8.12 is a similar figure when T̂B = 10, UB = 0, r̂B = 2, and ẑB = 1,
where the same symbols as in Fig. 8.11 are used. Bifurcation occurs at UA =
79.1001. The bifurcated solution extends from UA = 79.1001 to smaller values
of UA and then to larger UA.13 Figure 8.12 (a) is the field for UA = 79, where
the system with the thermal stress terms neglected has no bifurcated solution.
Incidentally, the bifurcation occurs at UA = 80.7446 for the system without the
thermal stress. Figure 8.12 (b) is the field for UA = 80, and Fig. 8.12 (c) is the
field for UA = 100. In these cases, the system with the thermal stress terms
neglected has bifurcated solutions. The isothermal lines are strongly distorted
by the infinitesimal flow, as in Fig. 8.11. The difference between the correct
temperature field and that of the Navier–Stokes equations with the infinitesimal
velocity retained amounts to about 10% at UA = 80 in Fig. 8.12 (b).

8.3.4 Discussion

In this section (Section 8.3), we have discussed the time-independent axially
symmetric behavior of a gas in the continuum limit between two coaxial circular
cylinders with different temperatures, with special interest in bifurcation of the
solution from an axially uniform one. The bifurcation of the solution occurs at
infinitesimal speeds of rotation of the two cylinders. Thus the velocity in the gas

12One of the solutions for UA < UAb cannot be obtained numerically.
13See the preceding footnote (Footnote 12).
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Figure 8.11. Bifurcated temperature fields for a hard-sphere gas I: T̂B = 0.1, UB = 0,
r̂B = 2, and ẑB = 1. (a) UA = 51, (b) UA = 53, and (c) UA = 100. The solid
lines —— indicate the isothermal lines of the bifurcated temperature field [T̂ = 0.1n
(n = 1, 2, . . . , 10) from the right wall to the left]. The dashed lines – – – indicate the
corresponding results with the thermal stress neglected, and the dot-dash lines – -–
indicate the isothermal lines for the ASU solution. The arrows indicate (ur, uz) at
their starting points and their scale is shown on the lower right corner of each panel,
and × indicates the point where ur = uz = 0. The maximum of (u2

r + u2
z)

1/2 is 1.97
at UA = 51 in (a), 3.40 at UA = 53 in (b), and 14.6 at UA = 100 in (c).
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Figure 8.12. Bifurcated temperature fields for a hard-sphere gas II: T̂B = 10, UB = 0,
r̂B = 2, and ẑB = 1. (a) UA = 79, (b) UA = 80, and (c) UA = 100. The solid
lines —— indicate the isothermal lines of the bifurcated temperature field [T̂ = n
(n = 1, 2, . . . , 10) from the left wall to the right]. The dashed lines – – – indicate the
corresponding results with the thermal stress neglected, and the dot-dash lines – -–
indicate the isothermal lines for the ASU solution. The arrows indicate (ur, uz) at
their starting points and their scale is shown on the lower right corner of each panel,
and × indicates the point where ur = uz = 0. The maximum of (u2

r + u2
z)

1/2 is 12.4
at UA = 79 in (a), 13.3 at UA = 80 in (b), and 23.8 at UA = 100 in (c).
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is infinitesimal, but the temperature field away from the bifurcation point has a
finite deviation from the axially uniform one (the ghost effect). If one neglects
the infinitesimal quantities in the analysis, one cannot find the bifurcation, only
to obtain the axially uniform solution. The bifurcated temperature field differs
considerably from that obtained by the Navier–Stokes set of equations with the
infinitesimal velocity being retained, when the ratio of the temperatures of the
two cylinders differs considerably from unity, say, TB/TA = 0.1 or 10 (a non-
Navier–Stokes effect). These results show that the classical fluid dynamics is
incomplete to describe the behavior of a gas in the continuum limit. The present
problem, the Taylor–Couette problem where the temperatures of the two cylin-
ders are different, is not a simple extension of that with equal temperatures but
an important problem that presents an interesting result about the fundamental
equations governing the behavior of a gas in the continuum limit.

As shown in Figs. 8.11 and 8.12, the temperature field changes largely with
UA and UB (or with infinitesimal speeds VθA and VθB of rotation of the cylin-
ders). In the world of the continuum limit, one has no way to know or determine
these infinitesimal velocities. Thus, the temperature field is indeterminate. In
a real gas, the Knudsen number may be very small but is not completely zero.
To determine its temperature field, we cannot neglect very small motion of the
cylinders, however small it may be.

In the atmospheric condition, the mean free path is very small but is not
exactly zero. Then, the flow velocity is nonzero for the bifurcated temperature
field. Let us estimate the rough size of the flow speed that induces the distorted
temperature fields in Figs. 8.11 and 8.12. As an example, consider the following
case: The radius LA of the inner cylinder and that of the outer are, respectively,
10 m and 20 m; the temperature TA of the inner cylinder is 300 K (or 3000
K); the gas between the cylinders is air or nitrogen gas and under atmospheric
pressure.14 Then, the mean free path near the inner cylinder is roughly 6×10−8

m (or 6×10−7 m) and thus the Knudsen number is 6×10−9 (or 6×10−8). Then,
for the case with VθB = 0 mm/s, TA = 3000 K, and TB = 300 K, the bifurcation
occurs at VθA = 4 mm/s (corresponding to UA = 51.2239 for α = π); for the
case with VθB = 0 mm/s, TA = 300 K, and TB = 3000 K, it occurs at VθA = 0.2
mm/s (corresponding to UA = 79.1001 for α = π). In view of these bifurcation
speeds UA shown in the parentheses, the well-distorted temperature fields in
Figs. 8.11 (a) and (b) or Figs. 8.12 (a) and (b) can be seen about VθA = 4 mm/s
or VθA = 0.2 mm/s. This speed is very small compared with the scale of the
system (In the latter case, it takes more than 3 days for one rotation of the
inner cylinder). Unless one controls this small speed of motion of the cylinders
in experiment or analysis, one will obtain a quite different temperature field.
If one analyzes the problem neglecting this size of velocity, one obtains only
the axially uniform solution. The distorted temperature field is determined by
the flow in the (r̂, ẑ) plane, and the circumferential flow plays an indirect role
to induce the motion in the (r̂, ẑ) plane. The maximum speeds of this motion
corresponding to the maximum (u2

r + u2
z)

1/2 in Figs. 8.11 (a), (b), and (c) with

14See Footnote 102 in Section 3.6.2.
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TA = 3000 K and TB = 300 K are, respectively, 0.16, 0.27, and 1.2 mm/s, and
those in Figs. 8.12 (a), (b), and (c) with TA = 300 K and TB = 3000 K are,
respectively, 3.1× 10−2, 3.3× 10−2, and 6× 10−2 mm/s. In the experiment one
must eliminate possible disturbances of these sizes.

The effect of the temperature difference of the two cylinders on the appear-
ance of the roll-type solution is often discussed by the analogy with the Bénard
problem in the following way. When the outer cylinder is heated, the centrifu-
gal force acts in the same direction as the gravity in the Bénard problem, and
therefore the bifurcation occurs more easily. However, the bifurcation curves
UAb vs T̂Bb, for example in Fig. 8.9, at T̂Bb considerably away from unity are
well in higher positions than those at T̂Bb = 1. This is opposite to the guess
by the analogy consideration. The minimum point of a bifurcation curve differs
considerably depending on situations. This is discussed in details in Handa &
Doi [2004]. When the temperature difference |TB/TA − 1| is much larger than
the Knudsen number but is small, the non-Navier–Stokes effect is negligible.
Thus, the problem can be discussed by the Navier–Stokes equations with the
infinitesimal velocity retained. There are some works on the effect of the tem-
perature difference of the two cylinders by the Boussinesq approximation of the
Navier–Stokes equations. Unfortunately, the terms of the temperature effect
are inconsistently taken in and the same-order terms are discarded. That is,
the effect of the temperature difference on the ASU solution, as well as the de-
pendence of viscosity on temperature, is not correctly taken into account. As
a result, for example, when the outer cylinder is at rest and the ratio of the
radii of the two cylinders is less than about three, the effect of the tempera-
ture difference of the cylinders appears in wrong directions in the Boussinesq
approximation analyses and in the analysis of the Navier–Stokes equation with
constant viscosity.

8.4 Flows between rotating circular cylinders
with evaporation and condensation

8.4.1 Introduction

In the preceding subsection (Section 8.3), we discussed the traditional Taylor–
Couette problem of a gas in the continuum limit and showed the importance
of kinetic theory even in this typically classical fluid-dynamic problem. In this
section, we extend the problem to the case where the cylinders are made of the
condensed phase of the gas. Then, condensation and evaporation take place
on the cylinders. This freedom introduces interesting results. That is, even in
the simple case where the state of the gas is axially symmetric and uniform,
the solution of the problem is not unique and is affected by the ghost effect of
infinitesimal convection (Sone, Takata & Sugimoto [1996], Sone, Sugimoto &
Aoki [1999], Sone & Doi [2000]). We first explain this result in Section 8.4.2
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and then, in Sections 8.4.3 and 8.4.4, discuss the effect of evaporation and
condensation on the formation of the roll-type solution.

Consider a gas between two rotating coaxial circular cylinders made of the
condensed phase of the gas. Let the radius, temperature, and circumferential
velocity of the inner cylinder be, respectively, LA, TA, and VθA, and let the
corresponding quantities of the outer cylinder be LB , TB , and VθB , where TA,
VθA, TB , and VθB are uniform on each cylinder; the saturated gas pressure at
temperature TA is denoted by pA and that at TB by pB . We will discuss the
behavior of the gas between the cylinders, with special interest in the stability
and bifurcation of time-independent solutions, under the following assumptions:
(i) the gas molecules leaving the cylinders follow the complete-condensation
condition and (ii) the flow field is axially symmetric.

The system of the Boltzmann equation and the complete-condensation con-
dition being made dimensionless by taking LA, TA, pA, and LA/(2RTA)1/2 as
the reference quantities L, T0, p0, and t0 in Section 1.9, the problem is found to
be characterized by the initial condition and the following parameters:

LB

LA
,

VθA√
2RTA

,
VθB√
2RTA

,
TB

TA
,

pB

pA
,

A

LA
(= Kn), (8.66)

where A is the mean free path of the gas in the equilibrium state at rest with
temperature TA and pressure pA.

8.4.2 Axially symmetric and uniform case

We will first consider the case where the flow field is axially uniform as well
as axially symmetric. The time-independent behavior of the gas is studied
analytically and numerically. We will summarize the results related to the
bifurcation of and the ghost effect on the flow.

Asymptotic analysis 1

Here, the problem for small Knudsen numbers is considered. We discuss the
system of fluid-dynamic-type equations and their associated boundary condi-
tions that describes the problem in the continuum limit, and give examples of
the ghost effect of infinitesimal convection on the flow field as an application of
the system (Sone, Takata & Sugimoto [1996]; see also Sone [1997, 2002]).

When the Mach numbers of the flows of evaporation or condensation on
the cylinders are finite, we can analyze the problem on the basis of the Euler
system, Eqs. (3.225a)–(3.226) and (3.228a)–(3.229c), discussed in Section 3.5.
In the Euler system, the circumferential velocity component is imposed on an
evaporating boundary, but is not on a condensing one. Owing to this feature, we
will see that bifurcation of flow takes place in the system under consideration.
When neither evaporation nor condensation is taking place and radial flow van-
ishes, the solution of the Euler set of equations is indefinite, and more careful
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examination is required. We will consider the situation where radial velocity
component vanishes when a cylinder is rotating.15

When both the cylinders are at rest and pB/pA > 1, a radial flow is obviously
induced where evaporation takes place on the outer cylinder and condensation
does on the inner cylinder.16 When the outer cylinder is rotating slowly, the
flow is deformed to a spiral flow evaporating from the outer cylinder. As the
speed of rotation of the outer cylinder increases, the pressure of the gas increases
on the outer cylinder by the centrifugal force of the rotation of the gas, and the
speed of evaporation of the gas from the outer cylinder is reduced and finally
vanishes. This process can be studied by the Euler system derived in Section
3.5. The limiting speed |V cr

θB | of the outer cylinder where the radial velocity
component vanishes is given by

|V cr
θB |

(2RTA)1/2
=
(

5TB

2TA

)1/2
[
1 −

(
pB

pA

)−2/5
]1/2 [(

LB

LA

)2

− 1

]−1/2

. (8.67)

Beyond this speed, no flow evaporating from the outer cylinder is possible. The
flow evaporating from the inner cylinder at rest, which is a radial flow,17 is im-
possible, because the pressure of the gas on the outer cylinder of the radial-flow
solution of the Euler equations satisfying the boundary condition on the inner
cylinder is lower than pB in the boundary condition on the outer cylinder.18

Thus, the radial flow vanishes for the range |VθB | ≥ |V cr
θB | given by Eq. (8.67).

For this range of VθB , the asymptotic analysis for small Knudsen numbers (Kn
or k) of the problem with radial velocity component of the first or higher order
of the Knudsen number is required.

The asymptotic analysis can be carried out on the basis of the Boltzmann
equation in the cylindrical coordinate expression in the same way as that in Sec-
tion 3.3 under the axially symmetric and uniform condition and in the absence
of the external force by replacing the supplementary condition (3.135a) by∫

ζrf̂dζ = O(k),

where ζr is the radial component of ζ. According to the asymptotic analysis
in Sone, Takata & Sugimoto [1996], the leading-order behavior of the gas is

15The situation where the circumferential velocity component as well as the radial velocity
component vanishes is possible only when pB = pA.

16The results in this subsection related to the functions h1, h2, Fs, and Fb in the boundary
conditions (3.228a)–(3.229c) are based on their properties, e.g., h1 ≤ 1 and Fs ≥ 1, that are
proved partially or shown numerically for some molecular models. They are summarized in
Sone, Takata & Golse [2001] (see also Sone [2002]).

17Note the boundary conditions for the Euler set of equations mentioned above.
18See Footnote 28 in Sone, Takata & Sugimoto [1996] and Section IV in Sone, Takata &

Golse [2001]. More detailed explanation in the latter is for the case where both the cylinders
are at rest, but it is simply extended to the present case, where the outer cylinder is rotating.
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described by the following equations:

dρ̂H0v̂rH1r̂

dr̂
= 0, (8.68a)

ρ̂H0v̂
2
θH0

r̂
=

1
2

dp̂H0

dr̂
, (8.68b)

ρ̂H0v̂rH1

(
dv̂θH0

dr̂
+

v̂θH0

r̂

)
=

1
2r̂2

d
dr̂

[
Γ1(T̂H0)r̂2

(
dv̂θH0

dr̂
− v̂θH0

r̂

)]
, (8.68c)

ρ̂H0v̂rH1
d
dr̂

(
v̂2

θH0 +
5
2
T̂H0

)
=

1
r̂

d
dr̂

[
Γ1(T̂H0)r̂v̂θH0

(
dv̂θH0

dr̂
− v̂θH0

r̂

)]
+

5
4r̂

d
dr̂

(
Γ2(T̂H0)r̂

dT̂H0

dr̂

)
, (8.68d)

p̂H0 = ρ̂H0T̂H0, (8.68e)

where (r̂, θ, ẑ) and (v̂r, v̂θ, v̂z(= 0)) are, respectively, the cylindrical coordinate
expressions of xi and v̂i with the axis of the cylinders on r̂ = 0, the subscript
H is used instead of SB in Section 3.3,19 and Γ1(T̂H0) and Γ2(T̂H0) are the
nondimensional viscosity and thermal conductivity defined in Section A.2.9.
The boundary condition for this set of equations is20

v̂θH0 =
VθA

(2RTA)1/2
, p̂H0 = 1, T̂H0 = 1 at r̂ = 1, (8.69a)

v̂θH0 =
VθB

(2RTA)1/2
, p̂H0 =

pB

pA
, T̂H0 =

TB

TA
at r̂ =

LB

LA
. (8.69b)

In view of the number of the equations and the boundary conditions and
the order of the differential equations, the variables ρ̂H0, v̂θH0, T̂H0, p̂H0, and
v̂rH1 are determined by the above system of equations and boundary conditions.
Systems of similar character are obtained by higher-order analysis. The system
(8.68a)–(8.69b) determines the variables ρ̂H0, v̂θH0, T̂H0, and p̂H0 of the order
of unity simultaneously with the first-order variable v̂rH1. That is, the behavior
of the gas in the continuum limit is influenced by the infinitesimal radial velocity
component (ghost effect). No non-Navier–Stokes stress enters Eqs. (8.68b) and
(8.68c).

The above example with VθA = 0 is studied for |VθB | > |V cr
θB | on the basis

of the above system (8.68a)–(8.69b). Some of the results in Sone, Takata &
Sugimoto [1996] are shown in Figs. 8.13 and 8.14.21 Figures 8.13 (a) and (b) show
the profiles v̂θH0 vs r̂ of the circumferential velocity component, respectively,

19We used the same subscript H as in Section 3.5 without introducing a new symbol,
because the present case is a very limited subclass of the original Hilbert expansion and a
local discussion.

20As in the case in Section 3.3, f̂H0, corresponding to f̂SB0, is a Maxwellian without radial
velocity component. Thus, the complete-condensation condition [more generally, the kinetic
boundary condition (1.69)] is satisfied when the values of the parameters in the Maxwellian
satisfy the conditions (8.69a) and (8.69b).

21(i) The saturated gas pressure is a rapidly increasing function of the temperature, and for
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for various VθB/(2RTA)1/2 and for various pB/pA. The dashed line – – – is the
profile for |VθB | → |V cr

θB |−.22 The profiles with label (v̂rH1 = 0) for which
v̂rH1 = 0 coincide with those of the Navier–Stokes equations under nonslip
condition.23 The v̂rH1 is negative for the smaller values of VθB/(2RTA)1/2 in
panel (a) and for larger values of pB/pA in panel (b) and vice versa. Figure 8.14
shows the profiles T̂H0 vs r̂ of the temperature corresponding to Fig. 8.13. The
profiles v̂θH0 and T̂H0 are deformed by the effect of the infinitesimal convection
due to v̂rH1 from the profile for v̂rH1 = 0. The numerical solutions of the kinetic
(BKW) equation for small Knudsen numbers are compared with the solution
of Eqs. (8.68a)–(8.69b) with Γ1(T̂H0) = Γ2(T̂H0) = T̂H0 corresponding to the
BKW equation in Sone, Takata & Sugimoto [1996] in figures similar to Figs. 3.4
and 3.5 (see also Sone [1997]). The solutions of the kinetic equation approach
those of Eqs. (8.68a)–(8.69b) as Kn → 0.

When the inner cylinder is at rest, as we have seen, the flow from the inner
cylinder to the outer is impossible when pB/pA > 1. Consider the case where the
inner cylinder is rotating, the outer cylinder is at rest, and pB/pA > 1. A spiral
flow evaporating from the inner cylinder can have a pressure higher than pB

on the outer cylinder owing to the centrifugal force; thus, a flow from the inner
cylinder to the outer is possible. On the other hand, a radial flow from the outer
cylinder can be possible, because the flow is radial on the outer cylinder at rest
and the circumferential velocity component is not imposed on the rotating inner
cylinder. Therefore, two flows, from the outer cylinder to the inner and from
the inner cylinder to the outer, are possible. In fact, the solid line for Kn = 0+

to be shown together with the numerical result for finite Knudsen numbers in
Fig. 8.18 shows this. Thus, various situations can be imagined depending on the
set of the parameters. The bifurcation problem for small Knudsen numbers can
be studied more easily when the speeds of rotation of the cylinders are small,
and the comprehensive feature of the bifurcation is clarified (Sone & Doi [2000];
see also Sone [2002]), which will be summarized in Asymptotic analysis 2 in
this subsection (Section 8.4.2).

Before the discussion of the bifurcation problem for small speeds of rota-

many gases, 1 < TB/TA < 1.02 at pB/pA = 1.2 (see Table C.2 or “Thermophysical Properties
of Fluid Systems” at http://webbook.nist.gov); thus TB/TA = 1 is chosen.

(ii) Figures 8.13 and 8.14 are the corrected figures of Figs. 3 and 4 in Sone, Takata & Sug-
imoto [1996] (see its erratum). Incidentally, Figs. 5 and 6 in Sone [1997], which correspond,
respectively, to Fig. 8.13 (a) and Fig. 2 (a) in the former paper, are required corrections ac-
cording to the present figure and the erratum.

22The two solutions with vr of different orders, i.e., v̂r = O(1) and O(k), are connected by a
transition solution in the neighborhood of V cr

θB . The transition solution in a similar situation
(the case discussed in Asymptotic analysis 2 in this subsection) are constructed in Sone &
Doi [2000] (see also Sone [2002]).

23The nonslip condition imposes that the velocity and temperature of a gas on the boundary
coincide with those of the boundary; no condition on the pressure of the gas is imposed. Here,
the reference pressure pA is taken to be the pressure of the gas on the inner cylinder, that is,
p̂ = 1 there. This is what is called the cylindrical Couette flow or, simply, Couette flow in
classical fluid dynamics. Needless to say, the name is used for the problems with the same
geometrical situation in kinetic theory. This kind of extension of old terminology is common,
e.g., plane Couette flow and Poiseuille flow.
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Figure 8.13. The circumferential velocity profiles v̂θH0 vs r̂ for a hard-sphere gas
[VθA/(2RTA)1/2 = 0, TB/TA = 1, and LB/LA = 2]. (a) The profiles for various
VθB/(2RTA)1/2 at pB/pA = 1.2; (b) the profiles for various pB/pA at VθB/(2RTA)1/2 =
0.5. The dashed line – – – is the profile for VθB → V cr

θB− in panel (a) and that for
pB/pA → (pB/pA)cr

+ in panel (b), where (pB/pA)cr is pB/pA corresponding to V cr
θB .

The profiles with label (v̂rH1 = 0) for which v̂rH1 = 0 coincide with those of the
Navier–Stokes equations under nonslip condition (see Footnote 23 in this subsection).

tion of the cylinders, we briefly explain the framework of the governing system
on the basis of the systems of equations and boundary conditions mentioned
above. When the Mach number of the flow is small but finite, the Euler sys-
tem, Eqs. (3.225a)–(3.226) and (3.228a)–(3.229c), reduces in the following way:
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Figure 8.14. The temperature profiles T̂H0 vs r̂ for a hard-sphere gas
[VθA/(2RTA)1/2 = 0, TB/TA = 1, and LB/LA = 2]. (a) The profiles for various
VθB/(2RTA)1/2 at pB/pA = 1.2; (b) the profiles for various pB/pA at VθB/(2RTA)1/2 =
0.5. The dashed line – – – is the profile for VθB → V cr

θB− in panel (a) and that for
pB/pA → (pB/pA)cr

+ in panel (b), where (pB/pA)cr is pB/pA corresponding to V cr
θB .

The profiles with label (v̂rH1 = 0) for which v̂rH1 = 0 coincide with those of the
Navier–Stokes equations under nonslip condition (see Footnote 23 in this subsection).

The Euler set of equations, Eqs. (3.225a)–(3.225c), is easily seen to reduce to
incompressible Euler set. The boundary conditions, Eqs. (3.228a)–(3.229c), for
the Euler set are derived by the analysis of Knudsen layer governed by the non-
linear Boltzmann equation. As explained in Section 3.6.1, the Knudsen layer
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splits into the suction boundary layer and the Knudsen layer governed by the
linearized Boltzmann equation on the condensing boundary and it reduces sim-
ply to the Knudsen layer governed by the linearized Boltzmann equation on
the evaporating boundary. The boundary condition derived from the linearized
Boltzmann equation is of the same feature (e.g., the number of conditions) as
the condition (3.228a), and the condition derived from the combination of the
suction boundary layer and the Knudsen layer governed by the linearized Boltz-
mann equation is also of the same feature as the condition (3.229a). Equations
(8.68a)–(8.68d) reduce to “incompressible Navier–Stokes equations”24 with in-
finitesimal radial velocity component retained. Thus the feature of the system
for small but finite Mach numbers may be basically considered to be the same
as the system with a finite Mach number.

As seen in the above examples, it is required for the ghost effect or bifur-
cation to occur that the pressure difference induced by the centrifugal force is
comparable to or larger than pB − pA . When we consider the case where the
speeds of rotation of the cylinders are small, i.e., v̂θ is a small quantity of the
order of ε, the situation where the ghost effect or bifurcation occurs corresponds
to the case where the difference pB/pA − 1 is O(ε2). Thus, for the study of the
ghost effect and bifurcation for VθA/(2RTA)1/2 or VθB/(2RTA)1/2 = O(ε), the
case pB/pA − 1 = O(ε2) should be considered. Thus, the ordering v̂θ = O(ε)
and v̂r = O(ε2) should be taken into account in the derivation of the systems
for small speeds of rotation of the cylinders in the preceding paragraph. In Sone
& Doi [2000], the case where Kn = εm is considered under the above ordering,
and the system of equations and boundary conditions for m ≥ 3 is found to be
basically the same as the case of finite Mach numbers.

Asymptotic analysis 2

Here, we consider the bifurcation problem for small Knudsen numbers when the
speeds of rotation of the cylinders are small, and describe the main results of
the bifurcation analysis in Sone & Doi [2000], where the comprehensive feature
of the flow is clarified (the brief description of analysis is given in Sone [2002]).

In the work, the following case of the parameters is considered:

LB

LA
− 1 = r̂B − 1 = O(1), Kn = εm,

VθA√
2RTA

= εuθA1,
VθB√
2RTA

= εuθB1,

TB

TA
− 1 = ε2τB2,

pB

pA
− 1 = ε2PB2,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(8.70)

where ε � 1, and uθA1, uθB1, τB2, and PB2 are quantities of the order of unity.
The solution shows different features depending on the value of m : m ≥ 3,
m = 2, and m = 1. In the last case (m = 1), no bifurcation occurs.

24See the first paragraph of Section 3.2.4 for the meaning of the quotation mark.



8.4. Flows between rotating cylinders with evaporation and condensation 425

I–

I+

IIC– C
+

C–

C
+

II

I–

I+

(a) (b)

Figure 8.15. Bifurcation diagram (or schematic profiles limε→0 Ĵ/ε2 vs PB2) of the
axially uniform flow in the limit ε → 0 for the parameter size given by Eq. (8.70) with
m ≥ 3 I: The two cylinders are rotating in the same direction (uθA1uθB1 > 0). (a)
u2

θA1 > (uθB1r̂B)2 and (b) u2
θA1 < (uθB1r̂B)2. The solution is indicated by thick solid

lines. The connection of the two solutions I and II by a transition solution is shown
by a dashed line.

Let the mass flow from the inner cylinder to the outer cylinder per unit time
and per unit length of the cylinders be J, and the nondimensional mass-flow
rate J/[2

√
2πLApA/(RTA)1/2] be denoted by Ĵ . The diagrams Ĵ/ε2 vs PB2 for

m ≥ 3 are given in Figs. 8.15 and 8.16. There are two kinds of solutions: one
with Ĵ of the order of ε2 (say I) and the other with Ĵ of the order of εm (say II).
The first solution is subclassified into two: one with positive Ĵ denoted by I+
and the other with negative Ĵ denoted by I−. Figure 8.15 is the diagram when
the two cylinders are rotating in the same direction, and Fig. 8.16 is that when
the two cylinders are rotating in the opposite directions. The two solutions I+
and I− are disjointed and connected with the solution II at C+ and C−. The
PB2 at these points are

PB2 =
(r̂2

B − 1)u2
θA1

r̂2
B

at C+, (8.71a)

PB2 = (r̂2
B − 1)u2

θB1 at C−. (8.71b)

The solution connecting the two solutions (I+ and II at C+ or I− and II at
C−) of different orders of Ĵ smoothly is shown schematically by a dashed line
in these figures.

When the two cylinders are rotating in the same direction (uθA1uθB1 > 0),
the bifurcation diagram is classified into two classes. When |uθA1| > |r̂BuθB1|
(the angular momentum of the gas on the inner cylinder is larger than that on
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Figure 8.16. Bifurcation diagram (or schematic profiles limε→0 Ĵ/ε2 vs PB2) of the
axially uniform flow in the limit ε → 0 for the parameter size given by Eq. (8.70)
with m ≥ 3 II: The two cylinders are rotating in opposite directions (uθA1uθB1 < 0).
(a) (uθA1/uθB1r̂B)2 ≤ 1/9c1, (b) 1/9c1 < (uθA1/uθB1r̂B)2 < 1/9c2, (c) 1/9c2 <
(uθA1/uθB1r̂B)2 < 1/9, (d) 1/9 ≤ (uθA1/uθB1r̂B)2 < 1, (e) 1 < (uθA1/uθB1r̂B)2 < 9,
and (f) (uθA1/uθB1r̂B)2 ≥ 9, where c1 and c2 depend on r̂B . The solution is indicated
by thick or medium solid lines. The connection of the two solutions I and II by a
transition solution is shown by a dashed line.
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the outer), three solutions exist in the range

(r̂2
B − 1)u2

θB1 < PB2 <
(r̂2

B − 1)u2
θA1

r̂2
B

, (8.72)

and the solution is unique in the other range of PB2. When |uθA1| ≤ |r̂BuθB1|
(the angular momentum of the gas on the inner cylinder is not larger than
that on the outer), the solution is unique for the whole range of PB2. When
the two cylinders are rotating in the opposite directions (uθA1uθB1 < 0), the
bifurcation diagram is classified into six classes. The situation of the solution
I+ and I− is the same as in the case when the cylinders are rotating in the same
direction (uθA1uθB1 > 0), but the solution II is classified into four kinds when
|uθA1| ≤ |r̂BuθB1| and into two kinds when |uθA1| ≥ |r̂BuθB1|.

The above feature of the diagram is common to m ≥ 3. The solution II is
determined by the interaction of the circumferential velocity of the order of ε
with the radial velocity of the order of εm. The limiting case m → ∞ corresponds
to flows with small but finite Mach numbers [O(ε)] in the continuum limit (Kn
= 0+).25 In this world, the radial velocity of the solution II vanishes, that
is, there is no radial flow. However, if the radial velocity is neglected in the
analysis, the correct solution is not obtained except for a special PB2.26 The
solution II is determined by the ghost effect.

The bifurcation diagram for m = 2 is shown in Fig. 8.17. The solution is
of a single kind with Ĵ of the order of ε2. The diagram is classified into two
classes as shown in Fig. 8.17, irrespective of the directions of rotation of the two
cylinders.

Arkeryd & Nouri [2005] discussed a rigorous mathematical estimate of the
residue of the above asymptotic solution (Sone & Doi [2000]) for a special case.

Numerical analysis

The effect of gas rarefaction or the Knudsen number on the bifurcation is ex-
plained on the basis of the numerical work by Sone, Sugimoto & Aoki [1999],
where the problem is studied numerically on the basis of the BKW equation by
a finite-difference method. The values of the parameters studied in the paper
are as follows:

25Strictly, the solution in the continuum limit (Kn → 0) for small but finite ε should be
carried out in the two steps (see Sections 9.3 and 3.6.1): (i) the asymptotic analysis for small
Kn is carried out without the relation between ε and Kn being set (see Section 3.5), and
then (ii) the approximation for small ε under the parameter setting of Eq. (8.70) excluding
the relation Kn = εm is carried out. In this process, the Knudsen layer governed by the
nonlinear Boltzmann equation is split into the suction boundary layer and the Knudsen layer
governed by the linearized equation. The present case corresponds to the above mentioned
small ε simplification of the ghost effect solution for Kn = 0+ with Ĵ = 0 in Fig. 8.18, which
is studied on the basis of Sone, Takata & Sugimoto [1996] [see Asymptotic analysis 1 in
this subsection (Section 8.4.2)].

26The solution satisfying the boundary condition on PB2 cannot be obtained. However, the
circumferential velocity field is determined independently of PB2. This is the solution under
nonslip condition [see Footnote 23 in this subsection (Section 8.4.2)].
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(a) (b)

Figure 8.17. Bifurcation diagram (or schematic profiles limε→0 Ĵ/ε2 vs PB2) of the
axially uniform flow in the limit ε → 0 for the parameter size given by Eq. (8.70) with
m = 2. (a) Unique solution and (b) bifurcation.

(i) The outer cylinder is at rest, i.e., VθB = 0, and27

LB

LA
= 2,

pB

pA
= 1.2,

TB

TA
= 1; (8.73)

(ii) Various speeds |VθA| of rotation of the inner cylinder;
(iii) Various Knudsen numbers Kn.

Evaporation takes place on the outer cylinder and condensation on the
inner cylinder for pB/pA > 1 when both the cylinders are at rest. Thus,
the gas flow is from the outer cylinder to the inner cylinder. According to
the numerical analysis, the variation of the flow with the speed of rotation
of the inner cylinder and the Knudsen number shows an interesting behav-
ior. The diagram J/[2

√
2πLApA/(RTA)1/2] (J : the mass flow from the in-

ner cylinder to the outer per unit time and per unit length of the cylinders)
vs |VθA|/(2RTA)1/2 (the nondimensional speed of rotation of the inner cylin-
der) is shown for various Knudsen numbers in Fig. 8.18. In the free molecular
flow (Kn = ∞), Ĵ = −1/10

√
π (= −0.05642) irrespective of |VθA|/(2RTA)1/2,

where Ĵ = J/[2
√

2πLApA/(RTA)1/2].28 The flow is in the direction from the
outer cylinder to the inner. For intermediate and large Knudsen numbers
(0.02 �Kn< ∞), the flow is from the outer cylinder to the inner for small
|VθA|, and |Ĵ | decreases as |VθA| increases and vanishes at some |VθA|, which
depends on the Knudsen number Kn. For larger |VθA|, the flow is reversed from
the inner cylinder to the outer and |Ĵ | increases as |VθA| increases. For smaller
Knudsen numbers (0 < Kn� 0.01), the flow is from the outer cylinder to the

27See Footnote 21 (i) in this subsection (Section 8.4.2).
28For Kn= ∞, the analytic solution is easily obtained as Ĵ = [1−(pB/pA)(TA/TB)1/2]/2

√
π.
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Figure 8.18. Bifurcation diagram : J/[2
√

2πLApA/(RTA)1/2] vs |VθA|/(2RTA)1/2 (J :
the mass flow from the inner cylinder to the outer per unit time and per unit length
of the cylinders) of the axially symmetric and uniform solution for various Knudsen
numbers Kn (LB/LA = 2, VθB = 0, pB/pA = 1.2, TB/TA = 1).

inner (Ĵ < 0) for small |VθA|, and |Ĵ | decreases as |VθA| increases as in the cases
for larger Knudsen numbers, but the flow suddenly changes its direction (or Ĵ
suddenly jumps to a positive value) at some |VθA|, which depends on Kn. Then,
the mass-flow rate Ĵ (> 0) from the inner cylinder to the outer increases as
|VθA| increases. This solution of a positive mass-flow rate exists also for smaller
|VθA| than the jump point down to some |VθA|, which depends on Kn. Thus,
two solutions, positive and negative mass-flow rates Ĵ , exist in some range of
|VθA|.

In the limit of Kn→ 0, for which the asymptotic solution is obtained on the
basis of Asymptotic analysis 1 in this subsection, three kinds of solutions are
obtained as shown by solid lines in Fig. 8.18. The limiting solution at Kn = 0+

on the line Ĵ = 0 is obtained by the system (8.68a)–(8.69b), and the solutions on
the other part of the solid line are obtained by the Euler system, Eqs. (3.225a)–
(3.226) and (3.228a)–(3.229c), given in Section 3.5. The solutions on Ĵ = 0 are
subject to the ghost effect of an infinitesimal radial flow [O(Kn)] of evaporation
and condensation on the cylinders except for a special value of |VθA|. At the
special point, the speed of evaporation and condensation is of a higher-order
infinitesimal and the solution is the cylindrical Couette flow, i.e, the solution of
the Navier–Stokes equations under nonslip condition on the cylinders.29 At the

29See Footnote 23 in this subsection (Section 8.4.2).
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Figure 8.19. Geometry of the system. Here, (r, θ, z) is the (dimensional) cylindri-
cal coordinate system, which is used for explanation in this section (Section 8.4.3).
The axially symmetric problem considered in this section is discussed on the shaded
rectangular domain.

other points on the line Ĵ = 0, owing to the ghost effect of infinitesimal radial
flow, the behavior of the gas, e.g., the profiles of the circumferential velocity
component and temperature, deviates strongly from those of the cylindrical
Couette flow. This feature is the same as that of the examples given in Figs. 8.13
and 8.14. The present bifurcation diagram corresponds to the panel (a) in
Fig. 8.15 with C− at the origin, where only one solution exists for PB2 on the
right of the point C+ [or u2

θA1 < PB2r̂
2
B/(r̂2

B − 1)] but three solutions exist for
PB2 on the left of the point C+ [or u2

θA1 > PB2r̂
2
B/(r̂2

B − 1)].
The problem is also studied as the long-time behavior of the solution of the

time-evolution problem for a hard-sphere gas by DSMC computation in Sone,
Ohwada & Makihara [1999] and Sone, Handa & Sugimoto [2002] (see Section
B.1.6). The above two kinds of numerical solutions, positive and negative mass-
flow rates Ĵ , are obtained from two different kinds of initial conditions.

8.4.3 Axially symmetric and nonuniform case I:
Finite Knudsen number

From now on, we discuss the problem by eliminating the restriction of axial
uniformity. First, we explain the results for finite Knudsen numbers by DSMC
computation obtained by Sone, Handa & Sugimoto [2002].

Here, we consider a hard-sphere gas between the cylinders of a finite length D
with the two ends in their axial direction being bounded by specularly reflecting
boundaries (Fig. 8.19). The discussion will be made on the shaded rectangular
region, because the axially symmetric case is considered here. Let the time-
independent solution of the above problem and its mirror image with respect to
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the axial end be arranged alternately in the axial direction. This is a periodic
solution between the infinitely long cylinders, with period 2D along the axis of
the cylinders.30 The axially uniform solution considered in the preceding sub-
section (Section 8.4.2) is, naturally, a solution in the domain of a finite length.
We will investigate the stability of the axially uniform solutions by elimination
of the condition of the axial uniformity and look for another type of solution
with the direct simulation Monte Carlo (or DSMC) method explained in Section
B.1. The stability is studied in the following way: First construct axially sym-
metric and uniform solutions with DSMC system of computation for the axially
symmetric and uniform condition, and then investigate the time evolution of the
axially uniform solutions with the DSMC system for the axially symmetric con-
dition, where the axially uniform restriction is eliminated.31 DSMC solutions
at some instant inevitably deviate from the corresponding real solutions of the
Boltzmann system, and thus no perturbation is required to study the stability.

The numerical computation is carried out in the following values of the
parameters:

(i) The outer cylinder is at rest, i.e., VθB = 0, and32

LB

LA
= 2,

D

LA
= 1,

pB

pA
= 1.2,

TB

TA
= 1; (8.74)

(ii) Two typical cases of the Knudsen number:

Kn = 0.005, where bifurcation occurs in the axially uniform case, (8.75a)
Kn = 0.02, where no bifurcation occurs in the axially uniform case; (8.75b)

(iii) Various speeds |VθA| of rotation of the inner cylinder.

The choice (i) is the same as (i) in Section 8.4.2 except for the additional data
for D/LA.

Case Kn = 0.005

This is the case where bifurcation occurs in the axially uniform case. Let the
mass flow per unit time from the inner cylinder to the outer of length D be JD,
and the nondimensional mass-flow rate JD/[2

√
2πLADpA/(RTA)1/2] be denoted

by Ĵ . The diagram of the nondimensional mass-flow rate Ĵ vs the nondimen-
sional circumferential speed |VθA|/(2RTA)1/2 of rotation of the inner cylinder
of the time-independent solutions is shown in Fig. 8.20, where the stability of
axially uniform solutions is also indicated. The relation Ĵ vs |VθA|/(2RTA)1/2

for the axially uniform solution, which consists of two branches, is shown by
30See the third paragraph in Section 8.3.3, where the corresponding solution in a similar

situation is explained.
31Examples of the DSMC systems with symmetry are given in Section B.1.5.
32(i) See Footnote 21 (i) in Section 8.4.2.

(ii) In the present choice of the parameter, D = LB − LA = LA, and the shaded region
where the analysis is carried out is a square. Thus, z/D, used as the ordinates in Figs. 8.21,
8.22, and 8.24 for the domain with respect to z to be explicit, is equivalent to z/LA.
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Figure 8.20. Bifurcation diagram [Ĵ (= JD/[2
√

2πLADpA/(RTA)1/2]) vs
|VθA|/(2RTA)1/2] of the axially symmetric solution (Kn= 0.005; LB/LA = 2, D/LA =
1, VθB = 0, pB/pA = 1.2, TB/TA = 1). See the main text.

solid lines in the diagram. The stability of an axially uniform solution on the
curve is marked by the symbols ◦ and × in the diagram. That is, if the solution
of time-evolution computation remains the original axially uniform solution, it
is marked by the symbol ◦, and if the solution changes to another solution,
it is marked by the symbol ×. The latter solution in the long-time limit is of
two kinds: One is a stable axially uniform solution ◦, marked by the arrow ↓,
on the other branch of the axially uniform solution; and the other is a new
time-independent axially nonuniform solution, which is marked by •. The axi-
ally uniform solution is unstable only near the edge of each branch, where |Ĵ |
is smaller than |Ĵ | on the other part of the corresponding branch.

The process of transition of the first type at |VθA|/(2RTA)1/2 = 0.65 is shown
in Fig. 8.21. In Fig. 8.21, the flow velocity field (vr, vθ, vz) in the cylindrical
coordinate system is shown by the arrows expressing (vr, vz)/(2RTA)1/2 at their
starting points and the level curves |vθ|/(2RTA)1/2 = const. The axially uniform
solution at |VθA|/(2RTA)1/2 = 0.65 on the upper branch, where evaporation is
taking place on the inner cylinder, deviates slowly from its initial state and a
roll is formed accompanying the decrease of Ĵ . After the reversal of Ĵ from
positive to negative, the roll decays and the flow approaches an axially uniform
flow with evaporation on the outer cylinder. This flow is nearly radial and
the circumferential motion is limited only in a close neighborhood of the inner
cylinder. The process of transition of the second type at |VθA|/(2RTA)1/2 = 0.94
is shown in Fig. 8.22. The axially uniform solution at |VθA|/(2RTA)1/2 = 0.94
on the lower branch, where evaporation is taking place on the outer cylinder,



8.4. Flows between rotating cylinders with evaporation and condensation 433

�
�

�

�

� � � �� 	

� 
 �

� �  � � � � � 	 � � �  � � � � � � � � � �  	 � 
 � � 	 �

� �  � � 
 � � � � � �  � � 
 � � � �

� �  � � � � � � � � �  	 � � � 	 � �

� 
 � � 
 � � 
 � � 
 �

� 
 � � 
 � � 
 � � 
 �

� 
 �

� 
 �

� 
 � � 
 �

Figure 8.21. Transition process from the axially uniform solution at
|VθA|/(2RTA)1/2 = 0.65 on the upper branch to that on the lower branch
(Kn= 0.005). (a) The average of the data from t/LA(2RTA)−1/2 = 0 to 5, (b) 24.5
– 25, (c) 34.5 – 35, (d) 44.5 – 45, (e) 145 – 150, and (f) 245 – 250. The arrows
indicate (vr, vz)/(2RTA)1/2 at their starting points. Their scale of 0.1 is shown by
the arrow on the left shoulder of each panel. The level curves |vθ|/(2RTA)1/2 = 0.1n
(n = 1, 2, . . .) are drawn in the figures. On some of the level curves, the level value is
indicated.
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Figure 8.22. Transition process from the axially uniform solution at
|VθA|/(2RTA)1/2 = 0.94 on the lower branch to the roll-type solution (Kn= 0.005). (a)
The average of the data from t/LA(2RTA)−1/2 = 0 to 5, (b) 33 – 33.5, (c) 38 – 38.5,
(d) 44.5 – 45, (e) 99.5 – 100, and (f) 235 – 240. The arrows indicate (vr, vz)/(2RTA)1/2

at their starting points. Their scale of 0.1 is shown by the arrow on the left shoulder
of each panel. The level curves |vθ|/(2RTA)1/2 = 0.1n (n = 1, 2, . . .) are drawn in the
figures. On some of the level curves, the level value is indicated.
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Figure 8.23. The circulation Γ̂ [= Γ/LA(2RTA)1/2] vs |VθA|/(2RTA)1/2 on the branch
of the roll-type solution (• and � in Fig. 8.20) I: Kn= 0.005. The circulation Γ is defined
by the circulation around the circle on the section θ =const with the radius 0.3LA and
its center at the center of the domain under discussion (the shaded region in Fig. 8.19).
The black circle • and black square � correspond, respectively, to the solutions marked
by • and � in Fig.8.20; the smaller white circle corresponds to a stable axially uniform
solution on the lower branch, and the larger one to that on the upper branch.

deviates gradually from its initial state and a roll-type solution is established
with Ĵ not much different from Ĵ of the initial state.

The axially nonuniform solution • is of a roll type. This type of solution
exists in a wider range of |VθA|/(2RTA)1/2 than that shown by the symbol •. A
roll-type solution at a new |VθA|/(2RTA)1/2 is constructed from the long-time
behavior of the initial and boundary-value problem with a roll-type solution
nearby |VθA|/(2RTA)1/2 as the initial condition. The solutions thus obtained
are marked by the black square � in Fig. 8.20. The variation of the circulation Γ
of the roll-type solution along the branch is shown in Fig. 8.23, where the circu-
lation Γ is defined by the circulation around the circle on the section θ = const
with the radius 0.3LA and its center at the center of the domain under dis-
cussion (the shaded region in Fig. 8.19). As |VθA|/(2RTA)1/2 becomes smaller,
the circulation decreases to vanish and the nondimensional mass-flow rate Ĵ
approaches that of the axially uniform solution on the lower branch. Thus, the
bifurcation of the roll-type solution from the lower branch may be considered to
occur at about |VθA|/(2RTA)1/2 = 0.7. The other end of the black symbols (a
black square) in Fig. 8.20 is at |VθA|/(2RTA)1/2 = 1.18. The time evolution of
the initial and boundary-value problem at |VθA|/(2RTA)1/2 = 1.19 with the roll-
type solution at |VθA|/(2RTA)1/2 = 1.18 as the initial condition deviates from
the initial condition and approaches the corresponding axially uniform solution
on the upper branch. This indicates that the time-independent solution of a
roll type does not exist at |VθA|/(2RTA)1/2 = 1.19 or that the time-independent
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Figure 8.24. The velocity fields of three types of the flow at |VθA|/(2RTA)1/2 = 0.8
(Kn= 0.005). (a) A flow with negative mass-flow rate, (b) a flow with positive mass-
flow rate, and (c) a flow of roll type. The arrows indicate (vr, vz)/(2RTA)1/2 at their
starting points. Their scale of 0.1 is shown by the arrow on the left shoulder of each
panel. The level curves |vθ|/(2RTA)1/2 = 0.1n (n = 1, 2, . . .) are drawn in the figures.
On some of the level curves, the level value is indicated.

solution, if any, is unstable for a perturbation of the size of 0.01. The disappear-
ance of a roll-type solution may be understood in the following way: Stronger
convection Ĵ with increase of |VθA|/(2RTA)1/2 sweeps away the seed of a roll
out of the flow field.

From the bifurcation diagram given by Fig. 8.20, it is found that three kinds
of solutions, two axially uniform solutions with positive and negative mass-flow
rates and a roll-type solution, exist stably between 0.75 � |VθA|/(2RTA)1/2 �
0.85. The three kinds of profiles of the flow field at |VθA|/(2RTA)1/2 = 0.8 are
shown in Fig. 8.24.

Case Kn = 0.02

This is the case where no bifurcation occurs in the axially uniform case, where
the relation Ĵ vs |VθA|/(2RTA)1/2 is given by a single curve. The bifurcation
diagram Ĵ vs |VθA|/(2RTA)1/2 with stability indication of axially uniform so-
lutions is shown in Fig. 8.25. In Fig. 8.25, the same symbols are used as in
Fig. 8.20; the shaded circle is a new symbol indicating that the time evolution
from the axially uniform solution keeps oscillating and does not approach a
time-independent solution. This solution could not be confirmed to be a real
solution, and further discussion is required. An example of false oscillatory so-
lutions is given in Section B.1.6. The axially uniform solution is unstable only
in a limited range of |VθA|/(2RTA)1/2 or Ĵ [say, cL ≤ |VθA|/(2RTA)1/2 ≤ cM

(cL > 0) or jL ≤ Ĵ ≤ jM (jL < 0, jM > 0)]. The variation of the circulation
Γ along the branch of the roll-type solution (• and �) is shown in Fig. 8.26. As
|VθA|/(2RTA)1/2 becomes smaller, the circulation decreases to vanish and the
mass-flow rate approaches that of the axially uniform solution. The bifurcation
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Figure 8.25. Bifurcation diagram [Ĵ (= JD/[2
√

2πLADpA/(RTA)1/2]) vs
|VθA|/(2RTA)1/2] of the axially symmetric solution (Kn= 0.02; LB/LA = 2, D/LA =
1, VθB = 0, pB/pA = 1.2, TB/TA = 1). See the main text.
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Figure 8.26. The circulation Γ̂ [= Γ/LA(2RTA)1/2] vs |VθA|/(2RTA)1/2 on the branch
of the roll-type solution (• and � in Fig. 8.25 ) II: Kn= 0.02. The circulation Γ is
defined by the circulation around the circle on the section θ =const with the radius
0.3LA and its center at the center of the domain under discussion (the shaded region
in Fig. 8.19). The black circle • and black square � correspond, respectively, to the
solutions marked by • and � in Fig. 8.25; the shaded circle is the maximum value of
the oscillating solution marked by the same symbol in Fig. 8.25; and the white circle
corresponds to an axially uniform solution.
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of a roll-type solution from the branch of the axially uniform flow seems to occur
at about |VθA|/(2RTA)1/2 = 0.66. The other end of the black symbols (a black
square) in Fig. 8.25 is at |VθA|/(2RTA)1/2 = 0.85. The time evolution of the ini-
tial and boundary-value problem at |VθA|/(2RTA)1/2 = 0.86 with the roll-type
solution at |VθA|/(2RTA)1/2 = 0.85 as the initial condition deviates from the ini-
tial condition and approaches the corresponding axially uniform solution with a
slightly large fluctuation. This indicates that the time-independent solution of a
roll type does not exist at |VθA|/(2RTA)1/2 = 0.86 or that the time-independent
solution, if any, is unstable for a perturbation of the size of 0.01.

In the above DSMC computations, the domain (LA, LB)× (0, D) is divided
into m × n uniform cells. The data for Kn = 0.005 are the results of 400 × 400
cells and those for Kn= 0.02 are those of 100 × 100; the average number of
particles in a cell distributed initially is about 100 for both the cases.

8.4.4 Axially symmetric and nonuniform case II:
Limiting solution as Kn→ 0

In this subsection we discuss the bifurcation from the axially uniform solution
when the Knudsen number of the system is small on the basis of Sone & Doi
[2003b]. That is, taking a small quantity ε, we study the asymptotic behavior
as ε → 0 of the axially symmetric time-independent solution of the problem
described in Section 8.4.1 when the six parameters (8.66) are limited to the
following case:

LB

LA
− 1 = r̂B − 1 = O(1),

VθA√
2RTA

= εuθA,
VθB√
2RTA

= εuθB ,

TB/TA − 1 = ετB , pB/pA − 1 = εPB , Kn = 2ε/
√

π,

⎫⎪⎪⎬⎪⎪⎭ (8.76)

where uθA (≥ 0), uθB , τB , and PB are of the order of unity. We will see, in the
present analysis, that an axially symmetric but nonuniform solution bifurcates
in the above range of the parameters from the axially uniform solution, which
is unique in this range in contrast to the case in Asymptotic analysis 2 of
Section 8.4.2. From the result, the axially nonuniform solution bifurcated may
be considered to continue to exist in the range of the parameters studied in
Asymptotic analysis 2 of Section 8.4.2.

Basic equation and boundary condition

The time-independent behavior of a gas around the condensed phase of the gas
for the above range of the parameters are studied in Section 3.2, and the fluid-
dynamic-type equations and their associated boundary conditions, describing
the behavior of the gas, are derived. Let the cylindrical coordinate system
with the axis of the cylinders as the axial direction, the flow velocity (in the
cylindrical coordinates), pressure, and temperature of the gas be, respectively,
(LAr̂, θ, LAẑ), ε(2RTA)1/2(ur, uθ, uz), pA(1+εP ), and TA(1+ετ). According to
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Section 3.2, the equations and the boundary conditions governing the limiting
values of the variables ur, uθ, uz, P, and τ as ε → 0 in an axially symmetric
state (∂/∂θ = 0) for the parameter range (8.76) are given in the following form
with the same notation for the limiting values: The equations are

∂P

∂r̂
=

∂P

∂ẑ
= 0 ⇒ P : uniform, (8.77)

1
r̂

∂ ur r̂

∂ r̂
+

∂uz

∂ẑ
= 0, (8.78a)

ur
∂ ur

∂ r̂
+ uz

∂ ur

∂ ẑ
− u2

θ

r̂
= −1

2
∂ P1

∂ r̂
+

γ1

2

[
1
r̂

∂

∂ r̂

(
r̂
∂ ur

∂ r̂

)
− ur

r̂2
+

∂2ur

∂ẑ2

]
,

(8.78b)

ur

r̂

∂ uθ r̂

∂ r̂
+ uz

∂uθ

∂ẑ
=

γ1

2

[
1
r̂

∂

∂ r̂

(
r̂
∂ uθ

∂ r̂

)
− uθ

r̂2
+

∂2uθ

∂ẑ2

]
, (8.78c)

ur
∂ uz

∂ r̂
+ uz

∂ uz

∂ ẑ
= −1

2
∂P1

∂ẑ
+

γ1

2

[
1
r̂

∂

∂ r̂

(
r̂
∂ uz

∂ r̂

)
+

∂2uz

∂ẑ2

]
, (8.78d)

ur
∂ τ

∂ r̂
+ uz

∂ τ

∂ ẑ
=

γ2

2

[
1
r̂

∂

∂ r̂

(
r̂
∂ τ

∂ r̂

)
+

∂2τ

∂ẑ2

]
, (8.78e)

where P1 is the next-order term in ε of P, divided by ε; γ1 and γ2 are constants
depending on molecular models [see Eq. (3.24)], for example, γ1 = 1.2700424,
γ2 = 1.922284 (a hard-sphere gas) or γ1 = γ2 = 1 (the BKW model). When
the property of the cylinder surface is locally isotropic and the distribution of
the reflected molecules has a finite complete condensation part,33 the boundary
conditions on the cylinders for Eqs. (8.77)–(8.78e) are given in the following
form:

P = C∗
4ur, τ = d∗4ur, uθ = uθA, uz = 0 at r̂ = 1, (8.79a)

P = PB − C∗
4ur, τ = τB − d∗4ur, uθ = uθB , uz = 0 at r̂ = r̂B , (8.79b)

where C∗
4 and d∗4 are constants depending on molecular models and kinetic

boundary conditions. For the complete-condensation condition, for example,
C∗

4 = −2.1412 and d∗
4 = −0.4557 (a hard-sphere gas) or C∗

4 = −2.13204 and
d∗4 = −0.44675 (the BKW model).

From Eqs. (8.78a)–(8.78d) and Eqs. (8.79a) and (8.79b) excluding their sec-
ond relations, the velocity field is determined independently of the temperature
field. Thus, we will mainly discuss the velocity field. Further, if this system is
rewritten with the variables (ur, uθ, uz)/γ1, P/γ1C

∗
4 , and P1/γ2

1 and the param-
eters uθA/γ1, uθB/γ1, and PB/γ1C

∗
4 , the system does not contain the quantities

that depend on molecular models or kinetic boundary conditions. Thus the
results in these quantities obtained in the following analysis are independent of
them.

33See Footnote 14 in Section 3.1.5 and Sone [2002].
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Bifurcation analysis

First consider the case where the behavior of the gas is axially uniform (or
∂/∂ẑ = 0). Then, the axially uniform solution, indicated by the subscript
U, of Eqs. (8.77)–(8.78e) under the boundary conditions (8.79a) and (8.79b)
is uniquely given in the following form:

urU =
γ1

2
b

r̂
, uθU = γ1

(
c1r̂

1+b +
c0

r̂

)
, uzU = 0,

PU =
r̂B

r̂B + 1
PB , τU = d1r̂

β + d0,

⎫⎪⎪⎬⎪⎪⎭ (8.80)

where

b =
2r̂B

r̂B + 1
PB

γ1C∗
4

, c0 =
r̂B

r̂2+b
B − 1

(
r̂1+b
B uθA

γ1
− uθB

γ1

)
,

c1 =
1

r̂2+b
B − 1

(
r̂BuθB

γ1
− uθA

γ1

)
, β =

γ1

γ2
b,

d0 =
−1

r̂β
B − 1

(
τB − d∗4(r̂

β+1
B + 1)

C∗
4 (r̂B + 1)

PB

)
, d1 =

1

r̂β
B − 1

(
τB − d∗4

C∗
4

PB

)
,

and the solutions at the apparent singularities b = 0 and −2 are obtained as
the limit of the above solution. The mass flow J per unit time from the inner
cylinder to the outer per unit length is given by34

J =
2
√

2πLApA

(1 + LA/LB)(RTA)1/2

PB

C∗
4

ε =
2
√

2πLApA

C∗
4 (1 + LA/LB)(RTA)1/2

(
pB

pA
− 1

)
.

(8.81)
Evaporation takes place on the inner (outer) cylinder and condensation does on
the outer (inner) cylinder when PB/C∗

4 > 0 (< 0), where C∗
4 < 0 according to

accurate results for a hard-sphere gas and the BKW model and approximate
results for other molecular models.

Here, we consider a time-independent solution periodic with period 2πLA/α
in the axial direction and investigate whether this solution bifurcates from the
axially uniform solution and the behavior of the solution near the bifurcation
point, if any. Let the bifurcation point be at uθA = uθAb, uθB = uθBb, τB = τBb,
and PB = PBb and the axially uniform solution fU at this point be fUb. The
solution in the neighborhood of the bifurcation point (or when uθA − uθAb,
uθB − uθBb, PB − PBb, and τB − τBb are of the order of δ2, say) is found to be
expressed in the following form:35

f(r̂, ẑ) = fUb(r̂) + δf11(r̂) cos αẑ + δ2[f20(r̂) + f21(r̂) cos αẑ + f22(r̂) cos 2αẑ]

+ · · · , (8.82)

uz(r̂, ẑ) = δW11(r̂) sin αẑ + δ2[W21(r̂) sin αẑ + W22(r̂) sin 2αẑ] + · · · , (8.83)
34In the formula (6) in Sone & Doi [2003b], M on the left-hand side is a misprint of

M/(pA/RTA).
35See Footnote 2 in Section 8.2.3.
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where f = ur, uθ, P1, or τ. Equations (8.82) and (8.83) with Eq. (8.80) being
substituted into Eqs. (8.77)–(8.79b), it is found that the coefficient functions
f11(r̂), f20(r̂), etc. of r̂ are formally determined from the lowest order and that
each Fourier component function is determined independently at each order of
δ. Let Umn(r̂) and Vmn(r̂) be fmn(r̂), respectively, corresponding to uθ and
ur. From Umn(r̂) and Vmn(r̂), the other variables are determined. For example,
nαWmn = −(r̂Vmn)′/r̂, where (∗)′ =d(∗)/dr̂. The temperature τ can be shown
to be determined uniquely from the velocity.36 Thus, the bifurcation can be
discussed only with the velocity field, and τB does not influence the bifurcation.
The mass-flow rate J remains the same as the axially uniform solution up to
the order of δ.

The component functions U11(r̂) and V11(r̂) are the solution of the following
homogeneous boundary-value problem of ordinary differential equations:

Lθ(U11) + qθV11 = 0, Lr(V11) + qrU11 = 0; (8.84)

U11(r̂) = V11(r̂) = V ′
11(r̂) = 0 at r̂ = 1 and r̂ = r̂B , (8.85)

where

Lθ(U) = U ′′ + (1 − b)r̂−1U ′ − [(1 + b)r̂−2 + α2]U, (8.86a)

Lr(V ) = V ′′′′ + (2 − b)r̂−1V ′′′ −
(
3r̂−2 + 2α2

)
V ′′

+ [3(1 + b)r̂−3 − 2α2(1 − b/2)r̂−1]V ′

+ [−3(1 + b)r̂−4 + 2α2(1 − b/2)r̂−2 + α4]V, (8.86b)

qθ = −4c1(1 + b/2)r̂b, qr = −4α2
(
c1r̂

b + c0r̂
−2
)
. (8.86c)

The homogeneous boundary-value problem has a nontrivial solution only when
the parameters uθAb/γ1, uθBb/γ1, PBb/γ1C

∗
4 , r̂B , and α satisfy a relation, say,

FCec(uθAb/γ1, uθBb/γ1, PBb/γ1C
∗
4 , r̂B , α) = 0. (8.87)

The relation can be found numerically by the method explained in the paragraph
next to that of Eq. (8.23). The bifurcation relation when the outer cylinder is
at rest is shown in Figs. 8.27 and 8.28 and Table 8.3. In Fig. 8.27, the relation
uθAb/γ1 vs PBb/γ1C

∗
4 is shown for various values of α when uθBb = 0 and

r̂B = 2. There are infinitely many uθAb/γ1’s for a PBb/γ1C
∗
4 , the first three of

which are shown in Fig. 8.27 (a).37 The lowest branches of the curves for three
α’s are shown in a larger scale in panel (b) of Fig. 8.27. The minimum value of
uθAb/γ1 with respect to α at a given PBb/γ1C

∗
4 is denoted by (uθAb/γ1)m and

the minimum point by αm. They are shown in the second and third columns
in Table 8.3.In Fig. 8.28, the bifurcation curves for the cases r̂B = 1.5 and 3,

36The uniqueness is easily seen to be equivalent to the proposition that the following system
has only the trivial solution:

d2g(r̂)/dr̂2 + (κ/r̂)dg(r̂)/dr̂ − α2g(r̂) = 0, g(1) = g(r̂B) = 0; κ = 1 − β.

From the system it is easily derived that
R r̂B
1 [α2g2 + (dg/dr̂)2]r̂κdr̂ = 0, from which the

proposition, i.e., g = 0, follows.
37“Infinitely many” is the plausible result suggested by numerical study.
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Figure 8.27. Bifurcation curve I: The relation uθAb/γ1 vs PBb/(−γ1C
∗
4 ) for various

α when the outer cylinder is at rest uθBb = 0 (r̂B = 2). (a) Wider range of uθAb/γ1

and (b) the lowest (or first) branch for α = π/2, π, and 2π.

Table 8.3. (uθAb/γ1)m, αm, and (aA/aO, aB/aO, aP /aO) at αm for uθBb = 0, r̂B = 2,
and various PBb/(−γ1C

∗
4 ).

PBb

(−γ1C∗
4 )

(uθAb/γ1)m αm/π aA/aO aB/aO aP /aO

−5 48.870 1.1408 −7.359 6.038 −44.95
−2 35.890 1.0356 7.270 −4.831 17.52
−1 34.201 1.0157 5.531 −3.062 5.177
0 34.093 1.0067 5.301 −2.061 −4.061
1 35.846 1.0110 6.176 −0.916 −17.33
2 39.858 1.0314 9.491 1.810 −50.35
5 70.599 1.2181 −6.142 −11.26 97.27

corresponding to Fig. 8.27 (b), are shown (there are infinitely many other curves
above the curves in the figures). The bifurcation curves when the outer cylinder
is rotating are shown in Figs. 8.29 and 8.30. In Fig. 8.29, the relation uθAb/γ1 vs
PBb/γ1C

∗
4 for three sets of (r̂B , α) is shown for various uθBb (there are infinitely

many curves above the curves in the figures). The minimum (uθAb/γ1)m of
uθAb/γ1 with respect to α with the other parameters fixed is shown as the curves
(uθAb/γ1)m vs uθBb/γ1 for various PBb/(−γ1C

∗
4 ) in panel (a) of Fig. 8.30; the

curve αm (the minimum point) vs uθBb/γ1 is shown for various PBb/(−γ1C
∗
4 )

in panel (b) of Fig. 8.30. The effect of PBb/(−γ1C
∗
4 ) or that of evaporation and

condensation appears strongly when uθBb < 0 or the two cylinders are rotating
in opposite directions.
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Figure 8.28. Bifurcation curve II: The first branch of the relation uθAb/γ1 vs
PBb/(−γ1C

∗
4 ) for various α when the outer cylinder is at rest uθBb = 0. (a) r̂B = 1.5

and (b) r̂B = 3.
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Figure 8.29. Bifurcation curve III: The first branch of the relation uθAb/γ1 vs
PBb/(−γ1C

∗
4 ) for various uθBb/γ1. (a) r̂B = 1.5 and α = 2π, (b) r̂B = 2 and α = π,

and (c) r̂B = 3 and α = π/2.

When the relation (8.87) is satisfied, the boundary-value problem given by
Eqs. (8.84) and (8.85) has a nontrivial solution. Some examples on the first
branch for the case (α = π, r̂B = 2) of the profiles (U11, V11)/||f11|| vs r̂,

where ||f11|| = [
∫ r̂B

1
(U2

11 + V 2
11)r̂dr̂]1/2, are shown in Fig. 8.31. The flow field

(V11,W11) in the (r̂, ẑ) plane is a circulating flow of a single or multiple rolls
depending on whether there is a node of V11 in 1 < r̂ < r̂B . When PBb = 0
and uθBb = 0 (or there is neither evaporation nor condensation on the cylinders
in the unperturbed flow and the outer cylinder is at rest), a single roll lies
with its center in the central part of (1, r̂B), and the E⊥(=

∫ r̂B

1
U2

11r̂dr̂) of the
perturbed circumferential motion is comparable to E�[=

∫ r̂B

1
(V 2

11 + W 2
11)r̂dr̂]
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Figure 8.30. Bifurcation curve IV: the outer cylinder is rotating (r̂B = 2). (a)
(uθAb/γ1)m vs uθBb/γ1r̂B and (b) αm vs uθBb/γ1r̂B The (uθAb/γ1)m indicates the
minimum of uθAb/γ1 with respect to α, and αm is the minimum point; the line
(uθAb)m = uθBbr̂B is shown by the dot-dash line – -–.
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Figure 8.31. The various profiles (U11, V11)/||f11|| vs r̂, where ||f11|| = [
R r̂B

1
(U2

11 +

V 2
11)r̂dr̂]1/2 (α = π, r̂B = 2, the first branch of the bifurcation curves). (a)

PBb/(−γ1C
∗
4 ) = −10, (b) PBb/(−γ1C

∗
4 ) = 0, and (c) PBb/(−γ1C

∗
4 ) = 10. The dashed

lines - - - are U11/||f11|| and the solid lines —– are V11/||f11||.

of the motion in the (r̂, ẑ) plane. When the outer cylinder is rotating, its
effect appears differently for uθBb > 0 and for uθBb < 0. When uθBb > 0, the
shape of the roll does not change much from that for uθBb = 0, but the ratio
E⊥/E� decreases to vanish with the increase of |uθBb|. On the other hand, when
uθBb < 0, the center of the roll moves towards the inner cylinder with increase
of |uθBb| and multiple rolls (two, three, . . .) appear with its further increase;
the ratio E⊥/E� increase with |uθBb|. When PBb �= 0, the flow field is affected
by the radial convection of the unperturbed flow, and the roll or rolls move
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Figure 8.32. Collapse of a roll for large |PBb| by the radial convection of the un-
perturbed flow (α = π, r̂B = 2, uθBb/γ1 = −300, the first branch curve). (a)
PBb/(−γ1C

∗
4 ) = −5 , (b) PBb/(−γ1C

∗
4 ) = 0, and (c) PBb/(−γ1C

∗
4 ) = 20.

downstream. The roll on the side of the outer cylinder disappears with further
increase of convection or |PBb|; this example is shown in Fig. 8.32. The variation
of E⊥/E� with uθBb is qualitatively similar to that for PBb = 0.

