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P R E F A C E

Computer simulation has become an established method of research in
science and a useful tool in solving certain engineering problems. With the
introduction of powerful workstations on the desk of the scientist, the
impact of the application of computer simulation to many problems will
increase enormously in the next couple of years.

Polymer science profits from this development in a particular way: the
complexity of macromolecular chemical architecture and geometrical struc-
ture, the huge variability of physical properties and the widespread range of
applications involves many intricate scientific questions, considering the fact
that theoretical methods usually imply crude mathematical approximations,
the validity of which it is hard to judge in general. Together with the limita-
tion that unknown parameters introduce, the predictive power of such work
is often rather limited. In contrast, computer simulation can study a model
of a complex many-body system in full detail without invoking such math-
ematical approximations: in principle, we thus can check the validity of
approximate calculations and methods, without unknown parameters
obscuring a meaningful comparison. At the same time, comparing with
experiment helps to validate and systematically improve the model. In
fact, use of computer simulation in this way is an iterative process by
which the understanding of complex materials and processes can be signifi-
cantly improved step by step.

In view of these distinct conceptual and principal advantages, computer
simulations in macromolecular materials have aroused considerable interest,
and various complementary techniques have been developed. It must be
noted, though, that simulations of polymers pose particular challenges, con-
sidering the enormous spread of length scales and time scales involved: even
the simple case of a single flexible polyumer coil exhibits geometrical struc-
ture from the scale of a chemical bond (1A) to the scale of the gyration
radius (100A), and collective length scales in dense materials often are even
much larger. Simultaneously, times scales range from bond vibration times
(10"13 sec) to macroscopic times (103 sec), characterizing interdiffusion or
relaxation near the glass transition, etc. Hence the naive use of "molecular
modeling" software packages as a "black box" cannot be relied upon as a
problem solver — what is needed, of course, is a more basic understanding
of what computer simulation is, what methods are implemented and where
their strengths and limitations lie. It is one of the aims of the present book to
provide the reader with such background knowledge, which will enable him
to apply such software with mature judgement in a useful way. Some of the
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chapters of this book therefore discuss deliberately methodical aspects of
Monte Carlo and molecular dynamics simulations and describe the role of
"model building". Given the inevitable uncertainties about the force fields
for complex polymeric materials, and the difficulty in explicitly relating
these forces and other details of the geometrical and chemical structure to
phenomenological simplified models, the book pays much attention to the
question "which model is adequate for a considered problem?" and clearly
distinguishes questions where one can obtain sensible answers from simula-
tions from those where one cannot.

The emphasis of this book is on polymer physics rather then polymer
chemistry, and it considers in the main amorphous polymers (in solution,
melt, or solid state); crystallized polymers, as well as polymer crystallization
processes, etc., are not discussed here, nor are biopolymers treated—
although many of the general comments about polymer simulation that
can be found in this book are presumably useful for these other fields as
well. Such a restriction of scope was necessary in order to keep the length of
the text manageable. Taking the input from quantum chemistry (force fields,
etc.) as given wherever necessary, the book does contain chapters dealing
with fairly realistic models containing much chemical detail (e.g., the chap-
ter by J.H.R. Clarke on simulations of the elastic properties of glassy poly-
mers and that by D.Y. Yoon et al. on interfacial properties in thin polymeric
layers). Most of the book, though, deals with more "mesoscopic" proper-
ties, attempting to bridge the gap between atomistic structure and macro-
scopic properties: structure and elastic response of polymer networks, forces
acting between polymer brushes, phase diagrams of polymer blends, etc. Of
course, the structure and dynamics of polymer coils under the various con-
ditions is a central theme that can be found in almost all chapters: Chapter 2
describes what is known about the treatment of excluded volume interaction
in dilute solution; Chapter 3 emphasizes electrostatic and hydrodynamic
forces; stretching of chains in deformed rubbers is discussed in Chapter 4;
stretching of chains due to thermodynamic forces in block copoymer meso-
phases in Chapter 7; and of tethered chains in Chapter 9. Thus, a wide
variety of problems encountered with synthetic polymers is addressed.
Studying the book will give a broad overview of almost the complete field
of polymer physics and its concepts; and thus certainly will be useful to
students and researchers in that field. Besides providing such an introduc-
tion, it presents up-to-date reviews from the leading experts on the various
applications that are covered here, and it is expected that it will play a
stimulating role in research, pushing further the frontier of new develop-
ments in academia and industry.

Mainz, September 1994 Kurt Binder
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1
I N T R O D U C T I O N : G E N E R A L A S P E C T S

O F C O M P U T E R S I M U L A T I O N
T E C H N I Q U E S A N D T H E I R

A P P L I C A T I O N S I N P O L Y M E R P H Y S I C S

Kurt Binder

1.1 Why is the computer simulation of polymeric materials a challenge?

In recent years computer simulation has become a major tool in polymer
science, complementing both analytical theory and experiment. This interest
is due both to the many fundamental scientific questions that polymer sys-
tems pose and to the technological importance of polymeric materials. At
the same time, computer simulation of polymers meets stringent difficulties,
and despite huge progress (as documented in previous reviews1"7) many
problems are still either completely unsolved or under current study. In
the following pages these difficulties are briefly discussed.

1.1.1 Length scales

For standard problems in the physics and chemistry of condensed matter,
such as simple fluids containing rare gas atoms or diatomic molecules, etc.,
computer simulation considers a small region of matter in full atomistic
detail.8"13 For example, for a simple fluid it often is sufficient to simulate
a small box containing of the order of 103 atoms, which interact with each
other with chemically realistic forces. These methods work because simple
fluids are homogeneous on a scale of 10 A already; the oscillations in the
pair distribution function then are damped out under most circumstances.
Also reliable models for the effective forces are usually available from quan-
tum chemistry methods.

For long flexible polymers we encounter a different situation (Fig. l.l)14:
already a single chain exhibits structure from the scale of a single chemical
bond (w 1 A) to the persistence length15 (w 10 A) to the coil radius («
100 A). Additional length scales occur in a dense polymer solution or
melt. Some of these length scales are smaller than the coil radius, such as
the screening length £ev in semidilute solutions,16 which describes the range
over which excluded volume forces are effective, or the tube diameter in
melts,17 which constrains the motion of a chain (due to entanglements with
other chains) in a direction along its own (coarse-grained) contour (see
Chapter 4, where estimation of this length from simulations is discussed).
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Fig. 1.1 Length scales characterizing the structure of a long polymer coil (polyethylene is used
as an example). (From Binder.14)

Collective phenomena may even lead to much larger lengths: e.g., in a
polymer brush (i.e., a layer of polymers anchoring with a special end
group at an otherwise repulsive wall) the height h of the brush is predicted
to scale with degree of polymerization Np as18 h oc Np, while the coil gyra-
tion radius Rs scales only as Rg oc ̂ /N^ in a 0-solution or dense melt16'19 or
Rg oc A^ with v zi 0.59 in a good solvent.16'20 Thus for 7VP of the order 103 to
104 and a sufficiently high grafting density one expects h to be of order 103 A
(see also Chapter 9, where the simulation of polymer brushes is treated
further).

Another large length scale occurs in polymer blends near the critical point
of unmixing, namely the correlation length £ of concentration fluctuations.21

One expects that this length is of the order of R&, far away from the critical
point, but approaching the spinodal curve it is enhanced by a factor
|1 - r/rsp(^)p1/2, where Tis the temperature of the blend and T^(<j>) the
spinodal temperature at volume fraction <j> of one component of the blend.
This enhancement factor is a mean-field result,16'21'22 and close to the
critical temperature Tc one expects an even faster growth of critical correla-
tions,21'23 f oc ^"^(T/Tc - I)""1, where ̂  « 0.63 is the Ising model cor-
relation length exponent24 and a the size of a segment of the polymer chain.
Thus, near Tc correlation lengths of the order of 103 A are predicted21"23 and
observed25. Similar large length scales are predicted21'22 and observed21'26'27

in the spinodal decomposition of polymer blends that are quenched into the
unstable region of the phase diagram and hence start phase separation (see
also Chapter 7, where the simulation of polymer blends is treated further).
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This list of characteristic lengths in polymeric materials is far from being
exhaustive. Without detailed explanation we here simply mention also the
characteristic thickness of lamellae A ex aNp in the strongly segregated
lamellar mesophase of block copolymers,28 the Bjerrum length, the electro-
static persistence length, and the Debye-Hiickel screening length in poly-
electrolyte solutions29"32 (see Chapter 3 for simulations of such systems), the
distance between crosslinks in polymer networks (see Chapter 4), character-
istic coil sizes of polymers exposed to shear flow,33 and so on.

Since a valid computer simulation must choose a system size with linear
dimensions L larger than the characteristic lengths of the problem, one finds
that for many problems of interest one would need to simulate systems
containing of the order of at least 106 atoms or even much more. The
situation becomes aggravated since the effective potentials for polymers
are much more complicated and hence difficult to use in simulations than
the pair potential for simple fluids. Let us consider polyethylene (PE), the
chemically simplest organic polymer, as an example. A very popular model
ignores the hydrogen atoms of the (CH2) groups and replaces them with
united atoms34""*4 (Fig. 1.2; see also Chapter 5 for more details). Neither the
bond lengths nor the bond angles in Fig. 1.2 are treated as rigid, and one
uses harmonic potentials for bond length and bond angle vibrations, while
nonbonded interactions between effective monomers of different chains (or
monomers of the same chain if they are separated by more than three bonds
along the chain) are represented by a Lennard-Jones form. Thus already for
the simplified model of Fig. 1.2 a complicated Hamiltonian with many
parameters results:

where

The appropriate choice of the parameters fy, to, fe, cos6o, f<s>, a\,... ,as

(a0 = 1), c and <r is discussed in the literature34^5: at this point we note
that even for the torsional potential 3f^($j) and the nonbonded interaction
J^LJ there is no complete agreement between different authors. Thus for
many other polymers where the monomers are chemically more complicated
the force fields are even less well known. Furthermore, the nonbonded
interaction for computational convenience is often truncated at rather
short distances ry between monomers i, j such as39 ry = 1.5cr; experience



Fig. 1.2 (a) Schematic model of a piece of the polyethylene chain. The hydrogen atoms (H) are
not treated explicitly in the "united atom" approximation, but rather one introduces effective
spherical segments (shaded) representing a whole CH2 unit. The segments are connected by
harmonic bonds (shown as straight lines), the bond lengths being it (segments being labeled
consequently by an index i, i = 0 to Nv — 1). Three successive segments ;' — 1, i, i+ 1 define a
bond angle 6; and four successive segments {;' — 2, i - 1,;',/ + 1} a torsional angle fa, namely the
angle between the plane spanned by the bonds formed from the segments {i — 2, z — 1, i} and the
plane built from {i - 1, i, i+l}. Note that the fa values are zero in the all-trans configuration
drawn here, (b) Qualitative sketch of the torsional potential for alkane chains, indicating the
three energetically prefered states, gauche- (g~), trans (t), and gauche + (g+). The minimum of
the trans configuration is deeper by an amount Af7. (From Kremer and Binder.2)

with monatomic fluids46 shows that the equation of state of the fluid is
rather sensitive to the value of this cut-off. Note that usually no distinction
is made for the CHj, end-groups of the chain.

In view of this discussion, it is clear that even the detailed model of
eqs (!.!)-(1.3) should not be taken as a faithful description of polyethylene
(PE), but rather as a prototypical schematic model of linear polymers. In the
context of simulations of lipid monolayers,47 it has been suggested that it is
necessary to shift the center of gravity of the united atom off the position of
the carbon atom at the chain backbone (anisotropic united atom model).
Very recent work48 (see also Chapter 8) suggests that it is more satisfactory
to include the hydrogen atoms explicitly, if one wishes to describe PE prop-
erly. For the reasons quoted above, such work is restricted to relatively

6 INTRODUCTION
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small degree of polymerization Np, and thermodynamic states far off from
any phase transitions.

1.1.2 Time scales

When one considers the second factor that controls simulation feasibility,
namely the time scales involved, one realizes that the situation is even
worse. While in simple fluids at states far from phase transitions all fluctua-
tions decay on time scales of a few picoseconds, and hence molecular
dynamics (MD) simulations can easily produce well-equilibrated system con-
figurations, this is not so for polymers, since motions occur on many very
different time scales. Fast motions such as the vibrations of the length t of a
C-C bond (Fig. 1.2) or the bond angle 0 (Fig. 1.2) may take times of the order
of Tvjb PS 10~13 s or even less. However, already the reorientation jumps in the
torsional potential (t <-> g+, g_; Fig. 1.2) are significantly slower; the average
time T\ between two such jumps is typically of the order of r\ w 10~n s, for
polymer melts at the temperatures of interest. Since the time integration step
St of a MD simulation has to be much smaller than the shortest characteristic
time, it has become common to either take the bond length as rigid38 or to
soften the spring constant/^ in eq. (1.2) by a factor of seven arbitrarily,39"*2 to
alleviate this problem. Using 10 chains with Np = 50, a time-step of
St = 10~14s has been chosen39 and a CPU time of 0.02s on a CRAY-XMP
supercomputer was reported.39 Thus, even at high temperatures far above the
glass transition one needs 20 s to have a single jump in the torsional potential,
and near the glass transition—where T\ increases proportional to
TI oc Tvjb exp(AE/ksT), A£ being the energy barrier of the torsional potential
in Fig. 1.2—even a much longer simulation would hardly observe any t ̂  g+,
g_ transitions. It should also be noted that the choice of St = 10~14 s is rather
large, which may also lead to uncontrolled errors (other work38 makes the
more conservative choice of 6t = 2.10~15 s). Choosing MC instead of MD to
equilibrate the system configurations is of little help here, however, since for
most MC moves the acceptance rates are very small.

Of course, having just a few jumps in the torsional potential suffices to
produce equilibrium on a very short length scale, but is not enough to bring
the persistence length and the gyration radius Rg to their equilibrium values.
Let us assume that we deal with a melt of relatively short, nonentangled
chains, i.e., Np < Ne

p where typically17 Ne
p PS 102, so that the Rouse model17

holds. Then the relaxation time necessary to relax the global configuration
of a coil (Fig. 1.1) varies as

Thus for Np PS 30 a relaxation time rNv « 10~8 s results, 106 times more than
the time-step of Rigby and Roe.39 This number shows that even at high
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temperatures it is at best possible to equilibrate melts of very short chains,
and this indeed has recently become feasible.48 (see also Chapter 4 for a
more detailed discussion).

Of course, the situation is much worse for melts of long chains in a
mutually entangled state, where reptation theory16'17 predicts a relaxation
time proportional to the third power of N,

For Np = 500 one then estimates that rNp at 10 5 s, eight orders of magnitude
more than the vibration time rv(b! Therefore a straightforward application of
MD to study the dynamics of entangled melts is clearly impossible—the
algorithms lack stability for the prohibitively large number of integration
time-steps 6,, and would also require enormous computer time. In this
situation, one must abandon the idea of studying well-equilibrated poly-
meric materials of a high degree of polymerization Np in full chemical detail.
Several strategies are then conceivable:

• Restrict the study to both fairly high temperatures and rather small Np.
Although this approach is certainly feasible (see Chapter 8 and Refs 38,
48, 49) and yields interesting information on the behavior on small length
scales and small time scales, many problems of interest are excluded.
Even on small length scales temperatures close to the glass transition
temperature Ts are inaccessible; note, however, that most polymeric sys-
tems are studied experimentally at temperatures not far above Ts.
Simulations are valuable in particular to complement experiments in a
temperature range which would be too high for experiments (e.g., one can
study the gas-liquid critical point of alkane chains for Np = 20 to
Np = 48, while the chains would chemically decompose at these high
temperatures; but nevertheless these critical-point data are a useful
input for the equation of state of alkane fluids).

• Restrict the study to the small length-scale behavior but abandon the
quest for good thermal equilibrium. Of course, in such an approach it is
no longer sensible to ask how properties depend on Np, because proper-
ties on the length scale of Rg certainly need not be very reliable. This
approach is followed in studying the behavior of amorphous polymers
in the solid state and their mechanical response (Chapter 5 and Refs 37,
42, 50-58) and certainly is appropriate for studying solid polymers in
the crystalline state.53'58 The latter problem is not our main concern
here, as we concentrate on flexible polymers in the random coil state
(solution, melt, amorphous solid). Of course, the "preparation" of the
simulation "sample" is then very questionable. Cooling from the melt
produces rapidly quenched samples which may differ in many physical
properties from their slowly cooled experimental counterparts—at least



C O M P U T E R S I M U L A T I O N O F P O L Y M E R I C M A T E R I A L S 9

one must expect this from experience with coarse-grained models (see
Chapter 6 and Refs 59, 60). An elegant alternative is the molecular
mechanics technique of generating a dense configuration of amorphous
polymers such that one folds a single (very long) chain back into the
simulation box with the help of periodic boundary condition until the
desired (experimentally given) density is reached, and minimizing then
the potential energy.50'51'54'55 Although the results of this procedure are
sometimes extremely encouraging, one must admit that the systematic
errors are uncontrolled: while Monte Carlo (MC) and molecular
dynamics methods in principle get better and better the more comput-
ing time is invested, e.g., for making cooling slower and slower, it is not
clear to what extent this procedure of Theodorou and Suter50 corre-
sponds to a physical "sample preparation." This method will not be
pursued further in this chapter.
Restrict the study to long wavelength properties of the problem by
abandoning chemical detail and introduction of a coarse-grained
model. It is this approach which will be emphasized in this chapter
and many following ones (Chapters 2-4, 6, 7, 9). It is clear that this
coarse-graining approach makes sense only for "universal" properties,
and what universal means depends on the problem under study. For
example, for dilute polymer solutions one expects that the mean-square
gyration radius of a chain varies with Np as (R^) = CPN^ for
Np —*• oo, where the exponent v for good solvents is universal, i.e.,
independent of the chemical nature of both polymer and solvent,
while the prefactor Cp clearly is not. In a coarse-grained model of a
polymer chain we can integrate n chemical monomers into one effective
subunit (cf. section 1.3) and thus consider an equivalent chain of
N= Np/n "segments." While we still expect (R2

g)
1/2 = CW, the explicit

relation between C and Cp is lost; while it is known that the exponent v
found from the coarse-grained model coincides with the exponent v of
real polymers, the prefactor Cp cannot be predicted from the coarse-
grained model. Similarly, if we consider unmixing in polymer blends we
can consider the exponent (3 describing the shape of the coexistence
curve (binodal) between the unmixed phases (Chapter 7; see also Refs
21, 23, 61-63), the resulting crossover from Ising-like critical behavior
to mean-field-like critical behavior when N increases,23 and consider the
question how the critical temperature TC(N) scales with TV in a symme-
trical polymer mixture ("symmetrical" means N& = Ns = N for both
types (A, B) of polymer chains). However, we cannot predict the abso-
lute location of Tc (N) nor explain why one pair of polymers (A, B) such
as polystyrene-polymethylvinylether64 has a lower critical point while
another pair such as polyisoprene-poly(ethylene-propylene) has an
upper critical solution temperature (UCST).65
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Thus important goals of molecular simulations, namely predicting physi-
cal properties of particular materials quantitatively from a knowledge of
atomistic potentials, to a large extent is lost; however, as emphasized
above, this consequence is inevitable due to the complexity of polymeric
systems. Nevertheless, polymer science is rich with questions which are
universal, as discussed above, and the large size of polymer coils and the
fact that by variation of Np one has a control parameter at hand which
leaves all chemical details invariant (at least to a good approximation) are
plausible good reasons that this should be expected. Of course, for problems
such as the glass transition66 presumably both the behavior on small scales
(atoms trapped in "cages" formed by their environment67) and on large
scales (relaxation due to cooperatively rearranging regions68) is simulta-
neously important—neither the coarse-grained modeling (Chapter 6;
References 59, 60, 69) nor the atomic modeling (Chapter 5; Refs 37,
39-42) then should be expected to be fully satisfactory! While first attempts
to reintroduce atomistic information from quantum-chemical calculations45

into coarse-grained models70"72 look encouraging, more work clearly is
necessary to show that the errors in this approach really are under control.

1.2 Survey of simplified models

There is no unique way to construct coarse-grained models of polymer
systems. In fact, the choice of model very much depends on the physical
problems that one may wish to address, and also many details are fixed
from the desire to construct computationally efficient simulation algo-
rithms.2'7'73"77 Thus many variants of models for polymer chains exist,
and there may still be the need to invent new ones! This section is also
not intended to be exhaustive, but rather restricts attention only to the
most common models which are widely used in various contexts, as will
become apparent in later chapters of this book.

1.2.1 Off-lattice models

In section 1.1.2 it was already mentioned that one may wish to simplify
models for polymers such as polyethylene by replacing CH2 groups by
"united atoms." If we simplify the problem further, replacing n successive
CH2 groups by an effective bond between some effective units, we may end
up with a model of the type shown78 in Fig. 1.3.

In the model of a freely jointed chain (Fig. 1.3[a]) each polymer hence is
modeled by a succession of N rigid bonds of length i jointed together at
arbitrary angles. The steps of the Monte Carlo procedure then consist in
rotations of beads. For example, bead i is rotated by a randomly selected
angle <p; from its old position to its new position. If the chains are treated
as completely noninteracting, the static and dynamic properties of such a
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Fig. 1.3 Off-lattice models for polymer chains. In the freely jointed chain (a) rigid links of
length (. are jointed at beads by dots and may there have arbitrary angles with each other.
The stochastic chain conformational changes are modeled by random rotation of bonds around
the axis connecting the nearest-neighbor beads along the chain, as indicated. The new position
of a bead ;' may be chosen by assigning an angle (pi chosen randomly from the interval
[—A<p, +Ay?] with A<£> < TT. For the simulation of melts, the freely jointed chain is often sup-
plemented by a Lennard-Jones type potential (d) between any pairs of beads.80 An alternative
model is the pearl necklace model (b), where the beads are at the center of hard spheres of
diameter h, which must not intersect each other. By varying the ratio h/t one can control to
some extent the persistence length of the chain. This model has also proven useful for the
simulation of melts.82 Still another alternative is the bead-spring model (c), which has also
been used both for MC simulations as indicated76'77 and for MD simulations for solutions83'84

and melts.85'86 (From Binder.78)

model are trivial: the configurations of the chains for N large are Gaussian
distributed, and their relaxation is described by the simple Rouse
model.17'79 Of course, one can introduce into this model various interac-
tions, such as a Lennard-Jones (LJ) interaction between all beads (see eq.
[1.3]) and/or a potential controlling the angle between subsequent bonds
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along a chain, etc. These potentials then enter the transition probability
W((fi) = Mm{exp(-6J^/kB T), 1}, where 6Jf is the energy change produced
by the rotation with tf/. According to the standard Metropolis10"12'81

sampling, the trial move is only carried out if W((pi) exceeds a random
number £ distributed uniformly in the interval from zero to one, since
then one generates an ensemble of configurations (when equilibrium is
reached) distributed according to the canonical Boltzmann weights.

One can also set the transition probability to zero if the attempted move
leads to some intersection of bonds, in an attempt to simulate entanglement
restrictions as they operate in the dynamics of polymer melts.80 Forbidding
such intersections thus takes into account that in the course of their motions
chains cannot cross each other. However, the resulting algorithm is rather
slow and has been applied to very short chains only.80 While at high tem-
peratures (using an LJ interaction) surprisingly it was found that even in a
dense melt the chains relax according to Rouse dynamics,17 at low tempera-
tures the chains were frozen into a glass-like configuration.80

The pearl necklace model (Fig. 1.3[b]) is a somewhat more useful model,
although it is strictly athermal; but, by a proper choice of the ration h/f.
between the radius h of the excluded volume sphere around each bead and
the bond length I, one can ensure82 automatically that chains cannot cross
each other if they respect excluded volume restrictions (no spheres are
allowed to overlap apart, possibly, from subsequent ones if one chooses
l/2<h< I).

The most popular and efficient off-lattice models are of bead-spring type
(Fig. 1.3[c]) and are not only used for MC but also for MD and Brownian
dynamics (BD) simulations.7'76'77'83"86'87"94 It often is advantageous not to
use a simple harmonic potential for the bond lengths as in eq. (1.2) but
rather allow only a finite extensibility of the chains. In the MD work one
works with the so-called FENE potential95

where one typically chooses the constants k, £max in relation to the para-
meters e, a of the LJ potential between the effective beads (eq. [1.3]) as
£max = l.Sor, k= 30e/cr2. Note also that one often76'83"86 does not work
with the full LJ potential but with an LJ potential that is cut off and shifted,
to avoid a ^-function singularity of the force at the cut-off:

Choosing7 rc = 21/V the potential is purely repulsive and also the force is
nonsingular at r = rc. Note that eq. (1.7) acts between all pairs of beads,
including bonded ones.
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With this choice of potentials it is also automatically ensured that an
intersection of bonds (in the course of MD or BD simulations) is prevented.
For MC simulations, a slightly different choice of potentials was recently
proposed,76 namely

choosing the same non-bonded potential as in eq. (1.7) and £max = rc,
4nin = 0.4 Cax, 4 = 0.7 £max, k/kBT= 10, kBT/€ = 10. With this choice of
parameters, chain intersection also is practically forbidden even if one uses
large attempted displacements of the effective monomers (in each update, a
monomer is attempted to be displaced into a randomly chosen direction and
the step width is chosen randomly from a cube with linear dimensions equal
to £max, the old position being in the center of the cube). This model can be
simulated rather efficiently by applying link-cell methods.8'76'96 Due to the
large value of the ratio k/ks T one probes in practice only the harmonic part
of the potential eq. (1.8), the cut-off at lt = £mjn, ^max has very little effect on
the properties.

Choosing a model with purely repulsive interactions one expects neither
the occurence of a G-temperature in solution, nor a reasonable equation of
state in the melt (note that in recent MD works84'97 solvent molecules are
included explicitly while in MC simulations one simply reduces the density
of monomers in the box76'77 and reinterprets density as the volume fraction
of monomers in the solution). Since the LJ potential (eq. [1.3]) for a coarse-
grained model lacks any fundamental quantum-chemical foundation, one
may choose any other short-range potential if this is computationally con-
venient. With this reasoning, Milchev et al.17 have proposed to use a Morse
potential

which has a rather sharp minimum at r = rm;n if one takes a large. Choosing
a = 24, rmin = 0.8 (in units of lengths where lmax = 1), one sees that UM (r)/e
is essentially zero for r > 1.25 rm\n = 1, i.e., the same link-cell techniques can
be applied as in the purely repulsive case. Indeed in this model the 0-point
has been located and the full regime of concentrations (from dilute solution
to dense melts) has been found accessible, both in the regime of the 0-point
and in the good solvent regime.

Finally it should be mentioned that in the MD work it is advantageous
not to choose a strictly microcanonical ensemble (where velocity rescalings
are needed to fix the desired temperatures8'9) but rather to introduce also a
coupling to a heat bath.83 Thus the equations of motions that are integrated
are
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where m is the mass of the effective monomer, f/ its position, t the time, #f ,-
the total potential energy of monomer i (this may include external poten-
tials, of course), F is a bead friction that couples the monomers to the heat
bath, and 0(0 describes the random force acting on bead i. This random
force is related to the friction coefficient via a fluctuation-dissipation rela-
tion,

assuming Gaussian white noise. More details about the MD approach can
be found in Chapters 3, 4 and 9; here we only mention that this model
defined by eqs (1.6), (1.7), (1.10) and (1.11) is not restricted to linear poly-
mers, but is easily extended to both star polymers98'99 and polymer net-
works.100"102 Note that the dynamical properties of the model are affected
by the random forces at least at large times; but this problem can be avoided
by using eqs (1.10) and (1.11) only to generate an equilibrated ensemble of
starting configurations for strictly microcanonical MD runs.84 This is only
of relevance, if one studies effects of hydrodynamics.84 Finally, one obtains
the BD approach considering the overdamped limit (strong friction) by
simply omitting the inertial term (wi^?) in eq. (1.10). The advantage of
the BD approach is that it is most closely related to the theoretical descrip-
tions of polymer dynamics, such as Rouse and Zimm models,17 which are
cast in a framework of Langevin equations or the (equivalent)
Smoluchowski equation for the probability distribution of the configuration
of the effective monomers.

7.2.2 Lattice models

The idea of simplifying the problem even further and representing polymer
chains by random walks on a lattice (or, better, by self-avoiding walks
[SAW]) is very old and has been used, for instance, for discussing the con-
figurational entropy of polymers in solution and of polymer blends.19'103'104

For discussing the configurational statistics of single polymer chains (with
excluded volume interaction) this has been a classic problem for which a rich
literature exists that is reviewed in Chapter 2. Here we shall confine our-
selves therefore only to a very brief discussion (see also Ref. 2 for more
details on these models).

The simplest model considers a regular lattice where each effective bead of
the polymer takes a single lattice site, and a bond connecting two beads is
just a nearest-neighbor link on the lattice (Fig. 1.4).105~113 Since each lattice
site can at most be occupied by one bead, the walk cannot intersect itself (or
other walks, respectively) and thus an excluded volume interaction is auto-



S U R V E Y OF S I M P L I F I E D M O D E L S 15

Fig. 1.4 Various examples of dynamic Monte Carlo algorithms for SAWs: sites taken by beads
are shown by dots, and bonds connecting the bead are shown by lines. Bonds that are moved
are shown as a wavy line (before the move) or broken line (after the move), while bonds that are
not moved are shown as full lines, (a) Generalized Verdier—Stockmayer algorithm105"107 on the
simple cubic lattice showing three type of motions: end-bond motion, kink-jump motion, 90°
crankshaft rotation; (b) slithering snake algorithm108-10' (c) pivot algorithm.110"113 (From
Kremer and Binder.2)

matically included. While the arbitrary angles between successive links of an
off-lattice coarse-grained chain are reasonable, if we interpret these links as
the Kuhn effective segments formed from groups of several monomers along
the chemical sequence of the chain, the rigid bond angles (only 6 = 0° and
© = 90° occur at the square and simple cubic lattice) are a further idealiza-
tion. But, as will be discussed in Chapter 2, for certain universal large-scale
properties of polymer chains this does not matter. Of course, other lattices
(such as face-centered cubic (fee) or diamond lattices) are also occasionally
used.2

We now briefly discuss various dynamic algorithms for this model, and
start with the moves shown in Fig. 1.4(a). If one used only the end rotation
and the "kink jump" move as done in the original Verdier-Stockmayer
algorithm105 for ideal random walks without excluded volume, a very
slow algorithm would result106: since kink jumps can be interpreted as an
exchange of two neighboring bond vectors, new bond vectors are created
only at the ends and must slowly diffuse into the interior of the chain to
equilibrate its configuration.107 So the set of moves in Fig. 1.4(a) (which
must be tried at random to avoid biased sampling) are the minimal set that
is useful,62'114 and the relaxation may be facilitated by allowing even for
additional moves rotating larger groups,115 but this makes the algorithm
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more complicated. It is also clear that the algorithm will have a very small
acceptance rate at high volume fraction (f> of occupied sites, since the vacant
sites needed for an acceptable move are then very rare (this holds even more
so if one includes additional moves which need even more vacancies115).

Another problem with the algorithm of Fig. 1.4(a) is that it can be proven
to be nonergodic113'116'117: one can easily find locally compact configura-
tions of a chain that cannot relax by the motions shown. Since the algorithm
must satisfy detailed balance, of course, the chain cannot get into these
configurations from other, nonblocked, configurations, and thus there is a
part of the configurational space that simply is not included in the sampling
at all! Although this does not seem to be a problem in practice (comparing
data from different types of algorithms yields equivalent results within the
statistical errors62), one must be aware of this drawback if one either tries to
study much longer chains or tries to improve significantly the accuracy.

Due to the need for sufficient vacancies this algorithm has only been
used61'62'114 for volume fractions </> < 0.8. The "slithering snake' algorithm
(Fig. 1.4[b]), on the other hand, needs only one vacant site near a chain end
for a successful move and thus can be used for significantly denser systems
(<t> = 0.976 was successfully used118'119). It also suffers from the problem that
it is not strictly ergodic,117 although again these "blocked configurations"
do not seem to affect the accuracy to a practically relevant extent.2 If one is
interested in static chain properties, an advantage of the slithering snake
algorithm is that it relaxes distinctly faster2'120 than the generalized Verdier
algorithms. The latter (for single chains) produce a Rouse-type17'79 relaxa-
tion and must be used if one is interested in dynamical chain properties,
whereas the slithering snake move (in which one tries to remove a randomly
chosen end-link of a chain and add it in a randomly chosen direction on the
other chain-end) obviously has no counterpart in the dynamics of real
chains.

For most static properties of single chains, the algorithm of choice is
clearly the pivot algorithm110"113 (Fig. 1.4[c]), where one randomly chooses
a link in the chain and then rotates this link together with the rest of the
chain to a randomly chosen new orientation on the lattice. Of course, the
new configuration is accepted only if it does not violate the excluded volume
constraint. The advantage of such moves is that one rapidly generates new
chain configurations, which are not "dynamically correlated" with their
predecessors.2'11'78'113 Of course, this algorithm cannot then be used for a
study of dynamical properties of chains, and it is also not useful for dense
polymer systems.

An algorithm that incorporates large nonlocal moves of bonds and works
for dense polymer systems (even without any vacancies, < / > = ! ) is the
"collective motion" algorithm121"123 where one transports beads from
kinks or chain ends along the chain contour to another position along the
chain, for several chains simultaneously, so that in this way this rearrange-



S U R V E Y OF S I M P L I F I E D M O D E L S 17

ment exchanges some of the sites taken by their beads. Due to the nonlocal
collective rearrangements of several chains, the algorithm is rather compli-
cated and is not straightforwardly suited to vectorization or parallelization.
Thus only if the vacancy concentration (f>v = 1 — 0 is very small, does this
algorithm have an advantage (in comparison with the algorithms of Figs
1.4[a,b]) since these other algorithms then have a very small acceptance rate.
Also one clearly cannot associate a physical meaning to the time variable in
this algorithm, although this sometimes was attempted.121 Since real poly-
mer melts do have a nonzero compressibility, which in the framework of
simple lattice models (SAWs on the sc lattice) is roughly reproduced with a
vacancy content124 of about (j>v = 0.1, one also should not claim that a
model with strictly 0V = 0 is more realistic than the models that contain
vacancies. If one defines a van der Waals density in terms of the repulsive
part of the interatomic potential in real polymers, one obtains a van der
Waals density of only about 50%. Thus, in our view, the collective motion
algorithm poses more disadvantages than advantages.

The lattice algorithm that is now most widely used for the simulation of
many-chain systems is the bond fluctuation model (Fig. 1.5).73>125~128 It has
been used to model the dynamics of both two-dimensional125 and three-
dimensional polymer melts,127'128 the glass transition (see also Chapter
6))59,6o,69-72 polymer blends (see also chapter 7),23'63'129 polymer net-
works,130 gel electrophoresis,131 polymer brushes (see Chapter 9) and so
on, and it was attempted to map it on to real materials,70"72 This model is
in a sense intermediate between the simple SAW model of Fig. 1.4 and the
off-lattice models (Fig. 1.3), because the vector that connects two monomers
can take 36 values (in d = 2 dimensions) or 108 values (in d = 3 dimensions),
rather than four or six (square or simple cubic lattice, respectively). While
thus the continuum behavior is almost approximated, one still enjoys the
advantages of lattice algorithms (integer arithmetics, excluded volume is
checked via the occupancy of lattice sites, etc.) The restriction in the allowed
bond lengths assures that the excluded volume interactions simultaneously
maintain the constraint that bonds cannot cross each other in the course of
random motion of the monomers. The fact that there is a single type of
motion that is attempted (random displacement of an effective monomer,
i.e., an elementary plaquette of the square lattice \d— 2] or an elementary
cube of the simple cubic lattice [d = 3] in a randomly chosen lattice direction)
allows very efficient implementations of this algorithm, including vectoriza-
tion.126 This algorithm also suffers less from ergodicity problems than the
algorithms of Figs 1.4(a) and (b), although it is not strictly ergodic either. For
single chains, from this algorithm a Rouse-model type dynamics
results,17'73'79'127 as desired, while in dense melts (i.e., systems where
cj) > 0.5127) a crossover occurs127'128 from Rouse-like behavior (for N < 50)
to reptation-like behavior16'17'132 for long enough chains that then are
mutually entangled.
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Fig. 1.5 Schematic illustration of the bond fluctuation model in three dimensions. An effective
monomer blocks a cube containing eight lattice sites for occupation by other monomers. The
length t of the bonds connecting two neighboring cubes along the chain must be taken from the
set 1 = 2, \/5, \/6,3, vTO. Chain configurations relax by random diffusive hops of the effective
monomers by one lattice spacing in a randomly chosen lattice direction. (From Deutsch and
Binder.129)

While at first sight it may seem pathological that the length of an effective
bond may vary over a wide range (2 < t < vT3 in d = 2, 2 < I < VlO in
d = 3), this is natural when one recalls that each effective bonds represents a
group of n C-C bonds along the backbone of the chemically realistic chain
(Fig. 1.1), and, depending on the conformation of this group its end-to-end
distance may vary significantly. This idea will be explored in more detail in
Section 1.3 by attempting to develop effective potentials for the length £ of
effective bonds and the angle 6 between two consecutive such bonds from
the underlying microscopic (i.e., chemically realistic) model of the polymer
chain. The fact that one can have such potentials for the length of the bond
vector easily allows the modeling of the glass transition of polymer melts
(see Chapter 6) which is less straightforward on the basis of the model of
Fig. 1.4.

Finally we end this survey by emphasizing that there is no unique answer
to the question "which is the best model of a polymer chain"; depending on
the types of application and the questions that are asked different models
and different algorithms may be useful, and there is still room for inventing
new algorithms. For example, for a study of ionomers, where chains stick
together at certain sites due to electrostatic forces, it was advantageous to
use an algorithm which allowed the "stickers" to exchange partners and to
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translate parts of the chain rigidly.133 Polymer chains in d= 2 dimensions
can be simulated by a particularly fast but locally very unrealistic algo-
rithm.74'75 We also emphasize that we have discussed dynamic algorithms
only—there also exist useful algorithms to construct SAW configurations by
growing them in a stepwise manner by various techniques. For a review of
such "static" methods, see Ref. 2 and Chapter 2. These static methods are
particularly useful if one wishes to estimate the number of configurations of
the polymers and the associated exponents. Note that such techniques are
not only applicable to linear polymers but can be extended to different
polymer architectures, such as many-arm star polymers.134'135

1.3 Taking the idea of coarse-graining literally

In the previous section, we have seen that a variety of crudely simplified
models of polymer chains is available. In this section we discuss the extent to
which such models can be connected with more microscopic, chemically
realistic descriptions, and how one should proceed when comparing results
from different model calculations with each other.

1.3.1 Effective potentials for the bond fluctuation model

The coarse-grained model can be obtained by combining n successive cova-
lent bonds along the backbone of a polymer chain into one effective segment
(see Fig. 1.6 where n = 3 is chosen). In principle, such a procedure can be
carried out for any polymer (e.g., in Refs 45, 70-72 an application to bis-
phenole-A-polycarbonate (BPA-PC) is discussed). In order to make close
contact with reality, one may wish to carry out this mapping such that the
large-scale geometrical structure of the polymer coil is left invariant, i.e.,
properties such as the gyration radius of the coil and the probability dis-
tribution of its end-to-end distance should be the same for the coarse-
grained model in Fig. 1.6 as for the chemically detailed model.

The idea of Refs 70-72 is that this invariance of long wavelength proper-
ties is indeed realized if we introduce suitable potentials in the coarse-
grained model which control bond lengths of the effective bonds, angles
between effective bonds along the sequence of the coarse-grained chain,
etc. In practice, it was proposed70"72 to use harmonic potentials both for
the length i of an effective bond and for the cosine of this effective bond
angle, i.e.,

where UQ, IQ, V0, cose0 are four adjustable parameters (which may depend
on the thermodynamic state of the considered polymer melt, of course, i.e.,
temperature and pressure). It is thought that these potentials "mimick" the
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Fig. 1.6 Use of the bond fluctuation model on the lattice as a coarse-grained model of a
chemically realistic polymer chain (symbolized again by polyethylene). In the example shown
n = 3 covalent bonds form one "effective bond" between "effective" monomers: chemical
bonds 1,2,3 correspond to the effective bond I, chemical bonds 4,5,6 to the effective bond II,
etc. (From Baschnagel et a/.,45)

effect of the potentials.of the microscopic model, such as eqs (1.!)-(!.3)
describing potentials for the lengths of chemical bonds and their bond
angles and torsional angles. So the information on these potentials and
hence the chemical structure is not completely lost in the coarse-graining,
but at least some caricature of it is still found in the simplified model (Figs
1.5, 1.6) via the potentials in eq. (1.12).

We do not only wish to map the behavior on large length scales but also
on large time scales. Since a move of an effective monomer as shown in Fig.
1.5 requires transitions from one minimum of the torsional potential to
another, on the scale of the chemically realistic model (Fig. 1.2), information
on the barrier heights of this torsional potential must also be incorporated
into USK((-), J/

eff(0), since these potentials govern the transition probability
of the Monte Carlo sampling process.136 The corresponding explicit con-
struction of the parameters in eq. (1.12) from the available quantum-
chemical information on potentials such as written in eqs (1.1)™(1.3) is
rather tedious and difficult136 and will not be discussed further here.

If the potentials Uef{(£), Feff(e) are known, their basic effect will be to
generate distributions according to the Bolt/mann weight

and similarly for Pn(Q). These distributions can also be obtained directly
from the chemically realistic model of an isolated chain (Fig. 1.7)43'45 and
checking that the model distribution (eq. [1.13]) represents the actual dis-
tribution faithfully enough hence is an important consistency check of the
description. One can infer that for n = 5 (which is a reasonable choice, since
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Fig. 1.7 (a) Distribution function P5(t) vs. t (measured in units of to = 1.52A) for n = 5 sub-
sequent CH2 units integrated into one effective bond. Three temperatures are shown as indi-
cated. The nonbonded LJ interaction was only included up to the seventh neighbor along the
chain, to ensure Gaussian chain statistics at large distances, as it occurs in dense melts where the
LJ interactions are screened out. (b) same as (a) but PS (9) plotted vs. angle 6 between subse-
quent effective bonds. (From Baschnagel et al. )

7 must be large enough to include several torsional degrees of freedom, but
small enough to still contain information on the scale of the persistence
length) the distributions for Pn(l), Pn(cosQ) are indeed reasonably well
ipproximated as Gaussian: this finding, in fact, was the motivation for
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the choice of the simple quadratic potentials, eq. (1.12). The weak tempera-
ture dependence that one can see in Fig 1.7 simply reflects the gradual
tendency of the PE chain to stretch (increase of the persistence length and
the characteristic ratio C^ = lim (R2)/Np(fi)) as the temperature is low-

, Na—>00 'ered. f

A consequence of the mapping in Fig. 1.6 being taken literally is that the
(otherwise not explicitly defined) length and time scales of the coarse-
grained model get a physical meaning. For example, for BPA-PC one
obtains (when one monomer with 12 chemical bonds along the backbone
is mapped onto three effective bonds) that a lattice spacing at T = 570 K
corresponds to 2.3 A, and one Monte Carlo step per monomer (attempted
monomer hop, which has an acceptance rate of about 1 % only due to the
restrictive potentials) corresponds to 10~13 s, a successful hop occurs at
about a time of 10~" s. Obviously, this is physically reasonable, and rele-
vant information has been lost on a very small length scale (< 3 A) only.
Choosing70"72 lattices of a typical linear dimension of L = 40 lattice
spacings then means that systems of a linear dimension of about 102A
are simulated, which clearly is somewhat larger than the sizes accessible in
the study of microscopically realistic models.36"42' 50"55 Note that the largest
lattice used so far23 (for the study of the critical behavior of polymer blends,
see also Chapter 7) used L = 160 and did contain 256000 effective mono-
mers, which with n = 5 (Fig. 1.7) would correspond to 1 280000 CH2 units
(and N = 512 would translate into Np = 2560, a reasonably large degree of
polymerization23).

1.3.2 How different coarse-grained models can be compared

From the previous discussions it should be clear that there is no unique
model description of a polymer chain system; in fact, for different physical
questions somewhat different coarse-grained models are optimal. For exam-
ple, while the bond fluctuation model73'126"129 is very well suited to the study
of polymer melt dynamics,125"128 polymer blends,23'63 the glass transi-
tion,59'60'69 polymer brushes in good solvents137 and so on, for other
problems it is less well suited: lattice structure artefacts appear in the
study of collapsed polymer brushes in bad solvents138 and in models for
dense lipid monolayers at the air-water interface139; in the presence of
frozen-in obstacles, locked-in chain configurations must be expected.76

For such problems, off-lattice models clearly are better suited. How then
can results from different models be combined and compared quantita-
tively?

This question is similar to the question of how to compare simulations
and experiment85 or to compare Monte Carlo work with MD work,127 of
course. But a need for such a conversion arises even when somewhat differ-
ent Monte Carlo models need to be compared. This question was addressed
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by Milchev et a/.76 who compared data for their off-lattice bead spring
model, where results for various chain lengths N and volume fractions <j>
were obtained, to results for the bond fluctuation model127 where data for a
variety of values for chain lengths N and volume fractions <j> are available.
While on the lattice the term "volume fraction" is not ambiguous, it is
simply the percentage of lattice sites blocked by the effective monomers;
there clearly is some arbitrariness for the off-lattice case. Gerroff et a/.76'77

define it as the number of effective monomers per cell of size £^ax: thus <j>
(unlike </>) can even be larger than unity, and the question of translating the
variable </> to the variable (j> arises. Similarly, the models may exhibit differ-
ent degrees of local chain stiffness, and hence there also is no one-to-one
correspondence between N and N. This point is sometimes overlooked in the
comparison of different models.140

Gerroff et al.76 argue that it is the universal scaling limit that can be
extracted from different models and which must be identical; so, when
one considers the scaling limit N — > oo, <f> — > 0 (or N — > oo, <j> —> 0), one
must obtain the same scaling function for (R*(<t>)} / (&((j> = 0)} versus
N/Nb\0b(<t>) oc jV^1^3""1), which describes the crossover from the dilute to
the semidilute limit (Fig. 1.8). This scaling function is universal (for good
solvents), because on large length scales compared to microscopic length
scales (such as bond lengths) the chains are self-similar. The only relevant
length scale for the distribution of intramolecular distances can be taken to
be the radius of gyration measured in units of the microscopic length scale.

Differences in the nonuniversal prefactors like the persistence length lead
to the necessity of mapping different chain lengths onto one another. In the
dilute limit, we write for the mean square gyration radius (J?2,)

where C is a dimensionless (nonuniversal) constant and24 v = 0.59.
Similarly, for the bond fluctuation model an analogous relation holds:

Now the two models are mapped onto each other defining N = aN and
fixing the conversion factor a such that the amplitude factors in eqs
(1.14a) and (1.14b) then are equal, Ca2v = CBF- From the numerical results
C= 0.24, CBF = 0.164 it was found that a & 0.274, i.e., the range from
N = 8 to N = 64 was mapped to a range from N K 11 to N « 88 in the
bond fluctuation model.

The conversion from <f> to (j> is achieved similarly, noting that for (f> 3> <p* ((/)*
is the overlap concentration in the solution, defined by NE(<J>*) = N where
NB(4>) is the number of segments per blob, i.e., N/(R2

S)
3/2 = 4>* oc AH3"-1))

the behavior of Rs is classical:



Fig. 1.8 (a) Log-log plot of the reduced mean square gyration radius, (/?g(^)}/{/{|(0)), vs.
rescaled chain length (N - l)^3)1^3""1', where ̂  is the root mean-square bond length, and the
theoretical value >24 for the exponent v(y = 0.59) is used. All data refer to a bead-spring model
with stiff repulsive Lennard-Jones interaction, as described in Section 1.2.1 (Eq. [1.7]). (b) Same
as (a) but for the bond fluctuation model. In both (a) and (b) the straight line indicates the
asymptotic slope of the crossover scaling function, resulting from eq. (1.15). (From Gerroff
et al.)

24
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or alternatively in the bond fluctuation model

Using then N = aN and <p = /3<j> and requiring that {jR2}/{,£2} is the same
in both models yields C^F = C'a/H2""1^3""1) as a condition that both
scaling functions in Figs 1.8(a) and (b) superimpose. One finds for the
model of Gerroff et al.16 that /3 = 0.3, i.e., $ = 1.5 in the off-lattice model
corresponds to <j> =• 0.5 in the bond fluctuation model.

It is possible to carry over such considerations to dynamic quantities as
well (see also Chapter 4). This is of interest, of course, for comparing the
efficiency of different algorithms. It then does not make sense to compare
the time it takes to carry out one Monte Carlo step (MCS), since step width
and acceptance rate of the moves also matter: what must be compared are
physical relaxation times. One such relaxation time for a polymer chain can
be defined128 as the time r\ needed for an inner monomer of a chain to travel
a distance equal to the gyration radius. Defining mean square dynamic
displacements of inner monomers as follows,

it also is of interest to consider an analogous quantity in the center of
mass system of the chain (fcu(t) being the position of its center of mass
at time ()127>128

and the mean-square displacement of the center of mass itself,

Finally, mean-square displacements of monomers at the free ends of the
chains are defined as

Now relaxation times T\, TI, T3, r$ can be defined from requiring that

Figure 1.9 illustrates the variation of these mean-square displacements with
time and the estimation of the resulting relaxation times T\, TI, T$, T$ for
three different models: the bond fluctuation model,127'128 the off-lattice
bead-spring model of Gerroff et al.,76 and the molecular dynamics simula-
tion of a realistic model for short polyethylene chains (Np = 50) in the melt
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Fig. 1.9 (a) Log-log plot of mean-square displacements versus time (measured in attempted
Monte Carlo steps per monomer) for the bond fluctuation model at parameters corresponding
to a dilute solution (N =20,<f> = 0.075). (b) Log-log plot of mean-square displacement versus
time (measured in attempted Monte Carlo steps per monomer) for the bead-spring model of
Gerroff et al.76 at parameters corresponding to a dilute solution (<j> = 0.5, N = 16). Broken and
straight lines shows the measurement of (R^) and the mean-square end-to-end distance (J?|),
respectively, and the gt(t) are defined in eq. (1.16). (From Gerroff et al..16) (c) Log-log plot of
mean-square displacements versus time (measured in picoseconds) from the MD simulation of
64 systems run in parallel containing 20 PE chains with degree of polymerization 7VP = 50 and
melt densities. The mean-square gyration radius is denoted as (S2) in this figure. (From Brown
et a/.38)

(at temperature T = 500K).38 It is seen that the general behavior is rather
similar in all three models. Of course, only the chemically realistic model of
Brown et a/.38 has physical scales (picoseconds for time and A for lengths,
respectively); the Monte Carlo work of the coarse-grained model measures
time in attempted moves per monomer and length in lattice spacings.
Remembering that one MCS may correspond to about 10~13 s in the
bond fluctuation model, a time-scale of 103 in Fig. 1.9(a) corresponds to
about lOOps, indeed a comparable time to Fig. 1.9(c). Note that Np = 50
(shown in Fig. 1.9[c]) would correspond to about N = 16 in Figs 1.9[a],[b])
with a mapping (Fig. 1.6) Np = Nn with « = 3. Remembering that a lattice
spacing corresponds to about 2.3 A (Fig. 1.9[a]) would imply (7?g) w 200 A,
again comparable to the realistic model (Fig. 1.9[c]).

Of course, strictly speaking the different models need be equivalent only
in the scaling limit N —>• oo, 0 -* 0 (for the realistic model of a polymer in
solution a different dynamics would then result, described by the Zimm
model,141 due to hydrodynamic forces mediated by the solvent molecules
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(see also Chapter 3).7'17'84 Only in the absence of solvent molecules may the
Rouse model result also from an MD simulation83). Another universal
regime results for dense melts: then it is the entanglement molecular weight
Ne of the different models that needs to be mapped for a quantitative
comparison (see also Chapter 4).7>85'127 Since Figs 1.9(a), (b) refer to solu-
tion while Fig. 1.9(c) refers to a melt, one should not expect more than a
similarity of qualitative character here. Since chains renew their configura-
tion only on time scales larger than these characteristic times T\, TI, TI, r$,
Fig. 1.9(c) provides practical evidence for our estimates of section 1.1.2, that
times exceeding a nanosecond are needed to equilibrate melts of non-
entangled short chains at high temperatures.

Only for the coarse-grained models can one so far estimate the variation
of the relaxation times over a significantly wide range of N, N (Fig. 1.10).
One finds the expected power-law behavior for both models. A particularly
interesting feature is found when one compares the absolute value of the
relaxation times for the same chain length: e.g., for N = 3Q we have
r\ K> 1200 in the off-lattice model but r\ ~ 3600 in the bond fluctuation
model. Thus the off-lattice model needs a factor of three less MCS to
reach the same physical relaxation time. This fact partially offsets the dis-
advantage that the off-lattice algorithm performs distinctly slower.

Thus the general conclusion of this section is that one must think carefully
about the conversion of scales (for length, time, molecular weight) when one
compares physical results from different models, or the efficiency of various
algorithms. It is hoped that the above examples serve as a useful guideline of
how to proceed in practice.