Solution in the neighborhood of a bifurcation point

The bifurcation point has been determined. However, the boundary-value prob-
lem for U11(r̂) and V11(r̂) [Eqs. (8.84) and (8.85)] being homogeneous, U11(r̂)
and V11(r̂), the leading term of the bifurcated solution, are undetermined by a
constant factor at this stage. It requires higher-order analysis to determine this
factor, which is carried out here.

The equations for U21(r̂) and V21(r̂) are of the same form as those for U11(r̂)
and V11(r̂); the boundary-value problem for Um1(r̂) and Vm1(r̂) (m ≥ 3) is in-
homogeneous, and its homogeneous part is of the same form as that for U11(r̂)
and V11(r̂). Thus, the inhomogeneous part of the boundary-value problem for
Um1(r̂) and Vm1(r̂) (m ≥ 3) must satisfy some relation (solvability condition)
for the solution Um1(r̂) and Vm1(r̂) to exist.38 The homogeneous part of the
boundary-value problem for Umn(r̂) and Vmn(r̂) (n �= 1) has no nontrivial solu-
tion, unless an additional relation among uθAb/γ1, uθBb/γ1, PBb/γ1C

∗
4 , r̂B , and

α is satisfied.
From the solvability condition of the boundary-value problem for U31(r̂) and

V31(r̂), the undetermined norm (for example, δ||f11|| = δ[
∫ r̂B

1
(U2

11+V 2
11)r̂dr̂]1/2)

of the solution δ(U11(r̂), V11(r̂)) is determined by the following equation:

(δ‖f11‖)[γ1(aAΔuθA + aBΔuθB − aP ΔPB/C∗
4 ) − aO(δ‖f11‖)2] = 0, (8.88)

38The solution of the adjoint problem of Eqs. (8.84) and (8.85) should be orthogonal to the
inhomogeneous part. See Footnote 3 in Section 8.2.3.
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Figure 8.33. The coefficients aA/aO, aB/aO, and aP /aO vs PBb/(−γ1C
∗
4 ) (r̂B =

2, and α = π) on the first branch. (a) uθBb = 0 and (b) uθBb/γ1 = −40. The
parameter uθAb/γ1 is given in Figs. 8.27 and 8.29. The vertical dot-dash lines – -– at
PBb/(−γ1C

∗
4 ) = −3.53365 and 3.12345 in (a) and at PBb/(−γ1C

∗
4 ) = −5.63002 and

0.41251 in (b) are the common asymptotes of the curves.

that is,(
δ‖f11‖

γ1

)2

=
aA

aO

ΔuθA

γ1
+

aB

aO

ΔuθB

γ1
+

aP

aO

ΔPB

(−γ1C∗
4 )

or δ‖f11‖ = 0, (8.89)

where ΔuθA = uθA − uθAb, ΔuθB = uθB − uθBb, and ΔPB = PB − PBb, and
the coefficients aA/aO, aB/aO, and aP /aO, which depend on the definition
of the norm, are constants determined by the parameters uθAb/γ1, uθBb/γ1,
PBb/(−γ1C

∗
4 ), α, and r̂B .39 Their examples are given in Fig. 8.33 and in the

fourth to sixth columns of Table 8.3. The case aO = 0 should be analyzed sepa-
rately and requires the analysis to higher order, and then (δ‖f11‖/γ1)4, instead
of (δ‖f11‖/γ1)2, is found to be the linear combination of ΔuθA/γ1, ΔuθB/γ1,
and ΔPB/(−γ1C

∗
4 ).

The second relation of Eq. (8.89) corresponds to the axially uniform solution.
The first relation gives the norm of bifurcated solution in the neighborhood of
the bifurcation point. The δ‖f11‖/γ1 can be real or time-independent bifurcated
solutions are possible only when

aA

aO

ΔuθA

γ1
+

aB

aO

ΔuθB

γ1
+

aP

aO

ΔPB

(−γ1C∗
4 )

> 0. (8.90)

That is, the bifurcated solution is possible only when the variation of the param-
eters uθA, uθB , and PB from uθAb, uθBb, and PBb satisfies the relation (8.90). For

39According to Eq. (8.87), one of these five parameters depends on the others.
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example, consider the case on the first branch for r̂B = 2, uθBb = 0, and α = π.
The value aA/aO is positive in −3.53365 < PBb/(−γ1C

∗
4 ) < 3.12345 [Fig. 8.33

(a)], and therefore the bifurcated solution exists for positive ΔuθA/γ1, that is,
it extends to the upper side of the bifurcation curve uθAb/γ1 vs PBb/(−γ1C

∗
4 )

in Fig. 8.27 and in the other range of PBb/(−γ1C
∗
4 ) [within Fig. 8.33 (a)], the

solution extends to the lower side.40

Discussion

The bifurcation curve corresponds to the neutral curve (or the boundary of lin-
early stable and unstable regions in the parameter space) of the axially uniform
solution for the class of solutions with time scale of variation of the order of
LA/(2RTA)1/2ε or L2

Aρ0/μ0, where μ0/ρ0 is the kinematic viscosity μ/ρ at the
reference state. The side above the first branch in Fig. 8.27 is unstable one.
The above-mentioned direction of extension of a bifurcated solution should not
be confused with the linearly stable or the unstable side. The complete time-
dependent analysis is not given here, but it is better to explain a little more.

The extension of the basic equations and boundary condition in the present
subsection to a time-dependent problem where the time scale of variation is
of the order of LA/(2RTA)1/2ε or L2

Aρ0/μ0 is discussed in Sections 3.7.2 and
3.7.3. That is, the equations are given by the set of equations (8.77)–(8.78e)
with ∂ur/∂t̃, ∂uθ/∂t̃, ∂uz/∂t̃, and ∂(τ − 2P/5)/∂t̃ being added, respectively, to
the left-hand sides on Eqs. (8.78b)–(8.78e), where t̃ = t/LA(2RTA)−1/2ε−1 (or
= 2tμ0/ρ0L

2
Aγ1) with t being the time. The boundary conditions (8.79a) and

(8.79b) apply to the time-dependent problem. From the linear-stability anal-
ysis of the axially uniform solution on the basis of this set of equations, each
of the Fourier components with respect to ẑ of the perturbation develops inde-
pendently with t̃ and consists of infinitely many components, each of which also
develops independently and exponentially with t̃ [say, exp(κnt̃) (n = 1, 2, . . .)].
The amplifying factor κn changes its sign from negative to positive when the
parameter uθAb/γ1 passes the n-th branch of the bifurcation curves in Fig. 8.27
from below. For the complete time-dependent study, solutions with shorter time
scale of variation should be considered on the basis of the Boltzmann equation.41

We can construct the axially symmetric bifurcated solutions of the sys-
tem (8.77)–(8.79b) in the parameter range above the bifurcation curve (or for
uθA > uθAb) in Fig. 8.27. The bifurcated solution can be inferred to be ex-
tended continuously with increase of uθA up to infinity. That is, this solution
continues to exist up to the parameter size given by Eq. (8.70) with m = 2,

40Obviously, owing to the way of analysis, the statement applies only to the neighborhood
of the bifurcation point. See Figs. 8.7 and 8.11 and their explanation in the text, where the
bifurcated solutions first extend to one direction and then extends to another direction.

41For the solution to satisfy the above limitation of the time scale of variation, the initial
velocity distribution function must be Maxwellian and its flow velocity must be solenoidal. The
initial value of the Boltzmann system can be general, or non-Maxwellian with nonsolenoidal
flow velocity. Though not related to the present problem, the stability discussion for initial-
value problems of the Boltzmann equation in an infinite domain without boundary is found
in Liu, Yang & Yu [2003] and Liu & Yu [2006a].
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which corresponds to the case where εuθA is much larger than εPB and Kn (or
2ε/

√
π).

When PB = 0, with the aid of Eqs. (8.77), (8.78a), and the periodicity with
respect to ẑ, the boundary conditions on ur and τ in Eqs. (8.79a) and (8.79b)
are reduced to ur = 0 and τ = 0 at r̂ = 1 and ur = 0 and τ = τB at r̂ = r̂B ;
that is, Eqs. (8.79a) and (8.79b) are reduced to the nonslip condition. Thus,
the solution for this case gives that of the corresponding problem with a simple
boundary. According to the analysis, the bifurcation is not affected by the am-
plified temperature difference τB [= (TB/TA −1)/ε] of the two cylinders.42 The
analysis in this section is limited to the case where the temperature difference
TB/TA − 1 (= ετB) of the two cylinders is of the same order as εuθA and εuθB .
That is, for this order of the variation of the temperature, the bifurcation is
not subject to any effect. The analysis of the problem for a finite difference of
the temperatures is discussed in Section 8.3, where the bifurcation occurs when
the speeds of rotation of the cylinders are of the order of the Knudsen number
i.e., the same order as εuθA and εuθB in this section. A finite difference of the
temperatures of the cylinders affects the bifurcation speed only by the small
order. Thus, apparent difference between the two results that the temperature
difference of the boundaries affects the bifurcation in Section 8.3 and does not
here does not contradict each other.

Arkeryd & Nouri [2006] have done a rigorous mathematical discussion of
the above asymptotic analysis (Sone & Doi [2003b]) for a special case (PB = 0,
τB = 0).

42See the paragraph next to that containing Eq. (8.79b) and Footnote 36 in this subsection.



Chapter 9

Ghost Effect and
Bifurcation II: Ghost Effect
of Infinitesimal Curvature
and Bifurcation of the
Plane Couette Flow

According to the asymptotic analysis for small Knudsen numbers in Chapter
3, the fluid-dynamic-type equations that describe the behavior of a gas in the
continuum limit are classified depending on the size of the parameters in the
problem under consideration (see, especially, Section 3.6). There is an important
class of problems where the classical fluid dynamics, the Euler or Navier–Stokes
system, is inapplicable and an infinitesimal flow velocity plays a decisive role
to determine the behavior of the gas (the ghost and non-Navier–Stokes effects).
Various examples of the ghost and non-Navier–Stokes effects are given in Chap-
ter 8, in addition to that in Chapter 3. A geometrical parameter can be a source
of the ghost effect. We will show an important case of this in this chapter. That
is, taking a gas between two rotating coaxial circular cylinders, we consider the
behavior of the gas in the limit that the Knudsen number and the inverse of
radius (the curvature) of the inner cylinder tend to zero simultaneously, keep-
ing the difference of the radii of the two cylinders fixed. The limiting behavior
depends on the relative speed of decay of the two parameters. This singular
character in the continuum limit introduces the ghost effect of infinitesimal cur-
vature. Bifurcation of the plane Couette flow, a long-lasting problem of the
classical fluid dynamics, occurs owing to the effect of infinitesimal curvature.
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9.1 Problem and basic equations

Consider a gas in a time-independent state between two rotating coaxial circular
cylinders. Let the radius, temperature, and circumferential velocity of the inner
cylinder be, respectively, LA, TA, and VA, and let the corresponding quantities
of the outer cylinder be, respectively, LA +D, TB , and VB . The nondimensional
circumferential speeds |VA|/(2RTA)1/2 and |VB |/(2RTA)1/2 of rotation of the
two cylinders, where R is the specific gas constant, are of the order of unity,
and the nondimensional temperature difference TB/TA − 1 of the two cylinders
is also of the order of unity. We will discuss the behavior of the gas in the
limit that the Knudsen number Kn= 0/D and the relative curvature D/LA of
the inner cylinder tend to zero simultaneously, keeping D fixed, where 0 is the
mean free path of the gas in the equilibrium state at rest with temperature TA

and the average density ρ0 of the gas in the domain. The discussion is based on
Sone & Doi [2004].

Take D, TA, and ρ0, respectively, as the reference length, the reference tem-
perature, and the reference density of the system and use the notation in Section
1.9. That is, we introduce the nondimensional space variable x, the nondimen-
sional molecular velocity ζ, and the nondimensional velocity distribution func-
tion f̂ defined from the corresponding dimensional variables X, ξ, and f as
follows:

x =
X

D
, ζ =

ξ

(2RTA)1/2
, f̂ =

f

ρ0/(2RTA)3/2
. (9.1)

Let (r̂, θ, ẑ) and (ζr, ζθ, ζz) be, respectively, the cylindrical coordinate expres-
sions of x and ζ, where the ẑ axis (or r̂ = 0) lies on the common axis of the cylin-
ders. Then, in view of the formula in Section A.3, the nondimensional Boltz-
mann equation in the cylindrical coordinate expression for a time-independent
state is given as

ζr
∂f̂

∂r̂
+

ζθ

r̂

∂f̂

∂θ
+ ζz

∂f̂

∂ẑ
+

ζ2
θ

r̂

∂f̂

∂ζr
− ζrζθ

r̂

∂f̂

∂ζθ
=

1
k

Ĵ(f̂ , f̂), (9.2a)

Ĵ(f̂ , f̂) =
∫

(f̂ ′f̂ ′
∗ − f̂ f̂∗)B̂dΩ(α)dζ∗, (9.2b)

where

k =
√

π

2
Kn =

√
π0

2D
. (9.3)

The boundary condition is generally given by Eq. (1.64) or more simply by
Eq. (1.63a) with (1.63b) for the diffuse reflection. As the nondimensional data
of the cylinders, we introduce

v̂A =
VA

(2RTA)1/2
, v̂B =

VB

(2RTA)1/2
, T̂B =

TB

TA
.

Here, it is noted that VA and VB are taken to be positive when the cylinders
are rotating in the negative θ direction. We can take VA positive without loss
of generality.
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In this chapter, we will investigate the problem in the limit that the two
parameters, the Knudsen number Kn (or k) and the relative curvature D/LA

tend to zero simultaneously with the difference D of the radii of the two cylinders
fixed. The analysis is carried out in detail when the relative curvature tends to
zero with the same speed as the square of the Knudsen number (or D/LA ∝ k2).
On the basis of the result, we discuss the cases where D/LA tends to zero with
the other speeds. For the convenience of expression of the limiting state with
infinite LA/D, we introduce the notation

x = −LA

D
θ, y = r̂ − LA

D
, z = ẑ, (9.4a)

(ζx, ζy, ζz) = (−ζθ, ζr, ζz), (9.4b)

D/LA = (k/c)2, (9.4c)

where c (> 0) is a constant of the order of unity. With this notation, the
Boltzmann equation (9.2a) is rewritten as

ζx

1+(k/c)2y
∂f̂

∂x
+ ζy

∂f̂

∂y
+ ζz

∂f̂

∂z
+

(k/c)2ζ2
x

1+(k/c)2y
∂f̂

∂ζy
− (k/c)2ζxζy

1+(k/c)2y
∂f̂

∂ζx
=

1
k

Ĵ(f̂ , f̂).

(9.5)
The boundary condition is symbolically expressed as

f̂ = f̂wA (ζy > 0) at y = 0, and f̂ = f̂wB (ζy < 0) at y = 1. (9.6)

One of our interests is the bifurcation from the plane parallel Couette flow
between two parallel plane walls. Thus, we start our analysis under the assump-
tion that the flow is nearly parallel. That is, we consider the solution in the
limit of k → 0 with D/LA = (k/c)2 that has the following properties: (i)∫

ζxf̂dζ = O(1), (9.7a)∫
ζy f̂dζ = O(k),

∫
ζz f̂dζ = O(k), (9.7b)

and (ii) f̂ varies slowly in the direction of the motion of the walls, i.e., ∂f̂/∂x

is of the order of kf̂ or smaller, which is consistent with the assumption (i) in
view of the law of mass conservation, as will be noted after the definition of
the macroscopic variables is given. Corresponding to this variation, a shrunk
coordinate χ is introduced, i.e.,

χ = kx. (9.8)

With the new variable χ, the Boltzmann equation is rewritten as

kζx

1+(k/c)2y
∂f̂

∂χ
+ ζy

∂f̂

∂y
+ζz

∂f̂

∂z
+

(k/c)2ζ2
x

1+(k/c)2y
∂f̂

∂ζy
− (k/c)2ζxζy

1+(k/c)2y
∂f̂

∂ζx
=

1
k

Ĵ(f̂ , f̂).

(9.9)
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The macroscopic variables, the density ρ, the velocity vι, the temperature
T, the pressure p, the stress tensor pιγ , and the heat-flow vector qι, of the gas
are defined by the velocity distribution function f, where the subscripts ι and
γ are x, y, or z. The corresponding nondimensional variables ρ̂, v̂ι, T̂ , p̂, p̂ιγ ,
and q̂ι are defined, respectively, by ρ/ρ0, vι/(2RTA)1/2, T/TA, p/p0, pιγ/p0, and
qι/p0(2RTA)1/2, where p0 = Rρ0TA. They are related to f̂ as follows:

ρ̂ =
∫

f̂dζ, (9.10a)

ρ̂v̂ι =
∫

ζιf̂dζ, (9.10b)

3
2
ρ̂T̂ =

∫
(ζ − v̂)2f̂dζ, (9.10c)

p̂ = ρ̂T̂ , (9.10d)

p̂ιγ = 2
∫

(ζι − v̂ι)(ζγ − v̂γ)f̂dζ, (9.10e)

q̂ι =
∫

(ζι − v̂ι)(ζ − v̂)2f̂dζ, (9.10f)

where the bold face letter v̂ is another expression for v̂ι, introduced for brevity.
To summarize, we will discuss the asymptotic behavior of the solution f̂ of

the Boltzmann equation (9.9) with a finite c under the boundary condition (9.6)
in the limit k → 0 for the class of solution f̂ that satisfies the conditions (9.7a)
and (9.7b) and those on the variation of f̂

∂f̂

∂χ
= O(f̂),

∂f̂

∂y
= O(f̂),

∂f̂

∂z
= O(f̂). (9.11)

The condition (9.11) is easily seen to be consistent with the conditions (9.7a)
and (9.7b) from the equation of mass conservation derived from the Boltzmann
equation.1 It may be noted that the constant c2 is the ratio of k2 to D/LA [see
Eq. (9.4c)].

9.2 Asymptotic analysis

In this section, we will carry out the asymptotic analysis for small k of the
boundary-value problem stated at the end of the preceding section (Section 9.1)
by making use of the procedure developed in Chapter 3.

1The Boltzmann equation (9.2a) being integrated over the whole space of “,

∂r̂ρ̂v̂r/r̂∂r̂ + ∂ρ̂v̂θ/r̂∂θ + ∂ρ̂v̂z/∂z = 0,

where (v̂r, v̂θ, v̂z) is the cylindrical coordinate expression of bv. Noting that ρ̂v̂r = O(k),
ρ̂v̂z = O(k), ρ̂v̂θ = O(1), and ∂(∗)/∂y = O(∗), we will find that ∂ρ̂v̂θ/r̂∂θ = O(k) and that
the length scale of variation of variables in x is O(k−1).
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9.2.1 S solution

First, putting aside the boundary condition, we consider the solution of Eq. (9.9)
under the conditions (9.7a), (9.7b), and (9.11) for small k. This class of solution
is looked for in a power series of k, i.e.,

f̂ = f̂S = f̂S0 + f̂S1k + f̂S2k
2 + · · · , (9.12)

where the subscript S is attached to discriminate this class of solution (S so-
lution or expansion). The condition (9.7b) corresponds to the condition on f̂S0

∫
ζy f̂S0dζ =

∫
ζz f̂S0dζ = 0. (9.13)

The relation between the macroscopic variables and the velocity distribu-
tion function is given by Eqs. (9.10a)–(9.10f) with the subscript S attached.
Corresponding to the expansion (9.12), the macroscopic variable ĥS, where ĥ
represents ρ̂, v̂ι, T̂ , etc., is also expanded in k, i.e.,

ĥS = ĥS0 + ĥS1k + ĥS2k
2 + · · · . (9.14)

The component function ĥSm is related to the component function of the ve-
locity distribution function as follows:

ρ̂S0 =
∫

f̂S0dζ, (9.15a)

ρ̂S0v̂xS0 =
∫

ζxf̂S0dζ, (9.15b)

ρ̂S0v̂yS0 =
∫

ζy f̂S0dζ = 0, (9.15c)

ρ̂S0v̂zS0 =
∫

ζz f̂S0dζ = 0, (9.15d)

3
2
ρ̂S0T̂S0 =

∫
ζ2f̂S0dζ − ρ̂S0v̂

2
xS0, (9.15e)

p̂S0 = ρ̂S0T̂S0, (9.15f)

p̂ιγS0 = 2
∫

(ζι − v̂ιS0)(ζγ − v̂γS0)f̂S0dζ, (9.15g)

q̂ιS0 =
∫

(ζι − v̂ιS0)(ζ − v̂S0)2f̂S0dζ, (9.15h)
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ρ̂S1 =
∫

f̂S1dζ, (9.16a)

ρ̂S0v̂ιS1 =
∫

(ζι − v̂ιS0)f̂S1dζ, (9.16b)

3
2
ρ̂S0T̂S1 =

∫
(ζ − v̂S0)2f̂S1dζ − 3

2
ρ̂S1T̂S0, (9.16c)

p̂S1 = ρ̂S0T̂S1 + ρ̂S1T̂S0, (9.16d)

p̂ιγS1 = 2
∫

(ζι − v̂ιS0)(ζγ − v̂γS0)f̂S1dζ, (9.16e)

q̂ιS1 =
∫

(ζι − v̂ιS0)(ζ − v̂S0)2f̂S1dζ−3
2
ρ̂S0T̂S0v̂ιS1

− p̂ιxS0v̂xS1 − p̂ιyS0v̂yS1 − p̂ιzS0v̂zS1. (9.16f)

Now, return to obtaining the S solution. Substituting Eq. (9.12) into the
Boltzmann equation (9.9) and arranging the same-order terms in k, we obtain
a series of integral equations for f̂Sm:2

Ĵ(f̂S0, f̂S0) = 0, (9.17)

2Ĵ(f̂S0, f̂S1) = ζy
∂f̂S0

∂y
+ζz

∂f̂S0

∂z
, (9.18a)

2Ĵ(f̂S0, f̂S2) = ζy
∂f̂S1

∂y
+ζz

∂f̂S1

∂z
+ ζx

∂f̂S0

∂χ
− Ĵ(f̂S1, f̂S1), (9.18b)

2Ĵ(f̂S0, f̂S3) = ζy
∂f̂S2

∂y
+ζz

∂f̂S2

∂z
+ ζx

∂f̂S1

∂χ
+

ζ2
x

c2

∂f̂S0

∂ζy

− ζxζy

c2

∂f̂S0

∂ζx
− 2Ĵ(f̂S1, f̂S2). (9.18c)

The solution f̂S0 of Eq. (9.17) satisfying the condition (9.13) is given by

f̂S0 =
ρ̂S0

(πT̂S0)3/2
exp

(
−

(ζx − v̂xS0)2 + ζ2
y + ζ2

z

T̂S0

)
, (9.19)

where the relations (9.15a)–(9.15e) are used. The solution (9.19) is incomplete
to determine f̂S0, because the spatial variations of the parameter functions ρ̂S0,
v̂xS0, and T̂S0 are not specified. With this f̂S0, Eqs. (9.18a)–(9.18c), etc. are
the inhomogeneous linear integral equations for f̂Sm (m ≥ 1). The collision
integral Ĵ(f̂ , ĝ) satisfies the relation∫

ψĴ(f̂ , ĝ)dζ = 0, (9.20)

2See Footnote 58 in Section 3.3.2.
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where
ψ = 1, ζx, ζy, ζz, ζ2, (9.21)

for arbitrary f̂ and ĝ [see Eq. (1.53)]. From the condition for Eq. (1.83) to
hold and the relation (9.20),3 the inhomogeneous terms of the integral equa-
tions (9.18a)–(9.18c), etc. have to satisfy solvability conditions for them to have
solutions. That is, the solvability conditions for Eqs. (9.18a)–(9.18c) are, respec-
tively,∫

ψ

(
ζy

∂f̂S0

∂y
+ζz

∂f̂S0

∂z

)
dζ = 0, (9.22a)

∫
ψ

(
ζy

∂f̂S1

∂y
+ζz

∂f̂S1

∂z
+ ζx

∂f̂S0

∂χ

)
dζ = 0, (9.22b)

∫
ψ

(
ζy

∂f̂S2

∂y
+ζz

∂f̂S2

∂z
+ ζx

∂f̂S1

∂χ
+

ζ2
x

c2

∂f̂S0

∂ζy
− ζxζy

c2

∂f̂S0

∂ζx

)
dζ = 0. (9.22c)

The solvability condition for the integral equation for f̂Sm is reduced to a set of
partial differential equations containing ρ̂Sn, v̂xSn, v̂ySn, v̂zSn, T̂Sn, and p̂Sn

(n ≤ m − 1).
As we have seen in Chapter 3, repeating the process of solvability condition

and solution of the integral equation, we obtain a series of partial differential
equations for the above macroscopic variables. The solvability conditions (9.22a)
for ψ = 1, ζx, and ζ2 with Eq. (9.19) degenerate into the identity. Owing
to this degeneracy, staggered combination of the solvability conditions gives
appropriate set of fluid-dynamic-type equations to determine the behavior of
the gas successively from the lowest order of the expansion. In order to save
space, we explain only the process referring to the final result summarized in
Section 9.2.3. The solvability conditions (9.22a) for ψ = ζy and ζz correspond
to Eq. (9.33). The solvability conditions (9.22b) for ψ = 1, ζx, and ζ2 are,
respectively, Eqs. (9.34), (9.35), and (9.38). The conditions (9.22b) for ψ = ζy

and ζz are
∂p̂S1

∂y
=

∂p̂S1

∂z
= 0. (9.23)

We proceed with the analysis in a similar way, that is, to the solvability condition
(9.22c). The solvability conditions (9.22c) for ψ = ζy and ζz are, respectively,
Eqs. (9.36) and (9.37). The conditions (9.22c) for ψ = 1, ζx, and ζ2, as well as
Eq. (9.23), are the equations for the next-order set.

9.2.2 Knudsen-layer analysis

The leading term of the S solution, i.e., f̂S0, is a Maxwellian with flow velocity
(v̂xS0, 0, 0) and temperature T̂S0. In view of the condition (iii) to the boundary
condition (1.64), f̂S0 satisfies the general boundary condition (1.64) on a simple

3See Footnote 59 in Section 3.3.2.
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boundary, as well as the diffuse-reflection condition (1.63a), if the boundary
values of v̂xS0 and T̂S0 are taken as4

v̂xS0 = v̂A, T̂S0 = 1 at y = 0, (9.24a)

v̂xS0 = v̂B , T̂S0 = T̂B at y = 1. (9.24b)

The next-order distribution f̂S1, which is not Maxwellian, cannot be made
to satisfy the boundary condition owing to its special form in ζ. Thus, we
introduce the correction in a neighborhood of the boundary, i.e., a Knudsen-
layer correction, to the S solution. The analysis of the Knudsen layer can be
carried out according to the recipe explained in Section 3.1.4. Here, we briefly
explain it for the Knudsen layer on the inner cylinder (y = 0). That is, we put
the solution f̂ in the form

f̂ = f̂S + f̂K , (9.25)

where f̂K is the Knudsen-layer correction,5 for which the condition on the S
solution is loosened. That is, the length scale of variation of f̂K in the y direction
is of the order of the mean free path, or ∂f̂K/∂η = O(f̂K) in the stretched
coordinate η normal to the boundary

η = y/k. (9.26)

The Knudsen-layer correction f̂K vanishes as η → ∞. The analysis is carried out
under the stronger assumption that the speed of decay is faster than any inverse
power of η,6 which is verified by the Grad–Bardos theorem (Section 3.1.4).

Substituting Eq. (9.25) into Eq. (9.9) and noting that f̂S satisfies Eq. (9.9),
we have

ζy
∂f̂K

∂η
+

k2ζx

1+(k/c)2kη

∂f̂K

∂χ
+ kζz

∂f̂K

∂z
+

k(k/c)2ζ2
x

1+(k/c)2kη

∂f̂K

∂ζy
− k(k/c)2ζxζy

1+(k/c)2kη

∂f̂K

∂ζx

= 2Ĵ(f̂S, f̂K) + Ĵ(f̂K , f̂K). (9.27)

The interaction term Ĵ(f̂S, f̂K) can be simplified. Owing to the rapid decay of
f̂K as η → ∞, we can use the the following expanded form for f̂S in Ĵ(f̂S, f̂K) :

f̂S = (f̂S0)0 +

[
(f̂S1)0 +

(
∂f̂S0

∂y

)
0

η

]
k + · · · , (9.28)

where the quantities in the parentheses with subscript 0 are evaluated at y = 0
and the orders of the terms in k are reshuffled. The boundary condition being
satisfied by f̂S0 at the order of unity, the Knudsen-layer correction is required
only from the order of k. That is,

f̂K = f̂K1k + · · · . (9.29)
4See Footnote 60 in Section 3.3.2 for the uniqueness of this choice.
5The macroscopic variables are also put in the sum ĥ = ĥS+ĥK . Owing to the nonlinearity

of Eqs. (9.10b)–(9.10f), ĥK is expressed with f̂S and f̂K .
6See Footnote 6 in Section 3.1.4.
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Substituting the series (9.28) and (9.29) into Eq. (9.27) and arranging the
terms with respect to k, we obtain the series of one-dimensional Boltzmann
equations for f̂Km, e.g.,

ζy
∂f̂K1

∂η
= 2Ĵ((f̂S0)0, f̂K1). (9.30)

The effects of the variation of the quantities parallel to the boundary including
the curvature effect appear at higher orders as inhomogeneous terms, as is seen
by examination of the order of each term in k in Eq. (9.27). The sum f̂S +
f̂K being substituted into the boundary condition (9.6) and the result being
expanded in k, the boundary condition for f̂Km on the inner cylinder is obtained:

f̂Km = f̂wAm − f̂Sm (ζy > 0) at η = 0, (9.31)

where f̂wAm is the coefficient of km of the expansion of f̂wA in k. The other
condition on f̂Km is

f̂Km → 0, as η → ∞, (9.32)

with a speed faster than any inverse power of η.
According to the discussion in Section A.11, the solution f̂K1 of the Knudsen-

layer correction and the slip condition are practically the same as those in the
linear theory in Section 3.1.5, i.e., Eqs. (3.41a)–(3.41c) with the derivatives par-
allel to the x direction degraded corresponding to Eq. (9.11). The slip condition
gives the relation among the boundary values of v̂xS1, v̂yS1, v̂zS1, T̂S1, ρ̂S1,

∂v̂xS0/∂y, and ∂T̂S0/∂y in view of the condition (9.13), i.e., v̂yS0 = v̂zS0 = 0.
For the purpose to obtain the boundary conditions for the set of equations
(9.33)–(9.39b), in addition to Eqs. (9.24a) and (9.24b), we need only the con-
ditions on the boundary data of v̂yS1 and v̂zS1. They simply vanish, i.e.,
v̂yS1 = v̂zS1 = 0 at y = 0. Similarly, v̂yS1 = v̂zS1 = 0 at y = 1.

9.2.3 Asymptotic fluid-dynamic-type equations and their
boundary conditions

We summarize the fluid-dynamic-type equations and their associated boundary
conditions that describe the behavior of a gas in the continuum limit satisfying
the conditions given at the end of Section 9.1. The fluid-dynamic-type equations
are

∂p̂S0

∂y
=

∂p̂S0

∂z
= 0, (9.33)

∂ρ̂S0v̂xS0

∂χ
+

∂ρ̂S0v̂yS1

∂y
+

∂ρ̂S0v̂zS1

∂z
= 0, (9.34)

ρ̂S0

(
v̂xS0

∂v̂xS0

∂χ
+ v̂yS1

∂v̂xS0

∂y
+ v̂zS1

∂v̂xS0

∂z

)
= −1

2
∂p̂S0

∂χ
+

1
2

∂

∂y

(
Γ1

∂v̂xS0

∂y

)
+

1
2

∂

∂z

(
Γ1

∂v̂xS0

∂z

)
, (9.35)
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ρ̂S0

(
v̂xS0

∂v̂yS1

∂χ
+ v̂yS1

∂v̂yS1

∂y
+ v̂zS1

∂v̂yS1

∂z
− 1

c2
v̂2

xS0

)
= −1

2
∂p̂c

S2

∂y
+

1
2

∂

∂χ

(
Γ1

∂v̂xS0

∂y

)
+

∂

∂y

(
Γ1

∂v̂yS1

∂y

)
+

1
2

∂

∂z

[
Γ1

(
∂v̂yS1

∂z
+

∂v̂zS1

∂y

)]

+
1

2p̂S0

⎧⎨⎩ ∂

∂y

⎡⎣Γ7

(
∂T̂S0

∂y

)2⎤⎦+
∂

∂z

(
Γ7

∂T̂S0

∂y

∂T̂S0

∂z

)⎫⎬⎭
+

1
p̂S0

{
∂

∂y

[
Γ8

(
∂v̂xS0

∂y

)2]
+

∂

∂z

(
Γ8

∂v̂xS0

∂y

∂v̂xS0

∂z

)}
, (9.36)

ρ̂S0

(
v̂xS0

∂v̂zS1

∂χ
+ v̂yS1

∂v̂zS1

∂y
+ v̂zS1

∂v̂zS1

∂z

)
= −1

2
∂p̂c

S2

∂z
+

1
2

∂

∂χ

(
Γ1

∂v̂xS0

∂z

)
+

1
2

∂

∂y

[
Γ1

(
∂v̂yS1

∂z
+

∂v̂zS1

∂y

)]
+

∂

∂z

(
Γ1

∂v̂zS1

∂z

)

+
1

2p̂S0

⎧⎨⎩ ∂

∂y

(
Γ7

∂T̂S0

∂y

∂T̂S0

∂z

)
+

∂

∂z

⎡⎣Γ7

(
∂T̂S0

∂z

)2⎤⎦⎫⎬⎭
+

1
p̂S0

{
∂

∂y

(
Γ8

∂v̂xS0

∂y

∂v̂xS0

∂z

)
+

∂

∂z

[
Γ8

(
∂v̂xS0

∂z

)2]}
, (9.37)

5
2
ρ̂S0

(
v̂xS0

∂T̂S0

∂χ
+ v̂yS1

∂T̂S0

∂y
+ v̂zS1

∂T̂S0

∂z

)
− v̂xS0

∂p̂S0

∂χ

=
5
4

∂

∂y

(
Γ2

∂T̂S0

∂y

)
+

5
4

∂

∂z

(
Γ2

∂T̂S0

∂z

)
+Γ1

[(
∂v̂xS0

∂y

)2
+
(

∂v̂xS0

∂z

)2]
, (9.38)

and7 the subsidiary relations on ρ̂S0 and p̂c
S2

ρ̂S0 = p̂S0(χ)/T̂S0 [see Eq. (9.15f)], (9.39a)

7The left-hand side of Eq. (9.38) is transformed as

p̂S0

„
v̂xS0

∂

∂χ
+ v̂yS1

∂

∂y
+ v̂zS1

∂

∂z

«
ln

 
T̂

5/2
S0

p̂S0

!
,

which, except for the first factor p̂S0, corresponds to the variation of the entropy of a fluid
particle along a streamline [see Eq. (1.35)].
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p̂c
S2 = p̂S2 +

2Γ1

3

(
∂v̂xS0

∂χ
+

∂v̂yS1

∂y
+

∂v̂zS1

∂z

)
+

Γ7

3p̂S0

⎡⎣(∂T̂S0

∂y

)2
+

(
∂T̂S0

∂z

)2⎤⎦
+

2
3p̂S0

[
∂

∂y

(
Γ3

∂T̂S0

∂y

)
+

∂

∂z

(
Γ3

∂T̂S0

∂z

)]

− 2Γ9

3p̂S0

[(
∂v̂xS0

∂y

)2
+
(

∂v̂xS0

∂z

)2]
, (9.39b)

where Γ1, Γ2, Γ3, Γ7, Γ8, and Γ9 are short forms of the functions Γ1(T̂S0),
Γ2(T̂S0), . . . ,Γ9(T̂S0) of T̂S0 defined in Section A.2.9. Their functional forms
are determined by the molecular model.

The boundary conditions are

v̂xS0 = v̂A, v̂yS1 = v̂zS1 = 0, T̂S0 = 1 at y = 0, (9.40a)

v̂xS0 = v̂B , v̂yS1 = v̂zS1 = 0, T̂S0 = T̂B at y = 1. (9.40b)

The coordinate system (x, y, z) given by Eq. (9.4a) is expressed in this symbol
under the understanding that it reduces to a Cartesian system in the limit
under consideration. For this, the range of x is naturally limited. Here, we are
interested in the region where |x| is finite or infinitely large but infinitely small
compared with 1/k [or o(1/k)]. Then, v̂xS0 is obviously the x component (in the
Cartesian system) of the (nondimensional) flow velocity at the leading order in
k; in view of the relation (9.4c), v̂yS1 and v̂zS1 are seen to be, respectively the
y and z component (in the Cartesian system) of the flow velocity at the first
order of k.8 The deviation of (x, y, z) from the corresponding exact Cartesian
system enters in the higher-order equations, because the system derived above is
the nontrivial leading-order equations. Thus, the system of fluid-dynamic-type
equations (9.33)–(9.39b) and the boundary conditions (9.40a) and (9.40a) can
be taken to be expressed in the Cartesian coordinate system.

The effect of molecular property enters the above system only through the
transport coefficients Γ1, Γ2, Γ3, Γ7, Γ8, and Γ9. Thus, the fundamental structure
of the equations and boundary conditions is generally common to molecular
models.

The fluid-dynamic-type equations (9.33)–(9.39b) governing the behavior of
the gas in the limiting state have the following important features:
(i) The velocity v̂xS0, the temperature T̂S0, and the density ρ̂S0 in the contin-
uum limit are determined simultaneously with v̂yS1 and v̂zS1, the infinitesimal
v̂y and v̂z amplified by 1/k (ghost effect).
(ii) Equations (9.36) and (9.37), the momentum equations in the y and z direc-
tions, have two kinds of non-Navier–Stokes stress terms, the thermal stress and
the stress quadratic of the shear of flow.

8The original v̂x being the circumferential component, it contributes to the y component
(in the Cartesian coordinate in the limit), but it is of the order higher than k in the range of
x of our interest owing to the relation (9.4c).
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(iii) In the limiting state that we have taken, the (x, y, z) is a rectangular
coordinate system. Equation (9.36), which expresses the conservation of the
momentum in the y direction, has the term ρ̂S0v̂

2
xS0/c2 that is not found in

the convection term of the conservation equations in a rectangular coordinate
system. This works as an apparent external force. This quantity contributes to
the convection of the momentum in the y direction into a volume element in a
gas when the x axis has a curvature. That is, the curvature effect remains in
the limit that the curvature vanishes. The infinitesimal curvature produces a
finite effect on the parallel flow v̂xS0. This is a new kind of ghost effect and may
be called the ghost effect of infinitesimal curvature.

9.2.4 Supplementary notes

The importance of the infinitesimal curvature is easily understood by examining
the radial momentum convection into a small volume element r̂dr̂dθdẑ, which
is given by

−
(

1
r̂

∂ρ̂r̂v̂2
r

∂r̂
+

1
r̂

∂ρ̂v̂rv̂θ

∂θ
+

∂ρ̂v̂rv̂z

∂ẑ
− ρ̂v̂2

θ

r̂

)
r̂dr̂dθdẑ,

where (v̂r, v̂θ, v̂z) is the cylindrical coordinate expression of v̂. In the present
study, v̂r = O(k), v̂θ = O(1), v̂z = O(k), r̂ = O(k−2), ∂(∗)/∂r̂ = O(∗),
∂(∗)/∂ẑ = O(∗), and ∂(∗)/r̂∂θ = O(k∗). It should be noted here that r̂ is nor-
malized by the distance D between the walls for which the condition ∂(∗)/∂r̂ =
O(∗) is a natural one. The condition ∂(∗)/r̂∂θ = O(k∗) is a weak variation par-
allel to the walls and is consistent with the first three conditions listed above.
Under this situation, all the terms in the parentheses of the above expression
are of the same order, i.e., O(k2). We cannot neglect the term ρ̂v̂2

θ/r̂ due to
centripetal acceleration in the momentum equation in the limit of vanishing
curvature.

Up to this point, we considered the case where the relative curvature D/LA

of the cylinder tends to zero with the same speed as k2. If it tends to zero faster
than k2, it is easily seen that the v̂2

xS0/c2 term becomes of higher order and
disappears from Eq. (9.36).9 The ghost effect of infinitesimal curvature is absent.
For the other case, let D/LA vanish as D/LA = (k�/c)2, where 0 < � < 1. The
analysis in Section 9.2.1 can be carried out consistently under the assumption∫

ζxf̂dζ = O(1),
∫

(ζy, ζz)f̂dζ = O(k�),

∂f̂/∂χ = O(f̂), ∂f̂/∂y = O(f̂), ∂f̂/∂z = O(f̂), χ = k�x.

⎫⎪⎬⎪⎭ (9.41)

That is, the leading term of the flow velocity is taken as v̂x = O(1), v̂y = O(k�),
and v̂z = O(k�). We express v̂x, v̂y, v̂z, T̂ , and p̂ as v̂x = v̂xS0 + · · · , v̂y =

9If the sizes of v̂y and v̂z are downgraded in such a way that the curvature term v̂2
xS0/c2

is comparable to the other terms, the effect of v̂y and v̂z on v̂x degenerates, and v̂xS0, T̂S0,
and ρ̂S0 are determined by themselves, independently of v̂y , v̂z , and the curvature term.
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k�(v̂yS1+· · · ), and v̂z = k�(v̂zS1+· · · ), T̂ = T̂S0+· · · , p̂ = p̂S0+k2�p̂S2+p̂∗S1,

where v̂xS0, v̂yS1, v̂zS1, T̂S0, p̂S0, and p̂S2 are quantities of the order of unity
and p̂∗S1 is the remainder but contains the terms of the order between 1 and
k2�; for the other quantities, the remainders are of the higher order of the form
km�+n. Then, the equations that govern v̂xS0, v̂yS1, v̂zS1, T̂S0, p̂S0, and p̂S2

are Eqs. (9.33)–(9.39b) where all the terms with Γs are eliminated, to which the
remainders, including p̂∗S1, do not contribute. They are the first-order partial
differential equations in contrast to Eqs. (9.33)–(9.39b). The solution of the new
equations cannot directly be connected to the Knudsen-layer solution because
the condition derived by the Knudsen-layer analysis is too strong to the first-
order equations. Another layer, viscous boundary layer, intervenes between the
two solutions (see Section 3.4). This case will not be discussed further.

The extension of the present analysis to a time-dependent problem is straight-
forward. The analysis can be carried out in a similar way, only retaining the
time-derivative term in the Boltzmann equation. The result of extension is
shown below when the time scale t0 of variation of the distribution function f
is

t0 ∼ D2

0(2RTA)1/2
∼ D2

μ0/ρ0
,

in the last expression of which the mean free path 0 is replaced by the viscosity
μ0 [μ0 =

√
πγ1p00/(8RTA)1/2] [see Eq. (3.70)]. This is the time scale of viscous

diffusion.10 The extension of the fluid-dynamic-type equations (9.34)–(9.38) to
the time-dependent case is simply to add

∂ρ̂S0

∂t̂
, ρ̂S0

∂v̂xS0

∂t̂
, ρ̂S0

∂v̂yS1

∂t̂
, ρ̂S0

∂v̂zS1

∂t̂
,

5ρ̂S0

2
∂T̂S0

∂t̂
− ∂p̂S0

∂t̂
, (9.42)

to the left-hand sides of Eqs. (9.34), (9.35), (9.36), (9.37), and (9.38) respec-
tively.11 Here, t̂ is the nondimensional time defined by

t̂ =
t

D/(2RTA)1/2k
, (9.43)

where t is the time. No correction is required to Eqs. (9.33), (9.39a), and (9.39b).
The time-derivative term in the Boltzmann equation, the extended version of
Eq. (9.2a), is given by k∂f̂/∂t̂ for the above-mentioned time scale of variation
of f̂ . Comparing the order of this term in k with the others in the equation, we
easily see that no correction is required to the boundary conditions (9.40a) and
(9.40b) (see the discussion in Section 3.7.3).

10See Footnote 104 in Section 3.7.
11The expression (5ρ̂S0/2)(∂T̂S0/∂t̂) − ∂p̂S0/∂t̂ is transformed as

p̂S0
∂

∂t̂
ln

 
T̂

5/2
S0

p̂S0

!
.

This expression, except for the first factor p̂S0, combined with the expression in Footnote 7 in
Section 9.2.3 corresponds to the variation of the entropy of a fluid particle along a fluid-particle
path.
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9.3 System for small Mach numbers and
small temperature variations

The fluid-dynamic-type equations (9.33)–(9.39b) contain various terms. Here,
we consider the case where the Mach number of the flow is small [say, v̂x = O(ε);
ε is small but finite] and see how the fluid-dynamic-type equations are simplified
and whether the effect of infinitesimal curvature remains there. That is, consider
the case where the main flow field v̂x is of the order of ε and the cross velocity
field (v̂y, v̂z) is of the order of k, the latter of which is the same order as in the
preceding section (Section 9.2). That is,∫

ζxf̂dζ = O(ε), (9.44a)∫
ζy f̂dζ = O(k),

∫
ζz f̂dζ = O(k). (9.44b)

We can consistently assume that the variations of T̂ and ρ̂ are of the order of ε.12

This is the case where the variation of the distribution function from a uniform
Maxwellian at rest is of the order of ε. Corresponding to the assumptions (9.44a)
and (9.44b), the length scale of variation of f̂ in the main flow direction can be
a little smaller than the preceding case, that is, ∂f̂/∂x = O(kf̂/ε) owing to the
mass conservation. Thus, we put

χ̃ = χ/ε. (9.45)

Then,

∂f̂

∂χ̃
= O(f̂),

∂f̂

∂y
= O(f̂),

∂f̂

∂z
= O(f̂). (9.46)

The curvature effect is degraded according to the degrade of v̂x. In view of
the discussion of the estimate of the convection terms in the first paragraph
of Section 9.2.4, we consider the limiting case where the radius of the inner
cylinder LA tends to ∞ a little slower to compensate the degrade of v̂x. That
is, the constant c in Eq. (9.4c), i.e., D/LA = (k/c)2, where it is assumed to be
of the order of unity, is degraded as

c = Cε, C = O(1). (9.47)

With the above preparation, we try to simplify the fluid-dynamic-type equa-
tions (9.33)–(9.39b) and the boundary conditions (9.40a) and (9.40b) under the
assumption that v̂xS0 and the variation of ρ̂S0 and T̂S0 are small but finite (say,

12When the flow speed is not small, the temperature variation is not small owing to viscous
heating [Γ1 term in Eq. (9.38)] even when there is no temperature difference between the two
walls.
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of the order of ε) with the rescalings (9.45) and (9.47). That is, we put

v̂xS0 = ε(ux + · · · ), v̂yS1 = uy + · · · , v̂zS1 = uz + · · · ,

p̂S0 = 1 + εP01 + ε2P02 + · · · , p̂S2 = P20 + · · · ,

T̂S0 = 1 + ε(τ + · · · ), ρ̂S0 = 1 + ε(ω + · · · ),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (9.48)

where ux, uy, uz, τ, ω, P01, P02, and P20 are quantities of the order of unity, and
substitute Eqs. (9.45), (9.47), and (9.48) into Eqs. (9.33)–(9.39b), and arrange
the same-order terms in ε. Then, we obtain the equations that determine the
leading-order quantities as follows:

∂P01

∂χ̃
=

∂P01

∂y
=

∂P01

∂z
= 0, P01 = ω + τ, (9.49a)

∂P02

∂y
=

∂P02

∂z
= 0, (9.49b)

∂ux

∂χ̃
+

∂uy

∂y
+

∂uz

∂z
= 0, (9.50a)

ux
∂ux

∂χ̃
+ uy

∂ux

∂y
+ uz

∂ux

∂z
= −1

2
∂P02

∂χ̃
+

γ1

2

(
∂2ux

∂y2
+

∂2ux

∂z2

)
, (9.50b)

ux
∂uy

∂χ̃
+ uy

∂uy

∂y
+ uz

∂uy

∂z
− u2

x

C2
= −1

2
∂P20

∂y
+

γ1

2

(
∂2uy

∂y2
+

∂2uy

∂z2

)
, (9.50c)

ux
∂uz

∂χ̃
+ uy

∂uz

∂y
+ uz

∂uz

∂z
= −1

2
∂P20

∂z
+

γ1

2

(
∂2uz

∂y2
+

∂2uz

∂z2

)
, (9.50d)

ux
∂τ

∂χ̃
+ uy

∂τ

∂y
+ uz

∂τ

∂z
=

γ2

2

(
∂2τ

∂y2
+

∂2τ

∂z2

)
, (9.50e)

where γ1 = Γ1(1) and γ2 = Γ2(1). In this system, u2
x/C2 enters Eq. (9.50c),

but the thermal stress and the stress quadratic of the shear of flow do not enter
Eqs. (9.50c) and (9.50d). The boundary conditions corresponding to Eqs. (9.40a)
and (9.40b) are

ux = uA, uy = uz = 0, τ = 0 at y = 0, (9.51a)
ux = uB , uy = uz = 0, τ = τB at y = 1, (9.51b)

where

uA = VA/ε(2RTA)1/2, uB = VB/ε(2RTA)1/2, τB = (TB − TA)/εTA. (9.52)

Here, it may be noted that we are considering the case where the quantities
VA/ε(2RTA)1/2, VB/ε(2RTA)1/2, and (TB − TA)/εTA are of the order of unity.

In the system of Eqs. (9.49b)–(9.50e) with the boundary conditions (9.51a)
and (9.51b), the velocity field is determined from Eqs. (9.49b)–(9.50d) and the
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conditions for ux, uy, and uz in Eqs. (9.51a) and (9.51b), independently of the
temperature field.

Incidentally, it may be noted that the same system as above, i.e., Eqs. (9.49a)–
(9.51b) with the rescalings (9.45) and (9.47) and the expansion (9.48), is ob-
tained by the asymptotic analysis when the parameter ε is related to k but k is
smaller than any power of ε (k � εn for any n), e.g., ε = O(1/| ln k|).

The system of equations and boundary conditions (9.49b)–(9.51b) are also
derived for different scales of the variables. Put

v̂r = εs(uy + · · · ), v̂θ = −ε(ux + · · · ), v̂z = εs(uz + · · · ),
p̂ = 1 + εP01 + · · · + ε2P02 + · · · + ε2sP20 + · · · ,

T̂ = 1 + ε(τ + · · · ), ρ̂ = 1 + ε(ω + · · · ), P01 = ω + τ,

k = εs, D/LA = (εs−1/C)2 (s > 1),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (9.53)

where ux, uy, uz, P01, P02, P20, τ, ω, and C are quantities of the order of unity
and s may not necessarily be an integer.13 The variables x, y, and z are the
same as before, i.e.,

x = −LAθ/D, y = r̂ − LA/D,

and the length scale of variation in the x direction is taken to be of the order
of the ratio of v̂x to v̂y or v̂z, i.e., 1/εs−1. Correspondingly,

χ̃ = εs−1x. (9.54)

Then, P01 is uniform as before; Eqs. (9.49b)–(9.50e) and Eqs. (9.51a) and (9.51b)
are, respectively, the governing equations and boundary conditions for the new
ux, uy, uz, τ, P01, and P20.14 The process deriving this system from the Boltz-
mann equation is very similar to that deriving the system for the type II solution
in Sone & Doi [2000] (see Chapter 8 in Sone [2002]).

Similarly to the comment in the second paragraph in Section 9.2.4, when
D/LA tends to zero faster than that given in Eq. (9.53), i.e., D/LA = (εκ−1/C)2

(κ > s > 1), the curvature term u2
x/C2 is reduced to a higher order and dis-

appears from the system. When D/LA tends to zero slower than that given
in Eq. (9.53), i.e., D/LA = (εκ−1/C)2 (1 < κ < s), then for the scale of the
variables given by Eqs. (9.53) and (9.54) with s replaced by κ except the relation
k = εs, Eqs. (9.49b)–(9.50e) with the terms containing γ1 and γ2 eliminated (or
the equations without the viscous and thermal conduction terms) are derived.
In the complete description of this case, not treated here, a thin layer (or viscous
boundary layer) intervenes between the above solution and the Knudsen layer
as in the case in Section 3.4 (note the comment in Section 3.6.1). The process

13When s is not an integer, terms of the order of εm+n(s−1) (m = 1, 2, . . . , n = 0, 1, 2, . . .)
appear, and the analysis is more complicated than that for an integer s but can be carried
out consistently.

14The terms, not explicitly shown between εP01 and ε2P02 and between ε2P02 and ε2sP20 in
p̂, if any, do not contribute to Eqs. (9.49a)–(9.50e) as the other terms not shown explicitly in
Eq. (9.53).
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deriving the system is very similar to that for the type I solution in Sone & Doi
[2000] (see Chapter 8 in Sone [2002]).

Finally it may be noted that the parameters γ1 and C in Eqs. (9.49b)–(9.50d)
can be eliminated. That is, putting

ûx = 2ux/γ1C, ûy = 2uy/γ1, ûz = 2uz/γ1,

P̂02 = 2P02/(γ1C)2, P̂20 = 2P20/γ2
1 , χ̄ = χ̃/C,

⎫⎬⎭ (9.55)

we have

∂P̂02

∂y
=

∂P̂02

∂z
= 0, (9.56)

∂ûx

∂χ̄
+

∂ûy

∂y
+

∂ûz

∂z
= 0, (9.57a)

ûx
∂ûx

∂χ̄
+ ûy

∂ûx

∂y
+ ûz

∂ûx

∂z
= −∂P̂02

∂χ̄
+

∂2ûx

∂y2
+

∂2ûx

∂z2
, (9.57b)

ûx
∂ûy

∂χ̄
+ ûy

∂ûy

∂y
+ ûz

∂ûy

∂z
− û2

x = −∂P̂20

∂y
+

∂2ûy

∂y2
+

∂2ûy

∂z2
, (9.57c)

ûx
∂ûz

∂χ̄
+ ûy

∂ûz

∂y
+ ûz

∂ûz

∂z
= −∂P̂20

∂z
+

∂2ûz

∂y2
+

∂2ûz

∂z2
. (9.57d)

The corresponding boundary conditions are

ûx = ûA, ûy = ûz = 0 at y = 0, (9.58a)
ûx = ûB , ûy = ûz = 0 at y = 1, (9.58b)

where
ûA = 2uA/γ1C, ûB = 2uB/γ1C. (9.59)

The extension to the time-dependent problems with the characteristic time
scale t0 = D/(2RTA)1/2k, mentioned at the end of Section 9.2.4, is simple. For
the system (9.49a)–(9.50e), we have only to add

∂ux

∂t̂
,

∂uy

∂t̂
,

∂uz

∂t̂
,

∂τ

∂t̂
− 2

5
∂P01

∂t̂
,

where t̂ = t/[D/(2RTA)1/2k], to the left-hand sides of Eqs. (9.50b), (9.50c),
(9.50d), and (9.50e) respectively.15 For the system (9.56)–(9.57d), we have only
to add

∂ûx

∂t̃
,

∂ûy

∂t̃
,

∂ûz

∂t̃
,

where t̃ = γ1t̂/2, to the left-hand sides of Eqs. (9.57b), (9.57c), and (9.57d)
respectively.16 The boundary conditions, i.e., Eqs. (9.51a) and (9.51b) and

15Owing to Eq. (9.49a), the two variables τ and P01 in the extended form of Eq. (9.50e) are
replaced by a single variable τ∗

τ∗ = τ − 2P01/5.

16The relation between t̃ and t̂ in Sone & Doi [2005] is a misprint.
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Eqs. (9.58a) and (9.58b), are not required any correction.
In this section (Section 9.3), we have discussed the system where the vari-

ation ε of the velocity distribution function from a uniform Maxwellian at rest
is small (thus, the Mach number and the temperature variation are small),
paying attention to the relative sizes of ε to the Knudsen number (or k), i.e.,
the limit k → 0 with ε being small but finite, the case with k being smaller
than any power of ε, and the case with k = O(εs) (s > 1). The common sys-
tem (9.49a)–(9.51b), including the time-derivative terms in the extension to the
time-dependent problem, is derived for these three cases. In the first case, the
curvature of the boundary and the cross field are infinitesimal, but they influ-
ence the main flow ux through u2

x/C2 in Eq. (9.50c) and (uy, uz). That is, the
infinitesimal curvature produces a finite effect on the main flow. This is the
ghost effect of infinitesimal curvature in a low Mach number flow. In the other
cases, where ε and k are related and tend to zero simultaneously, the curvature
and the cross flow, which are, respectively, of the orders of ε2(s−1) and εs in the
third case, are not infinitesimal but perceivable if the flow speed or ε is small
but finite or perceivable.17 These are not the case of the ghost effect.

9.4 Bifurcation of the plane Couette flow

9.4.1 Bifurcation analysis

In this section, we study the bifurcation of the plane Couette flow and the
effect of the infinitesimal curvature as an application of the asymptotic theory.
To find the effect of infinitesimal curvature as simple as possible, we consider
the case with small but finite Mach number and (nondimensional) temperature
variation, and analyze the problem on the basis of Eqs. (9.56)–(9.58b).18

Obviously, Eqs. (9.56)–(9.58b) have the following solution with ûy = ûz = 0
and ∂/∂χ̄ = 0:

ûx = UU = ûA + (ûB − ûA)y,

ûy = ûz = 0,

P̂02 = 0,

P̂20 = PU = 1
3 (ûB − ûA)2y3 + ûA(ûB − ûA)y2 + û2

Ay + const.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (9.60)

This is the plane Couette flow of a small but finite Mach number in the con-
tinuum limit, i.e., ux = uA + (uB − uA)y, uy = uz = 0, P02 = 0, and the
contribution from P20 to the pressure is infinitesimal. We will consider a bifur-
cation from this parallel flow. To make the problem simpler, we consider the
case where the variables are independent of χ̄ (or ∂/∂χ̄ = 0). Let the bifurcation

17In the second and third cases, the curvature and the cross flow are much smaller than ε
(for large s in the third case), but it is a technical problem whether they are perceivable or
not. On the other hand, in the first case, it is theoretically impossible to perceive the cross
flow and the curvature of the boundary.

18Naturally, the analysis is the same for the other two cases discussed in the preceding
section.
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occur at (ûA = ûAb, ûB = ûBb) [or (uA = uAb, uB = uBb)], and let UUb and
PUb be, respectively, UU and PU at this point, i.e.,

UUb = ûAb + (ûBb − ûAb)y. (9.61)

We examine the bifurcated solution in a close neighborhood of the bifurcation
point (say, of the order of δ2). To make the ordering clear, we express the
boundary data ûA and ûB using a quantity δ expressing the deviation from the
bifurcation point in the form

ûA = ûAb +
(ûA − ûAb)

δ2
δ2, ûB = ûBb +

(ûB − ûBb)
δ2

δ2,

where (ûA − ûAb)/δ2 and (ûB − ûBb)/δ2 are of the order of unity. Then, the
bifurcated solution is expressed in a power series of δ, i.e.,19

ûx = UUb + δU1 + δ2U2 + · · · , (9.62a)

ûy = δV1 + δ2V2 + · · · , (9.62b)

ûz = δW1 + δ2W2 + · · · , (9.62c)

P̂20 = PUb + δP1 + δ2P2 + · · · . (9.62d)

Substituting the series (9.62a)–(9.62d) into Eqs. (9.57a)–(9.57d), we obtain a se-
ries of equations governing the perturbations (U1, V1,W1,P1), (U2, V2,W2,P2),
etc. The equations for the first-order perturbations U1, V1, W1, and P1 are

∂ V1

∂y
+

∂W1

∂z
= 0, (9.63a)

d UUb

d y
V1 =

∂2 U1

∂y2
+

∂ 2U1

∂ z2
, (9.63b)

− 2UUbU1 = −∂ P1

∂ y
+

∂ 2V1

∂ y2
+

∂ 2V1

∂ z2
, (9.63c)

0 = −∂ P1

∂ z
+

∂ 2W1

∂ y2
+

∂ 2W1

∂ z2
, (9.63d)

and the boundary conditions are

U1 = V1 = W1 = 0 at y = 0 and y = 1. (9.64)

We look for a solution periodic with respect to z, which is possible from the
form of Eqs. (9.63a)–(9.63d). The solution can be put in the form

U1 = U11(y) cos αz, V1 = V11(y) cos αz,

W1 = W11(y) sin αz, P1 = P11(y) cos αz.

}
(9.65)

19See Footnote 2 in Section 8.2.3.
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Then, we obtain the equations for U11 and V11 in the form

d2 U11

d y2
− α2U11 −

dUUb

d y
V11 = 0, (9.66a)

2α2UUbU11 −
d 4V11

d y4
+ 2α2 d2 V11

d y2
− α4V11 = 0. (9.66b)

The boundary conditions for U11 and V11 are

U11 = V11 =
dV11

d y
= 0 at y = 0 and y = 1. (9.67)

The components W11 and P11 are expressed with V11 as

W11 = − 1
α

dV11

d y
, P11 =

1
α2

(
d 3V11

d y3
− α2 d V11

d y

)
. (9.68)

The boundary-value problem (9.66a)–(9.67) is linear and homogeneous and
contains the three parameters ûAb, ûBb, and α (or 2uAb/γ1C, 2uBb/γ1C, and
α), the first two of which are through UUb. Thus, the problem can, generally,
have a nontrivial solution only when the parameters satisfy some relation, say,

FPC(2uAb/γ1C, 2uBb/γ1C, α) = 0. (9.69)

The solution (9.62a)–(9.62d) bifurcates from the parallel-flow solution (9.60)
at the point (2uA/γ1C, 2uB/γ1C, α) = (2uAb/γ1C, 2uBb/γ1C,α) that satisfies
Eq. (9.69). The curves 2uAb/γ1C vs 2uBb/γ1C for α = π/2, π, and 2π, which
are obtained numerically [see the paragraph next to that containing Eq. (8.23)
for the method], are shown in Fig. 9.1. There are infinitely many curves for
a given α.20 Two examples of the profiles U11/||f11|| and V11/||f11||, where
||f11|| = [

∫ 1

0
(U2

11 +V 2
11)dy]1/2, are shown in Fig. 9.2. The flow in the (y, z) plane

is of roll type. In the example where the two walls are moving in the opposite
directions, the V11/||f11|| has a zero point, that is, two rolls are arranged in the
y direction. It may be noted that the bifurcation curve is to be given by the
straight line uAb − uBb = const owing to the Galilean invariance for a uniform
motion if the effect of infinitesimal curvature is absent. We will add some notes
on the Galilean invariance and the ghost effect to avoid misunderstanding in
the three paragraphs after next.

When the condition (9.69) is satisfied, the solution of Eqs. (9.66a)–(9.67)
is determined except for a constant factor. This factor is determined by the
standard procedure of the higher-order analysis, which is not given here (see
Section 8.4.4). Instead, we will obtain some bifurcated solutions away from the
bifurcation curve numerically in the next subsection (Section 9.4.2).

The Boltzmann system is invariant with respect to the Galilean transforma-
tion. In the present example of the continuum limit, however, equivalence of
the limiting processes is required for the same physical behavior to take place

20“Infinitely many” is the plausible result suggested by numerical study.
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Figure 9.1. Bifurcation curves: 2uAb/γ1C vs 2uBb/γ1C for α = π/2, π, and 2π. (a)
Wider range of 2uAb/γ1C showing three branches and (b) magnified figure of the first
branch.
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Figure 9.2. The profile U11/||f11|| and V11/||f11|| vs y, where ||f11|| = [
R 1

0
(U2

11 +

V 2
11)dy]1/2. The dashed lines −−− are U11/||f11|| and the solid lines —– areV11/||f11||.

The symbol a is for the case α = π and 2uBb/γ1C = 0, for which 2uAb/γ1C = 41.1705,
and the symbol b is for α = 2π and 2uBb/γ1C = −150, for which 2uAb/γ1C = 99.4753.
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in the same situation in two inertial systems. Let the two inertial systems be
indicated by I and II, and let the limiting situations of the present problem in
the systems I and II be, respectively, indicated by I(uA, uB)C and II(uA,uB)C
when uA = uA, uB = uB , and C = C. The I(uA, uB)C and II(uA, uB)C are
the corresponding situations in the two systems I and II; that is, I(uA,uB)C
and II(uA, uB)C are the same limiting situation viewed, respectively, from the
system I and from the system II. The governing systems for I(uA,uB)C and
II(uA,uB)C are the same in the expression of each system, because the Boltz-
mann system is Galilean invariant. Thus, the physical behavior is the same in
the systems I(uA,uB)C and II(uA, uB)C. On the other hand, if C is modified in
one of the two systems, the physical behavior is different, e.g., the bifurcation
point is different,21 in the two systems, though the physical setup in the limit is
the same in the two systems, i.e., the plane-Couette-flow problem with the same
wall velocities. In the continuum limit (Kn = 0 or k = 0), where the Boltzmann
equation is singular, the solution is not unique and the correspondence including
the limiting process is required for identification.

The bifurcation of the Couette flow is not Galilean invariant as mentioned
in the paragraph containing Eq. (9.69). This does not mean that the bifurcation
is different in two inertial systems. Let System II be moving with (nondimen-
sional) velocity (uB , 0, 0) relative to System I. Let bifurcation take place at
uA = (uA)b in the situation I(uA, 0)C. Then, the bifurcation takes place at
uA = (uA)b−uB in System II owing to the Galilean invariance. Apparently,
II(uA−uB , −uB)C corresponds to I(uA, 0)C, that is, the boundary velocities
and the parallel flows (the plane Couette flow) in the two systems are related
with the Galilean transformation. However, the bifurcation analysis in this sub-
section shows that the above relation does not hold. The reason is that the
situation II(uA−uB , −uB)C does not correspond to I(uA, 0)C in the limiting
process as explained below.

The situation I(uA, 0)C is the state where the two coaxial cylinders with
their common axis fixed in System I are rotating with the speeds corresponding
to uA = uA and uB = 0 and the limiting process with C = C is taken, and the
situation II(uA−uB , −uB)C is the state where the two coaxial cylinders with
their common axis fixed in System II are rotating with the speeds correspond-
ing to uA = uA−uB and uB = −uB and the limiting process with C = C is
taken. They are not the two situations that we observe a given limiting situa-
tion from I and II. The situation where the common axis of the two cylinders
is moving with velocity (−uB , 0, 0), the cylinders are rotating with the speeds
corresponding to (uA, 0) in System II, and the limiting process with C = C
is taken [say, II(uA, 0)[C,(− uB ,0,0)]] corresponds to I(uA, 0)C. In the situation
II(uA, 0)[C,(− uB ,0,0)], the (infinitesimal) curvature of the fluid-particle path is
different from that in II(uA−uB , −uB)C and thus the effective C changes, e.g.,
the curvature decreases when uA > 0 and uB < 0. Thus, the infinitesimal
curvature in the situation II(uA−uB , −uB)C is obviously different from that

21For example, from Eq. (9.69), 2uAb/γ1C is determined by α when uB = 0. Thus, uAb

depends on C.
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in II(uA, 0)[C,(− uB ,0,0)]. Thus, if we simply transform the boundary conditions
in the system (9.49a)–(9.51b),22 we cannot obtain the corresponding solution
in another inertial system. To summarize, the solution for the limiting state
as the Knudsen number vanishes is not unique; they depend on the limiting
process. The solutions in two inertial systems of a physical problem are related
by the Galilean transformation when the corresponding states in their limiting
processes are related by the transformation.