1.4 Selected issues on computational techniques

In this section are briefly reviewed some technical problems of the simula-
tion of dense many-chain systems, such as the sampling of intensive vari-
ables such as chemical potential, pressure etc., but also entropy, which are
not straightforward to obtain as averages of "simple" quantities. Some of
the standard recipes developed for computer simulation of condensed
phases in general8"13 have difficulties here, due to the fact that the primary
unit, the polymer chain, is already a large object and not a point particle.
But knowledge of quantities such as the chemical potentials are necessary,
e.g., for a study of phase equilibria in polymer solutions.42

1.4.1 Sampling the chemical potential in NVT simulations

This problem has been brilliantly reviewed by Kumar in a recent book142

and hence we summarize only the most salient features here. For small
molecule systems, sampling of the chemical potential rests on the Widom
test particle insertion method143
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Fig. 1.10 Log-log plot of relaxation time T\ vs. chain length N, for the bead-spring model with
soft Lennard-Jones repulsion76 and the bond fluctuation model.128 Open circles (and left ordi-
nate scale) refer to off-lattice model at <j> = 0.0625, full dots (and right scale) to the bond
fluctuation model at </> = 0.05 (data taken from Ref. 128). Straight lines indicated the power
laws r\ oc N2, where the exponent z = 2.3 or 2.24, respectively, is reasonably compatible with
the theoretical prediction16- z = 2^+1 KI 2.18. Insert shows the ratio T$/T\. It is seen that both
models give mutually compatible results for the JV-dependence of this dimensionless ratio
(which should settle down at some universal constant for N —> oo). In this figure the distinction
between N and N (which is only a rather small shift on the logarithmic scale) is disregarded.
(From Gerroff et a/..76)

where A/x is the chemical potential difference relative to the chemical poten-
tial of an ideal gas at a same temperature and density, F^- is the Helmholtz
free energy of a system containing Jf particles, and { ... )^ represents a
canonical ensemble average. This test particle insertion method involves the
insertion of a ghost particle into a frozen equilibrium snapshot of a system
containing Jf particles, and U denotes the total potential energy experi-
enced by this test particle. Averaging the appropriate Boltzmann factor
over many different configurations (frozen snapshots) of the system, the
chemical potential is obtained from eq. (1.18), and this method works



30 I N T R O D U C T I O N

well in practice for small molecule fluids (for examples see Refs 144, 145).
Now, for polymers the insertion of a polymer in a frozen equilibrium snap-
shot has a very low acceptance probability, and this probability decreases
exponentially with increasing chain length. Hence this method has been
restricted to N < 20 for lattice models146'147 and to N < 15 for pearl neck-
lace off-lattice chains.148"151

Several schemes have been devised by various authors, some of them rely-
ing in one form or another on the biased sampling scheme of Rosenbluth and
Rosenbluth152 and others on thermodynamic integration methods.8"13 The
Rosenbluth-Rosenbluth method was devised originally as a sampling scheme
for generating configurations of SAWs on a lattice (see Chapter 2) that avoids
the "attrition problem" (i.e., the loss of chain configurations that have to be
abandoned because they are overlapping). In this scheme one grows the SAW
step by step and checks at each step which sites are available for the next step
without violating the SAW constraint. One of these steps is then selected at
random. Since relative to the simple sampling of SAWs this method creates a
bias,2'153 one has to keep track of the probability of each configuration rela-
tive to the unbiased simple sampling, and weigh the generated chain config-
urations with this probability accordingly.

An approximate generalization of this method to multichain systems due
to Meirovitch is called "scanning future steps".154'155 Suppose we wish to
put Jf chains of N monomers each on a simple cubic lattice of L3 sites. A
starting point for the first polymer is selected out of the L3 lattice sites with
probability L~3 and occupied by a monomer. The first chain is then grown
by a method where one scans b future steps: once the first k monomers have
been placed, one counts for each of the six neighbors of the last site the
allowed continuations consisting of b further steps (for the monomers k + 1
to k + b) which start at this last site. The probability for selecting one of the
six neighbors is chosen proportional to the number of allowed continuations
starting at this site. Then the (k+ l)th monomer is placed on the selected
site, and so on. In this way one has to place N monomers for the first
polymer. If at any step no continuation is possible, the construction is
abandoned and one starts a new polymer from a new starting point.

Once the first polymer is generated on the lattice, a starting point for the
second polymer is selected out of the remaining L3 — N sites with equal prob-
ability, and the further N - 1 monomers of the second polymer are placed on
the lattice according to the same method as described above. The excluded
volume interaction is taken into account with respect to the first chain and the
already grown parts of the second chain. This procedure is continued until the
desired number of chains on the lattice has been reached.

The fraction of successful construction attempts is not an exponentially
decreasing function of the number of chains Jf, but stays approximately
constant at unity until a critical value that depends on N and Z>.154~156 The
larger N and/or jV is, the larger one should use b; however, since the
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number of future steps that need to be scanned increases with b, in practice
one is again limited to rather small N.

Since one knows at each step of the construction of a configuration the
probability for selecting a lattice site for the next monomer, one can multi-
ply all these single step probabilities in order to obtain the probability Pv of
constructing the multiple chain configuration v. Then the partition function
Z is estimated from a sampling of the inverse of Pv

From the partition function the free energy Fjf follows and hence all ther-
modynamic quantities of interest can be estimated (entropy, chemical poten-
tial, osmotic pressure...). Ottinger156 applied this technique to test the
osmotic equation of state for dilute and semidilute polymer solutions for
N < 60. Extension of this technique to off-lattice systems has also been
made.157'158

A variant of the Rosenbluth-Rosenbluth method tailored to overcome
the test chain insertion problem in the Widom method143 (Eq. [1.8]) has been
developed by Frenkel et a/.159"163 and is known as configurational bias
Monte Carlo (CBMC). They rewrite eq. (1.18), using the fact that
U = ^2jLi Uj,jf+i> the energy of a test chain of length N inserted into a
system of J\f other chains, can be written as a sum of energies Uj^+\ of
the individual beads,

Equation (1.20) suggests inserting the test chain bead by bead, and to over-
come the sampling problems created by the relatively small probability of
randomly inserting a test chain, without overlap, in a frozen snapshot of the
system at liquid-like densities. Frenkel et a/.159"163 use a biased insertion
procedure which favors low energy conformations of the inserted chain.
The first bead is inserted at random and the interaction energy of this
bead with the rest of the system (U\tjy+\) tabulated. Then k(\ < k < oc)
trial positions are generated for the next bead, obeying any geometric con-
straints imposed by chain architecture. The energy of each of these trial
positions (t4,/r+i) K calculated, and one position (I) is randomly chosen
according to a weight Wf,

Subsequent beads of the test chain are grown similarly until one arrives at
the desired chain length.
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One now has to correctly weigh the states generated by this biased inser-
tion procedure when one calculates the chemical potential from eq. (1.20):
since we generated states of the canonic ensemble modified with a weighting
function, w, we have to correct for this weighting function as follows142'163

where (/~o) represents the desired average of an observable/in the canonic
ensemble, and { . . . ) in the weighted ensemble. Applying this to eq. (1.20)
yields

noting that no bias needs to be corrected for the first segment. Substituting
eq. (1.21) in eq. (1.23) finally yields

It is important to emphasize the distinction between the CBMC method
159-163 ancj jj^ originai Rosenbluth scheme.152 As is well known,153 the latter
generates an unrepresentative sample of all polymer conformations, i.e., the
probability that a particular conformation is generated is not proportional
to the Boltzmann weight of that conformation, and thus one has to correct
for the difference in weights and thus arrives at a biased sampling scheme
which has problems for large N.153 In the CBMC scheme, on the other
hand, the Rosenbluth weight is used to bias the acceptance of trial confor-
mations that are generated with the Rosenbluth scheme. Therefore all con-
formations occur with their correct Boltzmann weight. This is achieved by
computing the Rosenbluth weights wiriai and woki of the trial conformation
and of the old conformation (in the trial conformation one may regrow an
entire polymer molecule or only a part thereof). Finally the trial move is
accepted only with a probability min{wtriai/w0id, !}• As explained by
Frenkel,163 this method is also readily applied to off-lattice chains.
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At this point, we note that the chemical potential defined from a stepwise
insertion procedure as described above can also be written as

Hr(j) being the incremental chemical potential to add a bead to a chain of
lengthy— 1. Equation (1.25) is the basis of the chain increment method of
Kumar et a/.142'164"167 One now can prove166 an analog of the Widom for-
mula, eq. (1.18), for /ir(/),

where the ensemble that is considered comprises Jf — 1 chains of length N
and one chain of length j— 1, with 1 <j<N. One considers a frozen
snapshot of this system, inserts a bead onto one of the ends of the
chain of lengthy— 1 and evaluates £/(r/)> the test bead energy. The incre-
mental chemical potential fir(j) is then computed by averaging the appro-
priate Boltzmann factor over many different realizations of the simulated
system. In the end one is interested in p,r(N), of course, so this procedure
has to be carried out for a whole sequence of simulations, where j runs
from 1 to N. This restricts the technique in practice to relatively short
chain lengths, but the advantage of this scheme in comparison to the
CBMC method is that one avoids the sampling problems that biased
sampling methods often inevitably have.153

An alternative method has recently been proposed by Muller and Paul168

using the concept of thermodynamic integration. The idea is to circumvent
the problem of the vanishingly small acceptance probability for inserting a
chain respecting excluded volume constraints in a dense system by allowing
overlap of the inserted "ghost chain" with the other chains which are strictly
mutually- and self-avoiding. If the ghost chain overlaps with TVo monomers,
the statistical weight of the configuration is A^0. One has to carry out this
insertion many times in statistically independent configurations of the
many-chain systems and carry out a sampling of (No(X,4>)} to find the
excess chemical potential of the polymers (relative to an ideal noninteracting
polymer gas):

It was found useful to carry out the integration in eq. (1.27) by performing
simulations at about nine distinct values of A, which are used as input into a
multihistogram analysis which yields a very good estimate of (A/o(A,(/>))
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over the whole range of the auxiliary parameter A.168 It was found that this
method works very well even for parameters such as N = 80, 0 = 0.5, where
the insertion probability that one would have to sample with the Widom
method143 would be as small as 10~76. For long chains the applicability of
this method is only limited by the requirement that one must have a means
of producing a sufficient number of equilibrated and statistically indepen-
dent configurations in which the ghost chain is immersed to measure the
overlap.168

1.4.2 Calculation of pressure in dynamic Monte Carlo methods

If a polymer solution is modeled by an assembly of self-avoiding walks on a
lattice, a basic physical quantity is the osmotic pressure II. Carrying out a
simulation with a fixed number Jf of chains of length TV at a lattice of
volume V with one of the dynamic algorithms described in Section 1.2.2,
the osmotic pressure is not straightforward to sample. If one had methods
that yielded the excess chemical potential A/i and the Helmholtz free energy
Fjf, one would find II from the thermodynamic relation

Noting that A/it = Fjf+\ - Fjf (eq. [1.18]) and remembering Fjf =
-k^TlnZ(^V, N, V) where Z ( J f , N, V) is the partition function of yT chains
of length N in the volume V, it is convenient to relate the insertion prob-
ability p(«V, N, V] to a ratio of partition functions,

This quantity describes the probability that a randomly chosen A^-mer,
placed at random into a randomly chosen configuration of ^VN-mers on
a lattice of volume V, does not overlap any of the Ji~ chains. From eqs (1.18)
and (1.29) one derives the relation for the excess chemical potential in terms
of this insertion probability,

which can be used to derive eq. (1.27). Since

eq. (1.28) can be rewritten as147
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In the thermodynamic limit, the summation over the number of chains can
be replaced by a thermodynamic integration over the volume fraction </> of
occupied sites (<p = NjV / V measuring lengths in units of the lattice spacing)
to find IpU, N) = lim p U f , N, V) at fixed <£]

AT—>no.K—>no

This result shows that the osmotic pressure can be obtained from a thermo-
dynamic integration if the insertion probability p(4>', N) is sampled over a
range of values from <j>' = 0 to </>' = (/>. This method has been applied in
conjunction with some of the methods of the previous subsection where the
estimation of the chemical potential via the insertion probability was dis-
cussed.147'168

An interesting alternative method169'170 relates the pressure of the system
to the segment density at a repulsive wall. While usually in simulations one
considers a J-dimensional cubic box with all linear dimensions equal to L
and periodic boundary conditions, in this method one applies a lattice of
length L in d — 1 dimensions and of length H in the remaining direction,
with which one associates the coordinate x. There is an infinite repulsive
potential at x = 0 and x = H+ 1, while in the other directions periodic
boundary conditions apply. The partition function of ^VN-mers on the
lattice then is Z(^V,N,L,H) = (J^!)"1 5>xp(-{7/fcB^), where the sum
runs over all configurations on the lattice, and the potential U incorporates
restrictions which define then chain structure, prohibit overlaps, etc. While
for a model in continuous space the pressure is

the lattice analog for this expression is

The difference in free energies required here is calculated by introducing a
parameter A. 0 < A < 1, which enters as a statistical weight for each mono-
mer in the plane x — H: it may be viewed as being due to an additional finite
repulsive potential next to the wall. Denoting the number of occupied sites



36 I N T R O D U C T I O N

in the plane x = H as NH, the statistical weight factor due to this auxiliary
potential is A^", and hence the partition function becomes

Note that Z(^,N,L,H, 1) = Z(^,N,L,H) and that Z(^,N,L,H,0) =
Z(^V,N,L,H - 1), since for A = 0 there are no monomers allowed in the
plane x = H; effectively the repulsive wall now is at x = H rather than at
x = H+ 1. This yields

Thus one must carry out simulations for several values of A to sample
(NH)X, the average number of occupied sites in the plane x = H, in order
to perform the above integration numerically.169'170

We now describe, as an example, a few applications of these methods.
Figure 1.11 compares simulation results170 for the compressibility factor

with predictions of various equations of state, namely of Flory104

of the Flory-Huggins theory103 (q is the coordination number of the lattice)

and of the Bawendi-Freed theory171

It is seen that the Flory approximation is inaccurate, while both other
approximations describe the equation of state well at high volume fractions
<f>. At small volume fractions, however, neither of these approximations is
very accurate, as expected, since in the dilute and semidilute concentration
regime a scaling description16'20 of the equation of state is needed.

While Fig. 1.11 refers to the simplest lattice model where polymers are
described as SAWs (Fig. 1.4), the above techniques are straightforwardly
generalixed to more sophisticated lattice models such as the bond fluctua-
tion model (Fig. 1.12).166'172 It is seen that the repulsive wall method and the
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Fig. 1.11 Compressibility factor z plotted vs. volume fraction, for self- and mutually-avoiding
walks on the simple cubic lattice, and two chain lengths: N = 20 (filled symbols) or N = 40
(open symbols), respectively. The Flory theory104 is shown as a dash-dotted curve, Flory-
Huggins theory103 as broken curve, and the Bawendi-Freed theory171 as full curve. Circles
represent data obtained from the repulsive wall method, while squares or diamonds are
obtained from the test-chain insertion method. (From Hertanto and Dickman.170)

insertion method, where one integrates over the strength of excluded volume
interaction with the inserted ghost chain168 are in reasonable agreement.

In off-lattice simulations in the NVT ensemble the (excess) pressure A/> is
usually calculated from the Virial theorem173"175

Again the kinetic energy term p^n = Jik-^T/V where Jf is the number
of atoms per volume V in the system, is omitted throughout, and the



Fig. 1.12 Osmotic pressure IlV/k^T plotted vs. volume fraction <t>, for the athermal bond
fluctuation model on the simple cubic lattice, N = 20. Open squares are obtained by Deutsch
and Dickman172 with the repulsive wall method; full squares are based on thermodynamic
integration over a variable excluded volume interaction between the inserted "ghost chain"
and the other chains.16 Curve shows the pressure according to the "Generalized Flory"
equation of state of Ref. 172, U((/>,N)/kj,T= </>/N+ (l/JV)[v(AO/v(l)][n(0, l)/k9T- </>],
where v(N) is the exclusion volume of an N-mer. (From Milller and Paul. 68)

summations /, j run over all effective monomers in the system (we use a
convention where all pairs are counted twice), U being the total potential
energy. One may split eq. (1.42) into three parts: a "covalent" part due to
(harmonic) interactions along the chains, an intra-chain part due to non-
bonded interactions, and the inter-chain contribution

Of course, this separation does not imply that the springs 01 me oeaa-
spring model must be harmonic; it works for anharmonic forces along the
chain as well.

38
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Gao and Weiner174'175 call this pressure contribution A/? due to mono-
mers of the polymers the "atomic pressure" and suggest that it is this quan-
tity that one should consider in the polymer melt. They suggest that at the
6-temperature the covalent part and the nonbonded intrachain part of A/?
should cancel, and then the atomic pressure would reduce simply to the
osmotic pressure of a polymer solution. Milchev and Binder176a attempted
to check this, but it would be interesting to clarify this problem by a com-
parative study of several other models.

A potentially very useful method to obtain entropy, pressure and chemi-
cal potential of many-chain systems is the scanning method of
Meirovitch.176b Lack of space prevents us from discussing it here.

1.5 Final remarks

The field of computer simulation in polymer science is a very active area of
research and many developments of simulation methodology are either very
recent or even still under study: this will become even more evident when the
reader proceeds to the later chapters in this book. But although applications
to many problems in polymer physics have been started just a few years
ago—such as large-scale simulations of polymer networks, polymer electro-
lyte solutions, polymer brushes under various solvent conditions, block
copolymer mesophase ordering, and so on—even these very first attempts
to simulate complex polymeric materials have already been very useful and
given a lot of insight. The main direction of research has not been directed
towards the prediction of materials parameters for specific polymers—as
discussed in Section 1.1 of the present chapter, such a task is difficult and
to a large extent not yet feasible with controlled errors—but towards the test
of general concepts (such as various "scaling" ideas developed for the var-
ious systems of interest) as well as of specific theories. A huge advantage of
the simulations is that one can adjust the model that is simulated very
closely to the model that the theory considers: e.g., the Flory-Huggins
theory of polymer blend thermodynamics uses a very simple lattice model
and then the simulations can provide a stringent test by studying exactly
that lattice model (see Chapter 7). On the other hand, the polymer reference
interaction site model (PRISM) theory of polymer melts considers idealized
bead-spring type off-lattice models of polymer chains, and thus is tested
most stringently by a comparison to corresponding molecular dynamics
simulations.177 As will be described in later chapters, such comparisons
have indeed been very illuminating.

At this stage, the comparison between simulation and experiment is some-
what more restricted: either one restricts attention to very short chains of
simple enough polymers to allow the treatment of a model including
detailed chemistry (Chapters 5, 8) or one has to focus on universal proper-
ties. Then a nontrivial comparison between simulation and experiment is
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still possible, if one compares suitable dimensionless quantities. As an exam-
ple (more details on this problem will be found in Chapter 4) consider the
chain-length-dependence of the self-diffusion coefficient of polymer melts:
for short chains one expects that the Rouse model16' 17'79 holds, i.e., the self-
diffusion constant DN varies inversely with chain length, £>ROUse <* \/N. For
chain lengths exceeding the entanglement chain-length Ne reptation should
hold and hence16'17'132 DN oc l/N2. However, the materials-dependent (or
model-dependent, respectively) prefactors in these relations are absorbed if
one plots the dimensionless variable DN/DROUSe where Z>ROUSe = lim(jVDjv)}
versus N/Ne (see Fig. 1.13).127 It is seen then that both N3ata from
MD simulation,85 MC simulations127 and experiment178 superpose on a
common curve. The entanglement chain length Ne has been estimated inde-
pendently85'127'178 and thus the comparison in Fig. 1.13 does not involve any
adjustable parameter whatsoever! The agreement seen in Fig. 1.13 hence is
significant and a relevant test of the reptation ideas is indeed provided by
these simulations85'127, as will be discussed in more detail in Chapter 4. On
the other hand, the very interesting question of how a parameter such as Ne

is related to the detailed chemical structure of polymers escapes the tract-
ability of simulational approaches so far.

Fig. 1.13 Log-log plot of the self-diffusion constant D of polymer melts vs. chain length. D is
normalized by the diffusion constant of the Rouse limit, DRouse, which is reached for short chain
lengths. N is normalized by JVe. Experimental data for polyethylene (PE)178 and MD results85

are included. (From Paul et a/.127)
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M O N T E C A R L O M E T H O D S F O R T H E
S E L F - A V O I D I N G W A L K

Alan D. Sokal

2.1 Introduction

2.1.1 Why is the SAW a sensible model?

The self-avoiding walk (SAW) was first proposed nearly half a century ago
as a model of a linear polymer molecule in a good solvent.1'2 At first glance
it seems to be a ridiculously crude model, almost a caricature: real polymer
molecules live in continuous space and have tetrahedral (109.47°) bond
angles, a non-trivial energy surface for the bond rotation angles, and a
rather complicated monomer-monomer interaction potential. By contrast,
the self-avoiding walk lives on a discrete lattice and has non-tetrahedral
bond angles (e.g., 90° and 180° on the simple cubic lattice), an energy
independent of the bond rotation angles, and a repulsive hard-core mono-
mer-monomer potential.

In spite of these rather extreme simplifications, there is now little doubt
that the self-avoiding walk is not merely an excellent but in fact a perfect
model for some (but not all!) aspects of the behavior of linear polymers in a
good solvent.^ This apparent miracle arises from universality, which plays a
central role in the modern theory of critical phenomena.3'4 In brief, critical
statistical-mechanical systems are divided into a small number of univers-
ality classes, which are typically characterized by spatial dimensionality,
symmetries and other rather general properties. In the vicinity of a critical
point (and only there), the leading asymptotic behavior is exactly the same
(modulo some system-dependent scale factors) for all systems of a given
universality class; the details of chemical structure, interaction energies
and so forth are completely irrelevant (except for setting the nonuniversal
scale factors). Moreover, this universal behavior is given by simple scaling
laws, in which the dependent variables are generalized homogeneous func-
tions of the parameters which measure the deviation from criticality.

'More precisely, linear polymers whose backbones consist solely of carbon-carbon single
bonds.
fHere "good solvent" means "at any temperature strictly above the theta temperature for the
given polymer—solvent pair".

2
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The key question, therefore, is to determine for each physical problem
which quantities are universal and which are nonuniversal.

To compute the nonuniversal quantities, one employs the traditional
methods of theoretical physics and chemistry: semi-realistic models followed
by a process of successive refinement. All predictions from such models
must be expected to be only approximate, even if the mathematical model
is solved exactly, because the mathematical model is itself only a crude
approximation to reality.

To compute the universal quantities, by contrast, a very different
approach is available: one may choose any mathematical model (the simpler
the better) belonging to the same universality class as the system under
study, and by solving it determine the exact values of universal quantities.
Of course, it may not be feasible to solve this mathematical model exactly,
so further approximations (or numerical simulations) may be required in
practice; but these latter approximations are the only sources of error in the
computation of universal quantities. At a subsequent stage it is prudent to
test variants and refinements of the original model, but solely for the pur-
pose of determining the boundaries of the universality class: if the refined
model belongs to the same universality class as the original model, then the
refinement has zero effect on the universal quantities.

The behavior of polymer molecules as the chain length tends to infinity is,
it turns out, a critical phenomenon in the above sense.5 Thus, it is found
empirically—although the existing experimental evidence is admittedly far
from perfect6"10—that the mean-square radius of gyration (R^ of a linear
polymer molecule consisting of W monomer units has the leading asymptotic
behavior

as N —> oo, where the critical exponent v w 0.588 is universal, i.e. exactly the
same for all polymers, solvents and temperatures (provided only that the
temperature is above the theta temperature for the given polymer-solvent
pair). The critical amplitude A is nonuniversal, i.e., it depends on the poly-
mer, solvent, and temperature, and this dependence is not expected to be
simple.

There is therefore good reason to believe that any (real or mathematical)
linear polymer chain which exhibits some flexibility and has short-range,*
predominantly repulsive^ monomer-monomer interactions lies in the same

*Here I mean that the potential is short-range in physical space. It is of course—and this is a
crucial point—long-range along the polymer chain, in the sense that the interaction between two
monomers depends only on their positions in physical space and is essentially independent of
the locations of those monomers along the chain.
tHere "predominantly repulsive" means "repulsive enough so that the temperature is strictly
above the thcta temperature for the given polymer-solvent pair".
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universality class as the self-avoiding walk. This belief should, of course, be
checked carefully by both numerical simulations and laboratory experi-
ments; but at present there is, to my knowledge, no credible numerical or
experimental evidence that would call it into question.

2.7.2 Numerical methods for the self-avoiding walk

Over the decades, the SAW has been studied extensively by a variety of
methods. Rigorous methods have thus far yielded only fairly weak results;11

the SAW is, to put it mildly, an extremely difficult mathematical problem.
Non-rigorous analytical methods, such as perturbation theory and self-
consistent-field theory, typically break down in precisely the region of inter-
est, namely long chains.12 The exceptions are methods based on the renor-
malization group (RG),13~15 which have yielded reasonably accurate
estimates for critical exponents and for some universal amplitude
ratios.16"24 However, the conceptual foundations of the renormalization-
group methods have not yet been completely elucidated;25'26 and high-pre-
cision RG calculations are not always feasible. Thus, considerable work has
been devoted to developing numerical methods for the study of long SAWs.
These methods fall essentially into two categories: exact enumeration and
Monte Carlo.

In an exact-enumeration study, one first generates a complete list of all
SAWs up to a certain length (usually N w 15—35 steps), keeping track of the
properties of interest such as the number of such walks or their squared end-
to-end distances.27 One then performs an extrapolation to the limit N —»• oo,
using techniques such as the ratio method, Fade approximants or differen-
tial approximants.28"30 Inherent in any such extrapolation is an assumption
about the behavior of the coefficients beyond those actually computed.
Sometimes this assumption is fairly explicit; other times it is hidden in the
details of the extrapolation method. In either case, the assumptions made
have a profound effect on the numerical results obtained.25 For this reason,
the claimed error bars in exact-enumeration/extrapolation studies should be
viewed with a healthy skepticism.

In a Monte Carlo study, by contrast, one aims to probe directly the regime
of fairly long SAWs (usually N w 102—105 steps). Complete enumeration is
unfeasible, so one generates instead a random sample. The raw data then
contain statistical errors, just as in a laboratory experiment. These errors
can, however, be estimated—sometimes even a priori (see Section 2.7.3)—
and they can in principle be reduced to an arbitrarily low level by the use of
sufficient computer time. An extrapolation to the regime of extremely long
SAWs is still required, but this extrapolation is much less severe than in the
case of exact-enumeration studies, because the point of departure is already
much closer to the asymptotic regime.
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Monte Carlo studies of the self-avoiding walk go back to the early
1950s,31'32 and indeed these simulations were among the first applications
of a new invention—the "high-speed electronic digital computer"—to pure
science.* These studies continued throughout the 1960s and 1970s, and
benefited from the increasingly powerful computers that became available.
However, progress was slowed by the high computational complexity of the
algorithms then being employed, which typically required a CPU time of
order at least N2+2v = TV*3'2 to produce one "effectively independent"
TV-step SAW. This rapid growth with N of the autocorrelation time—called
critical slowing-down*—made it difficult in practice to do high-precision
simulations with N greater than about 30-100.

In the past decade—since 1981 or so—vast progress has been made in the
development of new and more efficient algorithms for simulating the self-
avoiding walk. These new algorithms reduce the CPU time for generating an
"effectively independent" TV-step SAW from ~ TV*3-2 to ~ N**2 or even ~ TV.
The latter is quite impressive, and indeed is the best possible order of mag-
nitude, since it takes a time of order TV merely to write down an TV-step walk!
As a practical matter, the new algorithms have made possible high-precision
simulations at chain lengths TV up to nearly 105.39

The purpose of this chapter is thus to give a comprehensive overview of
Monte Carlo methods for the self-avoiding walk, with emphasis on the
extraordinarily efficient algorithms developed since 1981.1 shall also discuss
briefly some of the physical results which have been obtained from this
work.

The plan of this chapter is as follows: I begin by presenting background
material on the self-avoiding walk (Section 2.2) and on Monte Carlo meth-
ods (Section 2.3). In Section 2.4 I discuss static Monte Carlo methods for
the generation of SAWs: simple sampling and its variants, inversely
restricted sampling (Rosenbluth-Rosenbluth algorithm) and its variants,
and dimerization. In Section 2.5 I discuss quasi-static Monte Carlo methods:
enrichment and incomplete enumeration (Redner-Reynolds algorithm). In
Section 2.6 I discuss dynamic Monte Carlo methods: the methods are clas-
sified according to whether they are local or non-local, whether they are TV-
conserving or TV-changing, and whether they are endpoint-conserving or
endpoint-changing. In Section 2.7 I discuss some miscellaneous algorithmic
and statistical issues. In Section 2.8 I review some preliminary physical
results which have been obtained using these new algorithms. I conclude

'Here "pure" means "not useful in the sense of Hardy": "a science is said to be useful if its
development tends to accentuate the existing inequalities in the distribution of wealth, or more
directly promotes the destruction of human life" [Ref. 33, p. 120n].
fpor a general introduction to critical slowing-down in Monte Carlo simulations, see Refs
34-37. See also Ref. 38 for a pioneering treatment of critical slowing-down in the context of
dynamic critical phenomena.
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(Section 2.9) with a brief summary of practical recommendations and a
listing of open problems.

For previous reviews of Monte Carlo methods for the self-avoiding walk,
see Kremer and Binder40 and Madras and Slade (Ref. 11, Chapter 9).

2.2 The self-avoiding walk (SAW)

2.2.7 Background and notation

In this section we review briefly the basic facts and conjectures about the
SAW that will be used in the remainder of this chapter. A comprehensive
survey of the SAW, with emphasis on rigorous mathematical results, can be
found in the excellent new book by Madras and Slade.11

Real polymers live in spatial dimension d = 3 (ordinary polymer solutions)
or in some cases in d = 2 (polymer monolayers confined to an interface41'42).
Nevertheless, it is of great conceptual value to define and study the mathe-
matical models—in particular, the SAW—in a general dimension d. This
permits us to distinguish clearly between the general features of polymer
behavior (in any dimension) and the special features of polymers in dimension
d = 3.* The use of arbitrary dimensionality also makes available to theorists
some useful technical tools (e.g., dimensional regularization) and some valu-
able approximation schemes (e.g., expansion in d = 4 — e).15

So let Jz? be some regular ^-dimensional lattice. Then an N-step
self-avoiding waltf (SAW) <j on J$? is a sequence of distinct points
UQ, u j \ , . . . ,WAT in Jz? such that each point is a nearest neighbor of its pre-
decessor.* We denote by \ui\ = N the number of steps in w. For simplicity
we shall restrict attention to the simple (hyper-)cubic lattice 1?\ similar
ideas apply with minor alterations to other regular lattices. We assume all
walks to begin at the origin (WQ = 0) unless stated otherwise, and we let
^N (resp. £ffi(x)) be the set of all JV-step SAWs starting at the origin and
ending anywhere (resp. ending at x).

*It turns out that d = 3 is very special, because it is the upper critical dimension for tricritical
behavior. This is the deep reason underlying the fact that polymers at the theta point in d = 3
are "quasi-ideal" (i.e., have size exponent v = j and have all dimensionless virial coefficients
vanishing in the limit of infinite chain length). In dimension d < 3, polymers at the theta point
are not quasi-ideal.43^7

tThe term "walk" is a misnomer. The SAW should not be thought of as the path of a particle
which "walks" (over time). Rather, it should be thought of as the configuration of a polymer
chain at one instant of time. (In mathematical terms, the SAW is not a stochastic process [not
even a non-Markovian one]: the trouble is that the equal-weight distributions on TV-step and
(N+ l)-step SAWs are not consistent.)
*Note that a SAW is an oriented object, i.e., we distinguish between the starting point (WQ) and
the ending point (o>,v). However, all probability distributions and all observables that we shall
consider are invariant under reversal of orientation (tit = UN-I}- This is necessary if the SAW is
to be a sensible model of a real homopolymer molecule, which is of course (neglecting end-
group effects) unoriented.
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First we define the quantities relating to the number (or "entropy") of
SAWs: Let CN (resp. CN(X)) be the number of TV-step SAWs on Zrf starting at
the origin and ending anywhere (resp. ending at x). Then CN and CN(X) are
believed to have the asymptotic behavior

as N —> oo; here // is called the connective constant of the lattice, and 7 ar
asing are critical exponents. The connective constant is definitely lattic
dependent, while the critical exponents are believed to be universal amor
lattices of a given dimension d. (For rigorous results concerning the asymj
totic behavior of CN and CN(X), see Refs 11, 48-51.)

Next we define several measures of the size of an TV-step SAW:

• The squared end-to-end distance

• The squared radius of gyration

• The mean-square distance of a monomer from the endpoints

We then consider the mean values (R^)N, (&£)N
 and (Rl,)N in tne prob-

ability distribution which gives equal weight to each TV-step SAW. Very little
has been proven rigorously about these mean values, but they are believed to
have the asymptotic behavior

as TV —* oo, where v is another (universal) critical exponent. Moreover, the
amplitude ratios
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are expected to approach universal values in the limit N —> oo.*'t
Finally, let cN{^2 be the number of pairs (u/1), a/2)) such that u/1) is an

TVi-step SAW starting at the origin, a/2) is an A^-step SAW starting any-
where, and a/1) and w^ have at least one point in common (i.e.,
u/1) n w(2) ^ 0). Then it is believed that

as NI , N2 —> oo, where A4 is yet another (universal) critical exponent and g
is a (universal) scaling function.

The quantity CffltN2 is closely related to the second virial coefficient. To see
this, consider a rather general theory in which "molecules" of various types
interact. Let the molecules of type z have a set Sj of "internal states", so that
the complete state of such a molecule is given by a pair (x, s) where x e /rf is
its position and s e Sf is its internal state. Let us assign Boltzmann
weights (or "fugacities") Wt(s) [s e 51,] to the internal states, normalized
so that Y^ses- Wi(s) = 1; and let us assign an interaction energy
ir

ij((x,s),(x',s')} [x,x'eZd,seSi,s'&Sj] to a molecule of type / at
(x, s) interacting with one of type j at (x', s'). Then the second virial coeffi-
cient between a molecule of type / and one of type j is

In the SAW case, the types are the different lengths N, the internal states are
the conformations w e S^n starting at the origin, the Boltzmann weights are
WN(U) = I/CAT for each w e £fN, and the interaction energies are hard-core
repulsions

*For a general discussion of universal amplitude ratios in the theory of critical phenomena, see
Ref. 52.
tVery recently, Kara and Slade48'49 have proven that the SAW in dimension d > 5 converges
weakly to Brownian motion when N —> oo with lengths rescaled by C7V1/2 for a suitable
(nonuniversal) constant C. It follows from this that eq. (2.7) holds with v = 5, and also that
eqs (2.8)/(2.9) have the limiting values A^ = \, B^ = \. Earlier, Slade53"55 had proven these
results for sufficiently high dimension d. See also Ref. 11.
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It follows immediately that

The second virial coefficient B^'N2' is a measure of the "excluded
volume" between a pair of SAWs. It is useful to define a dimemionless
quantity by normalizing B% by some measure of the "size" of these
SAWs. Theorists prefer (R^} as the measure of size, while experimentalists
prefer {R^} since it can be measured by light scattering. We follow the
experimentalists and define the mterpenetration ratio

(for simplicity we consider only N\=NI= N). The numerical prefactor is a
convention that arose historically for reasons not worth explaining here.
Crudely speaking, * measures the degree of "hardness" of a SAW in its
interactions with other SAWs.*

tyN is expected to approach a universal value ** in the limit N —> oo. A
deep question is whether ** is nonzero (this is called hyper scaling). It is now
known that hyperscaling fails for SAWs in dimension d > 4.11-48'49 it is
believed that hyperscaling holds for SAWs in dimension d < 4, but the
theoretical justification of this fact is a key unsolved problem in the theory
of critical phenomena (see e.g., Ref. 39).t

Higher virial coefficients can be defined analogously, but the details will
not be needed here.

Remark The critical exponents defined here for the SAW are precise
analogues of the critical exponents as conventionally defined for ferromag-
netic spin systems.57'58 Indeed, the generating functions of the SAW are
equal to the correlation functions of the w-vector spin model analytically

* A useful standard of comparison is the hard sphere of constant density:

'/\ very oeauuiui neunsiic argument concerning nyperscanng 101 :v\ws was given oy ues
Cloizeaux.56 Note first from eq. (2.14b) that \P measures, roughly speaking, the probability
of intersection of two independent SAWs that start a distance of order {R2,}1/2 ~ N" apart.
Now, by eq. (2.7), we can interpret a long SAW as an object with "fractal dimension" 1/v. Two
independent such objects will "generically" intersect if and only if the sum of their fractal
dimensions is at least as large as the dimension of the ambient space. So we expect \&* to be
nonzero if and only if \/v + \jv > d, i.e., dv < 1. This occurs for d < 4. (For d — 4 we believe
that dv = "2 + logs", and thus expect a logarithmic violation of hyperscaling.)
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continued to n = o.u'59~62 This "polymer-magnet correspondence"* is very
useful in polymer theory; but we shall not need it in this chapter.

2.2.2 The ensembles

Different aspects of the SAW can be probed in four different ensembles^:

• Fixed-length, fixed-endpoint ensemble (fixed N, fixed x)
• Fixed-length, free-endpoint ensemble (fixed N, variable x)
• Variable-length, fixed-endpoint ensemble (variable N, fixed x)
• Variable-length, free-endpoint ensemble (variable N, variable x)

The fixed-length ensembles are best suited for studying the critical expo-
nents v and 2A4 — 7, while the variable-length ensembles are best suited for
studying the connective constant \JL and the critical exponents asing (fixed-
endpoint) or 7 (free-endpoint). Physically, the free-endpoint ensembles cor-
respond to linear polymers, while the fixed-endpoint ensembles with \x = 1
correspond to ring polymers.

All these ensembles give equal weight to all walks of a given length; but
the variable-length ensembles have considerable freedom in choosing the
relative weights of different chain lengths N. The details are as follows:

Fixed-N, fixed-x ensemble. The state space is ff^(x), and the probability
distribution is TT(U;) = \/CN(X] for each u e ^(x).

Fixed-N, variable-x ensemble. The state space is «$*#, and the probability
distribution is TT(W) = l/cj\r for each uj 6 S^M- oo

Variable-N, fixed-x ensemble. The state space is £f(x] = {^^(x), and
the probability distribution is generally taken to be ff-o

where

"It is sometimes called the "polymer-magnet analogy", but this phrase is misleading: at least for
SAWs (athermal linear polymers), the correspondence is an exact mathematical identity (Ref.
11, Section 2.3), not merely an "analogy".
tThe proper terminology for these ensembles is unclear to me. The fixed-length and variable-
length ensembles are sometimes called "canonical" and "grand canonical", respectively (based
on considering the monomers as particles). On the other hand, it might be better to call these
ensembles "microcanonical" and "canonical", respectively (considering the polymers as parti-
cles and the chain length as an "energy"), reserving the term "grand canonical" for ensembles of
many SAWs. My current preference is to avoid entirely these ambiguous terms, and simply say
what one means: "fixed-length", "variable-length", etc.
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Here p > 0 is a fixed number (usually 0 or 1), and /? is a monomer fugacity
that can be varied between 0 and (3C = 1 /p,. By tuning /3 we can control the
distribution of walk lengths N. Indeed, from eq. (2.3) we have

as /3 | /3C, provided that;? + asing > 1.* Therefore, to generate a distribution
of predominantly long (but not too long) walks, it suffices to choose /3
slightly less than (but not too close to) (3C.

Variable-N, variable-x ensemble. T h e state space i s a n d t h e
probability distribution is generally taken to be

where

p and (3 are as before, and from eq. (2.2) we have

as /? t PC- (Here the condition j? + 7 > 0 is automatically satisfied, as a result
of the rigorous theorem 7 > I.11)

An unusual two-SAW ensemble is employed in the join-and-cut algo-
rithm, as will be discussed in Section 2.6.6.2.

2.3 Monte Carlo methods: a review

Monte Carlo methods can be classified as static, quasi-static or dynamic.
Static methods are those that generate a sequence of statistically indepen-
dent samples from the desired probability distribution TT. Quasi-static
methods are those that generate a sequence of statistically independent
batches of samples from the desired probability distribution TT; the correla-
tions within a batch are often difficult to describe. Dynamic methods are
those that generate a sequence of correlated samples from some stochastic
process (usually a Markov process) having the desired probability distribu-
tion TT as its unique equilibrium distribution.

In this section we review briefly the principles of both static and dynamic
Monte Carlo methods, with emphasis on the issues that determine the
statistical efficiency of an algorithm.

*If 0 < p + asing < 1, then (N) ~ (1 - j3^i\ fr+Q'«) as fi t ft, with logarithmic corrections when
P + asing = 0, 1. If p + asing < 0, then (A^) remains bounded as /3 | A-.
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2.3.1 Static Monte Carlo methods

Consider a system with state space (configuration space) S; for notational
simplicity, let us assume that S is discrete (i.e., finite or countably infinite).
Now let TT = {^x}x(-s t>e a probability distribution on S, and let
A = {A(x)}xeS be a real-valued observable. Our goal is to devise a Monte
Carlo algorithm for estimating the expectation value

The most straightforward approach (standard Monte Carlo) is to generate
independent random samples Xi,...,Xn from the distribution TT (if one
can!), and use the sample mean

as an estimate of ^} . This estimate is unbiased, i.e.,

Its variance is

However, it is also legitimate to generate samples X\,...,Xn from any
probability distribution v, and then use weights W(x) = KX/VX- There are
two reasons one might want to sample from v rather than -n. Firstly, it might
be unfeasible to generate (efficiently) random samples from TT, so one may be
obliged to sample instead from some simpler distribution v. This situation is
the typical one in statistical mechanics. Secondly, one might aspire to
improve the efficiency (i.e., reduce the variance) by sampling from a cleverly
chosen distribution v.

There are two cases to consider, depending on how well one knows the
function W(x)\

(b) W(x) is known except for an unknown multiplicative constant
(normalization factor). This case is common in statistical mech-
anics: if TTX = Z^e-WW and vx = Z^V'^M, then W(x) =
(Zpi /Zf))e~~^~P'}H^ but we are unlikely to know the ratio of partition
functions.
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In the first case, we can use as our estimator the weighted sample mean

This estimate is unbiased, since

Its variance is

This estimate can be either better or worse than standard Monte Carlo,
depending on the choice of v. The optimal choice is the one that minimi/es
(WA2^ subject to the constraint (W7""1) = 1, namely

or in other words vx = const x |^(^)|TTX. In particular, if A(x) > 0 the
resulting estimate has zero variance. But it is impractical: in order to
know W(x) we must know the denominator in eq. (2.28), which is the
quantity we were trying to estimate in the first place! Nevertheless, this
result offers some practical guidance: we should choose W(x)~l to mimic
|^4(x)| as closely as possible, subject to the constraint that ^jnxW(x)~ be
calculable analytically (and equal to 1). -xes

In the second case, we have to use a ratio estimator

here the unknown normalization factor in W cancels out. This estimate is
slightly biased: using the small-fluctuations approximation

we obtain
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Since the bias is of order 1 /«, while the standard deviation (= square root of
the variance) is of order l/^/n, the bias is normally negligible compared to
the statistical fluctuation.* The variance can also be computed by the small-
fluctuations approximation

it is

The optimal choice of v is the one that minimizes {W(A — (-4) ) ) subject
to the constraint (W~1^ = I, 

Let us now try to interpret these formulae. First note that

with equamy omy n v = TT. so ^ w f — i measures, in a rougn sense, me
"mismatch" (or "distance") between v and IT. Now assume for simplicity
that A is a bounded observable, i.e., \A(x)\ < M for all x € S. Then it is
immediate from eqs (2.27) and (2.33) that

V " /

So the variances cannot get large unless (W} ^> 1, i.e., v is very distant
from TT; and in this case it is easy to see that the variances can get large. The

* Note that

(with equality if and only if A — c\ + ci W~1) by the Schwarz inequality with measure v applied
to the functions W' — 1 and W(A — (A)^). Therefore, from eqs (2.31) and (2.33) we have (to
leading order in l/«)

So the bias is <c the standard deviation unless { W)^ is enormous.

namely
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moral is this: when the probability distribution actually simulated (v) differs
considerably from the distribution of interest (TT), the variance of the Monte
Carlo estimates can be vastly higher than one might expect naively for the
given sample size n. Heuristically, this is because the states (configurations)
that are "typical" for TT are "rare" for i>, so the useful sample size is much
smaller than the total sample size.

Here is a concrete example: Let S be the set of all TV-step walks (not
necessarily self-avoiding) starting at the origin. Let TT be uniform measure
on self-avoiding walks, i.e.

Unfortunately, it is not easy to generate (efficiently) random samples from TT
(that is the subject of this chapter!). So let us instead generate ordinary
random walks, i.e., random samples from

and then apply the weights W(u)} = 7rw/tv Clearly we have

which grows exponentially for large N. Therefore, the efficiency of this
algorithm deteriorates exponentially as N grows.

The reader is referred to Chapter 5 of Ref. 63 for some more sophisticated
static Monte Carlo techniques. It would be interesting to know whether any
of them can be applied usefully to the self-avoiding walk.

2.3.2 Dynamic Monte Carlo methods

In this subsection we review briefly the principles of dynamic Monte Carlo
methods, and define some quantities (autocorrelation times) that will play
an important role in the remainder of this article.

The idea of dynamic Monte Carlo methods is to invent a stochastic process
with state space S having TT as its unique equilibrium distribution. We then
simulate this stochastic process, starting from an arbitrary initial configura-
tion; once the system has reached equilibrium, we measure time averages,
which converge (as the run time tends to infinity) to 7r-averages. In physical
terms, we are inventing a stochastic time evolution for the given system. It
must be emphasized, however, that this time evolution need not correspond
to any real "physical" dynamics', rather, the dynamics is simply a numerical
algorithm, and it is to be chosen, like all numerical algorithms, on the basis
of its computational efficiency.
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In practice, the stochastic process is always taken to be a Markov process.
We assume that the reader is familiar with the elementary theory of discrete-
time Markov chains.*

For simplicity let us assume that the state space S is discrete (i.e. finite or
countably infinite); this is the case in nearly all the applications considered
in this chapter. Consider a Markov chain with state space S and transition
probability matrix P = {p(x —> y)} = {pxy} satisfying the following two
conditions:

(A) For each pair x, y e S, there exists an n > 0 for which p$y > 0. Here
p^xy = (P")xy is the n-step transition probability from x to y. [This
condition is called irreducibility (or ergodicity); it asserts that each
state can eventually be reached from each other state.]

(B) For each y e S,

(This condition asserts that TT is a stationary distribution [or equili-
brium distribution} for the Markov chain P — {pxy}.)

In this case it can be shown66 that TT is the unique stationary distribution for
the Markov chain P = {pxy}, and that the occupation-time distribution over
long time intervals converges (with probability 1) to TT, irrespective of the
initial state of the system. If, in addition, P is aperiodic [this means that for
each pair x,y € S, p"y > 0 for all sufficiently large n], then the probability
distribution at any single time in the far future also converges to TT, irrespec-
tive of the initial state—that is, lim^oo p^y = iry for all x.

Thus, simulation of the Markov chain P provides a legitimate Monte
Carlo method for estimating averages with respect to TT. However, since
the successive states XQ,XI, ... of the Markov chain are in general highly
correlated, the variance of estimates produced in this way may be much
higher than in independent sampling. To make this precise, let
A = {A(x)}xeS be a real-valued function defined on the state space S (i.e.,
a real-valued observable) that is square-integrable with respect to TT. Now
consider the stationary Markov chain (i.e., start the system in the stationary
distribution TT, or equivalently, "thermalize" it for a very long time prior to
observing the system). Then {At} = {A(X,)} is a stationary stochastic pro-
cess with mean

"The books of Kemeny and Snell64 and losifescu65 are excellent references on the theory of
Markov chains with finite state space. At a somewhat higher mathematical level, the books of
Chung66 and Nummelin67 deal with the cases of countable and general state space, respectively.
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and unnormalized autocorrelation function*

The normalized autocorrelation function is then

Typically PAA(I) decays exponentially (~ e~\'\lr) for large t; we define the
exponential autocorrelation time

and

Thus, rexp is the relaxation time of the slowest mode in the system. (If the
state space is infinite, rexp might be +oo!)t

On the other hand, for a given observable A we define the integrated
autocorrelation time

*In the statistics literature, this is called the autocovariance function.
^An equivalent definition, which is useful for rigorous analysis, involves considering the spec-
trum of the transition probability matrix P considered as an operator on the Hilbert space
/2(7r). [/2(?r) is the space of complex-valued functions on S that are square-integrable with
respect to IT. \\A\\ = (J2x€Snx\A(x)\2)1/2 < oo. The inner product is given by (A,B) = Xltes
K,A(x)*B(x)] It is not hard to prove the following facts about P:

(a) The operator P is a contraction. (In particular, its spectrum lies in the closed unit disk.)
(b) 1 is a simple eigenvalue of P, as well as of its adjoint P*, with eigenvector equal to the

constant function 1.
(c) If the Markov chain is aperiodic, then 1 is the only eigenvalue of P (and of P*) on the

unit circle.
(d) Let R be the spectral radius of P acting on the orthogonal complement of the constant

functions:

Then R = e~l/T"'.

Facts (a)-(c) are a generalized Perron-Frobenius theorem68; fact (d) is a consequence of a
generalized spectral radius formula.69 Note that the worst-case rate of convergence to equili-
brium from an initial nonequilibrium distribution is controlled by R, and hence by r exp.
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(The factor of j is purely a matter of convention; it is inserted so that
Tint,A ~ TexpiA if pAA(t) ~ e~'''/r with T » 1.) The integrated autocorrelation
time controls the statistical error in Monte Carlo estimates of (A). More
precisely, the sample mean

has variance

Thus, the variance of A is a factor 2TM,A larger than it would be if the {At}
were statistically independent. Stated differently, the number of "effectively
independent samples" in a run of length n is roughly n/2rinttA-

In summary, the autocorrelation times rexp and Tint^ play different roles in
Monte Carlo simulations. rexp controls the relaxation of the slowest mode in
the system; in particular, it places an upper bound on the number of itera-
tions Hdisc which should be discarded at the beginning of the run, before the
system has attained equilibrium (e.g., n^c ~ 20rexp is usually more than
adequate). On the other hand, TinttA determines the statistical errors in
Monte Carlo estimates of (A), once equilibrium has been attained.

Most commonly it is assumed that rexp and TinttA are of the same order of
magnitude, at least for "reasonable" observables A. But this is not true in
general. In fact, one usually expects the autocorrelation function PAA(*) to
obey a dynamic scaling law70 of the form

valid in the limit

Here a, b > 0 are dynamic critical exponents and F is a suitable scaling
function; 0 is some "temperature-like" parameter, and 0C is the critical
point. Now suppose that F is continuous and strictly positive, with F(x)
decaying rapidly (e.g., exponentially) as \x\ —> oo. Then it is not hard to see
that
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so that TexptA and T^A have different critical exponents unless a = 0.*
Actually, this should not be surprising: replacing "time" by "space", we
see that rexpiA is the analogue of a correlation length, while Tint^ is the
analogue of a susceptibility; and eqs (2.54)-(2.56) are the analogue of the
well-known scaling law 7 = (2 - rj)v—clearly 7 ̂  v in general! So it is
crucial to distinguish between the two types of autocorrelation time.

Returning to the general theory, we note that one convenient way of
satisfying the stationarity condition (B) is to satisfy the following stronger
condition:

(Summing (B') over x, we recover (B).) (B') is called the detailed-balance
condition; a Markov chain satisfying (B') is called reversible.^ (B') is equiva-
lent to the self-adjointness of P as on operator on the space /2(7r). In this
case, it follows from the spectral theorem that the autocorrelation function
CAA(I) has a spectral representation

with a nonnegative spectral weight do^(A) supported on the interval
[_e-iA>xM5 e-i/T«M] jt follows that

There is no particular advantage to algorithms satisfying detailed balance
(rather than merely satisfying stationarity), but they are easier to analyze
mathematically.

Finally, let us make a remark about transition probabilities P that are
"built up out of other transition probabilities P\,Pi, • • •,Pn'-

(a) If P\, ?2, • • • , Pn satisfy the stationarity condition (resp. the detailed-
balance condition) for TT, then so does any convex combination
P = ELi W Here A,- > 0 and £Z=i A, = 1.

*Our discussion of this topic in Ref. 71 is incorrect. A correct discussion can be found in Ref. 72.
^For the physical significance of this term, see Kemeny and Snell (Ref. 64, section 5.3) or
losifescu (Ref. 65, section 4.5).
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(b) If JPi, Pa, • • • j Pn satisfy the stationarity condition for TT, then so does
the product P = PI Pa • • • Pn. (Note, however, that P does not in gen-
eral satisfy the detailed-balance condition, even if the individual P,
do.*)

Algorithmically, the convex combination amounts to choosing randomly,
with probabilities {A,-}, from among the "elementary operations" P,-. (It is
crucial here that the A, are constants, independent of the current configura-
tion of the system; only in this case does P leave TT stationary in general.)
Similarly, the product corresponds to performing sequentially the operations
Pi ,P2, . . . ,P«-

2.4 Static Monte Carlo methods for the SAW

2.4.1 Simple sampling and its variants

The most obvious static technique for generating a random A^-step SAW is
simple sampling: just generate a random Af-step ordinary random walk
(ORW), and reject it if it is not self-avoiding; keep trying until success. It
is easy to see that this algorithm produces each Af-step SAW with equal
probability. Of course, to save time we should check the self-avoidance as
we go along, and reject the walk as soon as a self-intersection is detected.
(Methods for testing self-avoidance are discussed in Section 2.7.1.2.) The
algorithm is thus:

title Simple sampling.
function ssamp (N)
comment This routine returns a random JV-step SAW.

w0 <- 0
start: for i = 1 to JV do

dii <— a random nearest neighbor of dil_\
if dii e {u0,... ,w/_i} goto start

enddo
return u

(Here and in what follows, we will express algorithms in "pseudocode".
Translation to your favorite language—Fortran, C or whatever—is almost
always trivial.)

The trouble with this algorithm is, of course, the exponentially rapid
sample attrition for long walks. Clearly, the probability of an A^-step walk
being self-avoiding is Cfj/(2d)N, which behaves for large N as

* Recall that if A and B are self-adjoint operators, then AS is self-adjoint if and only if A and B
commute.
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where

is called the attrition constant. Therefore, the mean number of attempts
required to generate an TV-step SAW is (2d)N/c^, which grows roughly as
eXN. And the mean CPU time per attempt is of order min(l/A, TV). So this
method is extremely inefficient in generating SAWs of length N ̂  10/A. For
the simple (hyper-)cubic lattices in dimensions 2, 3 and 4, the values of A are
approximately 0.42, 0.25 and 0.17, respectively (see Table 2.1). So it is
unfeasible to generate SAWs of length more than w 20-60 steps by simple
sampling. All alternative SAW Monte Carlo techniques are aimed essen-
tially at alleviating this attrition problem—hopefully without introducing
other problems of equal or greater severity!

Some improvement can be obtained by modifying the walk-generation
process so as to produce only walks without immediate reversals (such walks
are called non-reversal random walks (NRRWs) or memory-2 walks). The
algorithm is thus:

title Non-reversal simple sampling.
function nrssamp (N)

comment This routine returns a random TV-step SAW.

w0 «— 0
ui\ <— a random nearest neighbor of 0

start: for i = 2 to N do
u)j <— a random nearest neighbor of w,-_i, not equal to w(_2

if MI € { w o , . . . , w,--i} goto start
enddo
return u

Table 2.1 Connective constant /j, and attrition constants A and X' for simple
(hyper-)cubic lattices in dimensions 2 < d < 6 and d—>• oo. Estimated errors
in the last digit (s) are shown in parentheses.

d p , A A'

2 2.638158 5 (10)27'73 0.416 0.129
3 4.683 907 (22)74 0.248 0.065
4 6.7720 (5)75 0.167 0.033
5 8.8386 (8)76 0.123 0.018
6 10.878 8 (9)76 0.098 0.011

d^oo 2d-\-(2d)-1-..50'51'17-19 (2d)-l + ... (2d)~2 + ...
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Then (2d)N is replaced by 2d(2d- \)N~l, and the attrition rate is

For comparison, A' is approximately 0.13, 0.07 and 0.03, respectively, for
d— 2,3,4. This is much smaller than in the unmodified scheme, but the
exponential attrition is still prohibitive for walks of length more than
K, 80-300 steps.

The logical next step is to modify the walk-generation process so that
walks with loops of length < r are automatically absent. Let us start by
building the walk out of strides of r steps.80* That is, let us enumerate in
advance all the r-step SAWs—call them a/1 ',... ,u}^Cr\ (Obviously this takes
a memory of order rcr, and so is feasible only if r is not too large.) We then
build up the walk by repeated concatenation of strides. For simplicity let us
assume that N is a multiple of r:

title Simple r-step stride sampling.
function simstride (r, k)
comment This routine returns a random fcr-step SAW.

start: w <— {0} (zero-step SAW at the origin)
for i = 1 to k do

a <— a random integer from the set {!,..., cr}
uj <— u o u(°) (concatenation)
if U is not self-avoiding goto start

enddo
return cj

The probability of surviving to length N = kr is

There is still exponential attrition (since cr > //), but this attrition can in
principle be made arbitrarily small by taking r large (since um(._»00cr'

r = /^).
In practice we can probably handle rcr of order 106 on a modern-day work-
station, t The resulting attrition rates A^ are shown in Table 2.2. They are
far from spectacular; the trouble is that cr converges rather slowly to ̂

Of course, we can do better by choosing u^ from among only those
r-step walks whose first step is not opposite to the last step of the current

"The treatment in the remainder of this section relies heavily on Ref. 11, Section 9.3.1, which is
in turn an explication of Ref. 63, p. 129.
t Of course, we can reduce the memory requirements by at least a factor 24 by exploiting
symmetry, e.g., storing only those r-step SAWs whose first step is in some particular direction.
But this only increases the feasible r by about 1.

*From eq. (2.2) we have
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Table 2.2 Attrition constants A^ and A'^ for simple and non-reversal r-stride
sampling. For each d, we have taken the largest r such that re, < 106.

d r cr rcr A« = log(cJ/Y/*) A'w = log((*&cr)
l'r/ii)

2 10 44100 441000 0.099 0.071
3 7 81390 569730 0.071 0.045
4 6 127160 762960 0.046 0.024
5 5 64250 321250 0.035 0.014
6 5 173172 865860 0.026 0.008

w. In this non-reversal r-step stride sampling, the probability of surviving to
length TV = kr is

The resulting attrition rates A'W are shown in the last column of Table 2.2.
Neither of these algorithms in fact eliminates all loops of length < r,

because such loops can be formed by the concatenation of two r-step strides.
But we can eliminate such loops if we are willing to pre-compute the list of
legal pairs of strides. That is, for each index a (1 < a < cr), we make a list La

containing those indices /? such that u/a) o a/'3) is self-avoiding. (This takes a
memory of order cjf.) Now, it would not be correct to choose at each stage of
the algorithm a random SAW from the appropriate list La; the trouble is that
the lists do not all have the same number of elements, and as a result the walks
would not be generated with uniform probability (see also Section 2.4.2).
Instead, we must allow the possibility of "rejections". Let c* = max \La\ be
the number of elements in the largest list. We can then perform: ls°-"

title Super-duper r-step stride sampling.
function supstride (r, k)
comment This routine returns a random fee-step SAW.

«i <— a random integer from the set {1, . . . , cr}
start: u <- i>'>

for i = 2 to k do
m <— a random integer from the set {!,..., c*}
if m > \L0l J goto start (this is the "rejection")
a, *— the m"1 element from La. ^

(a •}u> <— woo; ''
if u) is not self-avoiding goto start

cnildo
return w
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Clearly the probability of surviving to length N = kr is

Little is known about c*, but it is certainly < ^^-cr, and probably not much
less. In practice, the extravagant memory requirements of this method limit
r to very small values; for a given amount of memory, non-reversal stride
sampling probably works better.*

2.4.2 Inversely restricted sampling ( Rosenbluth-Rosenbluth algorithm)

The exponential attrition of simple sampling and its variants arises from the
fact that each new step of the walk might lead to a self-intersection. So it is
tempting to envisage an algorithm in which one chooses randomly (with
equal probability) from among only those next steps which do not lead to a
self-intersection (assuming such steps exist). Unfortunately, this means that
SAWs are not generated with uniform probability; rather, the probability
that this algorithm generates a given TV-step SAW uj is

where kt = fc,-(u;o) • • • j^i-i) is the number of choices available at step iJ
Therefore, each walk must be assigned a weight W(uj) ~ l/P(ui), and the
mean value of an observable &(uj) must be estimated from a sample of walks
a/1',... ,u/") by a ratio of weighted averages:

This method is known as inversely restricted sampling?1'&2

title Inversely restricted sampling.
function irsamp (N)
comment This routine returns an W-step SAW and its weight factor.

'Actually, it suffices to store the list lengths La , and not the lists themselves. One can then
choose at by repeatedly trying to find a stride compatible with a/"'-1', together with a prob-
ability 1 — \Lai_l \/c* of giving up ("rejection") at each try.
tHere "const" is in fact the reciprocal of the probability of surviving in this algorithm to N steps
without getting "trapped".
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w0 <— 0
start: weight <— l/[2d(2d- \)N~l] (this is merely a convenient normalization)

for / = 1 to TV do
51,-«— set of all nearest neighbors of w,-_.j not contained in {w0, . • • , w<-i }
if S, = 0 goto start (the walk is "trapped")
w; <— a random element of £,•
weight <— weight x|S<|

enddo
return (o>, weight)

This method has several difficulties: Firstly, there is still exponential sam-
ple attrition for long walks (although at a much slower rate than in simple
sampling): it is caused now not by mere self-intersection, but by "trapping".
This is most serious in d = 2.83~86 Secondly, a ratio estimator (2.67) is
slightly biased; however, as discussed in Section 2.3.1, this difficulty is neg-
ligible for large sample size n.87 The most serious difficulty is that "the
weights are almost certain to get out of hand, a few of them being very
much larger than all the rest. This means that the greater part of the data,
corresponding to the negligible weights, gets ignored" (Ref. 63, p. 131).
Thus, the variance of the estimates will be vastly higher than one might
expect naively for the given sample size n. This is in fact a general problem
in any Monte Carlo work in which the probability distribution actually
simulated differs considerably from the distribution of interest (see
Section 2.3.1). In the case at hand, one expects that the discrepancy between
the two distributions will grow exponentially as the chain length N gets large.
This has been verified numerically by Batoulis and Kremer,86 who conclude
that for large N inversely restricted sampling is inferior to non-reversal
simple sampling.

Fraser and Winnik88 have proposed a generalization of inversely
restricted sampling, based on strides with cleverly chosen probabilities.
Meirovitch89"92 has introduced a slightly different generalization (which
he calls the "scanning method"), in which the algorithm looks ahead
more than one step. But neither of these methods appears to avoid the
exponential explosion of weights, although they may reduce it.

2.4.3 Dimerization

The dimerization algorithm93 is an implementation of the computer scien-
tists' principle of "divide and conquer" (Ref. 94, Section 1.3).95 To generate
an TV-step self-avoiding walk, we generate two independent (TV/2)-step
SAWs ("dimers") and attempt to concatenate them. If the result is self-
avoiding, we are done; otherwise, we discard the two walks and start
again from scratch. This procedure can now be repeated recursively: to
generate each of the (TV/2)-step SAWs, we generate a pair of (TV/4)-step
SAWs and attempt to concatenate them, and so on. For TV < some cutoff
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NO, we stop the recursion and generate the SAWs by some primitive method,
such as non-reversal simple sampling. The dimerization algorithm can thus
be written recursively as follows:

title Dimerization (recursive version).
function dim(7V)
comment This routine returns a random Af-step SAW.

if N < N0 then
u <— nrssamp(AO
return u

else
NI <- [7V/2J (integer part)
N2 ^N - N,
start:

w(1) <- dimCtfi)
u/2) <- dim(W2)
<j} *— a/1' o w(2) (concatenation)
if di is not self-avoiding goto start
return uj

endif

It is easy to prove inductively that algorithm dim produces each TV-step
SAW with equal probability, using the fact that the subroutine nrssamp
does so. It is crucial here that after a failure we discard both walks and start
again from scratch.

A non-recursive description of this same algorithm is given by Suzuki.93

Let us analyze96 the efficiency of the dimerization algorithm under the
scaling hypothesis

(cf. eq. (2.2)). Let TN be the mean CPU time needed to generate an TV-step
SAW by algorithm dim. Now, the probability that the concatenation of two
random (TV/2)-step SAWs yields an TV-step SAW is

where B = A/4^~l. We will need to generate, on average, I/PN pairs of
(TV/2)-step SAWs in order to get a single TV-step SAW; hence

(We have neglected here the time needed for checking the intersections of
the two dimers; this time is linear in N, which, as will be seen shortly, is
negligible compared to the time 27^/2 for generating the two dimers.)
Iterating this k times, where k = log2(TV/TVo) is the number of levels, we
obtain
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where

and CQ depends on NQ. Thus, the growth of TN is slower than exponential in
N; but if 7 > 1 (which occurs for d < 4) it is faster than any polynomial in N.
Fortunately, however, the constants C\ and C2 are very small: see Table 2.3.
For d = 2 (resp. d = 3) this means that in practice TN behaves like A^2"3 up
to N of order several thousand (resp. several million). In d = 4 the behavior
is presumably ~ A^1 los logJV+<?2. For d > 5 we have C{ = 0 and C2 only very
slightly larger than 1, so dimerization is extraordinarily efficient: a random
TV-step SAW can be produced in a CPU time that grows only slightly faster
than linearly in N.

The efficiency can be improved further by choosing the first step of a/2) to
avoid reversing the last step of a/1'. This effectively replaces A by [(2d - 1 )/2d\
,4ineq.(2.72b),andhenceC2byC2' = C2 - \og2[2d/(2d- !)].SeeTable2.3for
the effect of this change.

It is an open question whether for d < 4 there exists any static Monte
Carlo algorithm for generating a random Af-step SAW (with exactly uni-
form distribution) in a mean CPU time that is bounded by a polynomial in
N. (For discussion of some statistical issues related to dimerization, see
Ref. 11, Section 9.3.2.)

Table 2.3 Efficiency of dimerization algorithm as a function of lattice dimen-
sion d. Estimates are obtained by extrapolation of the available counts CN
(Ref. 11, Tables C. 1 and CA). The last line is a rigorous bound valid for
all d> 5 (Ref. 11, p. 172). The case d=4 is somewhat anomalous, as it is
believed14 that CN ~ p,N(logN)1'4 in contrast to the usual power-law behavior
(eq. (2.2)).

d p, (est.) 7 (est.) A (est.) Ci C2 C'2

2 2.6381585 43/32 1.1775 11/64^0.172 0.72 0.31
3 4.6839066 1.162 1.1845 0.081 1.00 0.74
4 6.7720 I(xlog1 / 4) — — — -~
5 8.83861 1 1.25 0 1.32 1.17
6 10.87879 1 1.16 0 1.21 1.09

nl\d>5 — 1 < 1.493 0 < 1.58 < 1.58
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Remark A slightly different version of the dimerization algorithm was
invented independently by Alexandrowicz97'98 and used subsequently by
many others. In this version, one begins by producing a large initial batch
of M-step SAWs, where M is some small number (« NO); one then joins
randomly chosen pairs to form walks of length 2M, and so forth. The
trouble with this method is that the same subchains of length M, 2M,
4M, etc. tend to occur repeatedly in the SAWs produced. Thus, the sample
of SAWs produced is both slightly biased (SAWs with two or more identical
subchains of length M are favored) and somewhat correlated, but it is
difficult to assess these effects quantitatively. Both effects can be reduced
by using an extremely large initial batch of SAWs, and by making not too
many dimerization attempts per batch, but this is likely to be inefficient or
unreliable or both. In my opinion Alexandrowicz' version of dimerization
should not be used; algorithm dim is simpler, more efficient, and—above
all—is correct.

2.5 Quasi-static Monte Carlo methods for the SAW

2.5.7 Quasi-static simple sampling

In each of the foregoing static methods, a slight improvement in efficiency
can be obtained by working with several different values of N at once, and
noticing that "a walk that intersects itself for the first time at the M'h step
provides [unbiased] instances of N-step self-avoiding walks for all N < M"
(Ref. 63, p. 129). The resulting method is quasi-static in our classification:
each pass through the algorithm produces a batch of SAWs (of various
lengths) which are highly correlated among themselves, although successive
batches are independent of each other. Unfortunately—and this seems to be
characteristic of quasi-static methods—it appears difficult to estimate quan-
titatively the degree of correlation between the various SAWs in a given
batch, and therefore difficult to estimate the actual statistical efficiency of
the method.

2.5.2 Enrichment

One method of generating long SAWs with much less attrition than (non-
reversal) simple sampling is the enrichment technique": if a walk survives to
s steps, then several (f) copies are made of it and each copy is used inde-
pendently as a starting point for further attempts to add steps; and likewise
at 2s, 3s, etc. (The same idea was used earlier in Monte Carlo work on
neutron-transport problems [Ref. 63, Section 8.2].) The free parameters s
and t must be chosen judiciously (see below). This method is quasi-static: the
SAWs produced in a single pass through the algorithm (i.e., the progeny of a
single s-step SAW) are manifestly correlated, since they all have the same
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initial s steps and many of them have the same initial 2*, 3s,... steps as well.
However, as before, it is difficult to assess this correlation quantitatively.
(Indeed, the quasi-static simple sampling method can be considered to be
the special case of the enrichment method with s = t = 1.)

The enrichment algorithm can be analyzed semi-quantitatively as fol-
lows100 (Ref. 11, Section 9.3.3): Let Mns (a random variable) be the number
of «,y-step walks that are produced in a single pass through the algorithm; by
definition of "single pass" we have Ms=l. (The data produced by succes-
sive passes through the algorithm are obviously independent.) A SAW of
length ns gives rise to t copies, each of which survives to length (n + 1 )s with
(average) probability*

So we can regard Ms, M^,... as a branching process11*2 in which Mns is the
number of "individuals" alive in the nth generation. We assume that each
individual reproduces independently, producing a number of "children"
which is a binomial random variable with parameters t and
a=[/V(2<*-l)] ' . t

It is easy to see that (Mm) = (to)". Thus, if to < 1 there is exponential
sample attrition, just as in simple sampling. If to > 1, some (although not
all) starts lead to an exponential explosion of progeny; this is undesirable, as
great computational effort will be expended in producing these samples, but
the information contained in them is less than proportional to that effort,
because they are highly correlated. The most interesting case is to = 1: every
start dies out eventually, but the mean lifetime of a start is infinite. More
precisely, it can be shown102 that

where a2 = (1 — a)t = t - 1. Thus, Mns is nonzero only with probability of
order l/«; but when it is nonzero it is typically of order n? On the other

* For large n, one has (from eq. (2.2)) an m (j^y)*(l + -)7"1 (j^ry/ as n —> oo, irrespective of the
value of s or of 7. For even s this convergence is actually a rigorous theorem.101

^This assumption is not really correct: the trouble is that some SAWs will have higher or lower
"fertility" than others (i.e., be harder or easier to intersect with); and these fertilities are some-
what correlated between different walks in the process, as all these walks share some common
segments (the degree of correlation obviously depends on the relative location of the two SAWs
in the "family tree"). Nevertheless, this assumption seems to be a reasonable approximation.
*This prediction is strikingly confirmed by Grishman's103 empirical observations for to fa 1 and
large but fixed n: "if the enrichment parameters are adjusted to make the total number of
generated walks approximately equal to the number of starts, one will find that most of the
starts 'die out' before generating any walks, while a few starts each lead to a large number of
walks."
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hand, it is not hard to see that the mean CPU time per start is (when to = 1)
of order n times the CPU time needed to produce a single s-step segment.*
So even if we make the over-pessimistic assumption that all the walks in the
nth generation of a given start are perfectly correlated (and thus carry only as
much information as one walk), it follows that we can obtain one indepen-
dent ns-step walk in a CPU time of order n2 (i.e., ~ n starts each taking a
CPU time ~ «). This ~ N2 behavior is exceptionally good: it is better than
all known static algorithms (e.g., dimerization) in dimension d < 4, and it is
comparable to most of the new dynamic algorithms (see Section 2.6). The
enrichment algorithm definitely deserves a systematic theoretical and
empirical study.

Remarks
1. The integer t can also be a random variable; in this case the role of to is

played by (f)a. This generalization is useful in permitting fine-tuning of
(t}a.

2. The ~ N2 obtained here may really be ~ NJ+l if one takes account of
the corrections to the « sign in eq. (2.73) (see also Sections 2.5.3 and
2.6.6.1).

2.5.5 Incomplete enumeration ( Redner-Reynolds algorithm)

Incomplete enumeration104'105 is a quasi-static algorithm that generates a
batch of SAWs from the variable-N, variable-x ensemble (eq. (2.18)) with
p = 0. The idea is to take a standard algorithm for systematically enumer-
ating all self-avoiding walks up to some length Nmax, and modify it so that it
pursues each branch of the "SAW tree" only with some probability /3 < 1:

title Incomplete enumeration (recursive version).
subroutine incenum (u,fS, Nmax)
comment This routine performs an incomplete enumeration of the SAW tree

beginning at <j, with probability parameter /9, up to maximum length Nmax.

append a to output list
if u > Nmax return
for i = 1 to Id do

U <— random number uniformly distributed on [0, 1]
if U </3 then

u' <- one-step extension of u> in direction i
if u/ is self-avoiding incenum (w',/3, Nmax)

c'lidif
enddo
return

"Here I assume that one tests self-avoidance using a method that takes a CPU time of order 1
per added step (see Section 2.7.1.2).
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To perform an incomplete enumeration of the SAW tree beginning at the
"root", one simply invokes incenum({0},/?,Nmax), where {0} is the zero-
step walk at the origin. Typically one chooses j3 < (3C = 1 ///; in this case it is
safe to set Nmax = oo. (If one sets Nmax = oo when j3 > j3c, then with nonzero
probability the algorithm will run forever!)

A non-recursive implementation of incomplete enumeration can be found
in Ref. 11, Section 9.3.3.

Incomplete enumeration is very closely related to enrichment: indeed, it is
nearly identical to the enrichment algorithm in which s = 1 and t is a bino-
mial random variable with parameters Id and (3. The only difference is that
the enrichment algorithm performs "sampling with replacement" among the
various one-step extensions of w (i.e., the same uj' could occur more than
once), while incomplete enumeration performs "sampling without replace-
ment" (each w' occurs at most once). So one expects incomplete enumera-
tion to be slightly more efficient, in that the resulting batch of SAWs will be
less correlated. (Indeed, there may even be some a«?zcorrelation arising from
the sampling without replacement: this certainly occurs if, for example,
(3 = 1. On the other hand, for /3 <C 1 one still has strong positive correlation
for the same reason as in the enrichment algorithm: many walks share the
same initial segments.)

The CPU time for one invocation of incomplete enumeration is obviously
proportional to the total number of walks encountered during the enumer-
ation.* On the average this is

On the other hand, it is reasonable to guess tnat, as in enncnment,

Prob(at least one TV-step SAW is produced) ~ \/N for TV ~ (N}. (2.77)

So if we make the over-pessimistic assumption that all the walks of length TV
in a given batch are perfectly correlated (and thus carry only as much
information as one walk), it follows that we can obtain one independent
TV-step walk in a CPU time of order TV7"1"1 (i.e., choose j3 so that (TV) ~ TV,
then make ~ TV starts each taking a CPU time ~ TV7).

This differs from the estimate made previously for enrichment, because 7
is in general slightly larger than 1 (namely 43/32 in dimension d = 2, ss 1.16
in d = 3, and 1 in d > 4). However, I suspect that the correct answer in both
cases is TV7"1"1, and that this would be obtained also in the branching-process
analysis if one were to take account of the n-dependence of an [i.e.
a«K (s^i")^ +«)7+I]- The incomplete-enumeration algorithm is also
closely related to the slithering-tortoise algorithm discussed in Section
2.6.6.1, and the same (TV) versus {TV}7 issue arises there.

"Here I assume that one tests self-avoidance using an 0(1) algorithm (see Section 2.7.1.2).
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In any case, the incomplete-enumeration algorithm is potentially quite
efficient, and deserves a systematic theoretical and empirical study.

2.6 Dynamic Monte Carlo methods for the SAW

In this section I discuss dynamic Monte Carlo methods for generating
SAWs in various ensembles. I emphasize that the stochastic dynamics is
merely a numerical algorithm, whose goal is to provide statistically inde-
pendent samples from the desired distribution TT in the smallest CPU time
possible. It need not correspond to any real "physical" dynamics! Indeed, the
most efficient algorithms typically make non-local moves which would be
impossible for real polymer molecules.

2.6.7 General considerations

This subsection contains some exceedingly pedantic—but I hope useful—
general considerations on dynamic Monte Carlo algorithms.

The study of a Monte Carlo algorithm can be divided into three stages:

• specification of the algorithm;
• verification of the algorithm's validity; and
ii study (by mathematical, heuristic and/or numerical means) of the algor-

ithm's efficiency.

Let us consider these aspects in turn:
To specify a dynamic Monte Carlo algorithm, we must specify three

things:

1. The state space S.
2. The desired equilibrium measure TT.
3. The transition probability matrix P = {P(<JJ —> <*•"')}.

Here S and TT specify the model that we wish to study, while P specifies the
numerical method by which we propose to study it.* With regard to P, it is
useful to subdivide the issue further, by specifying successively:

3a. The set of allowed elementary moves, i.e., the transitions u —» LL>' for
which p((jj —> a/) > 0.

3b. The probabilities p(u> —-> a/) for the allowed elementary moves.

*Of course, the choice of P trivially determines S; and if P is ergodic (as it should be if the
algorithm is to be valid), then it also determines ir. But it is nevertheless useful conceptually to
distinguish the three ingredients, which typically correspond to the chronological stages in
inventing a new Monte Carlo algorithm.
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After specifying the algorithm, we must prove the algorithm's validity. As
discussed in Section 2.3.2, this has two parts:

(A) We must prove ergodicity ( irreducibility ) , i.e., we must prove that we
can get from any state u e S to any other state a/ e S by some finite
sequence of allowed elementary moves.

(B) We must prove the stationarity of TT with respect to P.

Ergodicity is a combinatorial problem; it depends only on the set of allowed
elementary moves, not on their precise probabilities (this is the motivation
for distinguishing sub-questions 3a and 3b). For many SAW algorithms, the
proof of ergodicity is highly nontrivial. Indeed, in several embarrassing
cases, an algorithm was used for many years before it was realized to be
non-ergodic. As for stationarity, this is usually (though not always) verified
by showing that P satisfies detailed balance for TT (eq. (2.57)) or is built up
out of constituents P\,...,Pn which do so (as discussed at the end of Section
2.3.2).

Once the algorithm is known to be valid, we can investigate its computa-
tional efficiency, as measured by the amount of CPU time it takes to gen-
erate one "statistically independent" sample from the distribution TT. This
study also has two parts:

(i) Investigate the autocorrelation times TinttA (for observables A of inter-
est) and rexp.

(ii) Investigate the computational complexity of the algorithm, i.e., the
mean CPU time per iteration (henceforth denoted TCpu)-

The CPU time per "statistically independent" sample is then 2Tint

and this provides a criterion for comparing algorithms: for given S and TT,
the best algorithm is the one with the smallest product Tint^Tcpu- (This
criterion may of course depend on the observable A.) Both aspects (i) and
(ii) should be studied by all the methods at our disposal: rigorous mathe-
matical analysis, heuristic physical reasoning, and numerical experimenta-
tion. Since we are primarily interested in long self-avoiding walks, we will
emphasize the asymptotic behavior of TintiA, rexp and TCPU as N — > oo (or
(jV) — > oo for the variable- N algorithms). Usually these quantities behave as
some power of N or (N), in which case we can identify a dynamic critical
exponent.

Remarks
1 . We are here always considering the relaxation time of the autocorrela-

tion functions in equilibrium, as it is this relaxation time which is of primary
importance for determining the statistical accuracy of the Monte Carlo
method (see Section 2.3.2). Some studies106"109 have focused instead on
the relaxation to equilibrium from a highly nonequilibrium initial state;
but as Kranbuehl and Verdier110 have pointed out, this quantity may well
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have a strictly smaller dynamic critical exponent. An analogous situation
arises in the Glauber dynamics for the Ising model.111*

2. In this chapter we always measure time in units of attempted elemen-
tary moves. Much of the literature on dynamic SAW models uses a time
scale of attempted elementary moves per bead; autocorrelation times
expressed in this way should be multiplied by TV (actually N+ 1) before
comparing them to the present paper.

2.6.2 Classification of moves

The elementary moves in a SAW Monte Carlo algorithm can be classified
according to whether they are

• TV-conserving or TV-changing
• endpoint-conserving or endpoint-changing
• local or non-local

Obviously, fixed-TV algorithms must use only TV-conserving moves, while
variable-TV algorithms are free to use both TV-conserving and/or TV-changing
moves (and indeed must use some of the latter in order to satisfy ergodicity).
An analogous statement holds for fixed-.*; and variable-x algorithms with
regard to endpoint-conserving and endpoint-changing moves. The distinc-
tion between local and non-local moves will be explained later.

Within these limitations, the elementary moves to be discussed below can
be mixed more or less freely to make "hybrid" algorithms. The art is, of
course, to find a useful combination. (A cocktail can be made by mixing any
set of liqueurs in any proportions, but there is no guarantee that the result-
ing concoction will taste good! In particular, it may or may not taste better
than the individual ingredients taken separately.) Thus, a hybrid algorithm
is useful when its performance is superior to that of either of its "pure"
components, in the sense of having a smaller product TintiA TCpu- Roughly
speaking, this occurs when the "slow modes" under one type of move are
speeded up by the other type of move. (An extreme case of this is when the
combined algorithm is ergodic while both pure algorithms are nonergodic.)

Note that a hybrid algorithm always contains one or more free para-
meters—namely the relative probabilities of the different types of moves—
which can be tuned to optimize the computational efficiency. (Often this

*In principle, the asymptotic behavior as / —> oo of the relaxation from nonequilibrium is con-
trolled by the same rexp as the autocorrelation in equilibrium. But to observe this asymptotic
relaxation in practice would require enormous statistics (e.g., tens of thousands of repeat runs).
Most of these studies have focused instead on the initial relaxation—e.g., the time to relax to
within 1/e,106'109 the time(s) in a phenomenological fj^107'108 or the area under the relaxation
curve111"113—and all of these are likely to exhibit a smaller dynamic critical exponent than
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requires a trade-off between autocorrelation time and computational com-
plexity, particularly if one move is local while the other is non-local.) This
optimization is a nontrivial problem, and it must be approached system-
atically if the results are to be of any use. (The behavior of the algorithm at
some arbitrarily chosen set of parameter values may be completely
misleading.) A priori there are three possibilities:

(a) One of the pure algorithms is superior to any nontrivial hybrid.
(b) The optimal hybrid is better than either of the pure algorithms, but

only by a bounded factor (e.g., 2 or 10 or whatever).
(c) The optimal hybrid has a better dynamic critical exponent than either

of the pure algorithms, so that its superiority factor grows without
bound as N —> oo.

The most interesting hybrid algorithms are of course those of type (c). But
those of type (b) should not be sniffed at, if the gain is large enough (and the
human effort required to find an optimal or nearly-optimal mixture is not
too large).

Most of the elementary moves to be discussed below have the property
that the resulting walk w' is not guaranteed to be self-avoiding. Therefore, it
is necessary to test whether u/ is self-avoiding (see Section 2.7.1.2 for meth-
ods for doing this). If w' is self-avoiding, then the proposed move is
accepted; otherwise, it is rejected, and the old walk is counted once again
in the sample. This procedure can be understood as the Metropolis criterion
for the energy function

One final remark: Up to now we have adopted the convention that all
walks start at the origin (WQ = 0) unless specified otherwise. However, some
of the moves to be discussed below may alter the initial site of the walk so
that it is no longer at the origin. One could, of course, imagine that the
resulting walk is then translated back to the origin. But a more convenient
approach is to consider all translates of a given SAW to be equivalent; then
we need not worry where the initial point is.* This is how the algorithms are
most efficiently implemented in practice. (Every once in a while one should
translate the walk back to the origin, just as a precaution against integer
overflow.)

*In mathematical language, we redefine f^n to be the set of equivalence classes of Af-step SAWs
modulo translation. (And likewise for the other state spaces.) Note also that the observables
(2.4)-(2.6) are unaffected by translation of the walk, hence they are well-defined on equivalence
classes.
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2.6.3 Examples of moves

2.6.3.1 Local N-conserving moves

A local move is one that alters only a few consecutive sites ("beads") of
the SAW, leaving the other sites unchanged. Otherwise put, a local move
excises a small piece from the original SAW and splices in a new local
conformation in its place. (Of course, it is always necessary to verify that
the proposed new walk is indeed self-avoiding.) In this subsection we con-
centrate on N-conserving local moves, i.e., those in which the excised and
spliced-in subwalks have the same number of beads.

More precisely, let uj and w' be jV-step SAWs, and let k be an integer > 1.
We say that u> and u>' are interconvertible by a k-bead move if there exists an
index imin (0 < imin <N — k+\) such that ujt = ui- for all z except possibly
i = imin, imin + !,..., imin + k — 1. (We shall also assume that u>tmlii ^ w'im.n and
ujimiri+k-\ 7^ <*>{ +£_i> since otherwise uj and u/ would be interconvertible also
by some move of less than k beads.) If imin = Q or N — k+ l,we call this an
end-group k-bead move; otherwise we call it an internal A>bead move.
Clearly, internal moves are endpoint-conserving, while end-group moves
are not.

In Fig. 2.1 we show all the possible one-bead moves (on a hypercubic
lattice). Move A is a "one-bead flip" (also called "kink-jump"); it is the only
one-bead internal move. Moves B and C are end-bond rotations.

In Fig. 2.2 we show all the possible internal two-bead moves. Move D is a
"180° crankshaft". Move E is a "90° crankshaft"; of course it is possible
only in dimension d > 3. Move F is a "two-bead L-flip". Move G permutes
three successive mutually perpendicular steps (which lie along the edges of a
cube); again this is possible only in dimension d > 3.

We leave it to the reader to construct the list of two-bead end-group
moves. There are numerous three-bead moves; a few interesting ones are
shown in Fig. 2.3.

Fig. 2.1 All one-bead local moves. (A) One-bead flip. (B) 90° end-bond rotation. (C) 180° end-
bond rotation.
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Fig. 2.2 All internal two-bead local moves. (D) 180° crankshaft. (E) 90° crankshaft (d> 3
only). (F) Two-bead L-flip. (G) Cube permutation (d > 3 only).

Fig. 2.3 Some selected internal three-bead local moves. (H) Three-bead J-flip. (I) Three-bead
180° crankshaft.

2.6.3.2 Bilocal N-conserving moves

A bilocal move is one that alters two disjoint small groups of consecutive
sites (or steps) of the walk; these two groups may in general be very far from
each other. One trivial way of making an ./V-conserving bilocal move is to
make two independent (nonoverlapping) ^-conserving local moves. Here we
are interested in the nontrivial Af-conserving bilocal moves, i.e., those in
which one subwalk loses sites and the other subwalk gains them. Instead
of formalizing the concept, let us simply give some examples:

• The slithering-snake (or reptation) move, which deletes a bond from one
end of the walk and appends a new bond (in an arbitrary direction) at the
other end (Fig. 2.4).

• The kink transport move, which deletes a kink at one location along the
walk and inserts a kink (in an arbitrary orientation) at another location
(Fig. 2.5).

• The kink-end reptation move, which deletes a kink at one location along
the walk and appends two new bonds (in arbitrary directions) at one of
the ends of the walk (Fig. 2.6—>).

• The end-kink reptation move, which deletes two bonds from one of the
ends of the walk and inserts a kink (in an arbitrary orientation) at some
location along the walk (Fig. 2.6*—).
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Fig. 2.4 The slithering-snake (reptation) move. Head of the walk is indicated by a cross. Dashed
lines indicate the proposed new step (resp. the just-abandoned old step).

Fig. 2.5 The kink-transport move. A kink has been cleaved from AB and attached at CD. Note
that the new kink is permitted to occupy one or both of the sites abandoned by the old kink.

Fig. 2.6 The kink-end reptation (—>) and end-kink reptation (<—) moves. In —>, a kink has been
cleaved from AB and two new steps have been attached at the end marked with a cross. Note
that the new end steps are permitted to occupy one or both of the sites abandoned by the kink.

2.6.3.3 Non-local N-conserving moves

Here we move definitively out of the realm of systematic classification and
into the realm of ingenuity. The possibilities for non-local moves are almost
endless, but it is very difficult to find one which is useful in a Monte Carlo
algorithm. There are two reasons for this: Firstly, since a non-local move is
very radical, the proposed new walk usually violates the self-avoidance
constraint. (If you move a large number of beads around, it becomes very
likely that somewhere along the walk two beads will collide.) It is therefore a
nontrivial problem to invent a non-local move whose acceptance probability
does not go to zero too rapidly as N —» oo. Secondly, a non-local move
usually costs a CPU time of order N (or in any case Np with p > 0), in
contrast to order 1 for a local or bilocal move. It is nontrivial to find
moves whose effects justify this expenditure (by reducing TY^ more than
they increase TCPU)-

The following paragraphs are, therefore, nothing more than a brief listing
of those non-local moves which, as of 1993, have been demonstrated to be
useful for Monte Carlo algorithms in at least one of the SAW ensembles.
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Tomorrow someone could invent a new and even better non-local move; I
hope that some reader of this chapter will be moved (pardon the pun) to do
so. This is a wide-open area of research.

Only two broad types of useful non-local moves are known at present:
pivot moves, and cut-and-paste moves.

In a pivot move, we choose some site u>k along the walk as a pivot point,
and apply some symmetry operation of the lattice (e.g., rotation or reflec-
tion) to the part of the walk subsequent to the pivot point, using the pivot
point as the origin (Fig. 2.7). That is, the proposed new walk is

where g is the chosen symmetry operation.
In a cut-and-paste move, we cut the walk into two or more pieces, invert

and/or reflect and/or permute the pieces, and finally reassemble the pieces.
For example, one may invert the subwalk u>^ (Fig. 2.8):

More generally, one may apply to w^ any lattice symmetry operation that
leaves w/t and uji invariant; or any lattice symmetry operation that inter-
changes u/t and uji, followed by the inversion (2.80). Such symmetry opera-
tions exist if uji — ujk lies on certain axis or diagonal hyperplanes.

Empirically, the pivot and cut-and-paste moves have a reasonable accep-
tance probability even at large N, of order ~ N~p with p typically of order
0.1-0.4. The heuristic reason is that these moves conserve most of the chain
structure (and hence its self-avoidance), except near the pivot point or cut
point(s). As a result, the acceptance probability for a move involving a single
pivot or cut point is roughly similar to that encountered when concatenating

Fig. 2.7 The pivot move (here a +90° rotation). The pivot site is indicated with a cross. Dashed
lines indicate the proposed new segment.

Fig. 2.8 Inversion of the subwalk (J*'1.
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two independent (TV/2)-step walks, namely cjv/ci/2 ~ N~^~l\ By the same
reasoning, a move with n cut points might be expected to have an acceptance
probability roughly like ~ AT-"(T-I).

2.6.3.4 Local N-changing moves

Recall that a local move is one that excises a small piece from the original
SAW and splices in a new local conformation in its place. An N-changing
local move has the freedom to splice in a piece with fewer or more sites than
the original piece.

The simplest internal local TV-changing moves are kink insertion and kink
deletion (J and K in Fig. 2.9); these have ATV = +2 and AN = -2, respec-
tively. The simplest end-group local TV-changing moves are end-bond addi-
tion and end-bond deletion (L and M in Fig. 2.9); these have AN — +1 and
ATV = —1, respectively.

Note that each local TV-changing move is simply "one half of some
bilocal move.

2.6.4 Fixed-N, variable-x algorithms

2.6.4.1 Local algorithms

Historically the earliest dynamic Monte Carlo algorithms for the SAW
were local TV-conserving algorithms: they date back to the work of
Delbriick114 and Verdier and Stockmayer106, both published in 1962.
During the subsequent two decades, numerous variants on this theme
were proposed (see Table 2.4). Most of these algorithms employ some subset
of moves A-F from Figs 2.1 and 2.2.

Unfortunately, all local TV-conserving algorithms have a fatal flaw: they
are nonergodic. The nonergodicity of the Verdier-Stockmayer algorithm was
noticed as early as 1968,107'115 but this fact did not seem to deter usage of the
algorithm, or to provoke serious discussion about the ergodicity or none-
rgodicity of related algorithms (one exception is Ref. 108). Finally, in 1987
Madras and Sokal125 proved that all local TV-conserving algorithms for
SAWs in dimensions d=2,3 are nonergodic for sufficiently large TV.*

Fig. 2.9 Some local ^-changing moves. (J) Kink insertion (A7V=+2). (K) Kink deletion
(AN = -2). (L) End-bond addition (A7V= +1). (M) End-bond deletion (AN = -1).

'For algorithms based on moves of k or fewer beads, nonergodicity arises in dimension d = 2
for all N > I6k + 63, and for quite a few smaller TV as well (Ref. 125, Theorem 1).
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Table 2.4 Some local N-conserving algorithms.

Scheme References Elementary moves Autocorrelation time r
(see Figs 2.1 and 2.2) (in elementary moves)

Verdier-Stockmayer 106, 115, 116 A, B ~ N"3^ (?)
Modified 109, 116 A, B, C ~ A^3+2l/ (?)
Verdier-Stockmayer
Heilmann II 107, 108, 117 A, B, E ~ A^2+2" (?)

Birshtein et al.j 108, 118 A, B, D ~ N~2+2v (?)
Heilmann-Rotne 3
Taran-Stroganov 119 A, B, D, E ~ N^2^ (?)

Verdier-Kranbuehl 120, 121 B, D, F ~ N*2+2v (?)
Kranbuehl-Verdier 110, 122, 123 A, B, D, F ~ JV»2+2" (?)
Delbriick 114 most one-and two- ~ A^2+2" (?)

bead

Meirovitch 124 most three-bead ~ 7v~2+2" ̂
Lai et al. 126, 127 all three-bead ~ NK>2+2» (?)
Geny-Monnerie/ 128-131 some two- and three A^2+2" (?)
Kremer et al. bead (tetrahedral

lattice)

Furthermore, they proved that for large TV, each ergodic class contains only
an exponentially small fraction of the SAW configuration space. (These
results are probably true also in dimension d > 4, but have not yet been
proven.)

This nonergodicity is in fact quite easy to see: consider the double cul-de-
sac configuration shown in Fig. 2.10(a). This SAW is completely "fro/en"
under elementary moves A, B, D and F: it cannot transform itself into any
other state, nor can it be reached from any other state. It follows that the
original Verdier-Stockmayer algorithm106'115 and most of its generaliza-
tionsio7,io8,no,i 17-120,122,123 are nonergodic (in d = 2) already for N= 11.

If move C is allowed, then the configuration of Fig. 2.10(a) is no longer
frozen, but that of Fig. 2.10(b) still is. Thus, any algorithm based on moves
A-D and F is nonergodic (in d=2) for 7V= 15. If two-bead end-group
moves are allowed, then the configuration of Fig. 2.10(b) is no longer
frozen, but that of Fig. 2.10(c) still is. Thus, any algorithm based on one-
bead and two-bead moves is nonergodic (in d = 2) for N = 19.

When three-bead moves are allowed, it is not sufficient simply to make
the double cul-de-sac taller. Indeed, any double cul-de-sac of the kind shown
in Fig. 2.10, no matter how tall, can be unfolded into a straight rod by
repreated use of the moves A, B and H. (The reader might find it amusing
to work out the required sequence of moves.) But only one additional trick
is needed: by folding the double cul-de-sac once more, as in Fig. 2.11, a
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Fig. 2.10 Some "double cul-de-sac" configurations, frozen in the Verdier-Stockmayer algo-
rithm and its generalizations.

Fig. 2.11 A "folded double cul-de-sac" configuration, drawn here for a = 3. Such configura-
tions are frozen under all fc-bead local TV-conserving moves with k < a.

frozen configuration can be obtained for the fc-bead algorithm for arbitrary
k. This is the idea behind the Madras-Sokal proof.

The nonergodicity of the Verdier-Stockmayer algorithm due to double
culs-de-sac was noticed already by Verdier115 in 1969.

An entirely different type of nonergodicity arises in dimension d = 3 (and
only there) because of the possibility of knots, as was first pointed out by
Heilmann107 in 1968. The simplest knotted configuration* is shown in Fig.
2.12: it has N= 18, and although it is not completely "frozen", it never-

Fig. 2.12 A "knot" that cannot be deformed to a straight rod using moves A-F.

"This is not a knot in the true topological sense, since true knots can occur only for closed walks
(ring polymers). We are therefore here using the word "knot" in a loose sense to describe the
general shape of the chain.
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theless cannot be deformed to a straight rod using moves A-F. It is likely
that analogous knots can be constructed for the fc-bead algorithm for arbi-
trary k.

For additional historical discussion, along with extensive discussion of the
practical implications of nonergodicity, see Ref. 125, Sections 3 and 4.

Since the local N-conserving algorithms are nonergodic, their autocorre-
lation times rexp and T^^A are by definition -f-oo: the simulation never con-
verges to the correct ensemble average. Nevertheless, we can imagine
starting the simulation in some particular configuration (e.g., a straight
rod), and ask how long it takes to explore adequately the ergodic class of
that particular configuration. Here is a heuristic argument71 giving a crude
estimate of T for such a restricted simulation:

Let us consider, as a typical quantity, the evolution of the squared radius
of gyration of the chain. At each elementary move, a few beads of the chain
move a distance of order 1; it follows from eq. (2.5c) that the change in R2 is
of order JV"1. In order to traverse its equilibrium distribution, R2

g must
change by something of order its standard deviation, which is ~ N2v.
Assuming that R* executes a random walk, it takes about
(Af^/A^"1)2 ~ N2+2v elementary moves for this to occur. So we predict
T ~ N2+2v* This basic estimate ought to be applicable to the dynamics of
ordinary random walks (ORWs, free-flight chains) and non-reversal ran-
dom walks (NRRWs) as well as SAWs.

This reasoning can easily be converted into a more-or-less rigorous proof
of the lower bound rexp <; rint^ > const x N2+2v (see Ref. 132, p.51 for a
slight variant). However, the true T could be significantly larger than this
estimate if there are modes which relax essentially more slowly (i.e., with a
larger dynamic critical exponent) than the radius of gyration. It also could
be wrong if there are, in a particular model, special conservation laws or
quasi-conservation laws which inhibit the relaxation of the radius of gyra-
tion; this indeed can occur (see the next paragraph). Finally, it is not clear
whether the result T ~ N2+2v is exact—and if so, for which T—or is merely a
reasonable first approximation. Usually dynamic critical exponents are not
expressible in terms of static ones, except for trivial (Gaussian-like) models.
It is thus probable that T ~ N2+2v is not exact for the SAW, although it may
be exact for the NRRW; it is known to be exact for the ORW, at least in the
Verdier-Stockmayer dynamics.133"140 The numerical evidence is incon-
clusive (see references in Ref. 71).

The Verdier-Stockmayer (pure one-bead) and Kranbuehl-Verdier (pure
two-bead) algorithms for the SAW or NRRW (but not the ORW) have
peculiar conservation laws which inhibit the relaxation of the chain, thereby

"The same order of magnitude is obtained if one considers the evolution of the end-to-end
distance vector, the vector from the center-of-mass to an endpoint, or any similar global
quantity.



D Y N A M I C M O N T E C A R L O M E T H O D S F O R T H E S A W 8 9

increasing the relaxation time above the usual N2+2l/ by at least an extra
factor of TV.116' 121* These conservation laws can be broken by mixing one-
bead and two-bead moves.

2.6.4.2 Bilocal algorithms

The slithering-snake (reptation) algorithm* was invented independently by
Kron144'145 and Wall and Mandel.146'147* The elementary moves of this
algorithm are "slithering" motions: one step is appended at one end of
the walk, and one step is simultaneously deleted from the other end (Fig.
2.4). Such a move is TV-conserving and Mocal (but not local).

Unfortunately, the reptation algorithm is nonergodic, as was observed
already by the original inventors.145'146 In this algorithm, frozen configura-
tions occur when both ends of the walk are trapped in culs-de-sac. The
simplest such configuration is shown (for d=2) in Fig. 2.13, and has
TV = 14. §

As with the local TV-conserving algorithms, we can inquire about the
autocorrelation times of a simulation within a particular ergodic class. A
plausible heuristic argument147 suggests that T ~ TV2. This is because the
SAW transforms itself by random back-and-forth slithering along the
chain; after ~ TV2 moves, this slithering will have carried it TV steps, and
thus all the original bonds of the chain will have disappeared and been

"Hilhorst, Deutch and Boots116'121 have given a very beautiful analysis of these dynamics, using
a mapping onto a gas of one-dimensional random walkers interacting via exclusion. It would be
interesting to reexamine these questions using mathematical results on this latter model141"143; it
might be possible to compute the exact asymptotic behavior, at least in the NRRW case.
tThe "slithering-snake (reptation) algorithm" should not be confused with the "reptation con-
jecture" of de Gennes (Ref. 5, Section VIII.2), who argues that the most rapid modes of polymer
diffusion in the true physical dynamics (in a melt consisting of many entangled polymer chains)
are the slithering modes.
*There are at least three variants of the slithering-snake scheme. In the first version of Wall and
Mandel (Ref. 146, pp. 4592-^4593), the "head" and "tail" of the chain are interchanged only
when an attempted move is rejected; this satisfies the stationarity condition but not the detailed-
balance condition. (In fact, one step of the algorithm followed by a head-tail interchange satisfies
detailed balance.148 This is analogous to the situation in the Hamilton/Langevin hybrid algo-
rithm for spin models [Ref. 37, p. 237, footnote 18].) In the second version of Wall and Mandel
(Ref. 146, top of p. 4594), adopted also by Webman et a/.,149 the "head" and "tail" are chosen
anew at each cycle, randomly with 50%-50% probability; this satisfies detailed balance. The
original algorithm proposed by Kron144 is much more complicated than either of the preceding
versions; it appears to satisfy stationarity but not detailed balance.
3 The superficial resemblance between Figs 2.10,2.11, and 2.13 is, however, very misleading: the
nonergodicities in the two types of algorithm are of radically different natures. In the local N-
conserving algorithms, nonergodicity is caused by the occurrence of a frozen conformation
anywhere along the walk. In the reptation algorithm, by contrast, nonergodicity occurs only
if both of the ends of the walk are trapped in culs-de-sac. It turns out that the ergodic class of
the straight rod in the reptation algorithm contains at least a fraction jV-fr-'J/z of the SAW
configuration space, whereas in the local algorithms it contains only an exponentially small
fraction. See Ref. 125, Section 3 for further discussion.
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Fig. 2.13 A "double cul-de-sac" configuration which is frozen in the reptation algorithm.

replaced by random new ones. (Alternatively, R2 changes by an amount of
order N2l"~^ per elementary move; thus, it takes ~ Af2 elementary moves for
R2 to traverse a distribution of width ~ N2v.) It is easy to see that this
argument is exact for ORWs and NRRWs; it is not clear whether it is
exact or merely approximate for SAWs.

The nonergodicity of the reptation algorithm can be cured by adjoining
additional bilocal moves to the algorithm.150 Indeed, the following bilocal
(or mixed local/bilocal) algorithms are known to be ergodic:

• reptation + kink-end and end-kink reptation150

• kink-end and end-kink reptation + 90° end-bond rotation148

• reptation + kink transport + one-bead flip, at least in dimension d = 2151

• kink transport + one-bead flip + 90° and 180° end-bond rotations, at
least in d=2151

All of these algorithms deserve systematic study, in particular of their
dynamic critical behavior. One would like to know whether they all lie in
the same dynamic universality class, and whether the conjecture r ~ N2 is
exact, approximate or wrong.

An alternative way of making the reptation algorithm ergodic is to switch
to the variable-N ensemble and introduce AN = ±1 moves (L and M in Fig.
2.9), as proposed by Kron et a/.145 But once one does this, there is no great
reason to retain the "slithering-snake" moves; one can just as well use only
the AN = ±1 moves. This leads to the slithering-tortoise (Berretti-Sokal)
algorithm (see Section 2.6.6.1).

2.6.4.3 Pivot algorithm

The pivot algorithm has a curious history. It was invented by Lai152 in
1969, and then promptly forgotten by almost everyone.* It was reinvented in
1985 by MacDonald et a/.,161"163 and reinvented a short time later by
Madras. This third reinvention led to a comprehensive analytical and
numerical study by Madras and Sokal,96 which showed that the pivot algo-

*The only exceptions I know of are Olaj and Pelinka153 and Clark and Lai.154 Continuum
analogues of the pivot algorithm were used by Stellman and Gans,155'156 Freire
and Horta,157 Curro, 8'159 Scott160 and possibly others. For additional history, see Ref. 96,
footnote 3.
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rithm is by far the most efficient algorithm yet invented for simulating the
fixed-JV, variable-* SAW ensemble. After that the applications took off.*

The elementary move of the pivot algorithm is as follows: Choose at
random a pivot point k along the walk (0 < k < N - 1); choose at random
an element g of the symmetry group of the lattice (rotation or reflection or a
combination thereof); then apply g to the part of the walk subsequent to the
pivot point (namely u>k+\, • • • ,UN), using w& as the temporary "origin" (cf.
eq. (2.79)). The resulting walk is accepted if it is self-avoiding; otherwise, it is
rejected, and the old walk uj is counted once more in the sample. It is easy to
see that this algorithm satisfies detailed balance for the standard equal-
weight SAW distribution. Ergodicity is less obvious, but it can be
proven.96'179

At first thought this seems to be a terrible algorithm: for N large, nearly
all the proposed moves will get rejected. In fact, this latter statement is true,
but the hasty conclusion drawn from it is radically false! The acceptance
fraction/does indeed go to zero as N —> oo, roughly like N~p; empirically, it
is found that the exponent/MS « 0.19 in d = 2% and w 0.11 in d = 3.96>167'178

But this means that roughly once every N? moves one gets an acceptance.
And the pivot moves are very radical: one might surmise that after very few
accepted moves (say, five or 10) the SAW will have reached an "essentially
new" configuration. One conjectures, therefore, that the autocorrelation
time T of the pivot algorithm behaves as ~ TV7. Things are in fact somewhat
more subtle (see below), but roughly speaking (and modulo a possible loga-
rithm) this conjecture appears to be true. On the other hand, a careful
analysis of the computational complexity of the pivot algorithm (see also
below) shows that one accepted move can be produced in a computer time
of order N. Combining these two facts, we conclude that one "effectively
independent" sample (at least as regards global observables) can be pro-
duced in a computer time of order N (or perhaps N log N). This is vastly
better than the N2+2l> ~ TV*3-2 of the local TV-conserving algorithms and the
N^2 of the bilocal algorithms. Indeed, this order of efficiency cannot be
surpassed by any algorithm which computes each site on successive
SAWs, for it takes a time of order N simply to write down an N-step walk!

Let us mention briefly some relevant issues; the reader is referred to Ref.
96 for a fuller discussion.

Variants of the pivot algorithm. Different variants of the pivot algorithm are
obtained by specifying different distributions when we "choose at random":

(1) The pivot point k can be chosen according to any pre-set family of
strictly positive probabilities po, . . . . , p^-1 • The strict positivity (p^ > 0 for

'Here is a very incomplete list: Caracciolo, Madras, Pelissetto, Sokal and collabora-
tors,39'132'164"166 Zifferer,167-172 Bishop and collaborators,173"176 Chorin,177 Eizenberg and
Klafter.178
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all k) is necessary to ensure the ergodicity of the algorithm. Most work has
used a uniform distribution, but there could be some (probably minor)
advantage in using a non-uniform distribution.

(2) Let G be the group of orthogonal transformations (about the origin)
which leave invariant the lattice J.d. Then the symmetry operation g € G can
be chosen according to any pre-set probability distribution {pg}geG which
satisfies pg = pg-\ for all g, and which has enough nonzero entries to ensure
ergodicity (see below). The condition pg = pg~\ is easily seen to be both
necessary and sufficient to ensure detailed balance with respect to the
equal-weight distribution IT.

In dimension d = 2, G is the dihedral group £>4, which has eight elements:
the identity, two 90° rotations, the 180° rotation, two axis reflections, and
two diagonal reflections. Detailed balance holds provided that
P+90°rot = P-90°rof Ergodicity holds if the probabilities pg are nonzero for
either

• both diagonal reflections179; or
• ±90° rotations and the 180° rotation96; or
• ±90° rotations and both axis reflections.96

Most work has used a uniform distribution over the seven non-identity
operations, but some gain could probably be achieved by using a non-
uniform distribution.

In general dimension d, the symmetry group of Zrf is the group O(d,J.} of
orthogonal matrices with integer entries. In fact every such matrix is of the
form

where <TI, . . . , 04 = ±1 and TT is a permutation of {1,..., d}. Using this
description, the pivot algorithm can be programmed very easily in any
dimension.

Acceptance fraction and autocorrelation time. Suppose we know that the
acceptance fraction/in the pivot algorithm behaves as/~ N~p as N —> oo.
Then, as argued above, after a few successful pivots—i.e., a time of order
l//~ NP—the global conformation of the walk should have reached an
"essentially new" state. Thus, we expect that for observables A which mea-
sure the global properties of the walk (such as the squared end-to-end dis-
tance R2

g or the squared radius of gyration R^) the autocorrelation time rM,A
should be a few times I//. This is confirmed numerically (Ref. 96, Section
4.3). On the other hand, it is important to recognize that local observables—
such as the angle between the I I t h and 18r/! steps of the walk—may evolve a
factor of N more slowly than global observables. For example, the obser-
vable mentioned in the preceding sentence changes only when wn serves as a
successful pivot point; and this happens, on average, only once every N/f
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attempted moves. Thus, for local observables A we expect Tmt,A to be of
order N/f. By eq. (2.59), rexp must be of at least this order; and if we have
not overlooked any slow modes in the system, then rexp should be of exactly
this order. Finally, even the global observables are unlikely to be precisely
orthogonal [in ^(TT)] to the slowest mode; so it is reasonable to expect that
Texp,A be of order N/f Tor these observables too. In other words, for global
observables A we expect the autocorrelation function PAA(() to have an
extremely-slowly-decaying tail which, however, contributes little to the
area under the curve. This behavior is illustrated by the exact solution of
the pivot dynamics for the case of ordinary random walk (Ref. 96, Section
3.3), and by numerical calculations for the SAW.