9.4.2 Bifurcated flow field under infinitesimal curvature

In Section 9.4.1 we have found that there is a bifurcation from the parallel flow
with a linear profile by the effect of infinitesimal curvature of the boundary. In
this section, we will study the bifurcated velocity field away from bifurcation
points by numerical analysis of the system (9.56)–(9.58b) for the case where the
state of the gas is uniform with respect to χ̄ (or ∂/∂χ̄ = 0).

The numerical computation is carried out in the following way. Consider
a gas in the finite domain (0 < y < 1, 0 < z < zB) and take the following
conditions on the side boundaries:

∂ûx

∂z
=

∂ûy

∂z
= 0, ûz = 0 at z = 0 and z = zB , (9.70)

in addition to the conditions on the plane walls

ûx = ûA, ûy = ûz = 0 at y = 0, (9.71a)
ûx = ûB , ûy = ûz = 0 at y = 1. (9.71b)

Incidentally, from the basic equations (9.57a) and (9.57d) and the boundary
condition (9.70), it is found that ∂P̂20/∂z = 0 at z = 0 and z = zB .

Let a solution of the above problem in the rectangular domain be S1. Then,
its mirror image with respect to the side boundary (z = 0 or zB) is also a
solution of the problem (say, S2). The two kinds of solutions S1 and S2 being
alternately arranged in the z direction, the resulting function is found to be
two times continuously differentiable across the connection lines z = nzB (n =
0,±1,±2, . . .), because it satisfies Eqs. (9.56)–(9.57d) except on the connection
lines and satisfies the condition (9.70) on the connection lines. That is, the
smooth function thus constructed is a periodic solution with period 2zB with
respect to z in the infinite domain between the two plane walls at y = 0 and
y = 1.

The boundary-value problem, Eqs. (9.56)–(9.57d) with Eqs. (9.70)–(9.71b),
is solved numerically by a finite-difference method. The solution of the finite-
difference scheme derived from the above system where P̂20 is eliminated by
taking the difference of ∂[Eq. (9.57c)]/∂z and ∂[Eq. (9.57d)]/∂y is obtained by
the method of iteration similar to that described in Section 8.2.4 in the Bénard

22In the present form of solution, the solution in the transformed system is also time-
independent. Generally, we have to discuss on the basis of the system that describes the
time-dependent problem.
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problem. Here, the equations are much more simpler than those in the Bénard
problem.

Some of the results of computation are shown in Figs. 9.3–9.6. Figures 9.3
and 9.4 are, respectively, the velocity profiles 2ux/γ1C vs y on various cross
sections z = const and the infinitesimal cross velocity field (2uy/γ1, 2uz/γ1) for
the case zB = 1 and 2uB/γ1C = 0 (the wall at y = 1 is at rest). Figures 9.5
and 9.6 are the corresponding figures for the case zB = 1 and 2uB/γ1C = −150
(the two walls are moving in the opposite directions). In these figures, the flow
fields for three different values of 2uA/γ1C away from the bifurcation points are
shown in panels (a), (b), and (c). The main flow 2ux/γ1C is disturbed owing
to the convection of the infinitesimal cross flow (2uy/γ1, 2uz/γ1) induced by the
infinitesimal curvature. The three cases of 2uB/γ1C = −150 are the common
results for the two kinds of the initial flow fields of iteration, the results for
2uB/γ1C = 0 and the eigenfunction of Eqs. (9.66a)–(9.68) for 2uB/γ1C = −150
and α = π, both of which are of one-roll type in the z direction; however, two
rolls are arranged in the z direction in the final result, and two rolls, one of
which is weak, are arranged in the y direction for the parameter not far from
the bifurcation curve. The bifurcated solution exists in the region with a little
smaller values of 2uA/γ1C than the bifurcation point 2uAb/γ1C (= 99.4753)
[see Figs. 9.5 (a) and 9.6 (a)], as well as in the region with the larger values of
2uA/γ1C.

The apparently strange effect of infinitesimal curvature can be understood in
the following way. The infinitesimal curvature modifies the main flow substan-
tially in the two processes. The small curvature induces a small cross flow as
naturally expected. Owing to the cross flow, a fluid particle flows downstream
circulating slowly as in Figs. 9.4 and 9.6. In this process, the momentum of
the main flow in a region is convected to another region with different velocity
originally, and the two walls reset the velocity in the main stream direction
of the circulating fluid particle owing to the nonslip boundary condition. It
takes a long time for a fluid particle to reach a region with substantially dif-
ferent flow velocity originally, but owing to large Reynolds number [∝ Ma/Kn,
see Eq. (3.74)] (or small viscosity), the particle reaches the region exchanging
the momentum of the main flow gradually during translation and retaining a
substantial part of its original momentum and gives a substantial effect on the
main flow. The flow fields shown in Figs. 9.3–9.6 well reflect this process.

9.5 Summary and supplementary discussion

The behavior of parallel flows of a gas in the continuum limit between two paral-
lel plane walls has been studied as the limit of nearly parallel flows between two
coaxial circular cylinders when the mean free path (or Knudsen number Kn) and
the inverse of the radius (or the relative curvature D/LA) of the inner cylinder
simultaneously tend to zero with the difference D of the radii of the two cylinders
fixed. The process of analysis is explained for time-independent problems, but
the main result is given also for time-dependent problems. The fluid-dynamic-
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Figure 9.3. The bifurcated main velocity profiles, i.e., 2ux/γ1C vs y, on various
sections z =const I: zB = 1 and 2uB/γ1C = 0. (a) 2uA/γ1C = 42, (b) 2uA/γ1C = 50,
(c) 2uA/γ1C = 100. The profiles 2ux/γ1C on the sections z = 0, 0.25, 0.5, 0.75, and
1 between z = 0 and z = 1 are shown. The dashed lines - - - - - indicate the solution
(9.60). Incidentally, the bifurcation point obtained in Section 9.4.1 is 2uAb/γ1C =
41.1705 for α = π and 2uBb/γ1C = 0.
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Figure 9.4. The bifurcated infinitesimal cross velocity field (2uy/γ1, 2uz/γ1) I: zB = 1
and 2uB/γ1C = 0. (a) 2uA/γ1C = 42, (b) 2uA/γ1C = 50, (c) 2uA/γ1C = 100.
The arrows indicate (2uy/γ1, 2uz/γ1) at their starting points and their scale is shown
on the left shoulder of each panel. Note the difference of the scale of the arrow in
panels (a), (b), and (c). Incidentally, the bifurcation point obtained in Section 9.4.1
is 2uAb/γ1C = 41.1705 for α = π and 2uBb/γ1C = 0.
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Figure 9.5. The bifurcated main velocity profiles, i.e., 2ux/γ1C vs y, on various
sections z =const II: zB = 1 and 2uB/γ1C = −150. (a) 2uA/γ1C = 98, (b) 2uA/γ1C =
110, (c) 2uA/γ1C = 150. The profiles 2ux/γ1C on the sections z = 0, 0.125, 0.25,
0.375, and 0.5 are shown. The flow field in 0.5 < z ≤ 1 is the mirror image of the
field 0 ≤ z < 0.5 with respect to the plane z = 0.5. The dashed lines - - - - - indicate
the solution (9.60). Incidentally, the bifurcation point obtained in Section 9.4.1 is
2uAb/γ1C = 99.4753 for α = 2π and 2uBb/γ1C = −150.
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Figure 9.6. The bifurcated infinitesimal cross velocity field (2uy/γ1, 2uz/γ1) II: zB =
1 and 2uB/γ1C = −150. (a) 2uA/γ1C = 98, (b) 2uA/γ1C = 110, (c) 2uA/γ1C = 150.
The arrows indicate (2uy/γ1, 2uz/γ1) at their starting points and their scale is shown
on the left shoulder of each panel. Note the difference of the scale of the arrow in
panels (a), (b), and (c). Incidentally, the bifurcation point obtained in Section 9.4.1
is 2uAb/γ1C = 99.4753 for α = 2π and 2uBb/γ1C = −150.
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type equations and their boundary conditions describing the limiting behavior,
derived by asymptotic analysis of the Boltzmann system, depend on the rela-
tive speed of decay of the two quantities, the Knudsen number and the relative
curvature of the inner cylinder. Generally, when the speed of decay of the cur-
vature is not faster than the square of the mean free path [D/LA ≥ (k/c)2;
see Eq. (9.4c)], the limiting parallel flow is determined simultaneously with the
infinitesimal cross flow by the fluid-dynamic-type equations with an infinites-
imal curvature term. The detailed analysis and complete result were given
for the threshold case, i.e., D/LA = (k/c)2, where the effect of infinitesimal
curvature first enters the system. The fluid-dynamic-type equations contain
non-Navier–Stokes terms as well as the infinitesimal curvature term. When the
flow speed (or Mach number) and the temperature difference are small but finite
[say O(ε)], the non-Navier–Stokes terms disappear, but the infinitesimal curva-
ture term remains if the decay of the curvature is not faster than the square of
the mean free path divided by the square of the flow speed [D/LA ≥ (k/Cε)2;
see Eqs. (9.4c) and (9.47) or Eq. (9.53)]. The two conditions D/LA ≥ (k/c)2

and D/LA ≥ (k/Cε)2, which give the range of existence of the infinitesimal-
curvature effect, can be combined into the single formula D/LA ≥ (Kn/C0Ma)2,
where Ma and Kn are, respectively, the Mach number and the Knudsen number
of the system, and C0 is a constant. To summarize, the infinitesimal curvature
of the boundary produces a finite effect on flows when the decay of the curvature
is not faster than the square of the ratio of the Knudsen number to the Mach
number. This is a new kind of ghost effect on a gas in the continuum limit. As
an example, the bifurcation from the plane Couette flow with a linear profile
is studied and found to occur owing to the infinitesimal curvature effect. The
bifurcation relation and the bifurcated flow field are obtained. The profile of the
bifurcated main parallel flow is considerably deformed from the linear profile by
the infinitesimal cross flow.

In the atmospheric condition, the mean free path is small but not exactly
zero. Thus, the radius LA of the inner cylinder for which the curvature effect
is appreciable is of a finite value. Let us estimate LA for which the curvature
effect is appreciable when the outer cylinder is at rest. Let the velocity of the
inner cylinder of the bifurcation point be VAb. From Eq. (9.4c) with (9.47), or
Eq. (9.53), and Eqs. (9.52) and (9.59), LA/D is related to VAb/(2RTA)1/2 and
k as

LA

D
=
(

2
γ1ûAb

)2
V 2

Ab

2RTA

1
k2

, (9.72)

where ûAb is about 40, as given in Fig. 9.1. Take the air at room temperature,
i.e., TA ∼ 300 K, and atmospheric pressure.23 Then, the mean free path 0
of the gas is roughly 6 × 10−8 m. When VAb = 30 cm/s and D = 10 cm, the
parameters VAb/(2RTA)1/2 and Kn are roughly 10−3 and 6× 10−7 respectively.
Thus, from Eq. (9.72), LA/D is about 4 × 103, i.e., LA is about 400 m. For a
little larger VAb and D, say VAb = 10 m/s and D = 1 m, the corresponding
value of LA/D is about 4×108, i.e., LA is about 4×105 km, which is more than

23See Footnote 102 in Section 3.6.2.
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60 times the radius of the Earth. For the curvature effect to be negligible, LA

is required to be much larger than these values in the atmospheric condition.
We have considered the limiting case that the Knudsen number tends to zero.

Thus, one may naturally ask whether the same effect can be found starting from
the Navier–Stokes equations. The answer is yes. In the kinetic-theory analysis,
the flow velocity (or more precisely the Mach number Ma of the flow) is taken
much larger than the Knudsen number (or v̂x � k). Thus, the Reynolds number
Re of the system is very large in view of the von Karman relation (3.74). Now,
take the Navier–Stokes equations for an incompressible fluid24 and see how
the infinitesimal curvature effect (ghost effect) appears in the limit that Re→
∞. This is some repetition, but this new effect may be better understood by
nonspecialists in kinetic theory. In the kinetic theory approach, the infinitesimal
curvature effect appears in the equation of momentum in the direction normal
to the wall (or radial direction) and induces an infinitesimal velocity component
normal to the wall (the radial velocity component), and this infinitesimal flow
produces a finite effect on the main flow parallel to the wall. We first see this
mechanism less formally on the basis of the Navier–Stokes equations for an
incompressible fluid in the cylindrical coordinate system:

1
r

∂ vrr

∂r
+

1
r

∂vθ

∂θ
+

∂vz

∂Z
= 0, (9.73a)
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∂ vr
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θ

r

= −1
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+

μ
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]
, (9.73b)
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, (9.73c)

vr
∂vz

∂r
+

vθ

r

∂vz

∂θ
+ vz

∂vz

∂Z
= −1

ρ

∂p

∂Z
+

μ

ρ

[
1
r

∂

∂r

(
r
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∂r

)
+

1
r2

∂2vz

∂θ2
+

∂2vz

∂Z2

]
,

(9.73d)

where (r, θ, Z) is the cylindrical space coordinate system, (vr, vθ, vz) is the flow
velocity in the cylindrical coordinate system, p is the pressure, ρ is the density
(constant), and μ/ρ is the kinematic viscosity (constant).

Let U be a characteristic speed, e.g., circumferential speed of rotation of
the inner cylinder. Let D and U be given. Consider the limiting process that
LA → ∞ and ρ/μ (or Re = UDρ/μ) → ∞ keeping LA(μ/ρ)2 (or LA/DRe2)
fixed, or Re → ∞ and LA = O(Re2). Thus, the parameter expressing the limit-
ing process is only Re. Taking a nearly parallel flow (vr, vθ, vz), where vθ = O(1)

24As we have seen, non-Navier–Stokes terms exist in the limiting fluid-dynamic-type equa-
tions when the Mach number is not small. Thus, it is sufficient to consider the incompressible
Navier–Stokes equations.
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and vr and vz are small, say O(δ), we examine how the main flow vθ is deter-
mined together with the weak cross field (vr, vz) by their mutual interactions in
the above limit with the aid of the Navier–Stokes equations in the cylindrical co-
ordinates. Owing to the mass conservation (9.73a), the variation of the variables
in the direction of θ is small, i.e., (1/r)∂(∗)/∂θ = O(δ∗) when ∂(∗)/∂r = O(∗)
and ∂(∗)/∂Z = O(∗). The term −v2

θ/r on the left-hand side of Eq. (9.73b) is
O(Re−2) because vθ is O(1) but r is O(Re2). The convection terms vr∂vr/∂r
and vz∂vr/∂Z are O(δ2); the remaining convection term (vθ/r)∂vr/∂θ is also
O(δ2), because (1/r)∂(∗)/∂θ = O(δ∗). The viscous term on the right-hand side
of Eq. (9.73b) is O(Re−1δ), because vr = O(δ) and the kinematic viscosity μ/ρ
is O(Re−1). These terms in Eq. (9.73b) are balanced when δ = O(Re−1). Thus,
the infinitesimal term v2

θ/r induces infinitesimal cross flow (vr, vz) of the order
of Re−1. This infinitesimal cross flow (vr, vz) is reflected on the main flow vθ

through Eq. (9.73c). The terms vr∂vθ/∂r and vz∂vθ/∂Z on the left-hand side
of Eq. (9.73c) express the convection effect by the infinitesimal velocity vr and
vz. These terms are O(Re−1) and are of the same order as (vθ/r)∂vθ/∂θ, be-
cause (1/r)∂(∗)/∂θ = O(Re−1∗). The viscous term on the right-hand side is also
O(Re−1) owing to the kinematic viscosity μ/ρ. Thus, the infinitesimal cross flow
(vr, vz) affects the main flow vθ by the order of unity. This ordering considera-
tion is in a good harmony with the physical explanation in the last paragraph
of Section 9.4.2.

Formal derivation of the limiting equations is very simple. We put

ûx = − vθ

CU
, ûy =

Revr

U
, ûz =

Revz

U
, C2P̂02 +

P̂20

Re2 =
p

ρU2
,

x = −LAθ

D
, y =

r − LA

D
, z =

Z

D
, χ̄ =

x

ReC
,

LA

D
= C2Re2, Re =

UDρ

μ
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(9.74)

where C is a constant. Here, we consider that ûx, ûy, ûz, P̂02, P̂20, and C
are quantities of the order of unity. That is, we are interested in the situation
where the main flow vθ/U parallel to the wall is of the order of unity but the
cross components vr/U and vz/U are small quantities of the order of Re−1.
Naturally the length scale of variation with respect to r and Z is of the order
of the channel width D. In view of Eq. (9.73a), the length scale of variation in
the circumferential direction is of the order of ReD for the above scale of (vr,
vθ, vz), and thus the variable χ̄ is introduced. Substituting the relations given
in Eq. (9.74) into the Navier–Stokes equations (9.73a)–(9.73d), arranging the
same-order terms in Re−1, and taking the limit as Re → ∞, then we obtain
Eqs. (9.56)–(9.57d).25

For time-dependent problems, we have only to add

∂ûx

∂t̃
,

∂ûy

∂t̃
, and

∂ûz

∂t̃
,

25Note the discussion in the paragraph next to that containing Eq. (9.40b). A similar
discussion can be carried out with 1/Re in place of k.
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where t̃ = t/(D2ρ/μ) with t being the time, to the left-hand sides of Eqs. (9.57b),
(9.57c), and (9.57d), respectively. Equations (9.56) and (9.57a) remain un-
changed. The linear stability analysis of the plane Couette flow on the basis
of the extended equations is carried out in Sone & Doi [2005]. The bifurcation
curves obtained in Section 9.4.1 are the threshold of the linear stability. When
the Reynolds number is large but finite, the bifurcation occurs only when LA is
finite, but it is very large. When Re = 5 × 103, the bifurcation occurs at about
LA/D = 1.5 × 104, because ûAb is about 40 and thus C is about 40−1.

In the linear stability analysis of the incompressible Navier–Stokes equations
for the plane Couette flow with a linear profile between parallel plane walls,
it is proved by Romanov [1973] that the flow is stable in the whole range of
the Reynolds number. The above discussion with the result in Section 9.4.1
shows that the bifurcation occurs at infinite Reynolds number by the effect of
infinitesimal curvature. This was one of the long-lasting problems in the classical
fluid dynamics.

The results derived in this chapter for two inertial systems apparently is
not related by the Galilean transformation. This is due to nonuniqueness of
solution. That is, the limiting result as the Knudsen number tends to zero
is not unique; they depend on the limiting process. The solutions in the two
systems of a physical problem are related by the Galilean transformation if their
states in their limiting processes are related by the transformation.



Appendix A

Supplement to the
Boltzmann Equation

A.1 Derivation of the Boltzmann equation

We will give a formal derivation of the Boltzmann equation from the Liouville
equation on the basis of Grad [1958]. Consider a system consisting of N identical
particles each of which has mass m. Take the 6N -dimensional Γ space consisting
of the position X(i) and velocity ξ(i) of the particle i (i = 1, 2, . . . , N). Let fN ,

a function of the 6N + 1 variables X(1), . . . , X(N), ξ(1), . . . , ξ(N), and t, be the
N -particle probability density function finding the particle i (i = 1, 2, . . . , N)
at the position X(i) and at velocity ξ(i) in the Γ space with 6N dimensions at
time t. The behavior of the density function fN is determined by the Liouville
equation1 given by

∂fN

∂t
+

N∑
i=1

(
ξ(i) ∂fN

∂X(i)
+ F (i) ∂fN

∂ξ(i)

)
= 0, (A.1)

where mF (i) is the force acting on the particle i. The meaning of the simplified
notation of the gradients ∂fN/∂X(i) and ∂fN/∂ξ(i) and the scalar products
ξ(i)∂fN/∂X(i) and F (i)∂fN/∂ξ(i), without dot · , may be obvious. Here, the
force mF (i) acting on the particle i consists only of the interparticle force, that
is,

F (i) =
N∑

j=1 (j 
=i)

F i,j ,

1The Liouville equation is the exact equation describing the behavior of the probability
density function fN in Γ space of the N -particle system obeying Newton’s law of motion. Its
derivation is found in a textbook of statistical mechanics (e.g., Tolman [1979], Hill [1987], Reif
[1965], Diu, Guthmann, Lederer & Roulet [1989]).



482 Appendix A. Supplement to the Boltzmann Equation

where mF i,j is the force by the particle j (thus, F i,j = −F j,i by the law of
action and its reaction). The extension to a system with an external force is
straightforward. We further assume that the force F i,j is given by a potential
determined by the interparticle distance |X(j) − X(i)| and extends to only a
finite distance dm (or F i,j = 0 for |X(j) − X(i)| ≥ dm)2 and that the density
function is symmetric with respect to the N sets (X(i), ξ(i)) (i = 1, . . . , N) of
variables.

Now, we introduce the following truncated probability density functions f̃1,
f̃2, f̃3, . . . :

f̃1 =
∫

Ω1 , all ξ(2),..., all ξ(N)

fNdX(2) · · ·dX(N)dξ(2) · · ·dξ(N), (A.2a)

f̃2 =
∫

Ω12 , all ξ(3),..., all ξ(N)
fNdX(3) · · ·dX(N)dξ(3) · · ·dξ(N), (A.2b)

f̃3 =
∫

Ω123 , all ξ(4),..., all ξ(N)

fNdX(4) · · ·dX(N)dξ(4) · · ·dξ(N), (A.2c)

· · · · · · · · · ,

where the ranges Ω1, Ω12, Ω123, . . . are defined as follows: Let X(1) be fixed and
let the domain Dr

1 (r = 2, . . . , N) of the space X(r) be defined by

Dr
1 = {|X(r) − X(1)| ≥ dm}.

That is, the particle r in Dr
1 is not subject to the interparticle force F r,1 due to

the particle 1. Then, Ω1, Ω12, Ω123, . . . are

Ω1 = D2
1 × D3

1 × · · · × DN
1 ,

Ω12 = D3
1 × D4

1 × · · · × DN
1 ,

Ω123 = D4
1 × D5

1 × · · · × DN
1 ,

· · · · · · · · · .

The functions f̃1, f̃2, etc. are, respectively, functions of (X(1), ξ(1), t), (X(1),

ξ(1), X(2), ξ(2), t), etc.; f̃2 is not symmetric with respect to the two sets (X(1),

ξ(1)) and (X(2), ξ(2)) of variables. Incidentally, we introduce the notation Sr
i

for the sphere in the space X(r) with X(i) as its center:

Sr
i = {|X(r) − X(i)| < dm}.

Thus, Dr
1 is the complement of Sr

1 .

Integrating the Liouville equation (A.1) with respect to X(2), . . . , X(N),

ξ(2), . . . , ξ(N) over the domain Ω1 and the whole spaces of ξ(2), . . . , ξ(N) or
2For a hard-sphere particle, dm is the diameter of the particle.
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with respect to X(3), . . . , X(N), ξ(3), . . . , ξ(N) over the domain Ω12 and the
whole spaces of ξ(3), . . . , ξ(N) or . . . , we obtain the following series of equations
for f̃1, f̃2, . . . called Grad hierarchy (Grad [1958]):

∂f̃1

∂t
+ ξ(1) ∂f̃1

∂X(1)
= (N − 1)

∫
∂S2

1 , all ξ(2)
(ξ(2) − ξ(1))·n2

1f̃2d2X(2)dξ(2), (A.3a)

∂f̃2

∂t
+ ξ(1) ∂f̃2

∂X(1)
+ ξ(2) ∂f̃2

∂X(2)
+ F 1,2

∂f̃2

∂ξ(1)
+ F 2,1

∂f̃2

∂ξ(2)

= (N − 2)
∫

∂S3
1 , all ξ(3)

(ξ(3) − ξ(1))·n3
1f̃3d2X(3)dξ(3)

− (N − 2)
∫

D3
1 , all ξ(3)

F 2,3
∂f̃3

∂ξ(2)
dX(3)dξ(3), (A.3b)

· · · · · · · · · · · · · · · ,

where nj
i = (X(j) − X(i))/|X(j) − X(i)|; the range ∂S2

1 of integration d2X(2)

with respect to X(2) in Eq. (A.3a) is the surface ∂S2
1 of the sphere S2

1 ; the range
∂S3

1 of integration d2X(3) with respect to X(3) in Eq. (A.3b) is the surface
∂S3

1 of the sphere S3
1 ; and the range D3

1 of integration dX(3) with respect to
X(3) in the last term is practically D3

1 ∩ S3
2 because the force F 2,3 vanishes

outside S3
2 . The above equations are considerably simplified by the assumptions

of the symmetry of fN with respect to the N sets (X(i), ξ(i)) (i = 1, . . . , N)
of variables and a finite range dm of the interparticle force F i,j . Owing to the
choice of the ranges of integration Ω1, Ω12, etc., instead of the whole spaces of
X(2), . . . , X(N), those of X(3), . . . , X(N), etc., the interaction forces F i,j do
not appear in Eq. (A.3a), the interaction forces other than F 1,2, F 2,1, and F 2,3

do not in Eq. (A.3b), etc. In place of these simplifications, the surface integrals
over ∂S2

1 and ∂S3
1 on the right-hand sides of Eqs. (A.3a) and (A.3b) arise from

the boundaries of the domains Ω1 and Ω12. Some supplementary explanations
may be in order on the derivation of the right-hand sides.

With the aid of Gauss’s divergence theorem, the integral of ξ(k)∂fN/∂X(k)

(k ≥ 2) over Ω1 or that of ξ(k)∂fN/∂X(k) (k ≥ 3) over Ω12 can be transformed
into an integral over the boundary of Ω1 (or ∂Sk

1 ) or Ω12 (or ∂Sk
1 ). For example,

∫
Ω1, all ξ(2),..., all ξ(N)

ξ(2) ∂fN

∂X(2)
dX(2) · · ·dX(N)dξ(2) · · ·dξ(N)

= −
∫

∂S2
1 , all ξ(2)

ξ(2)·n2
1f̃2d2X(2)dξ(2),

∫
Ω12, all ξ(3),..., all ξ(N)

ξ(3) ∂fN

∂X(3)
dX(3) · · ·dX(N)dξ(3) · · ·dξ(N)

= −
∫

∂S3
1 , all ξ(3)

ξ(3)·n3
1f̃3d2X(3)dξ(3).
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In the integral of ξ(1)∂fN/∂X(1) over Ω1 or Ω12, a boundary term comes in
through the process of interchanging the order of integration and differenti-
ation because the domain (Ω1 or Ω12) of integration varies with X(1). The
derivative, with respect to ϑ, of the integral

∫
D(ϑ)

g(X, ϑ)dX over the domain
D(ϑ) deformable with ϑ is given in the following form:

d
dϑ

∫
D(ϑ)

g(X, ϑ)dX =
∫
D(ϑ)

∂g(X, ϑ)
∂ϑ

dX +
∫

∂D(ϑ)

g(X, ϑ)
∂Xw

∂ϑ
·nwd2X,

(A.4)
where Xw is a point on the boundary ∂D(ϑ) of D(ϑ), nw is the outward unit
normal vector to the boundary, and d2X is the surface element on ∂D(ϑ);
∂Xw/∂ϑ is not unique but nw ·∂Xw/∂ϑ is unique. The derivation of the formula
is given at the end of this section as a lemma. With the aid of this formula, the
above-mentioned integrals are transformed into the following forms:3∫

Ω1, all ξ(2),..., all ξ(N)
ξ(1) ∂fN

∂X(1)
dX(2) · · ·dX(N)dξ(2) · · ·dξ(N)

= ξ(1) ∂f̃1

∂X(1)
+ (N − 1)

∫
∂S2

1 , all ξ(2)
ξ(1) · n2

1f̃2d2X(2)dξ(2),

∫
Ω12, all ξ(3),..., all ξ(N)

ξ(1) ∂fN

∂X(1)
dX(3) · · ·dX(N)dξ(3) · · ·dξ(N)

= ξ(1) ∂f̃2

∂X(1)
+ (N − 2)

∫
∂S3

1 , all ξ(3)
ξ(1) · n3

1f̃3d2X(3)dξ(3),

where the factors N − 1 and N − 2 are due to the symmetry of the density
function.

Let us return to the mainstream of the discussion. The series of equations
(A.3a), (A.3b), . . . is not a closed system, that is, Eq. (A.3a) contains f̃2 as well
as f̃1, Eq. (A.3b) contains f̃3 as well as f̃2, and so on. That is, Eq. (A.3a) shows
that the variation of f̃1 along the path of one-particle system is determined by f̃2;
Eq. (A.3b) shows that the variation of f̃2 along the path of two-particle system
is determined by f̃3; and so on. Now, we will see how Eqs. (A.3a) and (A.3b) can
be simplified in the Grad–Boltzmann limit. Here, we consider the N particles
in an infinite space without boundary, but a greater portion of the N particles
is assumed to lie in a finite volume (say, L3). The Grad–Boltzmann limit is the
limiting process that the number of particles tends to infinite (N → ∞) and
the range of the interparticle force vanishes (dm → 0) keeping Nd2

m at a fixed
value,4 and thus, inevitably, Nd3

m → 0. Taking the coordinate system moving
with the center of mass of the system, we can choose (

∑N
i=1 |ξ(i)|2/N)1/2 as

3The integration over Ω1 (= D2
1 ×D3

1 × · · · ×DN
1 ) is carried out successively, for example,

over DN
1 , DN−1

1 , . . . , and D2
1 , and the formula (A.4) is applied at each step of integration.

4Under the assumption of the second part of the preceding sentence, Nd2
m/L3 is of the

order of the inverse of the mean free path [see Eq. (1.22) or (A.243)]. The nondimensional
fixed value Nd2

m/L2 can be small or large. When the particles lie over an infinite domain with
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the characteristic particle speed (say ξ0) if it is finite. Then, the characteristic
size ||f̃n|| of the truncated probability density function f̃n is (Lξ0)−3n by the
definition of the probability. With this note, we evaluate the size of the right-
hand sides of Eqs. (A.3a) and (A.3b). The right-hand side of Eq. (A.3a) and the
first term on the right-hand side of Eq. (A.3b) are integrals over the surface ∂S2

1

or ∂S3
1 with area O(d2

m), and therefore they are, respectively, O(||f̃2||ξ4
0Nd2

m)
[or O(||f̃1||ξ0Nd2

m/L3)] and O(||f̃3||ξ4
0Nd2

m) [or O(||f̃2||ξ0Nd2
m/L3)] if none of

f̃2 and f̃3 is singularly large on the surface ∂S2
1 or ∂S3

1 .5 The second term on
the right-hand side of Eq. (A.3b) is an integral over the small region D3

1 ∩S3
2 of

the order of d3
m; but it does not vanish as Nd3

m and is roughly estimated to be
O(||f̃2||ξ0Nd2

m/L3) because the interaction force F 2,3 can be infinitely large as
|X(2) − X(3)| → 0.6

The range ∂S2
1 of integration in the integral in Eq. (A.3a) is conveniently split

into two parts, one is the part ∂S2
1+ of the sphere where (ξ(2)−ξ(1))·n2

1 > 0 and
the other is ∂S2

1− where (ξ(2) − ξ(1))·n2
1 < 0 for a given set of ξ(1) and ξ(2). On

∂S2
1+ the two particles 1 and 2 are going to separate after their interaction by

interparticle force, and on ∂S2
1− the two particles are going to enter the range of

influence of their interparticle force. Let the position of the particle 2 on ∂S2
1+

be X
(2)
+ and that on ∂S2

1− be X
(2)
− . Here we introduce an important assumption,

called molecular chaos, that the two-particle truncated density function f̃2 at
(X(1), ξ(1),X

(2)
− , ξ(2), t) on ∂S2

1− can be expressed by the product of the two
one-particle truncated density functions,7 that is,

f̃2(X(1), ξ(1),X
(2)
− , ξ(2), t) = f̃1(X(1), ξ(1), t)f̃1(X

(2)
− , ξ(2), t). (A.5)

We will try to express the two-particle truncated density function f̃2 on the
part ∂S2

1+ in terms of the one-particle truncated density function f̃1. That is,
first, f̃2 on the part ∂S2

1+ is expressed in terms of f̃2 on the part ∂S2
1−, and

then the assumption of molecular chaos is applied to this f̃2. Equation (A.3b)

a substantial number density, the Grad–Boltzmann limit should be taken to be the limit that
n0 → ∞ and dm → 0 with n0d2

m = const, where n0 is a characteristic number of particles
per unit volume.

5This kind of note applies to the ordering of a local integration of vanishing domain, e.g.,
Eq. (A.16).

6The interparticle force F 2,3 in the integral over D3
1 ∩S3

2 can be very large (or diverge) as

X(3) approaches X(2). For a repulsive force, however, f̃3 is going to vanish there because the
particles X(2) and X(3) cannot approach in a strong repulsive force field. That is, the two
particles cannot be closer than the distance dsp limited by |F 2,3|(dm − dsp) < O(|ξ(2)|2 +

|ξ(3)|2), that is, f̃3 vanishes inside the sphere dsp. Thus, the integral with respect to the radial
direction of the sphere D3

1 is bounded by ξ2
0 multiplied by the factors of the integrand other

than F 2,3. Thus, the second term on the right-hand side of Eq. (A.3b) is roughly estimated
to be of the order of Nd2

m as shown above. This can also be seen in the following way: The

velocity ξ(3) of the particle X(3) is subject to a change of the order of |F 2,3|dm/|ξ(3) − ξ(2)|
during a short interaction period dm/|ξ(3) −ξ(2)|, which is, on the other hand, of the order of

|ξ(3)|. Thus, the average size of F 2,3 during the interaction is of the order of ξ2
0/dm. Together

with the other integrands, the second term is estimated as shown above.
7The assumption of molecular chaos is discussed in Grad [1958].
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describes the variation of f̃2 along the characteristic of Eq. (A.3b) or the tra-
jectory in the space (X(1), ξ(1),X(2), ξ(2), t) of the system of the two particles
X(1) and X(2) interacting with each other by the interparticle forces F 1,2 and
F 2,1. The variation is determined by the right-hand side of Eq. (A.3b) or f̃3.
The trajectory passes the region |X(2) − X(1)| < dm in a short time of the
order of dm/|ξ(2) − ξ(1)|. In other words, in this short time, the two particles
X(1) and X(2) move from ∂S2

1− to ∂S2
1+. During this short period (or collision

process), the two particles are subject to the strong interparticle forces F 1,2

and F 2,1 and their velocities ξ(1) and ξ(2) vary considerably. On the other
hand, the contribution of the right-hand side of Eq. (A.3b) during this short
period to the variation of f̃2 is O(||f̃2||Nd3

m/L3) because the size of the right-
hand side is O(||f̃2||ξ0Nd2

m/L3) as shown in the paragraph before the preceding
one. Therefore, the two-particle truncated density function f̃2 takes the same
value at the two ends of the trajectory of this short interaction period in the
Grad–Boltzmann limit.

Let the two particles 1 and 2 be at (X(1), ξ(1)) and (X(2)
+ , ξ(2)), which is in

the situation ∂S2
1+. In view of their situation that they are on ∂S2

1+, they were
at the points (X(1)′, ξ(1)′) and (X(2)′

− , ξ(2)′) in the situation ∂S2
1− at a close

past time t−Δt, where Δt is of the order of dm/|ξ(2) − ξ(1)|. Then, the particle
velocities ξ(1)′ and ξ(2)′ at t − Δt are expressed by the original ones ξ(1) and
ξ(2) with a unit vector α as a parameter as follows (see Fig. A.1):

ξ(1)′ = ξ(1) + [α · (ξ(2) − ξ(1))]α, ξ(2)′ = ξ(2) − [α · (ξ(2) − ξ(1))]α, (A.6)

where the dot · for the scalar product serves to avoid confusion and the unit
vectors α and −α give the same result. This relation is the result of conservation
of momentum and energy before and after the interaction (see Section A.2.1).
The dynamics of the system (in the past and future) is uniquely determined
by (X(1), ξ(1), X

(2)
+ , ξ(2)) on ∂S2

1+, and the parameter α is expressed with n2
1+

[= (X(2)
+ −X(1))/dm] and ξ(2)−ξ(1), i.e., α = α(n2

1+, ξ(2)−ξ(1)), the functional
form of which is determined by the interparticle potential, containing dm (see
Section A.2.4 and also, for example, Goldstein [1950], Landau & Lifshitz [1960],
Sone & Aoki [1994]).

According to the discussion in the paragraph before the preceding one,

f̃2(X(1), ξ(1),X
(2)
+ , ξ(2), t) = f̃2(X(1)′, ξ(1)′,X(2)′

− , ξ(2)′, t − Δt).

For f̃2 on ∂S2
1−, i.e., f̃2(X(1)′, ξ(1)′,X(2)′

− , ξ(2)′, t−Δt), the assumption of molec-
ular chaos can be applied. Thus, the two-particle truncated density function f̃2

at (X(1), ξ(1),X
(2)
+ , ξ(2), t) is expressed by the product of the one-particle trun-

cated density functions in the form

f̃2(X(1), ξ(1),X
(2)
+ , ξ(2), t) = f̃2(X(1)′, ξ(1)′,X(2)′

− , ξ(2)′, t − Δt)

= f̃1(X(1)′, ξ(1)′, t − Δt)f̃1(X
(2)′
− , ξ(2)′, t − Δt). (A.7)
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Figure A.1. Relation between (‰(1), ‰(2)) and (‰(1)′, ‰(2)′). The velocities ‰(1)′ and
‰(2)′ are antipodal points on the sphere with ‰(1) and ‰(2) as its antipodal points.

Now, we introduce another assumption that the one-particle truncated den-
sity function f̃1 is a slowly varying function in space X(1) on the scale of dm

and in time t on the scale of dm/ξ0.
8 Then, in the function f̃1 of Eqs. (A.5) and

(A.7), the arguments X
(2)
− , X(1)′, and X

(2)′
− can be replaced by X(1), and the

argument t−Δt by t, because |X(2)
− −X(1)|, |X(1)′ −X(1)|, and |X(2)′

− −X(1)|
are all of the order of dm and Δt is of the order of dm/ξ0. With Eqs. (A.5)
and (A.7) thus simplified, the integral on the right-hand side of Eq. (A.3a) is
expressed by the one-particle truncated density function f̃1 as∫

∂S2
1 , all ξ(2)

(ξ(2) − ξ(1))·n2
1f̃2d2X(2)dξ(2) = I− + I+, (A.8)

where

I− =
∫

∂S2
1−

all ξ(2)

(ξ(2) − ξ(1))·n2
1f̃1(X(1), ξ(1), t)f̃1(X(1), ξ(2), t)d2X(2)dξ(2),

(A.9a)

I+ =
∫

∂S2
1+

all ξ(2)

(ξ(2) − ξ(1))·n2
1f̃1(X(1), ξ(1)′, t)f̃1(X(1), ξ(2)′, t)d2X(2)dξ(2).

(A.9b)

The arguments X(1) and t of f̃1 being common, the integral over the hemisphere
∂S2

1− in I− can be extended to the whole sphere ∂S2
1 simply by replacing (ξ(2)−

8(i) The dm/ξ0 is the time that is taken to pass the distance dm with the characteristic
speed ξ0 of the particles or the sound speed of the gas.

(ii) Owing to the slowly varying assumption, the Boltzmann equation to be derived cannot
describe the behavior of the molecular scale.
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ξ(1))·n2
1 by −|(ξ(2) − ξ(1))·n2

1|/2 , that is,

I− = −1
2

∫
∂S2

1

all ξ(2)

|(ξ(2) − ξ(1))·n2
1|f̃1(X(1), ξ(1), t)f̃1(X(1), ξ(2), t)d2X(2)dξ(2)

= −d2
m

2

∫
all e

all ξ(2)

|(ξ(2) − ξ(1))·e|f̃1(X(1), ξ(1), t)f̃1(X(1), ξ(2), t)dΩ(e)dξ(2),

(A.10)

where e is a unit vector and dΩ(e) is the solid angle element in the direction
of e. The extension of the range of integration of the integral I+ needs some
care. The parameter α in the expressions ξ(1)′ and ξ(2)′ given by Eq. (A.6) is a
function of e and ξ(2) − ξ(1), that is,

α = α(e, ξ(2) − ξ(1)), (A.11)

where e = n2
1 [= (X(2)−X(1))/|X(2)−X(1)|]. The relation (A.11) is determined

by the two-body interaction under interparticle potential, and α is in the plane
made by the two vectors e and ξ(2) − ξ(1) (Section A.2.4). The relation is not
unique because α and −α give the same result in Eq. (A.6). The relation can
be made unique without loss of generality by choosing (ξ(2) − ξ(1))·α > 0 here
[when (ξ(2) − ξ(1))·e > 0]. We extend the relation (A.11) for (ξ(2) − ξ(1))·e < 0
as

α(e, ξ(2) − ξ(1)) = −α(−e, ξ(2) − ξ(1)). (A.12)

For example, α = e for a hard-sphere particle. With the extension (A.12), the
functions f̃1(X(1), ξ(1)′, t) and f̃1(X(1), ξ(2)′, t) in the integral I+ are symmet-
rically extended with respect to (ξ(2) − ξ(1))·e = 0 to the whole ∂S2

1 , and thus,
the integral I+ is expressed with its range of integration extended as

I+ =
d2

m

2

∫
all e

all ξ(2)

|(ξ(2) − ξ(1))·e|f̃1(X(1), ξ(1)′, t)f̃1(X(1), ξ(2)′, t)dΩ(e)dξ(2).

(A.13)
Then, with Eqs. (A.8)–(A.13) in Eq. (A.3a), the equation for f̃1(X(1), ξ(1), t)

is given as

∂f̃1

∂t
+ ξ(1) ∂f̃1

∂X(1)

=
Nd2

m

2

∫
all e

all ξ(2)

|(ξ(2) − ξ(1))·e|[f̃1(ξ(1)′)f̃1(ξ(2)′) − f̃1(ξ(1))f̃1(ξ(2))]dΩ(e)dξ(2),

(A.14)

where (N − 1)d2
m is identified with Nd2

m in the Grad–Boltzmann limit, and the
arguments for the space and time variables of the truncated density function f̃1

are not shown, because they are commonly X(1) and t.
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Now consider the following marginal probability density functions f1, f2, . . .:

f1 =
∫

all X(2),..., all X(N)

all ξ(2),...,all ξ(N)

fNdX(2) · · ·dX(N)dξ(2) · · ·dξ(N), (A.15a)

f2 =
∫

all X(3),..., all X(N)

all ξ(3),...,all ξ(N)

fNdX(3) · · ·dX(N)dξ(3) · · ·dξ(N), (A.15b)

· · · · · · · · · .

The f1 is the probability density of finding the particle 1 with velocity ξ(1) at
position X(1) and at time t, irrespective of the positions and the velocities of
the other particles (or the particles 2, 3, . . . , N) and so on.

The difference between f1 and f̃1 is only the domains of integration with
respect to the space variables X(2), . . . ,X(N) in their definitions. Noting that
the whole space of X(2) × · · · × X(N) is (S2

1 + D2
1)× · · · × (SN

1 + DN
1 ) and that

the function fN is symmetric with respect to the N sets of the variables (X(r),

ξ(r)) (r = 1, 2, . . . , N), we have9

f1 = f̃1 + (N − 1)
∫

S2
1

f̃2dX(2)dξ(2) + · · ·

= f̃1 + O(||f̃1||(N − 1)d3
m/L3) + · · · . (A.16)

Thus, in the Grad–Boltzmann limit, we can identify f̃1 with f1. Put

f(X, ξ, t) = mNf̃1(X, ξ, t). (A.17)

Then f(X, ξ, t)dXdξ is the expected value of the mass of the particles at time
t in the volume element dXdξ around (X, ξ) in the 6-dimensional space.10

From Eqs. (A.14) and (A.17), the equation for f(X, ξ, t) is given in the form

∂f

∂t
+ ξ

∂f

∂X

=
Nd2

m

2

(
1

mN

)∫
all e
all ξ∗

|(ξ∗ − ξ)·e|[f(ξ′)f(ξ′
∗) − f(ξ)f(ξ∗)]dΩ(e)dξ∗, (A.18)

9See Footnote 5 in this section.
10Let ϕ(X(1), . . . , X(N), ‰(1), . . . , ‰(N)) be the function in the 6N -dimensional space

X(1), . . . , X(N), ‰(1), . . . , ‰(N) giving the number of the sets (X(i), ‰(i)) (i = 1, . . . , N) that

lie in a 6-dimensional domain I (for example, Xai ≤ X
(r)
i ≤ Xbi, ξai ≤ ξ

(r)
i ≤ ξbi). Then, the

expected value ϕ̄ of ϕ is given by

ϕ̄ =

Z
all X(1),..., allX(N), all ξ(1),..., all ξ(N)

ϕfNdX(1) · · ·dX(N)d‰(1) · · ·d‰(N)

=

Z
I

Nf1dX(1)d‰(1),

for a symmetric fN in view of the decomposition ϕ =
PN

i=1 ϕI(X(i), ‰(i)), where

ϕI(X(i), ‰(i)) = 1 for (X(i), ‰(i)) in I and = 0 outside I.
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where
ξ′ = ξ + [α · (ξ∗ − ξ)]α, ξ′

∗ = ξ∗ − [α · (ξ∗ − ξ)]α, (A.19)

and the relation between e and α is given by Eq. (A.11). The following function
B, which is closely related to the differential cross-section (e.g., Reif [1965]), is
often introduced to relate e to α:

|e · (ξ∗ − ξ)|dΩ(e) =
2

d2
m

BdΩ(α). (A.20)

In view of the extension of the relation between α and e for (ξ(2) − ξ(1))·e < 0
by Eq. (A.12), B is even with respect to α. According to the discussion in
Section A.2.4, which relates B to the interparticle potential, B is a function of
|α · (ξ∗ − ξ)|/|ξ∗ − ξ| and |ξ∗ − ξ|, i.e., B = B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|).
For a hard-sphere particle, B = d2

m|α · (ξ∗ − ξ)|/2 because α = e. Then,

∂f

∂t
+ ξ

∂f

∂X
=

1
m

∫
all α
all ξ∗

[f(ξ′)f(ξ′
∗) − f(ξ)f(ξ∗)]BdΩ(α)dξ∗, (A.21)

B = B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|).

Here, some comments may be in order about the relation between e and α.
While e is moving over the unit sphere, α also moves there, but the correspon-
dence between e and α is not generally one-to-one. Several e’s may correspond
to a single α, though the opposite is unique. For such α, the sum of B defined
by the differential relation (A.20) at each e must be adopted as B in Eq. (A.21)
[see Eq. (A.58) in Section A.2.4].

Equation (A.21) is the Boltzmann equation [Eq. (1.5) with (1.6), (1.7), and
Fi = 0] introduced in Section 1.2.

In the derivation of the Boltzmann equation, the molecular-chaos assumption
is introduced for the two-particle truncated density function f̃2 for the situation
that two particles are going to interact (or in I−). If this assumption is also
introduced for the situation that two particles have just finished interaction (or
in I+),11 then the interaction term (I− + I+) vanishes12 and the Boltzmann
equation is reduced to the equation for a free molecular gas (or the equation
without the collision term) given by Eq. (2.1). If the density function fN is
factorized initially, the particles undergo molecular collision as time goes on,
and then fN (thus, f̃2) is no longer factorized for the pair of the variables
that undergoes particle collision. Thus, the molecular-chaos assumption in the
analysis implicitly assumes that the chance of collision of the set of particles

11Obviously from the form of the distribution function f̃2 after interaction derived under
the assumption of molecular chaos before the interaction, the assumption of molecular chaos
after the interaction is not compatible with that before interaction.

12In Eq. (A.3a), the slowly varying assumption on f̃1 being used after the replacement of
f̃2 by the product of f̃1 on its right-hand side of Eq. (A.3a), it is reduced to Eq. (A.8) where

the arguments ξ(1)′ and ξ(2)′ of the two f̃1’s in I+ given by Eq. (A.9b) are replaced by ξ(1)

and ξ(2) respectively. Then the integral with respect to d2X(2) over the sphere ∂S2
1 in I+ is

reduced to that of (ξ(2) − ξ(1)) · n2
1 over the sphere, which is easily seen to vanish.
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that experienced collision between them is negligibly small.13 The mathematical
verification of the Boltzmann equation for a hard-sphere gas from the Liouville
equation is studied by Lanford [1975] (see also Spohn [1991], Cercignani, Illner
& Pulvirenti [1994]).14

13The period of time that this condition holds is roughly estimated as follows. In the first
mean free time τ̄c, all the molecules make their first collision on the average. In the next mean
free time, the chance that any of the molecules collides with the molecule that it collided is
1/N. Continuing this estimate, we find that the condition holds for 0 ≤ t < Nhτ̄c where Nh

� 1 but Nh/N � 1. Here, we considered the simple case where the order of the mean free
time is invariant of time, e.g., the spatially uniform or periodic case.

14The proof is done by comparison of three systems, the BBGKY hierarchy, the Boltzmann
hierarchy, and the Boltzmann equation. The BBGKY hierarchy for the N -particle system
is a set of N equations for the marginal probability density functions fN

s ’s (s = 1, 2, . . . , N)
derived from the Liouville equation by the same procedure as the Grad hierarchy for f̃s, with
the difference of the definition of fN

s from that of f̃s. That is, the definition of fN
s is formally

given by Eqs. (A.2a), (A.2b), etc., but their ranges Ω1, Ω12, etc. of integration are limited to

the region where the hard-sphere particles can move, e.g., all the spheres Sj
i for any pair (i, j)

are excluded from Ω1. Then, in the resulting equations, the singular potentials of the hard-
sphere particles disappear; instead, the boundary terms on the modified Ω1, Ω12, etc. appear
[e.g., the right-hand side of Eq. (A.3a)], where the data after collision should be replaced by
those before the collision by the interaction relation to complete the system of time evolution.
The Boltzmann hierarchy is an infinite set of equations for fs corresponding to fN

s derived
formally from the BBGKY hierarchy in the Grad–Boltzmann limit (N → ∞, dm → 0, with
Nd2

m fixed).
The framework of Lanford’s work is to prove the following statements (i)–(iv). Then, the

relation between the particle system and the Boltzmann equation is established in the Grad–
Boltzmann limit.
(i) The BBGKY hierarchy is equivalent to the Liouville equation or the dynamics for a hard-
sphere system.
(ii) The solution fN

s of the initial-value problem of the BBGKY hierarchy converges, in some
sense, to the solution fs of the Boltzmann hierarchy in the Grad–Boltzmann limit, when its
initial value gN

s is in the factorized form gN
s =

Qs
l=1[g(X(l), ‰(l))].

(iii) Let f(X, ‰, t) be the solution of the Boltzmann equation with the initial data f(X, ‰, 0) =

f0(X, ‰). Then, the function fs =
Qs

l=1[f(X(l), ‰(l), t)/M], where s = 1, 2, . . . and M =
limN→∞ mN, is a solution of the Boltzmann hierarchy for the initial data fs0 in the factorized
form fs0 =

Qs
l=1[f0(X(l), ‰(l))/M]. Note the process from Eq. (A.17) to Eq. (A.21) for the

factor 1/M.
(iv) The solution of the Boltzmann hierarchy with the initial data in a factorized form exists
uniquely (the solution itself is not limited to a factorized form).
The proof is given for a limited time interval 0 ≤ t < t0, where t0 is a fraction of the mean
free time. This range 0 ≤ t < t0 is much smaller than the range where gas dynamic problems
are discussed. Incidentally, the solution of the Boltzmann hierarchy exists as long as that of
the Boltzmann equation exists. (Frankly speaking, the author has not examined the details
of the proof by Lanford [1975].)

In the problem in an infinite domain without boundary discussed in the process of the
Grad–Boltzmann limit, the particles extend to a wider range indefinitely as time goes on,
and the local mean free path or time becomes larger. The average number of collisions of
a particle up to time t is given by

R t
0 ν̄cdt, where ν̄c is the local mean collision frequency.

The initial mean free path 	0 and collision frequency ν̄c0 are, respectively, of the orders of
L3/Nd2

m and Nd2
mξ0/L3. Their variations with time are roughly estimated in the following

way: The particles substantially extend in the region of volume L3(1+ ξ0t/L)3, and thus, the
mean free path 	 increases with time as L3(1+ξ0t/L)3/Nd2

m and the mean collision frequency
ν̄c decreases and is bounded by Nd2

mξ0/L3(1 + ξ0t/L)3, because the range of particle speed

at a point in space X decreases from ξ0. Therefore,
R t
0 ν̄cdt is bounded by ν̄c0L/ξ0 for any

t. Thus, the average number of collisions of a particle up to t = ∞ can be much less than
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Before closing this appendix, the formula (A.4) is derived.
Lemma.

d
dϑ

∫
D(ϑ)

g(X, ϑ)dX =
∫
D(ϑ)

∂g(X, ϑ)
∂ϑ

dX +
∫

∂D(ϑ)

g(X, ϑ)
(

∂Xw

∂ϑ
·nw

)
d2X,

where Xw is a point on the boundary ∂D(ϑ) of D(ϑ), nw is the outward unit
normal vector to the boundary, and d2X is the surface element on ∂D(ϑ); the
quantity (nw · ∂Xw/∂ϑ) as a whole has a definite meaning for the deformable
domain D(ϑ). This formula applies to the space X with arbitrary dimension
(say N).
Proof. Let D(0) be a fixed domain and Yj be a point in it, which has a one-to-
one correspondence to the domain D(ϑ) as Xi = Xi(Yj , ϑ). Then, the integral
over the variable domain D(ϑ) is expressed by that over the fixed domain D(0),
for which the differentiation with respect to ϑ is carried out:

d
dϑ

∫
D(ϑ)

g(X, ϑ)dX

=
d
dϑ

∫
D(0)

g(X(Y , ϑ), ϑ)J(Y , ϑ)dY

=
∫
D(0)

(
∂g(X, ϑ)

∂ϑ
+

∂g(X, ϑ)
∂Xi

∂Xi

∂ϑ

)
J(Y , ϑ)dY +

∫
D(0)

g(X, ϑ)
∂J

∂ϑ
dY

=
∫
D(ϑ)

(
∂g(X, ϑ)

∂ϑ
+

∂g(X, ϑ)
∂Xi

∂Xi

∂ϑ

)
dX +

∫
D(0)

g(X, ϑ)
∂J

∂ϑ
dY , (A.22)

where J is the Jacobian of the transformation from Yi to Xi. Let T be the
transformation matrix whose (i, j) element Tij is given by

Tij =
∂Xi

∂Yj
, that is, T = 〈Tij〉 =

〈
∂Xi

∂Yj

〉
.

unity for small ν̄c0L/ξ0. Thus, the global validity of the proposition for small ν̄c0L/ξ0 does
not help much for the understanding of the validity of the Boltzmann equation on the basis
of the particle system. Real extension of the range is required.

The discussion in the preceding footnote (Footnote 13) suggests that the probability density

function fN or fN
N is no longer in the form of the product

QN
l=1[f(X(l), ‰(l), t)/mN ] after

the mean free time τ̄c. On the other hand, the marginal distribution function fN
2 is well

approximated by the product
Q2

l=1[f(X(l), ‰(l), t)/mN ] for much longer time than the mean
free time τ̄c when N is large. The above properties of fN

N at the mean free time does not
contradict the solution of the Boltzmann hierarchy in the form of the product. The following
case is compatible with the preceding solution of the Boltzmann hierarchy: the solution fN

s
(s = 1, . . . , n) of the BBGKY hierarchy is in the form of the product for some n < N, and it
retains the form in the limit N → ∞ for some n such that n � N and n → ∞. Incidentally,
the relation between the BBGKY hierarchy and the Boltzmann equation is established if the
convergence of fN

1 to f1 and the uniqueness of f1 of the Boltzmann hierarchy are proved.
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The Jacobian is the determinant derived from the matrix 〈Tij〉,15 i.e.,

J =
∥∥∥∥∂Xi

∂Yj

∥∥∥∥ , and thus,
∂J

∂ϑ
=

∂

∂ϑ

∥∥∥∥∂Xi

∂Yj

∥∥∥∥ .

Then its inverse T−1 (or 〈Tij〉−1) is given by

T
−1 = 〈Tij〉−1 =

〈
∂Xi

∂Yj

〉−1

=
〈

(−1)i+j Δji

J

〉
,

where the element Δij is the determinant of the submatrix of the matrix T

with respect to its element Tij .16 The derivative ∂J/∂ϑ of the Jacobian is
transformed into the following form:

∂J

∂ϑ
=

∂

∂ϑ

∥∥∥∥∂Xi

∂Yj

∥∥∥∥
=

N∑
j=1

N∑
i=1

(−1)i+jΔij
∂

∂ϑ

(
∂Xi

∂Yj

)
=

N∑
j=1

N∑
i=1

(−1)i+jΔij
∂

∂Yj

(
∂Xi

∂ϑ

)

=
N∑

j=1

N∑
i=1

(−1)i+jΔij

N∑
k=1

∂Xk

∂Yj

∂

∂Xk

(
∂Xi

∂ϑ

)

=
N∑

i=1

N∑
k=1

∂

∂Xk

(
∂Xi

∂ϑ

)⎛⎝ N∑
j=1

(−1)i+jΔij
∂Xk

∂Yj

⎞⎠ =
N∑

i=1

N∑
k=1

Jδik
∂

∂Xk

(
∂Xi

∂ϑ

)

= J
N∑

i=1

∂

∂Xi

(
∂Xi

∂ϑ

)
, (A.23)

where the following relation is used:

N∑
j=1

(−1)i+jΔij
∂Xk

∂Yj
= Jδik,

and the summation sign
∑

is shown explicitly to make the order of summation
explicit for clarity of deformation. With the aid of Eq. (A.23), the last integral
in Eq. (A.22) is deformed into an integral over the domain D(ϑ):∫

D(0)

g(X, ϑ)
∂J

∂ϑ
dY =

∫
D(0)

g(X, ϑ)
N∑

i=1

∂

∂Xi

(
∂Xi

∂ϑ

)
JdY

=
∫
D(ϑ)

g(X, ϑ)
N∑

i=1

∂

∂Xi

(
∂Xi

∂ϑ

)
dX.

15Consideration of the transformation T with a positive determinant is sufficient for the
present purpose.

16The submatrix is defined as the matrix obtained by deleting the row and column contain-
ing the element Tij from the matrix T. The (−1)i+jΔij is called the cofactor of the element
Tij .
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With this relation in Eq. (A.22), we obtain

d
dϑ

∫
D(ϑ)

g(X, ϑ)dX

=
∫
D(ϑ)

[
∂g(X, ϑ)

∂ϑ
+

N∑
i=1

∂

∂Xi

(
∂Xi

∂ϑ
g(X, ϑ)

)]
dX

=
∫
D(ϑ)

∂g(X, ϑ)
∂ϑ

dX +
∫

∂D(ϑ)

g(X, ϑ)
(

∂Xw

∂ϑ
·nw

)
d2X.

The last equation is obtained with the aid of Gauss’s divergence theorem. The
transformation Xi = Xi(Yj , ϑ) is not unique for a given deformable D(ϑ), but
the quantity (nw·∂Xw/∂ϑ) in the last integral is uniquely determined by D(ϑ),
irrespective of the choice of Xi = Xi(Yj , ϑ). �

A.2 Collision integral

A.2.1 Binary collision

In the Boltzmann equation [Eq. (A.21) or Eq. (1.5) with (1.6)] or in its derivation
in Section A.1, we encounter the relation [Eq. (A.19), (1.7), or (A.6)] between
the initial and final velocities of collision of two molecules. Here, we will give
its derivation.

Two molecules, molecule 0 and molecule 1, are in motion under the inter-
molecular potential. In the derivation of the Boltzmann equation, it is assumed
that the intermolecular potential is a function of the distance between the two
molecules and that its effect extends to a finite distance dm. What we are inter-
ested in here is the relation between the velocities of the two molecules before
and after the interaction. Let ξ and ξ′ be, respectively, the velocities of the
molecule 0 before and after the interaction, and let ξ∗ and ξ′

∗ be those of the
molecule 1. Then, owing to the conservation laws of the momentum and energy
of the system,

ξ + ξ∗ = ξ′ + ξ′
∗, (A.24)

ξ2 + ξ2
∗ = ξ′2 + ξ′2

∗ . (A.25)

Generally, an external force, if any, is so small compared to the short-range
intermolecular force that it does not produce an appreciable effect on the above
conservation equations. The velocities after the interaction can be determined
by those of before with additional two parameters.

As these parameters, we introduce a unit vector α specifying the change of
the direction of the velocity of molecule 0 by the interaction, i.e.,

ξ′ − ξ = Aα, (A.26)

where A is an undetermined constant. From Eqs. (A.24) and (A.26),

ξ′
∗ − ξ∗ = −Aα. (A.27)
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Eliminating ξ′2 and ξ′2
∗ in Eq. (A.25) with the aid of Eqs. (A.26) and (A.27), we

have
A = α · (ξ∗ − ξ).

Therefore, we have

ξ′ = ξ + [α · (ξ∗ − ξ)]α, (A.28a)
ξ′
∗ = ξ∗ − [α · (ξ∗ − ξ)]α, (A.28b)

where α and −α are noted to give the same final velocities (ξ′, ξ′
∗). The relative

velocity ξ′
∗ − ξ′ after collision is calculated as

ξ′
∗ − ξ′ = ξ∗ − ξ − 2[α · (ξ∗ − ξ)]α. (A.29)

Thus,
α · (ξ′

∗ − ξ′) = −α · (ξ∗ − ξ), (A.30)

and further from Eq. (A.29),

(ξ′
∗ − ξ′)2 = (ξ∗ − ξ)2. (A.31)

The relative speed remains unchanged.
The transformation from the initial velocities to the final is a linear trans-

formation. Its inverse is easily obtained from Eqs. (A.28a) and (A.28b) with the
aid of Eq. (A.30) as

ξ = ξ′ + [α · (ξ′
∗ − ξ′)]α, (A.32a)

ξ∗ = ξ′
∗ − [α · (ξ′

∗ − ξ′)]α. (A.32b)

The transformation given by Eqs. (A.28a) and (A.28b) and its inverse, Eqs.
(A.32a) and (A.32b), being of the same form, it is easily seen that the absolute
value of the Jacobian of the transformation given by Eqs. (A.28a) and (A.28b)
is unity. That is, ∣∣∣∣∂(ξ′, ξ′

∗)
∂(ξ, ξ∗)

∣∣∣∣ = 1. (A.33)

The Jacobian is easily seen to be −1 by direct calculation.
Finally, it is noted that a simple geometrical representation of the relations

(A.28a) and (A.28b) is given in Fig. A.1 in Section A.1, where (ξ(1), ξ(2)) and
(ξ(1)′, ξ(2)′) correspond, respectively, to (ξ′, ξ′

∗) and (ξ, ξ∗) in this subsection.17

A.2.2 Symmetry relation and its applications

Consider the following bilinear form related to the collision integral:

J(f, g) =
1

2m

∫
all α
all ξ∗

(f ′g′∗ + f ′
∗g

′ − fg∗ − f∗g)BdΩ(α)dξ∗, (A.34)

B = B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|).
17The relation between (ξ, ξ∗) and (ξ′, ξ′∗) is symmetric. We do not have to distinguish

which is before or after the interaction and use the notation interchangeably.
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The collision integral of the Boltzmann equation is expressed as J(f, f). For a
given function ϕ(ξ) of ξ, we define the integral Inϕ[J(f, g)]

Inϕ[J(f, g)] =
∫

all ξ

ϕ(ξ)J(f, g)dξ

=
1

2m

∫
ϕ(ξ)(f ′g′∗ + f ′

∗g
′ − fg∗ − f∗g)BdΩ(α)dξ∗dξ. (A.35)

We will derive different expressions of Inϕ[J(f, g)] with the aid of the following
transformation:
(TrA): Transcribe the letters (ξ, ξ∗) → (ξ∗, ξ). By this transcription, |ξ∗ − ξ|
and |α · (ξ∗ − ξ)| remain unchanged, but (ξ′, ξ′

∗) changes to (ξ′
∗, ξ

′) owing to
Eqs. (A.28a) and (A.28b). As a result, B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|) and
f ′g′∗ + f ′

∗g
′ − fg∗ − f∗g remain unchanged.

(TrB): First perform the change of variables of integration (ξ, ξ∗, α) → (ξ′, ξ′
∗, α).

According to the discussion in Section A.2.1, the absolute value of the Jaco-
bian of the transformation is unity [Eq. (A.33)], |α · (ξ′

∗ − ξ′)| = |α · (ξ∗ − ξ)|
[Eq. (A.30)], |ξ′

∗ − ξ′| = |ξ∗ − ξ| [Eq. (A.31)], and (ξ, ξ∗) is expressed in (ξ′, ξ′
∗)

by Eqs. (A.32a) and (A.32b). Then, transcribe the letters (ξ′, ξ′
∗) → (ξ, ξ∗).

As a result, the original B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|) remains unchanged;
the old ξ and ξ∗ are replaced by the new ξ′ and ξ′

∗ given by Eqs. (A.28a) and
(A.28b) with the new ξ and ξ∗, and thus, f ′g′∗ + f ′

∗g
′ − fg∗ − f∗g changes its

sign.
Performing the transformation (TrA) or (TrB) to Eq. (A.35) or the result of

the transformation, we obtain its four different expressions

Inϕ[J(f, g)] =
1

2m

∫
ϕ(ξ)(f ′g′∗ + f ′

∗g
′ − fg∗ − f∗g)BdΩ(α)dξ∗dξ; (A.36a)

applying the transformation (TrA) to Eq. (A.35),

=
1

2m

∫
ϕ(ξ∗)(f

′g′∗ + f ′
∗g

′ − fg∗ − f∗g)BdΩ(α)dξ∗dξ; (A.36b)

applying the transformation (TrB) to Eq. (A.35),

=
−1
2m

∫
ϕ(ξ′)(f ′g′∗ + f ′

∗g
′ − fg∗ − f∗g)BdΩ(α)dξ∗dξ; (A.36c)

and applying the transformation (TrB) to Eq. (A.36b),

=
−1
2m

∫
ϕ(ξ′

∗)(f
′g′∗ + f ′

∗g
′ − fg∗ − f∗g)BdΩ(α)dξ∗dξ. (A.36d)

Combining the two equations (A.36a) and (A.36b) or the four (A.36a)–(A.36d),
we have

Inϕ[J(f, g)] =
1

4m

∫
(ϕ + ϕ∗)(f ′g′∗ + f ′

∗g
′ − fg∗ − f∗g)BdΩ(α)dξ∗dξ

=
1

8m

∫
(ϕ + ϕ∗ − ϕ′ − ϕ′

∗)(f
′g′∗ + f ′

∗g
′ − fg∗ − f∗g)BdΩ(α)dξ∗dξ,

(A.36e)
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where
ϕ = ϕ(ξ), ϕ∗ = ϕ(ξ∗), ϕ′ = ϕ(ξ′), ϕ′

∗ = ϕ(ξ′
∗).