The foregoing heuristic argument is, of course, far from a rigorous proof.
It is not in general possible to find upper bounds on the autocorrelation time
in terms of the acceptance fraction; the problem is that the state space could
contain "bottlenecks" through which passage is unusually difficult. No one
has suggested any reason why such bottlenecks should occur in the pivot
algorithm, but neither does there exist any proof of their nonexistence.

A heuristic argument (Ref. 96, Section 3.2) suggests thatf~N~p with
/> = 7- 1(= 11/32 in d=2, K 0.16 in d=3, and 0 in d>4).
Quantitatively this prediction is incorrect; numerical experiments yield
p w 0.19 in d= 296 and p & 0.11 in d= 3.96'167'178 However, the argument
does correctly predict that p is small and that it gets smaller in higher dimen-
sion. It is an open question to find a better theoretical prediction for;?, and in
particular to express it in terms of static exponents for the SAW.

Computational complexity. A very important issue in any algorithm—but
especially in a non-local one—is the CPU time per iteration. By using a hash
table (see Section 2.7.1.2), the self-avoidance of a proposed new walk can be
checked in a time of order N. But one can do even better: by starting the
checking at the pivot point and working outwards, failures can be detected
in a mean time of order Nl~p (Ref. 96, Sections 3.4 and 4.4). The mean CPU
time per successful pivot is therefore ~ Nl~p for each of ~ TV7 failures, plus
~ N for one success, or ~ TV in all. Combining this with the observations
made previously, we conclude that one "effectively independent" sample—
as regards global observables—can be produced in a computer time of order
N.

Initialization. There are two main approaches:
(1) Equilibrium start. Generate the initial configuration by dimerization

(Section 2.4.3); then the Markov chain is in equilibrium from the beginning,
and no data need be discarded. This approach is feasible (and recom-
mended) at least up to N of order a few thousand. There is no harm in
spending even days of CPU time on this step, provided that this time is small
compared to the rest of the run; after all, the algorithm need only be initi-
alized once.
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(2) "Thermalization". Start in an arbitrary initial configuration, and then
discard the first «<&<• > Texp ~ N/f iterations. This is painful, because rexp is
a factor ~ TV larger than T^A for global observables A; thus, for very large
N(/& 105)> the CPU time of the algorithm could end up being dominated by
the thermalization. Nevertheless, one must resist the temptation to cut
corners here, as even a small initialization bias can lead to systematically
erroneous results, especially if the statistical error is small.39 Some modest
gain can probably be obtained by using closer-to-equilibrium initial config-
urations (e.g. Ref. 168), but it is still prudent to take n,nsc at least several
times N/f.

Initialization will become a more important issue in the future, as faster
computers permit simulations at ever-larger chain lengths.

2.6.5 Fixed-N, fixed-x algorithms

This ensemble has not been considered until very recently; it seems difficult
to devise algorithms which are ergodic under the severe constraints of fixed
chain length and fixed endpoints.

2.6.5.1 Bilocal algorithms

I do not know whether they are any bilocal (or mixed local/bilocal) algo-
rithms that are ergodic for this ensemble.

2.6.5.2 Cut-and-paste algorithms

These algorithms were devised by Dubins, Madras, Orlitsky, Reeds and
Shepp.179'180 In dimension d = 2 the simplest cut-and-paste algorithm uses
two moves:

• Inversion of the subwalk J^^ (Fig. 2.8).
• If <jji - ujk lies on a ±45° diagonal line, then one can reflect the subwalk

cJfc'1 through the perpendicular bisector of the segment ui^i, followed by
an inversion.

This algorithm is ergodic.179 In dimension d> 3 one must adjoin coordi-
nate-interchange moves, and the algorithm is then again ergodic.179

The dynamic critical behavior of this algorithm is unclear. One's first
guess is a behavior similar to that of the pivot algorithm, i.e., an acceptance
fraction /~ N~q for some small power q, and an autocorrelation time
Tmt,A ~ Nq for global observables. However, one should remember that
the diagonal-reflection moves—which are necessary for ergodicity*—are

'Without them, the numbers N i , . . . , N j o f steps along each axis would be separately conserved.
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possibly only for a fraction ~ N~" of pairs k, I. So perhaps one should
expect Tjnt^i ~ Nq+v. (Numerically, this might be seen most easily by looking
at an observable which is sensitive to the diagonal-reflection moves, e.g., the
numbers N\,..., N^ of steps along each axis.) On the other hand, failures of
diagonal reflection due to disallowed <*;/ — u)k can be detected in a CPU time
of order 1; so such failures may not affect the scaling of the product
Tint,A TCPU-

See Ref. 181 for a first study of the cut-and-paste algorithm (on the face-
centered-cubic lattice).

2.6.6 Variable-N, variable-x algorithms

2.6.6.1 Slithering-tortoise (Berretti-Sokal) algorithm

The slithering-tortoise algorithm*182 is a Markov chain with state space y
= U^Q^V and invariant probability distribution (2.18) with/) = 0, i.e.,

The algorithm's elementary moves are as follows: either one attempts to
append a new step to the walk, with equal probability in each of the 2d
possible directions; or else one deletes the last step from the walk. In the
former case, one must check that the proposed new walk is self-avoiding; if
it is not, then the attempted move is rejected and the old configuration is
counted again in the sample ("null transition"). If an attempt is made to
delete a step from an already-empty walk, then a null transition is also
made. The relative probabilities of AN = +1 and AJV = —1 attempts are
chosen to be

It is easily verified that this transition matrix satisfies detailed balance for
the distribution 7173. It is also easy to see that the algorithm is ergodic: to get
from a walk LJ to another walk u>', it suffices to use AN = —1 moves to
transform uj into the empty walk, and then use AN = +1 moves to build up
the walk w1.

Regarding the critical slowing-down of the slithering tortoise algorithm,
we can argue heuristically that

'Because the walk sticks out and retracts its "head", like a tortoise. This algorithm is also
known as the Berretti-Sokal algorithm, or BS for short.
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To see this, consider the quantity N(t) = \w\(t), the number of steps in the
walk at time t. This quantity executes, crudely speaking, a random walk
(with drift) on the nonnegative integers; the average time to go from some
point N to the point 0 (i.e., the empty walk) is of order TV2. Now, each time
the empty walk is reached, all memory of the past is erased; future walks are
then independent of past ones. Thus, the autocorrelation time ought to be of
order (TV2), or equivalently (TV) .

This heuristic argument can be turned into a rigorous proof of a lower
bound rexp <; Tint}N > const x (TV) ,69 However, as an argument for an upper
bound of the same form, it is not entirely convincing, as it assumes without
proof that the slowest mode is the one represented by N(f). With consider-
ably more work, it is possible to prove an upper bound on T that is only
slightly weaker than the heuristic prediction: rexp < const x (N} +/y 69-183>184

(Note that the critical exponent 7 is believed to equal 43/32 in dimension
d = 2, K 1.16 in d = 3, and 1 in d > 4.) In fact, there is reason to believe185

that the true behavior is r ~ (N}p f°r some exponent p strictly between 2
and 1 + 7. A deeper understanding of the dynamic critical behavior of the
slithering-tortoise algorithm would be of definite value.

2.6.6.2 Join-and-cut algorithm

The behavior T ;> <(TV) of the slithering-tortoise algorithm is in fact char-
acteristic of any variable-TV algorithm whose elementary moves make
bounded changes in TV: roughly speaking, TV must perform a random walk
on the nonnegative integers, and the autocorrelation time of such a random
walk satisfies

(Ref. 132, Theorems A.6 and A.7). Therefore, if one wants to do better than
T ^ (N} , it is necessary to make unbounded changes in TV.

An amazingly simple way of doing this was proposed recently by
Caracciolo, Pelissetto and Sokal.165 Their algorithm works in the unorthdox
ensemble 3~xIM consisting of a\lpairs of SAWs (a/1),a/2)) (each walk starts at
the origin and ends anywhere) such that the total number of steps in the two
walks is some fixed number TV(or:

Each pair (u/'^u/2)) in this ensemble is given equal weight; therefore, the
two walks are non-interacting except for the constraint on the sum of their
lengths. One sweep of the algorithm consists of two steps:
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(a) We update independently each of the two walks, using some N-
conserving ergodic algorithm (e.g., the pivot algorithm).

(b) We perform a join-and-cut move: we concatenate the two walks uj^
and a/2', forming a new (not necessarily self-avoiding) walk c*/1) ou/2';
then we cut u^ow^ at a random position, creating two new walks
a/*1) and u/(2'. If u>'^ and a/'2' are both self-avoiding, we keep them;
otherwise the move is rejected and we stay with a/1) and a/2'.

The join-and-cut move is illustrated in Fig. 2.14.
Since the algorithm used in step (a) is ergodic in the ensemble of fixed-

length walks, it is easy to see that the full algorithm is ergodic. (If u/1) and
a/2) are perpendicular rods, then the join-and-cut move will always succeed.)
It is also easy to see that the algorithm satisfies the detailed-balance condi-
tion with respect to the equal-weight measure

Fig. 2.14 Join-and-cut move: the two SAWs (upper figure) are concatenated (middle figure) and
then cut at the point marked with a square (lower figure). Note that the concatenated walk need
not be self-avoiding.
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where

Therefore, from the probability distribution of the random variable
N\ = \oJ^\ (the length of the first walk) in the measure (2.88), we can obtain
estimates of the critical exponent 7 by the maximum-likelihood method (see
Section 2.7.3). Since the join-and-cut move can make large jumps in N\ in a
single step, this evades the bound (2.86).

The dynamic critical behavior of the pivot + join-and-cut algorithm was
studied in Ref. 165 by both analytical and numerical methods. For the
relevant observable X = \og[Ni(Ntot — N\)], the autocorrelation time in
units of elementary moves is found to grow as Tmttx ~ A^'70 in d = 2. On
the other hand, the mean CPU time per elementary move behaves as
TCPU ~ A^°-81, just as in the pivot algorithm. Hence the autocorrelation
time in CPU units behaves as rint^Tcpv ~ N"1 '5l, which is a significant
improvement over the r ~ A^2 of the slithering-tortoise algorithm.
Moreover, the behavior is expected to be even better in higher dimensions.

2.6.7 Variable-N, fixed-x algorithms

2.6.7.1 BFACF algorithm

The BFACF algorithm was invented by Berg and Foerster186 and Aragao
de Carvalho, Caracciolo and Frohlich.61'187* It is a Markov chain with state

CO

space y(x] = I) y^(x) and invariant probability distribution (2.15) with
, . N=0

p=l, i.e.,

The elementary moves of the BFACF algorithm are the following local
deformations:

• The one-bead flip (move A of Fig. 2.1), which has A7V = 0.
• Kink insertion (move J of Fig. 2.9), which has AJV — +2.
• Kink deletion (move K of Fig. 2.9), which has AN = -2.

Note that all these moves can be generated by displacing the middle bond of
a three-bond group by one lattice unit perpendicular to itself in one of the

The exposition in the original paper187 suffers from an unfortunate confusion regarding the
meaning of p(AN). Here I follow the corrected exposition in Ref. 132, Section 3.1.
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2d-2 possible directions. Therefore, one iteration of the BFACF algorithm
consists of the following operations:

(1) Choose at random a bond of the current walk u> (with equal prob-
ability for each bond).

(2) Enumerate the Id - 2 possible deformations of that bond; choose
randomly among these deformations, giving each deformation a
probability p(AN) depending only on A7V= \uj'\ — \w\. (If the sum
of these probabilities is s < 1, then make a "null transition" w —*• uj
with probability 1 — s.) The probabilities p(AN) will be specified
below.

(3) Check whether the proposed new walk uj1 is self-avoiding. If it is, keep
it; otherwise, make a null transition.

This algorithm satisfies detailed balance for irp provided that

On the other hand, the sum of the probabilities must in all cases be < 1; this
imposes the inequalities132

A nearly optimal choice is

(see Ref. 132 for further discussion).
The ergodicity of the BFACF algorithm is an extremely subtle problem.

The known results are the following:

• In dimension d=2, the BFACF algorithm is ergodic, for all choices of
*.n

• In dimension d=3, the algorithm is non-ergodic if H^H^ =
max(|jci|, \X2 , 1*31) = 1, due to kriotted configurations which cannot be
untied.188* However, it can be made ergodic^ by adjoining the three-bead
crankshaft move (I of Fig. 2.3).188

*For the BFACF algorithm applied to unrooted polygons (ring polymers), the ergodic classes are
precisely the knot classes.188 This is probably true also for the BFACF algorithm applied to
walks with Halloo = 1, but it has apparently not yet been proven.
*At least in the case of unrooted polygons. It is probably true also for the BFACF algorithm
applied to walks with \\x\\x, = 1, but it has apparently not yet been proven.
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• In dimension d= 3, the algorithm is ergodic if \\x\\x > 2.189 (It is then
possible to disentangle any knot, no matter how large and complicated,
by a motion which passes one strand at a time between the endpoints.)

• In dimension d > 4, the algorithm is presumably ergodic for all x, but a
rigorous proof appears to be lacking.

The dynamical behavior of the BFACF algorithm is also an extremely
subtle problem. The known results are the following:

• Texp = +00 for all j3 > O.190 This surprising result arises from the existence
of arbitrarily slowly-relaxing modes associated with sequences of transi-
tions a> — > . . . — > <jj' with sf(u,uj') » max(|o;, u/|), where «E/(W,U/) is the
minimum surface area spanned by the union of w and a/.

• Tint,j4 > const x [(.s/2) - {.£/} ], where J^ = ^(LO,UJO) for some fixed
walk LJ° from 0 to x.132 Assuming the usual scaling behavior,191 this
implies Tint^ ^ (N} ".

• Numerically, it appears that Tint<N ~ (Af)7* with p equal or very nearly
equal to 4v.191

However, in dimension d= 3 (for H^H^ > 2) the relaxation of long chains
may (possibly) be further slowed down by the appearance of "quasi-knots",
i.e., configurations whose decay is extremely slow due to the complicated
sequence of moves needed to untie them. Since untying a quasi-knot
requires passing the end of the chain through the knotted region (which
may be near the middle of the chain), this process becomes more time-
consuming the larger {./V} is. This effect might possibly increase the dynamic
critical exponent above 4v, at least for observables that are sensitive to
(quasi-)knots.*

2.6.7.2 BFACF + cut-and-paste algorithm

Caracciolo, Pelissetto and Sokal132 have recently proposed to speed up
the BFACF algorithm by adjoining some non-local (cut-and-paste) moves.
The hope is that these non-local moves will destabilize the long-lived
(metastable) configurations that are responsible for the slow equilibration
of the BFACF algorithm. Thus, the algorithm is a hybrid in which the non-
local moves hopefully assure the rapid equilibration within subspaces of
fixed N, while the local (BFACF) moves assure equilibration between dif-
ferent N (and in particular make the algorithm ergodic). The algorithm has a
free parameter pni—the percentage of non-local moves—which can be tuned
as a function of (N") to optimize the computational efficiency.

*For example, any one of the standard knot invariants192'193 applied to u>ou>°, where ui° is some
fixed path from x to 0 in R'V''.
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The best can hope for is an autocorrelation time T ~ (./V) : for even if the
non-local moves were to cause instant equilibration at fixed N, the local
moves would still have to carry out a random walk in N. Such a behavior, if
achieved, would be a significant improvement over the pure BFACF algo-
rithm. This estimate refers, however, to physical time units; since the non-
local moves require a mean CPU time per move that grows as a fractional
power of (N), it is a subtle matter to choose />„/ so as to minimize the
autocorrelation time as measured in computer (CPU) time units.

Numerical experiments in d = 2132 confirm that the autocorrelation time
(in units of elementary moves) at fixed pni > 0 scales as Tin,^N ~ (N}~ .
Taking into account the CPU time, it is found that the optimal /?„/ scales
as ~ 1/{JV)~ ' , and the autocorrelation time in CPU units then scales as
T~mt,NTcpu ~ {̂ }~ • In practice, at (N) PS 100 it is found that the physical
(resp. CPU) autocorrelation time of the hybrid algorithm with/?,,/ = 0.05 is a
factor 6 (resp. 4) smaller than that of the pure BFACF algorithm. The
BFACF + cut-and-paste algorithm provides, therefore, a significant
(though not exactly earth-shaking) improvement over previous algorithms
for variable-N, fixed-endpoint SAWs. But more research is needed to estab-
lish conclusively the dynamic critical behavior of this algorithm.

2.7 Miscellaneous issues

2.7.7 Data structures

The new algorithms described in Section 2.6 are potentially very efficient;
but in order to realize this potential, it is necessary to choose carefully the
data structures and the low-level "bookkeeping" algorithms. For example, a
local or bilocal update can be carried out, with suitable data structures, in a
CPU time of order 1 (as one would expect); but a naive choice of data
structures might force us into "garbage collection" (mass copying of data
from one storage location to another) costing a time of order N. Likewise,
checking the global self-avoidance of a walk w (as arises e.g., in the pivot
algorithm) can be carried out, with suitable data structures, in a CPU time
of order N; but the naive method (comparing w, to u>j for each pair i,j) takes
a time of order N2—which would nullify the advantages of the pivot algo-
rithm.

We divide the discussion of data structures into two parts: those needed in
updating the walk, and those needed in testing self-avoidance. As will be seen,
it is usually necessary to maintain redundant data structures, in order that
both operations can be carried out efficiently. For the first task, one typi-
cally uses linear (or circular) lists of various kinds; for the second task, one
uses bit tables or hash tables. A lucid discussion of these structures can be
found in Ref. 94, Chapters 11 and 12.
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2.7.1.1 Updating the walk

Each of the algorithms described in Section 2.6 requires one or more of
the following operations in order to update the walk:

1. Choose a random site (or a random step) of the walk.
2. Update the coordinates of a given site of the walk.
3. Find the successor (or predecessor) of a given site on the walk.
4. Insert one or more new sites

(a) at the beginning of the walk
(b) at the end of the walk
(c) in the interior of the walk

5. Delete one or more sites from (a), (b) or (c).

Depending on the particular operations needed, we will choose to represent
the walk as one or another type of list.

The simplest type of list is a sequentially allocated linear list: the walk
coordinates w 0 , . . . ,UN are stored in order in successive memory locations
(e.g., a Fortran array). Clearly this structure permits the first three opera-
tions to be carried out in a time of order 1. In particular, this suffices for
local Af-conserving moves, pivot moves, and cut-and-paste moves.*
Insertion and deletion at the beginning and end of the walk can also be
carried out in a time of order 1, provided that an upper bound is known in
advance on how far the walk can grow in each direction (so that sufficient
storage can be allocated). This suffices for the slithering-tortoise algorithm,
because one can take, e.g., Nmax ~ 70{7V") and be virtually certain that this
walk length will never be exceeded (at least not before the sun runs out of
hydrogen and engulfs the earth).

For the slithering-snake (reptation) algorithm one should use a sequen-
tially allocated circular list: the walk coordinates are stored in sequential
memory locations, but in general in a cyclically permuted order, i.e.
Uj,Uj+i,... ,ujN,uJo,u>\,... , w/_i. A pointer then indicates which element is
WQ- (A flag may also indicate which direction is "forward": this is useful in
implementing the first version of the algorithm (Ref. 146, pp. 4592-93), in
which "head" and "tail" are sometimes interchanged.)

None of the foregoing structures is adequate for those algorithms which
insert or delete sites in the interior of the walk (BFACF, most bilocal algo-
rithms, etc.): insertion or deletion of even one site would necessitate shifting
a large part of the list ("garbage collection"), which would take a time of

*In the case of pivot or cut-and-paste moves, one maintains two linear lists—one "active" and
one "scratch"—together with a flag saying which is currently which. The coordinates of a
proposed new walk are successively calculated and placed in the "scratch" list, and self-avoid-
ance is simultaneously tested (see Section 2.7.1.2); if the self-avoidance test is passed, the flag is
flipped and the "scratch" list now becomes "active".
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order N. A more flexible data structure is the doubly linked list: here the walk
coordinates WQ, . . . , UN may be stored anywhere in memory (neither contigu-
ously nor in order); but together with each coordinate w, we maintain link
fields t~(i) and i+(t), which indicate the storage locations where the w,-_i
and w,+i, respectively, are to be found. Unused but available memory is also
stored in a linked list, the so-called free list (here the two-way linking is
unnecessary). It is easy to insert or delete into the interior of a doubly linked
lists, by using the link fields t~(i) and l+(i) to locate the predecessor and
successor sites (which take part in the relinking). On the other hand, since
the {a;,-} may be scattered throughout memory, it is not easy to choose a
random site or step of the walk. (One would have to "thread through" the
list sequentially, taking a time of order N.)

To get the virtues of both sequential allocation and linked list, one can use
a contiguously allocated doubly linked linear list (see e.g., Ref. 132, Section
3.3). That is, the walk coordinates are stored in a contiguous array {s(i)}f=0,
but not in any particular order, that is, s(i) is some site of the walk, but not
necessarily w,-. To keep track of the sequence of steps along the walk, we use
forward pointers {^+(/)}jI0

 and backward pointers {(. (i)}^; here i+(i)
[resp. t~(i)] is the index corresponding to the site following (resp. preceding)
the site whose index is z, or — 1 if no such site exists. It is often convenient
that the initial and final points of the walk be assigned to indices 0 and 1,
respectively. Therefore,

and so on. Likewise,

and so on. It is then trivial to choose a random site of the walk, as this is
equivalent to choosing a random index z.* It is also trivial to insert new sites:
just put them in locations N + 1, N+2, etc. and then relink. Deletion
requires "garbage collection" to maintain the contiguous allocation, but

'Note that this works only for choice with uniform probability (or uniform excluding one or
both endpoints). It would not work if one wanted to choose sites with a nonuniform probability
depending on their location along the walk.
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this also can be performed in a time of order 1: move the entries from
locations N, N — 1, etc. into the just-vacated locations, with appropriate
updates to the link fields. So the contiguously allocated doubly linked linear
list is the appropriate data structure for the BFACF and bilocal algorithms.

2.7.1.2 Testing self-avoidance

If the walk configuration were stored only as a linear list (whether sequen-
tially allocated or linked), then this entire list would have to be searched
each time we want to add one new site to the walk, in order to check the self-
avoidance constraint. This would take a time of order N, which is a disaster.

The solution is to maintain two (redundant) data structures to store the
current walk configuration: a linear or circular list as described in the pre-
ceding subsection, and a bit table or hash table.* The latter can be defined
abstractly as data structures that perform the following functions: Given a
finite (but typically enormous) set K of "possible keywords", we wish to
store a subset H c K (of cardinality < some maximum M) in such a way
that, for any x e K, the following operations can be carried out rapidly:

1. Query. Is x & HI
2. Insertion. Insert x into H (if it is not in H already).
3. Deletion. Delete x from H (if it is in H currently).

Here "rapidly" means "in a time of order 1, on the average". In our appli-
cation, the set K of possible keywords will be the set of all points in some
box B C Zrf which is large enough to contain all possible points in the walk
LJ: e.g., a cube of side > 2N centered at the origin for a fixed-TV simulation,
or a cube of size ;> 140{7V) for a variable-N simulation.

A bit table is simple to describe: it is a large block of memory in which
each possible keyword x €. K (i.e. each site of the large box B) is assigned
one distinct bit. That bit is set to 1 if x 6 H (i.e., if the site in question
currently belongs to the walk), and 0 otherwise. Clearly, the three operations
of query, insertion and deletion can each be carried out in a time of order 1.
The trouble is that for large N, the memory requirements become prohibi-
tive, especially in dimension d > 2: e.g., at N = 1000 the memory needed is
0.5 megabyte for d = 2, and 1 gigabyte for d = 3!

The memory requirements can be reduced by a clever trick called the
sliding bit table.196'191 This approach is adequate in algorithms in which
the new sites are all being added (or old sites being deleted) in the same
small vicinity. In practice this means the slithering-tortoise algorithm.

*To my knowledge, the first use of a bit table for self-avoidance checking was by McCrackin,194

and the first such uses of a hash table were by Alexandrowicz97 and Jurs and Reissner.195
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A more general approach is provided by the hash table (Ref. 94, Chapter
12; Ref. 198, Section 6.4): an array of M words is assigned, and each key-
word x e Kis assigned a. primary address h(x) in this array. Since in general
M-c \K\, the "hash function" h is necessarily many-to-one, i.e., many dis-
tinct keywords may share the same primary address, leading to the possibi-
lity of collisions. The various hash-coding algorithms are distinguished by
the method they use to resolve collisions, i.e. to decide where to store a
keyword if its primary address happens to be occupied by some other key-
word. One of the simplest collision-resolution schemes is linear probing: if
the primary address h(x) is occupied, the algorithm searches successively in
addresses h(x) + 1, h(x) + 2,. . . (modulo M) until it finds either the key-
word x or an empty slot. Other approaches involve chaining via linked lists.

In the worst possible case, a single query or insertion into a hash table
containing N entries could take a time of order N. However, it can be shown
(Ref. 198, Section 6.4) that as long as the hash table does not get close to full
(i.e., N does not get near M), then the average time for a single query or
insertion (assuming random distribution of the points) is of order 1. So the
hash-table method is nearly as fast as the bit-table method, and far more
space-effective.

We remark that deletion from a linear-probing hash table requires some
care: if done naively, entries can get "lost" (Ref. 198, pp. 526-7). However,
these subtleties are irrelevant if deletions always occur in a last-in-first-out
manner (as in the slithering-tortoise algorithm), or occur only when cleaning
up the table at the end (as in the pivot and cut-and-paste algorithms). In the
latter case it suffices to keep a linear list of the memory locations in which
elements have been inserted; these locations can then be cleared at the end.

Depending on the application, it may be desirable to maintain the bit
table/hash table either as a permanent data structure (containing the current
walk uS) or as a scratch data structure (for checking self-intersection of
proposed new walks u/); or it may be desirable to maintain one of each,
together with a flag saying which is which. See Ref. 132, Section 3.3 and Ref.
165, Section 3.2 for details.

2.7.2 Measuring virial coefficients

The virial coefficients Bk play a central role in the theory of dilute polymer
solutions. But to measure them it is not necessary (or even desirable) to
simulate a many-chain system; rather, it suffices to simulate k independent
polymer chains and then measure a suitable overlap observable. Consider,
for concreteness, the second virial coefficient .Bj ., defined by eqs
(2.11H2.13). We have
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where a/1) and a/2) are independent SAWs of N\ and N2 steps, respectively,
and T(^l\u}^) is the number of translates of (J® which somewhere inter-
sect a/1':

So we can run in parallel two independent simulations (using for example
the pivot algorithm), and then every once in a while measure the observable
r^W2)).

The straightforward method for determining r(a/'),a/2)) is to compute
x = uj; — ujj for each of the (N\ + 1)(A^2 + 1) pairs i,j, write these points
into a hash table (see Section 2.7.1.2), and count how many distinct values
of x are obtained. Unfortunately, this takes a CPU time of order N\N2, i.e.,
order N2 if NI = A^ = N. By contrast, we expect that one "effectively inde-
pendent" sample of the pair (u/^u/2)) can be produced by the pivot algo-
rithm in a CPU time of order N. So this approach would spend more time
analyzing the data than generating it!

Fortunately, there exist Monte Carlo algorithms which can produce an
unbiased estimate of T^u/'^u/2)), with statistical errors comparable to or
smaller than those already intrinsic in the observable T(w^\u>^), in a mean
CPU time of order N. So the idea is to perform a "Monte Carlo within a
Monte Carlo". At least two such algorithms are known: the "hit-or-miss"
algorithm,39 and the Karp-Luby algorithm.199'200 See Ref. 96, Section 5.3
for a preliminary discussion, and Ref. 39 for a fuller account.

The "hit-or-miss" algorithm can easily be generalized to compute higher
virial coefficients. I do not know whether the Karp-Luby algorithm can be
generalized in this way.

2.7.3 Statistical analysis

For the most part, the statistical analysis of SAW Monte Carlo data uses the
same methods as are employed in other types of Monte Carlo simulation. In
particular, with dynamic Monte Carlo data it is essential to carry out a
thorough autocorrelation analysis: only in this way can one test the adequacy
of the thermalization interval and the run length and properly assess the
statistical error bars. For details, see e.g., Ref. 36, Section 3; Ref. 37, Section
2; Ref. 96, Appendix C; and Ref. 11, Sections 9.2.2 and 9.2.3.

Typically one carries out fixed-N simulations at a (wide) range of values
of N, and then uses weighted least-squares estimation201 to extract the critical
exponent v and the various critical amplitudes. However, for high-precision
work it is important to take account of corrections to scaling. According to
renormalization-group theory,202'203 the mean value of any global observa-
ble 0 behaves as N —> oo as
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Thus, in addition to "analytic" corrections to scaling of the form cik/Nk,
there are "non-analytic" corrections to scaling of the form bk/NAl+k,
Ck/N^2+k and so forth, as well as more complicated terms not shown in
eq. (2.96). The leading exponent p and the correction-to-scaling exponents
AI < AI < ... are universal; p of course depends on the observable in ques-
tion, but the A,- do not. (Please note that the exponents AI < A2 < ... have
no relation whatsoever to the gap exponent A4 defined in eq. (2.10). The
notation used here is standard but unfortunate.) The various amplitudes
(both leading and subleading) are all nonuniversal. However, ratios of the
corresponding amplitudes A, bo and CQ (but not a/c or the higher bk, Ck) for
different observables are universal.52'203

Obviously it is hopeless to try to estimate from noisy Monte Carlo data
more than the first one or two terms in eq. (2.96), i.e.,

where A = min(Ai, 1). A reasonable approach is as follows: First truncate
the series at zeroth order ((&}N — AN?) and perform a weighted least-
squares fit using only the data at N > Nmin, for a sequence of successively
larger values TVm,>,. For each such fit, the x2 value indicates whether the
hypothesis (@)N = AW for TV > Nmin is consistent with the data—or in
other words, whether the corrections to scaling for TV > Nmin (which surely
exist) are statistically significant.* If they are not, then one is done; the
estimates of p and A ought to be roughly independent of Nmin, within
statistical error bars. If the corrections are significant, then one can insert
the first correction-to-scaling term and redo the least-squares fit and x2

test.t However, one must keep in mind that the estimate of A (and the
correction amplitude) produced by such a fit is merely an effective exponent
which may be imitating the combined effect of several correction-to-scaling
terms over some particular range of TV. Such an effective exponent is of no
intrinsic physical interest; this approach should simply be thought of as a

'Statistical significance (resp. insignificance) of the corrections for N > Nmin means only that
these corrections are larger than (resp. comparable to or smaller than) the statistical errors in
this particular simulation. By making sufficiently long runs, the statistical error bars can in
principle be made arbitrarily small, and so the corrections to scaling will always eventually
be found to be statistically significant.
tOne may either make a guess for A and then estimate the amplitude via linear least-squares, or
estimate simultaneously both A and the amplitude by nonlinear least-squares.



108 M O N T E C A R L O M E T H O D S FOR THE SAW

semi-empirical method for extrapolating the data to N —> oo. In principle
the true A can be found by taking Nmin very large—large enough so that the
second correction-to-scaling term is negligible compared to the first—but
this means that the first correction-to-scaling term will also be negligible
compared to the leading term, and the statistical errors in A and the corre-
sponding amplitude will therefore be enormous. At present it seems feasible
to obtain only rough estimates of A by direct Monte Carlo simulation.39'204

However, the situation may improve in the future, as more powerful com-
puters become available.

A novel point arises when estimating /j, and 7 (or p and asing) from a
variable-TV simulation. Thanks to eqs (2.2)/(2.18) [or (2.3)/(2.15)], the prob-
ability distribution of chain lenghts N is known exactly except for the two
unknown parameters (/u, 7) [or (jn, asing)], provided that we temporarily
neglect corrections to scaling. This fact allows us to use maximum-likelihood
estimation201 to obtain estimates of /z and 7 which are not only demonstra-
bly optimal in a rigorous statistical sense—that is, they achieve the mini-
mum possible mean-square error for a given quantity of Monte Carlo
data—but which also provide a priori error estimates. This means that the
statistical errors can be computed reliably, in advance of performing the
Monte Carlo simulation. Or to put it more strikingly: before performing
the simulation, one cannot know what the final central estimates will be, but
one can know the error bars! See Ref. 182, Section 4.2 and Ref. 165, Section
4 for details.

2.8 Some applications of the algorithms

The development over the past decade of efficient Monte Carlo algorithms
for the SAW (Section 2.6) has combined with recent advances in computer
hardware (notably clusters of high-speed RISC workstations) to make pos-
sible high-precision studies of SAWs that would have been unimaginable
only a few years ago. For example, a recent study39 of SAWs in d = 1 and
d = 3 has employed chain lengths up to N = 80 000, obtaining error bars of
order 0.1-0.3%. (To be sure, this work took several years of CPU time!)

In this section I cannot hope to do justice to all the applications of the
new algorithms. Rather, I shall limit myself to giving an informal account of
a few illustrative examples drawn from my own work (most of which is joint
work with Sergio Caracciolo, Bin Li, Neal Madras, and Andrea Pelissetto).

2.8.1 Linear polymers in dimension d=3

Probably our most important work is a high-precision study of the critical
exponents v and 2A4 - 7 (and in particular the hyperscaling law
dv = 2A4 — 7) and universal amplitude ratios for SAWs in both two and
three dimensions, using the pivot algorithm.39 In dimension d = 3, the
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renormalization-group prediction for the exponent v is 0.5880 ± 0.001516~20

or 0.5872 ± 0.0014.21 However, this method is susceptible to serious (and
quite possibly undetectable) systematic errors arising from a confluent sin-
gularity at the RG fixed point;25'26 this led me to be rather skeptical of the
claimed error bars. Indeed, when we began this work five years ago, the
series-extrapolation205 and Monte Carlo96'206 estimates of v were signifi-
cantly higher, around 0.592 ±0.0015 (one standard deviation). I was there-
fore looking forward to improving the statistics on the Monte Carlo studies
by a factor of 10 or so (i.e., reducing the error bar by a factor of about
three), so as to definitively rule out the RG prediction (or at least its claimed
error bar). But what actually happened is rather different from what I had
envisaged!

The original Monte Carlo studies96'206 predicting v « 0.592 were based on
walks of length N < 3000. But as we studied longer and longer walks, the
apparent exponent fell.* Eventually things stabilized, but we had to use walks
up to N = 80 000 and (if we fit to a pure power law) to throw away all walks
with N < 5000! And the value at which things stabilized was—surprise!—
almost exactly the RG value: our estimate is v — 0.5877 ± 0.0006 (68% con-
fidence limits), taking account of both statistical errors and corrections to
scaling.39 The moral is that corrections to scaling are an extremely serious
effect in high-precision Monte Carlo studies; it is necessary to be very careful,
and sometimes to go to enormous chain lengths, to escape from their effects.
The extraordinary accuracy of the RG prediction remains a mystery (at least
to me).t

Another startling conclusion from this study concerns the interpenetra-
tion ratio * (cf. eq. (2.14)), and goes to the heart of polymer theory. But this
requires a brief historical digression.

For several decades, most work on the behavior of long-chain polymer
molecules in dilute solution5'12'15'208'209'210 has been based on the so-called
"two-parameter theory" in one or another of its variants: traditional (Flory-
type),* pseudo-traditional (modified Flory-type)3 or modern (continuous-
chain-type). « All two-parameter theories predict that in the limit of zero
concentration, the mean-square end-to-end distance (R^), the mean-square

*For example, a recent study of Eizenberg and Klafter178 using walks of length N < 7200 found
v K 0.5909 ± 0.0003.
tit may be related to the apparent fact26'207 that the confluent exponent A2/A] is very close to
an integer (namely, it is « 2).
*See Yamakawa, Ref. 12, Sections 11 and 16 (pp. 69-73 and 110-118) and parts of Sections 15,
20b and 21b (pp. 94-110, 153-164 and 167-169). See also DesCloizeaux and Jannink, Ref. 15,
Section 8.1 (pp. 289-313).
§See Yamakawa, Ref. 12, most of Section 15 (pp. 94-110) and parts of Sections 20b and 21b
(pp. 153-164 and 167-169). See also Domb and Barrett.2"
fThese theories take as their starting point the Edwards model of a weakly self-avoiding
continuous chain.15'209'212"216 (The Edwards model is also equivalent to the continuum ip4

field theory with n = 0 components.) See DesCloizeaux and Jannink15 for a detailed treatment
of the Edwards model.
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radius of gyration (jR^) and the interpenetration ratio W depend on the
degree of polymerization N (or equivalently on the molecular weight
M = NMmonomer) according to

where pRt, FRg, F9 are claimed to be universal functions (which each specific
two-parameter theory should predict), and A and b are non-universal scale
factors depending on the polymer, solvent and temperature but independent
of N. (The conventional notation is a2

R = FRe,a
2
s = 6FRg, h = a.dsFy/z and

z = (bN)2~d/2 in spatial dimension d.) Moreover, virtually all the theories—
and in particular the modern continuous-chain-based theories—predict that
F$ is a monotone increasing and concave function of its argument bN,
which approaches a limiting value vp* « 0.2 — 0.3 as bN —> oo.

But our Monte Carlo data show precisely the opposite behavior: \f is a
decreasing and convex function of N, which approaches a limiting value
**« 0.247 as N—> oo (Fig. 2.15). The same behavior was found by
Nickel.203 Indeed, there is experimental evidence that for real polymers in
a sufficiently good solvent, the approach to ** is also from above, contrary
to the two-parameter theory.210'217"219 This behavior was considered to be a
perplexing "anomalous effect", and various explanations were
advanced.218'220'221 What is going on here?

The correct explanation, in my opinion, was given two years ago by
Nickel203 (see also Refs 222, 223): theories of two-parameter type are simply
wrong. Indeed, they are wrong not merely because they make incorrect
predictions, but for a more fundamental reason: they purport to make uni-
versal predictions for quantities that are not in fact universal. Two-para-
meter theories predict, among other things, that \P is a universal function of
the expansion factor a| = (R2)/(R2)T; in particular, \I> is claimed to
depend on molecular weight and temperature only through the particular
combination ar|(M, T). This prediction is quite simply incorrect, both for
model systems and for real polymers. Indeed, even the sign of the deviation
from the limiting value ** is not universal.

All this has a very simple renormalization-group explanation,203 so it is
surprising that it was not noticed earlier. As mentioned already in Section
2.7.3, standard RG arguments predict, for any real or model polymer chain,
the asymptotic behavior
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Fig. 2.15 Interpenetration ratio \t versus chain length N, for SAWs in d = 3. Error bar is one
standard deviation. Data from Ref. 39.

as 7V —>• oo at fixed temperature T > TO. The critical exponents v and AI are
universal. The amplitudes ARe, ARg, bRe, bRg, by are nonuniversal; in fact,
even the signs of the correction-to-scaling amplitudes bRe, bRg, by are non-
universal. However, the RG theory also predicts that the dimensionless
amplitude ratios ARg/ARe, \£*, bRJbRf and b^/bRe are universal.52'203

So there is no reason why the correction-to-scaling amplitudes should
have any particular sign. In the continuum Edwards model, the effective
exponents vefftRf = \dlog (R^/dlogN and veff,R = \d\og (R2)/d\ogN and
the interpenetration ratio ^ all approach their asymptotic values from
below15'22"24'209: that is, bRe, bRg > 0 and by < 0. On the other hand, in
lattice self-avoiding walks, these quantities approach their asymptotic values
from above39'203; and the same occurs in the bead-rod model with sufficiently
large bead diameter.224 Indeed, this latter behavior is almost obvious qua-
litatively: short self-avoiding walks behave roughly like hard spheres; only at
larger N does one see the softer excluded volume (smaller \&) characteristic
of a fractal object. All these models agree closely, as they should, for the
leading universal quantities v, ARg/ARe and \I>*; and they agree reasonably
well for the universal correction-to-scaling quantities AI, bRg/bRe and
by/bRe.
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In summary, the error of all two-parameter theories is to fail to distin-
guish correctly which quantities are universal and which are non-universal.
In particular, the modern two-parameter theory begins from one special
model—the continuum Edwards model—and assumes (incorrectly) that it
can describe certain aspects of polymer behavior (e.g., the sign of approach
to !&*) which in reality are non-universal.

However, this is not the end of the story: The continuum Edwards model
does in fact describe universal properties of polymer molecules, albeit not
the behavior as N —> oo at fixed temperature T> Tg. Rather, this theory
describes the universal crossover scaling behavior in an infinitesimal region
just above the theta temperature, namely the limit N —*• oo, T —* Tg with
x = N^(T — Tg) fixed, where <f> is a suitable crossover exponent. More pre-
cisely, for suitably chosen exponents $ and "e> the following limits are
expected to exist:

The exponents </> and i/# are universal, and the crossover scaling functions fRe,
fRg and /$ are universal modulo a rescaling of abscissa and ordinate. The
exponents are believed to take the values

The functions fxf and /^ (and fy at least for x > 0) are monotonically
increasing functions of their argument x = N*(T— Tg), with the asymptotic
behavior
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where vcou = l/d. Then the claim222 is that, for 3 < d<4, the functions
fK€(x), /Rg(x) and /$(x) for x > 0 are given precisely by the continuum
Edwards model, modulo the nonuniversal rescaling of abscissa and ordi-
nate:

Here a|(z), a2
s(z) and h(z) = zh(z) are the conventional expansion and sec-

ond virial factors of the continuum Edwards model,12'15'22"24'210 and K\ and
KI are nonuniversal scale factors. Thus, the continuum Edwards model is a
correct theory for a certain limiting regime in the molecular-weight/tempera-
ture plane—but this regime is not the one previously thought. The explana-
tion of eq. (2.104) relies on a Wilson-deGennes-type renormalization
group13'227; see Ref. 222 for details, and Ref. 223 for further discussion.

It will be very interesting to test the predictions (2.104) numerically. But
this will require better algorithms for simulating SAWs near the theta point
(see Section 2.9.2).

2.8.2 Linear polymers in dimension d = 2

Dimension d — 2 is very special: for many statistical-mechanical systems,
the critical exponents can be determined exactly (though non-rigorously) by
Coulomb-gas228'229 and/or conformal-invariance230"232 arguments. This is
the case for the two-dimensional SAW, for which we know the exact expo-
nents v = 3/4 and 7 = 43/32.228 The unknown quantities in this model are
the various universal amplitude ratios, which together determine the typical
shape of a SAW and the strength of its interactions with other SAWs. The
pivot algorithm has been employed164 to obtain extremely acurate values for
the limiting ratios

In particular, this confirms the beautiful conformal-invariance predic-
tion164,233
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Another open question, which has attracted a lot of work, concerns the
correction-to-scaling exponents in the two-dimensional SAW. We are cur-
rently using the pivot algorithm to investigate this question.204

2.9 Conclusions

2.9.7 Practical recommendations

What is the upshot of all this for the practicing polymer scientist, who wants
to know which algorithm to use when? Here are a few recommendations:

(1) When simulating linear polymers for the purpose of studying global
observables (e.g., the critical exponent i/, universal amplitude ratios,
etc.), use the pivot algorithm. For initialization, use dimerization if
this can be done in a CPU time less than half of your total planned
run length; otherwise use the method proposed in Ref. 168, but be
careful to discard at least ~ TV//iterations at the beginning of the run.

(2) When simulating linear polymers for the purpose of studying local
observables (e.g., number of bends, nearest-neighbor contacts, etc.),
use the pivot algorithm as described above, but make sure that the
run length is ^ 1000TV// iterations. Alternatively, use the slithering-
tortoise algorithm or the incomplete-enumeration algorithm.

(3) To obtain the critical exponent 7, use the join-and-cut algorithm
(together with the pivot algorithm for the TV-conserving moves).

(4) To obtain the critical exponent asing, use the BFACF + cut-and-paste
algorithm.

(5) To obtain the connective constant /x, use the slithering-tortoise algo-
rithm or the incomplete-enumeration algorithm.

Of course, these recommendations are not engraved in stone; other algo-
rithms could be useful in certain situations.

2.9.2 Open problems

There are numerous open problems concerning the behavior of the algo-
rithms discussed in this article. Among the most important ones are:

(1) For d < 4, does there exist any static Monte Carlo algorithm for
generating a random TV-step SAW (with exactly uniform distribu-
tion) in a mean CPU time that is bounded by a polynomial in TV?
(Section 2.4.3)

(2) What is the precise behavior of the enrichment algorithm as TV —> oo?
(Section 2.5.2)
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(3) What is the precise behavior of the incomplete-enumeration algo-
rithm as A^-^ oo? (Section 2.5.3)

(4) Are local JV-conserving algorithms necessarily nonergodic also in
dimension d > 4? (Section 2.6.4.1)

(5) What is the dynamic critical exponent of the various local N-
conserving algorithms (restricted to the ergodic class of a straight
rod)? Is it exactly 2 + 2z/ for algorithms not having special conserva-
tion laws? What about for algorithms having special conservation
laws, such as Verdier-Stockmayer? (Section 2.6.4.1)

(6) What is the dynamic critical exponent for the various bilocal (or
mixed local/bilocal) algorithms? Is the conjecture T ~ N2 exact,
approximate or wrong? (Section 2.6.4.2)

(7) Can we improve our theoretical understanding of the acceptance
fraction and dynamic critical behavior of the pivot algorithm?
(Section 2.6.4.3)

(8) Are there any bilocal (or mixed local/bilocal) algorithms that are
ergodic for the fixed-TV, fixed-x ensemble? If so, what is their
dynamic critical behavior? (Section 2.6.5.1)

(9) What is the dynamic critical exponent of the fixed-N cut-and-paste
algorithm? (Section 2.6.5.2)

(10) What is the precise dynamic critical exponent of the slithering-tor-
toise algorithm? Is it strictly between 2 and 1+7? (Section 2.6.6.1)

(11) What is the precise dynamic critical exponent of the BFACF algo-
rithm? Is it exactly 4^? (Section 2.6.7.1)

(12) What is the precise dynamic critical behavior of the BFACF + cut-
and-paste algorithm, as a function of (TV) and pn{! (Section 2.6.7.2)

(13) Can the Karp-Luby algorithm be generalized to compute virial coef-
ficients Bk for k > 3? (Section 2.7.2)

In addition, there are many interesting open problems concerning the
adaptation of these algorithms—or the invention of new algorithms—for
polymeric systems more complicated than a single SAW (athermal linear
polymer) in infinite space. For lack of space, I can merely list these problems
and give a few (grossly incomplete) bibliographical references.

SA Ws in confined geometries. In recent years there has been much inter-
est in studying SAWs attached to surfaces or confined to specified regions
(wedges, slabs, tubes, etc.).234'235 Most of the algorithms described here do
generalize to such situations; but it is no longer guaranteed that they are
even ergodic, much less efficient. This requires a case-by-case study. See Ref.
40, Section 2.4.2 for some references.

SAWs with nearest-neighbor attraction (—> theta point). The transition
of polymer conformation from the high-temperature (good-solvent) regime
to the theta point to the collapsed regime is well modeled by the self-avoid-
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ing walk with nearest-neighbor attraction. One of the most fundamental
problems in polymer physics is to understand quantitatively the details of
this crossover, both in d = 3222>225-226 and in d = 2.236 The dynamic algo-
rithms described here can easily be modified to handle a nearest-neighbor
interaction, by inserting a Metropolis accept/reject step. But their efficiency
may deteriorate markedly in the neighborhood of the theta point and even
more drastically in the collapsed regime; this requires a detailed study for
each algorithm. See Refs 171, 172, 237, 238 for some recent preliminary
work on the pivot algorithm; and see Ref. 40 for citations of older work.

Branched polymers. In recent years much attention has been devoted to
the theoretical and experimental study of branched polymers, whose beha-
vior is quite different from that of linear or ring polymers. The simplest case
is that of branched polymers with fixed topology, such as star or comb
polymers. Many of the algorithms for linear polymers can be adapted to
this case, although both the ergodicity and the efficiency are nontrivial
problems. See Ref. 40, Section 2.4.3 for some references, and see Refs
169-172, 174, 176 for recent work using the pivot algorithm.

A more difficult problem is that of branched polymers with variable
topology, such as arbitrarily-branched lattice trees. Early works used simple
sampling,239 while more recent works have used variants of the slithering-
tortoise or incomplete-enumeration algorithms.240 However, in all these
cases it has been difficult to generate branched polymers of more than
« 50 segments, because of the critical slowing-down. On the other hand,
the need for large polymers is even more acute here than for linear or ring
polymers, since one needs a rather large number of segments in order to feel
the full effects of the branching. (That is, one expects large corrections to
scaling in which the effective exponents for small N are biased toward the
unbranched-polymer values.) A very promising non-local algorithm was
devised recently by Janse van Rensburg and Madras.241

Multi-chain systems. Much current work in polymer science, both the-
oretical and experimental, focuses on semidilute and concentrated solutions
and on melts. The simulation of multi-chain systems poses very difficult
problems: for example, it is an open question whether any known algorithm
is ergodic at any nonzero density! In the semidilute case, many of the algo-
rithms described here can be applied with minor modification, and their
performance in practice (if one disregards the ergodicity problem) will prob-
ably be similar to that for single chains. On the other hand, dense solutions
and melts constitute a much more difficult problem, due to the possibility of
"gridlock". Several algorithms have been proposed,242 involving both local-
deformation and subunit-exchange moves, but the relaxation seems in gen-
eral to be very slow. Progress in this area will probably require new physical
and algorithmic ideas. See Ref. 40, Section 3 for some references.
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Burkhard Diinweg, Mark Stevens, and Kurt Kremer

3.1 Introduction

The physics of polymer solutions has been subject to vast development over
the last 20 years. The introduction of the scaling concept by DeGennes
marked the beginning of a new era of polymer theory.1 In contrast to the
earlier mean field methods, the scaling theory allowed one to successfully
treat the spacially short-ranged interactions which are mediated by a long-
range chemical interaction, the backbone of the chain. Within the n —> 0
limit of the «-vector model analogy it was possible to use the sophisticated
theoretical methods developed for renormalization group investigations of
second order phase transitions to study solution properties of polymers.2

Computer simulations successfully participated in this research, since the
scaling concept allowed one to use simple and highly efficient models and
methods (see, e.g., the chapter by Sokal in this volume).3 Characteristic to
all the polymer problems now so well understood however is the spatially
short range nature of the interaction potential mediated by eventually very
long chemical paths. As soon as the spatial interaction range is longer than
just a few monomer diameters, effecting the chain extension at even much
larger distances, the above-mentioned story of success looks very different.
Standard methods, as used for the above-mentioned problems, fail or have
to be taken with many reservations.4 Such long-range interactions can be
relevant for dynamic properties, as for the dynamics of a neutral polymer in
solution, or for both dynamic and static properties, namely in the case of
polyelectrolyte or polyamphilyte solutions. While the first problem has been
subject to investigation and discussion for many years, the second problem
has been only very recently studied sensibly by computer simulations.

Such long-range interactions pose special challenges to analytic theory
and experiment as well as to computer simulations. In the case of the
dynamics of neutral chains in solution, the hydrodynamic interaction,
mediated by momentum transport through the solvent, falls off with a l/r
power law. This introduces significant changes in the dynamical properties
of the chains and consequently the solutions. It does not, however, affect the
static properties.1'5 Theoretically even the "simplest" problem of a single

3
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chain in a good solvent can only be solved within severe approximations.
The case of 9-solvents or poor solvents is even more difficult due to the
additional short-range attractive contacts along the chains. On the other
hand, experimentally it is difficult to reach the limit of sufficient dilution
to test the basic concepts. For example, in scattering experiments it is very
difficult to work at sufficiently small concentration and maintain good
contrast. Computer simulations give the chance of studying such questions
under idealized and thus cleanly controlled conditions.

For polyelectrolytes, or, more generally, charged chains, the situation is
even more severe. Although of very high technical and biological impor-
tance, all three approaches, analytic theory, experiment and computer simu-
lations, are in a state of infancy. The electrostatic interactions dominate the
chain conformation statistics and pose severe difficulties to the extent that
not even the static properties are presently understood. Well-controlled
experiments are extremely difficult to perform because of preparation pro-
blems and the fact that both chains and solvent scatter light weakly and of
comparable strength.6 Theoretically the long-range Coulomb interaction as
well as the influence of charge fluctuations (due to the discrete nature of the
ions) are not understood at all but are thought to be crucial, for example, in
the stabilization of biological bilayers. The use of computer simulations will,
for the first time for charged chains, give direct insight into the conforma-
tions of polyelectrolyte chains under realistic but controlled conditions.
Considering the huge variety of charged polymer systems, such as stiff
polyelectrolytes, e.g., DNA, or flexible polyelectrolytes, such as RNA or
NaPSS (sulfonated polystyrene), to weakly charged systems, with a charge
only every now and then and long neutral pieces in between, the recent
simulations, which will be discussed here, are only very first attempts
seriously to investigate the systems.

These are two typical cases where computer simulations slowly mature to
play an important role in our effort to gain a better understanding. The
simulations allow an investigation under controlled and partially idealized
conditions, beyond the experimental limits. The price for this is still rela-
tively small total system sizes and relatively short chains. This chapter gives
a short overview of the work done for polymer systems governed by long-
range interactions. Special attention is given to the most recent develop-
ments.

The following section deals with the problem of polymer chain dynamics
in solutions. Several methods are discussed, which use different levels of
model description as a starting point. The third part reviews some work
on charged polymers. There again, a variety of different approaches has
been used throughout the recent years, ranging from simple Debye-
Hiickel chains to systems with explicit counterions. Finally we will comment
briefly on the future perspectives considering the modern parallel compu-
ters, which will be generally available in a few years.
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3.2 Dynamics of neutral polymer chains in dilute solution

Flexible polymer chains immersed in solvent constitute a complicated many-
body system, which today is still not satisfactorily understood. This is true
even for simple neutral solutions. Ideas of universality and scaling1 as well
as simplified descriptions of the polymer-solvent dynamics5'7'10 have yielded
significant insight into the asymptotic behavior (both static and dynamic) in
various limiting cases, such as high dilution, long chains, long time-scales or
large length-scales. However, our knowledge in the nonasymptotic or cross-
over regimes is still rather poor, the most important of these crossovers
being the dramatic change in static and dynamic behavior when the chain
density is increased. Typically in these regimes analytical theories become
cumbersome or even unfeasible, while experiments are often limited to a few
quantities they can measure. It is therefore worthwhile to explore the pos-
sibilities and limitations of computer simulations.

The statics of neutral polymer solutions is roughly understood in terms of
static scaling,1 and the influence of density and interactions is taken into
account in the Flory-Huggins theory1'11 or similar, much more sophisti-
cated approaches. Computer simulations, in particular extensive Monte
Carlo (MC) simulations on a lattice, have been able to deepen this picture,
and to verify the phenomenological crossover scaling for the crossover from
dilute to dense systems.12 These methods are also able to describe the cross-
over from Rouse dynamics5'9 in the semidilute regime to reptation
dynamics5 in dense melts.13 For these problems, molecular dynamics
(MD) simulations (Refs 14, 15; see contribution by Kremer and Grest in
this volume) have been successfully employed as well, giving consistent
results. In the dilute regime, however, dynamic MC and related methods
are unable to provide a realistic description of the dynamics: here the
momentum transport through the solvent becomes very important, and
has, in some way, to be included in the simulation. The phenomenon is
usually referred to as "hydrodynamic interaction", and amounts to long-
range correlations in the stochastic displaqements of the chain monomers,
mediated by the solvent flow. The standard model of polymer dynamics
in the dilute limit, which does incorporate this effect, is called the Zimm
model*.10

*In the original papers by Rouse9 and Zimm10 a Smoluchowski equation for the polymer
motion was solved for the special case of a random walk chain. In the Zimm paper the addi-
tional approximation of a pre-averaged diffusion tensor was introduced. Here we use the terms
"Rouse model" and "Zimm model" in the more modern and generalized sense of dynamic
universality classes: the dynamic scaling relations are determined only by the static scaling
(random walk versus self-avoiding walk) and by the type of Smoluchowski equation (Rouse
model = a single chain coupled to a viscous background with uncorrelated stochastic displace-
ments; Zimm model = Rouse model plus hydrodynamic interactions = viscous background
with correlated displacements).
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The concept of hydrodynamic interaction is certainly not particularly
intuitive. Even more difficult is the phenomenon of "hydrodynamic screen-
ing": On increasing the polymer concentration, the range of these correla-
tions decreases more and more, and the dynamics crosses over from Zimm
to Rouse behavior and eventually reptation.5'16"21 There is hope that com-
puter simulations might provide additional insight. However, the status of
dynamics simulations for solutions is still rather poor. Quite generally,
simulations which study dynamics tend to be more demanding than
those which study statics. This is because measuring time-displaced corre-
lation functions needs an increased statistical effort, and because the cor-
rect reproduction of the dynamical behavior puts more stringent
requirements on the simulation algorithm. For these reasons, computer
simulations of the dynamics of polymer solutions are less developed
than those for the statics. The field has just matured enough to have
provided us with a partial understanding of dynamics data in the dilute
limit which as the theoretically easiest case has been attacked first. In the
semidilute regime, the dynamics has not yet been treated by satisfactory
simulational approaches. As will become clear below, there are still pro-
blems left even in the simple case of a single chain in a solvent of its own
monomers, which is the optimal good solvent. Most of this section will
deal with MD simulations of such a system, where the solvent particles are
taken into account explicitly. Besides such a "first principles" approach
there are several levels of investigation. The simplest is certainly what can
be called static dynamics. For this the validity of the Zimm model is taken
for granted. Then one can use any numerical method to generate confor-
mations and use these to calculate, e.g., the hydrodynamic radius of the
chains {1 /RH} or the initial decay rate of the dynamic structure factor of
the polymer. What is implicitly assumed there is that the most interesting
features of the dynamics show up in the short-time behavior, which is
accessible as a static average over a dynamical operator. While this
approach does not necessarily yield insight into the basic theoretical pro-
blems, it is very helpful for more complicated systems such as star poly-
mers or chains in confined geometries. To test the very basic concepts one
has to investigate on a fundamental level. The next step would be to
accept the usual modeling of the hydrodynamic interaction via a diffusion
tensor but actually perform a Brownian dynamics (BD) simulation in
order to obtain the dynamical implications of the model beyond its
short-time limit. This was done by several investigators, but, as will be
seen later, has severe numerical difficulties for longer chains, since the
square root of a 37V x 3N matrix has to be calculated every time step,
where N is the number of monomers in the system. The most basic
approach employed so far is a direct MD simulation of a single chain in
a solvent. Though this was attempted by several groups over the last years,
it has only recently been possible by fast computers and optimized algo-
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rithms that any significant results were obtained. Before we report results
pertaining to all three approaches, we first give a short overview of the
theory.

3.2.1 Theoretical background

The theoretical treatment of the dynamics of a polymer chain in solution
usually starts by writing down Kirkwood's diffusion equation
(Smoluchowski equation)5

Here the rt denote the positions of the monomers, so that {ft} specifies the
conformation of the polymer chain. P({rJ-},/|{r°},0) is the conditional
probability density for a transition from {r?} at time 0 to { -̂} at time t.
The forces Fj are defined thermodynamically via the configurational equili-
brium distribution function p({r/}) at absolute temperature T (kB is
Boltzmann's constant):

Eq. (3.1) describes the diffusive behavior of a chain (i.e., the movement of
the center of mass) as well as its conformational rearrangements as a func-
tion of time. The equation is stochastic because the chain performs
Brownian motion, and it has many different conformations which all have
the same probability. The monomer-monomer interactions are described by
the FJ. We will assume here that there are no long-range interactions present
(in marked contrast to the case of polyelectrolytes!) and that hence the
chain's structure is a random or self-avoiding walk. Motion in three-dimen-
sional space is assumed throughout. The diffusion tensor Dy specifies the
dynamics. Mathematical consistency of eq. (3.1) requires that Dy is sym-
metric and positive-definite for all possible polymer conformations (no other
property is necessary). In the Rouse case, Dy is simply diagonal,

where DO is the diffusion coefficient of a single monomer. In the Zimm case
the hydrodynamic interaction is described by nonvanishing off-diagonal
elements. Many different forms have been given in the literature,5'22"26 all
of which give the same decay for long distances, however significantly differ
for shorter distances. The simplest is the Oseen tensor:
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where ty ® ty denotes the tensor product of the unit vector in the
fy(= ?i - jy) direction with itself. 77 is the solvent shear viscosity. An easy
way to derive this is based on the Navier-Stokes equation for incompres-
sible, low Reynolds number flow: apart from a factor ksT, the diffusion
tensor Dy is nothing but the mobility tensor which describes the linear
velocity response of particle i to an external force applied at the location
of particle j (generalized Einstein relation). However, this velocity response
can be found by just calculating the flow field which is generated by this
force (which is modeled as a point force), because particle i is assumed to
be "embedded" in the surrounding flow (stick boundary conditions).

Zimm10 solved the chain dynamics for random walks, using the so-called
preaveraged version of the Oseen tensor. In his original treatment, Dy was
averaged over the chain conformations before solving the Smoluchowski
equation. Thus ty ® ty in eq. (3.4) was replaced by 1/3 1 and the inverse
distance between the particles by the average inverse distance. This gave a
diagonal tensor, for which the Smoluchowski equation can be solved in much
the same way as for the Rouse model. However, at this time it was rather
unclear how severe the pre-averaging approximation is. It was only recently
that some light has been shed on this question, using Brownian dynamics
simulations (see below). Strictly speaking the Oseen interaction results in an
ill-defined problem, since Dy is not positive-definite for all conformations.
Hence, the numerical approach to solving the Smoluchowski equation
(Brownian dynamics) has to use different interaction tensors, as will be dis-
cussed below.

For the more microscopic approach of an MD simulation of a chain in
solvent particles, it is useful to also look at the theory from a more micro-
scopic point of view, in particular in order to assess its limitations. The
derivation of equations of motion of the Smoluchowski type and the dis-
cussion of the involved errors is a standard problem in modern transport
theory. In the present case, the form of the hydrodynamic interaction tensor
has to be derived from the microscopies, too.24'27~30 However, analytical
considerations have not yet given a satisfactory answer to the question for
which time and length scales one should expect the asymptotic Brownian
and Oseen behavior, respectively.

A treatment that studies the case of unphysical dynamics of the solvent
particles has been carried out in Ref. 31, also using a microscopic approach.
This was done in order to discuss if it is justified to replace an MD algorithm
in which the solvent particles obey strictly Newton's equations of motion by
a Langevin simulation in which every solvent particle is artificially coupled
to a weak friction and a weak heat bath32 (this latter method has some
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technical advantages, as discussed below). The main result is that the
Navier-Stokes equation

(p mass density, it velocity flow field) is modified to

where m is the mass of a solvent particle and £ the friction constant that is
put artificially into the algorithm. While the Green's function of eq. (3.5) is
the Coulomb-like Oseen tensor, eq. (3.4), the Green's function of eq. (3.6)
exhibits a Yukawa-like decay oc exp (—«r)/r. Hence, the algorithm intro-
duces a screening into the hydrodynamic interaction, with a screening length
of

That is, such a modification of the algorithm would result in a loss of the
most decisive property of the hydrodynamic interaction, which is its long-
range nature. An interaction which has a typical length-scale built in can be
renormalized to a localized interaction, i.e., on a sufficiently coarse-grained
scale the displacements of the monomers could be considered as indepen-
dent. In this case the dynamics would be asymptotically Rouse-like on scales
large compared to /.

However, the inclusion of the long-range correlations places the Zimm
model into a different dynamic universality class than the Rouse
model.1'5'33"36 Although there exist sophisticated renormalization-group
treatments,4'20 the essential physics can be understood rather easily on the
phenomenological level: we first consider the center of mass diffusion con-
stant D which within the framework of the Smoluchowski equation differs
only weakly from the Kirkwood value D^37'38 (the latter describing the
short-time behavior):

where NCH is the number of monomers. For the Rouse model, one has
£>(*) = D0/Nch, or D oc R~l/", where the gyration radius (R2

G} = \/(lN2
ch)

^2ij (r?.) describes the typical dimensions of the chain, while v is the expo-
nent which describes the chain's fractal structure via the scaling law
RG oc N^h. For a random walk, v is 1/2, while v PS 0.59 for a self-avoiding
walk. For the Zimm model, eqs (3.4) and (3.8) yield
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where the hydrodynamic radius is defined as

Hence, in Zimm scaling, D oc R~^ oc R^1 (asymptotically). From this one
concludes the dynamic exponent z, which relates the longest relaxation time
TR or TZ (Rouse or Zimm case, respectively) with the radius of gyration
(T oc RZ

G): Since T is, by order of magnitude, given by the time the chain
needs to move its own size (T sa _/?g/(6Z>)), one finds z = 2 + \jv in the
Rouse case and z = 3 for the Zimm model (i.e., faster dynamics due to
the hydrodynamic correlations, which speed up the diffusion). This expo-
nent also describes the relation between time scales and length scales in the
scaling regime (i.e., length scales intermediate between microscopic lengths
of the order of a bond length and RG, and time scales intermediate between
microscopic times and T): here the mean-square displacement of a single
monomer scales as

while the dynamic structure factor

which is measured in dynamic light scattering experiments,39"44 is supposed
to obey the relation

The theory as sketeched above is well established and has, in part, been
confirmed by light scattering experiments39^4 and some neutron scattering
data.45 However, there are a number of problems with the theory. First of
all, the Smoluchowski equation is only valid on time scales on which the
motion of the monomers can be viewed as Brownian. This requires some
care in the interpretation of MD results where the ballistic short time regime
should be cut off. Furthermore, the theory totally disregards retardation
effects: the hydrodynamic interaction in reality does not spread infinitely
fast, but rather diffusively with a finite diffusion constant which is nothing
but the kinematic viscosity %,„ = r/fp where p is the solvent's mass density.
The approximation to regard the flow field as instantaneously generated by
the current polymer conformation can only be valid if DO <C %•«, i.e., if



D Y N A M I C S OF N E U T R A L P O L Y M E R C H A I N S 133

momentum transport is much faster than the monomer motions. It is not
immediately obvious that any polymer-solvent system should satisfy that
condition, i.e., considering that the typical solvent molecule is roughly of the
same size as the typical monomer.

Similar caveats also concern length scales: from the hydrodynamic deri-
vation of the Oseen tensor (eq. [3.4]) it is completely obvious that it can
describe the correlations in the stochastic displacements only on suffi-
ciently long length scales. For short interparticle distances, the 1/V-like
interaction becomes completely unphysical, and, even worse, mathemati-
cally ill-defined: there are polymer conformations in which the monomers
are too close to each other and which hence violate the condition of

<-»

positive-defmiteness of Dy (the reader can easily verify this for the case
of a dumbbell). Mainly for this reason many authors have introduced
modified interaction tensors which all cross over to the leading Oseen
behavior for large distances, but which are supposedly more accurate for
short distances: one approach is to take the finiteness of the monomers
seriously and try to solve the flow problem around an array of
spheres,22'23'25'26 while other authors have introduced a phenomenological
length as a lower boundary for the validity of hydrodynamics24 or purely
empirical regularization procedures.46 All of these attempts have in com-
mon that they introduce an additional microscopic length scale into the
problem which is not a priori built into the original Hamiltonian of mono-
mers and solvent particles, and is hence unknown. MD simulations with
explicit solvent particles, as the most basic tool, have the unique advantage
of not assuming the validity of the Smoluchowski equation from the out-
set, and of being able to address such questions quantitatively. The other
approaches take the validity of the Smoluchowski equation on the typical
polymeric length scales for granted.

The typical limitation of light scattering experiments39"44 is that they
cannot measure all quantities independently in order thoroughly to test
the theory. For example, eq. (3.9) relates a dynamic quantity, the diffusion
constant D, to a static quantity, the hydrodynamic radius RH. D is usually
measured by determining the initial decay rate of the dynamic structure
factor S(k, t) in the low-fc limit.5 However, RH is not measured indepen-
dently, but rather determined indirectly using eq. (3.9). Of course, an inde-
pendent measurement of RH is easily possible in a simulation.

A similar problem occurs for the initial decay rate at the higher k values
(scaling regime): writing

in the short-time regime, Akcasu et al.41 have shown that within the frame-
work of the Smoluchowski equation one has
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(This reduces to eq. [3.9] in the limit k —> 0.) Analytically, this can be calcu-
lated only approximately for finite chains because of the problem of poly-
mer conformational statistics. In the asymptotic limit of an infinite chain
with vanishing bead size, one has (for k in the scaling regime)47

where Co is a constant dependent on the exponent v: C0 = 0.078 8 for
v = 3/5 and Co = 0.062 5 for v = 1/2. However, experiments usually see a
prefactor which is smaller.42"44 We believe that this is due to both finite
chain length and, more importantly, finite bead size, the latter usually being
neglected in the data analysis.48 Again, the right-hand side of eq. (3.15) is
not measured independently in experiments, while in a computer simulation
this is possible.

3.2.2 Simulations

The above discussion now clearly defines the various levels one can employ
to attack the problem. As mentioned throughout the discussion, the first
and most ambitious way is to perform a microcanonical MD simulation.
The typical problems will be discussed in detail later. The next level would
be to simulate the Smoluchowski equation directly via Brownian dynamics.
This assumes its validity on the relevant time-scales. However, because of
the necessary calculation of the square root of the hydrodynamic interaction
tensor the method easily runs into numerical problems: if the tensor is not
properly regularized, negative eigenvalues are bound to occur sooner or
later in the course of the simulation. Moreover, due to the computational
complexity of the square root (the number of operations is proportional to
the third power of the number of the Brownian particles49 the method is
limited to relatively short chains. This approach has been used by several
investigators throughout the last 15 years. The simplest and most widely
used method is to assume the validity of the Zimm description and calculate
the hydrodynamic radius etc. from standard MC simulations. Within the
Zimm model then the consequences for the dynamics are analyzed. In the
present paper we give an overview for all three different approaches. We
follow the discussion of the theory, namely first to discuss the more funda-
mental attempts which will not necessarily be able to reach the asymptotic
regime in every aspect, and then move towards the "static dynamics" which
one can call the standard MC procedures. The main emphasis will be on the
discussion of the MD simulations.
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3.2.2.1 MD simulations of a single polymer chain in a bath of solvent
particles

(a) Overview The most obvious simulational approach attacking the
problem of Brownian motion in complex systems is to perform MD on a
system of both solvent particles as well as the Brownian particles. For a
single polymer chain in solution, however, this is not an easy task, since the
chain relaxes on a much slower time-scale than the solvent. Moreover, long
chains are required to clearly see scaling behavior, which means large sys-
tems in order to keep the solution dilute.

Such simulations have been done since the late Seventies.50"61 However,
due to the large computational effort necessary, the older work was limited
to either studies of static quantities, or analysis of dynamic quantities for
short chains with rather inaccurate statistics. It was only recently that some
progress was made by two independent studies,58"61 which were able for the
first time to attain enough statistics to make a detailed analysis of the
dynamics worthwhile. Pierleoni and Ryckaert (PR)58'59 studied chains of
length 7^ = 6,9,20,30, while Diinweg and Kremer (DK)60'61 explored
the range Nch = 30,40,60. Diinweg and Kremer did not study shorter chains
more carefully, because preliminary test runs indicated that these do not
exhibit a sufficiently large time window between microscopic times and the
Zimm time to make the r2/3 behavior of the mean square displacement
clearly visible. These shorter chains seemed rather to exhibit an effective
exponent which decreased with chain length.62 For the longer chains, how-
ever, DK observed a mean square displacement that was independent of
chain length and exhibited an effective exponent of 0.7 ± 0.05 (see Figs
3.1/3.2). Pierleoni and Ryckaert did not calculate (Ar2), but rather calcu-
lated the dynamic structure factor S(k, t), for which they did observe a k^t
decay behavior. On the other hand, DK analyzed S(k, t) only for the longer
chains (Nch > 30), where the same dynamic scaling was found61 (the statis-
tics were not sufficient for the shorter chains). A comparison of Rouse
scaling and Zimm scaling of S(k, t) for Nch = 60 is shown in Figs 3.3 and
3.4.

, At first glance, the combination of these results look somewhat surpris-
ing: short chains apparently exhibit scaling only for S(k, t) but not for
(Ar2), while longer chains obey scaling for both quantities. Of course, the
models of PR and DK are slightly different (see below), but we still think
such a combination is valid. However, there are reasons to believe that
neither of the studies are fully within the asymptotic hydrodynamic regime,
but rather in some sort of crossover regime between atomistic dynamics and
hydrodynamics. It seems that the dynamic exponent z = 3, which was
derived from hydrodynamic arguments in the limit of long length and
time scales, is valid well beyond those scales, down into a regime where
practically no theory exists.61 Then it is conceivable that some quantities



Fig. 3.1 Log-log plot of the time dependence of the mean square displacement of the single
monomer in an MD simulation of a polymer chain in good solvent. Only the four inner
monomers are taken into account in order to suppress end effects. Chain-lengths are
Nc/l = 30 (points), 40 (triangles) and 60 (diamonds) (from Ref. 61).

Fig. 3.2 Same as Fig. 3.1, for the time interval 20 < t < 80 (scaling regime). The exponent
was estimated as 0.70 ± 0.05 (from Ref. 61).
136
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Fig. 3.3 Log-linear "data collapsing" plot of the decay of the dynamic structure factor S(k, t)
for Nd, = 60, in Rouse scaling form, k1/l/S(k, t) vs. fc3-7/, using v = 0.59, and restricting the data
to the scaling regimes 0.7 < k < 3 and 20 < t < 80. These scaling regimes were determined by
Figs 3.1 (mean-square displacement of the single monomer) and 3.5 (S(k,t = 0)). Moreover,
data with S < 0.05 were eliminated for reasons of statistical accuracy (from Ref. 61).

exhibit the asymptotic power law earlier than others. The arguments61 can
be summarized as follows: in contrast to phenomenological scaling theories,
the Kirkwood theory (summarized in eqs [3.1] and [3.4]) has the additional
predictive power to give definitive statements about the prefactors of the
scaling laws. Therefore, a much more detailed comparison is possible. The
main example is eq. (3.15) and its k —> 0 limit, eq. (3.9). While eq. (3.9) can
actually be confirmed,59'61 D(k) according to eq. (3.15) is no longer in
agreement with the measured decay rate if k is sufficiently large.61'63 This
is not too surprising since these larger fc-values correspond to length scales
on which the liquid still has structure, as measured by the solvent's pair
correlation function (note that even for the longest chain, Nch = 60, the
radius of gyration is of comparable size as the typical correlation length
of fluid structure!).61 Furthermore, one can also measure the time-displaced
autocorrelation function of transversal modes of the solvent's velocity flow
field. The corresponding Green-Kubo integral should provide the Fourier
transform of the Oseen tensor in the hydrodynamic regime.31'61 Indeed, one
sees a nice k~2 decay, with even the prefactor being described accurately by
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Fig. 3.4 Same as Fig. 3.3 for Zimm scaling: kll"S(k, t) vs. k3t (from Ref. 61).

the hydrodynamic theory.61 However, this only works down to some length
scale (fc ft! 1 . . . 2 [all quantities are expressed in Lennard-Jones units64]),
where deviations occur and, apparently, the atomic motions come into
play.61 But on the other hand, DK observed the k3t decay of S(k, t) in the
regime 0.7 < k < 3! Even more dramatic seems to be the extension of
dynamic scaling into short, non-hydrodynamic time scales: Pierleoni and
Ryckaert59 saw the k3t decay down to very short times (0.5ru), which are
probably significantly shorter than the time needed to cross over from bal-
listic to Brownian particle motion (for comparison: DK cut off all data
below 20r/j as ballistic short-time regime).

This slow crossover into asymptotic hydrodynamic behavior stands, inter-
estingly enough (also for experiments), in marked contrast to the dynamic
behavior of melts of short chains:15 in this latter case, the corresponding
length and time scales are sufficient to observe Rouse dynamics. For the
case of solutions however, the chains have to be longer than in the melt case
in order to observe the typical "polymer behavior". Moreover, these results
indicate that the observation of a k3t decay of S(k, t) alone is not sufficient
to prove asymptotic Zimm behavior.

(b) Finite size effects and prefactors of scaling laws The minimum linear
si/e of the simulation cell, L, is determined by fitting the chain within the cell
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Fig. 3.5 Log-log plot of the static structure factor of the chain, for Nci, = 30 (lower curve), 40
(middle curve) and 60 (upper curve) (from Ref. 61).

(i.e., it does not overlap with its periodic images). Pierleoni and Ryckaert59

varied Rc/L between 0.1 and 0.3 and in Diinweg and Kremer's work61 this
ratio was w 0.2 for all systems. No effect of self-overlap is visible in the
statics which is most readily analyzed in terms of the static structure factor
S(k, t = 0) (see Fig. 3.5). The Ar~1/v decay in the scaling regime can be nicely
verified: from Fig. 3.5 one extracts an exponent v = 0.58 ± 0.01, as expected
in good solvents (similar results are found in Ref. 59, however with a less
pronounced scaling regime, due to the shortness of the chains).

However, the 1 /r-dependence of the Oseen tensor indicates that the dyna-
mical properties should be strongly system-size dependent, because, in the
Oseen picture, the chain hydrodynamically interacts with its own periodic
images. In Ref. 60 Diinweg and Kremer pointed out that, for this reason,
one should compare the data to a modified Kirkwood theory where the
Oseen tensor is replaced by the corresponding Ewald sum which takes the
periodic images into account.65'66 This has to be done both in eq. (3.8),
yielding a system-size dependent hydrodynamic radius, as well as in eq.
(3.15), defining a system-size dependent initial decay rate.

Perhaps a more intuitive picture of the effect is obtained if, by Fourier
transform, one views the Oseen tensor as the superposition of hydrodynamic
modes. The main contribution arises at the origin h = 0 due to the k~2
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divergence. However, it is just those long-wavelength modes which are cut
off by the finite system size, reducing the diffusion constant significantly.
Similar finite size effects, which scale in leading order like Zr1, have been
observed in completely different contexts,67'68 while the basic physics is very
similar to the present case.

For the center of mass diffusion constant, this analysis was carried
through in both studies.59'60'61 The result is that the Kirkwood prediction
for the diffusion constant is in very good agreement with the MD data if and
only if the Ewald correction is taken into account. A glance at eq. (3.9) shows
that five quantities are involved in this comparison: D, the actual diffusion
constant, which can, e.g., be measured by the mean square displacement of
the center of mass (see Refs 59 and 61); the temperature, which is measured
via the kinetic energy; the solvent viscosity, which can be obtained via
Green-Kubo integration59'61'69 with reasonable accuracy; the Ewald gener-
alized hydrodynamic radius, which is obtained from static averages over the
chain conformations; and the monomeric diffusion coefficient D0, which is
not easily accessible. Pierleoni and Ryckaert, for their comparison, therefore
replaced DO by the diffusion coefficient of a solvent particle. Diinweg and
Kremer allowed for D0 being different from the solvent particle value, since
their monomers were twice as heavy as the solvent particles, and hence used
eq. (3.9) to solve for DO, finding a value practically independent of the chain
length and rather close to the solvent particle diffusion constant. This agree-
ment is very reasonable since in both models the chain monomers are
"chemically" identical to the solvent particles (i.e., apart from chain con-
nectivity, the interactions are the same). Moreover, the main contribution to
the particle diffusion constant seems to come from the particle "size": a
comparison with Stokes' law for slip boundary conditions
(Do = ksT/(4irrja)') shows good agreement if one extracts the particle radius
a from the first peak of the pair correlation function.61

By putting the chain's conformations into hypothetical boxes of varying
size, the Ewald theory also allows one to study the L-dependence of D. The
finite size effect is very strong (oc Zr1 in leading order) and an MD box
which would be large enough to neglect it is computationally not feasible
today.60'61 From the structure of the theory it follows that the dimensionless
parameter which controls the finite size effect on D is Ro/L. This depen-
dence has been confirmed by Pierleoni and Ryckaert59 who actually ran an
MD simulation of a 9-monomer chain in boxes of different sizes, L varying
as much as by a factor of three. They found that D increased with L, as
predicted by the theory, and obtained quantitative agreement. It is interest-
ing to note that the effect is even observable on the single-particle level: in
DK's system, the diffusion constant of the solvent particles increased with
the system size, in reasonable agreement with the prediction resulting from
the Ewald sum.61 Of course, this finite size effect is much weaker than that
of the chain, since the solvent particles are much smaller.
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Fig. 3.6 D(k) (cf. eq. [3.14]) obtained from the dynamical data for Nci, = 30 (filled circles), 40
(filled triangles) and 60 (filled diamonds). Instead of trying to perform the limit t —* 0 the
maximum value of D(k, t) (see eq. [3.17]) was taken. Hence, the data should be viewed as an
upper limit to the actual initial decay rate. For comparison, the data resulting from the static
evaluation with Ewald sums are also included with corresponding open symbols (from Ref. 61).

In Ref. 61 the analysis of the initial decay rate of S(k, t) was also done for
k ^ 0, studying the Ewald generalization of eq. (3.15). For the monomeric
diffusion coefficient D0 Diinweg and Kremer used the value which was
obtained from the diffusion constant D. In that sense the procedure can
be viewed as "fitted" to k = 0; however, it should be noted that the value is
physically very reasonable. In Fig. 3.6 these static values are compared to
the data extracted from the actual dynamics. An accurate determination of
D(k) is not easy. In Ref. 61 the following procedure was adopted: inspired
by eq. 3.14, one can define

whose "initial" value defines D(k). However, what is actually meant is a
typical value at the initial stages of Brownian motion. Since there is a
smooth crossover from ballistic into Brownian dynamics, it is not obvious
how to define the relevant time. Diinweg and Kremer just took the max-
imum value of D(k, t), maximized over the observation time. Therefore,
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what is plotted in Fig. 3.6 is an upper limit to the actual decay rate, and the
data is somewhat noisy.61 However, it seems that at the higher k values the
actual dynamics is slower than predicted by the hydrodynamic theory,
which we again see as indication for a crossover to more atomistic dynamics:
the discrepancies start to occur roughly at the same length scales where the
other indicators also point to deviations from hydrodynamic behavior (see
above). It should also be mentioned that all data (the static evaluation for
L = oo but Nch < oo according to eq. (3.15), the Ewald sum modification of
eq. (3.15), and the actual MD) lie below the asymptotic Benmouna-Akcasu
value (Ref. 47, see eq. [3.16]), as do the light scattering data.42"44

The finite size effect is most severe for k = 0 (i.e., the center of mass
diffusion constant), while its relative contribution gets less and less impor-
tant for the higher k modes. This has been seen in the simulation by
Pierleoni and Ryckaert,59 who tried to explain this observation by a retar-
dation argument.59 It should be noted, however, that the same behavior is
also to be expected from the pure retardation-free theory. This is borne out
both by the numerical evaluation of the Ewald sum61 as well as by an
approximate analytical calculation61 which indicates that in the scaling
regime the finite size effect is no longer controlled by Rc/L, but rather by
\/(kL). (The finite size scaling theory which was invented in Ref. 60 is
apparently wrong.)

(c) Methodological considerations In this section, we want to give some
details about modeling and simulation technique for the two studies which
had been the main focus of the preceding parts.58"61 The models are rather
similar, which, in spite of the independence of the studies, is not very sur-
prising since most of the modeling is driven by considerations of simplicity,
computational efficiency and historical development of MD simulations.
First, the solvent particles mainly fulfill the function of transporting
momentum. Therefore one needs particles with a strong repulsive interac-
tion at short distances, while an attractive part for longer distances may be
included but would only waste computer time. The "ideal" solvent would be
a system of hard spheres. However, there is no known fast vectorizing
algorithm for hard spheres (efficient algorithms for the scheduling of colli-
sion events70 are inherently scalar), and since both studies58"61 were done on
Cray vector computers, it was practically imperative to use continuous
potentials for which very efficient vectorizing MD algorithms have been
developed.71'72 Soft spheres are conveniently modeled by a truncated
Lennard-Jones (WCA73) potential:
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This type of interaction has been used in both studies. Lengths are measured
in units of a, energies in units of e, and times in units of rjj = (ma1 /e) ,
where m is the mass of a solvent particle. The solvent state point was slightly
different in the two studies: the density was p = 0.8 (Pierleoni and Ryckaert)
and p = 0.864 (Diinweg and Kremer), while for the temperature the values
kBT= 1.5 (Pierleoni and Ryckaert) and kBT= 1.2 (Diinweg and Kremer)
were chosen. Note that the density is rather high, which we believe is neces-
sary to ensure quasi-incompressible flow, and to make sure that momentum
transport is much faster than mass transport (i.e., that the kinematic visc-
osity is much larger than the particle diffusion constant). Both conditions
are tacitly built into the theory, and are reasonably met in both studies.59'61

A small fraction (slightly less than 1% in Refs 60 and 61, and about 4%
for the longest chain of Refs 58 and 59) of the solvent particles is then
relabeled as chain monomers and connected via an attractive backbone
potential. Pierleoni and Ryckaert connected their monomers by hard rods
of length d= 1.075. Diinweg and Kremer used the FENE potential

with parameters k = 1 and RQ = 2 as attractive backbone. Note that these
potentials do not introduce any angle dependence in order to reach the
flexible chain limit as easily as possible. Moreover, the repulsive interaction
acts between all particles in the same way. This makes the solvent an ideally
good one, in which the 6 collapse never occurs. Hence, the statics of the
chain is that of a pure self-avoiding walk, without any obscuring effects due
to crossover to a 9 solvent. Solvents like the present one are sometimes
called "athermal"1 and are the simplest for a computer simulation.

Given the very long relaxation times and the moderate to large system
sizes, it is crucial to have a well-optimized program. The "layered link cell"
algorithm employed by Diinweg and Kremer72 attained a speed of roughly
3 x 105 particle updates per second on one Cray-YMP processor, for the
WCA potential at the state point in consideration.

In both studies, the runs were long enough to obtain typically several
hundred statistically independent conformations.59'61 On these timescales,
purely Newtonian dynamics easily leads to numerical instabilities so that the
total energy of the system drifts by an unacceptable amount. Pierleoni and
Ryckaert stabilized their simulation by a Nose-Hoover thermostat74'75 and
used the data to analyze both statics as well as dynamics. In principle, we
view it as always dangerous to use non-Newtonian dynamics in order to
obtain time-displaced correlation functions, in particular in problems invol-
ving hydrodynamics. However, it seems that the procedure is sound and no
hydrodynamic screening is introduced artificially. This is intuitively under-
standable since the Nose-Hoover thermostat, in contrast to a Langevin
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simulation,32 conserves the global momentum of the system, and confirmed
by numerical evidence.76 However, a more rigorous analytical investigation
along the lines of Ref. 31 has not yet been done, and seems to be more
difficult than for the case of Langevin dynamics. The procedure adopted by
Diinweg and Kremer was to first run the system with Langevin dynamics32

in order to generate a statistical ensemble of conformations, from which
short runs with purely Newtonian dynamics were started. The dynamical
information was then obtained by averaging over these runs, which were
long enough to reach well into the scaling regime, but not long enough to
directly measure the Zimm time which was rather estimated by
Tz = ^e/(6D). For further details, see the original papers.59'61

3.2.2.2 Lattice gas cellular automata (LGCA)

This is a new and potentially powerful method to simulate hydrodynamic
phenomena.77 It is still a developing field which might have a big impact on
polymer solutions simulations. An application to a polymer chain in solu-
tion (in two dimensions) is found in Ref. 78. A hybrid scheme between
LGCA and MD was developed in Ref. 79. We feel however that the field
has to mature further (and the relation of LCGA dynamics to the atomistic
particle dynamics has to be further clarified) before they can be used as a
standard tool in polymer dynamics. Once the relation between LGCA the
local microscopic dynamics is established, one is tempted to expect a next
"quantum jump" for the hydrodynamic simulations of complex fluids, such
as polymers.

3.2.2.3 Brownian dynamics

The previous sections described in some detail the very microscopic point
of view. The characteristic length scales are typically relevant for shorter
chains, as they occur often in experiment. However most theories for poly-
mers are set up to describe the very long time and length scales. While the
MD simulation can test the short length scale limit of this approach, it is
presently not able to properly investigate the other limit. Here "long" not
necessarily means very many model monomers, but large gyration radius
compared to the characteristic length scales of the solvent. On that time and
length scale, with all the reservations from the previous MD simulations, it
is necessary and useful to consider the solvent as a continuous background
and assume the general applicability of the Smoluchowski equation. This
leads to Brownian dynamics (BD) simulations of single, still relatively short
chains.80 Historically this approach of course was used much earlier than the
MD simulations.

Brownian dynamics is nothing but the numerical solution of the
Smoluchowski equation. The method exploits the mathematical equivalence
between a Fokker-Planck type of equation and the corresponding Langevin
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equation.81'82 For systems with hydrodynamic interactions, this equivalence
is worked out in more detail in Ref. 83. The system is propagated for a small
timestep At, in which every monomer is displaced by a small amount. This
displacement is the sum of a deterministic part, governed by the forces Fj in
eq. (3.1), and a stochastic part. The equation of motion, for the simplest case
of no external flow and force field80 reads

The superscript ° identifies the conformation at the beginning of the time-
step. For small timesteps A? this should be reasonable to do. Fj in the above
equation is the force exerted on particle 7. The so-called "spurious drift",
i.e., the third term in the r.h.s. of eq. (3.20) usually vanishes, since most
diffusion tensors which have been used in the literature have zero divergence
(this is directly related to the assumption of incompressible flow). pf(Af) is
the random displacement by the coupling to the heat bath. The crucial
difficulty comes from the connection of the displacement by the heat bath
and the hydrodynamic interaction tensor Dy via the fluctuation dissipation
theorem. This fixes the first two moments to be

and

That is, the correlation function of the stochastic displacements is propor-
tional to the diffusion tensor, which hence has to be evaluated every time
step. Calculation of the random displacements then requires finding a root
of the diffusion tensor. For this reason, it is absolutely crucial to have a
diffusion tensor which is positive-definite. This is not guaranteed for the
Oseen tensor which deals with point particles. Thus in most cases the Oseen
tensor is replaced by a tensor which has no singularity for strongly
approaching particles. Mostly the so called Rotne-Prager-Yamakawa
(RPY) tensor22'23 is used, which avoids this problem. For short distances
the singularity is removed and the tensor reads

where a is an effective bead radius which can be interpreted as the Stokes
friction radius of the monomers. As for the Oseen case, the RPY tensor has
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zero divergence, but now is also positive definite, since it phenomenologi-
cally takes the finite size of the beads into account. This however is a
technical trick, in order to make the simulations possible, even if the
beads are allowed to approach each other arbitrarily.

A rather efficient method to calculate the root of the hydrodynamic inter-
action tensor is Cholesky decomposition.49 The random displacements are
then obtained via multiplying the root matrix with a vector of random
numbers. The root is usually not unique, i.e., there are several matrices
whose square is the diffusion tensor, but since any of these matrices yields
random displacements which satisfy the condition eq. (3.22), this non-
uniqueness averages out in the course of the simulation. These matrix opera-
tions become numerically rather intensive if the number of monomers
becomes large (the number of operations is proportional to the third
power of the number of monomers). The numerical algorithms for
Langevin equations are well established,80'81 however, some details are
still discussed today.84'86

Ermak and McCammon80 were the first to simulate a Smoluchowski
equation with hydrodynamic interactions. Since then, the approach has
been applied to polymer chains by several investigators.37'38'46'87"89. One
advantage is that it yields both dynamic and static information, studying
precisely the implications resulting from the Smoluchowski equation (which
is also its main disadvantage, since it takes it for granted). In particular one
has a well defined "short-time" behavior (i.e., short compared to the Zimm
time, but long compared to the microscopic timescales of the solvent). As
discussed before, this separation is not at all trivial in MD simulations.

It is still an interesting, important and active field to look at the conse-
quences of various approximations below the full Smoluchowski equation.
Fixman37 and Rey et a/.38'89 used Brownian dynamics, amongst others, in
order to study the difference between the short-time Kirkwood diffusion
constant and the long-time limit (for time scales long compared to the
Zimm time). Similarly, one can also investigate the difference between
"fluctuating hydrodynamics" (i.e., the solution of the full Smoluchowski
equation) and "preaveraged hydrodynamics" (where Dy is replaced by its
static average). These studies are of special interest, since they give some
clear hints on the validity of the pre-averaging, which is the basis for the
investigations discussed in the following section. Slight differences between
the short and long time behavior of the diffusion are up to now certainly
beyond the limits of MD simulations, mainly because there is no well-
defined short-time limit.

Fixman37'87 studied in some detail the properties of Gaussian chains of up
to 56 monomers, comparing fluctuating hydrodynamics to pre-averaged
hydrodynamics (this latter case can be done analytically). It was observed
that the effect of fluctuating hydrodynamic interactions seems to decrease
the diffusion constant in the long time, long chain limit only weakly (w 5%).
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This observation is in accordance with a supposedly rigorous variational
bound for the diffusion constant, which states that the Kirkwood value is an
upper bound.5 A much stronger effect (w 30%) was found for the intrinsic
viscosity [77], which measures the polymer contribution to the viscosity 77 of
the solution, relative to the viscosity rjs of the pure solvent. It is experimen-
tally defined as

where p is the polymer density (number or mass density). For the simula-
tions of single chains this relation changes to the time integral over the
intrinsic stress autocorrelation function of the chain.

A severe problem, however, occurred in the extrapolation to long chains:
it was found that the bead size a has a strong influence on the diffusion
constant, and an even stronger one on the intrinsic viscosity. This suggested
the conclusion in Ref. 37 that even in the long chain limit the transport
coefficients might be sensitive to microscopic details, in clear contradiction
to renormalization-group arguments.4 It should however be noted that the
extrapolation to the infinite chain length limit is probably not trivial: for
hydrodynamic properties like the hydrodynamic radius (and hence the dif-
fusion constant) it is known that corrections to scaling are extremely impor-
tant (see below). We should also mention that in some MD studies transport
coefficients such as the diffusion constant of a single particle were investi-
gated as the function of some presumably unimportant parameters as, e.g.,
its mass,62'90 where a nontrivial dependence was found. Here certainly more
work has to be done in order to resolve these uncertainties.

While Fixman's investigations were restricted to Gaussian chains, Rey et
a/.38'89'91 studied both Gaussian and self-avoiding walks, combining Monte
Carlo simulations for the statics with BD using the RPY tensor for the
dynamics. Beyond the diffusion constant, they also measured the dynamic
structure factor and the relaxation of Rouse modes.5 This allows a direct
comparison to scattering experiments. For the random walk case89 their
results are, within the error bars, in agreement with the earlier data of
Fixman. They confined themselves to significantly shorter chains (up to
Nch = 20), probably in order to be able to attain the necessary statistics.
For the self-avoiding walk (SAW) chains of length of up to Nch = 25, a
rather soft repulsive potential for the excluded volume interaction was intro-
duced. This potential still allowed the chains to cut through themselves,
however, since entanglement effects are not important for such a system
this artifact is of course of no relevance here. The potential used was
V(r) = A exp(—ar) with A = 75k^T, a = 4/b and an interaction cutoff
rc = Q.5l2b, where b is the root mean square distance of neighboring
beads in the absence of excluded volume interactions, resulting from a
harmonic backbone potential. This soft excluded volume interaction
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allowed a BD time-step about a factor 100 times larger than the conven-
tional short range repulsive LJ potential.* For those chains both fluctuating
as well as pre-averaged hydrodynamics was studied. In the latter case, the
pre-averaged diffusion tensor was obtained from actual simulation data, i.e.,
apart from some statistical error, no additional approximation beyond pre-
averaging was introduced. Fig. 3.7 gives an example for a chain of length
Nci, = 25, showing the averaged inverse distances.

The first results concern the comparison between the Kirkwood formula
for the diffusion constant and the diffusion constant obtained from pre-
averaged BD simulations. Within the error bars, the numbers are identical.
However, for fluctuating hydrodynamics a diffusion constant systematically
above the Kirkwood value was found, at variance with the variational
bound.5 Since the data seem to be rather accurate, this might be an indica-
tion that something is wrong with the rigorous bound. For a discussion, see
Ref. 38. These questions must be regarded as completely unresolved today.

Rey et al. also evaluated the theoretical prediction for the correction term
D\, by which the true diffusion constant should be smaller than the
Kirkwood value38:

where CA(T) = (A(t)A(t + r)) is the autocorrelation function of the de-
terministic part of the displacement vector per time unit,
A = (\/kBT)Y!i=\T^~\tDijFj- Ol" course, taking this correction into
account makes the above-mentioned discrepancy even worse (D\ is posi-
tive). However, the behavior of CA(T) shows very nicely that apparently
fluctuating hydrodynamics can be approximated better and better by pre-
averaged hydrodynamics when the chain length is increased: Fig. 3.8 shows
the time dependence of the ratio CF

A(r)/Cp
A(r}, where CF

A and CP
A were

obtained from simulations with fluctuating and pre-averaged hydrody-
namics, respectively. The ratio is always larger than 1, and very soon it
approaches 1. In addition the deviation is reduced strongly with increasing
chain length.

Moreover, it was found that with increasing chain length the relative
deviation of the true diffusion constant from the Kirkwood value seemingly
tends to zero. In view of these results it seems conceivable that in the limit of
infinitely long chains there is no difference between pre-averaged and fluc-
tuating hydrodynamics and that hence the "static dynamics" approach gives
good results even in the long time limit.

'Note that this idea does not apply for the previously considered MD simulations. Such a soft
potential would change the solvent's compressibility dramatically. The assumption of an effec-
tively incompressible solvent then would certainly be in error.
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Fig. 3.7 Average values of (r^1) versus the position of the center of pair ;)' for a linear chain
with Nfi, = 20 units. The lines connect points with a fixed length of the subchain as indicated
(from Ref. 91).

Besides these investigations first attempts to study shear flow have been
made, using BD simulations.92'93 We should also finally mention that the
BD approach can be applied to suspensions as well. For these systems, there
exist highly developed simulation schemes, which employ rather accurate
diffusion tensors taking into account both the finiteness of the Brownian
particles 5'26 as well as the hydrodynamic interactions with the periodic
images via Ewald sums.65'66 For more information on these so-called
"Stokesian Dynamics", see, e.g., Ref. 94. Due to the computational com-
plexity, only moderate system sizes can be studied.

3.2.2.4 "Static dynamics"

As was mentioned before, a static average over a dynamical operator
yields the short-time behavior (i.e., the initial decay rate of the correlation
functions). Eqs (3.9) and (3.15) are based on this reasoning. Moreover, as
discussed in the previous section, there are reasons to believe that in the long
chain limit the approach gives good results even for long times.

The application of this idea originates with Zimm.95 Since then it has been
used to study single isolated objects, such as chains, stars and combs etc.
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Fig. 3.8 Ratio of the time correlation function CA(T) as defined in the text (cf. eq. [3.25]) for the
full hydrodynamic interaction compared to the pre-averaged one for different chain-lengths as
indicated (from Ref. 38).

under various physical conditions. Since only conformational properties are
of interest, the most effective method is usually a static MC simulation (see
e.g., Chapter 2 by Sokal or Ref. 96). We will here discuss the implications on
two levels. First a few examples dealing with purely static quantities which
are relevant for the hydrodynamics will be given. Then we review some
attempts in which the strength of the hydrodynamic interaction is taken
into account, e.g., by varying the Stokes friction radius of the beads.
Since the main aspect of the present chapter is the chain hydrodynamics,
we mention the simulation algorithms only in passing. In addition, we will
confine ourselves mainly to recent developments.

The first and simplest quantity to analyze is the hydrodynamic radius
{Rj[l) as a purely geometric quantity. From light-scattering experiments
assuming proper separation of the hydrodynamic and the bare friction con-
tributions, it is known97 that the corrections to scaling for the averages are
very strong. Some experiments even conclude a different, somewhat smaller
asymptotic exponent for the hydrodynamic radius (RjJ } than for the end-
to-end distance or the radius of gyration.40'98"100 This is of course wrong,99

but since for RH the inverse distances are averaged, corrections due to close
approach in space or along the chain are very important. Especially when
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some effective bead radius is incorporated this can obscure the results for
shorter chains significantly. Within an extremely simplified model, it can
actually be shown that for the hydrodynamic radius the exponent of the
leading correction to scaling is 6 = 1 - v.4& Thus {R^ } reads

In most cases (R^Y^N^ is plotted vs. either N~h
l or N^h''". For the latter

the deviation from the correct power is presently too small to be detected in
a simulation. The calculation of the purely geometrical hydrodynamic
radius is unambiguous while the subsequent use for the intrinsic viscosity
or the sedimentation velocity needs further assumptions. Fig. 3.9 gives an
example from a simulation of athermal walks and stars on the fee lattice,
using a modified dimerization method.101 The fee lattice has the advantage
of being closer to the SAW fixed point than other 3d lattices. This means
that the amplitudes of the corrections to scaling are very small compared to
all other 3d lattices and the persistence length is not significantly larger than
a bond length. The figure shows the results for a linear polymer and for stars
of/= 3,4,5,6 arms. Corrections to scaling for (R^) are almost undetect-
able for the chain lengths presented in the figure, while for RH they are very
strong. The difference, for example, between the asymptotic amplitude A
and the effective amplitude for Nc/, = 100 is about 20% with a slight
increase for higher/. Taking the length of the chains into account, the rather
disturbing results of some experiments are not too surprising. To eliminate
model specific aspects an important quantity is the ratio

\"/^ v ' en ~~ij } j

which for random walk stars102 can be evaluated exactly to be

Note that of course p(f= 1) = p(f= 2). Fig. 3.10 shows a comparison
between the simulation of the athermal lattice SAW polymers and the ran-
dom walk (RW) calculation and the/= 3 experiment by Huber et al..103

The strong deviation between simulation and experiment shows that current
computer simulations are by far superior to experiment for studying such
fundamental relations. The data show that for a small number of arms the
SAW polymers obviously display fluctuations which increase p(f) com-
pared to the RW result. This changes with increasing /. It would certainly
be of interest to see p(f^> 1).

To go further and to estimate the sedimentation velocity from such a
calculation, the coupling to the solvent must explicitly be incorporated, as
was done, e.g., in Ref. 95. In order to remove such problems in experiments
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Fig. 3.9 Ra(Nc/l)/N%H versus 1/w'f for chains (part [a]) and the ratio RH(f,Nch)/(fNci,y
versus l/(Nci,f) for stars with f arms (part [b]). The straight lines give the amplitude of
the corrections to scaling and show the very slow crossover towards the asymptotic behavior
(from Ref. 101).

and to compare to theory, characteristic ratios such as p need to be calcu-
lated/measured. Thus in most simulations point monomers sitting on lattice
positions are considered, since the ratio p is expected to be universal, i.e., not
to depend on the details of the model.

Another interesting quantity is the initial decay rate of the dynamic light
scattering function. Again, in order to provide a direct basis for comparison
to experiment, the local coupling to the solvent has to be inserted. As was
discussed before, the initial decay rate T^(k) = -(d/dt)(\n S(k, t))t=0 can be
written as T^(k) = D(k)h2 where D(k] is given by eq. (3.15). For kRG <C 1,
one expects r(0) = D^k2, where D^ is the short-time (i.e., Kirkwood)
value of the center of mass diffusion constant, eq. (3.9). For kRG 3> 1
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Fig. 3.10 The ratio p = RG(Nd,,f)/^n(Nch,f) versus/, comparing the MC data to the exact
random walk results. One experimental point is included (cf. text) which also illustrates the
experimental difficulties (from Ref. 101).

one should observe r<°) = (C0ksT/r]s)k3 with C0 = 0.0788 for SAW statis-
tics.47 Fig. 3.11 shows the results for a linear chain and star polymers on a
fee lattice. Since the prefactors are taken to be unity (Do = 1 and
(kBT)/(%Trr)s) = 1) this can only be used to compare to experiment on a
rather qualitative level, especially for smaller systems. First one observes the
expected divergence of r^/k3 for small k. With increasing number of arms
the de Gennes correlation hole becomes more and more pronounced. It

Fig. 3.11 Initial decay rate r'°) for star polymers with a varying number/of arms, as indicated.
In all cases the arm length is Nc/, = 40. In the high wave number regime, where the scatterer only
feels the single arm, all curves coincide (from Ref. 101).
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simply means that the space which is occupied due to the presence of other
strands is not available for conformational relaxation. For larger k with
2-rr/k smaller than the diameter of the largest blob1 in the star, one essen-
tially observes the effect of the individual strands of the stars. There the data
have to become independent of /, displaying the same result as for the
isolated chain.

Many authors, and such was the original attempt by Zimm,95 try to go
beyond the above calculations. They want to get information on the sedi-
mentation velocity (which is directly related to the diffusion constant), or
the intrinsic viscosity. According to Fixman104 and Wilemski and Tanaka105

the "static dynamics" (i.e., zero time limit) approach should give an upper
bound for transport properties such as the diffusion constant or the zero
shear viscosity. (As was discussed in the previous section, this was not
confirmed by the BD simulations of Rey et a/.38) However, in order to
conclude these short-time approximations for the transport coefficients
from the geometric properties of the chain, further input data are needed.
Of these, one should distinguish between solvent properties (in particular
the solvent viscosity) and microscopic bead properties like the monomeric
diffusion constant D0 (or the related friction coefficient £ or the correspond-
ing Stokes radius a). Of course, from renormalization-group theory4 one
expects that these latter properties should have no influence on the transport
coefficients in the asymptotic limit (diverging chain length and vanishing
density), but in both simulations as well as experiments one deals with finite
chains. In this context we again mention the BD results of Fixman,37 where
severe doubts regarding the independence on microscopic model parameters
were put in place. The strength of the coupling is usually, in addition to the
solvent viscosity, introduced via an effective bead size or Stokes radius. This
however is ambiguous. Since rotations and translations enter in Zimm's
approach with different friction constants, as they might be of importance
for the sedimentation problem,95 there is another numerical parameter of
order unity. The finally resulting numerical factor usually is denoted as h*
and is called strength of the hydrodynamic interaction. This altogether leads
to a relation between microscopic friction and viscosity. For the assumption
of a simple spherical molecule one expects the standard Stokes law
£ = 6irr]sa. This would be the ideal case of stick boundary conditions.
However, it is assumed that because of the microscopic nature of the
beads there is a situation in between stick and slip boundary conditions.
Thus, as this short and rather incomplete discussion shows, the direct quan-
titative use of essentially both BD and "static dynamics" bears many un-
resolved questions.

The influence of the microscopic parameters on the predicted diffusion or
sedimentation constants is shown in Fig. 3.12 from Ref. 106. There for short
linear chains and small star molecules the calculated diffusion constant
within Zimm's scheme is given for two different effective bead sizes. The
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Fig. 3.12 Ratio of the hydrodynamic radius RH to N^H (in our notation), plotted versus N^A1'.
Here the hydrodynamic radius is not defined as a purely geometric quantity, but rather as the
Stokes radius of a sphere which would have the same sedimentation velocity as the polymer.
The latter is obtained via "static dynamics", also taking rotational diffusion into account
(Zimm's approach.95). Data are shown for star polymers on the cubic lattice and/= 1,3,4,6
(from top to bottom) for different effective monomeric Stokes radii a = 1/4 (full symbols) and
a = 1/2 (open symbols) (from Ref. 106).

results differ dramatically and also the prefactor of the finite size corrections
shows different signs, which is a clear indication that the data are by far not
asymptotic. The questions arise again for how far with increasing Nch such
problems remain.

Nevertheless, one can use such simulations to determine, e.g., the relative
contributions of different parts of the conformational properties to the
diffusion. Fig. 3.13 shows an example in which different approximations
are compared to the actual simulations.106

To avoid the above-discussed finite size effects and problems with the
microscopic form of the local hydrodynamic interaction, at least to some
extent, typical ratios are calculated. For this the intrinsic viscosity is the
most widely used example. This viscosity is expected to be independent of
microscopic aspects. It is also used experimentally to determine molecular
weights.11 Here we want in a little more detail to review some recent studies
of chains under Poiseuille or Couette flow.