Then, rewriting Eq. (A.36e) a little bit as

Inϕ[J(f, g)] =
1

8m

∫
(ϕ + ϕ∗ − ϕ′ − ϕ′

∗)(f
′g′∗ + f ′

∗g
′)BdΩ(α)dξ∗dξ

− 1
8m

∫
(ϕ + ϕ∗ − ϕ′ − ϕ′

∗)(fg∗ + f∗g)BdΩ(α)dξ∗dξ,

and applying the transformation (TrB) to the first integral on the right-hand
side, we have

Inϕ[J(f, g)] =
1

4m

∫
(ϕ′ + ϕ′

∗ − ϕ − ϕ∗)(fg∗ + f∗g)BdΩ(α)dξ∗dξ. (A.36f)

Further, noting (ϕ′ + ϕ′
∗ − ϕ − ϕ∗) = (ϕ′ − ϕ) + (ϕ′

∗ − ϕ∗) and applying the
transformation (TrA) to the integral containing (ϕ′

∗ − ϕ∗) in Eq. (A.36f), we
have

Inϕ[J(f, g)] =
1

2m

∫
(ϕ′ − ϕ)(fg∗ + f∗g)BdΩ(α)dξ∗dξ. (A.36g)

Taking
ϕ(ξ) = a0 + a · ξ + a4ξ

2,

where ar is independent of ξ but may depend on X and t, in Eq. (A.36e) or
(A.36f), we have

Inϕ[J(f, g)] = 0,

owing to Eqs. (A.24) and (A.25).
Similar symmetry relations are naturally derived in the same way as above

for the nondimensional collision integrals Ĵ(f̂ , ĝ) defined by Eq. (1.47b), J (φ, ψ)
by Eq. (1.75c), and their extensions Ĵa(f̂ , ĝ) by Eq. (A.114b) and Ja(φ, ψ) by
Eq. (A.114a), and also for the linearized collision integral and its extension
L(φ) by Eq. (1.75b) and La(φ) by Eq. (A.111). The formulas corresponding
to Eq. (A.36e) are listed here.∫

all ζ

ϕ(ζ)Ĵa(f̂ , ĝ)dζ =
1
2

∫
ϕ(ζ)(f̂ ′ĝ′∗ + f̂ ′

∗ĝ
′ − f̂ ĝ∗ − f̂∗ĝ)B̂adΩ(α)dζ∗dζ

=
1
8

∫
(ϕ + ϕ∗ − ϕ′ − ϕ′

∗)(f̂
′ĝ′∗ + f̂ ′

∗ĝ
′ − f̂ ĝ∗ − f̂∗ĝ)B̂adΩ(α)dζ∗dζ, (A.37)

∫
all ζ

ϕ(ζ)Ja(φ, ψ)Edζ

=
1
2

∫
ϕ(ζ)(φ′ψ′

∗ + φ′
∗ψ

′ − φψ∗ − φ∗ψ)B̂adΩ(α)E∗Edζ∗dζ

=
1
8

∫
(ϕ + ϕ∗ − ϕ′ − ϕ′

∗)(φ
′ψ′

∗ + φ′
∗ψ

′ − φψ∗ − φ∗ψ)B̂aE∗EdΩ(α)dζ∗dζ,

(A.38)
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∫
all ζ

ϕ(ζ)La(φ)Edζ

=
∫

ϕ(ζ)(φ′ + φ′
∗ − φ − φ∗)B̂aE∗EdΩ(α)dζ∗dζ

=
1
4

∫
(ϕ + ϕ∗ − ϕ′ − ϕ′

∗)(φ
′ + φ′

∗ − φ − φ∗)B̂aE∗EdΩ(α)dζ∗dζ, (A.39)

where

ϕ = ϕ(ζ), ϕ∗ = ϕ(ζ∗), ϕ′ = ϕ(ζ′), ϕ′
∗ = ϕ(ζ′

∗),

ζ′ = ζ + [α · (ζ∗ − ζ)]α, ζ′
∗ = ζ∗ − [α · (ζ∗ − ζ)]α,

and the formulas for Ĵ(f̂ , ĝ), J (φ, ψ), and L(φ) are omitted, because Ĵ(f̂ , ĝ) =
Ĵ1(f̂ , ĝ), J (φ, ψ) = J1(φ, ψ), and L(φ) = L1(φ).

Some important properties of the linearized collision integral La(φ) are de-
rived from the symmetry relation (A.39).

Obviously, from Eq. (A.39),∫
all ζ

ϕ(ζ)La(φ)Edζ =
∫

all ζ

φ(ζ)La(ϕ)Edζ. (A.40)

That is, the linearized collision operator is self-adjoint.
Putting ϕ = φ in Eq. (A.39), we have∫

all ζ

φ(ζ)La(φ)Edζ = −1
4

∫
(φ′ + φ′

∗ − φ − φ∗)2B̂aE∗EdΩ(α)dζ∗dζ

≤ 0, (A.41)

where the equality holds when and only when

φ′ + φ′
∗ − φ − φ∗ = 0 almost everywhere,

because B̂a > 0 almost everywhere.18 The function φ that satisfies this relation
is expressed by a linear combination of 1, ζi, and ζ2

i as to be shown in Section
A.2.3. Thus, the equality in Eq. (A.41) holds when and only when φ is a linear
combination of 1, ζi, and ζ2

i .
Obviously, from the first relation of Eq. (A.41), the solution of the homoge-

neous equation
La(φ) = 0 (A.42)

satisfies φ′ + φ′
∗ − φ − φ∗ = 0 almost everywhere, that is,

φ = a0 + aiζi + a4ζ
2
i . (A.43)

Obviously, Eq. (A.43) is the solution of Eq. (A.42) by the definition, Eq. (A.111),
of La. That is, Eq. (A.43) is the only solution of Eq. (A.42).

18See Footnote 5 in Section 1.2 for the definition of almost everywhere.
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From the self-adjoint property (A.40) and the form of the solution of Eq. (A.43),
the relation ∫

all ζ

ϕ(ζ)La(φ)Edζ = 0 for any φ (A.44)

holds when and only when ϕ is a linear combination of 1, ζi, and ζ2
i .

A.2.3 Summational invariant

Let (ξ, ξ∗) be the velocities of two molecules before their collision, and let (ξ′, ξ′
∗)

be those after the collision.19 A function ϕ(ξ) that satisfies the equation

ϕ(ξ′) + ϕ(ξ′
∗) = ϕ(ξ) + ϕ(ξ∗) (A.45)

is called a summational invariant of the collision. The function

ϕ(ξ) = a0 + aiξi + a4ξ
2
i , (A.46)

where ar (r = 0, 1, . . . , 4) is independent of ξi, obviously satisfies Eq. (A.45) or
the function (A.46) is a summational invariant. Our interest here is the general
form of the function ϕ(ξ) that satisfies the relation (A.45).

In view of the discussion in Section A.2.1 and Fig. A.1 in Section A.1, in the
latter of which (ξ(1), ξ(2)) and (ξ(1)′, ξ(2)′) should be replaced, respectively, by
(ξ, ξ∗) and (ξ′, ξ′

∗), the sum ϕ(ξ) + ϕ(ξ∗) for any set of antipodal points (ξ, ξ∗)
on a sphere takes the same value or the sum is constant on the sphere. The
constant may, obviously, vary sphere from sphere. Here, we define an antipodal
function. That is, an antipodal function is defined as a function ϕ(ξ) that
satisfies the condition

ϕ(ξ) + ϕ(ξ∗) = const, (A.47)

for any antipodal points (ξ, ξ∗) on an arbitrary sphere. The constant may de-
pend on the sphere. The function given by Eq. (A.46) is obviously an antipodal
function. The general form of the antipodal function is discussed by Kennard
[1938] and Grad [1949]. We will give its derivation for the class of continuous
functions according to Grad [1949].

First we show that a continuous antipodal function vanishes identically if it
vanishes at the following five points:

ξ = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0, 0). (A.48)

Take the (ξ1, ξ2) plane as shown in Fig. A.2, where the first three and the last
points in Eq. (A.48) are marked by A, B, C, and E, respectively. With the aid of
Eq. (A.47), ϕ(ξ) vanishes at all the lattice points with integer coordinates in the
(ξ1, ξ2) plane, because starting from the pairs [(B, E), (C, 1)], [(E, 1), (A, 2)],
[(C, E), (A, 3)], [(B,C), (A, 4)], we can successively find pairs of antipodal points
at three points of which ϕ(ξ) = 0, for example, in the order of the numbers in
the figure. With the result, we can show that ϕ(ξ) vanishes at all the centers

19See Footnote 17 in Section A.2.1.
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Figure A.2. Lattice points in the (ξ1, ξ2) plane and determination of the ϕ at the
lattice points and so on.

of the squares with integer corners and unit sides. For example, taking the five
pairs of antipodal points [(a, b), (A,C)], [(b, c), (A,B)], [(c, d), (A, 1)], [(a, d),
(A,E)], [(a, c), (b, d)] in Fig. A.2, we have

ϕ(a) + ϕ(b) = ϕ(A) + ϕ(C) = 0, ϕ(b) + ϕ(c) = ϕ(A) + ϕ(B) = 0,

ϕ(c) + ϕ(d) = ϕ(A) + ϕ(1) = 0, ϕ(a) + ϕ(d) = ϕ(A) + ϕ(E) = 0,

ϕ(a) + ϕ(c) = ϕ(b) + ϕ(d),

from which
ϕ(a) = ϕ(b) = ϕ(c) = ϕ(d) = 0.

Thus, we find that ϕ(ξ) = 0 at all the lattice points of the oblique system of size
1/
√

2, and therefore the process can be continued to smaller and smaller lattice.
Thus, ϕ(ξ) vanishes at points dense20 in the (ξ1, ξ2) plane. The function ϕ(ξ)
being assumed continuous, ϕ(ξ) = 0 in the (ξ1, ξ2) plane. With additional data
at ξ = (0, 0, 1), we can show that ϕ(ξ) = 0 in the (ξ1, ξ3) plane in a similar way.
Then, for any point ξ [= (ξ1, ξ2, ξ3)] in the ξ space, taking the pair [((ξ1, ξ2, 0),
(ξ1, 0, ξ3)), ((ξ1, 0, 0), (ξ1, ξ2, ξ3))], we find that ϕ(ξ1, ξ2, ξ3) = 0.

With this preparation, we show the general form of the antipodal function.
Given an antipodal function ψ(ξ), we construct the function (A.46) that takes

20Let X be a metric space, e.g., the X or ‰ space and the (ξ1, ξ2) plane, and let S be a
subset of X. The subset S is called dense in X if every point of X is a limit point of S, or a
point of S (or both) (Rudin [1976]). Continuous functions that coincide on S coincide on X.
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the values of ψ(ξ) at the five points (A.48) by choosing ar properly. From the
discussion of the preceding paragraph, the function thus constructed coincides
with the antipodal function ψ(ξ) for all ξ. That is, the general form of the
antipodal function is given by Eq. (A.46).

The above result that a continuous summational invariant ϕ(ξ) of collision
is expressed by a linear combination of 1, ξi, and ξ2

i is extended to a wider
class of functions by Arkeryd [1972]. That is, a summational invariant ϕ that
is locally integrable is similarly expressed by a linear combination of 1, ξi, and
ξ2
i almost everywhere, that is, it coincides with a continuous summational in-

variant (A.46) almost everywhere.21 The ϕ may be discontinuous at the points
with measure zero in the ξ space, but it is expressed by Eq. (A.46) at the other
points.22 The extension apparently seems to be only of mathematical inter-
est. However, the velocity distribution function generally has discontinuities as
explained in Section 3.1.6, and the summational invariant plays an important
role in the derivation of a Maxwell distribution in Section A.7.1. If the above
statement is not true for the class of functions that allow discontinuities, the
velocity distribution function that describes an equilibrium state (Section A.7.1)
is not necessarily a Maxwellian, and the equalities in Eq. (1.33) with (1.34b) and
Eq. (1.36) for the H function hold for a velocity distribution function other than
a Maxwellian, that is, a Maxwellian is no longer the only special function in the
statement of the H theorem in Section 1.7. Thus, the extension is important
though it requires sophisticated mathematics.

A.2.4 Function B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|)
The function B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|) in the Boltzmann equation (1.5)
with (1.6) in Section 1.2 is defined by Eq. (A.20) in Section A.1. According to
it, the function B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|) is determined by the relation
between the two unit vectors e and α in the binary collision of two molecules.
However, the relation between B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|) and the in-
termolecular potential is not explicitly seen from the definition. We will here
discuss this relation.

Consider the binary collision of two molecules, say, molecule 0 and molecule
1, under the intermolecular potential U(r) [U(r) = 0 for r > dm (≥ 0)], where
r is the distance between the two molecules. Let the velocities of the molecule
0 and molecule 1 when they are going to leave the influence range of the inter-
molecular potential at r = dm be, respectively, ξ and ξ∗, and let the position of
the molecule 1 relative to the molecule 0 be dme at that instant.23 The motion
of the molecule 1 relative to the molecule 0 is in the plane determined by the two
vectors ξ∗ − ξ and e. Take the plane polar coordinate system (r, θ) in the plane

21See Footnote 5 in Section 1.2 for the definition of almost everywhere and measure zero.
22More precisely, a locally integrable function ϕ that satisfies Eq. (A.45) almost everywhere

in the (‰, ‰∗) space. Incidentally, detailed discussion of the local behavior of the function
related to the domain of ‰ is discussed in Wennberg [1992].

23Corresponding to the discussion from Eqs. (A.10) to (A.13) in Section A.1, we choose the
state where the interaction of the two particles ends as the reference state.
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Figure A.3. Binary collision and the parameters θe, θc, and b. Molecule 0 and
molecule 1 are, respectively, indicated by (0) and (1).

with its origin at the molecule 0 and θ = 0 in the direction ξ∗ − ξ, and let the
position of the molecule 1 at the end of the interaction in the plane be (dm, θe)
(0 ≤ θe ≤ π/2; see Fig. A.3). The motion of the molecule 1 is determined by
the equations (the energy and angular momentum equations)

1
4
m
(
ṙ2 + r2θ̇2

)
+ U(r) =

1
4
mV2, (A.49a)

r2θ̇ = −Vb, (A.49b)

where ṙ =dr/dt, θ̇ =dθ/dt, V = |ξ∗−ξ|, and b = dm| sin θe|. Thus, the trajectory
of the relative motion of the molecule 1 is determined by the equation

b2

r4

(
dr

dθ

)2
= 1 − 4U(r)

mV2
− b2

r2
. (A.50)

Let rc be the largest solution of the equation

1 − 4U(r)
mV2

− b2

r2
= 0,

and θc is the value of θ at r = rc. Then the trajectory that extends to dm (and
thus infinity) exists only in the range r ≥ rc, and the trajectory is obviously
symmetric with respect to θ = θc. From the latter property and the relations
(A.30) and (A.31), we find that α is in the direction of θ = θc or θc + π. From
Eq. (A.50),

θc − θe = −b

∫ rc

dm

r−2

(
1 − 4U(r)

mV2
− b2

r2

)−1/2

dr

= | sin θe|
∫ 1

xc

x−2

(
1 − 4U0

mV2
Û(x) − sin2 θe

x2

)−1/2

dx, (A.51)
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where Û(x) = U(r)/U0, x = r/dm, and xc is the largest solution of the equation

1 − 4U0

mV2
Û(x) − sin2 θe

x2
= 0.

The nondimensional potential Û(x) vanishes for x > 1. The solution xc is a
function of θe and U0/mV2, and its functional form is determined by Û(x). So
is θc. Owing to the symmetry of the trajectory with respect to the line θ = θc,
the relation between θe and θc is the same when the configuration (dm, θe) with
0 ≤ θe ≤ π/2 in Fig. A.3 is the state where the molecule 1 is going to interact
with the molecule 0.

To derive the concrete expression of B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|) in
terms of the intermolecular potential, we have to express the relation (A.11),
i.e.,

α = α(e, ξ∗ − ξ), (A.52)

in terms of the potential. Let ξ′ and ξ′
∗ be, respectively, the velocities before

the interaction of the two particles corresponding to ξ and ξ∗. According to the
discussion of Section A.2.1, the vector α is on the plane made by the two vectors
ξ∗ − ξ and ξ′ − ξ′

∗ and equally divides the angle between them (see Fig. A.1,
where ξ(1), ξ(2), ξ(1)′, and ξ(2)′ correspond, respectively, to ξ, ξ∗, ξ′, and ξ′

∗).
From the symmetry of the relative trajectory of the molecule 1 with respect
to θ = θc, the unit vector α is in the direction θc (or θc + π) on the plane of
the relative trajectory. Let the spherical coordinate representations of e and
α be, respectively, (1, θ̃e, ϕe) and (1, θα, ϕα). Then, we can take θ̃e = θe and
θα = θ̄c, ϕα = ϕe (θ̄c = θc + mπ; 0 ≤ θ̄c ≤ π/2) and θα = π − θ̄c, ϕα = ϕe + π
(θ̄c = θc + mπ; π/2 ≤ θ̄c ≤ π), where α is made unique in such a way that
α · (ξ∗− ξ) > 0, which is adopted in the following discussion. From the relation
between θe and θc obtained in the preceding paragraph, we can derive the
expression of B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|).

The solid angle elements dΩ(e) and dΩ(α) are expressed in the spherical
coordinates as

dΩ(e) = sin θ̃edθ̃edϕe, dΩ(α) = sin θαdθαdϕα.

In view of the relation among θ̃e, ϕe, θα, ϕα, θe, θc, and θ̄c given in the preceding
paragraph,

dΩ(e) =
∣∣∣∣ sin θe

sin θc

dθe

dθc

∣∣∣∣ dΩ(α), (A.53)

where θe is a function of θc with the parameter U0/mV2, given by inverting
Eq. (A.51). In view of the relations

| cos θc| = |α · (ξ∗ − ξ)|/|ξ∗ − ξ| and V = |ξ∗ − ξ|, (A.54)

the function |(sin θe/ sin θc)dθe/dθc| , as well as θe, is a function of |α · (ξ∗ −
ξ)|/|ξ∗ − ξ| and (m/U0)1/2|ξ∗ − ξ|. On the other hand, from the definition
(A.20) of B,

dΩ(e) =
2B

d2
m|ξ∗ − ξ|| cos θe|

dΩ(α), (A.55)
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because |e · (ξ∗ − ξ)| = |ξ∗ − ξ|| cos θe|. Comparing the two relations (A.53) and
(A.55), and noting the comment just after Eq. (A.54), we find that the function
B is expressed with the aid of a nondimensional function of |α ·(ξ∗−ξ)|/|ξ∗−ξ|
and (m/U0)1/2|ξ∗ − ξ| in the form

B =
d2

m|ξ∗ − ξ|
2

fB(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, (m/U0)1/2|ξ∗ − ξ|), (A.56a)

where

fB(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, (m/U0)1/2|ξ∗ − ξ|) =
1
2

∣∣∣∣ sin 2θe

sin θc

dθe

dθc

∣∣∣∣ . (A.56b)

The following function B is sometimes used instead of B :

B(θα, |ξ∗ − ξ|) = B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|) sin θα. (A.57)

In the above discussion, the range of e is e · (ξ∗ − ξ) ≥ 0. In the derivation
of the Boltzmann equation in Section A.1, the range of e is extended to the
whole sphere (0 ≤ θ̃e ≤ π, 0 ≤ ϕe < 2π). Correspondingly, α is extended in
such a way that −e gives −α [see from Eqs. (A.10) to (A.13)] and the function
B is extended in such a way that −α gives the same value as α, i.e., B is even
with respect to α. With this extension in mind, we have taken the redundant
absolute value of α · (ξ∗ − ξ) in the above discussion. Thus, the function B in
Eq. (A.56a) applies in the extended domain as it is. Incidentally, B in the whole
domain is also obtained directly by Eq. (A.56a) with (A.56b) if the relation
(A.51) between θe and θc is used (this is the reason why the absolute sign is
used there).24

It should be noted here that several e’s may correspond to a single α, al-
though the opposite correspondence (e → α) is unique.25 Let fB1, fB2, . . . , fBm

correspond to a single α according to the multiple correspondence of e. Then
the function B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|) is given by

B =
d2

m|ξ∗ − ξ|
2

m∑
n=1

fBn. (A.58)

In the derivation of the Boltzmann equation in Section A.1, the intermolec-
ular potential U(r) is assumed to be effective only in the finite range r ≤ dm.
The two terms of its collision integral

JG =
1
m

∫
f ′f ′

∗B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|)dΩ(α)dξ∗,

JL =
1
m

∫
f f∗B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|)dΩ(α)dξ∗,

24Here, ¸ = (1, θα, ϕα) corresponds to e = (1, θ̃e, ϕe) with ϕα = ϕe in the damin (0 ≤ θ̃e ≤
π/2, 0 ≤ ϕe < 2π). The correspondence is extended in the domain (0 ≤ θ̃e ≤ π, 0 ≤ ϕe < 2π)
in such a way that −e = (1, π− θ̃e, ϕe +π) corresponds to −¸ = (1, π− θα, ϕα +π). In terms
of θe and θc, the correspondence −e to −¸ is θe + π to θc + π. Equation (A.51) with the
absolute value for sin θe gives the corresponding extension.

25We have chosen one of ¸ and −¸ according to the discussion from Eqs. (A.10) to (A.13)
in Section A.1.
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which correspond, respectively, to I+ given by Eq. (A.13) and I− by Eq. (A.10),
take finite values and are called, respectively, the gain and loss terms of the
collision integral.

In the Boltzmann equation (1.5) with (1.6), the effect of intermolecular po-
tential is condensed in the function B(|α·(ξ∗−ξ)|/|ξ∗−ξ|, |ξ∗−ξ|). The function
B can be defined even for an intermolecular force extending up to infinity. That
is, first taking the limit of Eq. (A.51) as dm → ∞ with b kept at a finite value,
we have

θc = b

∫ ∞

rc

r−2

(
1 − 4U(r)

mV2
− b2

r2

)−1/2

dr, (A.59)

where rc is the largest solution of the equation

1 − 4(mV2)−1U(r) − b2r−2 = 0,

and from Eq. (A.59), b is expressed as an inverse function b(θc). Then, substitute
this function b(θc) into the following expression of B(|α·(ξ∗−ξ)|/|ξ∗−ξ|, |ξ∗−ξ|)
obtained from Eqs. (A.53) and (A.55),

B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|) =
1
4
|ξ∗ − ξ|d2

m

∣∣∣∣ 1
sin θc

∂ sin2 θe

∂θc

∣∣∣∣
=

1
4
|ξ∗ − ξ|

∣∣∣∣ 1
sin θc

∂b2

∂θc

∣∣∣∣ . (A.60)

The Boltzmann equation (1.5) with (1.6) where the function B obtained for
an intermolecular force extending to infinity is substituted is called the Boltz-
mann equation with an infinite-range intermolecular potential without verifi-
cation. Each of the two terms of the collision integral, JG or JL, is divergent.
However, when the potential decays faster than some speed, the collision integral
as a whole converges.

Consider the potential of an inverse power of r, i.e.,

U(r) =
a0

rn−1
(a0 > 0, n > 1).

Then, from Eq. (A.59), by the change of variable y = b/r,

θc =
∫ yc

0

[
1 −

(
4a0

mV2bn−1

)
yn−1 − y2

]−1/2

dy,

where yc (> 0) is the smallest solution of the equation

1 −
(

4a0

mV2bn−1

)
yn−1 − y2 = 0.

Obviously, yc and thus θc are functions of 4a0/mV2bn−1. Therefore, b is ex-
pressed in the product of a function of V (= |ξ∗ − ξ|) and that of θc, i.e.,

b =
(

4a0

m

)1/(n−1)

|ξ∗ − ξ|−2/(n−1)g(θc). (A.61)
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The function g(θc) is the inverse function of the integral

θc =
∫ yc(g)

0

[
1 −

(
y

g

)n−1

− y2

]−1/2

dy, (A.62a)

where yc(g) is the positive solution, which is unique, of the equation

1 − (y/g)n−1 − y2 = 0. (A.62b)

When g varies from 0 to ∞, from Eq. (A.62b), yc(g) increases monotonically
from 0 and approaches 1 as yc = 1 − g−(n−1)/2 ; then, from Eq. (A.62a), θc(g)
increases monotonically from 0 and approaches π/2.26 The speed of approach
is estimated in Eqs. (A.67)–(A.69).

From Eq. (A.60), with b in Eq. (A.61), the function B or B for the inverse-
power potential is given by

B(θα, |ξ∗ − ξ|) = B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|) sin θα

=
1
4

(
4a0

m

)2/(n−1)

|ξ∗ − ξ|n−5
n−1

dg2

dθc
(0 ≤ θα ≤ π/2), (A.63)

and it is symmetric with respect to θc = π/2. The collision integral for the
inverse-power potential is expressed, with g as an integration variable, as

J(f, f) =
1
m

(
4a0

m

)2/(n−1) ∫
0≤g<∞
0≤ϕ<2π

all ξ∗

(f ′f ′
∗ − f f∗)|ξ∗ − ξ|(n−5)/(n−1)gdgdϕdξ∗,

(A.64)
where α in f ′f ′

∗ is a function of g and ϕ through Eq. (A.62a) because it is a
function of θc and ϕ. Owing to the integration with respect to g, the gain and
loss terms in the integral (A.64) diverge, but the integral as a whole converges
for n > 3 for smooth f (or f with the continuous first derivative with respect to
ξ) as shown in the next paragraph. When n = 5, the factor |ξ∗−ξ|(n−5)/(n−1) is
reduced to unity, which simplifies analyses, and the molecule with this potential
is called the Maxwell molecule. From Eq. (A.63), the function B or B for the
Maxwell molecule is given by

B(θα, |ξ∗ − ξ|) = B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|) sin θα

=
1
4

(
4a0

m

)1/2 dg2

dθc
(0 ≤ θα ≤ π/2). (A.65)

The difference f ′f ′
∗ − f f∗ in the integrand of Eq. (A.64) is estimated to be

|f ′f ′
∗ − f f∗| = O(|π/2 − θc|), (A.66)

26In view of the range of θc, θc = θα from the definition given after Eq. (A.52).
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for a smooth f with the aid of the relations (1.7) [or (A.19)] and (A.54). The
relation (A.62a) between θc and g can easily be integrated for n = 2 and 3 as

θc =
π

2
− Arcsin

(
1√

4g2 + 1

)
=

π

2
− 1

2g
+ · · · (n = 2), (A.67)

θc =
π

2
g√

1 + g2
=

π

2

(
1 − 1

2g2
+ · · ·

)
(n = 3). (A.68)

For other values of n, θc for large values of g is estimated as follows. First we
put

x2 = y2

(
1 +

yn−3

gn−1

)
.

Then, x ranges from 0 to 1 while y varies from 0 to yc. When n > 3 (n : not
necessarily integer), we have

y = x

(
1 +

yn−3

gn−1

)−1/2

= x

(
1 − xn−3

2gn−1
+ · · ·

)
,

and
d y

dx
= 1 − (n − 2)xn−3

2gn−1
+ · · · .

Then,

θc =
∫ yc(g)

0

[
1 − (y/g)n−1 − y2

]−1/2
dy

=
∫ 1

0

1
(1 − x2)1/2

(
1 − (n − 2)xn−3

2gn−1
+ · · ·

)
dx

=
π

2
− O

(
1

gn−1

)
. (A.69)

Collecting these estimates (A.66)–(A.69), we find that the collision integral
(A.64) converges as a whole for smooth f when n > 3.

The range of integral with respect to g is sometimes limited artificially to a
finite range 0 ≤ g ≤ g0 in the collision integral (A.64). Then each term of the
integral takes a finite value. The cutoff integral is called the collision integral
for the pseudo inverse-power potential and the imaginary molecule is called
the pseudo inverse-power molecule, especially the pseudo Maxwell molecule for
n = 5. For the pseudo Maxwell molecule, the collision integral (A.64) is reduced
to

J(f, f) =
(

4a0

m3

)1/2 ∫
0≤g≤g0
0≤ϕ<2π

all ξ∗

f ′f ′
∗gdgdϕdξ∗ − Acρf, (A.70)

Ac = π

(
4a0

m3

)1/2

g2
0 , ρ =

∫
all ξ

fdξ.
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To limit the integration to the finite range 0 ≤ g ≤ g0 means that the pairs of
molecules whose deflections by the interaction are smaller than some value, i.e.,
|θc(g) − π/2| < ε with g0 = g(π/2 − ε), are not counted to have made collision.
Generally, not only for the inverse-power potential, the collision integral where
the range of integration is limited to make its gain and loss terms converge
separately is called the collision integral with a cutoff potential.27

The nondimensional form B̂ of the function B is introduced in Section 1.9,
that is,

B̂ =
B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|)

B0
,

B0 = 4
√

πd2
m(RT0)1/2.

In view of Eqs. (A.56a),

B̂ =
1

4
√

2π
|ζ∗ − ζ|fB(|α · (ζ∗ − ζ)|/|ζ∗ − ζ|, (2mRT0/U0)1/2|ζ∗ − ζ|). (A.71)

Thus, the nondimensional function B̂ is a function of |α · (ζ∗ − ζ)|/|ζ∗ − ζ| and
|ζ∗ − ζ| with the parameter (mRT0/U0)1/2. The function B̂ is proportional to
(mRT0/U0)−1/2 when it is considered as a function of |α · (ζ∗−ζ)|/|ζ∗−ζ| and
(mRT0/U0)1/2|ζ∗ − ζ|. The nondimensional form B̂ of B is defined by

B̂ = B/B0 = B̂ sin θα. (A.72)

In the case of the inverse-power potential, according to the second formula
of Eq. (1.48d), the formal calculation of B0 and B̂ gives

B0 = π

(
4a0

m

) 2
n−1

(2RT0)
n−5

2(n−1)

∫
EE∗|ζ∗ − ζ|n−5

n−1 dζ∗dζ

∫ π/2

0

dg2

dθc
dθc,

(A.73a)

B̂ = B̂ sin θα = C0|ζ∗ − ζ|(n−5)/(n−1) dg2

dθc
, (A.73b)

where
C0 =

1

4π

∫
EE∗|ζ∗ − ζ|(n−5)/(n−1)dζ∗dζ

∫ π/2

0

dg2

dθc
dθc

.

The integral
∫ π/2

0
(dg2/dθc)dθc in B0 or C0 diverges because g increases fast

enough indefinitely as θc tends to π/2 [see the estimate just after Eq. (A.62b)],
27The cutoff potential where the range of θc is limited is called an angular cutoff potential.

The angular cutoff potential, including the pseudo inverse-power potential, is not a fixed
potential which is obtained by modifying the original potential. That is, in the angular cutoff
potential, the two molecules, molecule 0 and molecule 1, interact in the following way. The
molecules 1 that approach the molecule 0 in the range 0 ≤ b ≤ bc (see Fig.A.3 with the
molecular velocities reversed), where bc is determined by the relative speed, the cutoff angle,
and the potential, behave as if they are in the original potential field. Those outside of this
range (b > bc) are not subject to any force and continue their rectilinear constant motion.
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and therefore this B0 has no meaning as a nondimensionalizing factor and an-
other quantity should be chosen as the factor. In the cutoff potential (or pseudo
inverse-power potential), the contribution in a neighborhood of θc = π/2 is
neglected and the integral is made to take a finite value. With this value of
B0 or C0, Eq. (A.73b) gives the function B̂ or B̂ for the pseudo inverse-power
potential.28

A.2.5 Spherically symmetric field of a symmetric tensor

Let lij be a three-dimensional orthogonal transformation matrix, i.e.,

likljk = δij . (A.74)

A tensor field F̂i1 ,...,im(ζi) that satisfies the relation

F̂i1 ,...,im(lijζj) = li1j1 · · · limjm
F̂j1 ,...,jm(ζi), (A.75)

is called spherically symmetric. A tensor field F̂i1 ,...,im
(ζi) is called axially sym-

metric with respect to an axis ai, when the relation (A.75) holds for the limited
set of lij that satisfies the relation

ai = lijaj ,

for a fixed ai in addition to Eq. (A.74).
Put

F (ζi) = Op[φ1(ζi), φ2(ζi), . . .],

where Op[∗, . . .] is an operator and φs(ζi) is a function of ζi. Take the new
function φsR(ζi) defined by

φsR(ζi) = φs(lijζj).

If the operator Op[∗, . . .] satisfies the relation

F (lijζj) = Op[φ1R(ζi), φ2R(ζi), . . .], (A.76)

for arbitrary φs, then the operator Op[∗, . . .] is called isotropic. The collision
operators Ĵ(∗, ∗), Ĵa(∗, ∗), J (∗, ∗), Ja(∗, ∗), L(∗), and La(∗), which are defined,
respectively by Eqs. (1.47b), (A.114b), (1.75c), (A.114a), (1.75b), and (A.111),
are isotropic (see Section A.2.6).

Put

F̂i1 ,...,im,in,...,is(ζi) = [J ](ζi1 · · · ζim f(ζ), ζin · · · ζisg(ζ)),

Ĝi1 ,...,im(ζi) = [L](ζi1 · · · ζim f(ζ)),

where [J ](∗, ∗) represents Ĵ(∗, ∗), Ĵa(∗, ∗), J (∗, ∗), or Ja(∗, ∗) and [L](∗) repre-
sents L(∗) or La(∗), and f(ζ) and g(ζ) are functions of ζ. The F̂i1 ,...,im,in,...,is(ζi)

28This B0 may be taken as a B0 for the corresponding non-cutoff potential. See Footnote
21 in Section 1.9.
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is obviously symmetric with respect to the subscripts i1, . . . , im and to in, . . . , is,
and so is Ĝi1 ,...,im(ζi) with respect to the subscripts i1, . . . , im. From the isotropic
property (A.76) of the collision operators and the bilinearity of [J ](f̂(ζi), ĝ(ζi))
with respect to f̂(ζi) and ĝ(ζi) or the linearity of [L](f̂(ζi)) with respect to f̂(ζi),
we have

F̂i1 ,...,im,in,...,is
(lijζj) = li1j1 · · · limjm

linjn
· · · lisjs

F̂j1 ,...,jm,jn,...,js
(ζi), (A.77a)

Ĝi1 ,...,im(lijζj) = li1j1 · · · limjm
Ĝj1 ,...,jm(ζi). (A.77b)

Thus the tensor fields [J ](ζi1 · · · ζim f(ζ), ζin · · · ζisg(ζ)) and [L](ζi1 · · · ζim f(ζ))
are spherically symmetric.

Let Φi1 ,...,im
(ζk) be a tensor field spherically symmetric of a symmetric ten-

sor, i.e., Φi1 ,...,im
(ζk) is symmetric with respect to the subscripts (i1, . . . , im)

and satisfies the relation

Φi1 ,...,im(lkhζh) = li1j1 · · · limjmΦj1 ,...,jm(ζk), (A.78)

where
likljk = δij .

The general form of Φi1 ,...,im
(ζk) is known to be expressed in the following form

(see, for example, Sone [2002] for elementary derivation):

Φi1 ,...,im(ζh) =
[m/2]∑
n=0

gn(ζ)
∑

∗(m,2n)

ζia · · · ζib︸ ︷︷ ︸
m−2n

δicid
· · · δieif︸ ︷︷ ︸
n

, (A.79)

where gn(ζ) is an arbitrary function of ζ, the symbol [m/2] is the largest integer
that does not exceed m/2, and the summation

∑
∗(m,2n) is carried out over

m!/2nn!(m − 2n)! terms in the following way: Divide m subscripts (i1, . . . , im)
into two sets: one with m−2n elements ia, . . . , ib and the other with 2n elements
ic, . . . , if , for which there are m!/(2n)!(m − 2n)! ways of division. For each
division, consider all possible ways to make n pairs (ic, id), . . . , (ie, if ) from the
2n elements ic, . . . , if , which are (2n)!/2nn!. Then there are m!/(2n)!(m−2n)!×
(2n)!/2nn! terms. The

∑
∗(m,2n) means to sum up all these terms. For some

small values of m, Φi1 ,...,im(ζh) is given as follows:

m = 0 : Φ(ζh) = g0(ζ),

m = 1 : Φi(ζh) = ζig0(ζ),

m = 2 : Φi,j(ζh) = ζiζjg0(ζ) + δijg1(ζ),

m = 3 : Φi,j,k(ζh) = ζiζjζkg0(ζ) + (ζiδjk + ζjδki + ζkδij)g1(ζ),

m = 4 : Φi,j,k,l(ζh) = ζiζjζkζlg0(ζ)

+ (ζiζjδkl + ζiζkδjl + ζiζlδjk + ζjζkδil + ζjζlδik + ζkζlδij)g1(ζ)

+ (δijδkl + δikδjl + δilδjk)g2(ζ).
(A.80)
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Let Φi1 ,...,im
(ζk) be a tensor field axially symmetric with respect to axis ai of

a symmetric tensor, i.e., Φi1 ,...,im(ζk) is symmetric with respect to the subscripts
(i1, . . . , im) and satisfies the relation

Φi1 ,...,im
(lkjζj) = li1j1 · · · limjm

Φj1 ,...,jm
(ζk), (A.81)

where
likljk = δij , lijaj = ai.

The general form of Φi1 ,...,im
(ζk) for ai = (0, 0, 1) is expressed in the following

form (see Sone [2002]):

Φi1 ,...,ih︸ ︷︷ ︸
h

,3,...,3︸︷︷︸
m−h

(ζ) =
[h/2]∑
N=0

gN (ζ, ζ3)
∑

∗(h,2N)

ζia · · · ζib︸ ︷︷ ︸
h−2N

δicid
· · · δieif︸ ︷︷ ︸
N

, (A.82)

where any of the indices (i1, . . . , ih) does not take the value 3, gN (ζ, ζ3) is an
arbitrary function of ζ and ζ3 [or (ζ2

1 + ζ2
2 )1/2 and ζ3], and the definition of∑

∗(h,2N) just below Eq. (A.79) is applied here with h for m there. For some
small values of h, Φi1 ,...,ih︸ ︷︷ ︸

h

,3,...,3︸︷︷︸
m−h

(ζh) is given as follows:

h = 0 : Φ3,...,3︸︷︷︸
m

(ζ) = g0(ζ, ζ3),

h = 1 : Φi,3,...,3︸︷︷︸
m−1

(ζ) = ζig0(ζ, ζ3),

h = 2 : Φi,j,3,...,3︸︷︷︸
m−2

(ζ) = ζiζjg0(ζ, ζ3) + δijg1(ζ, ζ3),

h = 3 : Φi,j,k,3,...,3︸︷︷︸
m−3

(ζ) = ζiζjζkg0(ζ, ζ3) + (ζiδjk + ζjδki + ζkδij)g1(ζ, ζ3),

h = 4 : Φi,j,k,l,3,...,3︸︷︷︸
m−4

(ζ) = ζiζjζkζlg0(ζ, ζ3)

+ (ζiζjδkl + ζiζkδjl + ζiζlδjk + ζjζkδil + ζjζlδik + ζkζlδij)g1(ζ, ζ3)

+ (δijδkl + δikδjl + δilδjk)g2(ζ, ζ3),
(A.83)

where i, j, k, and l take the value 1 or 2.

A.2.6 Isotropic property of collision operator

For the convenience of discussion, the definition of isotropic operator in Section
A.2.5 is repeated here. Put

F (ζi) = Op[φ1(ζi), φ2(ζi), . . . ], (A.84)
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where Op[∗, . . .] is an operator and φs(ζi) is a function of ζi. Take the new
function φsR(ζi) defined by

φsR(ζi) = φs(lijζj),

where
likljk = δij . (A.85)

If the operator Op[∗, . . .] satisfies the relation

F (lijζj) = Op[φ1R(ζi), φ2R(ζi), . . .], (A.86)

for arbitrary φs, then the operator Op[∗, . . .] is called isotropic. We will show
that the collision operators Ĵ(∗, ∗) and L(∗) [thus, Ĵa(∗, ∗), J (∗, ∗), Ja(∗, ∗), and
La(∗)], which are defined, respectively by Eqs. (1.47b) and (1.75b) [Eqs. (A.114b),
(1.75c), (A.114a), and (A.111)], are isotropic.

First take the collision integral Ĵ(f̂ , ĝ)

Ĵ(f̂ , ĝ) =
1
2

∫
(f̂ ′ĝ′∗ + f̂ ′

∗ĝ
′ − f̂ ĝ∗ − f̂∗ĝ)B̂(|αiVi|/V, V ) dΩ(α)dζ∗, (A.87)

where

f̂ = f̂(ζi), f̂∗ = f̂(ζi∗), f̂ ′ = f̂(ζ ′i), f̂ ′
∗ = f̂(ζ ′i∗), (A.88)

ζ ′i = ζi + αiαjVj , ζ ′i∗ = ζi∗ − αiαjVj , Vi = ζi∗ − ζi, V = (V 2
i )1/2.

(A.89)

For the convenience of the following discussion, we introduce the notation

f̄(ζi) = f̂(ζ̄i), ḡ(ζi) = ĝ(ζ̄i), ζ̄i = lijζj . (A.90)

With this notation, the isotropic condition on Ĵ(∗, ∗) is expressed as

Ĵ(f̄ , ḡ) = hf,g(ζ̄i),

for
Ĵ(f̂ , ĝ) = hf,g(ζi).

By definition,

Ĵ(f̄ , ḡ) =
1
2

∫
[f̄(ζ ′i)ḡ(ζ ′i∗) + f̄(ζ ′i∗)ḡ(ζ ′i) − f̄(ζi)ḡ(ζi∗) − f̄(ζi∗)ḡ(ζi)]

× B̂(|αiVi|/V, V )dΩ(α)dζ∗

=
1
2

∫
[f̂(lijζ ′j)ĝ(lijζ ′j∗) + f̂(lijζ ′j∗)ĝ(lijζ ′j) − f̂(ζ̄i)ĝ(lijζj∗)

− f̂(lijζj∗)ĝ(ζ̄i)]B̂(|αiVi|/V, V )dΩ(α)dζ∗. (A.91)

Here, we introduce the change of variables of integration from (α, ζ∗) to (ᾱ,
ζ̄∗) defined by

ζ̄i∗ = lijζj∗, ᾱi = lijαj , (A.92)
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and the notation

V̄i = ζ̄i∗ − ζ̄i (= lijVj), V̄ = (V̄ 2
i )1/2. (A.93)

Then, owing to Eq. (A.85),29

ᾱiV̄i = αiVi, V̄ = V, (ᾱ2
i )

1/2 = 1, dΩ(α)dζ∗ = dΩ(ᾱ)dζ̄∗, (A.94)

and from Eqs. (A.89), (A.90), (A.92), and (A.94),

lijζ
′
j = lij(ζj + αjαkVk) = ζ̄i + ᾱiᾱkV̄k, (A.95a)

lijζ
′
j∗ = lij(ζj∗ − αjαkVk) = ζ̄i∗ − ᾱiᾱkV̄k. (A.95b)

Further, with the aid of Eqs. (A.94), (A.95a), and (A.95b),

f̄(ζi) = f̂(ζ̄i), f̄(ζi∗) = f̂(ζ̄i∗),

f̄(ζ ′i) = f̂(lijζ ′j) = f̂(ζ̄i + ᾱiᾱkV̄k) = f̂(ζ̃ ′i),

f̄(ζ ′i∗) = f̂(lijζ ′j∗) = f̂(ζ̄i∗ − ᾱiᾱkV̄k) = f̂(ζ̃ ′i∗),

B̂(|αiVi|/V, V ) = B̂(|ᾱiV̄i|/ V̄ , V̄ ),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (A.96)

where
ζ̃ ′i = ζ̄i + ᾱiᾱkV̄k, ζ̃ ′i∗ = ζ̄i∗ − ᾱiᾱkV̄k. (A.97)

With the aid of these relations, we have

Ĵ(f̄ , ḡ) =
1
2

∫
[f̂(ζ̃ ′i)ĝ(ζ̃ ′i∗) + f̂(ζ̃ ′i∗)ĝ(ζ̃ ′i) − f̂(ζ̄i)ĝ(ζ̄i∗) − f̂(ζ̄i∗)ĝ(ζ̄i)]

× B̂(|ᾱiV̄i|/ V̄ , V̄ )dΩ(ᾱ)dζ̄∗. (A.98)

Here, we transcribe the letters of the variables of integration from (ᾱ, ζ̄∗) to (α,
ζ∗).30 Corresponding to this transcription, we also introduce the transcription

ζ̃ ′i → ζ ′i, ζ̃ ′i∗ → ζ ′i∗, V̄i → Vi, V̄ → V,

which is safely done because the new letters are not included in Eq. (A.98).
With these transcriptions, Eq. (A.98) and the new transcribed letters (ζ ′i, ζ ′i∗,
Vi, V ) are expressed as follows:

Ĵ(f̄ , ḡ) =
1
2

∫
[f̂(ζ ′i)ĝ(ζ ′i∗) + f̂(ζ ′i∗)ĝ(ζ ′i) − f̂(ζ̄i)ĝ(ζi∗) − f̂(ζi∗)ĝ(ζ̄i)]

× B̂(|αiVi|/ V, V )dΩ(α)dζ∗, (A.99)

and

Vi = ζi∗ − ζ̄i, V = (V 2
i )1/2, (A.100a)

ζ ′i = ζ̄i + αiαjVj , ζ ′i∗ = ζi∗ − αiαjVj , (A.100b)

29āib̄i = lijaj likbk = δjkajbk = ajbj .
30This is just a transcription but not a change of the variables.
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with the aid of Eqs. (A.93) and (A.97).
Equation (A.99) with Eqs. (A.100a) and (A.100b) being compared with

Eq. (A.87) with Eqs. (A.88) and (A.89), the only difference is that ζi in the
latter (or in the original collision integral) is replaced by ζ̄i in the former (or in
the collision integral with f̄ and ḡ). That is,

Ĵ(f̄ , ḡ) = hf,g(ζ̄i). (A.101)

Therefore, the collision operator Ĵ(∗, ∗) is isotropic.
Next, take the linearized collision integral defined by Eq. (1.75b)

L(φ) =
∫

E∗(φ′ + φ′
∗ − φ − φ∗)B̂(|αiVi|/V, V )dΩ(α)dζ∗, (A.102)

φ = φ(ζi), φ∗ = φ(ζi∗), φ′ = φ(ζ ′i), φ′
∗ = φ(ζ ′i∗).

Putting
f = Eφ, g = E,

in another expression of Eq. (A.102)31

EL(φ) =
∫

(E′φ′E′
∗ + E′

∗φ
′
∗E

′ − EφE∗ − E∗φ∗E)B̂(|αiVi|/V, V )dΩ(α)dζ∗,

we have

EL(φ) =
∫

(f ′g′∗ + f ′
∗g

′ − fg∗ − f∗g)B̂(|αiVi|/V, V )dΩ(α)dζ∗

= 2Ĵ(Eφ, E) = 2hEφ,E(ζi). (A.103)

Noting the relation
E = Ē, f̄ ḡ = fg,

we have

EL(φ̄) = 2Ĵ(Eφ̄,E) = 2Ĵ(Ēφ̄, Ē) = 2Ĵ(Eφ, Ē) = 2hEφ,E(ζ̄i). (A.104)

The last relation is due to the isotropic property (A.101) of Ĵ(∗, ∗). Compar-
ing Eq. (A.104) with Eq. (A.103), we find that the linearized collision operator
EL(∗), thus L(∗), is isotropic.

A.2.7 Parity of the linearized collision integral L(φ)

Take the linearized collision integral L(φ) defined by Eq. (1.75b), i.e.,

L(φ) =
∫

E∗(φ′ + φ′
∗ − φ − φ∗)B̂ dΩ(α)dV , (A.105)

B̂ = B̂(|α·V |/|V |, |V |),
φ = φ(ζi), φ∗ = φ(ζi∗), φ′ = φ(ζ ′i), φ′

∗ = φ(ζ ′i∗),
ζ ′i = ζi + αjVjαi, ζ ′i∗ = ζi∗ − αjVjαi, ζi∗ = Vi + ζi,

31Note E′E′∗ = EE∗.
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where the variable of integration is changed from ζ∗ to V (= ζ∗−ζ). We will
show that the parity (even or odd) of L(φ) with respect to a component of ζ,
i.e., ζ1, ζ2, or ζ3, agrees with that of φ.

Consider the integral of the form∫
Ψ(χ1, χ2, χ3)ΦE(ζ1∗, ζ2∗, ζ3∗) B̂ (|αiVi|/|Vi|, |Vi|)dΩ(α)dV , (A.106)

where ΦE(ζ1, ζ2, ζ3) is an even function with respect to ζ1, i.e., ΦE(ζ1, ζ2, ζ3) =
ΦE(−ζ1, ζ2, ζ3). The integral (A.106) is denoted, depending on the definition of
χi, by

I : Eq. (A.106) for χi = ζi∗ = Vi + ζi and ΦE = 1, (A.107a)
II : Eq. (A.106) for χi = ζ ′i = ζi + αjVjαi, (A.107b)

III : Eq. (A.106) for χi = ζ ′i∗ = ζi∗ − αjVjαi = Vi + ζi − αjVjαi. (A.107c)

When the function Ψ(χ1, χ2, χ3) is even with respect to the first argument, i.e.,
χ1, it is denoted by ΨE and the subscript 0 is attached to the integral I, II, or
III, and when Ψ is odd with respect to χ1, it is denoted by ΨO and the subscript
1 is attached to the integral. We will examine the parity of the integrals I, II,
and III. In the following manipulation, the change of variables of integration
from Vi and αi to Ṽi and α̃i defined by

Ṽ1 = −V1, Ṽs = Vs, α̃1 = −α1, α̃s = αs (s = 2, 3),

is performed. Noting that

ζi∗ = Vi + ζi, |Ṽi| = |Vi|, α̃iṼi = αiVi,

we can transform the integrals I, II, and III in the following way, where the
subscript s indicates s = 2 and 3:

I0(ζ1, ζs) =
∫

ΨE(V1 + ζ1, Vs + ζs) B̂ (|αiVi|/|Vi|, |Vi|)dΩ(α)dV

=
∫

ΨE(−Ṽ1 + ζ1, Ṽs + ζs) B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

=
∫

ΨE(Ṽ1 − ζ1, Ṽs + ζs) B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= I0(−ζ1, ζs),

I1(ζ1, ζs) =
∫

ΨO(V1 + ζ1, Vs + ζs) B̂ (|αiVi|/|Vi|, |Vi|)dΩ(α)dV

=
∫

ΨO(−Ṽ1 + ζ1, Ṽs + ζs) B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= −
∫

ΨO(Ṽ1 − ζ1, Ṽs + ζs) B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= −I1(−ζ1, ζs),



516 Appendix A. Supplement to the Boltzmann Equation

II0(ζ1, ζs) =
∫

ΨE(ζi + αjVjαi)ΦE(Vi + ζi) B̂ (|αiVi|/|Vi|, |Vi|)dΩ(α)dV

=
∫

ΨE(ζ1 − α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)ΦE(−Ṽ1 + ζ1, Ṽs + ζs)

× B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

=
∫

ΨE(−ζ1 + α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)ΦE(Ṽ1 − ζ1, Ṽs + ζs)

× B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= II0(−ζ1, ζs),

II1(ζ1, ζs) =
∫

ΨO(ζi + αjVjαi)ΦE(Vi + ζi) B̂ (|αiVi|/|Vi|, |Vi|)dΩ(α)dV

=
∫

ΨO(ζ1 − α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)ΦE(−Ṽ1 + ζ1, Ṽs + ζs)

× B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= −
∫

ΨO(−ζ1 + α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)ΦE(Ṽ1 − ζ1, Ṽs + ζs)

× B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= −II1(−ζ1, ζs),

III0(ζ1, ζs) =
∫

ΨE(Vi + ζi − αjVjαi)ΦE(Vi + ζi) B̂ (|αiVi|/|Vi|, |Vi|)dΩ(α)dV

=
∫

ΨE(−Ṽ1 + ζ1 + α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× ΦE(−Ṽ1 + ζ1, Ṽs + ζs) B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

=
∫

ΨE(Ṽ1 − ζ1 − α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× ΦE(Ṽ1 − ζ1, Ṽs + ζs) B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= III0(−ζ1, ζs),

III1(ζ1, ζs) =
∫

ΨO(Vi + ζi − αjVjαi)ΦE(Vi + ζi) B̂ (|αiVi|/|Vi|, |Vi|)dΩ(α)dV

=
∫

ΨO(−Ṽ1 + ζ1 + α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× ΦE(−Ṽ1 + ζ1, Ṽs + ζs) B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= −
∫

ΨO(Ṽ1 − ζ1 − α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× ΦE(Ṽ1 − ζ1, Ṽs + ζs) B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= −III1(−ζ1, ζs).
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Similar relations hold for the variables ζ2 and ζ3. Thus, the parity of the integrals
I, II, and III with respect to a component of ζ, i.e., ζ1, ζ2, or ζ3, agrees with
that of Ψ.

The linearized collision integral L(φ) is expressed as the sum of the three
types of the integrals I, II, and III as

L(φ) =
∫

E∗(φ′ + φ′
∗ − φ − φ∗)B̂ dΩ(α)dζ∗

= II(Ψ = φ,ΦE = E) + III(Ψ = φ,ΦE = E)
− φI0(ΨE = E) − I(Ψ = φE).

Therefore, the parity (even or odd) of L(φ) with respect to a component of ζ,
i.e., ζ1, ζ2, or ζ3, agrees with that of φ.

Incidentally, the collision integral Ĵ(f̂ , f̂) can be easily shown to be even
with respect to ζ1, ζ2, or ζ3 when f̂ is even with respect to ζ1, ζ2, or ζ3 with the
aid of a similar transformation of the variables.

A.2.8 Linearized collision integral La(φ)and integral
equation La(φ)= Ih

The linearized collision integral L(φ)

L(φ(ζ)) =
∫

E(ζ∗)(φ′ + φ′
∗ − φ − φ∗)B̂ dΩ(α)dζ∗, (A.108)

where

B̂ = B̂(|α · (ζ∗ − ζ)|/|ζ∗ − ζ|, |ζ∗ − ζ|), (A.109a)
φ = φ(ζ), φ∗ = φ(ζ∗), φ′ = φ(ζ′), φ′

∗ = φ(ζ′
∗), (A.109b)

ζ′ = ζ + [α · (ζ∗ − ζ)]α, ζ′
∗ = ζ∗ − [α · (ζ∗ − ζ)]α, (A.109c)

is introduced in Section 1.10. This is related to the linear part, with respect to
the perturbation φ, of the collision integral Ĵ(f̂ , f̂) defined by Eq. (1.47b) when
f̂ is given in the form

f̂ = E(ζ)(1 + φ), E(ζ) = π−3/2 exp(−ζ2), ζ = (ζ2
i )1/2.

That is,
Ĵ(E(1 + φ), E(1 + φ)) = 2Ĵ(E, Eφ) + Ĵ(Eφ,Eφ).

Then, L(φ) and J (φ, φ), defined by Eq. (1.75c), are related to Ĵ as

EL(φ) = 2Ĵ(E, Eφ), (A.110a)

EJ (φ, φ) = Ĵ(Eφ, Eφ). (A.110b)

In this sense, L(φ) is called the collision integral linearized around the equilib-
rium state E.
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We introduce a slight extension of L(φ), i.e.,

La(φ(ζ)) =
∫

E(ζ∗)(φ′ + φ′
∗ − φ − φ∗)B̂adΩ(α)dζ∗, (A.111)

B̂a = B̂a(|α · (ζ∗ − ζ)|/|ζ∗ − ζ|, |ζ∗ − ζ|)

=
B̂(|α · (ζ∗ − ζ)|/|ζ∗ − ζ|, |ζ∗ − ζ|a1/2)

a1/2
, (A.112)

where a (> 0) may depend on x and t̂ but is independent of ζ. The operator
L(φ) is the special case a = 1 of La(φ), i.e.,

L(φ) = L1(φ).

For a hard-sphere gas, B̂a = |αi(ζi∗ − ζi)|/4(2π)1/2. For the BKW equation,
the operator La(∗) is consistently defined as linearized in the above sense in the
form

a1/2La(φ) =
∫ [

1 + 2ζiζi∗ +
2
3

(
ζi

2 − 3
2

)(
ζj∗2 − 3

2

)]
φ(ζk∗)E(ζ∗)dζ∗ − φ.

(A.113)
Incidentally, we introduce the extensions Ja(φ, ψ) and Ĵa(f̂ , ĝ) of J (φ, ψ) and
Ĵ(f̂ , ĝ) [see Eqs. (1.75c) and (1.47b)] as

Ja(φ(ζ), ψ(ζ)) =
1
2

∫
E∗(φ′ψ′

∗ + φ′
∗ψ

′ − φψ∗ − φ∗ψ)B̂a dΩ(α)dζ∗, (A.114a)

Ĵa(f̂(ζ), ĝ(ζ)) =
1
2

∫
(f̂ ′ĝ′∗ + f̂ ′

∗ĝ
′ − f̂ ĝ∗ − f̂∗ĝ)B̂a dΩ(α)dζ∗. (A.114b)

The linearized collision integral around a general Maxwellian is related to
La(φ). That is, let f̂ be the Maxwellian

f̂ =
ρ̂

(πT̂ )3/2
exp

(
− (ζi − v̂i)2

T̂

)
. (A.115)

The linearized collision integral 2Ĵ(f̂ , f̂Φ) is expressed with La(∗) as

2Ĵ(f̂ , f̂Φ(ζi)) =
ρ̂2

T̂
E(ζ̃)LT̂ (φ(ζ̃i)), (A.116)

where
ζ̃i = (ζi − v̂i)/T̂ 1/2, φ(ζ̃i) = Φ(ζi), (A.117)

and LT̂ (φ(ζ̃i)) means that ζi, ζi∗, ζ ′i, and ζ ′i∗ in Eqs. (A.111), (A.112), (A.109b),
and (A.109c) are replaced by ζ̃i, ζ̃i∗, ζ̃ ′i, and ζ̃ ′i∗ respectively.

Now take the group of integral equations

La[φi1 ,...,im(ζk)] = Hi1 ,...,im(ζk), (A.118)
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where the inhomogeneous term Hi1 ,...,im
(ζk), which satisfies the solvability con-

dition32 ∫
(1, ζi, ζ

2)Hi1 ,...,im(ζk)E(ζ)dζ = 0,

is assumed to be symmetric with respect to the subscripts (i1, . . . , im) and spher-
ically symmetric, i.e.,

Hi1 ,...,im(lkhζh) = li1j1 · · · limjmHj1 ,...,jm(ζk) with likljk = δij . (A.119)

We will show that the solution φi1 ,...,im
(ζk) of Eq. (A.118) that is orthogonal to

1, ζi, and ζ2 (the solutions of the associated homogeneous equation), i.e.,∫
(1, ζi, ζ2)φi1 ,...,im

(ζk)E(ζ)dζ = 0, (A.120)

is spherically symmetric, i.e.,

φi1 ,...,im(lkhζh) = li1j1 · · · limjmφj1 ,...,jm(ζk), (A.121)

and symmetric with respect to the subscripts (i1, . . . , im).
The operator La(∗) being isotropic [see Eq. (A.76)],

La[φi1 ,...,im
(lkhζh)] = Hi1 ,...,im

(lkhζh)
= li1j1 · · · limjmHj1 ,...,jm(ζk)
= li1j1 · · · limjm

La[φj1 ,...,jm
(ζk)],

with the aid of Eqs. (A.118) and (A.119). By the linearity of La(∗),
La[φi1 ,...,im(lkhζh) − li1j1 · · · limjmφj1 ,...,jm(ζk)] = 0. (A.122)

With the aid of Eq. (A.120), it is easy to show that φi1 ,...,im(lkhζh), and therefore
φi1 ,...,im(lkhζh) − li1j1 · · · limjmφj1 ,...,jm(ζk), is orthogonal to 1, ζi, and ζ2. On
the other hand, the functions 1, ζi, and ζ2 are the only possible independent
solutions of the homogeneous equation La(φ) = 0 [see the last paragraph of
Section A.2.2]. Therefore, φi1 ,...,im(lkhζh)− li1j1 · · · limjmφj1 ,...,jm(ζk) = 0 is the
unique solution of Eq. (A.122). That is,

φi1 ,...,im(lkhζh) = li1j1 · · · limjmφj1 ,...,jm(ζk).

The solution φi1 ,...,im
(ζk) of Eq. (A.118) subject to the orthogonal condition

(A.120) is spherically symmetric. Further,

La[φi1 ,...,ip,...,in,...,im(ζk)] = Hi1 ,...,ip,...,in,...,im(ζk),
La[φi1 ,...,in,...,ip,...,im

(ζk)] = Hi1 ,...,in,...,ip,...,im
(ζk).

Owing to the symmetry of Hi1 ,...,im(ζk) with respect to the subscripts i1, . . . , im,

La[φi1 ,...,ip,...,in,...,im(ζk) − φi1 ,...,in,...,ip,...,im(ζk)] = 0.

The solution φi1 ,...,ip,...,in,...,im(ζk)−φi1 ,...,in,...,ip,...,im(ζk) is orthogonal to 1, ζi,
and ζ2, and therefore is zero, that is, φi1 ,...,im(ζk) is symmetric with respect
to the subscripts i1, . . . , im. Thus, the solution φi1 ,...,im(ζk) is expressed in the
form given by Eq. (A.79).

32The relation is required for Eq. (A.118) to have a solution owing to the relation (A.44).
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A.2.9 Functions defined by La(φ)= Ih and transport
coefficients

Here, we give the definitions of the functions A(ζ, a), B(0)(ζ, a), etc., and the
transport coefficients Γ1(a), Γ2(a), etc., which appear in the main text. They
are expressed with the solutions or their linear combinations of the following
integral equations of the form La(φ) = Ih, the general form of the solution of
which is discussed in Section A.2.8.33

La[ζiA(ζ, a)] = −ζi

(
ζ2 − 5

2

)
, (A.123)

with the subsidiary condition
∫ ∞

0

ζ4A(ζ, a)E(ζ)dζ = 0;

La

[(
ζiζj −

1
3
ζ2δij

)
B(m)(ζ, a)

]
= IB

(m)
ij ; (A.124)

La

[
(ζiδjk + ζjδki + ζkδij) T (0)

1 (ζ, a) + ζiζjζkT (0)
2 (ζ, a)

]
= −ζiζjζkB(0)(ζ, a) + I6(B(0)(ζ, a)) (ζiδjk + ζjδki + ζkδij) , (A.125)

with the subsidiary condition
∫ ∞

0

(
5ζ4T (0)

1 + ζ6T (0)
2

)
E(ζ)dζ = 0;

La

[
(δijδkl + δikδjl + δilδjk)Q(0)

1 (ζ, a)

+(ζiζjδkl + ζiζkδjl + ζiζlδjk + ζjζkδil + ζjζlδik + ζkζlδij)Q(0)
2 (ζ, a)

+ζiζjζkζlQ(0)
3 (ζ, a)

]
= −ζiζjζkζl

(
2B(0)(ζ, a) − 1

ζ

∂B(0)(ζ, a)
∂ζ

)

+
1
3

[
ζ2B(0)(ζ, a) + 2I6(B(0)(ζ, a))

(
ζ2 − 3

2

)]
(δijδkl + δikδjl + δilδjk) ,

(A.126)

with the subsidiary conditions∫ ∞

0

(1, ζ2)
(
15ζ2Q(0)

1 + 10ζ4Q(0)
2 + ζ6Q(0)

3

)
E(ζ)dζ = 0;

33(i) The possible forms of the solutions corresponding to the inhomogeneous terms are put
in Eqs. (A.123)–(A.127). Thus, they are equations for scalar functions.

(ii) The inhomogeneous term of Eq. (A.127) does not have the symmetry used in the
discussion in Section A.2.8. However, we can show that the solution is in the form given in
Eq. (A.127) by an argument (without symmetry condition but for a tensor of the fourth-order)
similar to that in Appendix B of Sone [2002].

(iii) Some relations in the orthogonal condition (A.120), which makes the solution unique,
are automatically satisfied by the solution of the form required from the inhomogeneous term.
The remaining relations are given as the subsidiary conditions.
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La

[
δijδklQ̃(0)

11 (ζ, a) + (δikδjl + δilδjk) Q̃(0)
12 (ζ, a) + (ζiζjδkl + ζkζlδij)Q̃(0)

21 (ζ, a)

+(ζiζkδjl + ζiζlδjk + ζjζkδil + ζjζlδik)Q̃(0)
22 (ζ, a) + ζiζjζkζlQ̃(0)

3 (ζ, a)
]

= Ja(ζiζjB(0)(ζ, a), ζkζlB(0)(ζ, a)), (A.127)

with the subsidiary conditions∫ ∞

0

(1, ζ2)
(
15ζ2Q̃(0)

11 + 10ζ4Q̃(0)
21 + ζ6Q̃(0)

3

)
E(ζ)dζ = 0,∫ ∞

0

(1, ζ2)
(
15ζ2Q̃(0)

12 + 10ζ4Q̃(0)
22 + ζ6Q̃(0)

3

)
E(ζ)dζ = 0.

Here, the inhomogeneous term IB
(m)
ij is given by

IB
(0)
ij = −2

(
ζiζj −

ζ2

3
δij

)
, (A.128a)

IB
(1)
ij =

(
ζiζj −

ζ2

3
δij

)
A(ζ, a), (A.128b)

IB
(2)
ij =

(
ζiζj −

ζ2

3
δij

)(
2(ζ2 − 3)A(ζ, a) − ζ

∂A(ζ, a)
∂ζ

+ 2a
∂A(ζ, a)

∂a

)
,

(A.128c)

IB
(3)
ij = Ja(ζiA(ζ, a), ζjA(ζ, a))−δij

3

3∑
k=1

Ja(ζkA(ζ, a), ζkA(ζ, a)), (A.128d)

IB
(4)
ij =

(
ζiζj −

ζ2

3
δij

)
B(0)(ζ, a), (A.128e)

and In(Z(ζ)) is the integral

In(Z(ζ)) =
8

15
√

π

∫ ∞

0

ζnZ(ζ) exp(−ζ2)dζ. (A.129)

The functions A(ζ), B(ζ), etc. introduced in Section 3.1.2 are related to some
of the solutions defined above as

A(ζ) = A(ζ, 1), B(ζ) = B(0)(ζ, 1), F (ζ) = B(1)(ζ, 1),

D1(ζ) = T (0)
1 (ζ, 1), D2(ζ) = T (0)

2 (ζ, 1).

}
(A.130)

The nondimensional transport coefficients Γ1(a), Γ2(a), etc. are expressed
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in the following integrals of the functions defined above:34

Γ1(a)/a1/2 = I6(B(0)(ζ, a)), Γ2(a)/a1/2 = 2I6(A(ζ, a)),
Γ3(a)/a = I6(A(ζ, a)B(0)(ζ, a)) = −2I6(B(1)(ζ, a)),

Γ7(a) =
dΓ3(a)

da
+ I6(B(2)(ζ, a) + 2B(3)(ζ, a)),

Γ̄7(a) = Γ7(a) − 2
3I6(B(2)(ζ, a) + 2B(3)(ζ, a)),

Γ8(a)/a = −I6(Q3) − 1
7I8(Q4),

Γ9(a)/a = I6(2Q3 − B(4)) + 2
7I8(Q4),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A.131)

where
Q3 = Q(0)

2 − Q̃(0)
22 + B(4), Q4 = Q(0)

3 − Q̃(0)
3 , (A.132)

and the second expression of Γ3(a)/a is derived from the first with the aid of the
self-adjoint property of La [Eq. (A.40)]. The functional forms of the transport
coefficients are determined by molecular models. For example, for a hard-sphere
gas, the quantity on the right-hand side of each equation in the set (A.131) of
formulas is constant, e.g.,

Γ1(a)/a1/2 = 1.270 042 427, Γ2(a)/a1/2 = 1.922 284 066,

Γ3(a)/a = 1.947 906 335, Γ7(a) = 1.758 705, Γ̄7(a) = 1.884 839,

}
(A.133)

and for the BKW model,

Γ1(a)/a = Γ2(a)/a = Γ3(a)/a2 = Γ7(a)/a = Γ9(a)/a = 1,

Γ8(a) = 0, Γ̄7(a)/a = 5/3.

}
(A.134)

It can be shown generally that the nondimensional viscosity and thermal
conductivity, i.e., Γ1(a) and Γ2(a) are positive with the aid of the inequality
(A.41). Putting φ = ζiA(ζ, a) in the inequality (A.41), we have∫

ζiA(ζ, a)La[ζiA(ζ, a)]E(ζ)dζ < 0,

where the equality sign is eliminated because ζiA(ζ, a) is obviously nonzero.
Substituting Eq. (A.123) into the above inequality, we have

0 <

∫
ζ2

(
ζ2 − 5

2

)
A(ζ, a)E(ζ)dζ = 4π

∫ ∞

0

ζ4

(
ζ2 − 5

2

)
A(ζ, a)E(ζ)dζ

= 4π

∫ ∞

0

ζ6A(ζ, a)E(ζ)dζ =
15
2

I6(A(ζ, a)),

where the subsidiary condition to Eq. (A.123) is used. Thus,

Γ2(a) > 0. (A.135)
34For the BKW equation, the following convention should be taken:

B(3) = Q̃(0)
12 = Q̃(0)

22 = Q̃(0)
3 = 0.

This is due to the exceptional form of the BKW equation (see Footnote 35 in Section 3.2.2).
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Similarly, from Eq. (A.124) for m = 0 with (A.128a),

Γ1(a) > 0. (A.136)

A.2.10 Kernel representation of the linearized collision
integral L(φ)

The linearized collision integral L(φ), defined by Eq. (1.75b) with (1.48c),

L(φ) =
∫

E∗(φ′ + φ′
∗ − φ − φ∗)B̂ dΩ(α)dζ∗, (A.137a)

B̂ = B̂(|α · (ζ∗ − ζ)|/|ζ∗ − ζ|, |ζ∗ − ζ|), (A.137b)

is reduced to a standard kernel form, i.e.,
∫

K(ζ,ζ∗)φ(ζ∗)dζ∗ + κ(ζ)φ(ζ), in a
clear way by Grad [1963b]. This form is very useful for analysis and numerical
computation of the Boltzmann equation. The process and result are given here.

The integral is split into three parts as35

L(φ) = LG(φ) − LL2(φ) − νL(ζ)φ, (A.138)

where

LG(φ) =
∫

E∗(φ′ + φ′
∗)B̂dΩ(α)dζ∗, (A.139a)

LL2(φ) =
∫

E∗φ∗B̂ dΩ(α)dζ∗, (A.139b)

νL(ζ) =
∫

E∗B̂ dΩ(α)dζ∗. (A.139c)

Obviously, νL(ζ)φ and LL2(φ) are of desired forms. They can further be reduced
to simpler forms for manipulation.

Take the spherical coordinate representation of α with the direction of ζ∗−ζ
as its polar direction. Let the angle between α and ζ∗−ζ be θ and the angle of
α around ζ∗−ζ be ϕ. Then36

α = ( cos θ, sin θ cos ϕ, sin θ sin ϕ), dΩ(α) = sin θdθdϕ,

|α · (ζ∗ − ζ)| = |ζ∗ − ζ||cos θ|.

The notation B̂(θ, |ζ∗ − ζ|)

B̂(θ, |ζ∗ − ζ|) = B̂(|α · (ζ∗ − ζ)|/|ζ∗ − ζ|, |ζ∗ − ζ|) sin θ,

35Here, we consider the case where each of the gain and loss terms of the collision integral
takes a finite value. It may be noted that LG(φ) is the gain term and LL2(φ) + νLφ is the
loss term.

36The θ and ϕ correspond to θα and ϕα, respectively, in Section A.2.4.
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is introduced, and the notation V is used for ζ∗−ζ, when convenient. Then, in
view of their integrands being independent of ϕ, the integrals LL2(φ) and νL(ζ)
are expressed as

LL2(φ) = 2π

∫
all ζ∗

∫ π

0

E(ζ∗)φ(ζ∗)B̂(θ, |ζ∗ − ζ|) dθ dζ∗, (A.140a)

νL(ζ) = 2π

∫
all ζ∗

∫ π

0

E(ζ∗)B̂(θ, |ζ∗ − ζ|) dθ dζ∗. (A.140b)

Putting

K2(ζ, ζ∗) = 2πE(ζ∗)
∫ π

0

B̂(θ, |ζ∗ − ζ|) dθ , (A.141)

we have
LL2(φ) =

∫
K2(ζ, ζ∗)φ(ζ∗)dζ∗. (A.142)

The transformation of LG(φ), or Eq. (A.139a), requires some manipulation,
which will be performed in the rest of this subsection.

First, some relations, which are derived with the aid of elementary formulas
of vector analysis (Jeffreys & Jeffreys [1946], Bronshtein & Semendyayev [1979]),
are prepared. Take a vector V and a unit vector α. Consider the vector β defined
for V · α ≥ 0 by

β =
α × V × α

|V × α| =
V − (V · α)α

|V × α| , (A.143)

where the symbol × indicates the vector product. Then, with the aid of the
relations in the footnote below37

|β| = 1, β · α = 0, V · β = |V × α| ≥ 0, |V × β| = |V · α|.

With these formulas, the relation (A.143) can be inverted in the symmetric form

α =
β × V × β

|V × β| =
V − (V · β)β

|V × β| ,

for which the condition V · α ≥ 0 is required.
With the above preparation, the vector ζ′

∗ in the argument of φ′
∗ is trans-

formed as follows:

ζ′
∗ = ζ∗ − (V · α)α = ζ + V − |V × β|α

= ζ + (V · β)β (V · α > 0),

37

(V × ¸)2 = εijkVjαkεilmVlαm = (δjlδkm − δjmδkl)VjVlαkαm

= V 2 − (V · ¸)2 = [V − (V · ¸)¸]2.

˛ × V =
V − (V · ¸)¸

|V × ¸| × V =
V · ¸

|V × ¸| (V × ¸),

) |˛ × V | = |V · ¸|.
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and the differential element dΩ(α)dζ∗ of the variables (α, ζ∗) is related to
dΩ(β)dζ∗ of the variables (β, ζ∗) [or dΩ(β)dV of the variables (β, V )], i.e.,

dΩ(α)dζ∗ =
|V · β|
|V × β|dΩ(β)dζ∗ =

|V · β|
|V × β|dΩ(β)dV .

With the aid of these relations, the part of LG(φ) containing φ′
∗ is transformed

as ∫
all α, all ζ∗

E∗φ′
∗B̂dΩ(α)dζ∗ = 2

∫
V ·α>0, all ζ∗

E∗φ′
∗B̂dΩ(α)dζ∗

= 2
∫

V ·β>0
all V

E∗φ(ζ + (V · β)β)B̂(|V × β|/|V |,|V |) |V · β|
|V × β|dΩ(β)dV

=
∫

all β
all V

E∗φ(ζ + (V · β)β)B̂(|V × β|/|V |,|V |) |V · β|
|V × β|dΩ(β)dV .

With B̂∗defined by

B̂∗ = B̂(|α·V |/|V |, |V |) +
|V · α|
|V × α| B̂(|V × α|/|V |, |V |),

the integral LG(φ) is expressed as

LG(φ) =
∫

E(|V + ζ|)φ(ζ + (V · α)α)B̂∗dΩ(α)dV , (A.144)

where the argument ζ′
∗ is eliminated from φ. The form is further deformed.

The vector V is decomposed into two components: the one parallel to α
and the other perpendicular to α, i.e.,

V = w + W ,

where

w = (α·V )α,

W = V − (α·V )α = α×V ×α.

The variables (α,V ) of integration in Eq. (A.144) are transformed to (w, W ).
This requires a little care. First, we express the arguments of the integrand in
Eq. (A.144) in the new variables w and W . That is,

E(|V + ζ|)φ(ζ + (V · α)α) = E(|w + W + ζ|)φ(ζ + w),

and

B̂∗ = B̂(|α·V |/|V |, |V |) +
|V · α|
|V × α| B̂(|V × α|/|V |, |V |)

= B̂(|cos θ|, |V |) +
| cos θ|
| sin θ| B̂(| sin θ|, |V |)

= B̂#(|V cos θ|, |V sin θ|)
= B̂#(|w|, |W |), (A.145)



526 Appendix A. Supplement to the Boltzmann Equation

where the new symbol B̂# is introduced for the function B̂∗ in the new variables.
In Eq. (A.144), the integral with respect to V for a given α is performed first

in the order: the integral with respect to W in the plane perpendicular to α
and the integral with respect to |w| in the direction of α; and then the integral
with respect to α is performed. Here, we combine the integral with respect to
|w| and that with respect to α. This gives a three-dimensional integration over
the three rectangular components of w (=|w|α). Noting the arguments of the
integrand shown above, the integral can be transformed as follows:∫

(∗)dΩ(α)dV =
∫

all α

∫
all V

(∗)dV dΩ(α)

=
∫

all α

∫ ∞

−∞

∫
all W⊥α

(∗)dWd(α·V )dΩ(α)

= 2
∫ ∫ ∞

0

(∫
(∗)dW

)
d|w|dΩ(α)

=
∫

all w

2
|w|2

(∫
all W⊥w

(∗)dW

)
dw.

With this formula, the integral LG(φ) is transformed as

LG(φ) = 2
∫

1
|w|2

E(|w + W + ζ|)φ(ζ + w)B̂#(|w|, |W |)dW dw. (A.146)

Introducing the translated variable η, in place of w,

η = w + ζ,

we see that LG(φ) takes the kernel form

LG(φ) =
∫

all η

K1(ζ,η)φ(η)dη,

where

K1(ζ,η) =
2 exp(−η2)
π3/2|η − ζ|2

∫
exp(−W 2−2η ·W )B̂#(|η − ζ|, |W |)dW . (A.147)

Here, the integral with respect to W is performed over the whole two-dimensional
space of W perpendicular to η − ζ.

For a hard-sphere gas, B̂(|α·V |/|V |, |V |), B̂(θ, |V |), and B̂#(|w|, |W |) are
given as

B̂(θ, |V |)
sin θ

= B̂(|α·V |/|V |, |V |) =
|α·V |

4(2π)1/2
=

|V || cos θ|
4(2π)1/2

, (A.148a)

B̂∗ =
|V cos θ|
4(2π)1/2

+
| cos θ|
| sin θ|

|V sin θ|
4(2π)1/2

=
|w|

2(2π)1/2
= B̂#(|w|, |W |). (A.148b)
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The derivation of K2 and νL by Eqs. (A.141) and (A.140b) is straightforward,
but that of K1 needs some explanation. With B̂# given by Eq. (A.148b) being
substituted into Eq. (A.147),

K1(ζ, η) =
exp(−η2)√
2π2|η − ζ|

∫
all W⊥η−ζ

exp(−W 2 − 2η · W )dW .

The integral is transformed in the following way:∫
all W⊥η−ζ

exp(−W 2 − 2η · W )dW = exp
(
a2
) ∫

exp[−(W + a)2]dW

= exp
(
a2
) ∫ 2π

0

∫ ∞

0

exp(−r2)rdrdϕ

= π exp
(
a2
)
,

where

a = η − [η·(η − ζ)]
|η − ζ|

(η − ζ)
|η − ζ| =

η − ζ

|η − ζ| × η × η − ζ

|η − ζ| ,

which is the component of η perpendicular to η − ζ. The magnitude of a is
easily seen to be

|a| =
|η × ζ|
|η − ζ| .

With these results,

K1(ζ, η) =
1√

2π|η − ζ|
exp

(
−η2 +

|η × ζ|2

|η − ζ|2

)
.

Summarizing the results, the kernel for a hard-sphere gas is

K1(ζ, ζ∗) =
1√

2π|ζ∗ − ζ|
exp

(
−ζ2

∗ +
(ζ∗ × ζ)2

|ζ∗ − ζ|2

)
, (A.149a)

K2(ζ, ζ∗) =
|ζ∗ − ζ|
2
√

2π
exp(−ζ2

∗), (A.149b)

νL(ζ) =
1

2
√

2

[
exp(−ζ2) +

(
2ζ +

1
ζ

)∫ ζ

0

exp(−ζ2
∗)dζ∗

]
(ζ = |ζ|). (A.149c)

For the pseudo inverse-power potential (see Section A.2.4),

B̂ sin θ = |V |(n−5)/(n−1)
β(θ) = B̂(θ, |V |),

where β(θc) is the symmetric extension of C0dg2(θc)/dθc in Eq. (A.73b) with
respect to θc = π/2 to π/2 < θc ≤ π with its value for |π/2 − θc| < δ (δ : some
small constant) set zero by cutoff. By the definition (A.145),

B̂∗ = 2|V |(n−5)/(n−1)
β̄(θ)/ sin θ

= 2|w + W |(n−5)/(n−1)Q(|w|/|W |)
= B̂#(|w|, |W |),
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where we put

β̄(θ) =
1
2
[β(θ) + β(π

2 − θ)], Q(|w|/|W |)=β̄(θ)/ sin θ.

Substituting these B̂(θ, |V |) and B̂# into Eqs. (A.147), (A.141), and (A.140b),
we have

K1(ζ, η) =
4 exp(−η2)
π3/2|η − ζ|2

×
∫

all W⊥η−ζ

|η − ζ + W |n−5
n−1 exp(−W 2 − 2η · W )Q(|η − ζ|/|W |)dW ,

(A.150a)

K2 = 2πE(ζ∗)
∫ π

0

B̂(θ, |ζ∗ − ζ|) dθ

= β0|ζ∗ − ζ|(n−5)/(n−1) exp(−ζ2
∗), (A.150b)

νL(ζ) = 2π

∫
all ζ∗

∫ π

0

E(ζ∗)B̂(θ, |ζ∗ − ζ|)dθ dζ∗

= β0

∫
all ζ∗

exp(−ζ2
∗)|ζ∗ − ζ|(n−5)/(n−1)dζ∗, (A.150c)

where

β0 =
4√
π

∫ π/2

0

β(θ)dθ.

A.3 Boltzmann equation in the cylindrical and
spherical coordinate systems

It is convenient to list the formulas of the transport derivative term

∂f

∂t
+ ξi

∂f

∂Xi
+

∂Fif

∂ξi
(A.151)

of the Boltzmann equation in the cylindrical and spherical coordinate systems.
In the cylindrical coordinate system (r, θ, z), where the relation to the rect-

angular coordinate system Xi is given, for example, as

X1 = r cos θ, X2 = r sin θ, X3 = z, (A.152)

the following relations hold:

∂f

∂t
+ ξi

∂f

∂Xi
=

∂f

∂t
+ ξr

∂f

∂r
+

ξθ

r

∂f

∂θ
+ ξz

∂f

∂z
+

ξ2
θ

r

∂f

∂ξr
− ξrξθ

r

∂f

∂ξθ
, (A.153a)

∂Fif

∂ξi
=

∂Frf

∂ξr
+

∂Fθf

∂ξθ
+

∂Fzf

∂ξz
, (A.153b)
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where ξr, ξθ, and ξz are, respectively, the r, θ, and z components of ξi (or ξ), and
Fr, Fθ, and Fz are, respectively, the corresponding components of Fi (or F ).

In the spherical coordinate system (r, θ, ϕ), where the relation to the rect-
angular coordinate system Xi is given, for example, as

X1 = r cos θ, X2 = r sin θ cos ϕ, X3 = r sin θ sin ϕ, (A.154)

the following relations hold:

∂f

∂t
+ ξi

∂f

∂Xi
=

∂f

∂t
+ ξr

∂f

∂r
+

ξθ

r

∂f

∂θ
+

ξϕ

r sin θ

∂f

∂ϕ

+
ξ2
θ + ξ2

ϕ

r

∂f

∂ξr
+

(
ξ2
ϕ

r
cot θ − ξrξθ

r

)
∂f

∂ξθ

−
(

ξθξϕ

r
cot θ +

ξrξϕ

r

)
∂f

∂ξϕ
, (A.155a)

∂Fif

∂ξi
=

∂Frf

∂ξr
+

∂Fθf

∂ξθ
+

∂Fϕf

∂ξϕ
, (A.155b)

where ξr, ξθ, and ξϕ are, respectively, the r, θ, and ϕ components of ξi (or ξ), and
Fr, Fθ, and Fϕ are, respectively, the corresponding components of Fi (or F ).

Equations (A.153a) and (A.155a) contain derivatives with respect to molecu-
lar velocity components in the cylindrical or spherical coordinate system, which
is better to be explained to beginners because the relation between the coor-
dinate systems does not contain the molecular velocity. Let Xi be rectangular
coordinates, χi be curvilinear coordinates, and their relation be given by

χi = χi(Xk) (i = 1, 2, 3).

Let ξi be the Xi component of the molecular velocity and Ξi be its χi component.
Then, the relation between them contains space coordinates as

Ξi = Ξi(ξk, Xk).

Therefore, the derivative ∂/∂Xi expressed in terms of the curvilinear coordinates
is given as

∂

∂Xi
=

∂χk

∂Xi

∂

∂χk
+

∂Ξk

∂Xi

∂

∂Ξk
.

In this way, the derivative ∂/∂Xi contains the derivatives with respect to Ξk.
The expressions ∂χk/∂Xi and ∂Ξk/∂Xi in a general coordinate system are given
in the textbook by Kogan [1969] using Lamé coefficients (see Cartan [1946]).

Here, we summarize the corresponding forms of the nondimensional Boltz-
mann equation in Sections 1.9–1.11.

In the nondimensional cylindrical coordinate system (r̂, θ, ẑ), where

x1 = r̂ cos θ, x2 = r̂ sin θ, x3 = ẑ, (A.156)

and (ζr, ζθ, ζz) is the (r̂, θ, ẑ) component of ζi,



530 Appendix A. Supplement to the Boltzmann Equation

(i) the Boltzmann equation (1.47a) for f̂ is expressed as

Dcy f̂

Dt̂
+

∂F̂rf̂

∂ζr
+

∂F̂θf̂

∂ζθ
+

∂F̂z f̂

∂ζz
=

1
k

Ĵ(f̂ , f̂), (A.157)

(ii) the Boltzmann equation (1.75a) for the perturbed velocity distribution func-
tion φ is

Dcyφ

Dt̂
=

1
k

[L(φ) + J (φ, φ)], (A.158)

(iii) the linearized Boltzmann equation (1.96) for φ is

Dcyφ

Dt̂
=

1
k
L(φ), (A.159)

where

Dcy

Dt̂
= Sh

∂

∂t̂
+ ζr

∂

∂r̂
+

ζθ

r̂

∂

∂θ
+ ζz

∂

∂ẑ
+

ζ2
θ

r̂

∂

∂ζr
− ζrζθ

r̂

∂

∂ζθ
, (A.160)

and (F̂r, F̂θ, F̂z) is the (r̂, θ, ẑ) component of F̂i.
In the nondimensional spherical coordinate system (r̂, θ, ϕ), where

x1 = r̂ cos θ, x2 = r̂ sin θ cos ϕ, x3 = r̂ sin θ sin ϕ, (A.161)

and (ζr, ζθ, ζϕ) is the (r̂, θ, ϕ) component of ζi,

(i) the Boltzmann equation (1.47a) for f̂ is expressed as

Dspf̂

Dt̂
+

∂F̂rf̂

∂ζr
+

∂F̂θf̂

∂ζθ
+

∂F̂ϕf̂

∂ζϕ
=

1
k

Ĵ(f̂ , f̂), (A.162)

(ii) the Boltzmann equation (1.75a) for the perturbed velocity distribution func-
tion φ is

Dspφ

Dt̂
=

1
k

[L(φ) + J (φ, φ)], (A.163)

(iii) the linearized Boltzmann equation (1.96) for φ is

Dspφ

Dt̂
=

1
k
L(φ), (A.164)

where

Dsp

Dt̂
= Sh

∂

∂t̂
+ ζr

∂

∂r̂
+

ζθ

r̂

∂

∂θ
+

ζϕ

r̂ sin θ

∂

∂ϕ
+

ζ2
θ + ζ2

ϕ

r̂

∂

∂ζr

+

(
ζ2
ϕ

r̂
cot θ − ζrζθ

r̂

)
∂

∂ζθ
−
(

ζθζϕ

r̂
cot θ +

ζrζϕ

r̂

)
∂

∂ζϕ
, (A.165)

and (F̂r, F̂θ, F̂ϕ) is the (r̂, θ, ϕ) component of F̂i.

In the above formulas, the expression of the collision integrals Ĵ(f̂ , f̂), J (φ, φ),
and L(φ) may not need explanation because no operation with respect to space
variables is included and the coordinates in the systems are orthogonal at each
point.
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A.4 Integral form of the Boltzmann equation

A.4.1 General case

Consider the Boltzmann equation (1.5) with an intermolecular force of a finite
range or a cutoff potential and rewrite it in the following form:

∂f

∂t
+ ξi

∂f

∂Xi
+ νcf = JG, (A.166)

where

νc =
1
m

∫
all α, all ξ∗

f∗B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|)dΩ(α)dξ∗, (A.167a)

JG =
1
m

∫
all α, all ξ∗

f ′f ′
∗B(|α · (ξ∗ − ξ)|/|ξ∗ − ξ|, |ξ∗ − ξ|)dΩ(α)dξ∗,

(A.167b)

and the external force Fi is assumed to be absent for simplicity.
Considering νc and JG in Eq. (A.166) being given, and integrating (A.166)

along its characteristic, we obtain an integral-equation expression of the Boltz-
mann equation in the form

f(X, ξ, t) = f(X − ξ(t − t0), ξ, t0) exp
(
−
∫ t

t0

νc(X − ξ(t − t1), ξ, t1)dt1

)

+
∫ t

t0

JG(X − ξ(t − τ), ξ, τ) exp
(
−
∫ t

τ

νc(X − ξ(t − t1), ξ, t1)dt1

)
dτ,

(A.168)

which is called the exponential (multiplier) form of the Boltzmann equation to
discriminate it from the other integral-equation expression, which is obtained by
simply integrating the Boltzmann equation along the characteristic and called
integrated form of the Boltzmann equation. The t0 in Eq. (A.168) is given in
the following way. Let (X, ξ, t) be given. If we trace back a particle with
velocity ξ from (X, t), we encounter some point on the boundary at some time
tB(X, ξ, t) before the initial time t = 0, or do not encounter any point on
the boundary until the initial time. We take t0 = tB in the former case, and
t0 = 0 in the latter. The boundary condition, say Eq. (1.26) or Eq. (1.30),
is applied to the factor f(X − ξ(t − t0), ξ, t0) in the first term on the right-
hand side of Eq. (A.168) when t0 > 0, and the initial condition to it when
t0 = 0. The first term on the right-hand side of Eq. (A.168) represents the
contribution of the molecules heading to the point (X, t) from the boundary
or initial state, and its exponential factor expresses the decay of the molecules
reaching the point owing to molecular collisions. The second term represents the
contribution of the molecules reaching the point (X, t) that are created along
the characteristic by molecular collisions, the first factor of which expresses the
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creation of such molecules by molecular collisions and the second (exponential)
factor of which expresses the decay of the created molecules reaching the point
owing to molecular collisions. Equation (A.168) is convenient to understand
physical processes and to estimate the size of various contributions.

For a time-independent problem, this formula is still valid but with the
following note: the third arguments (time arguments) in all functions are elim-
inated, the variables t1 and τ of integration are transformed to t̄1 = t − t1 and
τ̄ = t − τ, and they are written as t1 and τ anew; the (t − t0) in the first term
on the right-hand side is the time required for a molecule with velocity −ξ to
reach the boundary from the point X and is denoted by tB . That is,

f(X, ξ) = f(X − ξtB , ξ) exp
(
−
∫ tB

0

νc(X − ξt1, ξ)dt1

)

+
∫ tB

0

JG(X − ξτ, ξ) exp
(
−
∫ τ

0

νc(X − ξt1, ξ)dt1

)
dτ

= f(X − dBξ/ξ, ξ) exp

(
−1

ξ

∫ dB(X,ξ/ξ)

0

νc(X − s1ξ/ξ, ξ)ds1

)

+
1
ξ

∫ dB(X,ξ/ξ)

0

JG(X − sξ/ξ, ξ) exp
(
−1

ξ

∫ s

0

νc(X − s1ξ/ξ, ξ)ds1

)
ds,

(A.169)

where ξ = |ξ|, s1 = ξt1, s = ξτ, and dB(X, ξ/ξ) (= ξtB) is the distance from
X to the nearest point on the boundary in the −ξ direction and is determined
by X and ξ/ξ.

A.4.2 Linearized BKW equation with the diffuse-reflection
or complete-condensation condition

The integral-equation expression (A.168) of the Boltzmann equation is reduced
to a considerably simple form when we consider the case where the system is
described by the linearized BKW equation (1.102) and the linearized diffuse-
reflection boundary condition (1.105a) with (1.105b) on a simple boundary or
the linearized complete-condensation condition (1.111) on an interface of the gas
and its condensed phase. That is, the velocity distribution function is eliminated
and the system is reduced to a system of integral equations for the density, the
flow velocity, and the temperature of the gas. Here, we will derive the system.

We consider an initial and boundary-value problem of the linearized BKW
equation under the linearized diffuse-reflection boundary condition or the lin-
earized complete-condensation condition. The analysis is limited to the case
where the boundary shape does not vary in time but the surface of the bound-
ary may have a velocity along it, that is, uwini = 0 but uwiti may be different
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from zero. The linearized BKW equation is

Sh
∂φ

∂t̂
+ ζi

∂φ

∂xi
=

1
k

[
−φ + ω + 2ζiui +

(
ζ2
i − 3

2

)
τ

]
, (A.170a)

ω =
∫

φEdζ, (A.170b)

ui =
∫

ζiφEdζ, (A.170c)

3
2
τ =

∫ (
ζ2
i − 3

2

)
φEdζ. (A.170d)

The linearized diffuse-reflection condition is

φ(xi, ζi, t̂) = σw + 2ζjuwj +
(

ζ2
j − 3

2

)
τw (ζjnj > 0), (A.171a)

σw = −1
2
τw − 2

√
π

∫
ζknk<0

ζjnjφEdζ. (A.171b)

The linearized complete-condensation condition is

φ(xi, ζi, t̂) = ωw + 2ζjuwj +
(

ζ2
j − 3

2

)
τw (ζjnj > 0). (A.172)

The initial condition is given as

φ = φ0 at t̂ = 0. (A.173)

Here we can take Sh= 1 without loss of generality, because we do not evaluate
the orders of the terms here and can choose the reference time arbitrarily.

Take the Laplace transform of Eqs. (A.170a)–(A.172). Then we have, from
Eq. (A.170a) with Sh = 1,

ζi
∂φ̃

∂xi
+ (s + k−1)φ̃ = k−1

[
ω̃ + 2ζiũi +

(
ζ2
i − 3

2

)
τ̃

]
+ φ0, (A.174)

with

ω̃ =
∫

φ̃Edζ, (A.175a)

ũi =
∫

ζiφ̃Edζ, (A.175b)

3
2
τ̃ =

∫ (
ζ2
i − 3

2

)
φ̃Edζ, (A.175c)

from Eq. (A.171a) with (A.171b),

φ̃ = σ̃w + 2ζj ũwj +
(

ζ2
j − 3

2

)
τ̃w (ζjnj > 0), (A.176a)

σ̃w = −1
2
τ̃w − 2

√
π

∫
ζknk<0

ζjnj φ̃Edζ, (A.176b)
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and from Eq. (A.172),

φ̃ = ω̃w + 2ζj ũwj +
(

ζ2
j − 3

2

)
τ̃w (ζjnj > 0), (A.177)

where the tilde ∼ over a character indicates its Laplace transform, for example,

φ̃ =
∫ ∞

0

φ exp(−st̂)dt̂. (A.178)

In the following analysis, we write ω̃w instead of σ̃w in the diffuse-reflection
condition (A.176a) and make a comment on the additional condition (A.176b)
when necessary.

Considering the right-hand side of Eq. (A.174) being given, and integrating
Eq. (A.174) along its characteristic, as we have done in Section A.4.1, we have
the expression for φ̃ corresponding to Eq. (A.169) as

φ̃(x, ζ) = φ̃w(x − d̂Bζ/ζ, ζ) exp
[
−(s + k−1)d̂B/ζ

]
+

1
kζ

∫ d̂B(x,ζ/ζ)

0

φ̃e(x − τζ/ζ, ζ) exp
[
−(s + k−1)τ/ζ

]
dτ

+
1
ζ

∫ d̂B(x,ζ/ζ)

0

φ0(x − τζ/ζ, ζ) exp
[
−(s + k−1)τ/ζ

]
dτ, (A.179)

where ζ = |ζ| and d̂B is the distance (in the nondimensional x space) from x to
the nearest point on the boundary in the −ζ direction and a function of x and
ζ/ζ, and

φ̃w = ω̃w + 2ζj ũwj +
(

ζ2 − 3
2

)
τ̃w, (A.180a)

φ̃e = ω̃ + 2ζj ũj +
(

ζ2 − 3
2

)
τ̃ . (A.180b)

Substituting the expression (A.179) for φ̃ into Eqs. (A.175a)–(A.175c), we obtain
the integral equations for ω̃, ũi, and τ̃ . We will explain this process explicitly.

Let l̄ = −ζ/ζ (or l̄i = −ζi/ζ) and use the variables (ζ, l̄) representation for
ζ (or choose a spherical coordinate system for the nondimensional molecular
velocity ζ). Then, noting that dζ = ζ2dζdΩ(̄l), where dΩ(̄l) is the solid-angle
element in the direction l̄, and carrying out the integration with respect to ζ first
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in Eqs. (A.175a)–(A.175c) with φ̃ given by Eq. (A.179), we have, for example,

ω̃ =
1

π3/2

∫
all l̄

[ω̃w(x + d̂B l̄)J2((s + k−1)d̂B) + · · · ]dΩ(̄l)

+
1

kπ3/2

∫
all l̄

∫ d̂B(x,̄l)

0

[ω̃(x + τ l̄)J1((s + k−1)τ) + · · · ]dτdΩ(̄l)

+
1

π3/2

∫
all l̄

∫ d̂B

0

∫ ∞

0

φ0(x + τ l̄,−ζ l̄)ζ exp
(
−ζ2 − (s + k−1)τ

ζ

)
dζdτdΩ(̄l),

(A.181)

where Jn(x) is the Abramowitz function (Abramowitz & Stegun [1972]) defined
by

Jn(x) =
∫ ∞

0

ζn exp
(
−ζ2 − x

ζ

)
dζ. (A.182)

The argument x + d̂B l̄ of ω̃w is the nearest boundary point from x in the
direction of l̄. Now put

x∗ = x + τ l̄ (0 ≤ τ ≤ d̂B).

Then, x∗ is a point on the line between x and x + d̂B l̄. With the new variable
x∗, we have

dx∗ = |x∗ − x|2dτdΩ(̄l),
(xi − xi∗)ni(x∗)

|x∗ − x| dS(x∗) = |x∗ − x|2dΩ(̄l),

where dx∗ is the volume element of the x∗ space and dS(x∗) is the boundary
surface element at x∗. Thus, Eq. (A.181) is rewritten as follows:

ω̃ =
1

π3/2

∫
S∗(x)

(
ω̃w(x∗)

J2((s + k−1)|x∗ − x|)
|x∗ − x|2 + · · ·

)
(xi − xi∗)ni(x∗)

|x∗ − x| dS(x∗)

+
1

kπ3/2

∫
V ∗(x)

(
ω̃(x∗)

J1((s + k−1)|x∗ − x|)
|x∗ − x|2 + · · ·

)
dx∗

+
1

π3/2

∫
V ∗(x)

1
|x∗ − x|2

∫ ∞

0

φ0(x∗, ζ(xi − xi∗)|x∗ − x|−1)

× ζ exp
[
−ζ2 − (s + k−1)|x∗ − x|/ζ

]
dζdx∗,

where V ∗(x) and S∗(x) are, respectively, the gas domain and the boundary
surface that can be seen from the point x (see Fig. A.4).

In this way, we obtain the integral equations for ω̃, ũi, and τ̃ in the form⎛⎝ ω̃(x)
ũi(x)
3
2 τ̃(x)

⎞⎠− 1
kπ3/2

∫
V ∗(x)

1
|x∗ − x|2 K5

⎛⎝ ω̃(x∗)
ũj(x∗)
τ̃(x∗)

⎞⎠dx∗

= − 1
π3/2

∫
S∗(x)

rknk(x∗)
|x∗ − x|2 Kw5

⎛⎝ ω̃w(x∗)
ũwj(x∗)
τ̃w(x∗)

⎞⎠dS(x∗) +

⎛⎝ Ihω

Ihi

Ihτ

⎞⎠, (A.183)
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Figure A.4. The gas domain V ∗(x) and the boundary surface S∗(x) that can be seen
from x. The integration is carried out over there.

ri =
xi∗ − xi

|x∗ − x| . (A.184)

Here, the kernels K5 and Kw5 are the 5 × 5 matrices given by

K5 =

⎛⎝ J1 −2J2rj J3 − 3
2J1

−J2ri 2J3rirj −(J4 − 3
2J2)ri

J3 − 3
2J1 −2(J4 − 3

2J2)rj J5 − 3J3 + 9
4J1

⎞⎠ , (A.185a)

Kw5 =

⎛⎝ J2 −2J3rj J4 − 3
2J2

−J3ri 2J4rirj −(J5 − 3
2J3)ri

J4 − 3
2J2 −2(J5 − 3

2J3)rj J6 − 3J4 + 9
4J2

⎞⎠ , (A.185b)

where the arguments of the Abramowitz functions Jn’s in the matrices are
commonly(

s + k−1
)
|x∗ − x|, i.e., Jn = Jn(

(
s + k−1

)
|x∗ − x|). (A.186)

The inhomogeneous terms (Ihω, Ihi, Ihτ ) due to the initial condition φ0 are⎛⎝ Ihω

Ihi

Ihτ

⎞⎠ =
1

π3/2

∫
V ∗(x)

1
|x∗ − x|2

∫ ∞

0

⎛⎝ ζ
−ζ2ri

ζ3 − 3
2ζ

⎞⎠
× φ0(x∗,−ζri) exp

[
−ζ2 − (s + k−1)|x∗ − x|/ζ

]
dζdx∗.

(A.187)

The above system of integral equations is complete in the case of the complete-
condensation boundary condition, but in the case of the diffuse reflection, ω̃w(x)
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is subject to the condition

ω̃w(x) = −1
2
τ̃w(x) +

2
kπ

∫
V ∗(x)

rini(x)
|x∗ − x|2 W5

⎛⎝ ω̃(x∗)
ũj(x∗)
τ̃(x∗)

⎞⎠dx∗

− 2
π

∫
S∗(x)

rini(x)rknk(x∗)
|x∗ − x|2 Ww5

⎛⎝ ω̃w(x∗)
ũwj(x∗)
τ̃w(x∗)

⎞⎠ dS(x∗) − 2
√

πIhini(x),

(A.188)

W5 = (J2, − 2J3rj , J4 − 3
2J2), (A.189a)

Ww5 = (J3, − 2J4rj , J5 − 3
2J3), (A.189b)

where the argument of Jn is given by Eq. (A.186). Here, it should be noted that
the argument x is on the boundary, and S∗(x) and V ∗(x) are the corresponding
surface and domain seen from the boundary point x. In the above system of
integral equations, the boundary condition at infinity is not explicitly included,
and thus the condition at infinity should be supplemented to the system.

In a time-independent problem, we have only to eliminate the Ih∗ terms,
the variable s, and the tildes over the characters, i.e., (Ihω, Ihi, Ihτ ) = (0, 0,
0) and (s, ω̃, ũi, τ̃ , ω̃w, ũwi, τ̃w) → (0, ω, ui, τ, ωw, uwi, τw) in each of the
above equations, where the argument of Jn given in Eq. (A.186) is reduced to
|x∗ − x|/k.

In various situations, we have a chance to discuss spatially one or two-
dimensional solutions, where the distribution function φ or φ̃ is independent
of one or two of the space variables, say x3, or x2 and x3, of the Boltzmann
equation without or with an inhomogeneous term, the latter case of which is de-
rived by simplification of three-dimensional problems [see, e.g., Eq. (A.208b) in
Section A.5]. The lower-dimensional forms of Eqs. (A.183), (A.185a), (A.185b),
and (A.187) [or with Eqs. (A.188)–(A.189b)] are derived from the original BKW
system directly in the same way as the above three-dimensional integral equa-
tions by treating the ζ3 variable (the two-dimensional case) or the ζ2 and ζ3

variables (the one-dimensional case) separately. This is simpler than to derive
them from the three-dimensional integral equations.

Here, we list only the results for the two-dimensional case. The notation
should be interpreted in the following degenerate way:

x = (x1, x2), x∗ = (x1∗, x2∗), dx∗ = dx1∗dx2∗, x∗−x = (x1∗−x1, x2∗−x2),

the third component of a vector, except ũi and ũwi, is absent, i.e., n3 = 0 and
x3∗ −x3 = 0, and V ∗(x) and S∗(x) are, respectively, a domain and a boundary
in the two-dimensional plane, say, x3 = 0. In their derivation, l̄ = (l̄1, l̄2, 0),
dΩ(̄l) is the angle element in the direction (l̄1, l̄2, 0), and the relations

dζ = ζdζdΩ(̄l)dζ3, ζ = (ζ2
1 + ζ2

2 )1/2, |x∗ − x|dτdΩ(̄l) = dx∗,

|x∗ − x|dΩ(̄l) =
(xi − xi∗)ni(x∗)

|x∗ − x| dS(x∗)
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are used. The integral equations for ω̃(x), ũi(x), and τ̃(x) are given in the
following equations (A.190)–(A.197b), where (i, j, k) run only on 1 and 2 :⎛⎝ ω̃(x)

ũi(x)
3
2 τ̃(x)

⎞⎠− 1
kπ

∫
V ∗(x)

1
|x∗ − x|K4

⎛⎝ ω̃(x∗)
ũj(x∗)
τ̃(x∗)

⎞⎠dx∗

= − 1
π

∫
S∗(x)

rknk(x∗)
|x∗ − x| Kw4

⎛⎝ ω̃w(x∗)
ũwj(x∗)
τ̃w(x∗)

⎞⎠ dS(x∗) +

⎛⎝ Ihω

Ihi

Ihτ

⎞⎠ , (A.190)

ũ3(x) − 1
kπ

∫
V ∗(x)

1
|x∗ − x|J0((s + k−1)|x∗ − x|)ũ3(x∗)dx∗

= − 1
π

∫
S∗(x)

rknk(x∗)
|x∗ − x| J1((s + k−1)|x∗ − x|)ũw3(x∗)dS(x∗) + Ih3,

(A.191)

ri =
xi∗ − xi

|x∗ − x| . (A.192)

Here, the kernels K4 and Kw4 are the 4 × 4 matrices given by

K4 =

⎛⎝ J0 −2J1rj J2 − J0

−J1ri 2J2rirj −(J3 − J1)ri

J2 − J0 −2(J3 − J1)rj J4 − 2J2 + 3
2J0

⎞⎠ , (A.193a)

Kw4 =

⎛⎝ J1 −2J2rj J3 − J1

−J2ri 2J3rirj −(J4 − J2)ri

J3 − J1 −2(J4 − J2)rj J5 − 2J3 + 3
2J1

⎞⎠ , (A.193b)

where the arguments of the Abramowitz functions Jn’s in the matrices are
commonly(

s + k−1
)
|x∗ − x|, i.e., Jn = Jn(

(
s + k−1

)
|x∗ − x|). (A.194)

The inhomogeneous terms (Ihω, Ihi, Ih3 Ihτ ) are⎛⎜⎜⎝
Ihω

Ihi

Ih3

Ihτ

⎞⎟⎟⎠ =
1

π3/2

∫
V ∗(x)

1
|x∗ − x|

∫ ∞

0

∫ ∞

−∞

⎛⎜⎜⎝
1

−ζri

ζ3

ζ2 + ζ2
3 − 3

2

⎞⎟⎟⎠φ0(x∗,−ζri, ζ3)

× exp
[
−ζ2 − ζ2

3 − (s + k−1)|x∗ − x|/ζ
]
dζ3dζdx∗. (A.195)

In the case of the diffuse-reflection condition, ω̃w(x) should satisfy the condition

ω̃w(x) = −1
2
τ̃w(x) +

2√
πk

∫
V ∗(x)

rini(x)
|x∗ − x|W4

⎛⎝ ω̃(x∗)
ũj(x∗)
τ̃(x∗)

⎞⎠dx∗

− 2√
π

∫
S∗(x)

rini(x)rknk(x∗)
|x∗ − x| Ww4

⎛⎝ ω̃w(x∗)
ũwj(x∗)
τ̃w(x∗)

⎞⎠ dS(x∗) − 2
√

πIhini(x),

(A.196)
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W4 = (J1, − 2J2rj , J3 − J1), (A.197a)

Ww4 = (J2, − 2J3rj , J4 − J2), (A.197b)

where the argument of Jn is given by Eq. (A.194). As in the three-dimensional
case, the boundary condition at infinity should be supplemented to the above
system of the integral equations.

As in the three-dimensional case, in a time-independent problem, we have
only to eliminate the Ih∗ terms, the variable s, and the tilde over the characters,
i.e., (Ihω, Ihi, Ih3, Ihτ ) = (0, 0, 0, 0) and (0, ω̃, ũi, ũ3, τ̃ , ω̃w, ũwi, ũw3, τ̃w) → (0,
ω, ui, u3, τ, ωw, uwi, uw3, τw) in each of the above equations, where the argument
of Jn given in Eq. (A.194) is reduced to |x∗ − x|/k. Some three-dimensional
problems are reduced to those of the two-dimensional Boltzmann equation with
an inhomogeneous term, as shown in Section A.5 [see Eq. (A.208b)]. In such
cases, its Laplace transform has to be added to φ0 in the formulas of Ihω, Ihi,
Ih3, and Ihτ .

In the one-dimensional case (say, ∂/∂x2 = ∂/∂x3 = 0 and the gas domain
is 0 < x1 < 1 or ∞), the characteristic is the x1 axis independently of ζ, and
the integration with respect to ζ is done first without combining dΩ(̄l) and dτ.
Thus, the computation is much simpler. What is to be noted is the direction
of integration, that is, the integration along the characteristic (or along x1) is
done from x1 = 0 for ζ1 > 0 and from x1 = 1 or ∞ for ζ1 < 0. The results are
omitted here.

The integral equations derived here have various advantages. The velocity
distribution function is eliminated in these equations, and the molecular veloc-
ity ζ is eliminated. Therefore, various subtleties of the velocity distribution
function, such as the discontinuity of the velocity distribution function and its
singular behavior for small ζ (and ζini), do not enter these equations directly.
From the behavior of the tail of the function Jn(x), which is c0x

n/3 exp(−c1x
2/3)

(c0, c1 : consts, n ≥ 1) (see Abramowitz & Stegun [1972]), we can see the de-
pendence on the Knudsen number of the effect of the surrounding gas and the
boundary condition on the point x under consideration.38

A.5 Similarity solution

The velocity distribution function that is independent of the time variable or
any of rectangular components of the space variable is obviously compatible
with the (full or linearized) Boltzmann equation without an external force

Sh
∂f̂

∂t̂
+ ζi

∂f̂

∂xi
=

1
k

Ĵ(f̂ , f̂), (A.198a)

Ĵ(f̂ , f̂) =
∫

(f̂ ′f̂ ′
∗ − f̂ f̂∗)B̂ dΩ(α)dζ∗, (A.198b)

38In fact, various results for the asymptotic behavior of a gas for large or small Knudsen
numbers are first obtained on the basis of the integral equations derived from the BKW
equation in this section, and they are extended to the standard Boltzmann equation.
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Sh
∂φ

∂t̂
+ ζi

∂φ

∂xi
=

1
k
L(φ), (A.199a)

L(φ) =
∫

E∗(φ′ + φ′
∗ − φ − φ∗)B̂ dΩ(α)dζ∗. (A.199b)

That is, the streaming operator Sh∂/∂t̂ + ζi∂/∂xi and the collision operator
Ĵ(∗, ∗) or L(∗) in the Boltzmann equation do not violate this degenerate prop-
erty. The analysis is generally simpler for the degenerate cases. For example,
consider the spatially uniform case. Take Eq. (A.198a) without the space deriva-
tive terms

Sh
∂f̂

∂t̂
=

1
k

Ĵ(f̂ , f̂). (A.200)

Then, from the conservation equations (1.57)–(1.59), which are derived by inte-
grating the equation (A.200) multiplied by 1, ζi, or ζ2

i over the whole space of ζ,

the density ρ̂, the flow velocity v̂i, and the temperature T̂ are time-independent,
and thus they are constant. There are some other cases where the number of
the independent variables, including the molecular velocity, is decreased with
combination of the variables. They are called similarity solutions, which are
discussed below.

First review the property of the collision integrals Ĵ(f̂ , f̂) and L(φ) (see
Section A.2.5). The operators Ĵ(∗, ∗) and L(∗) are isotropic. Thus, for f̂ or φ

of the form Φ(ζ), the integrals Ĵ(f̂ , f̂) and L(φ) are spherically symmetric, and
therefore, according to Eq. (A.79) or (A.80) with m = 0, they are of the form

Ĵ(f̂ , f̂) = F (ζ), L(φ) = F (ζ). (A.201)

Let lij be
likljk = δij with l11 = 1, l12 = 0, l13 = 0.

Noting l1jζj = ζ1, (l2jζj)2 + (l3jζj)2 = ζ2
2 + ζ2

3 , we find that for f̂ or φ of the
form Φ(ζ1, (ζ2

2 + ζ2
3 )1/2),

Ĵ(f̂(lijζj), f̂(lijζj)) = Ĵ(f̂(ζi), f̂(ζi)), L(φ(lijζj)) = L(φ(ζi)),

and that for φi defined by φ1 = 0, φs = ζsΦ(ζ1, (ζ2
2 + ζ2

3 )1/2) with s = 2 or 3,

L(φi(lkjζj)) = lijL(φj(ζk)).

That is, Ĵ(Φ(ζ1, (ζ2
2 + ζ2

3 )1/2), Φ(ζ1, (ζ2
2 + ζ2

3 )1/2)), L(Φ(ζ1, (ζ2
2 + ζ2

3 )1/2)), and
L(φi(ζk)) are axially symmetric with respect to the ζ1 axis. Therefore, according
to Eq. (A.83) with (m = 0, h = 0) or (m = 1, h = 1), the integrals for the two
types of functions are of the form

Ĵ(Φ(ζ1, ζρ),Φ(ζ1, ζρ)) = F (ζ1, ζρ), L(Φ(ζ1, ζρ)) = F (ζ1, ζρ), (A.202a)
L(ζsΦ(ζ1, ζρ)) = ζsF (ζ1, ζρ) (s = 2, 3), (A.202b)
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where
ζρ = (ζ2

2 + ζ2
3 )1/2. (A.203)

Some examples of the similarity solutions are given here. The label (B, liB)
applies to both of Eqs. (A.198a) and (A.199a); the label (liB) applies only to
the linearized Boltzmann equation (A.199a).
Case 1 (B, liB): Φ(ζ, t̂)

Take a function of the form

f̂ = Φ(ζ, t̂), φ = Φ(ζ, t̂).

Owing to Eq. (A.201), it is easily seen that this form of the distribution function
is compatible with Eqs. (A.198a) and (A.199a).
Case 2 (B, liB): Φ(x1, ζ1, ζρ, t̂)

Take a function of the form

f̂ = Φ(x1, ζ1, ζρ, t̂), φ = Φ(x1, ζ1, ζρ, t̂).

Owing to Eq. (A.202a), it is easily seen that this form of the distribution function
is compatible with Eqs. (A.198a) and (A.199a).
Case 3 (liB): ζsΦ(x1, ζ1, ζρ, t̂) with s = 2 or 3

Take a function of the form

φ = ζsΦ(x1, ζ1, ζρ, t̂) (s = 2, 3).

Then, streaming part of Eq. (A.199a) is

Sh
∂φ

∂t̂
+ζi

∂φ

∂xi
=ζs

(
Sh

∂Φ
∂t̂

+ζ1
∂Φ
∂x1

)
.

Owing to Eq. (A.202b), the collision integral L(φ) can be expressed in the form

L(φ) = L(ζsΦ(x1, ζ1, ζρ, t̂)) = ζsF (x1, ζ1, ζρ, t̂).

Thus, the present form of φ is compatible with Eq. (A.199a), i.e.,

Sh
∂Φ
∂t̂

+ζ1
∂Φ
∂x1

=
1
k

F (x1, ζ1, ζρ, t̂).

Case 4 (liB): Φc(r̂, ζr, ζ, t̂) cos θ + ζθΦs(r̂, ζr, ζ, t̂) sin θ (Sone & Aoki [1983])
Take the linearized Boltzmann equation in the spherical coordinate system

(r̂, θ, ϕ), i.e.,

Sh
∂φ

∂t̂
+ ζr

∂φ

∂r̂
+

ζθ

r̂

∂φ

∂θ
+

ζϕ

r̂ sin θ

∂φ

∂ϕ
+

ζ2
θ + ζ2

ϕ

r̂

∂φ

∂ζr

+

(
ζ2
ϕ

r̂
cot θ − ζrζθ

r̂

)
∂φ

∂ζθ
−
(

ζθζϕ

r̂
cot θ +

ζrζϕ

r̂

)
∂φ

∂ζϕ
=

1
k
L(φ). (A.204)



542 Appendix A. Supplement to the Boltzmann Equation

We will examine whether the function of the form

φ = Φc(r̂, ζr, ζ, t̂) cos θ + ζθΦs(r̂, ζr, ζ, t̂) sin θ, (A.205)

where

ζ = (ζ2
r + ζ2

θ + ζ2
ϕ)1/2,

is compatible with Eq. (A.204). Substituting Eq. (A.205) into the left-hand side
of Eq. (A.204), we have

the left-hand side = Dc(Φc, Φs) cos θ + ζθDs(Φc,Φs) sin θ,

where

Dc(Φc, Φs) = Sh
∂Φc

∂t̂
+ ζr

∂Φc

∂r̂
+

ζ2 − ζ2
r

r̂

∂Φc

∂ζr
+

ζ2 − ζ2
r

r̂
Φs, (A.206a)

Ds(Φc, Φs) = Sh
∂Φs

∂t̂
+ ζr

∂Φs

∂r̂
+

ζ2 − ζ2
r

r̂

∂Φs

∂ζr
− ζr

r̂
Φs −

1
r̂
Φc. (A.206b)

Here, Dc(Φc, Φs) and Ds(Φc, Φs) are functions of r̂, ζr, ζ, and t̂ only.
Substituting Eq. (A.205) into the right-hand side of Eq. (A.204), we have

L(φ) = L(Φc) cos θ + L(ζθΦs) sin θ.

Owing to Eqs. (A.202a) and (A.202b), L(Φc) and L(ζθΦs) can be expressed in
the form39

L(Φc) = Fc(r̂, ζr, ζ, t̂), L(ζθΦs) = ζθFs(r̂, ζr, ζ, t̂).

Therefore, the Boltzmann equation (A.204) is split into two parts, that is,

Dc(Φc, Φs) =
1
k

Fc, Ds(Φc,Φs) =
1
k

Fs,

where the independent variables are r̂, ζr, ζ, and t̂ only.
For this type of velocity distribution function, the macroscopic variables are

39The collision operator L(∗) does not contain the operation with respect to the space and
time variables. Thus, the formulas apply to the expression in terms of (ζr, ζθ, ζϕ) as well as
the Cartesian coordinates ζi.
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given as40

ω

cos θ
= 2π

∫ ∞

0

∫ π

0

ζ2 sin θζΦcEdθζdζ,

ur

cos θ
= π

∫ ∞

0

∫ π

0

ζ3 sin 2θζΦcEdθζdζ,

uθ

sin θ
= π

∫ ∞

0

∫ π

0

ζ4 sin3 θζΦsEdθζdζ,

τ

cos θ
= 2π

∫ ∞

0

∫ π

0

(
2
3
ζ2 − 1

)
ζ2 sin θζΦcEdθζdζ,

Prr

cos θ
= 4π

∫ ∞

0

∫ π

0

ζ4 cos2 θζ sin θζΦcEdθζdζ,

Prθ

sin θ
= 2π

∫ ∞

0

∫ π

0

ζ5 cos θζ sin3 θζΦsEdθζdζ,

Pθθ

cos θ
= 2π

∫ ∞

0

∫ π

0

ζ4 sin3 θζΦcEdθζdζ,

Pϕϕ = 3(ω + τ) − Prr − Pθθ,

Qr

cos θ
= π

∫ ∞

0

∫ π

0

(
ζ2 − 5

2

)
ζ3 sin 2θζΦcEdθζdζ,

Qθ

sin θ
= π

∫ ∞

0

∫ π

0

(
ζ2 − 5

2

)
ζ4 sin3 θζΦsEdθζdζ,

uϕ = Prϕ = Pθϕ = Qϕ = 0,

where the variable θζ is introduced instead of ζr by the relation ζr = ζ cos θζ

(0 ≤ θζ ≤ π).41 The integrals on the right-hand sides are functions of r̂ and t̂.
Case 5 (liB): x1Φ0(ζ, ζ2, ζ3) + ζ1Φ1(x2, x3, ζ, ζ2, ζ3)

Take a function of the form

φ = x1Φ0(ζ, ζ2, ζ3) + ζ1Φ1(x2, x3, ζ, ζ2, ζ3). (A.207)

Substituting Eq. (A.207) into the linearized Boltzmann equation (A.199a), we
have

L(Φ0(ζ, ζ2, ζ3)) = 0, (A.208a)

ζ2
∂Φ1

∂x2
+ ζ3

∂Φ1

∂x3
=

1
kζ1

L(ζ1Φ1) − Φ0, (A.208b)

both of which are compatible. In fact, from Eq. (A.208a),

Φ0(ζi) = c0 + c2ζ2 + c3ζ3 + c4ζ
2,

40The definition of the quantities with the subscripts r, θ, or ϕ is obvious by Footnote 23
in Section 4.5 and the definition (1.74).

41See Footnote 22 in Section 4.5.
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where c0, c2, c3, and c4 are arbitrary constants. The parity (even or odd) of
L(φ) with respect to a component of ζ agrees with that of φ (see Section A.2.7),
and therefore, L(ζ1Φ1)/ζ1 is even with respect to ζ1. Thus, the above form of
Φ1 is compatible with Eq. (A.208b).

A.6 Reduced BKW equation

According to Chu [1965], two components of the molecular velocities in the
BKW equation (1.40a) or (1.61) can be eliminated in spatially one-dimensional
problems, which is a big simplification. Here, we will explain the process. Take
the following one-dimensional BKW equation without an external force (F̂i =
0)42 in the nondimensional variables introduced in Section 1.9:

Sh
∂f̂

∂t̂
+ ζ1

∂f̂

∂x1
=

1
k

ρ̂(f̂e − f̂), (A.209)

where x1 is the nontrivial space variable and

f̂e =
ρ̂

(πT̂ )3/2
exp

(
− (ζi − v̂i)2

T̂

)
, (A.210a)

k =
√

π0
2L

=
(2RT0)1/2

Acρ0L
, Sh =

L

t0(2RT0)1/2
. (A.210b)

The parameters ρ̂, v̂i, and T̂ of the local Maxwellian f̂e is defined with f̂ by
Eqs. (1.54a)–(1.54c). It may be repeated that 0 is the mean free path of the
gas in the equilibrium state at rest with density ρ0 and temperature T0, t0 is
the reference time, and L is the reference length.

Let us introduce the four marginal velocity distribution functions g, g2, g3,
and h

g =
∫ ∫

f̂dζ2dζ3, g2 =
∫ ∫

ζ2f̂dζ2dζ3, g3 =
∫ ∫

ζ3f̂dζ2dζ3,

h =
∫ ∫

(ζ2
2 + ζ2

3 )f̂dζ2dζ3.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A.211)

Then,

ρ̂ =
∫

gdζ1, v̂1 =
1
ρ̂

∫
ζ1gdζ1, v̂2 =

1
ρ̂

∫
g2dζ1, v̂3 =

1
ρ̂

∫
g3dζ1,

T̂ =
2
3ρ̂

∫
[(ζ1 − v̂1)2g + h]dζ1 −

2
3
(v̂2

2 + v̂2
3).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A.212)

42The extension to the case where F̂i = (F̂1, 0, 0) and F̂1 is independent of ζi is straightfor-
ward.
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Multiplying the BKW equation (A.209) by 1, ζ2, ζ3, or ζ2
2 + ζ2

3 and integrating
the result over the whole space of (ζ2, ζ3), we have

Sh
∂

∂t̂

⎡⎢⎢⎣
g
g2

g3

h

⎤⎥⎥⎦+ ζ1
∂

∂x1

⎡⎢⎢⎣
g
g2

g3

h

⎤⎥⎥⎦ =
1
k

ρ̂

⎡⎢⎢⎣
G − g
v̂2G − g2

v̂3G − g3

H − h

⎤⎥⎥⎦ , (A.213)

[
G
H

]
=
∫ [

1
ζ2
2 + ζ2

3

]
f̂edζ2dζ3

=
ρ̂

(πT̂ )1/2

[
1

T̂ + v̂2
2 + v̂2

3

]
exp

(
− (ζ1 − v̂1)2

T̂

)
. (A.214)

The new functions G and H are the marginal velocity distribution functions g
and h corresponding to the Maxwellian f̂e.

The diffuse-reflection condition, Eqs. (1.63a) and (1.63b), with n2 = n3 = 0,
i.e.,

f̂(x1, ζi, t̂) =
σ̂w

(πT̂w)3/2
exp

(
− (ζi − v̂wi)2

T̂w

)
[(ζ1 − v̂w1)n1 > 0], (A.215a)

σ̂w = −2
(

π

T̂w

)1/2 ∫
(ζ1−v̂w1)n1<0

(ζ1 − v̂w1)n1f̂(x1, ζi, t̂)dζ, (A.215b)

is transformed into⎡⎢⎢⎣
g
g2

g3

h

⎤⎥⎥⎦ =
σ̂w

(πT̂w)1/2

⎡⎢⎢⎣
1

v̂w2

v̂w3

T̂w + v̂2
w2 + v̂2

w3

⎤⎥⎥⎦ exp
(
− (ζ1 − v̂w1)2

T̂w

)

[(ζ1 − v̂w1)n1 > 0], (A.216a)

σ̂w = −2
(

π

T̂w

)1/2 ∫
(ζ1−v̂w1)n1<0

(ζ1 − v̂w1)n1gdζ1. (A.216b)

The complete-condensation condition (1.68) with n2 = n3 = 0, i.e.,

f̂(x1, ζi, t̂) =
ρ̂w

(πT̂w)3/2
exp

(
− (ζi − v̂wi)2

T̂w

)
[(ζ1 − v̂w1)n1 > 0], (A.217)

is transformed into⎡⎢⎢⎣
g
g2

g3

h

⎤⎥⎥⎦ =
ρ̂w

(πT̂w)1/2

⎡⎢⎢⎣
1

v̂w2

v̂w3

T̂w + v̂2
w2 + v̂2

w3

⎤⎥⎥⎦ exp
(
− (ζ1 − v̂w1)2

T̂w

)

[(ζ1 − v̂w1)n1 > 0]. (A.218)
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The initial and boundary-value problem for f̂ with the five independent
variables x1, t̂, ζ1, ζ2, and ζ3 is reduced to that for the simultaneous system for
g, g2, g3, and h with the three independent variables x1, t̂, and ζ1.

When the initial condition satisfies g2 = g3 = 0 and the boundary data
satisfy v̂w2 = v̂w3 = 0, the solution (g, g2, g3, h) = (g, 0, 0, h) [thus, v̂2 =
v̂3 = 0] is consistent with the reduced BKW equation (A.213) and the reduced
diffuse-reflection condition (A.216a) with (A.216b) or the reduced complete-
condensation condition (A.218). Then, the problem is reduced to that for the
two marginal velocity distribution functions g and h.

Finally, in two-dimensional problems, where ∂/∂x3 = 0, the molecular veloc-
ity component ζ3 can be similarly eliminated; further, in the cylindrical problem
with the corresponding symmetry as in Sections 6.2 and 6.3, the axial compo-
nent ξz or ζz of the molecular velocity can be eliminated in a similar way.

A.7 Maxwell distribution

A.7.1 Equilibrium distribution

We will look for the solution of the Boltzmann equation (1.5) describing an equi-
librium state (or a time-independent and spatially uniform state) of the system
under no external force (Fi = 0). The solution is assumed here to be continu-
ous and positive. For the equilibrium solution fE , the Boltzmann equation is
reduced to ∫

(f ′
Ef ′

E∗ − fEfE∗)BdΩ(α)dξ∗ = 0. (A.219)

Multiplying Eq. (A.219) by ln c−1
0 fE , where c0 is a nondimensionalizing con-

stant, and integrating the result over the whole space of ξ, we have∫
(ln c−1

0 fE)(f ′
Ef ′

E∗ − fEfE∗)BdΩ(α)dξ∗dξ

=
1
4

∫
(ln c−1

0 fE + ln c−1
0 fE∗ − ln c−1

0 f ′
E − ln c−1

0 f ′
E∗)

× (f ′
Ef ′

E∗ − fEfE∗)BdΩ(α)dξ∗dξ

=
1
4

∫
(f ′

Ef ′
E∗ − fEfE∗) ln

(
fEfE∗
f ′

Ef ′
E∗

)
BdΩ(α)dξ∗dξ = 0, (A.220)

where the symmetry relation (A.36e) is used for the transformation from the first
expression to the second. The function B being positive almost everywhere,43

fE being positive, and (x− y) ln(y/x) ≤ 0, where the equal sign holds at x = y,
the solution fE must satisfy the detailed-balance condition

f ′
Ef ′

E∗ = fE fE∗, (A.221)

43See Footnote 5 in Section 1.2.



A.7. Maxwell distribution 547

from which
ln c−1

0 f ′
E + ln c−1

0 f ′
E∗ = ln c−1

0 fE + ln c−1
0 fE∗, (A.222)

for all ξ, ξ∗, and α. That is, ln c−1
0 fE is a summational invariant of the collision.

According to Section A.2.3, its general form is given by

ln c−1
0 fE = Υ0 + Υiξi + Υ4ξ

2
i , (A.223a)

that is,
fE = (c0 exp Υ0) exp(Υiξi + Υ4ξ

2
i ), (A.223b)

where Υ0, Υi, and Υ4 are constants. Inversely, if fE (or ln c−1
0 fE) is given by

Eq. (A.223b) [or Eq. (A.223a)], fE satisfies Eq. (A.219).
The relations between the above five parameters (c0 exp Υ0), Υi, and Υ4 and

the macroscopic variables ρ, vi, and T are obtained with the aid of Eqs. (1.2a)–
(1.2c) as

RT = − 1
2Υ4

, vi = − Υi

2Υ4
,

ρ

(2πRT )3/2
= (c0 exp Υ0) exp

(
− Υ2

i

4Υ4

)
.

With these relations, the velocity distribution function fE describing an equi-
librium state is given by

fE =
ρ

(2πRT )3/2
exp

(
− (ξi − vi)2

2RT

)
. (A.224)

This distribution is called a Maxwell distribution (or Maxwellian), especially a
Maxwell distribution at rest if vi = 0.

Obviously from the above derivation, Eq. (A.224) is the unique positive con-
tinuous solution of Eq. (A.219) [or the solution of the Boltzmann equation (1.5)
with Fi = 0 describing an equilibrium state]. If we review the proof, the log-
arithm ln c−1

0 fE is first introduced. Thus, unless fE is positive (fE > 0), we
cannot proceed any more. Thus, the positivity condition is required for the
proof. A very simple proof that the non-negative continuous function fE (≥ 0)
satisfying J(fE , fE) = 0 is positive (fE > 0) is given in Sone [1978a]. Thus, the
uniqueness of the Maxwellian is extended to the class of non-negative continuous
functions. Arkeryd [1972] made an important extension of the uniqueness. He
considered the initial-value problem of the Boltzmann equation for spatially ho-
mogeneous initial data (or data uniform in X). With the aid of the exponential
(multiplier) form (A.168) of the Boltzmann equation, he could prove that non-
negativity of the solution f leads to strict positivity everywhere for f at positive
time when the initial value is strictly positive on a set of positive measure.44 He
made another extension about the summational invariant explained in the last
paragraph of Section A.2.3. Thus, the uniqueness of the Maxwellian is extended

44His positivity result in 1972 is only for the space-homogeneous case, but according to
Arkeryd (private communication), this is less important because his particular result can be
extended, with the same idea of proof (i.e., by inspection of the exponential form), to time
and space-dependent cases as well as to time-independent cases.
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to the class of locally integrable functions.45 The extension is essential because
the velocity distribution function generally has discontinuities as explained in
Section A.2.3.

The Maxwell distribution (A.224) is spherically symmetric with respect to
the peculiar (or thermal) velocity Ci (= ξi−vi) of a molecule. Thus, we introduce
fSpE

fSpEdC =
(∫ 2π

0

∫ π

0

fEC2 sin θdθdϕ

)
dC

=
4ρ

(2πRT )1/2

(
C2

2RT

)
exp

(
− C2

2RT

)
dC, (A.225)

where we introduced the spherical coordinate representation of Ci

C1 = C sin θ cos ϕ, C2 = C sin θ sin ϕ, C3 = C cos θ. (A.226)

From Eq. (A.225), the most probable peculiar speed Cmp, i.e., the maximum

point of fSpE , the average peculiar speed C̄, and the root mean square
(
C2

)1/2

of the peculiar speed C for the Maxwell distribution are given as

Cmp = (2RT )1/2, C̄ =
2√
π

(2RT )1/2,
(
C2

)1/2

=

√
3
2
(2RT )1/2. (A.227)

The distribution (A.225), together with Cmp, C̄, and
(
C2

)1/2

, is shown in
Fig. A.5.

Finally, it may be noted that, obviously from the above derivation, the
Maxwell distribution (A.224), where ρ, vi, and T are arbitrary functions of Xi

and t, is the unique distribution that makes the collision integral J(f, f) vanish.

A.7.2 Local Maxwell distribution

In the preceding subsection (Section A.7.1), we have found that the velocity
distribution function f of the form (A.224) or Maxwellian, irrespective of ρ,
vi, and T being time-independent and spatially uniform or not, is the only
distribution function that makes the collision integral of the Boltzmann equation
vanish. When it is time-independent and spatially uniform or Υ0, Υi, and
Υ4 in Eq. (A.223b) are constants, the Maxwellian (A.224) or Eq. (A.223b) is
the solution of the Boltzmann equation (1.5) without an external force (Fi =
0). When ρ, vi, and T or Υ0, Υi, and Υ4 are functions of t and/or Xj , the
corresponding distribution, which is called a local Maxwell distribution (or local
Maxwellian), does not necessarily satisfy the Boltzmann equation (1.5) with
Fi = 0. Here, we examine the condition that the local Maxwell distribution
satisfies the Boltzmann equation with Fi = 0 according to Grad [1949].

45The functions that differ only on a set of measure zero are identified.
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Figure A.5. The distribution fSpE given by Eq. (A.225). The points marked by

Cmp, C̄, and
“
C2

”1/2

are, respectively, the points Cmp/(2RT )1/2, C̄/(2RT )1/2, and
“
C2

”1/2

/(2RT )1/2.