Van Vliet et a/.107'108 recently used the approach of Wilkinson et al. in
order to study the influence of confined geometry on the flow problem. The
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Fig. 3.13 Scaled hydrodynamic radius as in Fig. 3.12 for an/= 3 arm star polymer for a = 1/2
versus N~®A1. The three sets of data correspond to different approximations. The full line gives
the hydrodynamic radius as defined in eq. (3.10). The broken curve also takes into account the
"free-draining part" (i.e., the term Do/Nci, in eq. 3.9), while the triangles give the results from
the Zimm approach9 (from Ref. 106).

problems investigated were planar Couette (linear velocity profile) and
planar Poiseuille (parabolic velocity profile) flow. The first is important
for studies of chains under shear and chains near surfaces while the latter
certainly is of high practical importance, e.g., for chains flowing in very
narrow tubes or in viscometers. In these studies the change in the intrinsic
viscosity compared to the unconfined situation is studied for both good
solvent and 9-solvent chains on the simple cubic lattice. The chains are
mainly generated using the Wall-Mandel slithering snake algorithm.96

They study the zero shear intrinsic viscosity as a function of the ratio of
plate distance L over unconfined chain dimension which scales like N^h. The
main difference to the bulk studies mentioned earlier is the inclusion of the
angular/rotational contribution to the intrinsic viscosity and the RPY ten-
sor. The RPY tensor had to be modified in order to take the hydrodynamic
coupling to the walls properly into account. In Zimm's original treatment,
as adopted by others, the rotational contribution is included via essentially
the average asphericity of the chains. This has to be changed here, since the
chains near the surface are not free to rotate. The Zimm angular velocity is
given by
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where 7 is the shear rate, which is a constant for Couette flow, but depen-
dent on z for Poiseuille flow. The flow is in the xz plane with flow lines
parallel to the Jt-axis. For the Poiseuille flow 7 is taken as the shear rate at
the z-coordinate of the center of mass of the chain. The Zimm angular
velocity is approximated either by the average angular velocity under
these conditions in a bulk solution or by the actual conformation dependent
velocity. The differences turn out to be negligible within the error bars of the
simulation. Within this scheme the intrinsic viscosities are then given for the
Couette case by

where z, is measured from the center-of-mass of the chain. (In many appli-
cations a prefactor NA/M, where NA is Avogadro's number and M the
molecular mass of the species under consideration, is added in order to
get experimental units.) For Poiseuille flow the situation is more compli-
cated. There the position of the center of mass is fixed and the contribution
to [rj\L calculated. Then these individual numbers are averaged over the
probabilities of the z-coordinates of the center of mass.

Figs 3.14 and 3.15 give two examples of the change of the intrinsic visc-
osity relative to the corresponding bulk solution. The first one shows the
different contributions of the angular and translational parts for Couette
flow as a function of the scaled thickness of the slit. For very small slits only
the translational part of the viscosity remains. As soon as the layer thickness
reaches about 1.5 times the unperturbed chain dimensions the rotational
part dominates the behavior. The main conclusion is that the characteristic
layer thickness for this to happen is clearly smaller than predicted by dumb-
bell models. Secondly, the sliding conformations which occur in the very
narrow slits contribute significantly to the intrinsic viscosity. The second
figure shows the difference between the Couette geometry and the Poiseuille
geometry for the case where the angular contribution is analyzed for each
conformation separately. This explains the larger scatter of the data.
Because of the stronger variation of the contribution to the intrinsic viscos-
ity with the position of the center of mass of the chain in the Poiseuille case,
the intrinsic viscosity is reduced over a much larger range of layer thickness
compared to before.

3.2.2.5 First conclusion

The various simulation approaches described in the previous sections
show the possibilities of modern computer simulations for hydrodynamic
properties of polymer solutions. Unfortunately, there are very severe limita-
tions. For the MD simulations still faster computers are needed e.g., to
make a serious attempt to look at semidilute solutions beyond some very
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Fig. 3.14 Ratio of the intrinsic viscosity in a slit of width L to the bulk value versus the
normalized slit width A = L/N"ch for an athermal solvent and chain-lengths between
Nch — 12 and Nci, = 79. The open symbols give the contribution from free rotation (from
Ref. 107).

limiting cases. This is a problem where modern parallel computers might
help. For the BD simulations the calculation of the square root of the
diffusion tensor leads to severe problems, especially if one would like to
go to semidilute systems or even simple systems of several chains where
periodic boundary conditions have to be included. Though very promising
to some extent, as far as we can see the application of BD is rather limited in
the long run. More complicated situations might be studied extensively in
the future by "static dynamics" methods. There the big advantage is the
high accuracy of the available conformation distributions. On the other
hand, this method requires by far the most serious assumptions and approx-
imations which consequently to our impression give it only qualitative char-
acter. It was used, for example, by the authors of the above-discussed papers
to test scaling laws. In general, in spite of considerable effort by various
groups over the last years, the situation is not very satisfying. There will be
some progress by the advent of more powerful computers, but for the really
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Fig. 3.15 Ratio of the intrinsic viscosity in a slit of size L to the bulk value versus the normal-
ized slit width A = L/ff^ for the Couette (solid symbols) and the Poiseuille (open symbols)
flow for chain-lengths between Nci, — 59 and Nc/, = 150. The typical frequency is set to w = U>L
(from Ref. 108). For details see text.

delicate and important problems, such as hydrodynamic screening, nonzero
shear etc. new algorithmic ideas are essential as well.

3.3 Structure of charged polymer solutions

So far we have reviewed the special case where the long-range nature of the
interaction affected only the dynamic properties of the polymers leaving the
static properties unaltered. This is the case for neutral, nonpolar polymers.
As soon as the chains contain highly polar units (e.g., polyethylene oxide) or
even charged units (polyelectrolytes, polyamphilytes), the conformations are
also strongly affected by the long-range nature of the interaction. This
modification of the average conformation certainly will be most strongly
pronounced for charged chains in solution.

Polyelectrolytes in solution represent an important class of polymers.
Much interest in polyelectrolytes occurs because many biological polymers
are polyelectrolytes.109 In particular DNA and RNA are prototypical exam-
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pies of a poly electrolyte. Besides the many biological polyelectrolytes, other
common examples include poly aery lie acid and polystyrene sulphonate. The
interest in polyelectrolytes is in addition supported by the huge potential of
applications.110 Already today polyelectrolytes are used for thickening
agents, rheology, metal extraction, food stabilization, and water absorbants
(diapers).111'112 Interest in polyelectrolytes is presently rising particularly
because they are water soluble and thus expected to be environmentally safer.

A large variety of charged polymers exists because of the numerous ways
of placing charges on the polymer chain. From every class of neutral poly-
mers several charged polymer classes can be created. This structural variety
in part leads to a rich behavioral variety. Yet, even a single class of charged
polymers such as linear polyelectrolytes in solution exhibits a wide range of
physical behavior. These polyelectrolytes possess characteristics dramati-
cally different from neutral polymers. In this review we will consider only
linear polyelectrolytes in solution, because they comprise the basic type of
polyelectrolyte systems. Both the current simulation studies as well as the
attempts for analytical theories essentially only deal with this prototypical
class of systems.

The long-range nature of the Coulomb interactions significantly alters the
polymer structure in comparison with neutral polymers. Furthermore, the
charges introduce more than just a long-ranged interaction into the system.
Because the total system is neutral, polyelectrolytes in solution are, at their
simplest, a ternary system composed of the charged polymer, counterions
and solvent. In general, there is added salt which makes the system a qua-
ternary system. Thus, polyelectrolytes in solution are more complex than
their neutral counterpart.

Five parameters classify the main types of linear polyelectrolytes: the
fraction / of charged monomers, the strength of the Coulomb interaction
normalized to kgT, X, the added salt concentration cs, the polymer concen-
tration c and of course the chain length L. One other important quantity is
the valence of the counterions or salt ions. For the most part only mono-
valent ions have been considered to date in simulations and theory. To
completely understand polyelectrolytes requires studying the variation of
each of these quantities which is a formidable task. The understanding of
polyelectrolytes in solution is just beginning. While much work has been
done on these systems, by no means is there a definitive understanding of
their properties and structure.

Because the Coulomb interaction is long-ranged, its introduction into the
system is often nonperturbative. The structure of polyelectrolytes in solution
depends strongly on the strength of the Coulomb interaction.
Polyelectrolytes are classified as either weak or strong depending on the
Coulomb strength. The convenient dimensionless coupling strength is the
ratio of the Bjerrum length, \B = e2/eksT, and the distance separating
charges along the chain backbone, a:
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A is called the Manning ratio. The dimensionless Coulomb pair interaction
is then

where (3 = \/kBT is the inverse temperature, z/ is the valence of the zth
particle, and ry is the pair separation distance. A strong polyelectrolyte is
defined as having the coupling strength A <; 1 which physically corresponds
to the Coulomb interaction between bonded charged monomers being
stronger than the thermal interaction. In general, strong polyelectrolytes
are fully charged (J— 1), but the degree of charging and the bond length
obviously combine to define /. In weak polyelectrolytes, A -C 1, the
Coulomb interaction is dominated by thermal interactions at short dis-
tances. But, at long length scales the Coulomb interactions can add up
and dominate the thermal interactions unless screened by counterions.
Thus, the Coulomb interaction will tend to dominate the structure of the
charged polymer at some length scale.

This book, including the first part of this chapter, is a testimony to the
strong influence that simulations have had on our understanding of neu-
tral polymers. The basic need for similar simulations on charged polymers
is even stronger. In great contrast to our knowledge of neutral polymers,
our knowledge of polyelectrolytes is weak. As pointed out above, poly-
electrolytes are much more complex than neutral polymers. Consequently
they are more difficult to characterize both experimentally and theoreti-
cally. Other "technical" difficulties are also important. Polyelectrolytes are
elongated in comparison with neutral polymers due to the Coulomb repul-
sion between charged monomers. As a result the overlap concentration is
at much lower values than for neutral polymers where the resolution of
neutron scattering is poor. Consequently, no measurement of the single
chain structure factor has been done. Theoretically, the long-ranged nature
of the Coulomb interaction is intractable. Most theoretical work presumes
a Debye-Hiickel interaction which is only valid in the weak interaction
limit, generally taken to be at very dilute concentrations. Furthermore,
neutral polymer theory has been advanced through scaling arguments,1

but since polyelectrolytes in solution have more than just the added length
scale of the Coulomb interaction, such scaling theories are much more
difficult and speculative. We thus have the classic case of theory
and experiment only being best done in two different regimes.
Polyelectrolytes in solutions appear to be a great opportunity for simula-
tions to resolve the fundamental issues. However, the complexity of poly-
electrolytes and the long-range Coulomb interaction affect simulations as
well making the computer time much longer than for neutral chains.
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Below we discuss the present status of the theory of polyelectrolytes.
Some of the important experimental results with which there is simulation
data to compare are also discussed. We do not mention experiments such as
viscosity measurements since no simulation has calculated such quantities.

3.3.1 Theoretical models

Theory presently treats only limiting cases; no general theoretical scheme
exists which covers the whole range of systems. The two main limiting cases
are strong very stiff polyelectrolytes in solution or weak flexible polyelec-
trolytes in solution. For both regimes the discrete nature of the counterions
and the salt in solution is only treated in a mean-field manner.

3.3.1.1 Strong polyelectrolytes

The structure of charged polymers is very different from neutral poly-
mers. For polyelectrolytes in solution the like charged monomers repel each
other tending to elongate the chain unless their interaction is screened by
counterions or salt ions. The long-range nature of the Coulomb interaction
can extend this elongation to all length scales. This can be seen from the
Flory calculation below which shows that the isolated chain is rod-like.
Polyelectrolyte structure can be varied greatly depending upon the amount
of screening due to counterions and/or colons.

One can apply Flory arguments to calculate the end-to-end distance, R, as
a function of the number of monomers for the case of a completely isolated
charged chain (i.e., no counterions or salt ions). In the Flory argument the
free energy is

where the first term is the usual elastic energy and the second term repre-
sents the electrostatic energy of the charged monomers. The above equation
for the free energy omits all the logarithmic corrections, even though they
probably are very important for polyelectrolytes in solution. Minimizing the
free energy with respect to the end-to-end distance, R, yields

The dilute limit is a rod-like chain—the most extended a chain can be. We
note that already within this scheme the case XB > a leads to unphysical
stretching! In comparison, R ~ N", where v = 1/2 for Gaussian chains and
v = 0.588 « 3/5 for good solvent neutral chains. The more accurate renor-
malization group (RG) calculation also gives v = 1 for the three-dimen-
sional isolated charged chain. More generally, in d dimensions
renormalization group calculations113 have found that VRG = 1/(d— 2) for
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4 < d < 6. Flory-type calculations give v? = 3/d. For d = 4 and 5 the two
calculations disagree.

Since polyelectrolytes are stretched at dilute concentrations, much theo-
retical work has focused on the perturbation from the rod-like conforma-
tion. 114~120 in the infinitely dilute limit the Debye-Hiickel approximation to
the Coulomb potential is valid:

where

defines the Debye length, A = K~~I with ct the concentration of the rth ionic
species with valence z,-. The validity of this approximation is questionable as
the concentration increases, but no other means of treating the counterions
(and salt ions) is amenable to calculation. The departure from completely
rod-like structure is described in terms of the persistence length, Lp, and the
basis of most theoretical work on polyelectrolytes in solution are persistence
length calculations. The original calculations by Odijk114 and Skolnick and
Fixman115 were done for a worm-like chain which models semiflexible poly-
electrolytes like DNA. The total persistence length, Lp, is taken to be just the
sum of the intrinsic persistence length of the uncharged chain, L,, and the
electrostatic persistence length, Le. The free energy is taken to be the sum of
the elastic and electrostatic interaction as in the Flory argument with the
electrostatic interactions being the sum of the Debye-Htickel pair potentials.
Entropy is neglected and the chain is assumed to be locally stiff (i.e., a
worm-like chain).114'115 The complete form of the electrostatic persistence
length is

where x = 1/KL.118 This expression simplifies when x <C 1 to

which scales as c"1/2.
The above expressions have been modified to include excluded volume

effects by assuming the same recipe as used for neutral polymers. The radius
of gyration is written in terms of an expansion factor a and the value of RG

at the 0-temperature where the excluded volume repulsion is cancelled by
the van der Waals attraction:
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The chain is viewed as composed of NK Kuhn segments of length LK. The
expansion factor a is a function of these two parameters and the excluded
volume, Vex, only depending on the dimensionless combination

Various forms of a expanded in terms of z have been given.2'118'121 The
work of Odijk and Houwaart118 used the Yamakawa-Tanaka expression

The connection with polyelectrolyte theory is through the persistence length.
The persistence length of a rod is L/2. Thus, LK = 2L, for a rod. The
calculation of Vex for a rod yields

which gives

Other expressions for the excluded volume have been calculated.122 All the
expressions assume a rigid rod structure.

Based on these persistence length calculations Odijk has developed for
L ^> A a scaling theory of polyelectrolytes for both dilute and semidilute
regimes.123 He proposed a sequence of structural changes as a function of
increasing polymer concentration. The chains remain rigid rods until Le « L
at monomer concentration c*b = I/\6-n-a2L. In this picture the chains can
overlap before they begin to bend. To see this, consider the overlap con-
centration for rigid cylinders: c* = 6/(?raL2). Then, c*b > c* when L > 96a,
or equivalently, when N > 96 if each monomer is charged. Between c* and
c*b one has rods packed at densities which may form a nematic phase. A
second transition (above c*) occurs when the strand-strand distance equals
Le at c* = 0.04/47rAj. By this concentration the nematic phase disappears.
At higher concentrations the chains are Gaussian chains of blobs. Following
the usual scaling theory recipe and using the asymptotic expressions for the
persistence length given above, the following semidilute scaling results:

De Gennes et al. have proposed an alternative picture for the structure of
polyelectrolytes as a function of concentration.124'125 As with Odijk at dilute
concentrations the chains are rigid rods. They point out the possibility of a
crystalline phase at very dilute concentrations and long chains. In the semi-
dilute regime, the chain is viewed as composed of straight segments each
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with g charged monomers which form an ideal chain (in the limit of large N).
The strand-strand distance is equal to the length of a segment: £ = ga. In
other words, the persistence length is pinned at the strand-strand distance.
In contrast to the Odijk theory the crossover density and the overlap density
are the same. The end-to-end distance is given by

At c*, £ ~ N, and R ~ N as required. The concentration dependence can be
obtained using the fact that g ~ c £3 yielding

The scaling for the chain structure factor comes rather simply from the
segment picture.

The same q dependence occurs in the Odijk picture, but ranges of q and their
concentration dependence are different.

Recently Barrat and Joanny126 have addressed one of the criticisms of the
OSF theory. They have used variational methods to allow the chain to be
flexible instead of locally stiff. A new expression for the persistence length is
obtained scaling as the Debye length or c"1/2 which agrees with experi-
ment.127"133 Their method is applicable when a » (A^L,-)1/2 or XLt/a -C 1,
i.e., the chain is a weak polyelectrolyte. However, most experiments are in
the strong polyelectrolyte regime. It remains to be seen whether Barrat and
Joanny's results can be extended to the experimental regime.

One other relevant theoretical set of work concerns the counterion dis-
tribution particularly in the dilute limit. Manning134"137 solved the Debye-
Huckel equation for a single infinitely thin polyelectrolyte. He found that
when a < \B the counterions condense onto the line polymer reducing the
charge density until the charge separation becomes equal to the Bjerrum
length. The details are altered when the Poisson-Boltzmann approximation
is used for a cylindrical polyelectrolyte,111'119'120 but the basic point of con-
densation occuring for A > 1 remains. In a similar vein, Oosawa138 pro-
posed a two-phase model of bound and free counterions. These results are
especially relevant, since many prototypical polyelectrolytes, such as DNA
and NaPSS, have A « 3.
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3.3.1.2 Weak polyelectrolytes

The scaling theory of weak polyelectrolytes113'139"143 is more developed
than for strong polyelectrolytes as the Coulomb interaction is more pertur-
bative and a Flory-like ansatz is expected to give better results. The theory
of weak polyelectrolytes is based on the picture of chain structure at very
dilute concentrations as a sequence of Gaussian blobs that form a linear
chain.125 As usual the counterions are neglected and only the charged mono-
mers considered. Since weak polyelectrolytes are usually only partially
charged, quantities scale with A/2. In general the separation between
charged monomers, a, is not the same as the bond length, b. A blob consists
of g charges or ga/b monomers such that the electrostatic energy of the blob
equals kgT. From this, we can write the blob diameter to be

We then have

Since the blobs form a linear chain,

These equations yield the following scaling relations in terms of the funda-
mental parameters.

In strong polyelectrolytes the solvent quality is usually neglected as the
Coulomb repulsion effectively creates a good solvent except when the
screening is very strong. But, for weak polyelectrolytes the tendency for
the solvent quality to be poor has fundamental consequences: the blob
structure changes in a poor solvent altering the scaling relations.
Specifically, in a poor solvent weakly below the 6-point the following rela-
tions are expected to hold139

where T = (T — 6)/6 and the second virial coefficient, B ~ VT. All these
relations are for single chains in dilute solution.
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Phase diagrams have been proposed for weak polyelectrolytes140"142

which exhibit a wide variety of phases. Present simulation methods have
not been able to address the nature of the phase diagram, and thus we will
not discuss the theories. These phases are of course of great interest for
future simulations. The double structure of weak polyelectrolytes requires
rather long chains to clearly observe the scaling predicted. The chain length
must be at least the product of the minimum blob size that exhibits scaling
and of the minimum number of blobs that together exhibit scaling. To
calculate the dependence of the polyelectrolyte structure on the above para-
meters requires longer chains than the minimum in order to allow the chain
structure to adjust to the varying parameters. While this is extremely impor-
tant for many applications a severe test is still not available.

3.3.2 Experiment

Bulk quantities such as the osmotic pressure are relatively easily measured
while the microscopic structure of polyelectrolytes in solution has been
difficult to determine. Measurements of the osmotic pressure on several
systems show two scaling regimes144 (Fig. 3.16). At low densities, II ~ c9/8

which is the dependence predicted by Odijk's scaling theory.123 In the high
concentration regime the scaling exponent changes to the scaling for semi-
dilute neutral polymers: c9/4.1 These results suggest that the polyelectrolyte
chains are elongated at dilute concentrations and are similar to neutral
chains in good solvents at semidilute concentrations. According to Odijk,
the crossover should occur at c\ which is incorrect since the crossover of II is
molecular weight independent. However, Odijk's scaling relation can be
modified to crossover to neutral scaling.144

The peak position, qm, in the interpolymer structure factor exhibits a
similar variation with concentration, c.145"149 At low concentrations, the
peak position scales as c"1/3 which corresponds to the variation of an aver-
age interpolymer separation. At high concentrations, the peak position
scales as c"1/2 which corresponds to a correlation length that scales as the
Debye length. Both the Odijk picture and the de Gennes picture predict such
a dependence. Thus, this experimental data does not distinguish between the
two theories and the structure to which this dependence corresponds has not
been determined. A definitive understanding of this dependence remains an
open problem.

Much experimental effort has been expended measuring the persistence
length of polyelectrolytes in solution.127"133 A significant discrepancy has
been found between the OSF prediction and the measured dependence of Lp

on the ionic strength, /. Experiments (Fig. 3.17)127~133 find Lp ~ 7"1/2, but
theory gives Lp ~ 7"1. This had led to a lot of effort in recalculating the
electrostatic contribution to the persistence length.119'120'150"153 One aspect
seems clear. The original calculations are for stiff chains like DNA which
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Fig. 3.16 Plot of the measured osmotic pressure at various molecular weights (from Ref. 144).

has a long intrinsic persistence length (Lt = 500A). But, the experiments on
flexible polyelectrolytes like polystyrene sulphonate (L, w 10A) do not
satisfy the stiffness assumption and do not agree with the OSF predictions.

3.3.3 Simulation methods

The simulation techniques used for polyelectrolytes in solution are exten-
sions of the standard methods used for neutral polymers.3'96 The polymer
chain is modeled as a set of connected beads. The beads are charged depend-
ing on the charge fraction, but otherwise the details of the monomer struc-
ture are neglected. Various means of connecting the bonded monomers are
used. In lattice Monte Carlo the bonds are of course fixed. Two sets of
simulations have used the rotational isomeric state model.121'152'154"156

Other simulations have used Hookean springs153 or the finite-extendable-
nonlinear-elastic (FENE) potential.157'158 No important dependence on the
nature of the bonds is expected at this level of modeling the polymer chain.
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Fig. 3.17 Measured persistence length (a) by birefringence for NaPSS for molecular weight of
up to M = 200000 (from Ref. 132), and (b) by static light scattering on PVP (from Ref. 133). In
both cases the Odijk prediction is included as a straight line. (This line was wrong in the original
figure in Ref. 133 (M. Schmidt, private communication); this has been corrected here.)

Most works have performed Monte Carlo (MC) simulations.121'143'152'
154-156,159-175 jn ^ese ^g monomers are moved via the standard reptation,
crankshaft, flif>, etc. moves. The only special consideration is for the case of
a partially ionized chain. In this case, a reptation move can change the
identity of the chain by altering the sequence of charges along the chain.
Since there exists a set of sequences for a given total charge, the changing
identity is viewed as sampling the ensemble of possible sequences.156 Other
MC schemes used include a grand canonical method173 and an ensemble
growth method.143 A few recent works157'158'176 used molecular dynamics.

Treating the solvent is more complex for charged polymers in solution
than for neutral polymers in solution. In neutral polymer simulations the
solvent quality can be treated by effectively altering the monomer-monomer
interaction. For polyelectrolytes in solution other considerations are also
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important. Foremost is the presence of counterions and salt ions in the
solution. Most simulations to date have not explicitly treated the ions in
solution.121'143'152'154'155'161'162'16^166'168'169'171'172'176 Instead, the Debye-
Hiickel approximation is used for the charged monomer interactions so
that the solvent ions enter only through the screening length. This approx-
imation is discussed below. A few simulations156"158'163'173'174 have explicitly
treated the solvent ions. One of the great interests in polyelectrolyte simula-
tions is calculations with explicit solvent ions, because theoretically this
problem is presently untenable. Such simulations should offer insight into
more realistic aspects of counterion condensation and the nature of the ionic
screening. Two further complications have yet to be treated: the differing
dielectric constants of the solvent and the polymer chains, and the polar
nature of the solvent. All works to date treat the uncharged solvent particles
as a continuous background providing the bulk dielectric constant. The
dielectric constant of the solvent is usually taken to be that of water at
room temperature (298 K), e = 78. At dilute concentrations the bulk dielec-
tric constant should pose no problem, but this difference may require more
sophisticated treatment at high polyelectrolyte concentrations. With respect
to the polar nature of the solvent, the potentially important hydration shells
may need to be considered. These aspects are presently beyond the available
computational speed.

The long-range Coulomb interaction requires special treatment.177"180

The history of simulating Coulomb systems is full of incorrect results due
to not using the Ewald method to include interactions with the image
cells.178"180 Many people have been deceived by the fact that one can accu-
rately calculate the system energy without summing over the periodic
images. But the phase diagram critically depends on the long range interac-
tions.181'182 Most of the simulations of polyelectrolytes in solu-
tion156'160'163'174 have used the minimum image (MI) method which only
includes all Coulomb interactions within the minimum image. These
works simulated only a single chain ostensibly at infinite dilution, although
the use of periodic boundary conditions yields a finite (dilute) concentra-
tion. In the infinitely dilute case, the long range interactions are not relevant
though simulating even a simple electrolyte should be done with care.182 The
Ewald method is necessary when the Coulomb interactions are stronger
than the thermal interactions. For most polyelectrolytes in solution only a
small subset of the Coulomb pair interactions have energy greater than kpT
and these tend to be the bonded monomers for which the bond interaction
dominates. Thus, one expects that the full Ewald method may not be neces-
sary, but given the history of simulations it should be checked. Only the
simulations of Stevens and Kremer157'158 have checked their results by per-
forming Ewald summations for a few cases. For most of their simulations
they used a radially symmetric form given by Adams and Dubey177 that is
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an order of magnitude better in the energy calculation than the MI method.
This form is found to be sufficient for their parameters.

The MI image has been chosen over the Ewald method, because for the
system sizes studied the MI method is faster than the Ewald method. Even
so, the MI method is slow compared to neutral system simulations. The
main obstacle with charged systems is poor scaling with the number of
particles. Since all particle pairs interact the computation time scales as
N2 for the MI method. (For large enough N the Ewald method changes
from scaling as N2 to JV3/2.183) Thus for even rather small system sizes the
computational time is large. For a sufficiently large system a method based
on a multipole expansion which scales linearly in N will resolve this pro-
blem.184'185

The computational times have been so long that most simulations of
polyelectrolytes in solution have used the approximate Debye-Hiickel
(DH) form (eq. 3.35) for the Coulomb interactions. The advantage of this
approximation is that the potential is finite ranged and the counterions and
salt ions are not simulated. Thus, DH simulations are much faster than ones
which explicitly treat each Coulomb interaction. This approximation is done
primarily for the sake of saving CPU time and is generally viewed best at
very dilute polymer concentrations. Although at concentrations where
A w a, the Debye-Huckel interactions become no more than an excluded
volume interaction and the chain mimics a neutral chain. Thus when the
ionic screening is very strong, the DH interaction may also be reliable. But
in general the disadvantage of the DH approximation is that it is not
expected to be accurate for much of the relevant range of parameters.
Furthermore, important phenomena like Manning condensation and fluc-
tuations cannot be examined.

The number of simulations on polyelectrolytes in solution is rather small.
We give a brief summary of the work here. The initial simulations on poly-
electrolytes in solution were done by Brender et a/.160 Subsequently, a series
of papers162"165 examined the dependence of the polyelectrolyte structure on
the Bjerrum length. The dilute limit dependence of the end-to-end distance
on N has been examined by Baumgartner159 and Kantor.186 Reed and
Reed 21'152>171 have examined excluded volume effects on the persistence
length. Valleau173 and Woodward and Jonsson174 have studied the accuracy
of the DH approximation. Some of the other works have done calculations
for both Coulomb and Debye-Hiickel interactions. Only one set of works
has gone beyond single chain polyelectrolyte simulations and performed
simulations on systems of polyelectrolyte chains157'158 These simulations
are for salt-free strong polyelectrolytes (XB « a) with explicitly treated coun-
terions. Simulations in two dimensions for a system of chains have been
done.167'172'176 However, these simulations do not really treat polyelectro-
lytes as the charge interaction is cut off in the lattice MC at either the first or
second lattice spacing. This cut-off is counter to the basic long-ranged
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nature of the Coulomb interaction and fundamentally alters the nature of
the system. For weak polyelectrolytes various single chain simulations have
been done. Barrat and Boyer153 have examined the persistence length. Higgs
and Orland143 have tested scaling theory predictions. Hooper et a/.168'169

have studied the dependence on the charge fraction.

3.3.4 Simulation results

3.3.4.1 Strong polyelectrolytes

(a) Scaling exponent One of the defining characteristics of polyelectro-
lytes is the rod-like scaling of R with N at infinite dilution. One of the early
simulations confirmed this result for three-dimensional chains.159 Yet, for
d = 4 and 5 the calculated exponent, V, agreed with the Flory theory pre-
dictions. This result contradicts the experience that RG calculations are
usually more accurate than Flory calculations. Recent simulations186 (Fig.
3.18) have resolved this dilemma, finding agreement with the renormaliza-
tion group calculation. In the first work the Coulomb coupling strength was
A — 1/10 which makes the chain almost a weak polyelectrolyte. The weaker
the polyelectrolyte the larger the chain needs to be to observe the crossover
to asymptotic scaling. Evidently, for d = 4 and 5 the chains in Ref. 159 were
not sufficiently long and produced values close to the Flory exponent. In the
later simulations A = 1 which is a strong polyelectrolyte, and the RG scaling
is seen with even shorter chains.

While the scaling of the isolated polyelectrolyte chain has been resolved,
at finite concentrations the presence of counterions appears to have impor-
tant consequences. Recent simulations157'158 have shown that the effects of
counterions even at very dilute concentrations are strong. The effective
value of v has been found to be 0.90, not 1 for up to 128 beads chains at
monomer densities to 5 • 10~7<5T3 for A = 0.9. Taking \B = 7.1 A, the value
in water, the above density corresponds to 2.4 • 10~6M (molar) which is just
about the ionic concentration of water. The ,/V-dependence of the chains
simulated suggest that longer chains at the same concentrations will have
the same maximum value of v.151 The proper scaling limit is a double limit
of the polymer concentration going to zero along with the chain length
going to infinity. To find a value of v closer to 1 will require both lower
concentrations and longer chains, but the intrinsic salt content of the solvent
may prevent the limiting value being reached. The next obvious question is
how dependent is this result on the value of A. It is possible that a larger
value of A would achieve the limiting value, but Manning condensation or
similar condensation effects tend to limit the charging of the polymer to
A « 1. Thus, for: flexible polyelectrolytes it is quite possible that the "ideal"
state of a rod-like chain occurs only at rather unphysical parameters. Recent



Fig. 3.18 Plot of Rg as a function of chain length, L, for (a) d = 5 and (b) d = 4 dimensions.
The crosses represent fixed charges while the dots are for a mobile model. (Figure taken from
Ref. 186).
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experiments support this result that the flexible polyelectrolyte chain is not
rod-like.132'133-187'188

(b) Validity of Debye-Hiickel approximation Most simulations to date
and just about all theories use Debye-Hiickel interactions. This simplifies
calculations greatly by reducing the number of species to one and by redu-
cing the range of interaction to a finite value. However, this approximation
has serious dangers and disadvantages. The approximation is rather strong
and probably not realistic except at very dilute concentrations or very short
Debye lengths. The solvent ions are represented as an averaged density.
Thus, effects of individual counterions and fluctuations are not at all pre-
sent. As mentioned above these effects can be dramatic in altering the
traditional view of the dilute chain structure and the scaling exponent
^157,158

The DH approximation has only been partially tested. Christos and
Carnie156 compare their Coulomb simulations with their earlier DH simula-
tions.154'155 While they have only a small amount of data, there is a large
difference between the values for the end-to-end distance when the screening
length is large. When the charge fraction is small (/~ 0.2) and the salt con-
centration large (cs ^ 0.1 M) the agreement between DH and Coulomb simu-
lations for chains with N < 80 is good. These results indicate that the DH
approximation is best when Coulomb interactions are weak due to strong
screening. This is consistent with the DH approximation being the weak
interaction limit for the Coulomb potential. Brender has examined the \B

dependence for both DH162 and Coulomb163 simulations. She finds that the
ionic screening is substantially stronger than the DH approximation yields.
Even small salt concentrations (~ 10~6 M) have a noticeable screening effect.

The validity of the Debye-Hiickel interactions has been directly examined
by two sets of simulations.173'174 Valleau173 performed grand canonical
simulations on a short chain (N = 10) at three salt concentrations. He
came to the conclusion that there is no reason to believe that the DH
approximation has any utility. However, only small differences in the end-
to-end distance between the DH and Coulomb simulations were observed.
Subsequently, Woodward and Jonsson did similar (except canonical ensem-
ble) simulations pointing out that Valleau had incorrectly calculated the
total charge density for the DH simulations. The DH interaction is an
effective monomer-monomer potential which includes the electrostatic
interaction of all charged species. Valleau had failed to include the contri-
bution of other monomers and the charge densities around them in the total
charge density. Using the correct DH densities Woodward and Jonsson find
that the DH and Coulomb total charge densities were not drastically differ-
ent. Unfortunately, they compare DH and Coulomb simulations only for
10-bead chains which are short and not representative. At this chain length
the total charge density about a monomer is consistently too large near the
monomer for the DH simulations. In terms of the number density they find
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that at high salt concentrations (l.OM) the screened Coulomb simulations
strongly underestimate the peak value. At lower concentrations (< 0.1 M)
only a very small difference between DH and Coulomb number densities is
seen. Like Valleau they find that the end-to-end distance of the short chains
depends very little on the interaction type. These results indicate that in the
dilute limit the DH approximation is reasonable as has been presumed. Yet,
for N up to 80, the simulations of Carnie et a/.154-155 and Brender162'163 show
that DH chains are much more stretched and have a different scaling with AT
than Coulomb chains, suggesting that the short chain comparison by
Woodward and Jonsson is not representative. In general, the results to
date suggest that DH simulations are best when the Coulomb interactions
are weak due to strong screening (short A). In this case, the monomer-
monomer potential effectively becomes just an altered good solvent interac-
tion and the chains are not much different from neutral chains. At low salt
concentrations where Debye-Hiickel is supposed to be valid, the difference
is the greatest. Evidently, the individual character of the counterions is
rather important.

(c) Persistence length Experiments132'151 find that the persistence
length scales differently than the OSF theory predicts. In terms of the
ionic strength, /, the OSF theory predicts Le ~ 7~!. The persistence length
is not measured directly, but calculated from the measured end-to-end dis-
tance or radius of gyration. For this a worm-like chain structure is assumed,
which for many systems such as NaPSS is not applicable.132 Not surpris-
ingly, one of the results of simulations on flexible chains158 is that a flexible
chain has a different persistence length than calculated using the worm-like
formula. The difference is greatest when L K, Lp. On the other hand, in the
limit L » Lp, the chain is Gaussian and the worm-like model is satisfied.
The simulation results also show that the discrepancy between the OSF
theory and simulation is only partly due to the worm-like assumption. A
larger problem appears to be the neglect of the chain entropy.

Reed and Reed121'152 have performed simulations which closely match the
theoretical model. A worm-like chain is obtained by using the rotational
isomeric state model chain, and DH interactions without excluded volume
are used. They compare their simulation results with the excluded volume
corrections to the OSF theory and find a good fit for the salt concentration
dependence. They also examine the dependence on A and find the fits to be
not as linear as the simulation data. It is not clear that the excluded volume
is the source of the discrepancy between theory and experiment. Other
calculations have produced the appropriate scaling. Calculations of Le

based on Poisson-Boltzmann theory119'120'189 and based on a flexible
chain126 instead of a worm-like chain all give the 7"1/2 scaling. As mentioned
above another possible candidate is the neglect of entropy in the OSF theory
which is included by simulations. Thus, given all these different sources of
the scaling it is not clear which of the calculations is best.
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(d) Characterization of chain size In order to characterize the polyelec-
trolyte chain size, we discuss the dependence of the end-to-end distance on
the various parameters. Unfortunately most of the simulations have poorly
analyzed R. The N dependence of R was discussed above. The only simula-
tions that can discuss systematically the polymer concentration dependence
is the recent work by Stevens and Kremer.158 Brender has examined the
Bjerrum length dependence.162"165

As the screening of the Coulomb interactions decreases, or equivalently
for salt-free polyelectrolytes, as the concentration decreases, the chain
becomes elongated by the Coulomb repulsion. The simulations (Fig. 3.19)
find that the chains clearly become more extended with decreasing concen-
tration until a saturation density is reached.158 In the Odijk scaling theory,
this saturation should occur at the concentration c*b. However, the simula-
tion results show that the saturation occurs at a much lower concentration.
Stevens and Kremer give an alternative picture of the saturation based on
the counterion screening of the monomer interactions. The chain extension
should saturate with decreasing concentration when the density of counter-
ions within the polymer volume reaches zero. Further reduction of the
concentration does not reduce the counterion screening and consequently
does not extend the chain. A rough estimate of this density is obtained by
assuming a uniform counterion density. Then there is one counterion in the
polymer volume when the average counterion separation is equal to the end-
to-end distance:

The screening due to the counterions should saturate at approximately this
density since at lower densities there are no counterions present to screen the
monomer interactions. The values obtained with this calculation are more
accurate then Odijk's c*b and their chain-length dependence is much better.
However, these values tend to be high in comparison with the simulation
data. This is easily understood by realizing that eq. (3.53) assumes a uniform
counterion distribution when in fact the distribution is peaked near the
polymer chain. Thus, it is at lower densities where the counterion density
near the chain saturates. Furthermore, given that the chain structure is not
completely rod-like these results suggest that there is always some number of
counterions near the polymer chain.

At densities above the saturation density, one can compare with the scal-
ing predictions of Odijk123 and de Gennes et a/.,125 In the semidilute regime
where Le <C Li, Odijk's scaling theory predicts R ~ pm

3'16,123 where pm is the
monomer density. The solid lines in Fig. 3.19 have slope —3/16. Even
though Li =\.2b for the chains so that the condition given above is not
strictly satisfied, the scaling relation agrees with the data. The data are not
sufficiently accurate to determine strictly that scaling holds. In fact, de
Gennes et a/.125 predict an exponent of -1/8 which is close to Odijk's
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Fig. 3.19 End-to-end distance as a function of density for charged polymers. The counterions
are included explicitly in the simulation. (From Ref. 190.)

value and which also fits the data. This exponent is the same as for neutral
polymers. At high polymer densities the chain is not far removed from the
neutral state due to screening. In fact, the good solvent limit of the ratio
(7?2}/(7?^) is reached at the highest densities simulated. It appears reason-
able to think of the effect of the Coulomb interactions as just an added
excluded volume for densities with a small Debye length. At lower densities
our results disagree with Odijk's scaling theory which predicts a steeper
curve with an exponent of -5/16. This disagreement is consistent with the
failure of the OSF persistence length to have the proper scaling with density.

Brender162"165 has examined the Bjerrum length dependence as a function
of the salt concentration. She interprets the variation of \B as the same as
varying the temperature, but this is not really justified. For a polyelectrolyte in
water at room temperature A# = 7.1 A. Thus, as the Bjerrum length varies
from 1 A to 20 A the temperature varies from 2100 K to 97 K! The Bjerrum
length can be dramatically changed, but that occurs usually through the
valence of the ions or the dielectric constant. For example, for divalent ion
pairs the Bjerrum length in water is 28 A. It is best to interpret these simula-
tions as varying the coupling strength, A. These simulations are lattice MC
with a bead diameter and thus bond length of 4 A. Then, A varies from 1 /4 to 5.
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Another criticism of Brender's simulations is that she primarily employs
the DH potential162'164'165 instead of the Coulomb potential.163 One of the
most important phenomena to directly examine when A varies is counterion
condensation, but this can only be done by simulating the counterions. One
of the papers163 does use the Coulomb potential, but does not directly
calculate the counterion distributions. It is only inferred that some conden-
sation occurs because of great differences between the DH and Coulomb
simulations. These differences are very interesting as they show that even
very small salt concentrations have a strong screening effect.163 This result is
consistent with the effect of counterions seen in the simulations of Stevens
and Kremer.157'158

The main point of Brender's series of papers is to show that the chain
expands when the temperature decreases. However, this is not surprising
since a decreasing temperature corresponds to an increasing A in these
simulations.

Before continuing it is important to point out a problem that exists for
many of the single chain simulations. Most of these works, in particular the
DH simulations, have examined the salt concentration dependence. For sin-
gle chain simulations this naturally results in varying the simulation cell size.
The implicit polymer density is one per cell volume which varies with the salt
concentration. This coupling of cs and c poses no problem as long as c is
sufficiently dilute. However, in some cases the calculated end-to-end distance
is longer than the cell length154'156'161 effectively implying a semidilute con-
centration. This can be rectified by performing the simulations in a larger cell
with more particles, but obviously this has not always been done. Even when
the cell length is longer than R, the image chains may interact (even when just
the MI method is used) because of the long-range potential. One needs to be
very careful about the system size relative to the chain size.

(e) Comparison with experiment Comparison to experiment has predo-
minantly been done for the persistence length which was discussed above.
The multichain simulations of Stevens and Kremer allowed an examination
of two well measured quantities—the osmotic pressure, II,158 and the peak
position of the monomer-monomer structure factor.190 Both of these quan-
tities show an interesting dependence as a function of polymer concentration
as discussed above.

Like the experimental data (Fig. 3.16) the simulation data (Fig. 3.20)
show two scaling regimes for the osmotic pressure. The simulations were
able to reach the dilute noninteraction limit, where LT = ckgT(l + l/N).
Thus, at the lowest concentrations there is a deviation from the experimen-
tally observed c9/8 dependence. Also, at these very dilute concentrations the
osmotic pressure does not exhibit a chain-length dependence. At the inter-
mediate concentrations, the c9/8 behavior fits the simulation data very well
in agreement with experiment, and there appears some chain-length depen-
dence.144
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Fig. 3.20 The osmotic pressure is plotted as a function of the monomer density on a log-log
scale for various chain-lengths. The 16-, 32- and 64-bead chains are represented by squares,
pentagons and hexagons, respectively. For low densities in the experimental range, the pressure
scales with an exponent 1.05, slightly below the Odijk prediction marked with an arrow. At high
densities the exponent is 9/4 which is that of neutral chains. The errors are smaller than the
points. The data show a very weak chain-length-dependence as in the experimental studies.144

(Taken from Ref. 158).

At high concentrations the simulations find the same scaling exponent,
9/4, as in experiment and no chain-length dependence. The lack of any
chain-length dependence in the crossover density of II, pm = 0.07 ± 0.046~3

is significant. Since the overlap density is chain-length-dependent, the cross-
over in II cannot be associated with the dilute-semidilute transition. In fact for
the 64-bead data the overlap density is below the II crossover density and for
the 16-bead data the opposite is true. The fact that for pm> pm the U-depen-
dence is that of neutral polymers suggests that the Coulomb interactions are
completely screened at pm = p^m '. For complete screening, the Debye screen-
ing length should be less than all interparticle distances. The monomer separa-
tion is the shortest particle separation distance. One finds A = b at
Pm = l/(4ir\Bb2) = 0.0666~3 for their set of parameters. This value agrees
perfectly well with the simulation data.

The calculated peak position in the structure factor exhibits a two-regime
behavior as in experiments. In Fig. 3.21, the calculated qm for N = 32190 is
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Fig. 3.Z1 The position of the maximum of the inter-polymer structure factor, qm, is plotted as a
function of monomer density. The same scaling dependence as found in experiments is exhib-
ited. At low densities qm scales as p]f" (dashed line) and at high densities qm scales as plj,2 (dotted
line). (Taken from Ref. 190).

shown. The data clearly exhibit the same two scaling regimes seen in experi-
ments. At high concentrations the peak position is chain-length-independent
and scales as pH . Thus, the crossover occurs before the chains overlap. This
is consistent with the end-to-end data (see Fig. 3.19) which shows that the
chains start to contract at densities below the overlap density. Consequently,
at densities below p*m the interchain separation is no longer solely dependent
on the average chain separation distance, but also on the intrachain con-
traction. Thus, we find p$ < p*m.

These results show that the rather simple models can reproduce experi-
mental data quite well. Further work should be able to resolve some of the
many significant questions about various experimental results.

(f) Structure factor A convenient quantity that describes the structure
of the chains at all length scales is the chain structure factor or form factor.
Thus, the structure factor is a particularly useful quantity to calculate in
order to quantify the structure of a polymer. Moreover, since the structure
factor is the experimental means to determining polymer structure, it is
especially important to calculate.
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From the theory of neutral polymers we know that the form factor or
single chain structure factor scales as q~llv in the range 2ir/R < q < 2ir/b
for neutral polymers with R ~ N".1 The ideal chain and good solvent chain
values of v are 1/2 and 0.588 (« 3/5), respectively. Scaling predictions for
polyelectrolyte S(q) have been based on the picture that the polyelectrolyte's
structure is composed of rod-like segments of length L, which together form
an ideal chain.123'124'125 For q > 2ir/Lp,

n4'n5 the structure factor should
then scale as \/q. For q < 2^/Lp, the ideal chain would yield v = 1/2. As
we have good solvent chains, we expect to see v w 3/5 at dilute densities and
v =1/2 for semidilute and dense solutions.

The density dependence of the structure factor, S(q), for the 64-bead
chains from Stevens and Kremer157 is shown in Fig. 3.22. The inset exhi-
bits the chain-length independence which holds up to q = 2it/R(N}. This L
independence is important because within the above range of length scales
"short chains" can be used to determine the structure of long chains. The
slope of the curves in Fig. 3.22 gives —\jv, and the dotted lines starting
from the top left going to the right of the figure have slopes of —1, -5/3
and —2, respectively. Clearly, the structure factor is more complex than
the predictions of scaling theory. The density dependence for high and low
q is distinct and we will discuss them separately.

Rather surprisingly, a density-independent regime occurs at relatively
high wavevectors (1 <; qb <, 2?r/2) which corresponds to short length scales
up to about six bond lengths. The density independent behavior above
go ~ 16~' and the change in slope at go suggest the existence of blobs125

whose length is about 6b for their set of parameters. The slope in this
region corresponds to v = 0.80. Thus, the chains are stretched beyond the
neutral good solvent value, but well below the rod value. The chain should
become more elongated as the screening decreases; thus, the length of the
elongated blob, 2-K/q^, would increase and the slope of S(q) would
approach — 1. Surprisingly, the slope and qo are independent of density
and chain length (At high concentrations where the strand—strand distance
is less than 2-jr/6a, the position of qo shifts to £.) The structure on short
length-scales certainly does not correspond to any of the theoretical pic-
tures.114'115'125

At the lowest densities the chains are more stretched on long length scales
than on short ones. But, the largest value of v is 0.90 which is not rod-like.
For q < qo, Fig. 3.22 shows that the structure factor shows a pronounced
density dependence with v varying continuously from 0.90 to about the
good solvent value, 0.6. At p*m it was found that v = 0.80 extends to
below qo. Thus, the transition between being stretched most at long or
short length scales occurs at p*m. The continuous variation in the effective
value of v contradicts the theoretical pictures of just two values of v. Not
only the length over which the Coulomb interaction stretches the chain, but
also the degree of stretching depends on the screening.
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Fig. 3.22 The structure factor for 64-bead chains gradually changes from apparent rod-like to
coiled form with increasing monomer density. This contradicts the theoretically expected form
which is a combination of rigid rod, good solvent chain and ideal chain forms. The dotted lines
give slopes of —1, —5/3, and -2 which correspond to the ^-dependence of a rigid rod, good
solvent chain and ideal chain. For 0 < log qb < 0.2 the slope is greater than one, implying the
chains are not fully stretched in this regime. The inset shows the chain-length-independence at
q > 2-ir/R at pm = 0.001ft-3 for Nb = 16, 32,64, and 128. (Taken from Ref. 157).

3.3.4.2 Weak polyelectrolytes

Only two investigations have specifically simulated weak polyelectro-
lytes.143'153 Other simulation studies have examined the dependence on the
charge fraction implicitly simulating weak polyelectrolytes.155'156'168'169

Similarly, Brender162"166 has examined the effect of varying the Bjerrum
length, but remains primarily within the strong polyelectrolyte regime.
Only Higgs and Orland143 and Hooper et a/.169 have considered poor sol-
vent effects. Only Higgs and Orland and Barrat and Boyer consider the
weak polyelectrolyte theory discussed above. Most of the other works
offer very little comparative analysis. All that one can say is that the general
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trends of expansion and contraction follow what one expects from the scal-
ing relations.

Higgs and Orland143 specifically test the scaling of the end-to-end distance
as a function of N and A. They also do both Coulomb and Debye-Hiickel
simulations, although they neglect altogether the counterions in the
Coulomb simulations. Their simulations covered the range AT = 10-220.
In a O solvent they find (Fig. 3.23) R2 ~ N at short chain length and
R2 ~ N2 at long chain lengths (N ̂  20) as expected by the Gaussian blob
picture. The scaling with A exhibits the A2/3 scaling as predicted by scaling
theory.139 The comparison with the value of 2/3 in the exponent is only
rough. Given the result of Stevens and Kremer158 which exhibits a less
than linear behavior for strong polyelectrolytes, it would be interesting to
put the exponent on more quantitative grounds and to explicitly simulate
the counterions. For poor solvent conditions, the simulation finds that
R2^ ~ JV2/3 at short chain lengths and R2

G ~ N2 at long chain lengths
(N <; 50). In terms of A a A4/3 scaling is seen at intermediate A. For longer
chains at A « 0.1 there appears to be a crossover to the 6 solvent depen-
dence. At this point the polyelectrolyte blob is bigger than the poor solvent
blob size. Thus, the electrostatic interactions are sufficiently strong to dom-
inate and convert the solvent to a good solvent.

Fig. 3.23 Plot of R2(N) for a weak polyelectrolyte in a 0 solvent. The three curves are for
A = 0.02, 0.05, and 0.2. The dashed lines have slopes 1 and 2. (Taken from Ref. 143).
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Barrat and Boyer's simulations153 are similar to those of Higgs and
Orland. Since the chains are totally charged so that a = b, the scaling rela-
tions of eqs. (3.51) and (3.52) are simplified. For example, in the 6 solvent
case, D ~ aA"1/3. One of the important results of this work is a quantitative
means of calculating the blob size. They compute

where n = 1,2,... ,N. Since the chain is expected to be linear in N and thus n
at large n, h(n) gives the deviation of R from the linear scaling as a function
of n. They compare this formula with that of the stretched chain model
(SCH) in which a force F is applied to both ends stretching the chain.
This problem can be solved and gives

where D(F) represents the size of the blob as a function of the applied force.
In terms of h(n), D is just the inverse slope. Using this method, they find for
N = 100 at A = 0.01 that D = 6.3a and at A = 0.5 that D = l.2a. For the
scaling as a function of A they find that the ratio D/(a\~v/3) varies from 1.45
to 0.92 over the above range of A(0.01 to 1.0). Thus, the scaling relation is at
best approximate.

Barrat and Boyer did the only other calculation of the structure (form)
factor. Since these simulations neglect the counterions, one expects the q~l

dependence should hold over a range of wave vectors. At q <; 2ir/D, the
scaling should be q~2 since on this length scale the chains are Gaussian.
They find (Fig. 3.24) that for A = 0.1 and N = 200 the intermediate q depen-
dence is q~l, although they do not state how accurate the exponent is. Fig.
3.24(b) shows the structure factor when the Debye-Hiickel approximation is
used for no. = 0.05. Here it is clear that the q~l dependence is only true near
qa = 10~2. Since the blob size for this case is only 2a, the Gaussian regime
would be rather small. Although in the vicinity of qa = I , the DH structure
factor has a slope close to —2.

3.3.4.3 Second conclusion

Simulations of polyelectrolytes in solution are still in their infancy.
Nevertheless, the understanding of polyelectrolyte structure is being greatly
transformed by the present results. Quite clearly, the counterion (or salt)
screening is very significant and very different from the naive Debye-Hiickel
approximation even at dilute concentrations. The ionic screening needs to
be further examined. In particular the ion distribution about the polymer
chains needs to be studied. The present theoretical pictures do not describe
the structure of flexible strong polyelectrolytes well excluding perhaps at
high ionic concentrations where the Coulomb interactions are strongly
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Fig. 3.24 Plot of the structure factor for a weak polyelectrolyte with A = 0.1. Part (a) is for
Coulomb interactions and part (b) is for Debye-Hiickel interactions with na = 0.05. The dotted
line has slope —1, and the points are from a variational theory. (Taken from Ref. 153).

screened. The structure of salt-free flexible strong polyelectrolytes can be
summarized as follows. The chains are stretched on short length scales, but
are not rod-like. The structure is more like a bent sausage link than a blob.
The size of these sausages is independent of polymer concentration or chain



1 8 6 N E U T R A L A N D C H A R G E D P O L Y M E R S O L U T I O N S

length. The total chain composed of the sausages has a density dependent
structure. At very dilute concentrations the chain is straighter than the
sausages. For flexible polyelectrolytes, it appears that a rod-like chain
occurs, if at all, only for very long chains at very dilute concentrations. At
the overlap concentration the chains become more bent than the sausages.
For weak polyelectrolytes in solution the theory appears to be much better,
although many chain simulations with counterions have yet to be done.

Much interesting work remains to be done as the complexity of polyelec-
trolytes has only started to be touched. We have not discussed the interest-
ing light-scattering results that show the existence of two
modes.130'131'133'146-191-195 These two modes are not yet understood.130'131

One mode is viewed to originate from polymer diffusion, while the second is
attributed to a collective mode due to clustering. The systems needed to
study this effect are significantly larger than any of those which have been
simulated so far. Hopefully, with parallel machines such work will be pos-
sible.

Another area of great interest is polyelectrolyte brushes or polyelectro-
lytes grafted to a surface. 196~202 This problem has applications to colloid
stabilization, waste water treatment and oil recovery.112 Some work has
already been done in this direction.203'204 Several theoretical works have
been performed.I96-200'202 These works suggest a rich phase diagram of
states. Experiments201'205 are just beginning.

Interesting effects occur in charged systems when divalent ions are pre-
sent.206"210 Woodward and Jonsson174 have done some simulations with
divalent ions in the added salt. A serious simulation study of the effects
of valence has yet to be done. Experiments along this line211'212 have begun
and suggest some significant differences between monovalent and divalent
counterions.

One of the major goals of understanding polyelectrolytes is the applica-
tion of the knowledge to biomolecules and thus to biochemistry. The sys-
tems studied presently are model systems which give insight in some of the
fundamental aspects of the statics and dynamics of polyelectrolytes in solu-
tion.109 However, longer chains and bigger systems are needed in the simu-
lations. This will require advanced algorithms like the multipole
methods184'185 and advanced hardware like parallel computation.

3.4 Conclusion

The previous chapters give an impression about the numerical effort which
was employed over the last 20 years in order to get some more insights into
the effect of long range interactions in polymer solutions. In spite of this
effort most of the calculations can only be viewed as "first attempts" to
progress towards the really difficult problems. For solutions of neutral poly-
mers the dilute, or better, single chain case, seems to be reasonably well



C O N C L U S I O N 187

understood, although there are many remaining problems as discussed.
Qualitative aspects however seem to be reasonably under control, especially
also because of the relatively large amount of work employing the "static
dynamics" ansatz. The BD simulations, to our impression, as they can be
viewed now, seem to be more or less approaching a natural limit. Up to now
only single polymers were treated. For the bare number of monomers the N3

operation to calculate the square root of the hydrodynamic interaction
tensor certainly gives the strongest bottleneck and will naturally limit the
chain length. The same holds for attempts to perform simulations for
"realistic" dilute or semidilute solutions. There the interaction tensor for
the whole system has to be taken, including the Ewald summation for the
periodic images. We know of no attempt to do this. It is also not completely
clear how the hydrodynamic interaction is screened. This statement of
course holds for the corresponding "static dynamics" problem as well.
Certainly the most powerful scheme to get more insight could be the full
blown MD simulation. There however one faces the problem of the slow
relaxation and intrinsically slow integration of the equations of motion.
While the CPU time grows linearly with the number of particles in the
system, the number of particles grows with the third power of the box
length. Thus it is not clear which method at the end will be the one with
the best perspectives. Probably the improvements of other simulation
schemes, such as cellular automata, in combination with e.g., MD will
provide eventually the most progress. Presently one could try to combine
MD and "static dynamics" e.g., to get a better feeling for the limitations and
problems turning out of both schemes. It certainly is necessary to get an
improved understanding of the dynamics of semidilute polymer solutions.

For polyelectrolytes, the situation is even much more severe. Not only the
dynamic properties but already the statics is only poorly understood. As the
previous chapters illustrate, one currently is at the very beginning of really
serious numerical investigations. Up to now mostly single charged chains
with either a plain Coulomb or a screened Coulomb potential were simu-
lated. All collective effects, which are certainly technically of extreme impor-
tance, are only included in a rather rudimentary way by now. Still
simulations already at this stage turn out to be very important in many
respects, since also well controlled experiments are very difficult and hardly
available, and the analytic theoretical treatment is only in a very early stage
as yet. Simulations will, with the use of modern multipole methods in order
to properly and effectively take the long-range nature of the Coulomb inter-
action into account, become even more important. Then it will be possible
on modern computers to treat many particle systems, which means of the
order of 104 particles. This certainly is not enough to give very precise values
of, for example, critical exponents near collective phase transitions, but the
results will certainly be clearly superior to most experiments which are
expected to come in the next years.
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E N T A N G L E M E N T E F F E C T S I N
P O L Y M E R M E L T S A N D N E T W O R K S

Kurt Kremer and Gary S. Grest

4.1 Introduction

Dense polymer systems, such as melts, glasses, and crosslinked networks or
rubber are extremely complex materials. Besides the local chemical interac-
tions and density correlations which are common to all disordered liquids
and solids, the chain conformations also play an important role. Their
influence is twofold. First the intrachain entropy dominates over the posi-
tional entropy of the center of mass of the chains. This leads to the well
known effect that a weak effective repulsion between different types of
chains is sufficient to drive phase segregation.1 The static and dynamic
properties of mixtures of two types of chains is an important and challen-
ging problem, which is reviewed by Binder in Chapter 7 of this volume. Here
we consider dense melts of chains of the same chemical composition. In this
case the entropy is at its maximum when the chains have a random walk
structure.2 Since the average end-to-end distance (R2(N)~) ~ TV for a random
walk, the average volume of a chain of length N monomers is

Assuming the density is homogeneous, there are N/V ~ N1/2 other chains in
the typical volume of a chain. These other chains effectively screen the long-
range excluded volume interaction,1'2 since a monomer cannot distinguish
whether another monomer belongs to the same chain or to another. This
property has been firmly established both by experiment and simulation.
The second important property which must be taken into account is that the
chains cannot move through each other. This rather elementary property
plays a dominant role in dynamical and relaxational properties of a melt,
even for fairly short chains. In contrast to small molecules, the motion of a
polymer chain is more complex than simply random diffusion, at least over
distance scales smaller than its own size. It is this difference with the motion
of small molecule liquids that we are interested in studying here. In many
respects, a dense melt of polymer chains is easier to understand than a dilute
or semidilute solution in that hydrodynamic interactions are screened and
do not play a role. A detailed discussion of hydrodynamic effects is given by
Diinweg, Stevens and Kremer in Chapter 3 of this volume.
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In a melt, the motion of a monomer is a consequence of its connectivity to
other monomers on the same chain and its interaction with monomers on
other chains. To a very good first approximation, the other chains can be
viewed as providing a viscous background and a heat bath. While this
certainly is a drastic oversimplification, which ignores all correlations due
to the structure of the other chains which make up the background, it has
been found to work very well. The advantage of this simplification is that
the Langevin dynamics of a single chain of point masses connected by
harmonic springs can be solved. This was first done in a seminal paper by
Rouse3 and about the same time in a similar fashion by Bueche.4 In this
model, which is commonly referred to as the Rouse model, the diffusion
constant of the chain D ~ N~l, the longest relaxation time TA ~ N2 and the
viscosity ry ~ N. This model has been found to describe the dynamics of a
melt of relatively short chains both qualitatively and quantitatively almost
perfectly,2'5"10 though the reason is not well understood. Only very recently
have some deviations, not only in the short time regime, been observed. For
Rouse chains the effects are rather subtle11"13 and would require a detailed
discussion beyond the scope of this review. This model works well for rela-
tively short chains (M ^ 20 000 for polystyrene [PS] or M <, 2000 for poly-
ethylene [PE]), but definitely well beyond what one would call an oligomer.
The exact value of M at which the Rouse model no longer holds is tem-
perature- and density-dependent. For longer chains, the motion of the
chains are observed to be significantly slower. Experiments show a dramatic
decrease in the diffusion, D ~ TV"2, and an increase in the viscosity towards
77 ~ JV3-4. The time-dependent modulus G(f) also shows a solid or rubber-
like plateau at intermediate times before decaying completely.14 Since the
properties of the system starts to change at fixed chemistry-dependent chain
length Ne or molecular weight Me, one is led to the idea that the chain
connectivity together with the fact that the chains cannot pass through
each other are essential. If this is the case then the behavior should, as for
the short Rouse chain, be universal and only the characteristic chain length
Ne should depend on the chemical species.

The most well known approach to understanding these phenomena is due
to Edwards and de Gennes. Edwards15 in his work on crosslinked networks
introduced the concept of obstacles produced by the other chains, resulting
in a "tube" in which the monomers move. Later, de Gennes16 realized that
for long chains, a network is not needed. Figure 4.1 shows a "historical"
map of the development of this concept. First consider a network. The
figure shows one strand of the network in the center marked by a thick
line and a rather crude sketch of the surrounding. Edwards15 discussed how
the black center chain could move around the obstacles created by all the
other chains which in his case are part of the network. He noted that due to
the topological constraints the chain is much more localized than just by the
fact that the two ends are connected to a crosslink. Since he was interested in
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Fig. 4.1 Sketch of the historical development of the tube constraint and reptation concept.
Starting from a network Edwards15 in 1967 defined the confinement to the tube, while
deGennes16 in 1971 realized that for long chains the ends only play a small role for intermediate
times.

studying networks in which the disorder was quenched, all loops and knots
in the system were conserved. His idea was that the nearby chains create
effective obstacles which cause the strand to be essentially bound to a tube-
like structure (Fig. 4.1, middle part). This hypothetical tube, built by all the
other chains, followed the coarse-grained conformation of the chain. The
length scale of this coarse graining is called the entanglement length Ne and
a sphere of the same diameter as the tube dr typically contains dj = Ne

monomers, where v = 1 /2 is the random walk exponent. Within this picture
the strand can perform a quasi one-dimensional Rouse relaxation along that
tube. Later de Gennes,16'17 realized that the dynamics of long chain melts
should be governed by the same mechanism (Fig. 4.1, lower part). If the
chains are very long, most of the monomers are far from the chain end.
Then, on intermediate time scales, these monomers do not realize that the
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ends are free. Since there are only a very few chain ends, the topology of the
surrounding should not change significantly on these intermediate time
scales and a chain can only diffuse by reptating out of its original tube.
This gives D ~ N~2,Td ~ N* and rj ~ TV3 as well as a plateau modulus at
intermediate time scales. Considering the simplicity of the concept, the
model describes many experimental findings remarkably well. However, in
spite of its successes, many open questions remain, including how to for-
mulate the reptation concept on a more fundamental basis18"20 and how to
explain the discrepancy between the observed viscosity 77 ~ TV3-4 and the
reptation prediction TV3.21"28 A quantitative model of what an entanglement
physically really is remains largely unsettled.29'30 There are also a variety of
non-reptation/tube phenomenological approaches which only treat the
interactions between the chains either in a mean-field approximation or
develop a memory functional formalism.31"34 Microscopic statistical dyna-
mical theories have also been recently advanced,19'35"40 including a poly-
meric mode coupling theory,36^38 in which the motion of the chains is
assumed to be isotropic. In many of these models, the cooperative slithering
snake motion of the chain is assumed, as in the work of Loring and co-
workers41^3 who have developed a stochastic model of polymer dynamics
which treats the single molecule explicitly and the dynamics of its environ-
ment in a mean-field sense. Most of these models give results which agree
with at least some experimental results but none gives a completely satisfac-
tory explanation of polymer dynamics. A comprehensive review of the
dynamics of an entangled melt has been published recently by Lodge,
Rotstein and Prager.44

Our understanding of networks is in a rather similar situation. It has been
known for a long time, as Fig. 4.1 illustrates, that the noncrossability of the
chains plays an important role. Experiments on the modulus of melts, cross-
linked at different initial concentrations directly prove this point. However it
is not clear how this comes about and what the actual contributions of the
entanglement compared to the crosslinks are. The reason for this is twofold.
First, experiments which allow good control of all the microscopic para-
meters are very difficult to perform.45 Theoretical descriptions are very
complicated and usually contain several adjustable parameters, which are
related to microscopic details, which are almost impossible to determine
uniquely from experiment.46

While there are tremendous computational difficulties in studying the
dynamics of dense melts of polymers and crosslinked networks, computer
simulations have already played an important role in this field of research
and will continue to do so in the future. Here we will review some of the
successes of simulations in this area and discuss the outlook for the next
few years. In fact, it can be argued, that the first microscopic demonstra-
tion that a new characteristic time and length scale is present in a melt of
linear chains was from a computer simulation.47 While simulations do not
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directly prove that the reptation concept is correct in the long time limit
(that must await faster computers), they present a detailed picture of the
motion of chain in a dense melt. Experimentally most measurements, such
as the viscosity, diffusion constant and modulus, are for macroscopic
properties and do not directly probe the microscopic motion of monomers
on the chain directly. While neutron spin-echo scattering48 is a very power-
ful technique which covers the appropriate length scales, the time range
over which it can follow the motion of a polymer chain is rather limited.
Pulsed gradient spin-echo NMR, with large field gradients, is a new tech-
nique49"52 which is able to address the appropriate time and distance
scales. However both of these methods probe only one aspect of the
motion of the chains. Since most samples are never really ideal, experi-
mentally one must often deal with polydispersity effects. Simulations, on
the other hand, offer the unique opportunity to work under well controlled
conditions, with either monodispersed samples or on samples with a spe-
cific amount of known polydispersity. In addition one can not only use
models with full excluded volume, which is normally the case, but one can
also study models in which chains are allowed to pass through each other
in order to test specific aspects of the theory. From an analysis point of
view, all interesting dynamic and static properties can be determined
simultaneously. The mean-square displacements of the monomers and
the motion of chains or parts of the chain, can be determined and visua-
lized, offering opportunities well beyond the experimental limitations. The
price to pay of course is that one has to follow the slow physical relaxation
of the system, which means that we cannot use any of the smart and
extremely fast methods, such as those discussed by Sokal in Chapter 2
of this volume. At present, the limitation of chain length to about 6 — lNe

is simply due to the CPU time available. As computers increase in speed,
the chain-lengths which can be studied will also. Simulations on chains of
15 — 20Ne, which should be feasible within the next few years, will play a
critical role in settling a number of the outstanding issues in polymer
dynamics.

In the next section, we review in more detail the relevant theoretical
concepts. In Section 4.3, we discuss the different simulation methods,
both Monte Carlo and molecular dynamics, which have been used to
study both the static and dynamic properties of a melt. We also show
why it is essential to use a coarse-grained model, instead of a more realistic
model, if one is to have any chance of addressing the issues related to
whether reptation theory is correct or not. In Section 4.4, we review the
progress which has been made recently in understanding the motion of long
linear chains in a melt. In Section 4.5, we consider the properties of highly
crosslinked networks or rubbers. Finally, in Section 4.6, we briefly summar-
ize our main results and present our outlook for future simulations in this
area.
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4.2 Theoretical concepts

In a melt of homopolymers, the excluded volume interaction is effectively
screened.1'2 There is no tendency for a chain to swell beyond the ideal
random-walk dimension. Only the prefactor, or more precisely the persis-
tence length, is governed by the very local monomer-monomer interactions.
The mean-square end-to-end distance of a chain of length N has the form

where r\ and r^ are coordinates of the chain-ends. Here /is the average bond
length between two monomers on the chain and lp is the persistence length
(lp — \XCoo in Flory's terminology53). Each polymer chain can therefore be
viewed as a freely joined chain of subchains each of size lp. The mean-
squared radius of gyration,

also scales linearly with N, (R^} = PPp(N — l)/6. Here r, denotes the posi-
tion of monomer i and rcm is the center of mass of the chain. Simulation
results, both MD47'54 and MC,9>55~59 have clearly shown that both quantities
scale linearly with N and the ratio (JR

2)/{/?g) = 6, as expected. Neutron
scattering experiments60 have also demonstrated that (R^) ~ N. While the
excluded volume interactions are screened in a melt, there is no reason that
lp for the melt should be the same as at the 6 point for a dilute chain. Simple
lattice simulations implied this,9 but there the 6-solvent is modeled by
lattice vacancies and an attractive monomer-monomer potential. This how-
ever is only "one" possible 6-solvent. Recent simulations on different mod-
els by Rodriguez and Freire61 and Milchev, Paul and Binder62 found that at
T— Tg, (RQ(N)} increases with concentration.

The dynamics of polymeric liquids are often described in terms of the
Rouse and reptation models. For short chains the topological constraints do
not play a dominant role and chains in a melt satisfy the Rouse model
reasonably well.5'63 However for chains of length N > Ne, where Ne is the
entanglement length, the topological constraints begin to affect the motion
of the monomers. These constraints are a consequence of the chain con-
nectivity and the fact that the chains cannot pass through each other. Before
discussing the simulation results, we first review some of the background
concerning these two theoretical approaches. We restrict ourselves mostly to
quantities which can be investigated directly by simulation.
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4.2.1 Unentangled melt

The motion of a single monomer is governed by the connectivity of the
chain and the interaction of the monomers with its surroundings. In the
simplest model, all the complicated interactions are absorbed into a mono-
meric friction and a coupling to a heat bath. This so-called Rouse model3

was originally proposed to model an isolated chain in solution, though it
actually works better for unentangled chains in a melt. For chains in
solution we refer to the chapter on solutions by Diinweg et al. in this
volume. In this model the polymer is modeled as a freely jointed chain
of N beads connected by TV — 1 springs, immersed in a Newtonian con-
tinuum. Hydrodynamic interactions are neglected. Each bead acts as a
point source of friction, with friction coefficient £. The beads are con-
nected with a frictionless Hookean spring with a force constant
k = 3kBT/b2, where b = llp is the root mean-square separation of adjoin-
ing beads. Each bead-spring unit is intended to model a subchain of the
real molecule, not a monomer. The equation of motion of the beads can
be described by either the Smoluchowski or Langevin equations.5

Neglecting inertia forces, which is reasonable, since the motion is over-
damped at low-frequency in viscous media, the Langevin equation for
monomer i(i ̂  1, TV) reads,

Usually the model is solved for a ring with no free ends. If the chain ends
are free, as for all linear chains, the first and the last monomer have to be
treated differently. For i = 1, the first term on the right hand side is
—k(r\ —12) and similarly for i = TV. The distribution of random forces f,-
is Gaussian with zero mean and second moment,

Note that this model does not contain any specific interactions between
monomers except those due to the chain connectivity. Since the model
neglects both hydrodynamic effects and excluded volume, it does not
describe the dynamics of an isolated chain in solution. However in a
dense melt, the long-range hydrodynamic interactions are screened out,
much like the excluded volume interactions. For this reason, it was sug-
gested14 that this model could describe the motion of chains in a melt,
except that C arises from other chains in the melt and is larger than in a
dilute solution.



T H E O R E T I C A L C O N C E P T S 201

The Rouse model can be solved by transforming to the normal coordi-
nates Xp(t) of the chain. For a discrete monomer chain these are given
by64^6

where b' is zero for free chains, while for network chains it is one,* and
p = 0, 1, 2 , . . . , N — 1. Equation (4.4) can then be rewritten as

where Co = ^C and Cp — 2.W£ for p > 1 and

For small p/N, one recovers the usual result5

with Nb2 being the mean-squared end-to-end distance. Since the random
forces fp are independent of each other, the motion of the X^, are indepen-
dent of each other. The motion of the polymer can therefore be decomposed
into independent modes.

For chains in a melt, the Rouse modes are expected to be eigenmodes of
the chains. This has been verified by MD54 for a melt of short chains by
comparing the time correlation functions of the normal modes with the
theoretical result for p > 1, namely

where we have used the small p/N result for kp, eq. (4.9). The longest
relaxation time is TR = r\ ~ N2. For long chains in a melt, this equation is
expected to only describe the relaxation of high p modes with N/p <i, Ne.
For smaller p, topological constraints of the chain play an important role
and the Rouse model is no longer valid.

The case of b' = 1 corresponds to a coupling constant k' = 2k for the end-bonds. This correc-
tion for free chains is in most cases negligible, since this results in a 1 /N correction term. All the
MD simulations presented in this review used />' = !. For walks within a network b' = I13 since
there the last monomer within an arbitrary walk through the net is not only coupled to the
previous monomer, but also to the following one. This leads to an effectively stronger coupling,
which for calculating motion quantities is not important. However for a correct estimate of the
modulus this extra term is crucial. For more details see Refs 13, 162 and Section 4.5 on net-
works.
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Within this scheme the relaxation modulus of the melt is given by5

where p is the monomer density. This of course assumes that the single chain
Rouse modes can be taken as eigenmodes of the whole melt. This certainly is
an assumption, as briefly discussed in the introduction. For the Rouse
model, using eq. (4.10), this gives

From this, one can easily calculate the viscosity r\ since

The self-diffusion constant D can be determined from the mean-square
displacement of XQ = rcm, the center-of-mass of the chain,

Within the Rouse model g$(t) ~ t for all times. The diffusion constant
D(N) = Iimt->00g3(t)/6t is expected to reach the asymptotic value

even for relatively short times.
In simulations, a direct way to study the motion of the monomers is to

measure the mean-square displacement of a monomer g\(i) as a function of
time t, which is given by

Using the fact that the chain structure is that of a random walk, it is easy to
show that

Thus for very early times, when a monomer has moved less than its own
diameter CT, it is affected little by its neighbors along the chain. This short
time regime, t < TO, is governed by the local chemical properties of the
chains or for simulations depends on the model used. Within the worm-
like chain model in which the chain is a continuous flexible path, r0 is zero.
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However for intermediate times, the motion of a monomer is slowed down
because it is connected to other monomers. This can be viewed as the
diffusion of a particle with increasing distance dependent mass. The actual
mass at time t is just the number of monomers within a sphere of diameter
\/g\(t). This also naturally leads to the correct good solvent scaling. It
continues until the chain has moved a distance comparable to its size.
Finally for long times, when the chain has moved a distance greater than
(/?2) , they undergo free diffusion with a diffusion coefficient D ~ N~l,
eq. (4.15). It turns out experimentally that this extremely simple model
provides an excellent description of polymer dynamics, provided that the
chains are short enough. Measurements63'67"69 of r\ as well as NMR70~76 and
neutron spin-echo scattering experiments6'77"79 which probe the motion of
the monomers are in agreement with eq. (4.17). Results for molecular
dynamics simulations on short chains also agree with this model.54 In the
Monte Carlo and Brownian dynamics methods, the Rouse model is inher-
ently built in so it is more difficult to decide how much of the observed
behavior can be directly attributed to the interactions and how much to the
algorithm. For short chains, it turns out that the noncrossability of the
chains, as well as the chain nature of the surrounding of each monomer,
only affects by changing the prefactors in the diffusion coefficent through
the monomeric friction coefficient C Why these effects turn out to average
to such a simple contribution certainly is not understood.

4.2.2 Entangled melt

For chains which significantly exceed a critical entanglement length Ne, the
motion of the chain is slowed down drastically. The clearest evidence for this
slowing down comes from the diffusion constant D, which can be measured
by following the motion of labeled chains using infrared microdensitome-
try,80 forced Rayleigh scattering,81'82 forward recoil spectrometry83"85 or
field gradient NMR.70™76 See Tirrell86 and Lodge et a/.44 for comprehensive
reviews of experimental results. For N <; Ne,

Several forms for the prefactor of D have been discussed in the litera-
ture.19'87 The effects of the entanglements are also clearly seen in the visc-
osity, which for large N, has the scaling form«,67,68,69,88

compared to N for short chains. Direct observation of the motion of mole-
cules across an interface between two types of partially deutrated polysty-
rene polymers89 shows some evidence for entanglements, though the
interpretation is not unique.
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There have been several theoretical models which try to understand this
behavior. However only the reptation concept of Edwards15 and de
Gennes16'17 or a few variants19'21'90'91 of this approach take explicitly the
noncrossability of the chains into account. The first detailed treatment of
this concept to the viscoelastic properties of polymer melts and solutions
was carried out by Doi and Edwards.5'92 Curtiss and Bird18 also applied the
reptation concept to study stress relaxation. For a recent review of the
theories of stress relaxation see Bird and Ottinger.93 In this model a chain
moves on a coarse-grained scale mainly along its own contour, except at the
chain ends. The reason for this is that the topology of the surrounding
suppresses the motion transverse to its own contour. For short time scales
the motion of the monomers cannot be distinguished from that of the Rouse
model. Until the distance a monomer moves exceeds a critical size, namely
the so-called tube diameter d\ = (R2(Ne)}, the motion of the monomer is
isotropic and g i ( t ) ~ ?'/2 as in the Rouse model. The typical time for the
onset of this constrained motion is the Rouse relaxation time for a chain of
length Ne,

After this time the motion is no longer isotropic. The monomers only can
diffuse along the chain's own coarse-grained contour, which is the backbone
of the tube. By this forward and backward motion of the monomers, the
chain explores new space and slowly destroys the original tube. For t> re,
one only has Rouse relaxation along this coarse-grained random walk struc-
ture16'17 and the f1/2 power law for g\(t) becomes a t1/4 power law. This is
because a monomer on the chain is undergoing a random walk motion along
a random walk contour as illustrated in Fig. 4.2. However at the Rouse
relaxation time TR of the entire chain, the chain has only moved a distance of
order the square root of the contour length of the tube. Following this
regime the chain creeps out of its tube (see Fig. 4.2). The overall diffusion
along the tube gives a second r1/2 regime for the motion in space. In this
second f1/2 time regime the diffusive motion of the whole chain along the
tube can be represented as a random walk of a single particle. An elemental
step is the displacement of a polymer chain along its tube in direction of one
of its ends. Only the ends explore new space. The longest relaxation time is
simply the mean lifetime of the tube. The initial tube will be destroyed when
one of the segments has visited N different contiguous sites. This requires a
time Ta ~ N3/Ne. In this time the chain has moved a distance comparable to
its own size, therefore the diffusion constant D scales as in agreement with
experimental results, eq. (4.18). The theory predicts the following general
power-law sequence for the mean-square displacement in space, g\(t):
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Fig. 4.2 Schematic representation of a reptating chain in different time regimes: (a) short-time
unrestricted Rouse motion, (b) equilibration of density fluctuations along the chain, and (c)
creep motion of chain out of the tube (from Ref. 135).

which is shown schematically in Fig. 4.3. For the motion of the center-of-
mass gj,(t) one expects

Direct evidence for these intermediate time regimes has been seen by pulsed
gradient spin-echo NMR,50'94 field cycling and rotating-frame NMR95 and
diffusion of polymers at an interface.89'96"98
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Fig. 4.3 Schematic plot of the mean-square displacement for a monomer in the reptation
model.

The reduced mobility of the chains can also be seen in the relaxation of
the long-wavelength modes of the long chain. In the reptation model, the
relaxation time of a Rouse mode p, with N/p > Ne is enlarged by a factor of
N/Ne, giving5

Hess19 derived a similar expression from his microscopic model by explicitly
considering the effective entanglement as a dynamic effect. Hess included
the important many chain cooperative effects of constraint release and tube
renewal,87'90'99"108 which are necessary in order to get quantitative predic-
tions for the stress relaxation functions. Ultimately this does not affect the N
dependence of the relaxation time. He found that after an initial fast Rouse-
like decay up to time re, TpiHess = 2/3TptRep. Both models describe essentially
the same physical picture. For the generalized Rouse model, Kavassalis and
Noolandi35 found that TP]GRM ~ N3/p4. MD simulation results of Kremer
and Grest54 could not distinguish between the standard reptation and Hess
models but could rule out the generalized Rouse model.

In the reptation model, the viscosity ij scales with r^rj ~ N3. The expo-
nent 3 is slightly smaller than that found experimentally, eq. (4.19). There
have been numerous models20'28'36 to explain this difference between the
reptation model and experiment. Though the question is not completely
settled, it is believed by many that the higher exponent is a finite size cross-
over effect due to the tube length fluctuations.21'28 Doi21 was the first to
suggest this difference was a crossover effect and that for finite chain length,
contour length fluctuations enhance the relaxation of the stress. Doi sug-
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gested that the dependence on rj and the longest relaxation time on N is no
longer a power law for intermediate values of N and only for very large N is
the reptation prediction recovered. Early computer simulations24 of the
dynamics of a single entangled chain seemed to agree with the original
reptation model. However, more extensive numerical studies28'109"112 using
a discretized reptation model based on de Gennes' model of moving defects
found that for finite chain length, r/ had an effective exponent in the range
3.2-3.5, consistent with the experiment. The analytical treatment91 of tube
fluctuations is in agreement with these numerical calculations. In this
approach, tube length fluctuations lead to a very broad crossover with an
apparent exponent for the relaxation time ~ 3.4 and the asymptotic value of
3 is achieved only for very large value of N. There have been several alter-
native explanations of the 3.4 power law which do not rely on a crossover
but suggest that the true asymptotic power law is greater than 3 20'26'27>38 All
of these models incorporate in some way the fact that reptation is a single
chain model and do not necessarily describe all the complicated many-chain
effects which contribute to the stress relaxation.

One difficulty with the crossover explanation for the 3.4 power law for 77
and TJ is that it also predicts a larger exponent for the diffusion constant D.
In a single chain model, as noted above, it is assumed that a linear chain
diffuses a distance of order R during its longest relaxation time rre/ajc, so that
D ~ R2/rreiax. Since for chain lengths of experimental interest, the longest
relaxation time Tre/ax ~ N3A, instead of N3, one would predict that
D ~ N~2A instead of 7V~2. However this does not agree with experiment.
A more appropriate way to interpret this result is not the D ~ N~2A but that
the mean squared distance a polymer diffuses during its relaxation time
grows as NIA which is larger than its mean-squared size jR2 ~ N. For this
to happen the memory of the polymer configuration has to remain in the
region even after the chain leaves this region. This memory effect was
included in a phenomenological way by Scher and Shlesinger but they did
not explain its physical origin. Recently Rubinstein and Obukhov113 argued
that a reptating chain leaves a trace in a melt in the form of elastic distor-
tions of an entanglement net. Neighboring chains are attracted to this trace
and can relax these elastic distortions by partially reproducing the config-
uration of the first polymer. They showed that the difference in the longest
relaxation time rreiax and the time a chain takes to move its own size TJ ~ N3

is Treiax/Td ~ TV1/3 in agreement with experiment.74 Semenov114 argued in a
similar way that the diffusion is retarded due to long-living density fluctua-
tions in the system. These fluctuations, which allow the chains reptate out of
the tube themselves only can relax via reptation itself.

Other theories which are not based on the reptation/tube model have also
been developed. While some make an ansatz about how a polymer moves in
a melt, others are more microscopic.19'36^10 Schweizer36~38 uses a mode-
coupling approach. His theory predicts the emergence of a plateau shear
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modulus due to dynamical correlations induced by excluded volume inter-
actions and chain connectivity, which is included to linear order in the
effective equation of motion. The linear and scalar nature of the effective
friction in the equation of motion implies isotropic dynamics,115 which pre-
cludes an explicit treatment of anisotropic single chain motion as assumed in
the reptation model. A priori, it is unclear how serious this approximation is,
particularly as many of the results of the theory agree very closely with those
of the reptation model. Both models predict the same TV dependence for the
diffusion constant D and viscosity r\. The reduction in D is due to isotropic,
but highly correlated, force fluctuations or motions of clusters.33 Schweizer
also finds that there is a system-specific, density-dependent length scale
significantly larger than the statistical segment length, above which there
is a crossover from unentangled Rouse to slowed down mode-coupling
dynamics at a time rc.

38 The mean-square displacement for a monomer
gi(t) has several regimes. For rc < t < TR,g\(t) ~ f9/32, followed by a /3/8

regime. In the early time regime, the power law is very nearly the same as the
reptation prediction, eq. (4.21), and it is difficult at present to distinguish the
two approaches. Simulations on longer chains, greater than those that are
presently accessible (6 — lNe) are necessary to distinguish which model best
describes the intermediate regime, t1/2 or £3/8. Such a determination must
await access to the next generation of supercomputers. In either case, such
an isotropic approach might seem reasonable, in at least an "effective"
medium sense in order to describe experimental data, though the motion
of the monomers appears to be anisotropic.116 A self-consistent version of
the theory in the spirit of mode-coupling theories of glasses and critical
phenomena has recently been developed.38 For chains, this theory predicts
a localization transition which may signal the breakdown of the isotropic
caging assumption and the onset of anisotropic motion such as reptation.
Extensions of the theory to finite N, including nonuniversal corrections to
the asymptotic mode-coupling theory are needed before the model can be
compared directly to present simulations. However we can make a rather
crucial test of this model from our simulations of polymer networks as will
be discussed in Section 4.5. Since in Schweizer's theory the monomers move
isotropically in space, the chain ends do not play an especially crucial role.
Thus for long times the motion of monomers in the network should be
isotropic, since it is expected to be confined to a tube within the reptation
scheme. This will be discussed in more detail below.

The plateau modulus G°N is determined from rheological measurements.
In the reptation model, it is related to the tube diameter dj = (R2(Ne)},117

The 4/5 prefactor arises from tube length fluctuations, which allow for a
better relaxation under deformation, while this is not the case in networks.
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While this is the fundamental relationship of the Doi-Edwards92 theory of
viscoelastic behavior of a polymer melt, the molecular origin of the entan-
glement distance is still not very well understood. Graessley and Edwards118

suggested that G°N should be determined solely from the density of chain
contour lengths (pL/N, where p/N is the number density of chains and L is
the contour length of a chain) and the Kuhn length IK = C^l of a chain. A
simple dimensional argument led them to conclude that

where a was not calculated explicitly by Graessley and Edwards.118 In terms
of measured quantities, C^,/? and /,

This leads to an entanglement length Ne ~ C3
(x

2apl~" and a tube diameter
dT ~ p('-«)/2.

A number of models have been developed which predict the exponent a.
The local packing models of Ronca,31 Kavassalis and Noolandi35 and Lin119

suggest that entanglements are determined from a fixed number of strands
in an entangled volume (R2(Ne)} . This leads to the prediction a = 3. This
result agrees with an earlier model by Doi.120 An alternative scaling based
on a fixed number of binary contacts15'118'121 making an entanglement
strand gives a — 2 while Colby and Rubinstein122 conjectured that entangle-
ments are determined by a constant number of binary contacts in an
entangled volume, which gives a = 7/3. Helfand123 has pointed out that
the differences between these scaling ideas arises because there are two
independent length scales, the Kuhn length 1K and the average distance
between contour lines (pL/N)^'2, which appear in the analysis. This
means that some additional conjecture about the entanglements is required
for scaling to work. Unfortunately there are experiments to support all three
pictures of an entanglement. Rheological118 and neutron spin-echo experi-
ments124 on concentrated polymer solutions result in a scaling exponent
a ~ 2.2, midway between the two binary contact models. This result is in
agreement with the variation of G°N with concentration in a 9 solvent which
give a = 2.33 ± 0.13.125 However scaling melt data for a range of polymers,
according to eq. (4.26) give a = 2.8 ± 0.4125 and 2.9 ± O.I,126 consistent with
the packing models. Simulations, which will be discussed later,12 give an
exponent between a = 2.53(z/ = 0.59) and a = 3(f = 1/2) covering the
experimental values. These later results are in disagreement with simple
models127"129 which assume that the entanglement molecular weight scales
only with a positive power of C^, and does not depend on the density p. To
date, simulations have not really been able to address what determines the
plateau modulus since the longest chains are only about 6 — 7Ne and longer
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chains are needed to observe a clear plateau modulus. However simulations
can study the dependence of Coo and Ne on temperature and density,12'59

though more needs to be done.
An alternative approach to the scaling theories for the entanglements are

topological methods. These are based on the assumption that entanglements
are purely geometrical. If this is the case, then dr and Ne can only be a
function of the two length scales, IK and (pL/N)~ ' , as mentioned above.
Using the Gaussian topological invariants, which counts the windings swept
out by one curve around another, Edwards130 calculated the dependence of
dj in two limiting cases. For a pure random flight polymer, Edwards' results
agree with the packing model. His results for a Gaussian coil in a network of
rods,130 are identical to that for the binary contact model. Iwata and
Edwards29'30 extended the Gaussian integral method to what is known as
localized Gaussian integrals. The theory introduces a topological interaction
parameter 7, which describes the capability of a chain to entangle. 7 is
mainly determined by the diameter of a polymer chain. The smaller the
diameter, the more a polymer can entangle. Also the larger C^ is, the
more a chain is extended making it easier to become entangled. The theory
does not predict an analytic form for the plateau modulus, but for the
concentration dependence of G°N, an effective exponent a can be determined.
a = 2 for high concentrations and increases slightly with decreasing concen-
tration.

As for long chains in a melt, chain entanglements are also expected to
play a role for the modulus of polymer networks. By randomly crosslinking
the chains at several places a system of strands is produced, in which the
strand ends are in most cases connected to crosslinks. This holds for systems
far above the percolation/vulcanization threshold. Thus most of the mono-
mers are in strands which have both ends connected to crosslinks. These
strands are of course highly polydisperse. As already mentioned in the
introduction the static plateau modulus for such polymer networks of
long strands is expected to result from the same reasons as for entangled
melts. Thus the entanglement picture of networks gives a modulus14

which is the same as for melts up to a prefactor of 4/5. As in a melt, the
monomers are supposed to be confined to a tube-like regime in space. Since
there is no tube renewal due to the lack of free ends, one should expect to
observe the tube confinement for even shorter chains than in a melt. This
then should allow one to test the mode coupling theory36"38 for melts from
the network simulations. The mode coupling theory does not predict a
confinement to a tube along the coarse-grained contour of the strands.
Eventually the monomers should move isotropically in space and explore
a regime which ultimately is expected to scale with the radius of gyration of
the strands. This range should be somewhere in between the limits of the
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phantom network and the affine network model.45 Any significant deviation
from this scaling can be interpreted with respect to the differences between
reptation theory and the corresponding mode coupling approach. This point
will be discussed in Section 4.5 on polymer networks.

4.3 Model and method

To address the question of what is an entanglement and how it affects the
properties of a dense melt or network is a formidable task for computer
simulations, as it is for experiment. In a simulation, the greatest difficulty
arises simply because the chain-length N must be much larger than the
entanglement length Ne and the longest relaxation time increases rapidly
with N,Td~N3 for N > Ne. Experimentally the longest relaxation time
increases with even a slightly higher power, N3A. To study the crossover
from the early Rouse regime to the entangled regime, N should be at least
4-5Ne. Within the original reptation model, much longer chains (N^ \5Ne)
would be necessary in order to clearly observe the second /'/2 regime and to
observe the plateau modulus.131 For polymer networks, in which the entan-
glements are trapped by the crosslinking, the relevant distance is the mean
separation between crosslinks. In this case, the effects of the entanglements
can clearly be seen even for chains of order 1 — 3Ne. However in this case
larger systems are needed in order to average over the disorder. For such
long chains, simply equilibrating the sample before collecting statistics
requires considerable amount of CPU time. While the effect of the entangle-
ments can be observed directly in the mean-square displacement of a mono-
mer or the modulus, it is also important to try to identify exactly what an
entanglement is. This requires some theoretical input to decide how to
identify an entanglement from the monomer coordinates.

To estimate the relevant time scales for the simulation, let us consider the
simplest polymer — polyethylene (PE).132~134 Since the relaxation time
decreases as T increases, we choose a high temperature somewhat below
that at which the polymer would degrade, to the estimate a lower CPU time
limit. While the diffusion constant D increases and the relaxation time
decreases with increasing T, this is at least partially compensated for by
an increase in Ne. (For PE it turns out that it is better to do the simulation
at high temperature but there is no general rule about whether it is better to
carry them out at the highest possible temperature or not, particularly since
the time step A? also decreases with increasing T.) From recent neutron
spin-echo measurements (which will be discussed in more detail below),
Richter et a/.135 found that the entanglement time re ~ 5.0 x 10~9s at
r=509K for saturated poly butadiene (PEB-2). PEB-2 is essentially PE
with one ethyl branch every 50 main-chain bonds. Using this time and the
entanglement molecular weight, which for PEB-2 at T = 509 K is
Me ~ 2000 or about 137 monomers,79'135 it is possible to estimate the
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minimal amount of CPU time which would be needed to observe the onset of
entanglement effects using the published results. To simplify the model, the
hydrogen atoms are not included explicitly but incorporated into a larger
effective united carbon atom. The interactions include a spring potential
between the monomers, a bond-bending potential and a torsional potential
to account for the backbone structure of the chain. Monomers (in this case
CHi and CHj, units) that are not neighbors along the chain sequence of the
polymer interact via a standard Lennard-Jones potential. In these models, the
center for the united atom nonbonded potential was either at the center of the
carbon atom 132>133'136

or moved towards the hydrogens.134'137 The parameters
are chosen to fit experimental data. Since these potentials are nonlinear, the
stability of the simulation requires fairly small time-steps. Typically, one needs
of order 50 integration time-steps per oscillation time of the highest-frequency
mode of the system. This is the first problem for a realistic simulation.
Softening the spring constant k for the C-C bond from its typical spectro-
scopic value reduces the frequency of the highest modes somewhat allowing a
larger time-step A?. Reducing k by a factor of 7, Rigby and Roe132 found that
they could use a time-step as large as 10~14s for T< 360 K. Other
authors133'134'136'137 have used smaller At. For 2"~500K, a smaller At
would probably be needed, though we use this larger value for our estimate.
For a 500 monomer system, their optimized MD program ran at 50 time-steps
per second on the Cray XMP. For this system size, a run of length re would
take about 2.8 h on the XMP or about 2 h on a YMP.

Using Rigby and Roe's timings,132 it is straightforward to estimate the
CPU time required to simulate a minimal system for studying entangle-
ment effects. As an example consider the relaxation time for 10 chains of
length 5Me. Such a system is significantly smaller than most of the
subsequently discussed investigations. For this system, we estimate that
the relaxation time within the ideal reptation model is about
rd(5Ne) =re(N/Ne)

3 ~6.25 x 10~7s. Transformed into CPU time, this
would require about 3400 hours of CPU time on a single Cray YMP
processor for a run of length one relaxation time. For 100 chains of
6Me, which is more comparable to the largest system studied by Kremer
and Grest,54 this time increases to 70000 CPU hours on a single YMP
processor. For a complete and conclusive study, even for this rather short
chain length, many more chains and longer runs are needed to obtain
reasonable statistics. Note that this result is for quite high T, far above
the glass temperature. An earlier estimate by us138 was for the temperature
of Rigby and Roe's simulation, which though also above the glass transi-
tion temperature, gave a CPU time which was significantly larger. One
should also keep in mind, that the intrachain potentials are still subject to
some discussion. A recent recalculation of the energy barriers for the
torsion angles for PE revealed that the barrier is significantly too low in
most of these models.139 Even allowing for the faster Cray C90 processors,
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the time for a comprehensive study is prohibitive at present. On future com-
puters, with say, a 102 net speed-up in speed (probably on a massively parallel
system), it will be possible to make some runs at high temperatures for simple
systems such as PE. However on today's fastest computers, a conclusive
investigation with more and longer chains would require hundreds of thou-
sands of CPU hours. Thus the prospects of such an investigation are not very
good. The situation becomes even more hopeless if one wants to study more
relevant polymers like polystyrene (PS)140 or more complicated ones like
polydimethylsiloxane (PDMS) or polycarbonates (PC). In these cases, the
potentials are considerably more complicated and the entanglement lengths
are often significantly larger. Thus even for tomorrow's computers, at least
for those that are likely to come in the foreseeable future, these problems are
beyond the limits. Consequently, a complete, detailed simulation of chemi-
cally and industrially interesting polymers on today's fastest supercomputer
would easily require many years for the chains are to move a distance com-
parable to their own length at temperatures of practical interest. This is not
to say that simulations on more realistic models are not important. In fact,
there are a number of other important properties which do depend on the
exact nature of the interactions which do require realistic models. These
include local properties such as short-range and short-time correlations132"
134,140,141 orjentational correlations,141 high-frequency excitations, subglass
relaxation of side groups,142 and diffusion of small penetrant molecules in a
polymer melt or network.143'144 Also many macroscopic aspects, such as the
viscosity prefactor and the glass transition temperature, depend strongly on
the local properties of the polymers. In order to get more information on the
chemistry-dependent properties of complicated polymers, one has to work
with modifications of the simple models discussed above.145 Work in this
direction is discussed by Clarke in Chapter 5 of this book.

To obtain insight into the long-time, large-distance properties of melts
and networks, another approach is needed, since a microscopic approach
for long-time properties is a hopeless undertaking. Consequently, the clas-
sical approach of using highly simplified models58'146"151 is still the only
feasible way to gain insight into the dynamical properties of complicated
polymer systems. We refer to these models as coarse-grained models, in that
the monomers or units of the polymer chain do not correspond explicitly to
atoms but to coarse-grained units. However by making a proper mapping of
these simple model systems onto different chemical species, it is possible to
give quantitative estimates of time and length scales for a variety of different
polymeric systems.54 Since this can be done from a single set of runs for one
model, such an approach naturally gives more insight into the universal
properties2 of polymeric systems.

What is the minimal amount of detail which must be included to study the
long-time and large-distance properties of melts and networks? Clearly self-
avoidance of the monomers is important as well as noncrossability of the
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chains. Both of these are essential if one wants to study the effect of entan-
glements. If the chains can pass through each other then the topological
constraints of long chains do not play a role. While it is sometimes useful for
crosslinked networks to study a model in which nonconnected monomers
are allowed to pass through each other in order to test simple theories (see
Section 4.5), this is usually not the case for melts. Fortunately these two
requirements are sufficient for constructing a model which can be used to
test the predictions of theory and model experimental systems on large
distance and long time scales. The introduction of bond-bending and tor-
sional forces, which slow down the simulation, are not necessary. There are
several equivalent methods/models which satisfy these two requirements.
The classic method is to embed the chains as self-avoiding and mutually
avoiding walks on a lattice.58'131'148'149'151 In this method monomers reside
on the lattice sites which are connected to form chains. Typically one uses
the diamond9'10 or simple cubic lattice.32'57'152'153 The monomers are moved
using MC methods which, when chosen properly, satisfy detailed balance
and reproduce the Rouse3 dynamics for short chains.148'151 The majority of
the simulations on polymer melts prior to 1990 used this approach. Since
that time, other methods have been adopted. One of them is the bond-
fluctuation method, which was first introduced by Carmesin and
Kremer.66 In this method, each monomer consists of 2d lattice sites. In
addition to excluded-volume interactions, the bond length / is restricted to
a maximum extension to avoid bond crossing. This model has turned out to
be considerably more efficient than the standard lattice MC method for
simulating dense melts.12'59'154'155 One major reason is that the effective
density for models with fluctuating bond lengths is much higher than for
simple lattice models,12'59 which results in a much shorter entanglement
length Ne. Off-lattice, pearl necklace146'147 and bead-spring models, have
also been used. In the former, the bond length is fixed, while in the later
it is allowed to vary. MC methods, in which subsequent configurations of
the polymer are generated stochastically, have been applied to both of these
models.62'146'147

Molecular dynamics methods156"158 have been used for bead-spring
models to study dense melts of linear chains54'131'150 and polymer networks
159-162 as wejj as many.arm stars and end-grafted polymer brushes.163 It is
very effective for dense systems where strong density fluctuations occur.
Each monomer i of the system moves according to an equation of motion,

where m is the monomer mass. The interaction potential has two parts. The
first U-j is a potential which acts between all monomers in the system. Often
it is taken to be a purely repulsive Lennard-Jones potential.54 Along the
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sequence of the chain or between crosslinked monomers, a strong attractive
potential Uy is added. The parameters of £7|* must be chosen carefully so as
to avoid the chains from cutting each other yet be soft enough to allow for a
large time step.54 Here T is the bead friction which acts to couple the
monomers to the heat bath and W,-(f) describes the random force acting
on each bead. The strength of the random force is coupled to the bead
friction by the fluctuation-dissipation theorem. The equations can be inte-
grated with a variety of techniques.156"158 We found that the velocity-
Verlet164 algorithm is very efficient and allows us to use a time step A/ in
the range 0.012-0.0135-r, where r = <r(m/e)1//2 is the standard time unit for a
Lennard-Jones fluid. This was about twice as large as our earlier simula-
tions54 which used a fifth order predictor-corrector algorithm.165 Since the
potential is purely repulsive, the system is close to athermal. Most of the
MD results will be for T= l.Qe/kB and T = Q.5r~l at a density per1 = 0.85.
Results in this review will be presented in reduced units in which a, e and
m = 1. The introduction of a weak coupling to the background is very
important not only to keep the temperature at the preset value but also to
keep the system stable over the course of the simulations. Because we are
interested in the dynamics of a melt in which the relaxation time is very long,
runs of up to 20 x 106A? after equilibration were made. We found that
coupling the system weakly to the heat bath was a physically appealing
way to reduce the effect of the numerical errors which accumulate during
the course of any long simulation. This overall coupling to a heat bath does,
however, lead to a diffusion of the entire system. This diffusion has to be
removed when analyzing the motion of the chains. This is done by simply
calculating all quantities in the center-of-mass coordinates of the whole
system. For a more complete review of all of these methods see Chapter 9
by Grest and Murat in this volume.

Recently Schulz et al.166 combined the bond fluctuation MC and MD
simulation. They used the MC method to follow the large-scale motion of
the chains but periodically used MD for short intervals. They claim that this
method gives a significantly increase in the overall speed of the code. This is
probably because the MD allows one to resolve "blocked" conformations
better due to the cooperativity of the motion, while the MC is much faster in
more standard environment. Heermann and Yixue167 have also discussed
hydrid MC-MD methods but so far have only presented results for very
short chains.

The static conformations on scales larger than the persistence length or
the average spacing between nonbonded nearest neighbors do not depend
on the specific model. For shorter distances differences occur and the lattice
models are somewhat less realistic than the continuous space models. The
MD simulations of Kremer and Grest are described very well by the PRISM
(polymer reference interaction site model) model of Curro and Schweizer.168



2 1 6 E N T A N G L E M E N T E F F E C T S I N P O L Y M E R M E L T S

For a general discussion of the microscopic structure of the various polymer
melt models see Ref. 169.

Which model or method is best to use for studying dense linear melts and
networks depends on the particular system and question under considera-
tion. Which is better depends somewhat on whether it is more appropriate
to work on a lattice or in the continuum and whether it is acceptable to have
stochastic dynamics on all time scales. On a lattice, we believe the best
method is clearly the bond fluctuation method. For off-lattice, MD using
a bead-spring model is very efficient particularly on vector supercomputers.
On super scalar workstations, tliere are some indications that MC for the
bead-spring model is also efficient.62 However on the Cray due to the ex-
tremely fast integer routines, this is questionable. The bond fluctuation
algorithm as well as the MD are highly vectorized154'170, while the MC
bead-spring simulations have not been vectorized as of yet. Comparisons
between the various methods are difficult, particularly between lattice and
off-lattice simulations since the models and methods are so different.
Recently Everaers and Kremer171 improved the vectorized MD due to a
significantly more effective setup of the Verlet table. For linear chains in
a melt or semidilute solution, lattice simulations are a good choice. However
in some applications, such as constant pressure simulations172'173 or for
polymers under shear, one should use a continuum model. Similarly, if
one is interested in the behavior of gels or polymer networks under swelling
or elongation then a continuum simulation using MD is probably the most
appropriate way to proceed. Continuum simulations, either MC or MD, are
also essential for simulations on the more detailed, microscopic polymer
models.174'175 The recent approach by Schulz et a/.166 might point to a
very interesting alternative, however the description in the paper is too
short and incomplete in order to judge at this point.

There is one case where a fairly reasonable comparison between the
methods can be made. That is in the study of the dynamics of a dense
melt of linear chains. For the purely repulsive case, in which only excluded
volume interactions are taken into account, there is sufficient data from the
different methods to allow for a comparison. However since the simulations
are done on different models, one needs some measure of effective speed,
since MC or MD steps per second is not a useful comparison. In this case, a
good measure of the effective speed of the algorithm is to measure the CPU
time to reach the crossover time re from the Rouse regime to the entangled
regime. On a Cray YMP, Grest and Kremer131'150 estimated that at present
the bond fluctuation method is clearly faster than MD. However the recent
improvement for the MD simulation171 of chains interacting with the short
range LJ potential to about 300 000 particle moves per second on a Cray
YMP for the situation discussed above, reduces the difference to some
extent. However the inclusion of additional interactions has a much stronger
effect on slowing down the bond fluctuation method than it does for the
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MD. On an RISC workstation, Milchev et al.62 found that the CPU time to
reach re for their off-lattice MC simulations are only about 30% slower than
the bond fluctuation algorithm on the same computer. Generally speaking,
the off-lattice bead-spring models are the most flexible but not always the
fastest. For those problems in which it is applicable, the bond fluctuation
method is currently the most efficient.

4.4 Simulations of uncrossl inked polymers

The numerical/simulational investigation of polymer melts can be separated
into two classes. In the first the reptation model is assumed to be correct and
the system is simulated by elementary moves which directly follow the
reptation concept. These simulations are mainly used nowadays to examine
crossover properties within the model, such as whether the N3A power law is
asymptotic or just an effect of the experimentally accessable chain lengths,
though they reach up to more than 100(We.

88 We refer to this group of
numerical investigations as "reptation simulations". However to test the
validity of the concept itself, one has to go to a more basic level and use
the methods such as those discussed in the previous section which incorpo-
rate only local moves which do not contain any bias towards reptative
motion. This is essential to test whether the basic ansatz of the reptation
model is valid or not. In this section we review several recent investigations
using both MC and MD simulations which studied the dynamics of a dense
melt of linear chains. First we discuss some recent results using the
"reptation simulations" and then we present a more detailed account of
the more basic "molecular level" simulations.

4.4.1 Reptation simulations

When simulations were first applied to the dynamics of a melt of mobile
chains it was very difficult to set up a program which was capable of dealing
with such a complex problem in a reasonable manner. Among the early
attempts, Deutsch176 employed a special lattice model in which interchain
excluded volume interaction were included but monomers along the chain
were allowed to overlap. This significantly enhanced the mobility of the
chains. Deutsch, already in 1982, observed a signature of the f1/4 regime
in the mean-square displacement of the inner monomers. Though at the time
the validity of such an approach compared to other simulations was highly
disputed,177 it now seems clear that this simulation should be included
within the "reptation simulations". Similar ideas were also put forward by
Evans and Edwards.178 A related approach which employs dynamics similar
to the moving de Gennes defects has been used extensively by Pakula and
coworkers.179 However since there is no direct interpretation of the
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Fig. 4.4 Illustration of the repton idea, from Ref. 28. (a) A polymer in an entangled net is
confined to a tube. Filled circles divide the chain into segments of stored length, (b) Repton
model representation of conformation in part (a). Cells of the entanglement net along the
confining tube are represented by a one-dimensional lattice. Sections of chain length stored
in these cells are modeled by reptons on the lattice sites, (c) Directed walk representation of the
same conformation.

dynamics in their cooperative motion algorithm,148'151 we omit a discussion
of their results here.

The reptation concept and the crossover for large N was directly analyzed
recently by Rubinstein.28 This work was motivated by the long-standing
problem of the observed N3A power law for the longest relaxation time TJ.
As discussed above, the reptation model predicts a N3 power law. One of the
main questions in this context was to investigate whether for large but finite
N, the reptation model would give an apparent power law consistent with
experiment. Rubinstein28 employed the so-called repton model, where the
topological constraints of motion are directly simulated within a single
chain picture. Figure 4.4 shows his model. The repton model actually
reduces the problem to a one dimensional directed walk. As illustrated in
Fig. 4.4 the idea is to look at a SAW chain in the tube. Thus the order of the
units, the reptons, has to be preserved. In the example illustrated in the
figure, repton number 1 can move to the left but not to the right. One
attempted move per repton then corresponds to the time re. In the actual
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simulation the probability for the outer monomers is different for the direc-
tion "into" the tube and "out of" the tube. If z is the lattice coordination
number for the hypothetical repton chain lattice, the probability for moves
"out" of the tube is (1 — 1/z) while it is 1/z for moves "into" the tube. For
the inner parts the probabilities are direction independent. This on a very
coarse-grained level is the simulation of a chain in a tube,180 where the
intrachain excluded volume is effectively taken into account by the pre-
served order of reptons. Rubinstein used this model to estimate both
D(N, z) as well as rj(N, z). The viscosity is given by the integral of the stress
relaxation function, which is directly related to the conformational relaxa-
tion of the chains. Thus the repton model can provide us with an estimate of
how i] depends on N, though it certainly cannot provide the prefactor.
Figure 4.5 shows the results for the viscosity as a function of the chain
length N (here of course in units of reptons) and lattice coordination num-
ber z. The slope, giving the viscosity exponent, varies between 3.22 for z = 2
and 3.52 for z = 12.28 Thus even within such a very simple model, where
only the intrachain EV within the tube is considered beyond the original

Fig. 4.5 Repton model prediction for the viscosity rj0 as function of the number of reptons per
chain N for different values of z, as indicated. The slope varies from 3.22 (z = 2) to 3.52
(z = 12), (from Ref. 28).
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approach, one recovers the experimental results for the viscosity. Similar
results were obtained by Deutsch and Madden.110 Along such lines several
authors tried to elucidate the problem of one moving chain in an environ-
ment of obstacles. Baumgartner and Muthukumar were mainly interested in
the problem of chain localization in big pores.181 This is not of special
relevance here since, for the entanglement problem, the average distance
between obstacles has to be much smaller than the chain extension.
Deutsch and Madden110 as well as Reiter111 discuss the motion of random
walks on a lattice of obstacles or entanglements. While Deutsch and
Madden110 describe the motion of a random walk on such a lattice,
Reiter111 compares the Rouse, slithering snake and Evans and Edwards
dynamics.178 In general both find agreement with the reptation scheme,
however the diffusion constant D(N) seems to display an N-dependence
which is too strong.