The local Maxwell distribution fe is expressed in the same way as the equi-
librium distribution (A.223a) in the form

ln c−1
0 fe = Υ0(X, t) + Υi(X, t)ξi + Υ4(X, t)ξ2

i , (A.228)

where c0 is a nondimensionalizing constant. Noting that d ln c−1
0 fe = dfe/fe

and that the collision integral vanishes for fe, i.e., J(fe, fe) = 0, we find that

∂ ln c−1
0 fe

∂t
+ ξj

∂ ln c−1
0 fe

∂Xj
= 0. (A.229)

The functions Υ0(X, t), Υi(X, t), and Υ4(X, t) are determined by Eq. (A.229)
in the following way.

Substituting Eq. (A.228) into Eq. (A.229), and arranging the same-order
terms in ξi, we have

∂Υ0

∂t
= 0, (A.230a)

∂Υi

∂t
+

∂Υ0

∂Xi
= 0, (A.230b)

δij
∂Υ4

∂t
+

1
2

(
∂Υi

∂Xj
+

∂Υj

∂Xi

)
= 0, (A.230c)

∂Υ4

∂Xi
= 0. (A.230d)

From Eq. (A.230a), Υ0 is a function of Xj only, and from Eq. (A.230d), Υ4 is
a function of t only. From Eq. (A.230b) with the former result, Υi is linear
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with respect to t. Thus, from Eq. (A.230c), Υ4 is quadratic in t. Differentiating
Eq. (A.230c) with respect to Xk, and using Eq. (A.230d), we have

∂2Υi

∂Xj∂Xk
+

∂2Υj

∂Xk∂Xi
= 0. (A.231)

Replacing the set of subscripts (i, j, k) by (j, k, i) or (k, i, j), and assembling
these three equations in the way (i, j, k) + (k, i, j) − (j, k, i), we obtain

∂2Υi

∂Xj∂Xk
= 0, (A.232)

from which Υi is linear in Xj . Thus, from Eq. (A.230b), Υ0 is quadratic in Xj .
To summarize the results up to this point,

Υ0 = a0 + kiXi + 1
2 (αij + αji)XiXj ,

Υi = ai + bit + cijXj + dijXjt,

Υ4 = a4 + βt + αt2,

⎫⎪⎪⎬⎪⎪⎭ (A.233)

where ar, ki, αij , bi, cij , dij , α, and β are constants. From the above dis-
cussion, Eq. (A.233) obviously satisfies Eqs. (A.230a) and (A.230d), but is not
guaranteed to satisfy Eqs. (A.230b) and (A.230c). Substituting Eq. (A.233) into
Eqs. (A.230b) and (A.230c), we have

ki + (αij + αji)Xj + bi + dijXj = 0,

δij(β + 2αt) + 1
2 [(cij + cji) + (dij + dji)t] = 0,

}
(A.234)

from which we have
bi = −ki,

dij = −2αδij ,

αij + αji = 2αδij ,

cij = Ωij − βδij ,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (A.235)

where Ωij is an arbitrary antisymmetric constant tensor (Ωij + Ωji = 0).
The general form of a local Maxwell distribution that satisfies the Boltzmann

equation (1.5) without an external force Fi is given by Eq. (A.228) where Υ0,
Υi, and Υ4 are in the form

Υ0 = a0 + kiXi + αX2
j ,

Υi = ai − kit − (2αt + β)Xi + ΩijXj ,

Υ4 = a4 + βt + αt2,

⎫⎪⎪⎬⎪⎪⎭ (A.236)

with arbitrary constants ar, ki, α, β, and Ωij (Ωij + Ωji = 0). The macroscopic
variables ρ, vi, and T in the local Maxwellian

fe =
ρ

(2πRT )3/2
exp

(
− (ξi − vi)2

2RT

)
(A.237)
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that satisfies the Boltzmann equation are given with the aid of Υ0, Υi, and Υ4

given by Eq. (A.236) as46

RT = − 1
2Υ4

, vi = − Υi

2Υ4
,

ρ

(2πRT )3/2
= c0 exp

(
Υ0 −

Υ2
i

4Υ4

)
. (A.238)

Finally, we will examine the flow field that is described by the local Maxwellian
satisfying the Boltzmann equation. It should be noted that the temperature is
spatially uniform, irrespective of the parameters included in the solution.
(i) Time-independent and spatially uniform solution (α = β = ki = Ωij = 0) :

In this case, Υ0, Υi, and Υ4 are reduced to constants (Υ0 = a0, Υi = ai,
Υ4 = a4). This is the solution given in the preceding subsection (Section A.7.1).
This is sometimes called an absolute Maxwell distribution.
(ii) Time-independent solution (α = β = ki = 0) :

In this case
Υ0 = a0, Υi = ai + ΩijXj , Υ4 = a4.

Thus, the gas motion is the superposition of a uniform flow with velocity
−ai/2a4 and a rigid body rotation with angular velocity Ωijεijk/4a4, where
εijk is Eddington’s epsilon.47 The density has a gradient in accordance with the
pressure gradient induced by the rigid body rotation.
(iii) α = β = 0, ki �= 0 :

Υ0 = a0 + kiXi, Υi = ai − kit + ΩijXj , Υ4 = a4.

The difference from the case (ii) is that the uniform flow is time-dependent with
density variation in time being induced correspondingly.
(iv) α �= 0 or β �= 0 :

When α �= 0, β can be eliminated by taking t+(β/2α) as new t. Irrespective
of α = 0 or α �= 0, the gas motion is the superposition of a spatially uniform
flow, a rigid body rotation, and a radial flow, where the velocity or angular
speed of rotation is time-dependent. The radial flow is an expanding flow if
α < 0 or (α = 0, β < 0) and a converging flow if α > 0 or (α = 0, β > 0). In
the latter case, Υ4 becomes positive at some t, and thus the moments or the
macroscopic variables (1.2a)–(1.2g) diverge. The solution is valid only up to
this time. In the former case, the solution is valid from some t.

A.8 Mean free path for a Maxwellian

According to the definition in Section 1.5, the mean collision frequency ν̄c and
the mean free path  are determined by the velocity distribution function f [see
Eqs. (1.19) and (1.20)]. We will obtain their expressions for a gas consisting of
molecules with their intermolecular force extending only within a finite range dm

46The c0 can be incorporated into a0 in Υ0 by taking a0 + ln c0 as new a0.
47See the definition in Footnote 30 in Section 3.1.7.
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(e.g., hard-sphere molecules with diameter dm) when the velocity distribution
function is the Maxwellian fe

fe =
ρ

(2πRT )3/2
exp

(
− (ξi − vi)2

2RT

)
. (A.239)

By definition, the mean collision frequency ν̄c is

ν̄c =
1

ρm

∫
f(ξ)f(ξ∗)BdΩ(α)dξ∗dξ. (A.240)

Noting the relation (A.20), we have

ν̄c =
d2

m

2ρm

∫
all e, all ξ∗, all ξ

|(ξ∗ − ξ)·e|f(ξ)f(ξ∗)dΩ(e)dξ∗dξ. (A.241)

With the new variables

xi =
ξi + ξi∗ − 2vi

2(RT )1/2
, yi =

ξi − ξi∗
2(RT )1/2

,

the product of the Maxwellians fe(ξ)fe(ξ∗) is reduced to

fe(ξ)fe(ξ∗) =
ρ2

(2πRT )3
exp

(
−x2

i − y2
i

)
.

Then, ν̄c for the Maxwellian (A.239) is given by

ν̄c =
d2

mρ(RT )1/2

π3m

∫
|yiei| exp

(
−x2

i − y2
i

)
dΩ(e)dxdy

=
d2

mρ(RT )1/2

π3/2m

∫
|yiei| exp

(
−y2

i

)
dΩ(e)dy

= 4d2
m(πRT )1/2(ρ/m), (A.242)

where ρ/m is the number density of the molecules. The mean collision frequency
ν̄c is independent of vi.

The mean free path is easily obtained by the definition  = ξ/ν̄c. For the
Maxwellian with vi = 0,

 =
1√

2πd2
m(ρ/m)

, (A.243)

because ξ = C̄ = 2(2RT/π)1/2 [see Eq. (A.227)].48

48A gas consisting of very small hard-sphere molecules (diameter : dc) with a very weak
potential extending to dm around it has the same mean collision frequency ν̄c and the same
mean free path 	 as the gas of a hard-sphere molecule with diameter dm. The collision effect
is quite different for the two gases, or the two gases behave quite differently for the same
Knudsen number when dc � dm.
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A.9 Kinetic boundary condition in
the linearized problem

In this section, we simplify the kinetic boundary conditions (1.64) and (1.69)
expressed with the scattering kernels K̂B and K̂I for the linearized system. First
consider the case where v̂wini (= uwini) = 0. The boundary condition can be
put in the common form

f̂(x, ζ, t̂) = ĝ(x, ζ, t̂)+
∫

ζi∗ni<0

K̂(ζ, ζ∗, x, t̂)f̂(x, ζ∗, t̂)dζ∗ (ζini > 0), (A.244)

where

ĝ = 0, K̂ = K̂B for a simple boundary,

ĝ = ĝI , K̂ = K̂I for an interface.

Let E(1 + φew) be the Maxwellian that is determined by the condition of
the boundary. Thus, it satisfies the condition (1.66c) or (1.71c). That is,

E(1 + φew) = ĝ +
∫

ζi∗ni<0

K̂E∗(1 + φew)∗dζ∗ (ζini > 0). (A.245)

Hereafter, in this section the subscript ∗ indicates the argument ζ∗. The first-
order expression of φew is

φew = ωa + 2ζiuwi +
(

ζ2
i − 3

2

)
τw,

where

ωa : arbitrary for a simple boundary,

ωa = ωw for an interface.

Let K̂ and ĝ at the reference state be, respectively, indicated by K̂0 (≥ 0) and
ĝ0 (≥ 0) with the subscript 0 and put K̂ = K̂0+K̂1 and ĝ = ĝ0+ ĝ1. The leading
order term of Eq. (A.245) is

E = ĝ0 +
∫

ζi∗ni<0

K̂0E∗dζ∗ (ζini > 0). (A.246)

That is,

E =
∫

ζi∗ni<0

K̂B0E∗dζ∗ (ζini > 0), (A.247)

E = ĝI0 +
∫

ζi∗ni<0

K̂I0E∗dζ∗ (ζini > 0). (A.248)

These are the conditions on K̂B0, K̂I0, and ĝI0.



554 Appendix A. Supplement to the Boltzmann Equation

The boundary condition (A.244) is rewritten as

E(1 + φ) = ĝ0 + ĝ1 +
∫

ζi∗ni<0

(K̂0 + K̂1)E∗(1 + φ)∗dζ∗ (ζini > 0). (A.249)

Subtracting Eq. (A.245) from Eq. (A.249), and neglecting the second and higher-
order terms of the perturbations, we have

E(φ − φew) =
∫

ζi∗ni<0

K̂0(φ − φew)∗E∗dζ∗ (ζini > 0). (A.250)

That is,

E(ζ)φ(ζ) =
[
ωa + 2ζiuwi +

(
ζ2
i − 3

2

)
τw

]
E(ζ)

−
∫

ζi∗ni<0

K̂0(ζ, ζ∗)
[
ωa + 2ζi∗uwi +

(
ζ2
i∗ −

3
2

)
τw

]
E(ζ∗)dζ∗

+
∫

ζi∗ni<0

K̂0(ζ, ζ∗)φ(ζ∗)E(ζ∗)dζ∗ (ζini > 0). (A.251)

Thus, we have the boundary condition for the linearized system in the case
uwini = 0 in the following form:
On a simple boundary,

E(ζ)φ(ζ) =
[
2ζiuwi +

(
ζ2
i − 3

2

)
τw

]
E(ζ)

−
∫

ζi∗ni<0

K̂B0(ζ, ζ∗)
[
2ζi∗uwi +

(
ζ2
i∗ −

3
2

)
τw

]
E(ζ∗)dζ∗

+
∫

ζi∗ni<0

K̂B0(ζ, ζ∗)φ(ζ∗)E(ζ∗)dζ∗ (ζini > 0), (A.252)

where ωa terms cancel out owing to Eq. (A.247). Transformation of the condi-
tions (1.66a) and (1.66b) is straightforward, and the condition (1.66c) reduces
to Eq. (A.247). The conditions on K̂B0 are summarized in the following way if
the uniqueness condition attached to Eq. (1.66c) is combined:

(i) K̂B0(ζ, ζ∗) ≥ 0 (ζini > 0, ζi∗ni < 0). (A.253a)

(ii) −
∫

ζini>0

ζknk

ζj∗nj
K̂B0(ζ, ζ∗)dζ = 1 (ζi∗ni < 0). (A.253b)

(iii) Let ϕ be ϕ = c0 + ciζi + c4ζ
2
i , where c0, ci, and c4 are independent of ζ.

Among this ϕ, only ϕ = c0 satisfies the relation

E(ζ)ϕ(ζ) =
∫

ζi∗ni<0

K̂B0(ζ, ζ∗)ϕ(ζ∗)E(ζ∗)dζ∗ (ζini > 0). (A.253c)
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On an interface,

E(ζ)φ(ζ) =
[
ωw + 2ζiuwi +

(
ζ2
i − 3

2

)
τw

]
E(ζ)

−
∫

ζi∗ni<0

K̂I0(ζ, ζ∗)
[
ωw + 2ζi∗uwi +

(
ζ2
i∗ −

3
2

)
τw

]
E(ζ∗)dζ∗

+
∫

ζi∗ni<0

K̂I0(ζ, ζ∗)φ(ζ∗)E(ζ∗)dζ∗ (ζini > 0). (A.255)

Obviously, transformation of the condition (1.71b) is straightforward and the
condition (1.71c) is obviously satisfied because the Maxwellian φew obviously
satisfies Eq. (A.255). The conditions on K̂I0 are summarized in the following
way if the uniqueness condition attached to Eq. (1.71c) is combined:

(i) K̂I0(ζ, ζ∗) ≥ 0 (ζini > 0, ζi∗ni < 0). (A.256b)

(ii-a) E = ĝI0 +
∫

ζi∗ni<0

K̂I0(ζ, ζ∗)E∗dζ∗ (ζini > 0); (A.256c)

(ii-b) Let ϕ be ϕ = c0 + ciζi + c4ζ
2
i , where c0, ci, and c4 are independent of ζ.

Among this ϕ, only ϕ = 0 satisfies the relation

E(ζ)ϕ(ζ) =
∫

ζi∗ni<0

K̂I0(ζ, ζ∗)ϕ(ζ∗)E(ζ∗)dζ∗ (ζini > 0). (A.256d)

The linearized boundary condition is expressed with K̂B0 and K̂I0, i.e., the
kernels at the reference state, in a simple form. In the above formulas, uwi is
equivalent to uwi − uwjnjni because the case uwjnj = 0 is considered.

Now, consider the case uwjnj �= 0. The boundary condition (A.244) is the
local relation that is determined by the quantities of the point and time under
consideration.49 Thus, consider it in the coordinate system moving with uwjnjni

at the point and time under consideration. The quantities in the new system are
indicated by the circle ◦ over the corresponding symbol in the original system.
Then, ůwjnj = 0 in the new system.

ůwjnj = 0, ζ̊i = ζi − uwjnjni, ůwi = uwi − uwjnjni, ω̊a = ωa, τ̊w = τw,

E(ζ̊)[1 + φ̊(̊ζ)] = E(ζ)[1 + φ(ζ)], E(ζ̊)[1 + φ̊ew (̊ζ)] = E(ζ)[1 + φew(ζ)],

ζ̊ini = (ζi − uwjnjni)ni = (ζi − uwi)ni.

The Maxwellian E(ζ̊) is at rest in the new system or E(ζ) is an expression for
the Gaussian of its argument. Thus, φ̊(̊ζ) �= φ(ζ). The second-order quantities

49See Footnote 14 in Section 1.6.1.
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being neglected,

E(ζ̊) = E(ζ)(1 + 2ζiuwjnjni), φ̊(̊ζ) = φ(ζ) − 2ζiuwjnjni,

ζ̊iůwi = ζi(uwi − uwjnjni), ζ̊2
i τ̊w = ζ2

i τw,

φ̊ew (̊ζ) = φew(ζ) − 2ζiuwjnjni = ωa + 2ζiuwi +
(
ζ2
i − 3

2

)
τw − 2ζiuwjnjni,

φ̊(̊ζ) − φ̊ew (̊ζ) = φ(ζ) − φew(ζ).

On a boundary where ůwjnj = 0, Eq. (A.250) or (A.251) or Eqs. (A.252)
and (A.255) can be applied with the circle ◦ over a letter. That is,

E(ζ̊)[φ̊(̊ζ)− φ̊ew (̊ζ)] =
∫

ζ̊i∗ni<0

K̂0(̊ζ, ζ̊∗)[φ̊(̊ζ∗)− φ̊ew (̊ζ∗)]E(ζ̊∗)dζ̊∗ (ζ̊ini > 0),

(A.257)
where ωa in φ̊ew can be put zero without loss of generality for a simple boundary.
Using the relation shown above and changing the variable of integration from
ζ̊∗ to ζ∗, we have

E(ζ)[φ(ζ) − φew(ζ)] =
∫

(ζi∗−uwi)ni<0

K̂0(̊ζ, ζ̊∗)[φ(ζ∗) − φew(ζ∗)]E(ζ∗)dζ∗

[(ζi − uwi)ni > 0]. (A.258)

Let the kernel K̂0(̊ζ, ζ̊∗) be a sufficiently well-behaved function. In Eq. (A.258),
if we shift the arguments (̊ζ, ζ̊∗) of the kernel K̂0 to (ζ, ζ∗), the difference
between the kernels K̂0(̊ζ, ζ̊∗) and K̂0(ζ, ζ∗) is small in most of the region, but
there appears a small region, i.e., uwini < ζini < 0 or 0 < ζi∗ni < uwini

depending on uwini < 0 or uwini > 0, where K̂0(ζ, ζ∗) is undefined. Extending
the kernel properly, especially in the ζ side for uwini < 0,50 we can control the
error within the higher order. Thus, we have

E(ζ)[φ(ζ) − φew(ζ)] =
∫

(ζi∗−uwi)ni<0

K̂0(ζ, ζ∗)[φ(ζ∗) − φew(ζ∗)]E(ζ∗)dζ∗

[(ζi − uwi)ni > 0]. (A.259)

On a simple boundary,

E(ζ)φ(ζ) =
[
2ζiuwi +

(
ζ2
i − 3

2

)
τw

]
E(ζ)

−
∫

(ζi∗−uwi)ni<0

K̂B0(ζ, ζ∗)
[
2ζi∗uwi +

(
ζ2
i∗ −

3
2

)
τw

]
E(ζ∗)dζ∗

+
∫

(ζi∗−uwi)ni<0

K̂B0(ζ, ζ∗)φ(ζ∗)E(ζ∗)dζ∗ [(ζi − uwi)ni > 0]. (A.260)

50For uwini > 0, the error is of higher order if we put K̂0(“, “∗) = 0 where it is not defined
in the “∗ side.
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On an interface,

E(ζ)φ(ζ) =
[
ωw + 2ζiuwi +

(
ζ2
i − 3

2

)
τw

]
E(ζ)

−
∫

(ζi∗−uwi)ni<0

K̂I0(ζ, ζ∗)
[
ωw + 2ζi∗uwi +

(
ζ2
i∗ −

3
2

)
τw

]
E(ζ∗)dζ∗

+
∫

(ζi∗−uwi)ni<0

K̂I0(ζ, ζ∗)φ(ζ∗)E(ζ∗)dζ∗ [(ζi − uwi)ni > 0]. (A.261)

In Eqs. (A.259)–(A.261), the apparent differences from Eqs. (A.251), (A.252),
and (A.255) are the range of integration and that of definition of φ(ζ) on the
left-hand side.

In the above discussion, we used the conditions (1.66c) and (1.71c) with the
attached uniqueness conditions and carried out a perturbation analysis. Thus,
the above formulas cannot be applied to the specular-reflection condition and
the kernel of singular type such as a kernel containing the specular-reflection
part.

In this occasion, it may be in order to comment on the linearized system.
From the discussion in the next two paragraphs, the linearized system should
be taken as an independent system and be clearly posed when one poses the
system.

The linearization is carried out formally neglecting the higher-order terms
of formal expansion. It is not a rigorous mathematical process assuring that the
linearized system really approximates the original system, that is, the solution
of the linearized equation does not necessarily approximate the solution of the
original nonlinear equation when the parameter of the basis of linearization is
small. In fact, the solution of the linearized Boltzmann equation is insufficient
to describe the weak condensation of the half-space problem discussed in Section
7.2, however small the rate of condensation and the other perturbed variables
from a uniform equilibrium state may be.

The range (ζi−uwi)ni ≷ 0 differs from ζini ≷ 0 only by small amount uwini.
For a smooth function, the shift of its variables by a small amount modifies its
value only by a small amount of the same order. For a discontinuous function,
like the velocity distribution function, especially on a boundary, as noted in
Section 3.1.6, the difference is a finite amount in a narrow range of the order
of the shift in a neighborhood of the discontinuity. How this difference is taken
depends on the norm51 that we choose for expressing the difference of two func-
tions. In a boundary-value problem of the Boltzmann system, the simplification
to shift the range by a small amount, e.g., from (ζi − uwi)ni ≷ 0 to ζini ≷ 0,
can be considered. This is to be discussed with the choice of the norm; the error
estimate requires detailed mathematical argument.

51Its exact definition being put aside, the norm of a function g(x) in the domain D is defined

by maxxεD |g|, `RD g2dx
´1/2

, etc.
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A.10 Darrozes–Guiraud inequality

Darrozes & Guiraud [1966] proved an inequality on an integral of a function f
satisfying the boundary condition (1.26) on a simple boundary. The Darrozes–
Guiraud inequality is expressed as∫

all ξ

(ξi − vwi)nif(ξ) ln[f(ξ)/c0]dξ ≤
∫

all ξ

(ξi − vwi)nif(ξ) ln[f0(ξ)/c0]dξ.

(A.262)
Here,
(i) f satisfies the boundary condition (1.26), i.e.,

f(X, ξ, t) =
∫

(ξi∗−vwi)ni<0

KB(ξ, ξ∗, X, t)f(X, ξ∗, t)dξ∗ [(ξi − vwi)ni > 0],

(A.263)
where KB satisfies the conditions (1.27a)–(1.27c).
(ii) f0 is the Maxwellian determined by the temperature and velocity of the
boundary, that is,

f0(ξ) =
ρ0

(2πRTw)3/2
exp

(
− (ξi − vwi)2

2RTw

)
, (A.264)

with arbitrary ρ0.
(iii) c0 is a constant to make the arguments f/c0 and f0/c0 of the ln(∗) function
dimensionless.
The equality of the relation (A.262) holds when and only when f(ξ)/f0(ξ) is
independent of ξ.

We will show its derivation (see also Cercignani [1988]). The inequality is
proved with the aid of the Jensen inequality (Jensen [1906], see also Parzen
[1960], Rudin [1987], or Lieb & Loss [2001])

F

(∫
φψdξ

/∫
ψdξ

)
≤
∫

ψF (φ)dξ

/∫
ψdξ (ψ ≥ 0), (A.265)

where F (x) is a strictly convex function, φ and ψ (ψ ≥ 0) are arbitrary functions
of ξ, and the equality sign holds when and only when φ is independent of ξ.52

52(i) The strictly convex function F (x) in the interval a ≤ x ≤ b is defined by the function
F (x) that satisfies the relation

F (c1x1 + c2x2) < c1F (x1) + c2F (x2),

for arbitrary x1 and x2 (x1 	= x2) in the interval and for positive c1 and c2 satisfying c1 +c2 =
1.

(ii) Rough derivation of the Jensen inequality: By successive application of the above
relation, we have

F

 
nX

m=1

cmxm

!
≤

nX
m=1

cmF (xm)

 
nX

m=1

cm = 1, cm ≥ 0

!
,

where equality holds only when x1 = x2 = · · · = xn or cm = 1 for some m. With the corre-
spondence (c1, c2, · · · , cn) → ψd‰/

R
ψd‰ and (x1, x2, · · · , xn) → φ, the Jensen inequality is

obtained by taking the limiting process n → ∞. See Lieb & Loss [2001] for the proof of the
equality condition.
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Let F (x) be a convex function and consider the function F (f(ξ)/f0(ξ)). The
function is expressed in another way with the aid of Eq. (A.263), i.e.,

F (f(ξ)/f0(ξ))

= F

(∫
(ξi∗−vwi)ni<0

KB(ξ, ξ∗)f(ξ∗)
f0(ξ)

dξ∗

)
[(ξi − vwi)ni > 0].

Now apply the Jensen inequality to the function on the right-hand side. Here
we choose φ(ξ∗) and ψ(ξ∗) as

φ(ξ∗) =
f(ξ∗)
f0(ξ∗)

,

ψ(ξ∗) =
KB(ξ, ξ∗)f0(ξ∗)

f0(ξ)
≥ 0 [(ξi − vwi)ni > 0, (ξi∗ − vwi)ni < 0].

It should be noted here that φ(ξ∗) is defined for the whole range of ξ∗ and that
ψ(ξ∗) satisfies the relation∫

(ξi∗−vwi)ni<0

ψ(ξ∗)dξ∗ = 1 [(ξi − vwi)ni > 0] [see Eq. (1.27c)].

With the above preparation, the Jensen inequality is applied as

F (f(ξ)/f0(ξ)) = F

(∫
(ξi∗−vwi)ni<0

KB(ξ, ξ∗)f0(ξ∗)
f0(ξ)

f(ξ∗)
f0(ξ∗)

dξ∗

)

≤
∫

(ξi∗−vwi)ni<0

KB(ξ, ξ∗)f0(ξ∗)
f0(ξ)

F

(
f(ξ∗)
f0(ξ∗)

)
dξ∗

[(ξi − vwi)ni > 0], (A.266)

where the equality sign holds when and only when φ(ξ) is independent of ξ,
that is, f(ξ) = cf0(ξ) (c : a constant). Multiplying the inequality (A.266) by
(ξi − vwi)nif0(ξ) and integrating with respect to ξ over 0 < (ξi − vwi)ni < ∞,
we have∫

(ξi−vwi)ni>0

(ξi − vwi)nif0(ξ) F

(
f(ξ)
f0(ξ)

)
dξ

≤
∫

(ξi−vwi)ni>0

(ξi − vwi)nif0(ξ)
∫

(ξi∗−vwi)ni<0

KB(ξ, ξ∗)f0(ξ∗)
f0(ξ)

F

(
f(ξ∗)
f0(ξ∗)

)
dξ∗dξ

=
∫

(ξi∗−vwi)ni<0

f0(ξ∗)F

(
f(ξ∗)
f0(ξ∗)

)∫
(ξi−vwi)ni>0

(ξi − vwi)niKB(ξ, ξ∗)dξdξ∗

= −
∫

(ξi∗−vwi)ni<0

(ξi∗ − vwi)nif0(ξ∗)F

(
f(ξ∗)
f0(ξ∗)

)
dξ∗,

where Eq. (1.27b) is used in the last transformation. From the first and the last
expressions of the above relations,∫

all ξ

(ξi − vwi)nif0(ξ)F

(
f(ξ)
f0(ξ)

)
dξ ≤ 0. (A.267)
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Choosing φ lnφ as F (φ) here, we obtain the Darrozes–Guiraud inequality∫
all ξ

(ξi − vwi)nif(ξ) ln[f(ξ)/c0]dξ ≤
∫

all ξ

(ξi − vwi)nif(ξ) ln[f0(ξ)/c0]dξ.

In view of Eq. (A.264), the expression on the right-hand side is rewritten as∫
all ξ

(ξi − vwi)nif(ξ) ln[f0(ξ)/c0]dξ = − 1
RTw

[pij(vj − vwj)ni + qini].

On the other hand, by definition (see Section 1.7),∫
all ξ

(ξi − vwi)nif(ξ) ln[f(ξ)/c0]dξ = (Hi − Hvwi)ni.

Therefore,

(Hi − Hvwi)ni ≤ − 1
RTw

[pij(vj − vwj)ni + qini]. (A.268)

Similarly, we can prove the following inequality used in Sections 4.4 and
A.12: ∫

ζiniφ
2Edζ ≤ 0 on a boundary, (A.269)

for the boundary condition (A.252) with uwi = 0 and τw = 0,53 and for the
condition (A.255) with ωw = 0, uwi = 0, and τw = 0, i.e.,

E(ζ)φ(ζ) =
∫

ζi∗ni<0

K̂0(ζ, ζ∗)φ(ζ∗)E(ζ∗)dζ∗ (ζini > 0), (A.270)

where K̂0 = K̂B0 for the condition (A.252), and K̂0 = K̂I0 for the condition
(A.255). The inequality (A.269) for the condition (A.252) is the linearized-
boundary-condition version of the Darrozes–Guiraud inequality (A.262) for a
boundary at rest. Here, we impose the following condition54 on K̂I0 in addition
to (i), (ii-a), and (ii-b) after Eq. (A.255):

−
∫

ζini>0

ζknk

ζj∗nj
K̂I0(ζ, ζ∗)dζ ≤ 1 (ζi∗ni < 0). (A.271)

We transform the integral
∫

ζini>0
ζiniφ

2Edζ in the following way, the ex-

53This means that the reference temperature T0 coincides with the temperature Tw on the
point of the boundary under consideration.

54The condition requires that all the molecules with a given molecular velocity “∗ impinging
on the boundary do not reflect on the boundary and that some of them are trapped there
[note the discussion on the condition (1.27b) in Footnote 13 in Section 1.6.1].
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planation of which is given after the equation:∫
ζini>0

ζiniφ
2Edζ =

∫
ζini>0

(∫
ζi∗ni<0

K̂0(ζ, ζ∗)E(ζ∗)
E(ζ)

φ(ζ∗)dζ∗

)2

ζiniE(ζ)dζ

≤
∫

ζini>0

(∫
ζi∗ni<0

K̂0(ζ, ζ∗)E(ζ∗)
E(ζ)

φ2(ζ∗)dζ∗

)
c1(ζ)ζiniE(ζ)dζ

=
∫

ζi∗ni<0

ζi∗niφ
2(ζ∗)E(ζ∗)

(∫
ζini>0

K̂0(ζ, ζ∗)
ζk∗nk

c1(ζ)ζinidζ

)
dζ∗

= −
∫

ζi∗ni<0

c2(ζ∗)ζi∗niφ
2(ζ∗)E(ζ∗)dζ∗

≤ −
∫

ζi∗ni<0

ζi∗niφ
2(ζ∗)E(ζ∗)dζ∗, (A.272)

where

c1(ζ) =
∫

ζi∗ni<0

K̂0(ζ, ζ∗)E(ζ∗)
E(ζ)

dζ∗ (ζini > 0),

c2(ζ∗) = −
∫

ζini>0

K̂0(ζ, ζ∗)
ζk∗nk

c1(ζ)ζinidζ (ζi∗ni < 0).

In the above process of transformation, (i) the boundary condition (A.270) is
used in the first line; (ii) the Jensen inequality (A.265) is applied from the first
to the second line with the replacement: after the change of notation ξ → ζ∗,
the substitutions

φ(ζ∗) = φ(ζ∗), ψ(ζ∗) =
K̂0(ζ, ζ∗)E(ζ∗)

E(ζ)
, F (x) = x2,

are made in the Jensen inequality (A.265); (iii) the order of integration is inter-
changed from the second to the third line; and (iv) the last inequality results
from the following bounds of c1(ζ) and c2(ζ∗) :

c1(ζ) = 1 for K̂0 = K̂B0,

0 ≤ c1(ζ) ≤ 1 for K̂0 = K̂I0,

which are derived from Eqs. (A.247) and (A.248), and

c2(ζ∗) = 1 for K̂0 = K̂B0,

0 ≤ c2(ζ∗) ≤ 1 for K̂0 = K̂I0,

which are derived from Eqs. (A.253b) and (A.271) together with the above in-
equalities for c1(ζ). Then, from Eq. (A.272), we have∫

ζiniφ
2Edζ ≤ 0.
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A.11 Equation for Knudsen layer

The equations for f̂Km of the Knudsen-layer correction in Sections 3.3, 3.4, and
9.2.2 are given in the forms

ζini
∂f̂Km

∂η
= 2Ĵ((f̂SB0)0, f̂Km) + Ihkm, (A.273a)

ζini
∂f̂Km

∂η
= 2Ĵ((f̂V 0)0, f̂Km) + Ihkm, (A.273b)

ζy
∂f̂K1

∂η
= 2Ĵ((f̂S0)0, f̂K1), (A.273c)

where Ihkm (especially, Ihk1 = 0) represents the inhomogeneous term that
decays rapidly (faster than any inverse power of η). These three quasi-one-
dimensional equations, where the coordinates in the surface η = const enter as
parameters, are reduced to the same type of equation in the following way.

Introduce the new variables η̃ and ζ̃i, in place of η and ζi, defined by

η̃ = (ρ̂SB0)0η, ζ̃i =
ζi

T̂
1/2
w0

for Eq. (A.273a), (A.274a)

η̃ = (ρ̂V 0)0η, ζ̃i =
ζi − v̂wi

T̂
1/2
w

for Eq. (A.273b), (A.274b)

η̃ = (ρ̂S0)0η, ζ̃i =
ζi − v̂wi

T̂
1/2
w

for Eq. (A.273c). (A.274c)

In Eq. (A.274c), i is used instead of ι (= x, y, z) and v̂wi = (v̂A, 0, 0) or (v̂B , 0, 0)
and T̂w = 1 or T̂B . Then, in view of the conditions (3.145), (3.181), (9.24a),
and (9.24b),

(f̂SB0)0 =
(ρ̂SB0)0
T̂

3/2
w0

E(ζ̃), (f̂V 0)0 =
(ρ̂V 0)0
T̂

3/2
w

E(ζ̃), (f̂S0)0 =
(ρ̂S0)0
T̂

3/2
w

E(ζ̃).

Further, in view of the above relations, introduce φKm(η̃, ζ̃i) defined by

f̂Km =
(ρ̂SB0)0
T̂

3/2
w0

E(ζ̃)φKm(η̃, ζ̃i) for Eq. (A.273a),

f̂Km =
(ρ̂V 0)0
T̂

3/2
w

E(ζ̃)φKm(η̃, ζ̃i) for Eq. (A.273b),

f̂K1 =
(ρ̂S0)0
T̂

3/2
w

E(ζ̃)φK1(η̃, ζ̃i) for Eq. (A.273c).

Then with the aid of Eqs. (A.115)–(A.117) in Section A.2.8, the Knudsen-layer
equations (A.273a), (A.273b), and (A.273c) are reduced to the common form55

ζ̃ini
∂φKm(η̃, ζ̃i)

∂η̃
= La(φKm(η̃, ζ̃i)) + IHKm, (A.275)

55Equation (A.275) with Eq. (A.113) holds for the BKW equation.
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where a = T̂w0 for Eq. (A.273a) and a = T̂w for Eqs. (A.273b) and (A.273c),
the operator La(∗) is defined by Eqs. (A.111) and (A.112), and IHKm is the
appropriately transformed form of the inhomogeneous term Ihkm. The bound-
ary conditions are Eqs. (3.152a) and (3.152b), Eqs. (3.187a) and (3.187b), or
Eqs. (9.31) and (9.32).

Equation (A.275) is a quasi-one-dimensional equation, where the coordi-
nates in the surface η̃ = const appear only as parameters, and can be discussed
only along an η̃ coordinate (or for a given set of the coordinates in the surface
η̃ = const). Thus, when we start from the nondimensional Boltzmann equa-
tion (1.47a) introduced in Section 1.9, it is convenient to choose the reference
temperature T0 and the reference density ρ0 in such a way that T̂w0 or T̂w and
(ρ̂SB0)0, (ρ̂V 0)0, or (ρ̂S0)0 on the η̃ coordinate under consideration take the
value unity. Then, a = 1. That is,

ζ̃ini
∂φKm(η̃, ζ̃i)

∂η̃
= L(φKm(η̃, ζ̃i)) + IHKm, � (A.276)

especially, for the leading-order Knudsen layer, where IHK1 = 0,

ζ̃ini
∂φK1(η̃, ζ̃i)

∂η̃
= L(φK1(η̃, ζ̃i)). � (A.277)

The equations that apply on the special η coordinate line as Eqs. (A.276) and
(A.277) are marked by � at their ends in this section (Section A.11). Equation
(A.277) is the same equation as Eq. (3.34) [or Eq. (3.35) without its inhomo-
geneous term] in the linear theory in Section 3.1.4. It may be added that
for the present choice of the reference state, (f̂SB0)0 = E(ζ̃), (f̂V 0)0 = E(ζ̃),
(f̂S0)0 = E(ζ̃), f̂K1 = E(ζ̃)φK1(η̃, ζ̃i), η̃ = η, and ζ̃i = ζi or ζ̃i = ζi − v̂wi.

We will consider the boundary conditions for φK1(η̃, ζ̃i) corresponding to
Eqs. (3.152a), (3.187a), and (9.31), where f̂SB1, f̂V 1, or f̂S1 enters. These three
functions are determined by Eq. (3.141), (3.179b), or (9.18a). These equations
are commonly expressed by

2Ĵ(f̂∗0, f̂∗1) = (a1/2ζ̃i + v̂wi0)
∂f̂∗0
∂xi

,

where f̂∗0 is a Maxwellian, v̂wi0 = 0 and a = T̂w0 for Eq. (A.273a), and v̂wi0 =
v̂wi and a = T̂w for Eqs. (A.273b) and (A.273c). It may be noted that some
terms in the expression degenerate and are of higher order. Especially, the v̂wi0

term on the right-hand side is of higher order and can be neglected in the cases
of Eqs. (3.152a), (3.187a), and (9.31) because v̂wi0 = 0 for Eq. (3.152a), and
the derivatives parallel to the boundary are of higher order and v̂wi0ni = 0 for
Eqs. (3.187a) and (9.31). Thus, f̂∗1 on the boundary, i.e., (f̂∗1)0, is determined
by

2Ĵ((f̂∗0)0, (f̂∗1)0) = a1/2ζ̃i

(
∂f̂∗0
∂xi

)
0

, (A.278)
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We are interested in f̂∗1 at the point of the boundary that is on the η coordinate
under consideration. Noting that (f̂∗0)0 = E(ζ̃) and a = 1 in the present choice
of the reference state, we find that Eq. (A.278) is reduced to

L(φ∗1(xwi, ζ̃i)) = ζ̃i

(
∂ρ̂∗0
∂xi

)
0

+ 2ζ̃iζ̃j

(
∂v̂j∗0
∂xi

)
0

+ ζ̃i

(
ζ̃2
j − 3

2

)(
∂T̂∗0
∂xi

)
0

, �

where we put (f̂∗1)0 = E(ζ̃)φ∗1(xwi, ζ̃i), and xwi is the point under considera-
tion. This is practically the same as Eq. (3.6) with m = 1 in Section 3.1.2.

The f̂w part of the boundary conditions [say, Eq. (1.64) or (1.69)] being
written using the new reference quantities and the expansion of f̂

(f̂)0 = (f̂∗0)0 + k[(f̂∗1)0 + (f̂K1)0] + · · ·

= E(ζ̃)(1 + k[φ∗1(xwi, ζ̃i) + φK1(η̃ = 0, ζ̃i)] + · · · ) �

being substituted there, we find that the boundary conditions of φK1(η̃, ζ̃i) for
the three cases are of the same form as the condition at the first order of k
in the linear theory, i.e., Eq. (3.36) with m = 1.56 Therefore, the Knudsen-
layer solution φK1(η̃, ζ̃i) is found to be expressed by the solution of the linear
system. Thus, the slip conditions and the Knudsen-layer correction at the order
of k on a simple boundary are obtained from Eqs. (3.41a)–(3.41c) for the three
systems in Sections 3.3, 3.4, and 9.2.2 simply by transcription of notation. The
formulas at the order of k on an interface in the case of Section 3.3 are from
Eqs. (3.57a)–(3.57c) with uiG0 = 0 and uwi0 = 0.

Transforming these expressions of the original notation in each section,
we obtain the relations between the slip coefficients K̂1, Ĉ

∗
4 , Ĉ1, k̂0, d̂1 and the

Knudsen-layer functions Ŷ0 (η̃) , Ω̂1 (η̃) , Θ̂1 (η̃) in Sections 3.3.3 and 3.4.2 and
those K1, C

∗
4 , C1, k0, d1 and Y0(η), Ω1(η),Θ1(η) in the linear theory in Section

3.1.5. For example, the first relation of the slip condition (3.161b) is expressed
as

(v̂†jSB1 − v̂†
wj1)(δij − njni) = −K1

∂T̂ †
SB0

∂xj
(δij − njni),

where the quantities with † indicate that they are nondimensionalized by the
new reference quantities. Let the new reference temperature be indicated with
a dagger † as T †

0 . The two expressions (2RT †
0 )1/2v̂†jSB1k

† and (2RT0)1/2v̂jSB1k

are commonly the dimensional flow velocity of the leading order, and T †
0 T̂ †

SB0

and T0T̂SB0 are commonly the dimensional temperature of the leading order.
Comparing the two expressions of a common quantity (or slip-flow velocity), we
find that

K1
∂T̂ †

SB0

∂xj
k† =

K̂1

p̂0

∂T̂SB0

∂xj
k, i.e., K̂1 =

(ρ̂SB0)0ρ0k
†

ρ0k
K1,

56(i) Note the condition (1.66c) to Eq. (1.64) and the condition (1.71c) to Eq. (1.69).
(ii) In the present discussion, the condition v̂iSB0 = 0 is important for the boundary

condition (1.69).
(iii) The case in Section 3.4, ε (= k1/2) should be taken as k here owing to the difference

of the characteristic length in the viscous boundary layer.
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from which, with the aid of the formula (1.48b), we have

K̂1 =

(
T †

0

T0

)1/2
B0

B†
0

K1, (A.279)

where B†
0 is defined by Eq. (1.48d) with the new reference quantities or more

simply by the second or third expression of Eq. (1.48d) with T0 being replaced
by T †

0 .57 Similarly, we have, for Ĉ1 and Ĉ∗
4 in the formula (3.162d) and for k̂0

and d̂1 in the formula (3.208),

Ĉ1 =

(
T †

0

T0

)1/2
B0

B†
0

C1, Ĉ∗
4 = C∗

4 , (A.280a)

k̂0 =

(
T †

0

T0

)1/2
B0

B†
0

k0, d̂1 =

(
T †

0

T0

)1/2
B0

B†
0

d1. (A.280b)

It is noted that y in the formula (3.208) differs for the two cases, because it
contains k and should be discriminated as y and y† in contrast to xj in the
formula (3.162c). For the Knudsen-layer functions Ŷ0 (η̃) , Ω̂1 (η̃) , and Θ̂1 (η̃) ,
take the case of Ŷ0 (η̃) . By a similar discussion to the above, from Eq. (3.210b),

(2RT0)1/2

(ρ̂0)0

(
∂u0

∂y

)
0

Ŷ0 (η̃) k1/2 = (2RT †
0 )1/2

(
∂u†

0

∂y†

)
0

Y0 (η) (k†)1/2.

Thus,

Ŷ0 (η̃) =
k†(ρ̂0)0ρ0

kρ0
Y0 (η) =

(
T †

0

T0

)1/2
B0

B†
0

Y0 (η) . (A.281)

Similarly,

Ω̂1 (η̃) =

(
T †

0

T0

)1/2
B0

B†
0

Ω1 (η) , Θ̂1 (η̃) =

(
T †

0

T0

)1/2
B0

B†
0

Θ1 (η) . (A.282)

The factor (T †
0 /T0)1/2B0/B†

0 commonly appears in the formulas (A.279)–(A.282).
For an intermolecular force extending to a finite distance (e.g., a hard-sphere
gas), (T †

0 /T0)1/2B0/B†
0 = 1 from the third expression of Eq. (1.48d). For the

other molecules (an intermolecular force extending to infinity or a cutoff poten-
tial), the modified definition of B0 is to be used as noted before.58 For the BKW
model, B0 should be taken as B0/m = Ac from the comparison of Eqs. (1.48b)
and (1.60b); thus, for the BKW model, (T †

0 /T0)1/2B0/B†
0 = (T †

0 /T0)1/2.

57See Footnote 21 in Section 1.9 and the last paragraph of Section A.2.4 for the intermolec-
ular force extending to infinity or the cutoff potential.

58See Section A.2.4, especially its last paragraph, and Footnote 21 in Section 1.9.
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From the formulas (3.41a) and (3.41b) of the slip condition for the linear
theory, it is obvious that

v̂yS1 = v̂zS1 = 0 on the boundary,

because v̂yS0 = v̂zS0 = 0.

A.12 Uniqueness of solution of the boundary-
value problem of the linearized Boltzmann
equation

Consider the time-independent boundary-value problem of the linearized Boltz-
mann equation (1.96) with the diffuse-reflection or complete-condensation bound-
ary condition, i.e., Eq. (1.105a) with (1.105b) or Eq. (1.111), where ∂/∂t̂ = 0 and
uwini = 0. We will show that the solution is unique, except for an additive con-
stant in the case of the diffuse reflection, for a bounded domain problem. For
the uniqueness, we have only to show that the solution of the problem is a con-
stant for the diffuse reflection when uwi = 0 and τw = 0, or it is zero for the
complete condensation when uwi = 0, τw = 0, and ωw = 0. That is, the solution
of the following boundary-value problem is a constant or zero: The linearized
Boltzmann equation

ζi
∂φ

∂xi
=

1
k
L(φ), (A.283)

with the diffuse-reflection condition

φ(xi, ζi) = σ̌w (ζjnj > 0), (A.284a)

σ̌w = −2
√

π

∫
ζknk<0

ζjnjφEdζ, (A.284b)

or with the complete-condensation condition

φ(xi, ζi) = 0 (ζjnj > 0). (A.285)

Integrating Eq. (A.283) multiplied by φE over the gas domain V and over
the whole space of ζ and using Gauss’s divergence theorem, we obtain

−1
2

∫
∂V

∫
ζiniφ

2EdζdS =
1
k

∫
V

∫
φL(φ)Edζdx, (A.286)

where ∂V is the boundary of the gas domain V and dS is the surface element
on ∂V. Owing to Eq. (1.80),∫

V

∫
φL(φ)Edζdx ≤ 0, (A.287)
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where the equal sign holds when and only when φ′ + φ′
∗ − φ − φ∗ = 0, or φ is a

summational invariant. Thus,

−1
2

∫
∂V

∫
ζiniφ

2EdζdS =
1
k

∫
V

∫
φL(φ)Edζdx ≤ 0. (A.288)

This is the linearized-Boltzmann-equation version of Eq. (1.36).
For the complete-condensation condition (A.285), Eq. (A.288) reduces to

−1
2

∫
∂V

∫
ζini<0

ζiniφ
2EdζdS =

1
k

∫
V

∫
φL(φ)Edζdx ≤ 0, (A.289)

where the left-hand side is obviously non-negative. Thus,∫
V

∫
φL(φ)Edζdx = 0.

With the aid of Eq. (1.80), ∫
φL(φ)Edζ = 0.

From the symmetry relation (A.39),

0 =
∫

φL(φ)Edζ = −1
4

∫
EE∗(φ′ + φ′

∗ − φ − φ∗)2B̂dΩdζ∗dζ.

Thus, φ′ + φ′
∗ − φ − φ∗ = 0, i.e., φ is a summational invariant. Then,

L(φ) = 0.

Therefore, Eq. (A.283) reduces to

ζi
∂φ

∂xi
= 0. (A.290)

From Eqs. (A.290) and (A.285), we find

φ = 0.

Thus, in the case of the complete-condensation boundary condition, the solution
of the boundary-value problem is unique.

For the diffuse-reflection condition, the left-hand side of Eq. (A.288) is rewrit-
ten. Splitting the integral into two parts, ζini < 0 and ζini > 0, and noting
that the relation∫

ζini>0

ζiniσ̌
2
wEdζ = −σ̌w

∫
ζknk<0

ζjnjφEdζ,



568 Appendix A. Supplement to the Boltzmann Equation

holds for the diffuse-reflection condition (A.284a) with (A.284b), we have∫
ζiniφ

2Edζ =
∫

ζini<0

ζiniφ
2Edζ +

∫
ζini>0

ζiniσ̌
2
wEdζ

=
∫

ζini<0

ζiniφ
2Edζ − 2σ̌w

∫
ζknk<0

ζiniφEdζ −
∫

ζini>0

ζiniσ̌
2
wEdζ

= −
∫

ζini<0

|ζini|(φ − σ̌w)2Edζ ≤ 0. (A.291)

From Eqs. (A.288) and (A.291), on the boundary ∂V,∫
ζiniφ

2Edζ = 0, (A.292a)∫
ζini<0

ζini(φ − σ̌w)2Edζ = 0. (A.292b)

From Eqs. (A.284a) and (A.292b),

φ = σ̌w for all ζi on ∂V. (A.293)

From Eqs. (A.288) and (A.292a),∫
V

∫
φL(φ)Edζdx = 0.

With the aid of Eq. (1.80), ∫
φL(φ)Edζ = 0.

By the same way as in the complete condensation, φ′ + φ′
∗ − φ − φ∗ = 0, i.e., φ

is a summational invariant. Then,

L(φ) = 0.

Therefore, Eq. (A.283) reduces to

ζi
∂φ

∂xi
= 0. (A.294)

From Eqs. (A.294) and (A.293), the boundary value of φ or σ̌w at two points
on ∂V that can be connected with a straight line without intersecting the bound-
ary ∂V are equal. Thus, if the shape of the domain V is such that any two points
on ∂V can be connected by a broken line inside V with broken points on ∂V ,59

the boundary value of φ or σ̌w is uniform (or independent of the position on
∂V ). Thus, from Eq. (A.294), φ is constant with respect to xi and ζi. Thus, the

59Obviously, this assumption, which is called bridge or ergodicity assumption (Sone [1984a,
1985], Aoki, Bardos, Golse, Kogan & Sone [1993]), holds for most domains.
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solution of the boundary-value problem with the diffuse-reflection condition is
unique except for an additive constant. The proof for the diffuse reflection is
practically the same as Golse’s proof in Section A.4 of Sone [2002].

It may be noted that the proof given above applies to the class of functions
with discontinuities60 as described in Section 3.1.6. For this class of functions,
the relations in the above analysis do not hold everywhere, but they hold almost
everywhere.61 Thus, the uniqueness theorem holds because two functions that
agree almost everywhere are identified. It is important to include functions with
discontinuity in the discussion because the velocity distribution function gener-
ally has discontinuities as shown in Section 3.1.6.

The points of the proof are the two inequalities (A.287) and (A.291), from
which φ is derived to be a summational invariant. The inequality (A.287) derived
with the aid of the symmetry relation for the linearized collision integral is
independent of the boundary condition. The inequality (A.291) is derived in
the second part of Section A.10 for general boundary conditions expressed with
scattering kernels, i.e., the boundary condition (A.252) with uwi = 0 and τw = 0
and the boundary condition (A.255) with ωw = 0, uwi = 0, and τw = 0 where the
extra condition (A.271) on the kernel K̂I0 is imposed. Thus, φ is a summational
invariant for these boundary conditions, i.e.,

φ = c0 + ciζi + c4ζ
2
i almost everywhere, (A.295)

where c0, ci, and c4 are independent of ζ, and

ζi
∂φ

∂xi
= 0. (A.296)

From Eqs. (A.295) and (A.296) together with the subsidiary conditions (iii) to
Eq. (A.252) and (ii-b) to Eq. (A.255),62 we find that for the boundary condition
(A.252) with uwi = 0 and τw = 0,

φ = c0,

and for the boundary condition (A.255) with ωw = 0, uwi = 0, and τw = 0,

φ = 0.

Thus, the uniqueness holds for the general boundary conditions (A.252) and
(A.255) with the extra condition (A.271) on the kernel K̂I0 imposed.

60Appropriate integrability is assumed.
61See Footnote 5 in Section 1.2 for the definition of almost everywhere.
62Here, we used the explicit form (A.295) of φ, in contrast to the preceding proof. With this

form, the proof is simpler, but Arkeryd’s sophisticated result explained in the last paragraph
of Section A.2.3 is required when the class of solutions with discontinuities is considered.
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Methods of Solution

B.1 Direct simulation Monte Carlo method

B.1.1 Introduction

The direct simulation Monte Carlo method (DSMC method, in short), intro-
duced by Bird [1963] (see also Bird [1994]), is a numerical method of solution of
the Boltzmann equation, quite different from the finite-difference method.1 In
this method, (i) a group of many molecules at neighboring positions and with
similar velocities is represented by a single particle, (ii) the laws of motion of
the system of the particles are formulated according to the assumptions that are
introduced in derivation of the Boltzmann equation, and (iii) the behavior of
the system is simulated by numerical computation according to the laws, from
which the behavior of the gas is determined. The process to carry out the com-
putation is simple, but it requires a large-scale computation. In this appendix
(Section B.1), the fundamental process of computation is briefly described, its
theoretical background (or the relation to the Boltzmann equation) is given in
an elementary form, which is not rigorous but is easily accessible to nonmathe-
maticians, and an example of computation is given. The theoretical discussion
and example will be helpful to develop the improvement and extension of the
method with a sound background. It is not the purpose of the appendix to
present a variety of technique.

B.1.2 Preparation

For preparation of the following discussion, we will explain the way to approxi-
mate the velocity distribution function with a series of the Dirac delta functions.

Let the domain D of a gas under consideration be divided into M small
domains (or cells) dX(l) (l = 1, 2, . . . , M), and let X(l) be the representative
point in dX(l). We will show that the velocity distribution function f(X, ξ, t) is

1Kogan’s group in Russia was using a similar computation.
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approximated in the following forms by choosing a constant Δ, an integer N (l),

which depends on l, and ξ
(j)
(l) (j = 1, 2, . . . , N (l)):

f(X, ξ, t)dX(l) = Δ
N(l)∑
j=1

δ(ξ − ξ
(j)
(l) ) (X is in dX(l)), (B.1a)

f(X, ξ, t) = Δ
M∑
l=1

N(l)∑
j=1

δ(X − X
(j)
(l) )δ(ξ − ξ

(j)
(l) ) (X is arbitrary), (B.1b)

where δ is the (three-dimensional) Dirac delta function and X
(j)
(l) is an arbitrary

point in dX(l).
Take a moment of a function f(X, ξ, t) with respect to ξ, i.e.,(∫

all ξ

Φ(ξ)f(X(l), ξ, t)dξ

)
dX(l), (B.2)

where Φ(ξ) is an arbitrary function of ξ, and the integration with respect to ξ
is carried out over the whole space of ξ. We introduce a new vector η

η = η(ξ;X(l),dX(l)) or ξ = ξ(η; X(l),dX(l)),

where the transformation from ξ to η is chosen in such a way that its Jacobian
is f(X(l), ξ, t) dX(l), which can always be found.2 Then,

dη = [f(X(l), ξ, t)dX(l)]dξ,

and the range of η is reduced to a finite range. Then, the moment (B.2) is
reduced to(∫

all ξ

Φ(ξ)f(X(l), ξ, t)dξ

)
dX(l) =

∫
V (l)

Φ(ξ(η; X(l),dX(l)))dη, (B.3)

where the domain V (l) of integration depends on l in its shape and volume.
Now, we divide each of V (l) (l = 1, 2, . . . , M) in η space into small cells of

a common volume Δ independent of l. The number N (l) of the cells in V (l) is
V (l)/Δ, where V (l) is used as the volume as well as the name of the domain,
as dX(l). Let the representative point of each of the small cells be denoted as

2Let the Jacobian be G(‰) for simplicity. Put

g(ξ2, ξ3) =

Z ∞

−∞
G(ξ̄1, ξ2, ξ3)dξ̄1, h(ξ3) =

Z ∞

−∞

Z ∞

−∞
G(ξ̄1, ξ̄2, ξ3)dξ̄1dξ̄2.

Then, the following transformation has the desired Jacobian:

η1 =
1

g(ξ2, ξ3)

Z ξ1

−∞
G(ξ̄1, ξ2, ξ3)dξ̄1, η2 =

1

h(ξ3)

Z ξ2

−∞
g(ξ̄2, ξ3)dξ̄2, η3 =

Z ξ3

−∞
h(ξ̄3)dξ̄3.

In this case, the domain of integration V (l) in Eq. (B.3) is the rectangular parallelepiped

[0 ≤ η1 ≤ 1, 0 ≤ η2 ≤ 1, 0 ≤ η3 ≤ ρ(X(l), t)dX(l)].
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η(j) (j = 1, 2, . . . , N (l)). Then, the integral (B.3) [thus, the moment (B.2)] is
approximated as

Integral (B.3) = Δ
N(l)∑
j=1

Φ(ξ(j)
(l) ), ξ

(j)
(l) = ξ(η(j); X(l),dX(l)). (B.4)

On the other hand, it is seen by direct substitution that the function on the
right-hand side of the first relation of Eq. (B.4) is obtained by the moment
(B.2) at X = X(l) of the function f given by Eq. (B.1a). Therefore, by taking
Δ small (or N (l) large), any moment (B.2) of a function f is approximated with
any accuracy by the corresponding moment of the function (B.1a) expressed in
the series of the Dirac delta functions.3 The convergence in this sense is called
weak convergence.

Next, take a moment of a function f(X, ξ, t) with respect to X and ξ, i.e.,∫
all X, all ξ

ϕ(X, ξ)f(X, ξ, t)dXdξ, (B.5)

where ϕ(X, ξ) can be nonzero only in a finite domain in D (the support4 of ϕ,
with respect to X, is compact and in D). Here, applying the process leading to
Eq. (B.3) from Eq. (B.2) to the integral on each cell dX(l) (the subdivision of
the domain of X), we can obtain

Integral (B.5) =
M∑
l=1

∫
V (l)

ϕ(X(l), ξ(η;X(l),dX(l)))dη. (B.6)

Then, applying the process leading to Eq. (B.4) to the integral over V (l), we find
that the integral (B.5) is approximated by

Integral (B.5) = Δ
M∑
l=1

N(l)∑
j=1

ϕ(X(l), ξ
(j)
(l) ). (B.7)

For infinitesimal cell dX(l), X(l) can be replaced by an arbitrary point X
(j)
(l) in

the cell. That is,

Integral (B.5) = Δ
M∑
l=1

N(l)∑
j=1

ϕ(X(j)
(l) , ξ

(j)
(l) ). (B.8)

3The divided region in ‰ space corresponding to a small cell in ” space is preferable not to
be too elongated for the approximation to be efficient. Thus, the division of V (l) into small
cells is appropriately done so as to make the number of such cells elongated in ” space as small
as possible. The outermost Δ cells extend to infinity in ‰ space. Thus, the arbitrariness of the
representative ‰ is too large, and the error of Φ(‰) is O(Φ(‰)). However, for the distribution
function rapidly vanishing as |‰| → ∞, which we are considering here, their contribution is
small for large N(l) because the number of such cells relative to N(l) vanishes rapidly as
N(l) → ∞.

4The support of a function ϕ(X) of X is the closure of the set of X where ϕ(X) 	= 0. A
compact set is a bounded closed set. See, e.g., Rudin [1976].
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On the other hand, the series (B.1b) being substituted into Eq. (B.5), Eq. (B.8)
is derived. That is, by taking M large and Δ small (or N (l) large), any moment
of f with respect to X and ξ is approximated with any accuracy by the moment
of the series (B.1b) (weak convergence).

The macroscopic variables of a gas, such as density, flow velocity, and tem-
perature, are expressed by moments of the velocity distribution function f∫

all ξ

Φ(ξ)f(X, ξ, t)dξ. (B.9)

This moment is expressed in the following form for f given by Eq. (B.1a):

Integral (B.9) =
Δ

dX(l)

N(l)∑
j=1

Φ(ξ(j)
(l) ). (B.10)

The density ρ, the flow velocity v, and the temperature T of the gas in the cell
dX(l) are given by

ρ =
N (l)Δ

dX(l)
, (B.11a)

v =
1

N (l)

N(l)∑
j=1

ξ
(j)
(l) , (B.11b)

3RT =
1

N (l)

N(l)∑
j=1

⎛⎝ξ
(j)
(l) − 1

N (l)

N(l)∑
k=1

ξ
(k)
(l)

⎞⎠2 . (B.11c)

B.1.3 Process of DSMC method

In the present section, the DSMC process of solution of an initial and boundary-
value problem of the Boltzmann equation

∂f

∂t
+ ξi

∂f

∂Xi
+

∂Fif

∂ξi
= J(f, f), (B.12a)

J(f, f) =
1
m

∫
all α, all ξ∗

(f ′f ′
∗ − ff∗)BdΩ (α)dξ∗, (B.12b)

B = B(|(ξ∗ − ξ) · α|/|ξ∗ − ξ|, |ξ∗ − ξ|),

(see Section 1.2 for more details) is described. The boundary condition is given
in terms of scattering kernel by Eq. (1.26) on a simple boundary or by Eq. (1.30)
on an interface of the gas and its condensed phase. The velocity distribution
function is given at initial time (say, t = 0) as the initial condition. The physical
domain D of interest in a numerical computation is limited to a finite domain,
and therefore some parts of the boundary are artificial boundaries.
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First, we expand the initial velocity distribution function in the form of
Eq. (B.1b), the practical procedure of which is explained at the end of this
section. We identify each term [or the delta function δ(X − X

(j)
(l) )δ(ξ − ξ

(j)
(l) )]

of the series as a particle and the centers X
(j)
(l) and ξ

(j)
(l) of the delta function,

respectively, as the position and the velocity of the particle. Given an initial
velocity distribution function (or the initial positions and velocities of all the
particles), change the positions and velocities of the particles according to the
following steps. Then, the velocity distribution function at dt is determined from
Eq. (B.1b) with the new positions and velocities of the particles. Repeating this
process successively with the new state as the initial condition, we determine the
positions and velocities of the particles (or the velocity distribution function)
at the successive time steps. The domain D of interest of the physical space
X is initially divided into the set of cells dX(l) (l = 1, 2, . . . , M). This division
remains fixed in the course of analysis.
Step (i): Let the position X

(j)
(l) and velocity ξ

(j)
(l) of all the particles at time t be

given. Shift the position X
(j)
(l) and velocity ξ

(j)
(l) of each particle to X

(j)
(l) + ξ

(j)
(l) dt

and ξ
(j)
(l) +F (X(j)

(l) , ξ
(j)
(l) , t)dt. Then, the velocity distribution function f is shifted

to

f = Δ
M∑
l=1

N(l)∑
j=1

δ(X − X
(j)
(l) − ξ

(j)
(l) dt)δ(ξ − ξ

(j)
(l) − F (X(j)

(l) , ξ
(j)
(l) , t)dt). (B.13)

A particle (in dX(l), say) generally enters a different cell (dX(l̄), say) after the
shift. Then, we relabel the particle [(l, j) → (l̄, j̄), say] according to Eq. (B.1b)
[or Eq. (B.1a)]. The parameter Δ, introduced in developing the initial veloc-
ity distribution function in the forms (B.1a) and (B.1b), is a fixed constant
(throughout the process of computation).5

Step (ii): After the step (i), some particles go out of the domain D. They are
got rid of from the analysis, but instead, new particles are introduced in the
domain according to the boundary condition. The explicit description of this
process is given at the end of this section.
Step (iii): The computation of this step is carried out independently in each
cell dX(l). Consider one of the cells, which is denoted as dX∗. The velocity
distribution function in this cell is expressed in the form of Eq. (B.1a). That is,
the label discriminating the cell being eliminated, it is given by

f =
Δ

dX∗
N∗∑
j=1

δ(ξ − ξ(j)), (B.14)

where N∗ is the number of particles in the cell dX∗ after the steps (i) and (ii).
Let the probability P̄ (s)(ξ(j), ξ(k))dΩ(s) of finding a unit vector α (to be called

5A particle is allotted to the collection with mass Δ of the molecules in dX(l) with neigh-
boring molecular velocities.



576 Appendix B. Methods of Solution

collision parameter) in a solid-angle element dΩ(s) for the pair (ξ(j), ξ(k)) (or
the pair of the particles with ξ(j) and ξ(k) in dX∗) be defined by6

P̄ (s)(ξ(j), ξ(k))dΩ(s) =
Δdt

mdX∗ B(|(ξ(k)−ξ(j))·α(s)|/|ξ(k)−ξ(j)|, |ξ(k)−ξ(j)|)dΩ(s),

(B.15)
where α(s) is the representative point in dΩ(s). Now, for each of the pairs of the
particles in dX∗[or N∗(N∗ − 1)/2 pairs of (ξ(j), ξ(k)) with j < k], we carry out
the following trial, on the basis of the probability (B.15), whether α is found
in dΩ(s) for some s or not and in which dΩ(s) if it is. If α realizes in dΩ(s) for
the pair (ξ(j), ξ(k)), then the pair (ξ(j), ξ(k)) in Eq. (B.14) is transformed to

(ξ̂
(j)

, ξ̂
(k)

) given by the formula

ξ̂
(j)

= ξ(j) + [(ξ(k) − ξ(j)) · α(s)]α(s), (B.16a)

ξ̂
(k)

= ξ(k) − [(ξ(k) − ξ(j)) · α(s)]α(s). (B.16b)

If α does not realize, the pair (ξ(j), ξ(k)) in Eq. (B.14) is left unchanged. The
velocity distribution function in the form (B.1a) or (B.1b) thus obtained is that
at time t+dt. Some comments on the parameter sizes in this step are required,
but it is postponed until the end of the description of the final step.
Step (iv): Return to the step (i), and continue the computation to obtain the
velocity distribution function at the subsequent times.

Supplementary notes to the explanation of the step (iii) are given here.
If α realizes in dΩ(s) for some s, we say that the particles (j, k) have collided,

and otherwise, no collision has taken place. The probability of the pair (j, k)
that makes a collision is given by

P (ξ(j), ξ(k)) =
∑

s

P̄ (s)(ξ(j), ξ(k))dΩ(s)

=
πd2

mΔ
m

dt

dX∗ |ξ(k) − ξ(j)|

=
πd2

mdtρ(X∗, t)|ξ(k) − ξ(j)|
mN∗ , (B.17)

and the probability of no collision is 1 − P (ξ(j), ξ(k)). The second line on the
right-hand side of Eq. (B.17) is derived from the first with the aid of Eqs. (B.15)
and (A.20). The P (ξ(j), ξ(k)) in Eq. (B.17) exceeds unity for very large particle-
velocities (|ξ(k) − ξ(j)| → ∞) even if we take the parameters Δ and dt small,
which is inappropriate as a probability. However, the velocity distribution func-
tion decays very rapidly as |ξ| → ∞ and the contribution to the collision term
(B.12b) of the Boltzmann equation (B.12a) from large molecular velocities is
negligible. Thus, we can consider the problem within a reasonable size of par-
ticle speed. The speed of a particle may get higher and higher with repeated

6In the numerical computation, the whole direction of ¸ (or the unit sphere surface) is
divided into a finite number of small elements dΩ(s).
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collisions because the velocity distribution function approaches an equilibrium
state or Maxwellian from the distribution with a finite range for the molecular
speed, but this possibility is very small. In the conventional computation, no
care is taken for it because it does not produce any important influence (e.g., it
goes out of the domain of interest in a short time), or some cutoff is introduced
(e.g., to try the process to determine α again).

As we will discuss in the paragraph containing Eq. (B.59a), we have to choose
dt so small that P (ξ(j), ξ(k))N∗ � 1. Then, the number of the pairs in the cell
dX∗ that collide in the time interval dt is much smaller than the number N∗

of the particles there. Therefore, a particle rarely has a chance to collide more
than once in dt. In conventional computation, the computation is continued or
the second collision is neglected, if this happens in the process.7

The probability given by Eq. (B.17), where dm is contained, is for molecules
with a finite range of force. For molecules with an intermolecular force of infinite
range (dm = ∞), setting P̄ (s)(ξ(j), ξ(k)) = 0 in Eq. (B.15) when |(ξ(k) − ξ(j)) ·
α(s)| is smaller than a small value chosen appropriately, then we get the result for
a cutoff intermolecular potential. The cutoff is a natural one that corresponds
to the convergence of the collision integral considered as a whole, or a forced
cutoff, depending on the choice of the effective range of |(ξ(k) − ξ(j)) · α(s)|.

The process of DSMC method is a simple one as stated above. Some addi-
tional comments on the initial condition and the boundary condition may be in
order.

The initial position X
(j)
(l) and velocity ξ

(j)
(l) of the particles are determined

from the initial condition by the procedure described in Section B.1.2. In prac-
tical computation, however, the following method, which is in harmony with
the flow of DSMC computation, is widely used. First choose the total num-
ber N of the particles, on which the accuracy of the solution depends. From
the initial velocity distribution function, compute the initial density distribu-
tion ρ(X, 0). Determine the initial number N (l) of the particles in the cell
dX(l) in such a way that it is proportional to ρ(X(l), 0)dX(l). The velocities
of these N (l) particles are determined according to the initial velocity distribu-
tion f(X(l), ξ, 0). That is, for each particle in dX(l), its initial velocity ξ

(j)
(l) is

chosen by the trial finding ξ in a small range dξ around ξ
(j)
(l) under the probabil-

ity f(X(l), ξ
(j)
(l) , 0)dξ/ρ(X(l), 0).8 From the above initial N (l) and Eq. (B.11a)

with the initial density, the constant Δ is determined. Incidentally, the number
N (l) of the particles in the cell dX(l) and the total number N of the particles
generally vary with time.

The boundary condition is assumed to be given by the scattering kernel [see
Eqs. (1.26) and (1.30)]. The boundary surface is divided into small domains
dS(r) corresponding to the division of the X domain into dX(l). First consider

7If this produces a nonnegligible effect, the choice of the parameters [dX(l), Δ (or N), dt]
is inappropriate.

8This division of the velocity space is only for the determination of initial particle velocities
and is not retained in the later times.
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the case of a simple boundary (Section 1.6.1). Define RB(ξ, ξ̃,X, t) by

RB(ξ, ξ̃, X, t) = −KB(ξ, ξ̃, X, t)(ξ − vw) · n/(ξ̃ − vw) · n, (B.18)

where KB is introduced in Eq. (1.26). The representative value of RB(ξ, ξ̃,X, t)
in dS(r) between the time interval (t, t+dt) (or simply at t) is denoted by
R

(r)
B (ξ, ξ̃). Let a particle with velocity ξ̃ arrive at the boundary dS(r) at t + cdt

before the end of the time interval t+dt when the step (i) is performed. Then,
the velocity ξ of the particle after the collision with the boundary is chosen by
the probability R

(r)
B (ξ, ξ̃)dξ, where the size of dξ should be chosen appropri-

ately in the computation and ξ is its representative value, and the particle is
shifted with this velocity for the remaining time interval (1 − c)dt according
to the step (i). For example, for the specular-reflection condition (1.25), the
velocity of the particle after the collision is uniquely given by

ξ = ξ̃ − 2[(ξ̃ − v(r)
w ) · n(r)]n(r),

and for the diffuse-reflection condition (1.24a), the probability R
(r)
B (ξ, ξ̃)dξ is

given by

R
(r)
B (ξ, ξ̃)dξ =

(ξ − v
(r)
w ) · n(r)

2π(RT
(r)
w )2

exp

(
− (ξ − v

(r)
w )2

2RT
(r)
w

)
dξ,

where v
(r)
w , T

(r)
w , and n(r) are their representative values in dS(r). In the latter

case, the probability is independent of ξ̃.
Next, consider the case of an interface of a gas and its condensed phase

(Section 1.6.2). Similarly to the case of the simple boundary, let RI(ξ, ξ̃, X, t) =
− KI(ξ, ξ̃,X, t)(ξ−vw)·n/(ξ̃−vw)·n, where KI is introduced in Eq. (1.30), and
let R

(r)
I (ξ, ξ̃) be its representative value in dS(r) between (t, t+dt) (or at t). For a

particle incident to the interface, it is reflected with the probability R
(r)
I (ξ, ξ̃)dξ.

However, a molecular velocity ξ is not always given to each of the molecules
arriving at the boundary (or no reflection occurs for some incident particles),
because the kernel KI (or RI) does not satisfy the condition corresponding to
Eq. (1.27b) on KB (or RB). In Eq. (1.30), there is the contribution (or gI term),
which is independent of the incident particles. This contribution is determined
in the following way. The number N

(r)
w of the particles from the cell dS(r)

between (t, t+dt) owing to this term is given by

N (r)
w =

(∫
(ξ−v

(r)
w )·n(r)>0

(ξ − v(r)
w ) · n(r)g

(r)
I dξ

)
dS(r)dt/Δ,

where g
(r)
I is the corresponding representative value. The velocities of these

particles are allotted by the probability

(ξ − v(r)
w ) · n(r)g

(r)
I dξ

(∫
(ξ−v

(r)
w )·n(r)>0

(ξ − v(r)
w ) · n(r)g

(r)
I dξ

)−1

,
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and their positions are shifted from dS(r) according to the step (i) until t+dt,
where the initial position and time of the particles are distributed, for example,
uniformly over dS(r) and (t, t+dt). For the complete-condensation condition
(1.29), for example, there is no kernel KI part, and

N (r)
w = ρw(RT (r)

w /2π)1/2dS(r)dt/Δ,

the probability =
(ξ − v

(r)
w ) · n(r)

2π(RT
(r)
w )2

exp

(
− (ξ − v

(r)
w )2

2RT
(r)
w

)
dξ.

B.1.4 Theoretical background of DSMC method

In the DSMC method, whose process of computation is described in the preced-
ing subsection (Section B.1.3), direct solution of the Boltzmann equation is not
considered, but a large number of particles (or delta functions) that approxi-
mate the velocity distribution function are taken, and their motions (translation
and collision) are simulated by the rules constructed on the basis of the assump-
tions in the derivation of the Boltzmann equation. Thus, the behavior of the
macroscopic variables is expected to approach the corresponding solution of the
Boltzmann equation when the number of the particles is increased indefinitely.
However, in the description of Section B.1.3, the relation between the solutions
of the two systems is not so transparent as that between the solution of the
finite-difference method and that of the Boltzmann equation. Here, we discuss
this direct relation in an elementary way without detailed rigor, which is acces-
sible to nonmathematicians, for the purpose to give the understanding of their
relation at the level of the understanding of the relation of a finite-difference
system to the original equation shared among nonmathematicians. Its rigorous
mathematical discussion is given by Wagner [1992].

We introduce the moment equation (or weak form) of the Boltzmann equa-
tion (B.12a), which is obtained by multiplying a function ϕ(X, ξ) of X and ξ
and integrating with respect to X and ξ over the gas region D and the whole
space of ξ. For ϕ(X, ξ) whose support with respect to X is compact and lies
inside the gas region D, it is given in the following form after integration by
part:

∂

∂t
[ϕ, f ] −

[
ξi

∂ϕ

∂Xi
+ Fi

∂ϕ

∂ξi
, f

]
= [ϕ, J(f, f)], (B.19)

where [g, h] is the inner product of functions g(X, ξ) and h(X, ξ) of X and ξ
defined by

[g(X, ξ), h(X, ξ)] =
∫

X: gas region, all ξ

g(X, ξ)h(X, ξ)dXdξ. (B.20)

From Eq. (B.19), the moment of the velocity distribution function f at t+dt is
expressed in the form

[ϕ, f(1)] = [ϕ, f(0)] +
[
ξi

∂ϕ

∂Xi
+ Fi(0)

∂ϕ

∂ξi
, f(0)

]
dt + [ϕ, J(f(0), f(0))]dt + O[(dt)2],
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where9

f(0) = f(X, ξ, t), f(1) = f(X, ξ, t + dt), F (0) = F (X, ξ, t).

The terms of the order of (dt)2 being neglected, the moment [ϕ, f(1)] is given by

[ϕ, f(1)] = [ϕ(X+ξdt, ξ + F (0)dt), f(0)] + [ϕ(X, ξ), J(f(0), f(0))]dt. (B.21)

Let fA and fB be defined by the equations

[ϕ, fA] = [ϕ(X+ξdt, ξ + F (0)dt), f(0)], (B.22a)

[ϕ, fB ] = [ϕ(X, ξ), J(f(0), f(0))]dt. (B.22b)

Then, the velocity distribution function f(1) at t+dt is given by their sum, i.e.,

f(1) = fA + fB . (B.23)

Especially when F= 0 and f(0) is independent of X, f(1) is simply given by

f(1) = f(0) + fB . (B.24)

In fact, in Eq. (B.22a) for fA, putting F= 0, changing the variable of integra-
tion (X→X−ξdt, ξ → ξ), and noting that f(0) is independent of X, we have
[ϕ, fA] = [ϕ, f(0)], i.e., fA = f(0).

Substituting the expression (B.1b) of f(0) into Eq. (B.22a), we have

[ϕ, fA] = Δ
M∑
l=1

N(l)∑
j=1

ϕ(X(j)
(l) +ξ

(j)
(l) dt, ξ

(j)
(l) + F (0)(X

(j)
(l) , ξ

(j)
(l) )dt). (B.25)

The expression (B.25) being valid for arbitrary ϕ, the function fA is expressed
in the form

fA = Δ
M∑
l=1

N(l)∑
j=1

δ(X−X
(j)
(l) − ξ

(j)
(l) dt)δ(ξ − ξ

(j)
(l) − F (0)(X

(j)
(l) , ξ

(j)
(l) )dt). (B.26)

Comparing Eq. (B.26) with Eq. (B.1b), we find that fA is obtained from the
initial distribution (B.1b) only by translation of the variables X → X−X

(j)
(l) −

ξ
(j)
(l) dt and ξ → ξ − ξ

(j)
(l) −F (0)(X

(j)
(l) , ξ

(j)
(l) )dt. Thus, [ϕ, fA] is the corresponding

moment.
Consider the moment [ϕ, fB ], which is the contribution of molecular colli-

sions to the moment [ϕ, f(1)]. For ϕ(X, ξ) in the form ϕ(X, ξ) = Ψ(X)Φ(ξ),

9The subscripts (0) and (1) are used to indicate the value of the time variable t, i.e., (0)
for t = t and (1) for t = t+dt. They do not specify the variables X and ‰. When they have to
be specified, they are shown as the arguments of the corresponding function, e.g., f(1)(X∗, ‰),
which means f(X∗, ‰, t+dt).
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where Ψ(X) has a support containing X∗ and of the size L∗ and
∫

Ψ(X)dX=1,
it is easily seen that

[ϕ, fB ] =
〈
Φ(ξ), fB(X∗, ξ)

〉
+ O((L∗)3), (B.27)

where 〈
ḡ(ξ), h̄(ξ)

〉
=
∫

all ξ

ḡ(ξ)h̄(ξ)dξ. (B.28)

On the other hand, from Eqs.(B.22b) and (1.10),

[ϕ, fB ] = dt

∫
D

Ψ(X)
{

1
2m

∫
[Φ(ξ′) + Φ(ξ′

∗) − Φ(ξ) − Φ(ξ∗)]

× f(0)(X, ξ)f(0)(X, ξ∗)BdΩ(α)dξ∗dξ

}
dX

=
dt

2m

∫
[Φ(ξ′) + Φ(ξ′

∗) − Φ(ξ) − Φ(ξ∗)]

× f(0)(X
∗, ξ)f(0)(X

∗, ξ∗)BdΩ(α)dξ∗dξ + O((L∗)3), (B.29)

where
ξ′ = ξ + [(ξ∗ − ξ) · α]α, ξ′

∗ = ξ∗ − [(ξ∗ − ξ) · α]α.

From Eqs. (B.27) and (B.29), in the limit as L∗ → 0,〈
Φ(ξ), fB(X∗, ξ)

〉
=

dt

2m

∫
[Φ(ξ′) + Φ(ξ′

∗) − Φ(ξ) − Φ(ξ∗)]f(0)(X
∗, ξ)f(0)(X

∗, ξ∗)BdΩ(α)dξ∗dξ.

(B.30)

An arbitrary moment
〈
Φ(ξ), fB(X∗, ξ)

〉
of fB(X∗, ξ), with respect to ξ, at X∗

is determined by f(0) at the same point X∗.
Now, take the velocity distribution function at a point of space given by

Eq. (B.1a). That is, for the point X∗,

f(0)(X
∗, ξ)dX∗ = Δ

N∗∑
j=1

δ(ξ − ξ(j)), (B.31)

where the cell dX(l) that contains X∗ is denoted by dX∗. Then, Eq. (B.30) is
expressed as〈

Φ(ξ), fB(X∗, ξ)
〉

=
dt

m

Δ2

(dX∗)2

N∗−1∑
j=1

N∗∑
k=j+1

∫
all α

[Φ(ξ
(j)

) + Φ(ξ
(k)

) − Φ(ξ(j)) − Φ(ξ(k))]

× B(|(ξ(k) − ξ(j)) · α|/|ξ(k) − ξ(j)|, |ξ(k) − ξ(j)|)dΩ(α),
(B.32)
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where

ξ
(j)

= ξ(j) + [(ξ(k) − ξ(j)) · α]α, ξ
(k)

= ξ(k) − [(ξ(k) − ξ(j)) · α]α. (B.33)

The moment
〈
Φ(ξ), fB(X∗, ξ)

〉
of fB with respect to ξ at an arbitrary point

X∗ is expressed by Eq. (B.32) with the information of the initial distribution
function (B.31). The moment [ϕ, fB ] of fB with respect to X and ξ is obtained
from this expression. Thus, following the process explained in Section B.1.2, we
can obtain the expression of fB in the form of Eqs. (B.1a) and (B.1b).

Up to this point, we have discussed the variation of the velocity distribution
function f on the basis of the Boltzmann equation (B.12a). That is, we have
derived the formulas of the velocity distribution function and its moments at
time t+dt from the velocity distribution function given in the forms (B.1a) and
(B.1b) at time t. Now we will show that the velocity distribution function (or
the moments of the velocity distribution function) at time t+dt obtained by the
DSMC process from that at t given in the forms (B.1a) and (B.1b) agrees with
the above expression derived from the Boltzmann equation.

From Eq. (B.26), the velocity distribution function (B.13) that is obtained
by the step (i) of the process of the DSMC computation is obviously the solution
fA of Eq. (B.22a). Thus, we here discuss the relation between the result of the
step (iii) (or the collision of particles) and the solution fB of Eq. (B.22b), for
which the discussion in a cell is sufficient.

Let the velocity distribution function f(0) at time t be given by Eq. (B.1a).
That is, the velocity distribution function f(0) and its moment

〈
Φ(ξ), f(0)(ξ)

〉
in the cell dX∗ with representing point X∗ are given by

f(0)(X
∗, ξ) =

Δ
dX∗

N∗∑
j=1

δ(ξ − ξ(j)), (B.34)

〈
Φ(ξ), f(0)(X

∗, ξ)
〉

=
Δ

dX∗
N∗∑
j=1

Φ(ξ(j)). (B.35)

We carry out the step (iii) in Section B.1.3 to the particles arranged according to
Eq. (B.34). After the trial for each of N∗(N∗− 1)/2 pairs (j, k) that determines
the collision of the pair, let the pair (jn, kn), where jn < kn, n = 1, 2, . . . , Nc,
make the collision with α in dΩ(sn) whose representative point is α(sn). Here
we assume that jn and kn (n = 1, . . . , Nc) are all different [see the paragraph
next to that containing Eq. (B.17)]. Then the velocities (ξ(jn), ξ(kn)) of the pair

(jn, kn) are transformed to the velocities (ξ̂
(jn)

, ξ̂
(kn)

):

ξ̂
(jn)

= ξ(jn) + [(ξ(kn) − ξ(jn)) · α(sn)]α(sn), (B.36a)

ξ̂
(kn)

= ξ(kn) − [(ξ(kn) − ξ(jn)) · α(sn)]α(sn). (B.36b)

For the pairs (j, k) that do not collide, the velocities (ξ(j), ξ(k)) are kept un-
changed. As the result of this trial, the velocity distribution and its moment at
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t+ dt, are transformed from Eqs. (B.34) and (B.35) to

S(iii)

{
f(0)

}
dX∗

=
Δ

dX∗

⎡⎢⎢⎣ N∗∑
j=1

(j 
=jn,kn)

δ(ξ − ξ(j)) +
Nc∑

n=1

(
δ(ξ − ξ̂

(jn)
) + δ(ξ − ξ̂

(kn)
)
)⎤⎥⎥⎦ , (B.37)

〈
Φ(ξ), S(iii)

{
f(0)

}
dX∗

〉
=

Δ
dX∗

⎡⎢⎢⎣ N∗∑
j=1

(j 
=jn,kn)

Φ(ξ(j)) +
Nc∑

n=1

(
Φ(ξ̂

(jn)
) + Φ(ξ̂

(kn)
)
)⎤⎥⎥⎦ , (B.38)

where S(iii)

{
f(0)

}
is the result of the step (iii) on f(0) and the subscript dX∗

indicates that the indicated operation is carried out in the cell dX∗.
Now we will show that the DSMC result is consistent with the solution of

the Boltzmann equation. For this purpose, the following random variables10

Zjk for the independent N∗(N∗ − 1)/2 trials are introduced:

Zjk =

⎧⎪⎨⎪⎩
Φ(ξ̂

(j)
) + Φ(ξ̂

(k)
) − Φ(ξ(j)) − Φ(ξ(k))

when the pair (j, k) collides,
0 when the pair (j, k) does not collide,

(B.39)

where ξ̂
(j)

and ξ̂
(k)

are given by Eqs. (B.36a) and (B.36b). Then, the random
variable Z is defined by their sum

Z =
Δ

dX∗
N∗−1∑
j=1

N∗∑
k=j+1

Zjk. (B.40)

The variable Z takes the following value Ẑ when the pair (jn, kn) with n =
1, . . . , Nc makes the collision with α(sn) and the other pairs make no collision:11

Ẑ =
Δ

dX∗
Nc∑

n=1

(
Φ(ξ̂

(jn)
) + Φ(ξ̂

(kn)
) − Φ(ξ(jn)) − Φ(ξ(kn))

)
. (B.41)

From Eqs. (B.35) and (B.38), the value Ẑ is equal to the difference of the moment
of the velocity distribution function after the step (iii) and that before the step.

Ẑ =
〈
Φ(ξ), S(iii)

{
f(0)

}
dX∗

〉
−
〈
Φ(ξ), f(0)(X

∗, ξ)
〉
. (B.42)

10See, e.g., Feller [1968], Parzen [1960], or Rényi [1966].
11The Ẑ is the value that the random variable Z takes as the result of a trial.
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Now consider the expectation Ep(Zjk) of Zjk. From Eqs. (B.15) and (B.39),
it is expressed in the form

Ep(Zjk) =
∑

s

(
Φ(ξ̂

(j)
) + Φ(ξ̂

(k)
) − Φ(ξ(j)) − Φ(ξ(k))

)
P̄ (s)(ξ(j), ξ(k))dΩ(s)

=
Δdt

mdX∗
∑

s

(
Φ(ξ̂

(j)
) + Φ(ξ̂

(k)
) − Φ(ξ(j)) − Φ(ξ(k))

)
× B(|(ξ(k) − ξ(j)) · α(s)|/|ξ(k) − ξ(j)|, |ξ(k) − ξ(j)|)dΩ(s). (B.43)

From Eqs. (B.40) and (B.43), the expectation Ep(Z) of Z is expressed as

Ep(Z) =
Δ

dX∗
N∗−1∑
j=1

N∗∑
k=j+1

Ep(Zjk)

=
Δ2dt

m(dX∗)2

N∗−1∑
j=1

N∗∑
k=j+1

∑
s

(
Φ(ξ̂

(j)
) + Φ(ξ̂

(k)
) − Φ(ξ(j)) − Φ(ξ(k))

)
× B(|(ξ(k) − ξ(j)) · α(s)|/|ξ(k) − ξ(j)|, |ξ(k) − ξ(j)|)dΩ(s). (B.44)

Comparing Eq. (B.44) with Eq. (B.32), we find that the expectation Ep(Z) ap-
proaches the right-hand side of Eq. (B.32) as dΩ(s) → 0. That is,〈

Φ(ξ), fB(X∗, ξ)
〉

= Ep(Z) as dΩ(s) → 0. (B.45)

The velocity distribution function fB(X∗, ξ) is expressed by the expectation
Ep(Z) of the random variable Z related to the step (iii) of the DSMC process.

According to the law of large number (see Feller [1968], Parzen [1960], Rényi
[1966]), the expectation Ep(Z) is approximately obtained by taking the average
of the results of very large repetitions of the trial consisting of the N∗(N∗−1)/2
independent trials.12 Thus, the moment

〈
Φ(ξ), fB(X∗, ξ)

〉
corresponding to the

initial condition (B.34) is obtained by taking the average of Ẑ obtained by many
trials of the step (iii) of the DSMC process. Taking the representative value of
ϕ(X, ξ) in the cell dX∗ as Φ(ξ), computing Ep(Z) by the DSMC process, and
summing it up over all the cells, we find that the result is equal to [ϕ, fB ].

In the above discussion, we found that fB is obtained by the step (iii) of the
DSMC process, but with very many trials of the step (iii). However, when the
number N∗ of the particles in a cell is very large, which is the basic assumption
in the DSMC method, we can show that fB is obtained approximately by one
trial as follows.

The velocities of the particles in the DSMC procedure are ξ
(j)
(l) (or ξ(j)) in

the velocity distribution function expressed in the form given by Eq. (B.1a) [or
12More explicitly, the probability that the difference between the average of the repeated

trials and the expectation of the random variable is less than an arbitrary small value ap-
proaches unity as the number of the trials tends to infinity. In the following discussions, we,
for convenience, use the expression “(the average of the infinitely many repeated trials) =
(the expectation of the random variable) in the probabilistic sense” or “In the limit of infinite
trials, the probability that the above equality holds is unity”.
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(B.34)]. In expressing the velocity distribution function in the form of Eq. (B.1a)
[or (B.34)] in Section B.1.2, the η space transformed from the ξ space is divided
into N (l) (or N∗) of equal volume, and a delta function (a particle in DSMC)
is allotted to each of the volumes (say, ξ cell) in the ξ space corresponding to
the divided volumes in η space. Collecting S neighboring ξ cells, where S � 1
but S � N∗, we call it a Ξ cell, and then the particles in dX∗ are grouped into
N∗/S of the Ξ cells, in each of which the velocities of the particles are close. The
Ξ cells are labeled from 1 to N∗/S. In each Ξ cell, there are S particles, which are
labeled from 1 to S. The velocity of the βth particle in the Jth Ξ cell is denoted
by ξ(J)(β), where β = 1, 2, . . . , S and J = 1, 2, . . . , N∗/S. Corresponding to this
labeling, the random variable Zjk is named in more detail. That is, if the jth
particle in dX∗ corresponds to the βth particle in the Jth Ξ cell and the kth
particle to the γth particle in the Kth Ξ cell, then Zjk is denoted by ZJK(β, γ).
The indices J and K range from 1 to N∗/S, and J ≤ K if j < k. The indices
β and γ range from 1 to S, and β < γ if J = K but β and γ are arbitrary if
J < K. Then, the random variable Z defined by Eq. (B.40) is rewritten in the
form

Z =
Δ

dX∗

⎛⎝N∗/S−1∑
J=1

N∗/S∑
K=J+1

S∑
β=1

S∑
γ=1

ZJK(β, γ) +
N∗/S∑
J=1

S−1∑
β=1

S∑
γ=β+1

ZJJ (β, γ)

⎞⎠ .

(B.46)
The second group containing ZJJ(β, γ) on the right-hand side is the con-

tribution of collisions between particles in the same Ξ cell. The difference of
the velocities between particles in the same Ξ cell being small, their probability
of collision is small [see Eq. (B.17)] and further the velocity change owing to
collision, if occurs, is small (or of the order of the size of Ξ). Thus, the absolute
values taken by the random variable ZJJ (β, γ) are also small [see Eq. (B.39)].
Therefore, their contribution to Eq. (B.46) is small, that is,

Z =
Δ

dX∗

N∗/S−1∑
J=1

N∗/S∑
K=J+1

S∑
β=1

S∑
γ=1

ZJK(β, γ). (B.47)

The difference of ξ for different β or γ being small for small Ξ, the random
variable ZJK(β, γ) for a fixed set of (J,K) is independent of (β, γ) and identi-
cally distributed irrespective of (β, γ) . Therefore, the expectation of Z is given
in the form

Ep(Z) =
ΔS2

dX∗

N∗/S−1∑
J=1

N∗/S∑
K=J+1

Ep(ZJK(β′, γ′)), (B.48)

where Ep(ZJK(β′, γ′)) is the expectation of ZJK(β, γ) for an arbitrary set
(β′, γ′) of (β, γ). According to the extended law of large number, the sum∑S

β=1

∑S
γ=1 ẐJK(β, γ) of the result ẐJK(β, γ) of the S2 independent trials is,

in the probabilistic sense, equal to
S∑

β=1

S∑
γ=1

ẐJK(β, γ) = S2Ep(ZJK(β′, γ′)), (B.49)
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in the limit that N∗ → ∞ and S → ∞ with N∗/S → ∞ and S2/N∗ → ∞.
Here the condition S2/N∗ → ∞ is required to the law of large number because
the probability P̄ (s)(ξ(j), ξ(k))dΩ(s) vanishes with speed 1/N∗ as N∗ → ∞.
This is the reason that the adjective “extended” is attached. Supplementary
explanation is given in the next paragraph. The condition N∗/S → ∞ is the
condition that the Ξ cell is small, which is used to derive Eq. (B.48). On the
other hand, from Eq. (B.47),

Ẑ =
Δ

dX∗

N∗/S−1∑
J=1

N∗/S∑
K=J+1

S∑
β=1

S∑
γ=1

ẐJK(β, γ). (B.50)

Thus, from Eqs. (B.48), (B.49), and (B.50), Ep(Z) is given by the result Ẑ of a
trial of the step (iii), i.e.,

Ep(Z) = Ẑ. (B.51)

The above discussion shows that carrying out the trials for all the pairs (β, γ)
for a given set (J,K) corresponds to carrying out S2 repeated trials for a rep-
resentative pair in the (J,K)th Ξ cell.

To supplement the discussion in the preceding paragraph, first consider an
event A that occurs with probability p in a trial. The probability PN (r) that
the event A occurs r times in the repeated trials of N times is given by PN (r) =
[N !/r!(N − r)!]pr(1−p)N−r. Then, the probability that r satisfies r = Np [with
width εNp (ε : arbitrarily small positive number)] approaches unity in the limit
that N → ∞ (the law of large number; see Feller [1968], Parzen [1960], Rényi
[1966]). That is, for arbitrarily small ε and δ, if we take N ≥ N0, where N0

depends on ε and δ, then

Probability (|r − Np| < εNp) ≥ 1 − δ. (B.52)

The corresponding statement for the situation where p depends on N and van-
ishes (p → 0) as N → ∞ is required in this appendix. With a slight extension of
the discussion in Section 17 of Chapter 3 in Rényi [1966], it can be shown that
the above statement holds if the condition Np → ∞ as N → ∞ is imposed.13

An example is given in Fig. B.1. Next, consider a trial where M mutually ex-
clusive events A1, A2, . . . , AM occur with probabilities of success p1, p2, . . . , pM .

13The expression (B.52) is equivalent toX
|r−Np|<εNp

“N

r

”
pr(1 − p)N−r ≥ 1 − δ,

because

Probability (|r − Np| < εNp) =
X

|r−Np|<εNp

“N

r

”
pr(1 − p)N−r.

From the well-known equality (see p. 102 of Rényi [1966])

NX
r=0

(r − Np)2
“N

r

”
pr(1 − p)N−r = Np(1 − p),
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Figure B.1. The extended law of large number for p = N−2/3. (a) PN (r)/PN (Np)
vs (r − Np)/(Np)1/2 and (b)

Pr
i=0 PN (i) vs r/Np. The black square �: N = 8, the

black circle • : N = 103, the white circle ◦ : N = 106, and the dot · : N = 109. The
solid line —– is exp[−(r − Np)2/2Np] in panel (a) and N = 1012 in panel (b).

From the preceding result, the probability that the numbers r1, r2, . . . , rM of
their success satisfy r1r2 · · · rM = NMp1p2 · · · pM in its N trials approaches
unity in the limit N → ∞ with Np1, Np2, . . . , NpM → ∞. These statements
may be called the extended law of large number.

From Eqs. (B.45) and (B.51),〈
Φ(ξ), fB(X∗, ξ)

〉
= Ẑ. (B.53)

With this result into Eq. (B.42), the result of the step (iii) applied to f(0) is
expressed as〈

Φ(ξ), S(iii)

{
f(0)

}
dX∗

〉
=
〈
Φ(ξ), f(0)(X

∗, ξ) + fB(X∗, ξ)
〉
.

Thus, [
ϕ, S(iii)

{
f(0)

}]
=
[
ϕ, f(0)(X, ξ) + fB(X, ξ)

]
, (B.54)

we have

Np(1 − p) ≥
X

|r−Np|≥εNp

(r − Np)2
“N

r

”
pr(1 − p)N−r

≥ ε2(Np)2
X

|r−Np|≥εNp

“N

r

”
pr(1 − p)N−r,

from which X
|r−Np|<εNp

“N

r

”
pr(1 − p)N−r = 1 −

X
|r−Np|≥εNp

“N

r

”
pr(1 − p)N−r

≥ 1 − 1 − p

ε2Np
≥ 1 − 1

ε2Np
.

Thus, if Np → ∞ as N → ∞, we can choose N0 such that Np ≥ 1/δε2 for N ≥ N0.
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or
S(iii)

{
f(0)

}
= f(0)(X, ξ) + fB(X, ξ). (B.55)

That is, the velocity distribution function obtained by applying the step (iii) to
the initial distribution f(0) is found to be the sum of the initial distribution f(0)

and the solution fB of Eq. (B.22b).
Now, consider the case where the steps (i) and (iii) are applied successively

to the initial distribution f(0) (the unit process of DSMC). As we have seen, the
step (i) applied to f(0) gives fA, that is,

S(i)

{
f(0)

}
= fA, (B.56)

where S(i){f(0)} means that the step (i) is applied to f(0). The application of
the step (iii) after the step (i) gives

S(iii)

{
S(i)

{
f(0)

}}
= fA + fB(f(0) = fA), (B.57)

where Eq. (B.55) is used and fB(f(0) = fA) is the solution of Eq. (B.22b) with
f(0) = fA. The difference between fB(f(0) = fA) and fB(f(0) = f(0)) (or the
original fB) is of the order of (dt)2, because the difference between fA and f(0)

is of the order of dt. Therefore, we have

S(iii)

{
S(i)

{
f(0)

}}
= fA + fB

= f(1), (B.58)

which is the solution of Eq. (B.21). That is, the successive application of the
steps (i) and (iii) to the initial distribution gives the solution of the Boltzmann
equation at the next time step.

Supplementary remarks on the size of the parameters in the DSMC compu-
tation may be in order.
(i) The process from Eq. (B.19) to Eq. (B.21) is done under the assumption of
small perturbation. The perturbed term must be small, that is,

[ϕ, J(f(0), f(0))]dt

[ϕ, f(0)]
� 1 or

〈
Φ, J(f(0), f(0))

〉
dt〈

Φ, f(0)

〉 � 1.

In view of Eqs. (B.15), (B.17), (B.22b), (B.27), (B.32), and (B.35), the following
condition is derived from the preceding relation:

N∗P (ξ(j), ξ(k)) � 1, (B.59a)

or
(ρ/m)πd2

m|ξ|rmaxdt � 1. (B.59b)

Here, |ξ|rmax indicates the size of range of |ξ| where the contribution to f in
the computation is not negligible, which is roughly of the order of (RT )1/2,
and it is not a real maximum of |ξ|, which is generally infinite. The relation
means that the number [N∗2P (ξ(j), ξ(k))] of the pairs that collided in time dt
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in the cell dX∗ is much smaller than the number N∗ of the particles in the cell.
Thus, we have to choose dt so as to satisfy the above relation in the numerical
computation. When this condition is satisfied, the probability for a particle
to make a collision twice in the time interval dt is small, and therefore the
treatment in the paragraph next to that containing Eq. (B.17) in the process of
the step (iii) is allowed.
(ii) Consider the integral form of the Boltzmann equation (B.12a), which is
derived by integrating the equation along its characteristic (see Section A.4.1).
Then the velocity distribution function is expressed by the integral of the col-
lision term along the characteristic from the initial or boundary surface in ad-
dition to the initial and boundary terms. The expression of the collision effect
in the form of Eq. (B.22b) is allowed only for a narrow time interval where the
characteristic is approximated by a straight line. However, the characteristic
may pass several dX cells during (t, t+dt) even when the condition is satisfied.
In this case, the collision effect is not determined by J(f, f) in a single cell but
is expressed by a weighted average of J(f, f) on the characteristic. Thus, the
expression (B.22b) is valid only when |ξ|emaxdt = O(L), where L is the size of
the cell dX and |ξ|emax is the effective maximum speed of the molecules, which
is roughly of the order of |v|max + (RT )1/2. The numerical computation should
be carried out under the restriction |ξ|emaxdt ∼ L.

To summarize, the arbitrary moment of the velocity distribution function
(the velocity distribution function itself) after a time interval dt is obtained from
that at time t by the steps (i)–(iii) of the DSMC method explained in Section
B.1.3. Thus, repeating the process, we can obtain the velocity distribution
function at an arbitrary time.

In addition to the above discussion, the DSMC method can be understood
in a different way. In the DSMC scheme, a collection of molecules is treated
as a single molecule (called a particle), and the calculation of the translation
and collision of particles is parallel to Boltzmann’s derivation of his equation
(Boltzmann [1896–98]). The relation between them can be made quantitatively.
The translation process may not need discussion. We will discuss the collision
process along this line.

The variation of the number (f/m)dξdX of the molecules in dξdX by
intermolecular collision in time dt is expressed with the collision term (B.12b)
of the Boltzmann equation (B.12a) as

1
m

J(f, f)dξdXdt. (B.60)

The contribution to this by the loss term of the collision integral, i.e.,

1
m2

(∫
all α, all ξ∗

ff∗BdΩ(α)dξ∗

)
dξdXdt, (B.61)

is the number of molecules in dξdX around (ξ,X) that collide with any other
molecules in time dt. The number of the molecules in dξdX that collide with
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molecules in dξ∗ around ξ∗ in time dt is14

m−2ff∗

(∫
all α

BdΩ(α)
)

dξ∗dξdXdt. (B.62)

The time interval dt being taken to be small, only the molecules ξ∗ in dX
participate in the collision given in Eq. (B.62). Then, from Eq. (B.62), the prob-
ability that any pair of molecules in dX, one with velocity ξ and the other with
ξ∗, makes a collision in time dt is [

∫
all α

BdΩ(α)]dt/dX. The velocities of the
collided pair are given by Eqs. (A.28a) and (A.28b), i.e.,

ξ′ = ξ + [α · (ξ∗ − ξ)]α, ξ′
∗ = ξ∗ − [α · (ξ∗ − ξ)]α, (B.63)

where α is distributed according to the distribution BdΩ(α)/
∫
all α

BdΩ(α).
In view of the above discussion, the contribution of the collision term can

be computed in the following way. For all the pairs (ξ, ξ∗) of the molecules
in dX, determine whether they collide or not according to the probability
[
∫
all α

BdΩ(α)]dt/dX of collision given above. For the collided pairs, determine
their α according to the distribution BdΩ(α)/

∫
all α

BdΩ(α) of α, from which
the resulting pairs (ξ′, ξ′

∗) of velocities are determined by Eq. (B.63). Then,
the original molecular velocities ξ and ξ∗ for the collided pairs are replaced by
ξ′ and ξ′

∗ just obtained. The new velocity distribution of the molecules is the
distribution obtained by the collision integral after time dt.

This process is carried out for a large number of particles, each of which rep-
resents a large number of molecules, in the DSMC computation. This process is
verified by modifying the probability between the particles from that between
the molecules in the following way. Consider two groups A and B of identi-
cal molecules, A consisting of M molecules (a1, a2, . . . , aM ) with neighboring
molecular velocities and B consisting of N molecules (b1, b2, . . . , bN ) with an-
other neighboring molecular velocities. Any pair (ai, bj) of molecules in A and B
collides with a common probability p. Perform MN trials for MN pairs whether
they collide or not. Then, for large M and N, the number of pairs that collide
is MNp in the probabilistic sense. By the collision, MNp molecules leave each
of A and B groups. Now, n molecules in each of A and B are represented by
a particle. Then we obtain two groups A and B, A consisting of M/n particles
(a1, a2, . . . , aM/n) and B consisting of N/n particles (b1, b2 . . . , bN/n). Any pair
(ai, bj) in A and B collides with a common probability P. Perform similar trials
for MN/n2 pairs whether they collide or not. Then, for large M/n and N/n,
the number of pairs that collide is MNP/n2 in the probabilistic sense. By the
collision, MNP/n2 particles leave each of A and B groups, that is, MNP/n
molecules leave each of A and B. For the simplified computation by the system
of particles to approximate the collision process of the molecular systems A and
B, MNP/n should be equal to MNp, that is, we should take

P = np. (B.64)
14The derivation of the Boltzmann equation in Boltzmann [1896–98] proceeds in the opposite

direction, i.e., from Eq. (B.62) to Eq. (B.61).
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This result corresponds to the factor Δ/m in Eq. (B.15), because the factor
is equal to the number of molecules represented by a particle in the DSMC
computation.15 The molecules after collision take various velocities, which is
expressed by the parameter α. If the number MNp/n of the particles leaving
A and B is large enough, the distribution of the particles after collision can
simulate the distribution of the molecules.

We have shown the relation between the Boltzmann equation and the DSMC
method described in Section B.1.3, which is in principle the method introduced
by Bird, in two different ways. These give the background when one tries to
improve the method of computation in efficiency and accuracy, and also give
a guideline to introduce a similar method of computation in different systems.
These are the benefit of theoretical study. Unfortunately, for some period in
the past, it was said among some people that Bird’s method is not related
to the Boltzmann equation.16 The theoretical discussion also eliminates the
misunderstanding.17

B.1.5 Economy of computation

The DSMC method of solution is simple but requires a large computation be-
cause the computation for a large number of the particles is required. Most of
the time of computation is obviously spent on the step (iii) in Section B.1.3,
where the collision parameter α(s) is chosen with very low probability for very
large pairs of the particles in each cell. We first explain an economy of compu-
tation with this process in mind.

In the step (iii), the collision parameter α(s) is generally chosen in the
two steps. That is, first determine whether the pairs (ξ(j), ξ(k)) of the par-
ticles collide or not by the probability [P (ξ(j), ξ(k)), 1 − P (ξ(j), ξ(k))] for all
the pairs in dX∗, and then choose the parameter α(s) by the probability
P̄ (s)(ξ(j), ξ(k))dΩ(s)/P (ξ(j), ξ(k)). For the first step it requires N∗(N∗ − 1)/2
trials. There are various attempts to reduce the number of this trial (e.g., Bird
[1967, 1976, 1989], Koura [1986], Ivanov, Rogasinsky & Rudyak [1989], Baganoff
& McDonald [1990]) in view of the property that the probability of the collision
is very low and that only a very small portion of the pairs in the cell collides.
We will show an example.

15See Footnote 5 in Section B.1.3.
16Especially, in presenting his work well after Bird’s method was widely used, an author

strongly claimed that his method is the only legitimate method. However, this method treated
the collision of particles as a pair in an unnatural way, and thus, in numerical computation,
where only a finite number of particles are considered, one comes across an unreasonable result
that the temperature of a gas continues to decrease with time (see Greengard & Reyna [1992]
for its mathematical proof and example). This may be attributed to unfavorable arrangement
of terms, and thus the convergence is slow. Further, the economizing technique explained
in the beginning of Section B.1.5, which was already widely adopted at that time, is not
introduced. The technique is later introduced by Babovsky [1986], but the advantage of the
later-introduced method is not clear owing to the above-mentioned defect.

17Rigorous mathematical discussion is given by Wagner [1992], but it is not accessible to
nonmathematicians.
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In the trials of collision or non for the N∗(N∗ − 1)/2 pairs, the probability
P (ξ(j), ξ(k)) of collision being less than 1/N∗ and very small, the result is non
for almost all the pairs. That is, the chance that the number of pairs that
collide exceeds [N∗(N∗ − 1)/2] max P (ξ(j), ξ(k)) considerably in the trials is
very low. Thus, we choose a number M∗ in such a way that N∗(N∗ − 1)/2 �
M∗ � [N∗(N∗ − 1)/2] max P (ξ(j), ξ(k)). Selecting M∗ pairs among N∗(N∗ −
1)/2 at random, we carry out the trial for each [say, (j, k)] of the M∗ pairs to
determine the collision with the probability P (ξ(j), ξ(k))N∗(N∗−1)/2M∗, which
is amplified by the factor N∗(N∗−1)/2M∗. The pairs that are not selected as M∗

pairs are judged not to collide. In this way we can finish the decision of collision
by M∗ trials instead of N∗(N∗−1)/2 with considerable economy of computation.
The validity of this process is explained in the following paragraphs.

We will prepare before the discussion of the validity. Consider mutually
exclusive S events A1, . . . , AS with a common probability p of their occurrence.
Let p depend on S and vanish as S → ∞ keeping the condition Sp → ∞. The
probability that some n events among the A1, . . . , AS occur and the remaining
(S − n) events do not is [S!/n!(S − n)!]pn(1 − p)S−n. In the limit S → ∞
with Sp → ∞, the probability that the number n of occurrence (or success)
takes the value n = Sp [with the allowance of width εSp (ε : arbitrarily small
positive number)] approaches unity [see the paragraph containing Eq. (B.52)
and Fig. B.1]. On the other hand, first choose M∗ of the events A1, . . . , AS at
random, and make a trial of the occurrence or non for each of M∗ with the
probability pS/M∗ of success, which is amplified by factor S/M∗. The event
that is not chosen among M∗ is taken to be non (or unsuccessful). Then, the
probability of n success is [M∗!/n!(M∗ − n)!](pS/M∗)n(1 − pS/M∗)M∗−n. In
the limit S → ∞ with M∗ → ∞ and Sp → ∞, the probability that the number
n of occurrence takes the value n = M∗(pS/M∗) (or n = Sp) [with allowance
of width εM∗pS/M∗ = εSp (ε : arbitrarily small positive number)] approaches
unity.

Now, we will show the validity of the economizing process explained in the
paragraph before the preceding one. Here, the Ξ cell of the particle velocity
space ξ consisting of S particles is introduced, just as in the discussion in replac-
ing the average of repeated computations by the average in a single computation
in the paragraph containing Eq. (B.46) of Section B.1.4. The particles ξ(j) are
renumbered as ξ(J)(β) [or ξ(K)(γ)]. Corresponding to this renumbering, the pair
(j, k) of the particles and the probability P (ξ(j), ξ(k)) are, respectively, denoted
by (J(β),K(γ)) and P (J,K)(β, γ). The Ξ cell contains many particles, but the
differences of the velocities among them are so small that they can be repre-
sented by a velocity. Thus, P (J,K)(β, γ) can be represented by a single P (J,K)

determined by the (J,K) pair of the Ξ cells. We compare the number n(J,K) of
success among the S2 pairs in the Ξ cell pair (J,K) for the two cases, the one
with direct trial for N∗(N∗ − 1)/2 and the other with preliminary selection of
M∗ pairs. First perform the trial for each (j, k) of the N∗(N∗−1)/2 pairs of the
particles in the cell dX∗ whether the collision occurs or not with the probability
P (ξ(j), ξ(k)) of success, where we use a common probability P (J,K) for the pairs
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that belong to the same pair (J, K) of the Ξ cells. Estimate the number n(J,K)

of success among the S2 pairs in the Ξ cell pair (J, K). According to the pre-
ceding paragraph, in the limit S2 → ∞ with S2P (J,K) → ∞,18 the probability
that n(J,K) of success satisfies n(J,K) = S2P (J,K) with the allowance of width
o(S2P (J,K)) approaches unity. That is, the number n(J,K) of the pairs that
collide is given by n(J,K) = S2P (J,K) in the probabilistic sense. Next, choose
M∗ pairs at random from the N∗(N∗−1)/2 pairs in dX∗. The number of pairs
in each of the Ξ cell pairs being commonly S2, the probability that the num-
ber r(J,K) of the pairs that is chosen in the Ξ cell pair (J, K) satisfies r(J,K) =
S2M∗/[N∗(N∗ − 1)/2] approaches unity in the limit N∗ → ∞ with M∗ → ∞,
S → ∞, S2M∗/N∗2 → ∞. That is, r(J,K) approaches S2M∗/[N∗(N∗ − 1)/2]
independently of the pair (J, K) in the probabilistic sense. Then, perform the
trial of success or non for each of the r(J,K) pairs thus chosen with the proba-
bility P (J,K)S2/r(J,K) [or P (J,K)N∗(N∗ − 1)/2M∗] of success. The probability
that the number n(J,K) of success satisfies n(J,K) = r(J,K)(P (J,K)S2/r(J,K)) (or
n(J,K) = P (J,K)S2) approaches unity in the limit S → ∞, with S2M∗/N∗2 → ∞
(or r(J,K) → ∞) and P (J,K)S2 → ∞. That is, n(J,K) approaches P (J,K)S2 in
the probabilistic sense. The distributions n(J,K) of the two ways of trials have
the same distribution. Therefore, the above-mentioned way of economizing the
computation is legitimate in the case N∗ → ∞ with N∗2 � S2 � N∗ and
M∗ � [N∗(N∗ − 1)/2] maxP (J,K).19

Next, we consider the DSMC process when the dimension of a problem
degenerates. First consider the spatially homogeneous case where F= 0 and
f(0) is independent of X. From Eq. (B.24), we can obtain f at the next time
step (or f(1)) only from fB . Therefore, we have only to carry out the com-
putation to obtain fB in a cell dX(l), that is, to repeat the step (iii) in
a single cell. Next, consider the one-dimensional case where F = (F1, 0, 0)
and f(0) as well as F1 is independent of X2 and X3. Then, applying the dis-
cussion from Eq. (B.23) to Eq. (B.24) for the variables X2 and X3, we have
[ϕ, fA] = [ϕ(X1 + ξ1dt, X2, X3, ξ1 + F1(0)dt, ξ2, ξ3), f(0)]. Thus, the expressions
corresponding to Eqs. (B.25) and (B.26) are reduced to

[ϕ, fA] = Δ
M∑
l=1

N(l)∑
j=1

ϕ(X(j)
(l)1+ξ

(j)
(l)1dt, X

(j)
(l)s, ξ

(j)
(l)1+F1(0)(X

(j)
(l)1, ξ

(j)
(l) )dt, ξ

(j)
(l)s),

(B.65a)

fA = Δ
M∑
l=1

N(l)∑
j=1

δ(X1 − X
(j)
(l)1 − ξ

(j)
(l)1dt, Xs − X

(j)
(l)s)

× δ(ξ1 − ξ
(j)
(l)1−F1(0)(X

(j)
(l)1, ξ

(j)
(l) )dt, ξs − ξ

(j)
(l)s), (B.65b)

where s indicates 2 and 3, and X
(j)
(l)i, ξ

(j)
(l)i, and Fi are the i-th component of X

(j)
(l) ,

18We determine the size of the Ξ cell in such a way that N∗2 � S2 � N∗(� 1) because
P (J,K) = O(1/N∗).

19In view of P (J,K) = O(1/N∗), the second condition reduces to M∗ � N∗. The conditions
S2M∗/N∗2 → ∞ and P (J,K)S2 → ∞ are satisfied under the two conditions on S and M∗.
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ξ
(j)
(l) , and F . Thus, we find that the DSMC process can be carried out only by

distributing the particles on the X1 axis. In the step (i), the positions and
velocities of the particles are shifted in such a way that X

(j)
(l)1 → X

(j)
(l)1+ξ

(j)
(l)1dt

and ξ
(j)
(l)1 → ξ

(j)
(l)1+F1(0)(X

(j)
(l)1, ξ

(j)
(l) )dt, and in the step (iii), the same process as

in the general case is carried out in each cell. The simplified process of the
two-dimensional problem can be constructed in a similar way.

In order to obtain the solution of a problem in a good approximation with
the DSMC computation, we have to carry out the computation with a very
large number of particles in the system, as is seen from the discussion in Section
B.1.4. It is practically impossible at present to obtain a smooth flow-velocity
profile or temperature distribution by one run of computation, though the severe
condition is partly due to a rough estimate by elementary analysis. The results
averaged in some way are usually presented, e.g., the average of many cases
of computation. In the first stage of the discussion in Section B.1.4 of the
background of the step (iii) of the DSMC process in Section B.1.3, we mentioned
that the correct result is obtained by averaging many trials. This discussion,
however, does not validate the averaging process done in conventional numerical
computations. In that discussion, we showed only that the solution after the
time step dt is correctly obtained by the averaging, but does not guarantee
the result of the further steps. That is, the desired solution is obtained, if we
take the average of the result at the first step, proceed to the next step with
the resulting velocity distribution function as the initial condition, and repeat
the same procedure. The averaging process used in practical computations,
where independent computations up to some time steps are averaged, requires
another verification. For example, the following confirmation is required: the
computation is carried out for each of a group of initial conditions whose average
gives the correct initial condition, and the average of the results at the first step
is to be shown to give the correct result at the first step. This point is not
clarified at present.20

In small systems, which appear in aerosol science and microengineering, the
deviation of the velocity distribution function from a uniform Maxwell distri-
bution is important, because the Mach number of the flow and the relative
temperature difference between boundaries are small in these systems. In such
a case, straightforward application of the DSMC method described in this sec-
tion is inefficient. In this method, the total distribution function consisting of
the Maxwellian and its perturbation is obtained at a time. To obtain the per-
turbation (say, of a size 5%) accurately, for example within the error of 1%, we
have to obtain the total distribution more accurately (up to 0.05%), which is
very difficult. In finite-difference computation for small perturbation problems,
the equation for the perturbation is used. The corresponding method should be
devised.

20There is obviously no problem for the step (i) in Section B.1.3, but the step (iii), which
is a nonlinear effect, has a problem generally. In fact, Babovsky [1992] reported a negative
result for the corresponding problem in his simulation system for a one-dimensional discrete
Boltzmann equation.



B.1. Direct simulation Monte Carlo method 595

A similar difficulty is encountered in the computation for small Knudsen
numbers. For small Knudsen numbers, the velocity distribution function is close
to a local Maxwellian. Thus, the local Maxwellian contribution is cancelled out
in the collision integral. The remaining part is amplified by the inverse of the
Knudsen number and determine the (temporal and spatial) variation of the
distribution function. Therefore, we have to compute the velocity distribution
function accurately up to the perturbation (or the order of the Knudsen num-
ber). This requires a very large computation, and some technique should be
introduced also in this case. Pareschi & Caflisch [1999] is an example.

B.1.6 Example

We will examine the bifurcation problem of an axially symmetric and uniform
gas flow between two rotating coaxial circular cylinders made of the condensed
phase of the gas by the DSMC method. The problem is discussed in Section
8.4.2, analytically by asymptotic analysis for small Knudsen numbers and nu-
merically by a finite-difference method. The present study is a simplified version
of the DSMC computation in Section 8.4.3 with additional condition of axial
uniformity. However, owing to this simplicity, we can make more detailed ex-
amination, which is too large to be done without this assumption, and see two
aspects, successful and non, of the method for describing the qualitative feature
of the solution.

The problem considered in Section 8.4 is as follows: Take a gas between
two coaxial circular cylinders made of the condensed phase of the gas. Let
the radius, temperature, and circumferential velocity (on the surface) of the
inner cylinder be, respectively, LA, TA, and VθA, and let the corresponding
quantities of the outer cylinder be LB , TB , and VθB , where TA, VθA, TB , and
VθB are uniform on each cylinder; the saturated gas pressure at temperature
TA is denoted by pA and that at TB by pB (see Fig. 8.19). Here, limiting to the
axially symmetric and uniform case, where the radial coordinate r is the only
nontrivial space variable, we will try to obtain the time-independent solution
from the long-time behavior of the solution of the initial and boundary-value
problem for various values of VθA. The boundary condition on the cylinders
is the complete-condensation condition. As the initial condition, two kinds of
conditions are considered. That is, ICa: the Maxwell distribution with uniform
pressure pA and uniform temperature TA and without gas motion and ICb: the
Maxwell distribution making rigid body rotation at angular velocity VθA/LA

with uniform temperature TA and with pA as the average pressure.21 The other
parameters are chosen as VθB = 0, pB/pA = 1.2, TB/TA = 1, LB/LA = 2,
and Kn = 0.01. Here, in conformity with Section 8.4, the Knudsen number Kn
is defined by Kn = A/LA, where A is the mean free path of the gas in the
equilibrium state at rest with temperature TA and pressure pA.

The computation is carried out with four kinds of systems of numerical com-
putation: Let Nc and Np be, respectively, the number of cells into which the

21The pressure distribution is given by P0 exp[(V 2
θA/2RTA)(r/LA)2], where P0 =

pA[(LB/LA)2 − 1](V 2
θA/2RTA){exp[(V 2

θA/2RTA)(LB/LA)2] − exp[(V 2
θA/2RTA)]}−1.
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range of r between the two cylinders is divided uniformly and the number of par-
ticles put in the domain initially (thus, Np/Nc particles in a cell on average), and
let Δt̂ be the nondimensional time step Δt̂ = Δt/LA(2RTA)−1/2 of computa-
tion; System A: (Nc, Np/Nc, Δt̂) = (100, 25, 0.001), System B: (100, 50, 0.001),
System C: (100, 100, 0.001), and System D: (500, 100, 0.0005). The time-local
quantities are the average of 105 time steps.

Let J be the mass flow per unit time from the inner cylinder to the outer
per unit length of the cylinders. The time evolution of the nondimensional
mass-flow rate Ĵ [= J/2

√
2πLApA(RTA)−1/2] computed on System D is shown

for various values of |VθA|/(2RTA)1/2 in Fig. B.2. The following discussion is
based on the examination carried out at each step of 0.005 of |VθA|/(2RTA)1/2.
The solution with negative mass-flow rate (the lower branch) exists for 0 ≤
|VθA|/(2RTA)1/2 ≤ 0.695, and the solution with positive mass-flow rate (the
upper branch) exists for 0.675 ≤ |VθA|/(2RTA)1/2. The fluctuations are small
except in the solution with positive mass-flow rate at |VθA|/(2RTA)1/2 = 0.675.
This solution on the upper branch at |VθA|/(2RTA)1/2 = 0.675 is difficult
to be judged, only with the present data, whether it is time-independent or
really fluctuating, but in the rest of the ranges, the solution can be consid-
ered time-independent. For |VθA|/(2RTA)1/2 ≤ 0.67, the solutions from the
two initial conditions ICa and ICb converge to a common time-independent
solution with negative mass-flow rate, and for |VθA|/(2RTA)1/2 ≥ 0.7, the two
solutions converge to a common solution with positive mass-flow rate. In the
range 0.675 ≤ |VθA|/(2RTA)1/2 ≤ 0.695, the solution from ICa converges to that
on the lower branch and the solution from ICb converges to that on the upper
branch. The average of Ĵ over 107 time steps from t/LA(2RTA)−1/2 = 5000 are
shown as the time-independent solutions, for convenience’s sake, by long dashed
lines in Fig. B.2 and the following Figs. B.3 and B.4.

On Systems A, B, and C, the fluctuations of solutions are larger. The
time evolution of the (nondimensional) mass-flow rates Ĵ on Systems A, B,
and C is shown for various |VθA|/(2RTA)1/2 in Figs. B.3 and B.4. The fluc-
tuations are larger for smaller systems. The fluctuations are largest around
|VθA|/(2RTA)1/2 = 0.675 and show tendency to vanish away from there. When
the fluctuations are large, the mass-flow rate ranges between the two branches
of solutions on System D. With decrease of fluctuations, the solution fluctu-
ates with one of the branches or only one branch existing as roughly one of
the bounds, but the fluctuations are still large and the solution cannot be con-
sidered time-independent. For small or large |VθA|/(2RTA)1/2, the solution
approaches a unique solution with sufficiently small fluctuations. [See, for ex-
ample, the case at |VθA|/(2RTA)1/2 = 0.3; the fluctuations are similarly small at
|VθA|/(2RTA)1/2 = 1.2.] There are some gray zones of |VθA|/(2RTA)1/2 where
the decision of “time-independent” or “oscillatory” is difficult. The gray zone
is inevitable in DSMC computation (see Aoki, Sone & Yoshimoto [1999] for
another example). We could not find the values of |VθA|/(2RTA)1/2 at which
there are two time-independent solutions.

As has been seen, the mass-flow rates, for example, at |VθA|/(2RTA)1/2 =
0.675 on Systems A, B, and C vary oscillatorily and irregularly some time
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Figure B.2. Time evolution of the nondimensional mass-flow rate Ĵ [=
J/2

√
2πLApA(RTA)−1/2] in the axially uniform problem on System D for various

|VθA|/(2RTA)1/2 (Kn= 0.01, LB/LA = 2, VθB = 0, pB/pA = 1.2, TB/TA = 1). (a)
|VθA|/(2RTA)1/2 = 0.67, (b) 0.675, (c) 0.68, (d) 0.685, (e) 0.695, and (f) 0.7. The solid
lines —– indicate the solutions from the initial condition ICa, the dot-dash lines – -–
: the solutions from ICb, and the long dashed lines — — — : the time-independent
solutions on System D.
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Figure B.5. The time-local profiles of flow velocity (vr, vθ), temperature (T ), and
pressure (p) of the oscillatory solution, starting from the initial condition ICa,
on System A at the instants when the mass-flow rate is maximum and minimum
[|VθA|/(2RTA)1/2 = 0.68 and Kn= 0.01]. (a) vr/(2RTA)1/2, (b) vθ/(2RTA)1/2, (c)
T/TA, and (d) p/pA. The symbol N indicates the data at the maximum mass-flow
rate, and H at the minimum mass-flow rate. The time-independent solutions on Sys-
tem D are shown by solid lines —– for comparison.

near the upper branch and some time near the lower branch, and they remain
roughly between them. This behavior also applies to their local variables. In
Fig. B.5, the profiles of flow velocity, temperature, and pressure of the solution
at |VθA|/(2RTA)1/2 = 0.68, starting from the initial condition ICa on System A,
at the instants when the mass-flow rate is maximum and minimum are compared
with the long-time averages over 107 time steps from t/LA(2RTA)−1/2 = 5000
of the solutions on System D (the time-independent solutions, for short). The
profiles for the two extremum instants are similar to those of the two time-
independent solutions on the upper and lower branches. Fluctuations of a con-
siderable amplitude inevitably enter in DSMC computations, and thus this be-
havior of solution, shifting from one solution to the other, is easily conceivable.

There are definitely oscillatory solutions on Systems A, B, and C. With
some instantaneous data of the oscillatory solutions as initial conditions, their
time evolutions are computed on System D. They converge to the corresponding
time-independent solutions on either of the two branches. Thus, the oscillatory
solutions obtained on Systems A, B, and C are false.

No bifurcation was found in the solutions on Systems A, B, and C. Further,
the computation on these systems gave false oscillatory solutions. The sizes
of Systems A, B, and C were not large enough to analyze the stability and
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bifurcation of a flow even for the present simple problem. Their sizes are not
smaller (or even rather larger) than the size (or the number of cells and that of
particles in a cell) of computations widely carried out. Thus, careful examination
is required to confirm the real existence of an oscillatory solution by a DSMC
computation. Presentation of oscillatory and irregular examples by a DSMC
computation as turbulence should be accompanied by detailed examinations.

For problems where the feature of solution is known beforehand, the rea-
sonable quantitative data can be obtained rather easily by the DSMC method
of computation, but for problems where the qualitative feature of solution is
unknown, it is very difficult to obtain a satisfactory or clear-cut solution by the
method.

B.2 Moment method

B.2.1 Basic idea

Moment methods are used in obtaining an approximate solution of the Boltz-
mann equation, especially very often when the computer size was not so large.
The idea of the moment method is simple. To examine a function f(x) to be
zero, we may confirm all the Fourier coefficients (generalized Fourier coefficients)
to be zero instead of examining the value of f to be zero at all the points of the
interval under consideration:∫

ϕn(x)f(x)dx = 0 (n = 0, 1, 2, ...),

where the system of test functions ϕn(x) (n = 0, 1, 2, 3, . . .) is a complete sys-
tem of functions22 [e.g., cos nπx, sin nπx (n = 0, 1, 2, . . .)]. This is applied to
functional equations to solve them. That is, let the functional equation for a
function f(x) be

F [f(x)] = 0. (B.66)

This equation can be replaced by∫
ϕn(x)F [f(x)]dx = 0 (n = 0, 1, 2, . . .). (B.67)

22Let f(x) be a function of x of a class (e.g., a continuous function, a piecewise continuous
function) in the domain D of x under consideration. The system of functions ϕn(x) (n =
0, 1, 2, . . .) is called complete if every function f(x) in the class is approximated arbitrarily
closely by a linear combination of ϕn(x) in some sense, that is, the seriesX

n=0

cnϕn(x) converges to f(x) in some sense (e.g., pointwise, in the mean),

where the pointwise convergence and the convergence in the mean are defined by

pointwise: f(x) =
∞X

n=0

cnϕn(x); in the mean: lim
m→∞

Z
D

 
f −

mX
n=0

cnϕn

!2

dx = 0,

(see, e.g., Courant & Hilbert [1953], Bronshtein & Semendyayev [1997]).
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The procedure of, what is called, the moment method of solution of the func-
tional equation (B.67) is as follows: Choose a function f (N)(x) containing N pa-
rameters (say, a1, . . . , aN ) as f(x), and construct N moment equations (B.67) by
appropriate choice of N test functions. The moment equations are N equations
for N parameters a1, . . . , aN . Solving them, we can obtain an approximate solu-
tion f (N)(x). One has to examine the tendency of convergence by taking many
values of N for confirming that the solution obtained is a good approximation.
Wise choice of the form of f (N)(x) is essential to obtain a good approximate
solution effectively.

In the Boltzmann equation, the independent variables are the time t, the
space variable Xi, and the molecular velocity ξi. The above idea is applied
to the variable ξi in many cases. Choose a complete system of test functions
Ψ(n)(ξi) of ξi. Multiply the Boltzmann equation by Ψ(n) and integrate them
over the whole space of ξi. Then an infinite number of equations, where the
independent variables are t and Xi, are obtained. This set of infinite equations,
which does not contain the variable ξi, is equivalent to the original Boltzmann
equation. The moment method is a method to solve this system approximately.

Taking into account the character of the distribution function f, which is
inferred from physical consideration, we choose an approximate solution and
test functions: the approximate solution contains N unknown functions (say,
gm; m = 1, 2, ..., N) of t and Xi, and its functional form of ξi is explicit, and N
test functions are chosen from a complete system of functions Ψ(n) (let them be
the first N functions of the set for the simplicity of the following explanation).
In the above choice of the approximate solution, we also take the boundary
condition into account. Then, the first N equations of the infinite equations
mentioned above are reduced to N equations for the N unknown functions gm.
Solving gm, we obtain an approximate solution of the Boltzmann equation.

How accurately the approximate solution approximates the exact solution
of the original equation is not known beforehand. Moreover, there is no evi-
dence that N approximate equations reflect even the qualitative feature of the
original infinite number of equations. Thus the approximate solution may dif-
fer qualitatively from the correct solution. Therefore, careful examination of
the approximate solution is required. A set of functions that includes 1, ξi,
and ξ2

i is generally chosen as the test functions Ψ(n), because the collision term
of the Boltzmann equation vanishes on integration with respect to ξi and the
equations obtained are the conservation equations (continuity, momentum, and
energy equations), with the form of the stress tensor and heat-flow vector un-
specified, of the classical fluid dynamics. Unfortunately, in many attempts, only
small value of N is taken and the examination of convergence is not performed.

When one uses the moment method, one should know the qualitative feature
of the solution. Otherwise one may make a serious error, as we see in some
papers.
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B.2.2 Examples

The Mott-Smith analysis of a plane shock wave

Mott-Smith [1951] studied the structure of a plane shock wave by a moment
method. The plane shock wave is a time-independent one-dimensional flow
in an infinite expanse of a gas with uniform states at upstream and down-
stream infinities (Section 4.7). Let the density, flow velocity, pressure, and
temperature at upstream infinity (say, X1 → −∞) be, respectively, ρ−∞,
[v1−∞(> 0), 0, 0], p−∞, and T−∞ (p−∞ = Rρ−∞T−∞), and those at downstream
infinity (X1 → ∞) be ρ∞, [v1∞(> 0), 0, 0], p∞, and T∞ (p∞ = Rρ∞T∞). Choose
the approximate solution in the form

f =
a1(X1)ρ−∞

[2πRb1(X1)T−∞]3/2
exp

(
− (ξ1 − v1−∞)2 + ξ2

2 + ξ2
3

2Rb1(X1)T−∞

)
+

a2(X1)ρ∞
[2πRb2(X1)T∞]3/2

exp
(
− (ξ1 − v1∞)2 + ξ2

2 + ξ2
3

2Rb2(X1)T∞

)
, (B.68)

where a1(X1), a2(X1), b1(X1), and b2(X1) are unknown functions, and the four
test functions

Ψ(1) = 1, Ψ(2) = ξ1, Ψ(3) = ξ2
i , Ψ(4) = ξ2

1 . (B.69)

The moment equations of the Boltzmann equation with the first three test
functions are the conservation equations of mass, momentum, and energy, i.e.,
the time-independent one-dimensional version of Eqs. (1.12)–(1.14) with Fi = 0.
These equations can be integrated. Substituting Eq. (B.68) into the integrated
form of the conservation equations, we have

a1ρ−∞v1−∞ + a2ρ∞v1∞ = M, (B.70a)

a1ρ−∞v2
1−∞ + a1Rρ−∞b1T−∞ + a2ρ∞v2

1∞ + a2Rρ∞b2T∞ = P, (B.70b)

a1ρ−∞v1−∞

(
1
2
v2
1−∞ +

5
2
Rb1T−∞

)
+ a2ρ∞v1∞

(
1
2
v2
1∞ +

5
2
Rb2T∞

)
= E,

(B.70c)

where M, P, and E are integration constants, which are related to the conditions
at infinities as

M = ρ−∞v1−∞ = ρ∞v1∞, (B.71a)

P = ρ−∞v2
1−∞ + Rρ−∞T−∞ = ρ∞v2

1∞ + Rρ∞T∞, (B.71b)

E = ρ−∞v1−∞

(
1
2
v2
1−∞ +

5
2
RT−∞

)
= ρ∞v1∞

(
1
2
v2
1∞ +

5
2
RT∞

)
. (B.71c)

Thus, the downstream state is determined by the upstream state, and their re-
lations are called the shock conditions or Rankine–Hugoniot relation (Liepmann
& Roshko [1957]). From Eqs. (B.70a) and (B.71a),

a1(X1) + a2(X1) = 1.
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With this result in the conservation equations (B.70b) and (B.70c), the unknown
functions b1(X1) and b2(X1) are determined as

b1(X1) = b2(X1) = 1.

Now, the approximate solution (B.68) contains only one unknown function
a1(X1). The moment equation made by the test function Ψ(4) gives the equation
for a1(X1) in the form

MR(T∞ − T−∞)
da1(X1)

dX1
= a1(X1)[1− a1(X1)]

∫
all ξ

ξ2
1J(f−∞, f∞)dξ, (B.72)

where f−∞ and f∞ are, respectively, the velocity distribution functions of the
state at upstream and downstream infinities, that is,

f−∞ =
ρ−∞

(2πRT−∞)3/2
exp

(
− (ξ1 − v1−∞)2 + ξ2

2 + ξ2
3

2RT−∞

)
,

f∞ =
ρ∞

(2πRT∞)3/2
exp

(
− (ξ1 − v1∞)2 + ξ2

2 + ξ2
3

2RT∞

)
.

The boundary condition for a1(X1) is

a1(−∞) = 1. (B.73)

From Eqs. (B.72) and (B.73), the function a1(X1) is determined. Whether this
solution is a good approximate solution or not should be confirmed by increas-
ing the numbers of the parameter functions in the solution and test functions.
Naturally, the speed of convergence largely depends on the choice of the ap-
proximate solution and the test functions. Mott-Smith’s description is a little
different from the above one, but the content can be explained in the above way
according to the general scheme of the moment method.

The Grad thirteen-moment method

In the Grad thirteen-moment method (Grad [1949]), the function with thirteen
unknown functions ρ, vi, pij(= pji), and qi of t and Xi

f = fe

[
1 +

(ξi − vi)(ξj − vj)Pij

2pRT
+

2qi(ξi − vi)
5pRT

(
(ξj − vj)2

2RT
− 5

2

)]
, (B.74a)

fe =
ρ

(2πRT )3/2
exp

(
− (ξj − vj)2

2RT

)
, p =

1
3
pii, RT =

p

ρ
, Pij = pij − pδij ,

(B.74b)

where the parametric functions ρ, vi, pij , and qi are consistent with their def-
initions in Section 1.1, is chosen as the approximate solution, and the thirteen
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functions

Ψ(0) = 1, Ψ(1)
i =

ξi − vi

(2RT )1/2
, Ψ(2)

ij =
(ξi − vi)(ξj − vj)

2RT
− δij ,

Ψ(3)
i =

ξi − vi

(2RT )1/2

(
(ξj − vj)2

2RT
− 5

2

)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (B.75)

are chosen as the test functions, where some modifications of super and sub-
scripts are made. Putting Eq. (B.74a) into the Boltzmann equation and taking
the thirteen moments with the test functions (B.75), we obtain thirteen equa-
tions for ρ, vi, pij , and qi. The product terms of Pij and qi in the collision
integral being neglected in these equations, the Grad thirteen-moment equa-
tions (B.76a)–(B.76e) are derived:

∂ρ

∂t
+

∂ρvi

∂Xi
= 0, (B.76a)

∂vi

∂t
+ vj

∂vi

∂Xj
+

1
ρ

∂p

∂Xi
+

1
ρ

∂Pij

∂Xj
= 0, (B.76b)

∂p

∂t
+

∂pvk

∂Xk
+

2
3
(pδij + Pij)

∂vi

∂Xj
+

2
3

∂qj

∂Xj
= 0, (B.76c)

∂Pij

∂t
+

∂vkPij

∂Xk
+

2
5

(
∂qi

∂Xj
+

∂qj

∂Xi
− 2

3
∂qk

∂Xk
δij

)
+ Pik

∂vj

∂Xk
+ Pjk

∂vi

∂Xk
− 2

3
Pkl

∂vk

∂Xl
δij

+ p

(
∂vi

∂Xj
+

∂vj

∂Xi
− 2

3
∂vk

∂Xk
δij

)
+

6
m

B
(2)
1 ρPij = 0, (B.76d)

∂qi

∂t
+

∂vkqi

∂Xk
+

7
5
qj

∂vi

∂Xj
+

2
5
qj

∂vj

∂Xi
+

2
5
qi

∂vj

∂Xj

+ RT
∂Pij

∂Xj
+

7
2
Pij

∂RT

∂Xj
− Pij

ρ

∂pδjk + Pjk

∂Xk

+
5
2
p
∂RT

∂Xi
+

4
m

B
(2)
1 ρqi = 0, (B.76e)

where B
(2)
1 (the same notation as in Grad [1949]) is the function of RT deter-

mined by a molecular model, for example, for a hard-sphere gas,

B
(2)
1 (RT ) =

8
15

d2
m(πRT )1/2.

The approximate solution is an expansion in Hermite polynomials around
local Maxwellian. The extension to higher orders is direct. Apparently, from
this form of the solution, the thirteen-moment-type solution is difficult to de-
scribe the behavior of the Knudsen layer in a slightly rarefied gas flow and the
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behavior of a gas with a finite Knudsen number. In a gas with a finite Knudsen
number around a body or bodies, the velocity distribution function has disconti-
nuities (see Sections 3.1.6, 4.8, 6.1– 6.4). Very large number of terms is required
for the expansion as the thirteen-moment-type approximation to describe the
discontinuity well. Nowadays, more systematic asymptotic theory is developed
for small Knudsen numbers as shown in Chapter 3.

The Mott-Smith and Grad thirteen-moment works are pioneering and have
historical meanings, but obviously from the above explanation, their results are
temporal.

B.3 Modified Knudsen number expansion

In practical applications, we are often required a quick offer of the data of
macroscopic variables for many arbitrary specified Knudsen numbers. Here,
we introduce a method for this purpose and its application (Sone & Itakura
[1990]). In this method, the solution is obtained by a series expansion in a
function of the Knudsen number, and the coefficient functions of macroscopic
variables in the expansion are stored. These data are summed up when the
data are required. What should be noted is that the solution of the Boltzmann
equation is singular at the two ends of the Knudsen number, Kn = 0 and Kn = ∞.
Owing to the singularity at the origin, the range of convergence of the power
series expansion of the solution in Kn−Kn0 around some Knudsen number Kn0

cannot be wider than 0 < Kn< 2Kn0, and therefore, some other form of function
of Kn should be chosen.

We consider a time-independent boundary-value problem of the linearized
Boltzmann equation

ζi
∂φ

∂xi
=

1
k
L(φ) (B.77)

under the boundary condition

φ = b(ζ)+LB(φ) (ζini > 0). (B.78)

Here, choosing some positive constant k0, we introduce the new parameter
ε defined by

ε =
k − k0

k + k0
=

Kn − Kn0

Kn + Kn0
, Kn0 =

2√
π

k0, (B.79)

and try to obtain the solution φ of the boundary-value problem, i.e., Eqs. (B.77)
and (B.78), in a power series of ε, that is,

φ(x, ζ; k) =
∞∑

n=0

φn(x, ζ; k0)εn. (B.80)

The parameter ε given by Eq. (B.79) is chosen in such a way that the range
0 < k ≤ k0 corresponds to −1 < ε ≤ 0 and k0 ≤ k < ∞ to 0 ≤ ε < 1. Thus
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there is no singularity for |ε| < 1 and k in the range 0 < k < ∞ is in |ε| < 1.23

Substituting the series (B.80) into Eqs. (B.77) and (B.78), and arranging the
same-order terms in ε, we obtain the equation for φn as

ζi
∂φn

∂xi
=

1
k0

L(φn) − 2
k0

gn (n ≥ 0), (B.81)

where

g0 = 0, gn = L(φn−1) − gn−1 (n ≥ 1), (B.82)

and the boundary condition for φn as

φ0 = b(ζ)+LB(φ0), φn = LB(φn) (n ≥ 1) (ζini > 0). (B.83)

This is a boundary-value problem of inhomogeneous linearized Boltzmann equa-
tions at k = k0.

The boundary-value problem is solved successively from the lowest order
(n = 0), from which the coefficient functions of the expansion in ε of macroscopic
variables are computed. The data of the coefficient functions are stored, and
the program is prepared so as to sum up the coefficient functions providing the
macroscopic variables. Thus, we can obtain the macroscopic variables for an
arbitrary Knudsen number immediately only by inputting the Knudsen number.

The method is applied to the BKW equation for the analysis of the Poiseuille
flow and thermal transpiration between parallel plane walls and through a
circular pipe. A software for a personal computer giving the flow velocity
profile and mass-flow rate in a figure and in a table immediately after in-
putting desired Knudsen numbers is prepared by Sone, Handa & Itakura. The
software for a Windows PC can be downloaded from http://fd.kuaero.kyoto-
u.ac.jp/members/sone or http://www.users.kudpc.kyoto-u.ac.jp/˜a51424/Sone/
database-e.html. The data of the software are prepared by the series with 80
terms for two k0’s, k0 = 1 and k0 = 50, and are supplemented with the data
by the asymptotic theory for small k in Section 3.1 and the analytic works for
large k in Ferziger [1967], Sone & Yamamoto [1968], and Niimi [1971].

B.4 Chapman–Enskog expansion

The Chapman–Enskog expansion (Chapman [1916], Enskog [1917]) is very well
referred to when one mentions the relation of kinetic theory and fluid dynam-
ics, although its discussion is done on the basis of the Hilbert expansion in
the present book. The structure of the Chapman–Enskog expansion is briefly
and clearly explained in Grad [1958]. Here, we explain the Chapman–Enskog
expansion on the basis of Grad’s procedure.

23The solution is implicitly assumed to be analytic not only for 0 < k < ∞ but also for
complex k that satisfies |ε| < 1.
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Take the Boltzmann equation (1.47a) with (1.47b) in the absence of an
external force (F̂i = 0) in a nondimensional form, that is,

Sh
∂f̂

∂t̂
+ ζi

∂f̂

∂xi
=

1
k

Ĵ(f̂ , f̂), (B.84a)

Ĵ(f̂ , ĝ) =
1
2

∫
(f̂ ′ĝ′∗ + f̂ ′

∗ĝ
′ − f̂ ĝ∗ − f̂∗ĝ)B̂ dΩ(α)dζ∗. (B.84b)

We introduce the variables ρ̂r (r = 0, 1, 2, 3, 4) defined by

ρ̂r =
∫

ψrf̂dζ, (B.85a)

where
ψ0 = 1, ψi = ζi, ψ4 = ζ2

i (i = 1, 2, 3).

The variables ρ̂0, ρ̂i, and ρ̂4 are related to the macroscopic variables ρ̂, v̂i, and
T̂ [see Eqs. (1.54a)–(1.54c)] as

ρ̂0 = ρ̂, ρ̂i = ρ̂v̂i, ρ̂4 = ρ̂(3T̂ /2 + v̂2
i ), (B.86)

but are introduced here for the brevity of expressions in the following discussion.
We consider the solution of Eq. (B.84a) whose time scale of variation corre-

sponds to Sh= 1 and that is expressed in the form

f̂ = f̂(ρ̂r,∇ρ̂r, ζ, k), (B.87)

where ∇ρ̂r represents partial derivatives with respect to xi of arbitrary orders,
as well as of the first order. As a solution of the Boltzmann equation (B.84a),
f̂ is a function of xi, ζi, and t̂ containing the parameter k, i.e., f̂(xi, t̂, k), and
thus, ρ̂r is a function of xi and t̂ containing the parameter k, i.e., ρ̂r(xi, t̂, k).
However, for the class of f̂ in the form (B.87), the space and time variables
xi and t̂ enter f̂ only through ρ̂r and ∇ρ̂r. Then, from Eq. (B.84a), the time
variation of ρ̂r is given by the equation in the form

∂ρ̂r

∂t̂
+ �r(ρ̂s,∇ρ̂s, k) = 0. (B.88)

We further limit the solution to the class that can be expressed in the form

f̂ =
∞∑

n=0

knf̂ (n)(ρ̂s,∇ρ̂s, ζ). (B.89)

For this f̂ , Eq. (B.88) is reduced to

∂ρ̂r

∂t̂
+

∞∑
n=0

kn
�

(n)
r (ρ̂s,∇ρ̂s) = 0. (B.90)
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On the other hand, from Eq. (B.87)

∂f̂

∂t̂
=

4∑
r=0

∂f̂

∂ρ̂r

∂ρ̂r

∂t̂
+
∑
∗

∂f̂

∂∇ρ̂r

∂∇ρ̂r

∂t̂
, (B.91)

where ∗ indicates the summation for all possible ∇ρ̂r. Substituting Eqs. (B.89)
and (B.90) into Eq. (B.91), we have ∂f̂/∂t̂ for f̂ given by Eq. (B.89) in the form

∂f̂

∂t̂
= −

∞∑
n=0

kn
n∑

m=0

(
4∑

r=0

∂f̂ (n−m)

∂ρ̂r
�

(m)
r +

∑
∗

∂f̂ (n−m)

∂∇ρ̂r
∇�

(m)
r

)
. (B.92)

Now we try to construct the above-mentioned class of solution of the Boltz-
mann equation. Inserting Eqs. (B.89) and (B.92) into the Boltzmann equation
(B.84a) with (B.84b), and arranging the same-order terms in k, we obtain the
series of integral equations for f̂ (n) (n = 0, 1, 2, . . .), i.e.,

Ĵ(f̂ (0), f̂ (0)) = 0, (B.93a)

2Ĵ(f̂ (0), f̂ (n)) = −
n−1∑
m=0

(
4∑

r=0

∂f̂ (n−1−m)

∂ρ̂r
�

(m)
r +

∑
∗

∂f̂ (n−1−m)

∂∇ρ̂r
∇�

(m)
r

)

+ ζi
∂f̂ (n−1)

∂xi
−

n−1∑
m=1

Ĵ(f̂ (n−m), f̂ (m)) (n ≥ 1), (B.93b)

in the second of which the last term is absent when n = 1.

The solution of Eq. (B.93a) is Maxwellian (see Section A.7.1), i.e.,

ln f̂ (0) = Υ(0)
0 + Υ(0)

i ζi + Υ(0)
4 ζ2

i ,

where Υ(0)
0 , Υ(0)

i , and Υ(0)
4 are undetermined functions of xi and t̂. The linear

integral equation (B.93b) for f̂ (n) has a solution only when the condition

∫
ψr

[
n−1∑
m=0

(
4∑

s=0

∂f̂ (n−1−m)

∂ρ̂s
�

(m)
s +

∑
∗

∂f̂ (n−1−m)

∂∇ρ̂s
∇�

(m)
s

)
− ζi

∂f̂ (n−1)

∂xi

]
dζ

= 0 (n ≥ 1) (B.94)

is satisfied, because, as shown in Section A.2.2,∫
ψrĴ(f̂ , ĝ)dζ = 0,

for arbitrary f̂ and ĝ. The corresponding homogeneous equation to Eq. (B.93b),
i.e., 2Ĵ(f̂ (0), f̂ (n)) = 0, has five independent nontrivial solutions f̂ (0)ψr. Thus,
the solution has a freedom in adding an arbitrary linear combination of these
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solutions. With this freedom, we look for the solution that satisfies the following
conditions:24 ∫

ψrf̂
(0)dζ = ρ̂r,

∫
ψrf̂

(n)dζ = 0 (n ≥ 1). (B.95)

With this choice, f̂ (0) is expressed as

f̂ (0) =
ρ̂

(πT̂ )3/2
exp

(
− (ζi − v̂i)2

T̂

)
. (B.96)

The solvability condition (B.94) can be simplified owing to the relation (B.95).
From Eqs. (B.95) and (B.96), we have∫

ψr
∂f̂ (0)

∂ρ̂s
dζ =

∂ρ̂r

∂ρ̂s
= δrs,

∫
ψr

∂f̂ (n)

∂ρ̂s
dζ = 0 (n ≥ 1),∫

ψr
∂f̂ (n)

∂∇ρ̂s
dζ = 0.

With the aid of these relations, Eq. (B.94) is reduced to

�
(n−1)
r − ∂

∂xj

∫
ψrζj f̂

(n−1)dζ = 0 (n ≥ 1). (B.97)

When n = 1, from Eqs. (B.97) and (B.96),

�
(0)
0 =

∂ρ̂v̂i

∂xi
, �

(0)
i =

1
2

∂p̂

∂xi
+

∂ρ̂v̂iv̂j

∂xj
, �

(0)
4 =

∂

∂xi

[
ρ̂v̂i

(
5
2
T̂ + v̂2

j

)]
,

(B.98)
where i, j = 1, 2, 3 (note p̂ = ρ̂T̂ ). The equation (B.93b) for f̂ (1) is reduced to

2Ĵ(f̂ (0), f̂ (1)) = −
4∑

r=0

∂f̂ (0)

∂ρ̂r
�

(0)
r + ζi

∂f̂ (0)

∂xi

=
(ζi − v̂i)(ζj − v̂j)

T̂

(
∂v̂i

∂xj
+

∂v̂j

∂xi
− 2

3
∂v̂k

∂xk
δij

)
f̂ (0)

+
(

(ζj − v̂j)2

T̂
− 5

2

)
ζi − v̂i

T̂

∂T̂

∂xi
f̂ (0). (B.99)

Introducing the new variable Ci = (ζi− v̂i)/T̂ 1/2 and expressing f̂ (1) in the form
f̂ (1) = f̂ (0)Ψ(C), we obtain the equation for Ψ(C) in the form

LT̂ (Ψ) =
1

ρ̂T̂ 1/2

(
CiCj −

1
3
C2δij

)(
∂v̂i

∂xj
+

∂v̂j

∂xi

)
+

1
ρ̂T̂

Ci

(
C2 − 5

2

)
∂T̂

∂xi
,

(B.100)

24The condition (B.95) does not mean that Υ
(0)
r is independent of k when it is considered

as a function of xi and t̂. Owing to the application of the condition (B.95), the component

function f̂ (n) of the expansion (B.89) is not independent of k if it is considered as a function of
xi and t̂. In the Hilbert expansion, including its variation in the present book, the component
functions of the expansion are independent of k.
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where LT̂ is the linearized collision operator defined by Eq. (A.111) in Section
A.2.8 and C = |C|. The solution of this integral equation satisfying the second
relation in Eq. (B.95) is expressed using the functions A(C,T̂ ) and B(0)(C,T̂ )
defined, respectively, by Eqs. (A.123) and (A.124) with (A.128a) in Section A.2.9
in the following form:

Ψ = − 1
2ρ̂T̂ 1/2

(
CiCj −

1
3
C2δij

)
B(0)(C,T̂ )

(
∂v̂i

∂xj
+

∂v̂j

∂xi

)
− 1

ρ̂T̂
CiA(C,T̂ )

∂T̂

∂xi
.

(B.101)
With this Ψ, �

(1)
r is expressed as

�
(1)
r =

∂

∂xj

(
ρ̂

∫
(T̂ 1/2Cj + v̂j)ψrΨE(C)dC

)
,

where ψr is expressed as 1, T̂ 1/2Ci + v̂i, or (T̂ 1/2Ci + v̂i)2 in terms of Ci and
E(C) = π−3/2 exp(−C2). After some manipulation, noting that[∫

CiCj

(
CkCl −

1
3
C2δkl

)
B(0)(C,T̂ )E(C)dC

](
∂v̂k

∂xl
+

∂v̂l

∂xk

)
=
(

8π

15

∫ ∞

0

C6B(0)(C,T̂ )E(C)dC
)(

∂v̂i

∂xj
+

∂v̂j

∂xi
− 2

3
∂v̂k

∂xk
δij

)
,

and (∫
CiCjC2A(C,T̂ )E(C)dC

)
∂T̂

∂xj
=
(

4π

3

∫ ∞

0

C6A(C,T̂ )E(C)dC
)

∂T̂

∂xi
,

we have

�
(1)
0 = 0, (B.102a)

�
(1)
i = −1

2
∂

∂xj

[
Γ1(T̂ )

(
∂v̂i

∂xj
+

∂v̂j

∂xi
− 2

3
∂v̂k

∂xk
δij

)]
, (B.102b)

�
(1)
4 = −5

4
∂

∂xj

(
Γ2(T̂ )

∂T̂

∂xj

)

− ∂

∂xj

[
Γ1(T̂ )

(
∂v̂i

∂xj
+

∂v̂j

∂xi
− 2

3
∂v̂k

∂xk
δij

)
v̂i

]
, (B.102c)

where i, j = 1, 2, 3 and

Γ1(T̂ )T̂−1/2 =
8π

15

∫ ∞

0

C6B(0)(C,T̂ )E(C)dC,

Γ2(T̂ )T̂−1/2 =
16π

15

∫ ∞

0

C6A(C,T̂ )E(C)dC,

as defined by Eq. (A.131) in Section A.2.9.
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Noting the relations

∂ρ̂0

∂t̂
=

∂ρ̂

∂t̂
,

∂ρ̂i

∂t̂
=

∂ρ̂v̂i

∂t̂
,

∂ρ̂4

∂t̂
=

∂

∂t̂

[
ρ̂

(
3
2
T̂ + v̂2

i

)]
,

[see Eq. (B.86)] and the results (B.98) and (B.102a)–(B.102c), we find that
Eq. (B.90) is reduced to the Euler set of equations when only the terms with
n = 0 are retained and to the Navier–Stokes set when the terms with n = 0 and
1 are retained. That is,

∂ρ̂

∂t̂
+

∂ρ̂v̂i

∂xi
= 0, (B.103a)

∂ρ̂v̂i

∂t̂
+

∂ρ̂v̂iv̂j

∂xj
= −1

2
∂p̂

∂xi
, (B.103b)

∂

∂t̂

[
ρ̂

(
3
2
T̂ + v̂2

i

)]
+

∂

∂xi

[
ρ̂v̂i

(
5
2
T̂ + v̂2

j

)]
= 0, (B.103c)

and
∂ρ̂

∂t̂
+

∂ρ̂v̂i

∂xi
= 0, (B.104a)

∂ρ̂v̂i

∂t̂
+

∂ρ̂v̂iv̂j

∂xj
= −1

2
∂p̂

∂xi

+
k

2
∂

∂xj

[
Γ1(T̂ )

(
∂v̂i

∂xj
+

∂v̂j

∂xi
− 2

3
∂v̂k

∂xk
δij

)]
, (B.104b)

∂
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[
ρ̂

(
3
2
T̂ + v̂2

i

)]
+

∂

∂xi

[
ρ̂v̂i

(
5
2
T̂ + v̂2

j

)]
=

5k

4
∂

∂xj

(
Γ2(T̂ )

∂T̂

∂xj

)

+ k
∂

∂xj

[
Γ1(T̂ )

(
∂v̂i

∂xj
+

∂v̂j

∂xi
− 2

3
∂v̂k

∂xk
δij

)
v̂i

]
.

(B.104c)

Incidentally, the equations derived at the next stage are called the Burnett
equations. Obviously from the derivation, the order of the differential system
increases by one if we advance the analysis to the next stage. An ill-posed set
of equations is derived in the expansion (Sone [1968, 1984b]).25

Finally, it may be noted that it is inappropriate or incorrect to discuss the
asymptotic behavior of the gas for small Knudsen numbers with the series of
equations derived by the Chapman–Enskog expansion by simply relating the
order at which a set of equations appears to the order that the set describes the
asymptotic behavior, as we have seen in Chapter 3.

B.5 Hypersonic approximation

In order to study an expanding flow into a vacuum, Hamel & Willis [1966] and
Edwards & Cheng [1966] introduced a method called hypersonic approximation.

25See Footnote 52 in Section 3.2.6.
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In a hypersonic region, where Mach number is very large (Ma � 1), the width
of the velocity distribution function is much smaller than the flow speed. Thus,
some simplification can be possible. Here, we will explain the method for a
spherically expanding flow with a hypersonic speed in a slightly different way
from the original works.

As we have seen in various examples in an infinite domain (e.g., Sections
6.2.3 and 6.4.2), we consider the case where the length scale of variation is of
the order of the distance r̂ from the center of expansion, i.e.,

∂(∗)
∂r̂

= O
(∗

r̂

)
. (B.105)

In a hypersonic state [vr/(2RT )1/2 � 1 or v̂r/T̂ 1/2 � 1], the velocity distribu-
tion function f̂ is appreciable only in the region where |ζr− v̂r| = O(T̂ 1/2) � v̂r,
|ζθ| = O(T̂ 1/2) � v̂r, and |ζϕ| = O(T̂ 1/2) � v̂r. Thus, p̂rr, p̂θθ, p̂ϕϕ = O(ρ̂T̂ ) �
ρ̂v̂2

r and |q̂r| = O(ρ̂T̂ 3/2) � ρ̂T̂ v̂r. The above two kinds of conditions, the slowly
varying and the size of the variables, are the basic assumptions of the hypersonic
approximation.

Under these two conditions, consider the Boltzmann equation in a time-
independent state in the spherical coordinate system [Eq. (A.162) in Section
A.3]

Dspsf̂ =
1
k

Ĵ(f̂ , f̂), (B.106)

with

Dsps = ζr
∂

∂r̂
+

ζ2
θ + ζ2

ϕ

r̂

∂

∂ζr
− ζrζθ

r̂

∂

∂ζθ
− ζrζϕ

r̂

∂

∂ζϕ
, (B.107)

where the spherical symmetry is assumed and the external force is absent.26

Here, we have the conservation equation

∫ ⎡⎣ 1
ζr

ζ2

⎤⎦Dspsf̂dζ =
1
k

∫ ⎡⎣ 1
ζr

ζ2

⎤⎦ Ĵ(f̂ , f̂)dζ = 0. (B.108)

These equations are expressed as

dρ̂v̂r r̂
2

dr̂
= 0, (B.109a)

d
dr̂

[(
ρ̂v̂2

r +
1
2
p̂rr

)
r̂2

]
=

1
2
(p̂θθ + p̂ϕϕ)r̂, (B.109b)

3
2
ρ̂v̂r

dT̂

dr̂
+ p̂rr

dv̂r

dr̂
+

1
r̂2

dq̂r r̂
2

dr̂
= − (p̂θθ + p̂ϕϕ)v̂r

r̂
. (B.109c)

The third equation is obtained with the combination of the three relations in
Eq. (B.108). These relations are rigorous.

26As explained in Footnote 19 in Section 6.4.1, f̂ is a function of r̂, ζr, and ζ2
θ + ζ2

ϕ. Thus,
the terms containing cot θ in Eq. (A.165) cancel out each other.
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Here, we introduce the hypersonic approximation, where ρ̂v̂2
r � p̂rr, ρ̂v̂2

r �
p̂θθ, ρ̂v̂2

r � p̂ϕϕ, ρ̂T̂ v̂r � |q̂r|, and d(∗)/dr̂ ∼ (∗/r̂). Leaving the leading-order
terms in Eq. (B.109b) and applying Eq. (B.109a) to the result, we have

dv̂r

dr̂
= 0, i.e., v̂r = c1, (B.110)

where c1 is a constant, and with this relation in Eq. (B.109a),

ρ̂ = c0r̂
−2, (B.111)

where c0 is a constant. Equation (B.109c) is simplified as

3
2
ρ̂v̂r

dT̂

dr̂
+ p̂rr

dv̂r

dr̂
= − (p̂θθ + p̂ϕϕ)v̂r

r̂
, (B.112)

because |q̂r| � ρ̂T̂ v̂r, and further, with the aid of Eqs. (B.110) and (B.111),

3c0

2r̂

dT̂

dr̂
= −(p̂θθ + p̂ϕϕ). (B.113)

The equation contains p̂θθ + p̂ϕϕ, which will be written as 2p̂⊥ for short, in
addition to T̂ .

Here, we will try to derive the equation for p̂⊥ under the hypersonic approx-
imation on the basis of the BKW equation

Dspsf̂ =
ρ̂

k
(f̂e − f̂), (B.114)

where

f̂e =
ρ̂

(πT̂ )3/2
exp

(
−

(ζr − v̂r)2 + ζ2
θ + ζ2

ϕ

T̂

)
.

In a hypersonic region, the dominant terms in Dspsf̂ are, obviously,

Dspsf̂ = ζr
∂f̂

∂r̂
− ζrζθ

r̂

∂f̂

∂ζθ
− ζrζϕ

r̂

∂f̂

∂ζϕ

= v̂r

(
∂f̂

∂r̂
− ζθ

r̂

∂f̂

∂ζθ
− ζϕ

r̂

∂f̂

∂ζϕ

)
, (B.115)

because f̂ is appreciable only for |ζr − v̂r|/v̂r � 1. Then, the BKW equation
(B.114) is simplified as

∂f̂

∂r̂
− ζθ

r̂

∂f̂

∂ζθ
− ζϕ

r̂

∂f̂

∂ζϕ
=

ρ̂

kv̂r
(f̂e − f̂). (B.116)

Multiplying Eq. (B.116) by ζ2
θ + ζ2

ϕ and integrating it over the whole space of ζ,
we obtain

dp̂⊥
dr̂

+
4
r̂
p̂⊥ =

ρ̂

kv̂r
(ρ̂T̂ − p̂⊥), (B.117)
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or
dp̂⊥
dr̂

+
4
r̂
p̂⊥ =

c0

kc1r̂2

( c0

r̂2
T̂ − p̂⊥

)
. (B.118)

This is the equation for p̂⊥, where only T̂ is contained.27 This simplification
comes from the process that ζr in the operator Dsps is replaced by v̂r by the
hypersonic approximation. Eliminating p̂⊥ from Eqs. (B.113) and (B.118), we
obtain the equation for T̂ as

d2T̂

dr̂2
+
(

3
r̂

+
c0

c1kr̂2

)
dT̂

dr̂
+

4c0

3c1kr̂3
T̂ = 0. (B.119)

The solution of this equation is expressed by the confluent hypergeometric func-
tion as

T̂ =
1
r̂2

[
c2U

(
2
3
, 3,

c0

c1kr̂

)
+ c3M

(
2
3
, 3,

c0

c1kr̂

)]
, (B.120)

where U(a, b, c) and M(a, b, c) are the Kummer’s functions (Abramowitz &
Stegun [1972]) and c2 and c3 are constants.

Obviously, the hypersonic approximation is applicable irrespective of the
value of k. This solution is used in Section 6.4.2 to express the far field in an
evaporating flow from a sphere into vacuum, where the solution is joined to the
isentropic flow for small k.

27The left-hand side is of the same form independently of the molecular model, but the
right-hand side or the collision term takes such a simple form for the BKW equation.
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Some Data

C.1 Some integrals

Here, some integrals that are often encountered in the analysis of the Boltzmann
equation are listed. In the following formulas, n is a non-negative integer, and
β is a positive constant. The first three are one-dimensional integrals:∫ ∞

0

exp(−βζ2)dζ =
1
2

√
π

β
, (C.1a)∫ ∞

0

ζ2n exp(−βζ2)dζ =
(2n − 1)(2n − 3) · · · 1

2n+1βn

√
π

β
, (C.1b)∫ ∞

0

ζ2n+1 exp(−βζ2)dζ =
n!

2βn+1
(0! = 1). (C.1c)

The following are three-dimensional integrals:

∫
all ζ

ζ2n exp(−βζ2)dζ =
(2n + 1)(2n − 1) · · · 1

2nβn

(
π

β

)3/2

, (C.2a)

∫
all ζ

ζ2n+1 exp(−βζ2)dζ =
2(n + 1)!

βn+2
π, (C.2b)

where

ζ = (ζ2
i )1/2.

The generalization of Eq. (C.2a) is discussed in Sone [2002]. That is,

∫
all ζ

ζi1 · · · ζi2S exp(−ζ2)dζ =
π3/2

2S

NS∑
k=1

∏
all the pairs (it,iu) in Ck(S)

δitiu , (C.3)
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where some explanation of notation is required. Consider a sequence (i1, . . . , i2S)
of 2S indices. Let us compose a set of S pairs of indices [say Ck(S)], for example,

C1(S) : {(i1, i2), (i3, i4), . . . , (i2S−3, i2S−2), (i2S−1, i2S)︸ ︷︷ ︸
S

},

where no distinction is made between the pairs (i, j) and (j, i), and the order of
the pairs in the brackets {. . .} is indifferent. Let IP be the ensemble consisting
of Ck(S), and NS be the number of the elements of the ensemble IP. That is,

IP = {Ck(S) (k = 1, 2, . . . , NS)}. (C.4)

Then, NS is given by

NS =

(
2S
2

)(
2S−2

2

)
· · ·

(
4
2

)(
2
2

)
S!

=
(2S)!
2SS!

. (C.5)

The formula (C.3) indicates first to compute the product∏
all the pairs (it,iu) in Ck(S)

δitiu

for a Ck(S) and then to sum up the results for all Ck(S) in IP.

C.2 Some numerical data

Some numerical data are listed here to help to grasp the physical image. The
data in this section, which are not aimed to be very accurate, are based on NIST
Chemistry Webbook, http://www.nist.gov. or Mohr & Taylor [2005] unless
otherwise stated.

The Boltzmann constant kB , the Avogadro constant NAv defined by the
number of molecules per mol, and the gas constant Rmol (= NAvkB) per mol
are

kB = 1.3806505 × 10−23 J/K,

NAv = 6.0221415 × 1023 mol−1,

Rmol = 8.314472 J/mol K.

The specific gas constant R is the ratio of Rmol to the molar mass (say, mmol)
of a gas, i.e., R = Rmol/mmol. Incidentally the molar mass mmol is given by
(the molecular weight)× 10−3 kg/mol. Some examples of molecular weight and
specific gas constant are given in Table C.1.

At the standard state, the state of gas at 0 ◦C (273.15 K) and 1 atm (101 325
Pa), the number density n of molecules is

n = 2.6867773 × 1025 m−3.
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Table C.1. The molecular weight, the specific gas constant R, and some properties
of gases at the standard state [0 ◦C (273.15 K) and 1 atm (101 325 Pa)]. The ρ is the
density, μ is the viscosity, λ is the thermal conductivity, c is the speed of sound, � is
the mean free path, and dm is the diameter of a molecule. The units are shown in the
parentheses, where Pa (pascal) = kg/m s2 and W (watt) = kg m2/s3.

He Ne Ar N2 O2 Air
molecular weight 4.003 20.18 39.95 28.02 32.00 28.96
R (102 m2/s2 K) 20.77 4.120 2.081 2.967 2.598 2.871
ρ (kg/m3) 0.1785 0.8999 1.784 1.250 1.429 1.293
μ (10−5Pa s) 1.870 2.939 2.096 1.664 1.906 1.71
λ (10−2W/mK) 14.62 4.541 1.637 2.403 2.449 2.41
c (m/s) 973 433 308 337 315 331
 (μm) 0.175 0.122 0.062 0.059 0.063 0.059
dm (nm) 0.219 0.262 0.368 0.378 0.365 0.375

Table C.2. Saturated gas pressure p (torr) vs temperature T (◦C) (Margrave [1967],
Honing & Kramer [1969]). The superscript ∗ indicates that the correponding con-
densed phase is liquid. Note : 1 torr = 133.322 Pa.

As Hg∗ Mg S N∗
2

T p T 102p T 104p T 106p T p

277 0.01 7 0.01 246 0.01 −10 0.01 −209.7 100
372 1 46 1 327 1 17 1 −195.8 760
518 100 125 100 439 100 55 100 −169.8 7600

The volume Vmol of a perfect gas per mol at the standard state is

Vmol = 2.2413996 × 10−2 m3 · mol−1.

The density ρ, the viscosity μ, the thermal conductivity λ, the speed of
sound c, the mean free path , and the diameter dm of a molecule for several
gases at standard state are tabulated in Table C.1. The mean free path  and
the diameter dm of a molecule are rough estimated data by the formulas (1.22)
and (3.70) on the basis of the data of viscosity using γ1 for a hard-sphere gas to
grasp the order of the quantities. It may be noted that the viscosity, the thermal
conductivity, and the speed of sound are almost independent of the pressure of
gas.

Examples of the saturated gas pressure vs the temperature of gas are tabu-
lated in Table C.2.
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to the page where the symbol is defined, the number in the square brackets refers
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the equation by which it is defined or where it appears and is defined in the
following (or preceding) sentences, and the number that follows F refers to the
number of the footnote with the number of its chapter before a hyphen.
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Ĵa(∗, ∗) (A.114b)
ĴG (1.51a)
ĴL (1.50)
J (∗, ∗) (1.75c)
Ja(∗, ∗) (A.114a)

K
KB (1.26)
KI (1.30)
K̂B (1.65)
K̂B0 (1.107)
K̂I (1.70a)
K̂I0 (1.112)
Kn (1.48b)
k (1.48b)
kB 2

L
L 13
L(∗) (1.75b)
La(∗) (A.111)

LG(∗) (A.139a)
LL2(∗) (A.139b)
 (1.20)
li, l (2.38)
li (3.44)
l̄i, l̄; l̄i∗, l̄∗ (A.181);

(2.22)

M
Ma (3.72)
m 2
mf (1.3a)
mi (3.44)

N
ni (1.3c)

O
O(∗) 646
o(∗) 646

P
P (1.74)
Pij (1.74)
Pw (1.74)
Pr (3.73)
p (1.2d)
p0 (1.42)
pi (1.3b)
pij (1.2f)
prr, prθ, etc. F4-23
pw 10
p̂ (1.43)
p̂ij (1.43)
p̂w (1.43)

Q
Qi (1.74)
qi (1.2g)
qr, qθ, qϕ F4-23
q̂i (1.43)

R
R (1.2c)
Re (3.72)
r in (r, θ, z) (A.152)
r in (r, θ, ϕ) (A.154)
r̂ in (r̂, θ, ẑ) (A.156)

r̂ in (r̂, θ, ϕ) (A.161)

S
SijGm (3.23)
Sh (1.48a)

T
T (1.2c)
T0 (1.42)
Tw (1.23b)
T̂ (1.43)
T̂w (1.43)
t (1.1)
t̂ (1.43)
ti 84

U
ui (1.74)
uwi (1.74)

V
vi (1.2a)
vr, vθ, vϕ F4-23
vwi (1.3c)
v̂i (1.43)
v̂wi (1.43)

X
Xi,X 1
x in (x, y, z) (9.4a)
xi, x (1.43)

Y
y in (x, y, z) (9.4a)
y in (y, χ1, χ2) (3.175)

Z
Z (B.40)
Z in (r, θ, Z) (9.73a)
ZJK 585
Zjk (B.39)
z in (r, θ, z) (A.152)
z in (x, y, z) (9.4a)
ẑ in (r̂, θ, ẑ) (A.156)
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Greek symbols
α

α (1.23a), (1.28a)
αc (1.28a)
αi, α (1.7)

γ
Γ1, Γ1(∗), etc. (A.131)
Γ̄7, Γ̄7(∗) (A.131)
γ (3.72)
γ (other use)
γ1, γ2 , γ3, γ6 (3.24)
γ4, γ5 (3.98)

δ
Δ 572
Δτw, etc. (various uses)1

δ (various uses)2

δ(∗) 9
δij (1.16)

ε
ε (various uses)3

εijk F3-30

ζ
ζ (1.44)
ζi, ζ (1.43)
ζi∗, ζ∗ (1.48f)
ζ ′i, ζ′ (1.48f)
ζ ′i∗, ζ′

∗ (1.48f)
|ζi| (1.44)
|ζ| (1.44)
(ζr, ζθ, ζz) [A.3]
(ζr, ζθ, ζϕ) [A.3]
ζρ (A.203)
ζρ in (ζρ, θζ) (6.10)

η
η in (η, χ1, χ2) (3.31)

θ
θ in (r, θ, z) (A.152)

θ in (r, θ, ϕ) (A.154)
θ in (r̂, θ, ẑ) (A.156)
θ in (r̂, θ, ϕ) (A.161)
θζ in (ζ, θζ , ψ) F4-22
θζ in (ζρ, θζ) (6.10)

κ
κ1, κ2 (3.44)
κij (3.44)
κ̄ (3.44)

λ
λ (1.16)

μ
μ (1.16)

ν
νc (1.18)
νL (A.139c)
ν̄c (1.19)
ν̂c (1.51b)

ξ
ξ 7
ξi, ξ 1
ξi∗, ξ∗ (1.7)
ξ′i, ξ′ (1.7)
ξ′i∗, ξ′

∗ (1.7)
ξ̄ 7
|ξi| 7
(ξr, ξθ, ξz) [A.3]
(ξr, ξθ, ξϕ) [A.3]

ρ
ρ (1.2a)
ρ0 (1.42)
ρw (1.28a)
ρ̂ (1.43)
ρ̂w (1.43)

σ
σw (1.23b)
σ̂w (1.62b)

σ̌w (1.92b)

τ
τ (1.74)
τc 7
τw (1.74)
τ̄c 7

φ
φ (1.74)
φe (1.85)
ϕ in (r, θ, ϕ) (A.154)
ϕ in (r̂, θ, ϕ) (A.161)
ϕ (other use)4

χ
χ1, χ2 (3.31)

ψ
ψ in (ζ, θζ , ψ) F4-22
ψ (other use)5

ω
Ω as dΩ(∗) (1.6), (2.23)
ω (1.74)
ωw (1.74)

Subscripts
C (4.3)
C (6.64)
G (3.3)
G (6.64)
H (4.3)
H (3.213), (8.68e)
h (3.168)
K (3.29), (3.59), (3.137),
(3.184), (3.213), (9.25)6

S (3.77)
S (9.12)
SB (3.138)
V (3.176)

1The Δ is used in combination with other symbols, e.g., u, τ, Pw.
2It is often used to express a small parameter.
3It is often used to express a small parameter.
4It is often used to indicate a function of ξ or ζ.
5It is often used to indicate a function of ζ.
6The subscript indicates the Knudsen-layer correction.
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Other symbols and notes

• a/bc : a/bc = a/(bc).

• aibi : Summation convention in Cartesian-tensor notation, i.e., aibi =
a1b1 + a2b2 + a3b3. Note that a2

i = aiai and that ∂2/∂x2
i = ∂2/∂x2

1 +
∂2/∂x2

2+∂2/∂x2
3, where ∂2/∂x2

i is a conventional symbol for (∂/∂xi)(∂/∂xi).

• a2 : a2 = aiai.

• | | : the absolute value of its argument. When the argument is a vector,
say, ai, |ai| = (a2

i )
1/2.

•
(

N

r

)
: the binomial function, i.e.,

(
N

r

)
=

N !
r!(N − r)!

for 0 ≤ r ≤ N (N

≥ r : integers).

• O(∗) : a quantity of the order of ∗ (or smaller). The condition in the
parentheses is sometimes excluded.

• o(∗) : a quantity much smaller than the order of ∗.

• The prime ′ or the subscript asterisk ∗ on a function of ξ, e.g., f ′, f∗, f ′
∗ :

The rule in Eq. (1.7) applies to any function.

• The prime ′ or the subscript asterisk ∗ on a function of ζ, e.g., f̂ ′, f̂∗, f̂ ′
∗ :

The rule in Eq. (1.48f) applies to any function.

•
∫

(∗)dξ or
∫

(∗)dζ , an integral with respect to ξ or ζ without the range
of integration indicated: The range is the whole space of ξ or ζ.

• The argument or arguments of a function are not always shown when no
fear of confusion or misunderstanding is expected. This rule is applied to
a special argument or arguments. For example, E and f or f(ξ) instead
of E(ζ) and f(X, ξ, t).

Other information

The software mentioned in the text and other information, e.g., misprints,
are found at

http://fd.kuaero.kyoto-u.ac.jp/members/sone
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Abramowitz function, 535
absolute Maxwell distribution, 551
accommodation coefficient, 8, 10

ghost effect of infinitesimal —,
85

acoustic equation, 152, 153
aerosol

thermophoresis of an — parti-
cle, 248

almost everywhere, 4
asymptotic theory

— for small Knudsen numbers,
73

Avogadro constant, 618
axially symmetric tensor field, 509

BBGKY hierarchy, 491
Bénard problem, 379, 389
BGK equation, see BKW equation
bifurcated

— flow field under infinitesimal
curvature, 471

— temperature field under in-
finitesimal velocity, 396, 410

bifurcation
— in the Bénard problem

(a finite Knudsen number),
379

(the continuum limit), 391,
396

— in the Taylor–Couette prob-
lem

(the continuum limit), 406,
410

— in the half-space problem of
evaporation and condensa-
tion, 355

— of flows between rotating cylin-
ders with evaporation and
condensation, 417

(axially symmetric and nonuni-
form case), 430, 438

(axially symmetric and uni-
form case), 418

— of the plane Couette flow,
466

binary collision, 494
BKW equation, 12

integral form of the linearized
—, 532

linearized —, 24
nondimensional —, 17
nondimensional — in perturbed

variables, 22
reduced —, 544

Boltzmann constant, 2, 618
Boltzmann equation, 3

— in the cylindrical coordinate
system, 528

— in the perturbed velocity dis-
tribution function, 20

— in the spherical coordinate
system, 528

derivation of the —, 481
exponential (multiplier) form of

the —, 531
integral-equation expression of

the —, 531
integrated form of the —, 531
linearized —, 23
nondimensional —, 14
the moment equation of the —,

579
the weak form of the —, 579
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Boltzmann hierarchy, 491
Boltzmann–Krook–Welander equa-

tion, see BKW equation
boundary condition

— for fluid-dynamic-type equa-
tions, see slip boundary con-
dition

— for fluid-dynamic-type equa-
tions with an infinitesimal
curvature term, 457, 463

complete-condensation —, see
complete-condensation con-
dition

diffuse-reflection —, see diffuse-
reflection condition

kinetic —, 8
kinetic — in a scattering kernel

(on a simple boundary), 8
(on an interface), 10

kinetic — in a scattering kernel
for linear problems, 553

(on a simple boundary), 25
(on an interface), 26

Maxwell-type —, see Maxwell-
type condition

mixed-type — (on an interface),
see mixed-type condition (on
an interface)

nondimensional kinetic — in a
scattering kernel

(on a simple boundary), 17
(on an interface), 18

specular-reflection —, see spec-
ular-reflection condition

boundary layer, see Knudsen layer,
S layer, suction boundary
layer, viscous boundary layer

Boussinesq approximation
inappropriate use of the — in

the Taylor–Couette prob-
lem, 417

bulk viscosity, 6
Burnett equation, 612

Cartesian tensor notation, 1
summation convention in —, 1

Chapman–Enskog expansion, 607
ill-posed equation in —, 111,

612
classical fluid dynamics

discrepancy (or incompleteness)
of — in describing the be-
havior of a gas in the con-
tinuum limit, 112, 122, 416,
see Navier–Stokes system,
ghost effect, non-Navier–
Stokes effect

Clausing’s equation, 41
collision

effect of intermolecular — on a
free molecular flow, 63

collision frequency, 7
— for the BKW equation, 13
mean —, see mean collision

frequency
collision integral, 4, 494

— for the pseudo inverse-power
potential, 507

— with a cutoff potential, 508
gain term of the —, 4, 505
isotropic property of —, 511
linearized —, 20, 498, 517

integral equation defined by
the —–, 518, 520

kernel representation of the
—–, 523

parity of the —–, 514
loss term of the —, 4, 505
parity of the —, 517

collision term, 4
complete system

— of functions, 601
complete-condensation condition, 10

extension of the result for the
— to that for a general-
ized kinetic boundary con-
dition, 344

linearized —, 25
nondimensional —, 18

condensation
— onto a plane condensed phase,

294, 362
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—— under a generalized ki-
netic boundary condition,
347

condensation coefficient, 10
effect of the —, see generalized

kinetic boundary condition
conservation equation

— of energy, 6
— of mass, 6
— of momentum, 6

conservation equations, 6
— in perturbed variables, 21
linearized —, 24
nondimensional —, 16

contact discontinuity, 166
contact layer, 166, 283, 289
continuum limit

comment on the —, 148
world of the —, 120

convex function
strictly —, 558

Couette flow
— in a quasi-unidirectional flow,

196
bifurcation of the plane —, 466
cylindrical —, 421
ghost effect in the cylindrical

— with evaporation and con-
densation, 420, 427, 430

plane — problem, 170
plane — problem for a free molec-

ular gas, 38
curvature

— of a boundary and the dis-
continuity of the velocity
distribution function, see dis-
continuity of the velocity
distribution function

— of a boundary in the Knudsen-
layer correction, 84, 88–90,
106, 107

— of a boundary in the slip con-
dition, 84, 89, 106

— tensor of a boundary, 84
bifurcation of the plane Cou-

ette flow owing to infinites-

imal —, 466
ghost effect of infinitesimal —,

460, 466
mean — of a boundary, 89
principal — of a boundary, 84

cutoff potential
angular —, 508
collision integral with a —, 508

cylindrical Couette flow, 421

Darrozes–Guiraud inequality, 12, 558
the linearized-boundary-condition

version of the —, 560
dense

definition of — of a subset, 500
density, 2

nondimensional —, 16
nondimensional linearized per-

turbed —, 23
nondimensional perturbed —, 20

detailed-balance condition, 546
diffuse-reflection condition, 8

linearized —, 24
nondimensional —, 17

diffusion region, 166
direct simulation Monte Carlo method,

see DSMC method
discontinuity of the velocity distri-

bution function, 91
— around a convex body, 91,

305, see velocity distribu-
tion function

propagation and decay of the
—

—– in time-dependent prob-
lems, 224, 232, 283

drag, see force
DSMC method, 571

economy of computation in —,
591

process of —, 574
theoretical background of —, 579

Eddington’s epsilon, 94
energy
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— flow from a cylindrical con-
densed phase, 307, 310, 316,
319

— flow from a spherical con-
densed phase, 325, 326, 330

— transfer from a convex body
to a free molecular gas, 33,
54

— transfer to a boundary
(relation to the velocity dis-

tribution function), 2
— transfer to a closed body, 94,

109
conservation equation of —, 6

entropy
— and H function, 11

equilibrium distribution, 6, 546
Euler region, 166
Euler set, 6, 132, 140, 144, 154
evaporation

— from a cylindrical condensed
phase into a gas, 315

—— under a generalized ki-
netic boundary condition,
351

— from a cylindrical condensed
phase into a vacuum, 302

—— under a generalized ki-
netic boundary condition,
351

— from a plane condensed phase,
283, 356

—— under a generalized ki-
netic boundary condition,
347

— from a spherical condensed
phase into a vacuum, 321

—— under a generalized ki-
netic boundary condition,
351

evaporation and condensation
— around a sphere, 207
— between rotating cylinders,

417
— under a generalized kinetic

boundary condition, 344

half-space problem of —, 140,
281, 347, 355, see various
items in half-space prob-
lem

two-surface problem of —, 338
—— under a generalized ki-

netic boundary condition,
352

exponential (multiplier) form
— of the Boltzmann equation,

531
extended law of large number, 587

flow, see condensation, evaporation,
evaporation and condensa-
tion

— between two parallel plates,
181

— through a slit, 70, 183
—s induced by temperature fields

(Knudsen compressor), 272
(flow between elliptic cylin-

ders), 246
(nonlinear-thermal-stress flow),

242
(thermal creep flow), 233
(thermal edge flow), 244
(thermal-edge compressor), 277
(thermal-stress slip flow), 239
(thermophoresis), 248
—— around a sphere with a

non-uniform temperature,
210

—— through a slit, 183
one-way —— in a pipe with

ditches, 261
one-way —— in a pipe with

shelves, 267
—s through a channel or pipe

(Couette flow), 169
(Poiseuille flow), 178
(quasi-unidirectional flow), 189
(straight pipe or channel), 178
(thermal transpiration), 178
—— of a free molecular gas,

40
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a uniform — past a sphere
(a sphere with a uniform tem-

perature), 200
(a sphere with an arbitrary

thermal conductivity), 207
bifurcated — field under infinites-

imal velocity, 471
bifurcation of —, see bifurca-

tion
quasi-unidirectional —, see quasi-

unidirectional flow
flow velocity, 2

nondimensional —, 16, 20
nondimensional linearized —, 23

fluid-dynamic part, 79, 102, 113
fluid-dynamic-type equations

(time-dependent problem)
— with an infinitesimal cur-

vature term, 461, 465
— with infinitesimal flow ve-

locity, 160
linear problem, 150, 155
nonlinear problem, 153, 160
weakly nonlinear problem, 152,

158
(time-independent problem)

— with an infinitesimal cur-
vature term, 457, 462

— with infinitesimal flow ve-
locity, 117

linear problem, 74
nonlinear problem, 117, 132,

140
weakly nonlinear problem, 97

fluid-dynamic-type system
classification of the —, 144

flux, 2
force

— on a closed body, 93, 109
— on a heated body or bodies

in a free molecular gas, 54
— on a nonuniform tempera-

ture, 215
— on a sphere with a nonuni-

form temperature, 211, 215
drag (—)

—— on a plate in a free molec-
ular gas, 33

—— on a sphere with a uni-
form temperature, 203, 204

—— on a sphere with an ar-
bitrary thermal conductiv-
ity, 218, 219

moment of — on a closed body,
93, 109

thermal —
—— on a sphere with a uni-

form temperature, 252, 253
—— on a sphere with an ar-

bitrary thermal conductiv-
ity, 258, 260

free molecular flow, 29
effect of intermolecular collisions

on —, 63
general solution of a —, 29

free molecular gas, 29
— between reservoirs, 33, 37,

51
boundary-value problem of a

—, 30
(effect of the boundary tem-

perature), 45
initial and boundary-value prob-

lem of a —, 42
initial-value problem of a —, 30
statics of a —, 45

free path, 7
mean —, see mean free path

free time, 7
mean —, 7

Froude number, 381
frozen temperature, 329

gain term
— of the collision integral, 4,

505
Galilean invariance

— and ghost effect, 468
gas constant

— per mol
(numerical data), 618

specific —, 2
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(numerical data), 618
generalized kinetic boundary condi-

tion
extension of the result for the

complete condensation con-
dition to that for a —, 344

ghost effect, 120, 123, 144, 162, 420,
449

— in the Bénard problem, 389
— in the Taylor–Couette prob-

lem, 416
— in the cylindrical Couette flow

with infinitesimal evaporation
and condensation, 420, 427,
430

— in the plane Couette flow,
449

— of infinitesimal accommoda-
tion coefficient, 85

— of infinitesimal curvature, 460,
466

—— in the Navier–Stokes sys-
tem, 478

— on the flow velocity field, 123,
420, 427, 429, 460, 466

Galilean invariance and —, 468
Grad hierarchy, 483
Grad thirteen-moment equations, 605
Grad thirteen-moment method, 604
Grad–Bardos theorem, 81
Grad–Boltzmann limit, 484
Grad–Hilbert expansion, 75
Grad–Hilbert solution, 75
Green function

— of the linearized Boltzmann
equation, 166

H function, 11
the equation for the —, 11

(nondimensional form), 19
the linearized-Boltzmann-equation

version of the —, 27
the linearized-Boltzmann-equation

version of the equation for
the —, 27

H theorem

the — for the linearized Boltz-
mann equation, 27

the Boltzmann —, 12
half-space problem

— of evaporation and conden-
sation

(time-dependent and indepen-
dent problems), 281

(time-independent problem),
140, 355

effect of the condensation co-
efficient on the ——, 347

— of the linearized Boltzmann
equation, 81, 104

— of the nonlinear Boltzmann
equation

(on a simple boundary), 196
(on an interface), 140, 356,

362
— of transonic condensation, 362
— of weak evaporation or con-

densation, 356
bifurcation in the — of evap-

oration and condensation,
355

heat-conduction equation
inappropriateness of the — in

describing the behavior of
a gas at rest in the contin-
uum limit, 122

heat-flow vector, 2
— of the Grad–Hilbert solution,

78
— of the S solution, 101
Knudsen-layer part of —, 88,

90, 105, 107
nondimensional —, 16, 20
nondimensional linearized —, 23

heat-transfer problem, 170
— for a free molecular gas, 39
— in a quasi-unidirectional flow,

196
highly rarefied gas, 29
Hilbert expansion, 138, 155

generalized — by Yu, 166, 222
hybrid difference scheme, 224
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hybrid finite-difference method, 304
hypersonic approximation, 327, 612

ill-posed equation, 111
incompressible fluid

definition of —, 107
incompressible Navier–Stokes set of

equations, see Navier–Stokes
set

initial layer, 166
integral equation

— defined by the linearized col-
lision integral, 518, 520

integral form
— of the Boltzmann equation,

531
integral-equation expression

— of the Boltzmann equation,
531

— of the linearized BKW equa-
tion, 532

integrated form
— of the Boltzmann equation,

531
internal energy

specific —, 2
inverse-power potential, 505
inverted temperature gradient phe-

nomenon, 339
inviscid region, 166
isotropic operator, 509

Jensen inequality, 558
jump condition, 83, see slip bound-

ary condition

kernel
— of the linearized collision in-

tegral
(hard-sphere molecules), 527
(pseudo inverse-power poten-

tial), 527
kernel form

— of the linearized collision in-
tegral, 523

kinetic boundary condition, 8, see
boundary condition

Knudsen compressor, 272
Knudsen layer, 79, 283

analysis of —
infinitesimal-curvature prob-

lem, 455
linear problem, 79
nonlinear problem, 115, 130,

139
weakly nonlinear problem, 102

equation for —, 80, 103, 116,
131, 139, 562

Knudsen minimum, 183
Knudsen number, 15
Knudsen number expansion, see Grad–

Hilbert expansion, Hilbert
expansion, Knudsen-layer cor-
rection, Sexpansion, S ex-
pansion, SB expansion, fluid-
dynamic-type equations, vis-
cous boundary-layer solu-
tion

modified —, 606
Knudsen-layer correction

(time-dependent problem), 163
(time-independent problem)

infinitesimal-curvature prob-
lem, 456

linear problem, 79, 83, 89
nonlinear problem, 113, 115,

130, 136, 138, 139
weakly nonlinear problem, 102,

104
Knudsen-layer function, 85, 90, 105,

106, 564
(data), 85, 86

Knudsen-layer part, see Knudsen-
layer correction

Knudsen-layer variables, 79, 103, 115,
130

Knudsen-layer-type solution, 363

law of large number, 584, 586
extended —, 587

linear problem
(time-dependent problem), 150,

155, 164
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(time-independent problem), 74
linearized collision integral, see col-

lision integral
Liouville equation, 481
local Maxwell distribution, 7

— satisfying the Boltzmann equa-
tion, see local Maxwell dis-
tribution

local Maxwellian, see local Maxwell
distribution

loss term
— of the collision integral, 4,

505
lubrication problem

— in a rarefied gas, 196

Mach number, 95
macroscopic variable

relation between a — and the
velocity distribution func-
tion, 2

(linearized form), 23
(nondimensional variables), 16
(perturbed variables), 20

marginal velocity distribution func-
tion, 223, 303, 544

mass
— flow from a cylindrical con-

densed phase, 307, 310, 316,
319

— flow from a spherical con-
densed phase, 325, 326, 330

— transfer to a boundary
(relation to the velocity dis-

tribution function), 2
— transfer to a closed body, 94,

109
conservation equation of —, 6

Maxwell distribution, 6, 546
absolute —, 551
local —, 7

Maxwell molecule, 506
pseudo —, 507

Maxwell-type condition, 8
— in perturbed variables, 22
linearized —, 24

nondimensional —, 17
Maxwellian, see Maxwell distribu-

tion
linearized expression for the per-

turbed local —, 24
local —, see local Maxwell dis-

tribution
nondimensional local —, 16

mean collision frequency, 7
— for a Maxwellian, 7, 552

mean free path, 7
(numerical data), 619
— for a Maxwellian, 7, 551
— for the BKW equation, 13

mean free time, 7
measure zero, 4
micro flow, 196
mixed-type condition (on an inter-

face), 9
— in perturbed variables, 22
linearized —, 25
nondimensional —, 18

model equation, 12
molar mass, 618
molecular chaos, 485
moment method, 601

(Grad thirteen-moment method),
604

(Mott-Smith analysis of a plane
shock wave), 603

momentum
— transfer to a boundary

(relation to the velocity dis-
tribution function), 2

conservation equation of —, 6

Navier–Stokes set, 6, 110
— of equations for a compress-

ible fluid, 108
— of equations for an incom-

pressible fluid, 107, 108, 144,
159

Navier–Stokes system
discrepancy (or incompleteness

or inappropriateness) of the
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— in describing the behav-
ior of a gas in the contin-
uum limit, 122, 402, see clas-
sical fluid dynamics, ghost
effect, non-Navier–Stokes ef-
fect, non-Navier–Stokes stress

Navier–Stokes-type set, 99
negative temperature gradient phe-

nomenon, 339
negative thermophoresis, see ther-

mophoresis
non-Navier–Stokes effect

— in the continuum limit, 120,
144, 162, 416

non-Navier–Stokes stress, 121, 459
nondimensional expression, 13

— in perturbed variables, 19
nondimensional variables

definition of — I, 13
definition of — II

(perturbed variables), 19
nonlinear problem

(time-dependent problem), 153,
160, 164, 165

(time-independent problem), 112,
126, 137

nonlinear-thermal-stress flow, 121, 242
nonslip condition, 86
normal temperature, 325

one-way flow without average tem-
perature and pressure gra-
dients

(pipe with ditches), 261
(pipe with shelves), 267

overall solution, 73
(linear problem), 79
(nonlinear problem), 113, 131,

138
(weakly nonlinear problem), 102

parallel temperature, 325
parity

— of the collision integral, 517
— of the linearized collision in-

tegral, 514

peculiar velocity, 548
plane Couette flow, see Couette flow
Poiseuille flow, 178

— for a square cross section
(data), 269

— for various cross sections
(data), 183

— in a quasi-unidirectional flow,
195

software for —, 183, 607
Prandtl boundary layer, see viscous

boundary layer
Prandtl number, 96
pressure, 2

nondimensional —, 16
nondimensional linearized per-

turbed —, 23
nondimensional perturbed —, 20
saturated gas —, see saturated

gas pressure
work done by —, see work

pressure stress, 79
probability density function

N -particle —, 481
truncated —, 482

pseudo inverse-power molecule, 507
pseudo inverse-power potential

collision integral for the —, 507
pseudo Maxwell molecule, 507

quasi-unidirectional flow, 189
Couette flow in a —, 196
hear-transfer problem in a —,

196
Poiseuille flow in a —, 195
thermal transpiration in a —,

195

radiometer, 234
Rankine–Hugoniot relation, 220
Rayleigh number, 382
Reynolds number, 95

S expansion, 97
S expansion, 453
S layer, 93
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S solution, 97
S solution, 453
saturated gas pressure, 10

(numerical data), 619
SB solution, 113
scattering kernel, 8, 10

nondimensional —
(on a simple boundary), 17
(on an interface), 18

second law of thermodynamics
the negative temperature gra-

dient phenomenon and the
—, 339

self-adjoint
— property of the linearized col-

lision operator, 21, 498
shock condition, 220
shock layer, 221, 283
shock wave, 166, 219, 221

formation and propagation of a
—, 222

weak —, 369
similarity solution, 540
simple boundary, 8
slightly rarefied gas, 73
slip boundary condition

(time-dependent problem), 163
(time-independent problem)

linear problem, 83, 89
nonlinear problem, 117, 132,

140
weakly nonlinear problem, 102,

104
slip coefficient, 85, 89, 105, 106, 118,

135, 564
(data), 85, 90, 106, 119, 135

slip condition, 83, see slip boundary
condition

slit
flow through a —, 70, 183

slowly varying approximation, 186
slowly varying function, 487
slowly varying solution, 357, 365
sonic speed, 96
sound wave, 152, 153

speed of —, 96

—– (numerical data), 619
specular-reflection condition, 8

linearized —, 24
nondimensional —, 17

speed of sound, 96
(numerical data), 619

spherical symmetry
— of the velocity distribution

function, 324
spherically symmetric

— state, 324
— tensor field, 509

standard state, 618
Stokes set, 76, 144, 157
stress tensor, 2

— of the Grad–Hilbert solution,
78

— of the S solution, 101
Knudsen-layer part of —, 88,

90, 105, 107
nondimensional —, 16
nondimensional linearized per-

turbed —, 23
nondimensional perturbed —, 20

Strouhal number, 15
suction boundary layer, 145
summation convention

— in Cartesian tensor notation,
1

summational invariant
— of the collision, 499

supersonic
— accelerating flow, 369

symmetry relation, 5, 495
(nondimensional form), 16

system in the overall region, see fluid-
dynamic-type equations, slip
boundary condition

= equations and boundary con-
ditions for the overall re-
gion

(flow with a finite Mach num-
ber around a simple bound-
ary), 132

Taylor–Couette problem, 121, 403
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ghost effect in the —, 416
temperature, 2

bifurcated — field under infinites-
imal velocity, 396, 410

flows induced by — fields, see
flow

nondimensional —, 16
nondimensional linearized per-

turbed —, 23
nondimensional perturbed —, 20
normal —, 325
parallel —, 325
— in the θ direction, 306
— in the r direction, 306
— in the z direction, 306

tensor, see stress tensor
axially symmetric —, 509
axially symmetric field of a sym-

metric —
general form of ——, 511

Cartesian — notation, 1
curvature —, 84
spherically symmetric —, 509
spherically symmetric field of a

symmetric —
general form of ——, 510

test function, 601
thermal conductivity, 6

(numerical data), 619
mistaken discussion of — in a

free molecular flow, 41
positivity of —, 522
relation between — and mean

free path, 95
thermal creep flow, 86, 121, 233
thermal edge flow, 246
thermal force, 249, see force
thermal polarization, 88, 204, 280
thermal stress, 79, 102, 118, 120,

121, 157
— slip flow, 88, 239
nonlinear — flow, 121, 242

thermal transpiration, 178, 261
— for a square cross section

(data), 269
— for various cross sections

(data), 183
— in a quasi-unidirectional flow,

195
software for —, 183, 607

thermal velocity, 548
thermal-edge compressor, 278
thermal-stress slip flow, 88, 239
thermophoresis, 249

negative — , 261
transport coefficient

nondimensional —, 78, 100, 117,
521

(data), 78, 102, 117, 522
truncated probability density func-

tion, 482
two-surface problem

— of evaporation and conden-
sation, 338

—— under a generalized ki-
netic boundary condition,
352

unidirectional flow, see flow (—s
through a channel or pipe)

uniqueness of solution
— of the boundary-value prob-

lem of the linearized Boltz-
mann equation

(a bounded domain), 566
(a half-space), see Grad–Bardos

theorem
— of the half-space problem of

the nonlinear Boltzmann equa-
tion (simple boundary), see
half-space problem

vacuum pump without a moving part
(Knudsen compressor), 272
(thermal-edge compressor), 277

velocity distribution function, 2
discontinuity of the — around a

convex body, 311, 319, 331
marginal —, see marginal ve-

locity distribution function
viscosity, 6

(numerical data), 619
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mistaken discussion of — in a
free molecular flow, 41

positivity of —, 522
relation between — and mean

free path, 95
viscous boundary layer, 126, 128, 165,

461, 464
equations and boundary condi-

tions for the —, 133
natural variables in the —, 128

viscous boundary-layer set, 144
viscous boundary-layer solution, 129
viscous region, 166
von Karman relation, 96

wave
—s formed by a heated or cooled

wall, see Section 4.8
—s in condensing flows onto a

plane condensed phase, see
Section 6.1.3

—s in evaporating flows from a
plane condensed phase, see
Section 6.1.2

formation and propagation of a
shock —, 222

shock —, see shock wave
sound —, see sound wave
speed of sound —, see speed of

sound
weak shock —, 369

weak form
— of the Boltzmann equation,

579
weak shock wave, 369
weak solution

— of the Euler set, 166
weakly nonlinear problem

(time-dependent problem), 152,
158, 164

(time-independent problem), 96
well-posed problem

— of a partial differential equa-
tion, 111

work

— done by pressure in the Grad–
Hilbert solution, 157

— done by pressure in the S so-
lution, 107, 160