More recently a more detailed approach was presented by O'Connor and
Ball,112 who extended the ideas of Rubinstein28 and Ketzmerick and
Ottinger109 by introducing Rouse dynamics for the chains in the tube.
This turns out to be especially important for the end beads. In this way
the contour length fluctuations are properly taken into account. This leads
to an agreement with experiment, similar to that found by Rubinstein.28

They also included tube renewal to account for the fact that the tube is only
expected to be a preserved quantity, if there is no chain end in the neighbor-
hood. In this way, they were able to obtain quantitative agreement with
experiment. The only adjustable parameter in their model was the plateau
modulus or the entanglement molecular weight Ne. Thus on the level of
these simulations the reptation model seems to account perfectly for the
rheological properties of long chain melts.

In the original reptation theory the stress is transported along the chains
within the tube, the so called backbone stress. This is in contrast to simu-
lations,13'182"184 where it was found that under shear or elongation most of
the forces are due to excluded volume contributions. Fixman20'185 used this
to argue against the reptation model. He employs a model of chains with a
fixed bond angle of 90°.185 Each bond is modeled as a long hard rod of
length L and diameter d. The aspect ratio L/d varies between 15.2 and
69.4. A Langevin simulation of a semidilute solution of such rods was
carried out. Typically the volume unit of L3 (length of the stiff bonds)
was occupied by six different strands. By using this rather constrained
model he argued that the main contribution to the plateau modulus is
related to excluded volume forces. His model however is certainly very
questionable when applied for a melt of flexible polymers. The model is
also unable to reproduce several experimental results as well as the pre-
vious simulation or the subsequent simulations on a more molecular level.
Models like this may however be useful for semidilute systems of, e.g.,
block-copolymers made of long, very stiff units and small flexible spacers.
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For such systems Fixman's model however would be more of a molecular
level model.

4.4.2 Melt simulations on a "molecular level"

From the discussion in Section 4.3, it is clear that for long-time, large-scale
phenomena the term molecular level still means coarse-grained models. As
shown before it is impossible to perform simulations for melt dynamics for
the case of a very detailed, chemically accurate model. In this subsection we
report on recent MD and MC results as well as one hybrid method simula-
tion which incorporates both MD and MC to study the dynamics of a melt
of linear chains. In all cases the moves are employed in a way that the
appearance of a slowed down motion is a direct consequence of the non-
crossability of the chains and not of the model.

The first important question to ask about any melt simulation is whether
the chain lengths and relaxation times which can be simulated are sufficient
to observe the most obvious effect of the entanglements, namely the
decrease in the diffusion constant. If this decrease in ND(N) can be
observed then the simulations can at least be used to characterize the transi-
tion from Rouse towards reptation. Eqs (4.15) and (4.18) give the expected
behavior of the diffusion constant D(N] for short and long chains, respec-
tively. In order for a simulation to make a significant contribution, it must
at least be able to cover this crossover regime. Following eq. (4.15), D(N)N
should define a plateau for small N, from which the monomeric friction or
mobility can be obtained. To compare results from different simulations
to experimental results for different polymers, a plot of D(N)/D-Rouse(N)
versus N/Ne or M/Me, respectively, should give one universal curve,
where DROUSS = ksT/£N. This mapping is important for our understanding,
since experiment and simulation use different methods to estimate Me or Ne.
In simulations Ne is mostly determined by the crossover towards the f1/4

regime in g \ ( t ) , while experimentally the plateau modulus is usually deter-
mined from the stress relaxation function. More recent simulations, which
extend the time window and the effective chain lengths12'166 could also use
the length of the f1/4 regime to determine Ne. However the aforementioned
method is generally used. A collapse of all available data onto one curve
shows that not only the different methods of determining Ne really define
the same length scale, but it also strongly suggests that there is a chemistry-
dependent length Ne, which in all cases plays the very same role. Figure 4.6
includes data from MD simulations,54 standard lattice MC,58 bond fluctua-
tion MC,59 and a hybrid combination of bond fluctuation MC and MD,166

as well as experimental results from NMR measurements on PE.74

The MD54 simulations were performed at a density of p = 0.85<r~3 and
the bond fluctuation MC simulations12'59 at two different volume fractions
$ = 0.4,0.5. For the hybrid method of Schulz et a/.,166 we used Ne = 40 as
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Fig. 4.6 Scaled diffusion constants from experiment and simulation as a function of chain
length scaled by the entanglement lengths Ne. Diffusion constant is normalized to the Rouse
diffusion constant. Data for polyethylene (x) from the NMR experiments of Pearson et al.74

Simulation results are from the MD work (n) of Kremer and Grest,54 the bond fluctuation MC
work of Paul et a!.59 (•, o) (two different densities * = 0.5,0.4) and Schulz et a/.166 ( +) and the
standard lattice MC work (A) of Skolnick et a/.153 (Adapted from Ref. 131).

given in their paper and DRoase = 1.63/N deduced from their diffusion con-
stant plot. The coefficient was determined by taking the mean value of
D(N — 10) and D(N = 20) for their simulation. As the figure shows, the
scatter of the data is significant, indicating that the precision is considerably
smaller than for the other data. In the lattice simulations of Skolnick et a/.,58

the entanglement length turns out to be about Ne = 110 - 120 for chains on
a simple cubic lattice at density $ = O.5.131 There the determination of the
Rouse regime is rather difficult, since simple lattice chains at $ = 0.5 model
a semidilute solution rather than a dense melt. Comparing their results to
earlier MC simulations on the diamond lattice by Kremer9 one expects a
screening length for the EV interaction of about 10^20 monomers. Thus in
order to determine Z)ROUSe only N > 20 was considered. Then one finds for
the simple cubic lattice at $ = 0.5, DRouse = O.IQ6/N. The experimental data
are from NMR measurements of Pearson et al.,14 for PE at T = 448 K. The
entanglement molecular weight Me is taken from the plateau modulus com-
pared to the Doi-Edwards theory.5'14 They give Me = 1350 or equivalently
Ne = 96 monomers for this temperature, as indicated in the figure. Using
this value for Ne the data nicely fall on one curve. All four simulation
schemes as well as the experiment show a clear crossover from the Rouse
to the entangled reptation regime. In all cases the simulations cover up to
6-7 entanglement lengths.

From these results it is clear that the simulations are in a position to
analyze the crossover towards the reptation regime in some detail, however
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they do not cover the fully entangled regime. The crossover is actually better
described by the formula

derived by Hess19 than by D/Dnouse — ̂ Ne/N given by Graessley.87 Hess's
theory, where the motion confinement is taken into account via a projection
operator formalism, eventually leads to the reptation model for long chains.

A key signature of the reptation is given by the mean-square displace-
ments of the monomers and the center of mass of the whole chain. Since all
present computer simulations still only can deal with rather short chains, it
is necessary to confine the analysis to the innermost monomers in order to
identify the long chain behavior. The ends show an enhanced mobility,
which dominates the data. Thus we define

Figure 4.7 gives results for g\(t) from the bead spring MD simulations of
Kremer and Grest.131 For short times all data collapse onto a single curve,
indicating that the inner monomers of the chains do not feel the overall
length and the resulting constraints. This is the same as de Gennes ansatz16

for the introduction of the reptation as illustrated in the introduction. This
signal of the slowed-down motion is completely smeared out if the whole
chain is considered. Figure 4.8 for g \ ( t ) for monomers at different locations

Fig. 4.7 Mean-square displacement g\ (i) of the inner monomers from the MD simulations of
Ref. 54 for a variety of chain lengths.
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Fig. 4.8 Variation of the mean-square displacements of monomers as a function of their
position along the chains for N= 150, from Ref. 54. The data progressively give monomers
from the chain ends (upper curve) inward with an increment of 10.

along the chain clearly shows this effect. Only for larger times do we find the
typical crossover to a slower motion. It is important to notice, that this
crossover occurs within the error bars at the same times and monomer
displacements, independent of chain length for the longer chains. This indi-
cates a characteristic length Ne, the entanglement length, and time re, the
Rouse relaxation time of a subchain of length Ne. For intermediate times the
slope in Fig. 4.7 is around 0.28, a little larger than the ^/4, expected from the
reptation model. Using for the crossover g\(re) = 2(B?g(Ne)) the data of Fig.
4.7 give Ne ~ 35 and re ~ 1800r for the MD data.

By the same approach one can find Ne and re for the other simulations.
The observed slope in the intermediate time regime for middle monomers on
a chain of length 800 on the simple cubic lattice MC simulation58 at $ = 0.5
is 0.28, while for the bond fluctuation MC simulation12 at $ = 0.5 for
TV =200, the slope is 0.30. Results for the hybrid method of Schulz et
al.,166 had a larger error due to the limited number of chains for N= 200.
They quote a value for the slope as 0.25 ±0.1. Thus even though the three
models are very different in detail, they all are for N/Ne ~ 6 — 7 and give
approximately the same result for the exponent as the MD simulations. The
interesting question for the future is whether for longer chains, is the power
1/4 or somewhat larger. Within the reptation model one expects the f1/4

regime to stretch over a time range up to the Rouse time of the chains.
From the MD simulations only the data for N = 150 are for sufficiently
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Fig. 4.9 Mean-square displacements gi(t) of the inner monomers and g3(r) of the center of
mass of the chain of TV =200 at density $ = 0.5 from bond fluctuation MC.12 Here the
region around TX is shown.

long runs that one could look for this, though the data are not good enough
to derive a reliable estimate of the time ratio TN/TS = N2/N2. This prediction
can more clearly be tested using the bond fluctuation data as shown in Fig.
4.9. The data in Fig. 4.9 are accurate enough to clearly exhibit a crossover
towards a steeper slope at the Rouse time TN of the chains. Using Ne = 30
for <3> = 0.5, the ratio between the crossover times towards the slowing
down and the increase of the slope of gi(t) should be given by
(N/Ne)

2 = (200/30)2 w 44, which is in excellent agreement with the data.
Even more importantly the data are accurate enough to display the slowing
down in the motion of the center-of-mass of the chains. After the initial
effective slope of 0.8 it seems to decay to approximately 0.5 after it again
increases to a value slightly below 1 at about the Rouse time of the chains, as
expected by the reptation model.

These bond fluctuation data12'59 were the first to give any numerical
indication of the expected second t1/2 regime in the motion of the middle
monomers. More recently Schulz et a/.,166 used a combination of MD and
MC for very similar model parameters as in the bond fluctuation simula-
tions of Paul et a/.,12'59 They improved the statistics significantly. Figure
4.10 shows their results for N = 200.166 Included are the mean-square dis-
placements of the end monomers, the middle monomers and the center of
mass. Because of the longer runs, the existence of a second t1/2 regime is
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Fig. 4.10 Mean-square displacement of the outer monomers, middle monomers and the center
of mass for chains of length N = 200 from the hybrid bond fluctuation MC-MD simulation of
Schulz et al.166

clearly seen. Also the crossover of g3(t) towards the tl regime at the Rouse
time (not the longest relaxation time of the system!) is observed as in other
simulations.12 However these results have to be taken with some reservation.
As shown in Fig. 4.6, the general accuracy is fairly low. The systems sizes
used were so small that chains of length N > 100 overlap with themselves,
since only NM fa 1700 monomers are considered. This is compared to sys-
tems of size up to MN = 20 000 used by Kremer and Grest.54 It is not clear
to what extent this affects the large-scale motion. The length of the ?1/4

regime is expected to give a good indication of the entanglement chain
length Ne. An interesting point however is raised by the length of the second
t1/2 regime. As discussed before this second regime is expected to last up to
rd = N/NerR ~ N3/Ne, which is less than a decade for N=(6-l)Ne.
However as shown in Figs. 4.9 and 4.10 this regime is longer than expected.
This increased length might be an indication for long lived density fluctua-
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tions suggested by Semenov114 and Rubinstein and Obukhov.113 However in
both cases the number of chains was relatively small as only eight or nine
chains are considered for N = 200.166 Kremer and Grest54 also studied a
system of N = 10 chains of TV = 400, where it was found that the motion at
larger times was severely affected by the small number of chains. Since the
diffusion is calculated in the center-of-mass reference frame of the whole
system, this reduces to a system with a very small number of particles. Thus,
although it is tempting to speculate what this data really mean, the results
for longer time scales from this simulation have,to be taken with some
reservations.

A very important effect which has been observed in all simulations is the
characteristic short time behavior of the center-of-mass displacement gs(/).
All methods, including the MD,54'131 the bond fluctuation MC,12'59 and the
hybrid method,166 give for short times a t°'K power law instead of the
expected Rouse result of tl. The origin of this clear deviation from Rouse
is not understood. It should be noted that this is certainly a many-chain
effect, since earlier investigations on free chains or chains in a frozen envir-
onment do not show this deviation.

The data show from the mean-square displacements a clear signature of
the existence of a unique length scale d\ oc Ne. This should also show up in
the Rouse spectrum of the chains. In Ref. 54 the Rouse modes of the chains
were analyzed using eq. (4.6) with b' — 1. Though this term is not needed for
free chains, the introduced error is expected to be very small, of the order
I / N . For N/p < Ne one would expect standard Rouse behavior, as given by
eq. (4.10). This is observed for short chains54 as shown in Fig. 4.11. The
observed friction coefficient £ = (17 ±2)r~' for the MD simulations is in
excellent agreement with the value of £ = 16T"1 obtained from the diffusion
constant.54 (Note that the scattering function for both experiment and simu-
lation give a different monomeric frictions coefficient. To be consistent one
has to compare the results from the modes and the diffusion.) There is,
however, some deviation from the single exponential decay for the very
short times. For longer chains much stronger deviations from the Rouse
behavior occur.

Although the data54 tend to agree more with the reptation model than
other models, it is difficult to distinguish on this basis alone. For the repta-
tion model the relaxation of the modes is expected to follow eq. (4.10) for
times up to re for N/p > Ne. Then the relaxation time should increase by a
factor N/Ne with a plateau in between. The plateau value is expected to be
around exp(-TR0use(/V1?)/r/,) and last up to the disentanglement time. We
should mention here that this time is dependent on the mode number p, as
was shown for the case of chain in a straight tube.180 Here one however has
to deal with the problem that for the present N/Ne values, the free chain
ends dominate the relaxation spectrum, as seen above for the mean-square
displacements. Thus we used an approach similar to the idea employed in
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Fig. 4.11 Autocorrelation function of the first four Rouse modes of a chain with
N/Ne <l,N = 20 (from Ref. 54).

g\ (t) for middle monomers for the Rouse modes. Since each subchain within
the walk is a random walk itself, one can construct Rouse modes from the
inner part of the chain. Following eq. (4.6) one can calculate

where N1 = N/p and i0 and iend are the first and the last monomer of the
center section of the original chain. The (—l)p reduces to —1 in the last term
of eq. (4.31) since one always deals with the first mode of the middle sub-
chain of length TV = N/p. Results for the middle sections from the M = 100,
N = 200 system were analyzed for N' = 30 to 100.131 In Fig. 4.12, the Rouse
scaling plot for the mode relaxation is shown. Although we do not find a
single exponential decay in the Rouse regime, all the data collapse reason-
ably well onto one common curve. At a time which is approximately the
same for all modes, the individual relaxation functions deviate from the
common Rouse curve towards a much slower decay. This time is about a
factor of 4-5 larger than re, as deduced from the mean-square displacement
g\(f) (Fig. 4.12). This scale factor for the time is in agreement with the ideal
Rouse model and the prediction of the reptation model.12'59 However the
strong nonsingular, exponential character for shorter times is surprising and
not completely understood. The fact that the crossover time for the modes is
well defined and mode independent, rules out the coupling scheme put
forward by Ngai et a/.186 They propose a smooth /^-dependent crossover.



S I M U L A T I O N S OF U N C R O S S L I N K E D P O L Y M E R S 229

Fig. 4.12 Autocorrelation function of the Rouse modes of an inner subchain, as defined in eq.
(4.10) for N- 200 from the MD data of Ref. 54. The construction is indicated in the figure
(fromRef. 131).

So far all the evidence from simulations supports the reptation model or
its variants very strongly. Although the chains are relatively short, we can
still ask to what extent do the chains move along the tube given by the
coarse-grained contour of the chain. It is clear that one here is only able
to observe the very onset of this motion. For the original chain of N = 200
for the MD data the tube diameter dr is only (N/Ne)

{'2 « 2.4 times smaller
than the mean end-to-end distance of the chain itself. To see the confine-
ment directly, one can construct a primitive chain (PC) as10'54'153

The PC feels the constraints of the tube more strongly than the individual
monomers. From g\ (t), now evaluated for the PC, one finds a tube diameter
drfc ~ 5<r.54 If one now simply plots conformations of the PC, separated by
a constant time increment, we can directly observe the confinement into the
tube. Figure 4.13 gives plot of 20 configurations of the PC for one chain
spaced 1200 T apart for a total elapsed time of 24000r (about 13re) for
N = 200. The other chains are not shown for clarity. For this time we expect
an inner monomer of the PC to travel a distance of (3gi(rma^)) ' « 13cr
compared to the tube diameter dt K (3gi(re))

1/'2 = 5<r if the chains did not
reptate.54 The figure clearly shows the confinement of the chain into a tube,
showing visually that the reptation concept qualitatively gives a profound
picture of the underlying physical mechanism. One can also look at a variety
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Fig. 4.13 Plot of the configurations of the PC of a chain of N = 200 from MD simulations. The
two bars indicate the estimated tube diameter and the estimated motion distance from isotropic
motion (from Ref. 54).

of other properties of the primitive chain as was done in Ref. 54. Since the
motion is anisotropic, the data do not agree to the mode coupling approach
of Schweizer.36~38 Kolinski et a/.153 show similar plots and perform a similar
analysis of the PC for their lattice MC simulation. However they claim that
even for their longest chain ofN= 800, N/Ne K> 7, on the sc lattice there is no
evidence for reptation. We strongly disagree with their interpretation, since
they disregard the tube diameter and the enhanced mobility of the ends.

Recently the simulations discussed above have been extended by Wittmer
et a/.155 In one part of their investigation, the dynamic structure function
S(q,t)/S(q,Q) for bond fluctuation chains of length N = 200 at a density
$ = 0.5 was studied. For the earlier MD results54 on chains of N < 150 the
influence of the ends was too strong to observe a clean indication of a
crossover from Rouse to reptation, since N/Ne w 4.3 while for the MC
chains N/Ne « 6.6. Since the enhanced mobility of the ends reaches about
1 to 1.5 entanglement lengths into the chains (cf. Figs. 4.8 and 4.13), the
longest MD chains (N = 150) analyzed in this way were rather short, while
the effective middle section in the MC case is significantly longer. In the
Rouse model, de Gennes187 showed that for long chains

Closed form expressions for S(q, t) in the Rouse model have been
derived,187'188 but they are time consuming to evaluate. Recently
Grayce189 has developed an approximate form which works quite well.
For times after re for N > Ne, there is a a ^-dependent splitting towards a
plateau of

This is essentially the Debye-Waller factor of the chain smearing out the
tube. This asymptotic form was first derived by deGennes.16'190 For inter-
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mediate times, early simulations of a chain in a frozen network9 as well as
recent neutron spin-echo experiments135 showed that the crossover towards
the asymptotic form is reasonably well fitted by Ronca's self-consistent
approach.31 Ronca introduced a memory kernel into the equation of motion
in a self-consistent way, which led to a memory term favoring motion along
the contour. In his theory he calculated the dynamic scattering function of
the chains as a function of qdT. While earlier spin-echo data135'191 for poly
(ethylene-propylene) (PEP) and polyisoprene (PI) appeared to agree with
the Ronca model, more recent results for S(q, t) on PE (hydrogenated poly-
butadiene) are incompatible with Ronca's predictions.135 Recently des
Cloizeaux192 has introduced the concept of entanglements or stress points
into the original de Gennes calculation of S(q,t). This new result fits the
experimental data for PE better than does Ronca's model. Chatterjee and
Loring43 have obtained semiqualitative agreement with Richter et a/.135

results for PE using their model which assumes a cooperative slithering
snake motion for a chain.41'42

Results for the scattering function S(q, t) for N = 200, $ = 0.5 from bond
fluctuation MC is shown in Fig. 4.14.155 The data were fit very well by
Ronca's model with a single (/-independent tube diameter dT = 28, which
is systematically too large. One should, however, keep in mind that the
Ronca scheme describes the crossover region reasonably well. We found
similar results for the MD simulation data for N= 350.

Fig. 4.14 The dynamic structure factor S(q, t) of the chains for the bond fluctuation Monte
Carlo data for a = 0.15(o), 0.2(*), 0.25 (n), 0.3 (A), and 0.35 (o) (from Ref. 155). The fit is to the
Ronca model.3
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Fig. 4.15 Temperature-dependence of the tube diameter obtained from fitting the dynamic
structure factor. T = oo corresponds to the standard bond fluctuation model. (From Ref. 155).

In the second part of this investigation, an inital attempt was made to
calculate Ne as a function of the chain stiffness. Wittmer et al.155 introduced
a bond angle potential into the bond fluctuation model. They used a bond
potential U(a) = e' cos a, where a is the angle between subsequent bonds.
Using e' = 1, kB = 1 the interaction strength is given by the inverse tempera-
ture \/T. l / r=0 corresponds to the standard MC model. As a function of
T, Cx> varies between 1.3 (\/T= 0) and 7.0 (l/T= 5). In order to avoid
artifacts of the lattice, the dynamics were only analyzed for
0 < 1/T< 1(1.3 < C^ < 2.06). In Fig. 4.15 the variation of the tube dia-
meter with temperature is shown. To be consistent, dT was always taken
from a Ronca fit of S(q,t). The change in stiffness also changes dT as
increasing the stiffness seems to reduce dT. One should keep in mind, that
the change in chain stiffness in this model does not affect the bond length
fluctuations. Recently Wittmer et a/.193 reanalyzed their data in order to
compare the dynamic scattering function of their chains of length 6—lNe to
the predictions of des Cloizeaux.192 Within the limitations of the short
chains compared to the asymptotic predictions of the theory, the agreement
is satisfactory. Another interesting observation was made recently by
Kremer,194 who introduced a short-range attractive well potential which
only affected nearest neighbors in space, into the MD model. Since the
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potential was set to zero at the first minimum of the radial distribution
function g(r), the conformational properties of the chains to did not change.
He found however that g\ (t) deviated from the Rouse model at earlier times
and shorter distances as the well depth was increased. It is not clear at
present to what extent this really changes Ne or whether this is just a
short time effect due to the monomer attraction, which is absent in all of
the previously discussed cases. There is also some experimental indication
for such short time effects in PEO.195 Thus in spite of considerable effort it is
still not known what an entanglement means physically, although the repta-
tion model appears to work quite well.

So far we have only discussed a variety of different equilibrium simula-
tions, which try to follow the motion of individual chains. Kroger and
coworkers196"198 used the MD simulation model of Grest and Kremer to
perform NEMD (nonequilibrium MD) simulations, where the sample is
subject to a steady shear or stress. They were able to cover chains of up
to TV = 100 monomers or equivalently about 3Ne. While this is too short to
study e.g., the viscosity or the shear alignment of highly entangled chains,
changes from Rouse to the entangled regime were observed. Such methods
will probably become much more important with the coming faster genera-
tion of computers.

4.4.3 Comparison to experiment

The simulations discussed above demonstrate that the reptation model
describes the motion of a polymer chain in a melt rather well. The entangle-
ment length in the simulations in most cases is determined from the mean
square displacement of the middle monomers. Experimentally Ne is usually
determined by the plateau modulus for very long chains (7V^> Ne). Figure
4.6 shows that both methods give the same result. The underlying assump-
tion is that there is no difference between the apparent short time entangle-
ment length Ne and the long time limit, which is given by the plateau
modulus and could be accounted for as the "true" Ne. For the above models
as well as PE this seems to be the case. It is not absolutely clear whether this
is generally true. As long as there are no strong local, attractive forces
between different groups within the chains, one does not expect a significant
deviation. For other cases however, e.g., for chains with strongly polarizable
groups along the backbone such as poly(ethylene oxide) (PEO), or V for PS,
this might not be the case. Recent simulations194 with strong short-range
potentials reveal problems in this direction as well as some experimental
hints from PEO.195 For the subsequent analysis and discussion we assume
however that there is only one characteristic length Ne.

Under the above assumption one now is able to make quantitative pre-
dictions for a variety of different polymers from the simulation results. To
do this, one needs to map the model chain onto chemical species. A very
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similar mapping is necessary to compare experimental results from one
system to another.

When one discusses the static properties of polymers, the persistence
lengths are usually mapped onto each other. However, this mapping is
not unique and does not take into account any dynamics. The persistence
length mapping only gives the limit of the smallest statistical unit one can
compare. It is also known from recent experiments that simply mapping the
persistence lengths is not sufficient.124 To make the mapping unique, one
needs additional information, which fixes the mapping in a way so that both
static and dynamic properties can be interpreted. From the previous discus-
sions, it should be clear that the obvious characteristic length in the system is
the entanglement length, Ne, or entanglement molecular weight, Me. A
reasonable procedure is to compare chains in units of Ne. Two chains are
equivalent if N/Ne is the same. This is the procedure, which was already
adopted to compare all the different simulation methods. To include
dynamics, one has to identify the time scale between simulation and experi-
ment. For simulations a convenient way to do this, is to compare the extra-
polated short chain diffusion constants, by plotting D/D^onx versus N/Ne

as is shown in Fig. 4.6. One simply equates the Rouse diffusion constant of
different experiments or simulations of the equivalent number of monomers
(Ne,Me) with each other. For systems where the diffusion constant is not
available, one can compare the bead friction, which determines the viscosity
in the Rouse limit. Between two simulations a simple mapping can be done
by comparing the time at which g \ ( t ) crosses over from t1/2 to the /'/4

regime. Once this mapping has been done, it is possible to use the simulation
results to predict the crossover time re, the crossover distance g\ (re), or the
tube diameter df. For polymers whose monomeric units do not contain
large side groups or strongly polarizable parts we expect this mapping to
be quite accurate.

In Table 4.1 we present the results of mapping the MD simulation results
to other simulations (MC)*1" and to experimental data for PS, PE, PDMS,
PI, PEP, and polytetrahydroflurane (PTHF) at a variety of temperatures.54

The temperatures chosen are limited due to the limited availability of experi-
mental data to do the time mapping. The simplest way to do the mapping
and estimate the time and length scales is to equate the Rouse diffusion
constant for an equivalent number of monomers. With the knowledge of

*The data of Schulz et al.166 are excluded from Table 4.1 since not enough details on the precise
procedure are given. The bond fluctuation MC part of their simulation is at a density <fr = 0.5,
for which Paul et a/.12'59 found Ne = 30. However Schulz et al.166 find Ne = 40, which suggest
that they are mixing two different models with somewhat different entanglement lengths,
tpor the data of Skolnick et a/.,58'153 the Rouse diffusion constant is the same as used for Fig.
4.6. It should be noted that the time definition, which incorporates an arbitrary prefactor for the
MC simulations of Skolnick et al. contains about five attempted moves per monomer, while the
usual definition uses one attempted move, as indicated in the table.



Table 4.1 Estimates of dT and re based on the results from the MD,54 bond fluctuation MC,12'59 and standard lattice MC
simulations5*'153 for a variety of polymers which have been investigated by neutron spin-echo. Either the monomer friction
constant as measured by short chain viscosity or the Rouse diffusion constant and the entanglement length Ne (or better
< R2(Ne) >'/2) are used in the mapping.

Monomer Equivalent Equivalent
System T mass Me no. of beads mol. mass llp la = dT [gi(Te)}

1^2 \T = re

MD system \e/KB 1 35 1 1 1.3(7 ... 7.7(7 4.5a ... ISOOr
PSa 485K 104 18000 4.95 515 7.4A 12.6A 97A 56A * 3 . 1 x l O ~ 8 s 5 .5xlQ- 5s
PE* 448K 14 1350 2.76 38.6 4A 5.1A39A 23A 6.6xlQ-1 2s 1.2xlO-8s
PDMSC 300 K 74 9000 3.47 257 6.2 A 8.7 A 68 A 39 A 2 .3x lO~ 1 0 s 4 . 1 x l O ~ 7 s
PDMSe 373K 74 « 11500 4.44 328 5.9A 8.3A 64A 37A 9 .5x lO- u s 1 .7x lO~ 7 s
PTHF"* 418K 72 1440 0.57 41 8A 4.6A 35A 21A 1.8xlO-1 2s 3 .2xlQ- 9s
PEPe 492K 70 2950 1.20 84 7.74A 6.5A 50A 29A 0.55 x lO'11 s 1.0 x 10~8s
PP 307K 68 4100 1.73 117 6.6A 6.7A51A 30A 1.0xlO-10s 1 .8xlO- 7s

BF-MC5

0 = 50% — 1 30 0.86 — 3.16 2.65 17.3 10.0 58.1 MCS 1.04-105 MCS
0 = 40% — 1 40 1.14 — 3.22 2.25 20.4 11.7 60.65 MCS 1.09 • 105 MCS

SC-MC132

0 = 50% — 1 110 3.14 — 1.87 1.86 14.3 8.3 6.8 MCS*5 1.22 • 104 MCS*5

"For PS Up are taken from Ferry (Ref. 14) for PS in the 6 solvent. For the mapping the bead friction due to diffusion constant of Antonietti et al. (Ref. 82)
was used with a consistency check with £„ from viscoelasticity gave only ~ 10% deviation! Note that Ne = 50 would change the time mapping, giving
r e «2.6x 10~5s.
*Persistence length as given by Flory (Ref. 1) Me and the diffusion constant taken from Pearson et al. (Refs 74, 75)
'Persistence length and bead friction due to Ferry (Ref. 14). Note that the viscoelastic bead friction is obtained from entangled polymers. Thus for the Rouse
diffusion equation used for comparison, we use the long-chain bead friction (Section 4.4). The data are for T = 274 K. For T = 373 K, re would change to
1.0 x 10~7 s because of the reduced bead friction. This reduction however is partially compensated for by the increase in Me.Me data estimated from Ref.
126.
^Persistence length, Me and bead friction due (Ref. 79) and Pearson (private communication). Here also the long-chain bead friction has to be taken.
e (,,llp, and Me from Fetters (private communication). For £(PI),Ne was taken to be 2.5Ne,2Ne would reduce re by about 30%.



2 3 6 E N T A N G L E M E N T E F F E C T S I N P O L Y M E R M E L T S

Coo/2 and Ne, Me these scales are fixed. This procedure was used for the data
of Table 4.1. A direct and simple test is to compare re for the bond fluctua-
tion simulation from Table 4.1 with Fig. 4.9. The agreement and thus the
consistency of different simulations is excellent. From this mapping, one
finds that the crossover time re varies considerably from one polymer to
another as one would expect. Some typical values for re are 5.5 x 10~5 s for
PS at 485 K compared to 3.2 x 10~9s for PTHF at a comparable tempera-
ture, 500 K. For PDMS at 273 K, re = 4.1 x 10"7s while it decreases to
1.7 x 10~7 s at 373 K. This sheds some light on the long-standing discussion
about whether neutron spin-echo scattering could be used to observe the
predicted plateaus in S(q, t) or not. The first spin-echo experiments were for
PDMS6'78 and PTHF.77 From the estimates of Ref. 54 of re for the tem-
peratures of the experiments it became clear that the neutron spin-echo
experiments77 on PTHF should have seen a deviation from the Rouse
model which they did. However for PDMS this was not the case, since
the times54 were beyond the resolution of the experiment, which was around
10~8 seconds at the temperature used.6 In both cases the q-range was
sufficient in spite of some early concerns.6'199 Later experiments on
PEP,124'135'191 PI,135 and PE (PEB-2)124'135 all showed a well defined cross-
over from Rouse to reptation-like behavior at times which were well
described by the mapping of the simulation results. If neither the Rouse
diffusion constant, nor the friction coefficient from theology is known, one
can also use the short time/small chain decay rate of the Rouse regime of
S(q,t)/S(q,0), since this can directly be used to determine £. However one
should keep in mind that using the Rouse equations, the scattering function
gives a friction constant, which is too large by about a factor of two54

compared to diffusion measurements.
One of the systems investigated by Richter et a/.124'135'191 were well char-

acterized PEP samples. They used an improved spin-echo machine which
could go to a maximum time of 4 x 10^8 s at T = 492 K. For PEP we pre-
dicted a crossover time of 1.0 x 10~8 s, which is within the resolution of the
new instrument. For times longer than re but shorter than TJ (the actual
longest time180 depends on the wave vector q) the single chain scattering
function S(q, t) should deviate from the simple Rouse decay and approach a
constant S(q, t » re) = 1 - q2d^/36 as discussed above. If one extrapolates
from this plateau value to short times, the crossing time with the Rouse
relaxation curve should be re. In Fig. 4.16 we show the experimental result
for two scattering vectors for PEP at T= 492 K. The agreement to the data is
excellent, displaying the overall consistency of the numerical and experimen-
tal results combined with the reptation concept.

While there are rheology and scattering data for other polymers, they are
usually for different temperatures. The rheology data often end at a tem-
perature where the neutron spin-echo data are just beginning, since the
maximum time for the spin-echo is relatively short. Thus a good consistency
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• 193
Fig 416 Dynamic structure function S(g,f) from neutron spin-echo scattering
compared to the crossover time extracted from the simulatwn. The ™| <* * „
curve and the plateau level gives the approximate experimental crossover time. (From Ref. 131).

check is difficult. For Table 4.2 we used the extended set of scattering data
of PEB-2124 which gives dT and CM. This was combined with the friction
constant from diffusion experiments74 and the time scaling for re from the
MD simulations54 to determine re for a variety of temperatures. Note that re

only decreases about a factor 3 from 556 K to 418 K even though the
momeric friction coefficent < changes by a factor of nearly 6. This change
in C is partially compensated by a reduction in Cx and an increase m Ne

with increasing T. The small deviation between the results for PE shown m
Tables 4 1 and 4 2, where dT is determined from two different methods,
rheology and scattering, respectively, illustrates the general accuracy of
the mapping as well as different experimental approaches.

4.4.4 Semidilute solutions

So far in this review, we have confined our attention to dense melts, where
we found good agreement to the reptation model. For short times, however,
not all the data fit to the Rouse model perfectly. One way to examine this m
more detail is to study crossover from solution to melt in the free draining
limit as a function of density. Experimentally this certainly is not possible,
because of the effects of hydrodynamics, which influence the dynamics very
strongly. The bond fluctuation algorithm was used because at the relatively
low densities of interest the MD is not as suitable.

The absence of any hydrodynamic interaction allows one directly to ask
how the entanglement length scales as a function of density. Long-range
hydrodynamic interactions in real solutions make this problem more com-
plicated One would like to know how Ne scales with the static excluded



Table 4.2 Temperature variation of re for PEB-2.

T(K) C^ Ctffi - 109 Ne lo[A] r e-108s ^[A]

418 6.52 4.70 98 5.0 6.4 38.5
446 6.32 2.84 109 5.17 4.3 39.8
463 6.19 2.20 125 5.48 4.15 42.2
484 6.05 1.67 120 5.31 2.7 40.9
509 5.87 1.25 140 5.65 2.5 43.5
529 5.74 1.03 147 5.73 2.2 44.1
556 5.57 0.81 164 5.95 2.0 45.8

The entanglement length, tube diameter d-j and C^ are taken from Ref. 124. The monomeric friction coefficient £ is taken from the Vogel—Fulcher form of
PE from Ref. 74, since there is little difference between PEB-2 and PE. Pearson et a/.74 fit their data for PE to the form C, = C°° exp(B/a(r~ T0)) with
£°° = 3.7 x lO"11 dyn-s/cm, B = 0.6, a = 5.1 x l(T4/.Kand Ta = 175 K, which are the asymptotic values for large N. A bond length/ = 1.52A was used. For
the determination of T,, the results from the MD simulations, re = ISOOr and dT =< R2(Ne) >'/2= 7.7a, are used, as described in the text. Using the short
chain results for 5, as for Table 4.1, would reduce our estimate of re by approximately a factor of 1.5—2.
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volume screening length £. In a good solvent semidilute solution £ is given by
the average strand-strand distance. At a monomer density $, £ oc $^!//(3l/^1),
where v is the good solvent exponent of the end-to-end distance
R oc RG oc N". On length scales up to £ the chains show the single chain
good solvent behavior with an exponent v = 0.588.20° For scales larger than
£ one has a melt of blobs of diameter £ and the chains behave like random
walks with v = 0.5. At the density $* oc AH3^1), where RG and £ are com-
parable, the coils just start to overlap.

In order to analyze the crossover scaling properly one has to take into
account the proper reference length. For a fluctuating bond length the unit
of length is the average bond length and not one lattice constant as in the
standard lattice MC simulations. Physically the variation of llp shows that
the number of monomers in each correlation volume depends not only on <£>
but also on llp($). This shifts $* in addition to the standard scaling for fixed
llp. Identifying < /2($) >*/2 as the basic unit of length, the crossover scaling
function for the radius of gyration, and similarly for the end-to-end dis-
tance, can be written as

This scaling approach gives a satisfactory scaling, while the naive approach,
which does not take the bond length variation into account, does not, even
though < /*($) > only varied from 6.94 ($ = 0.5) to 7.47 ($ = 0.025).12 In
these simulations, the entire crossover from dilute solution to dense melt was
covered. The screening lengths (as derived from the chain structure func-
tion) ranged from £($ = 0.1) = 21.2 to £($ = 0.5) = 6.46 at the highest
density. At 3> = 0.5£ is only equal to the distance between next-nearest
neighbor along the chain. Such data should display the crossover from
dilute Rouse behavior to dense melt reptation behavior. One assumption
in most theories for the dynamics of semidilute systems in the free draining
limit is that Ne(&) is just a multiple of the number of monomers of a single
strand in a correlation volume (blob volume) £3, namely proportional to
r1/!w

One can then plot the diffusion constant versus N/Ne for different <£> as
was done in Fig. 4.6. However the data were found not to scale at all.
Similar to the problem with the bond length, the monomeric friction (
and the mobility W((,) are $ dependent. Paul et a/.12 used the mobility
W, determined from the mean-square displacements of the monomers

to set the time scale. The power law for g\ (t) takes the difference between
v = 0.59 for the dilute solution in good solvent and v = 0.5 for the melt into
account.148 From g\(t) one can then determine W(Q. Increasing density
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Fig. 4.17 Density dependence of the acceptance rate of the moves A($)/A($ = 0) and mobility
W($)/W($ = 0) extrapolated to large N (from Ref. 12).

certainly causes a reduction of accepted moves. Thus one might try to
interpret W as a simple function of the acceptance rate A for attempted
moves. This however is not the case, as Fig. 4.17 shows. The mobility W
clearly decays more strongly than the acceptance rate A. In a recent simula-
tion of glassy polymers it was found that while the mobility became zero, the
acceptance rate was finite.201

The effect of the surrounding reduces the mobility more strongly than the
bare acceptance rate, since correlated forward-backward moves are not
hindered significantly. Consequently, in a scaling plot of the diffusion con-
stant D(N, $), both the proper length scale normalization, as defined by the
variable bond length, and the proper time scale normalization, as given by
the density dependent mobility, has to be taken into account. For such a
general case, assuming that Ne = const • £"'/", namely a constant times the
number of monomers per excluded volume screening blob, one can plot
(with l=l($))D(N,$)N/WP versus N(&P)l/(3v~l) as shown in Fig. 4.18.
Again one finds, as for the melts, that Hess's form19 of the diffusion cross-
over, which considers an enhanced constraint release mechanism, fits the
data well, giving Ne(&) « SOO^/3)^3"^.

At this point we come back to the discussion after eq. (4.26). The data
from the MC simulations reveal that £ oc dT which gives We oc £. Using a
hypothetical value of v = 1/2, which should be the correct one for e.g., a
mixture of short and long chains, one gets a = 3, just as for the packing
arguments discussed in Section 4.2. For the present athermal simulations,
v = 0.588 since the smeared-out background acts as a good solvent. This
gives a = 2.53. For experiments one should expect an effective exponent
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Fig. 4.18 Scaling of the density- and JV-dependent diffusion constant with the correct scaling of
the lengths and the mobilities (from Ref. 12).

somewhere in between these two values. In those cases in which hydrody-
namics can be neglected, the screening length £ is small and the strand length
in a volume £3 exhibits an effective exponent between the two asymptotic
limits of v. An example of such a system is a melt of very short and long
chains. There the relevant correlation length is not the excluded volume
screening length, but the strand-strand distance of the long chains. From
this we can conclude that one cannot expect a unique exponent a from
experiments and can give bounds from the simulation, namely
2.53 > a > 3. This result agrees very nicely with experiment.

Paul et a/.12 extended the above discussion to a variety of different relaxa-
tion times TX. Here we confine our discussion to the time they call TD, which
is the time when g ^ ( f ) / t « const. This time is determined by the crossover
from the slowed-down displacement at shorter times to the asymptotic free
diffusion g$(t) oc /. As seen above g$(t) starts out as g$(t) oc /°-8. Compared
to the almost perfect Rouse scaling of the mode spectrum, this is a signifi-
cant difference. The mode spectrum however only contains fluctuations
inside the chains but not the overall motion. This effect on g-$(f) probably
reflects the difference between the local hopping rates and the mobility,
however now on a more global scale than for the monomer motion.
Following the Rouse and reptation concept TD oc N2 independent whether
N< Ne or N> Ne.

The physical picture, giving gi(t > TN) =• 6D(N)t comes from the diffu-
sion of the chain along the tube. This motion is the same as used in the
standard slithering snake algorithm.202 If we follow Semenov114 and
Rubinstein and Obukhov,113 this diffusion is retarded due to the long life-
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time of density fluctuations. These fluctuations, which allow the chain to
reptate out of the tube, should only relax via reptation itself. The data from
the present microscopic simulations are not sufficient to clarify this point.
However what one can do is to look at the time TO, at which gi(t)/t becomes
constant. While TD cannot be obtained with very high precision, one can do
well enough for the present discussion. The interesting question is whether
TO « TN oc N2 or TD sa TJ oc TV3 — N3A. To test this one can plot the scaled
relaxation time rD W(^)/Nl+2v versus the same scaling variable, x, as for the
diffusion constant, x = (N - l)($/3)1^3l/~1^. In the dilute good solvent limit,
TN oc Nl+2v, leading to a plateau for x —> 0. In the reptation picture one
expects for both the semidilute Rouse regime and the reptation regime a
slope of N2/Nl+2" = N~OA&. If however TD shows the same behavior as the
reptation relaxation time TJ one expects for x « 500 (for the present MC
model one has Ne = 5QQx~1)12 again a turn upwards to the asymptotic
N3/Nl+2v power. Figure 4.19 indicates the latter.

While there are still many interesting, unsolved problems within the
Rouse/reptation regime for polymers, the reptation model clearly gives a
good starting point. Improvements to the basic model have been developed
and are important for obtaining a better quantitative agreement to the data.
Chain entanglements are proven to play a key role. The nature of an entan-
glement however has not yet been resolved by any these investigations.

4.5 Polymer networks

So far we have discussed the striking effects of the noncrossability of poly-
mers for uncrosslinked polymer melts and for solutions in the free draining

Fig. 4.19 Scaling of the diffusion relaxation time TO. (From Ref. 12).
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limit. The effects are especially strong for the inner monomers of the chains.
When such systems are crosslinked, all of the monomers are "inner", except
for some dangling ends. Thus one expects the effects of conserved topology
to be even stronger in crosslinked systems than in uncrosslinked ones. This
should of course hold for polymer gels as well as for dense networks.
However, due to the importance of hydrodynamic effects, gels are even
more complicated to simulate than crosslinked melts and there are at pre-
sent no simulations for high crosslinked gels in which the effects of the
topology are treated explicitly. However there have been a few simulations
on the properties of dense polymer networks. These simulations range from
rather rigid model systems, where the crosslinks cannot move,182'183

to highly complicated, fully mobile randomly crosslinked polymer
melts.159'203 The simulation techniques used are both MD159 as well as
MC (lattice).203

Here we will discuss three groups of simulation. In all cases we consider
only systems in which the role of the conserved topology is explicitly taken
into account. First we discuss some work on short chain networks, where
the crosslinks are fixed in space.182'183 These simulations were used to inves-
tigate to what extent the entropic spring concept, which is the basis of the
theory of elasticity of networks, is valid in systems in which the excluded
volume interactions are present. We then review some MD159 and MC203

simulations on randomly crosslinked networks, end crosslinked melts,161'162

and interpenetrating model systems with diamond lattice topology.13 The
later simulations allows one to study systems in which the only source of
disorder comes from knotted loops. Before going into the details of the
simulations, we briefly review a few theoretical concepts which were not
discussed in Section 4.2 For a more complete summary, there have been
several articles which review the theoretical concepts87'204"206 and some of
the experimental issues207"209 of dense polymer networks. In addition, a nice
collection of articles45 dedicated to the late Eugene Guth appeared recently.

4.5.1 Network elasticity

As discussed briefly in the introduction the elastic and relaxational proper-
ties of polymer networks are also expected to be influenced significantly by
the presence of entanglements. The classical theories, the phantom network
model204'210"213 and the affine deformation model,207 describe the two
extreme points of view. In the first, at least in its original form,210 the net-
work strands and the crosslinks are not subject to any constraint besides
connectivity and functionality. The other extreme considers the crosslinks to
be fixed in space and deform affinely under deformation. A number of
modifications of these theories have been proposed in which the junction
fluctuations are partially suppressed.211'214"217 All of these models however
consider the network strands as entropic springs. The entropic force, as
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resulting from the conformational entropy of the strands, and the excluded
volume interaction, with its various consequences, are completely
decoupled. The excluded volume is responsible only for the constant volume
of the incompressible, isotropic monomer liquid. As we will see below this is
certainly not the case. Within these models the elasticity of a network is
given by the density of elastic springs (affine case) or the density of elemen-
tary cycles (phantom case). A monomer in the network is elastically active if
at least two independent paths lead to the backbone of the network though
monomers in loops formed by a single primary chain are usually
excluded.218"222 Crosslinks in this elastically active backbone are referred
to as elastically active. The number of elementary cycles then can be shown
to be the difference between the number of active strands // and active
crosslinks v ,222 Thus the modulus G° of both models is given by

V is the total volume of the system and 0 < h < 1, is a constant which
interpolates between the two extreme cases, h = I for the phantom model
and h = 0 for the affine model.222 For short strands, Ns <C Ne, this equation
is expected to reasonably describe the behavior in the linear stress regime. It
is important to note here that there is no spring-spring interaction. This
picture can be extended to take into account a distribution of strand lengths,
but this does not give significant differences.223

It should be obvious that the above picture cannot hold for arbitrary
chain lengths. When the strands between two subsequent crosslinks along
a chain are longer than Ne, additional contributions, not included in either
of these two simple models, due to the confinement of the strands to the
reptation tube are also expected to play a role in the motion of the crosslinks
and the modulus of the networks. The introduction of this extra constraint
has been included in a variety of ways.

15'46'68>206>213'224-233 In a long chain
melt the elastic time-dependent modulus shows a chain-length independent
plateau for Ns > Ne. This so-called rubber-like plateau reveals that one has
to expect strong similarities between networks and melts. One extension to
eq. (4.37), which tries to take the entanglements into account is220"222

where G°N is the polymer melt plateau modulus for large N, and Te is the so-
called trapping factor, which can be estimated from the gel fraction of the
network. Te phenomenologically incorporates the influence of free chains
and dangling ends on the modulus. There have been several different esti-
mates of Te

222'234

So far the description is essentially phenomenological. There are many
extensions, such as the Mooney-Rivlin expansion235'236 to describe the
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properties in the nonlinear regime,206 but a discussion of these effects is
beyond the scope of the present review. We simply note that for Ns —» oo
the first term in eq. (4.38) vanishes and G° = TeG°N. Since Te = 1 in a perfect
network, the modulus of a rubber and the plateau modulus of a melt should
be the same, besides a small reduction by a factor 4/5 due to the tube length
fluctuations for melts. This is because under shear/elongation in a melt the
tube length is conserved, while this is not the case for a network.
Experimentally it is difficult to test these predictions, since it is extremely
difficult to prepare well controlled networks. The experimental problem is
that the final networks are often inhomogeneously crosslinked and contain
additional disorder which is not easily accounted for within the models. In
the vulcanization process, for example, since the crosslinking is reaction
limited, strong fluctuations in the local density are often present. These
types of effects are difficult to include in any theoretical model.237'238 This
is one reason why computer simulations can be very important in trying to
understand the properties of networks.

Here the focus of the interest is on the second term and what role the
conservation of the network topology plays. All theories consider this only
for Ns > Ne. While there have been many approaches, the most prominent
and to our knowledge the first microscopic ansatz is the Edwards tube
model.15 Within this model, for long chains the modulus is given by46

where y is a parameter to be expected to lie between zero and one. For y = 0
the entanglement network would act like a perfect affine network of strand
length Ne, while for larger y the elastic effectiveness of the entanglements is
reduced. This again points to the important question of the physical nature
of the chain entanglements. There are many other extensions and modifica-
tions of the original network theories given in the literature, which we
cannot discuss here. For details the interested reader is referred to the review
by Edwards and Vilgis.46

4.5.2 Networks with fixed crosslinks

The classical models of rubber elasticity reduce the elastic properties to a
study of entropic springs. In the phantom model the EV interaction only
gives the volume conservation, while in the affine deformation model it also
is responsible for the affine position transformation of the crosslinks.
Otherwise the entropic forces and the excluded volume interactions
and consequently the entanglements, as they are a result of the EV
interaction, completely decouple from the chain elasticity. The elasticity
is entirely determined by the strand entropy. It is obvious that this is a
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severe oversimplification; however there are not many alternatives to these
models available, as discussed above. Gao and Weiner have set up a series of
simulations to shed some light on these problems for both networks182'183

and melts.184 They focus especially on the differences and relative contribu-
tions of the covalent and noncovalent interactions.

Their model consists of a bond potential, a hard linear spring, which only
allows for very small bond length variations around the middle bond length
10. The EV interaction is, just as in the previously discussed melt simulations,
represented by a purely repulsive Lennard-Jones potential with a cut-off at
rc = 21/6a. Typically I0 = a and .he force constant of the bond force is 200e.
These parameters are sufficient to prevent the chains from passing through
each other, while for the runs with larger 10 this is not the case. Though it is
known that the fluctuations of the crosslinks, or network junctions, are
important, Gao and Weiner idealize to the case of fixed crosslink positions,
which results in the affine deformation scheme. The system is then charac-
terized by the set of strand end-to-end vectors Rj, / = 1,..., ns, where ns is the
number of strands, which deform affinely under deformation. This, within
the classical models completely describes the system, since only the Rs are
relevant. Their ansatz, of course, is computationally much less CPU inten-
sive than those that also take into account the motion of the crosslinks.
Since the chain-ends are fixed, these authors introduce another simplifica-
tion, namely, they only take chains placed randomly into a melt into
account. Since the end-to-end length and direction is fixed, Gao and
Weiner182 argue that there should be no severe difference between a network
and their melt. Such a system then is deformed, transforming every end-to-
end vector Rj to RJ within the affine deformation scheme. Otherwise the
monomers of the chains can move freely. The deformations/transformations
are either in an oriented melt model or in what they call a "Four Chain
Model".182 In the former, the chain-end vectors are fixed and are chosen
randomly from a unit sphere while in the latter, the deformation cell is
constructed by Rj, and three other corresponding tetrahedral vectors. The
typical chain length was N = 20 and the number density p = 0.8cr~3. From
the simulations discussed in Section 4.4, it is clear that the chains used in this
study are well below the entanglement threshold.

One of the main aims of this simulation was to determine the relative
contributions of the EV stress and the covalent stress along the backbone.
Gao and Weiner vary the density p = no3 / V by varying a at fixed /, where n
is the number of monomers and V is the volume. This covers the range from
the purely decoupled case for a = 0, «/F=0.8 to typical melt densities
a = 1, p = 0.8. They find that under elongational deformation A, at fixed
A the relative contribution to the stress originating from the covalent bonds
and the noncovalent EV interaction changes dramatically with a/I. There is
a strong coupling of the stress to the EV forces at realistic melt densities. In
Fig. 4.20, we show an example of their results for short chains at fixed
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Fig. 4.20 Covalent and noncovalent contribution to the stress t\ i — fa in a randomly oriented
melt subject to a uniaxial extension of A = 2 as a function of density. (From Refs 182, 239).

elongation A = 2 as a function of density for the oriented melt model.182'239

For comparison, the previous melt simulations of Kremer and Grest54 were
made, using the same units at a reduced density p slightly above 0.85
(because the bond length in the MD was / = 0.97cr). While the total stress
depends only relatively weakly on the effective density, the different con-
tributions depend very strongly. The covalent part for their conditions/
model even turns out to be negative value. The main conclusion from this
work is, that the dominant contribution to the restoring force, which only
exists due to the connectivity of the chains, is mediated by the excluded
volume interaction.

4.5.3 Fully mobile systems

The previous section described a rather artificial situation, namely a system
of chains with fixed end positions. While this is a very interesting ansatz to
study which forces are important, it certainly cannot describe the relaxa-
tional properties in a realistic way. Also the question of the role of conserved
topology in a network can only be addressed indirectly. In order to shed
more light on such experimentally directly accessible or relevant questions,
Duering et a/.159"162 and Everaers and Kremer13 performed a series of MD
simulations on a variety of different model networks with two different
interaction potentials. Both randomly crosslinked159'240^242 and end-linked
polymer melts160"162 were studied. Everaers and Kremer13 investigated a
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system of interpenetrating networks, where each subnet was topologically a
diamond lattice. These different simulations were used to study the influence
of the possibility of chains crossing each other, the influence of different
kinds of disorder (strand length, connectivity, topology) as well as the elas-
ticity and relaxation as a function of the strand length.

Figure 4.21 illustrates the three different classes of networks: randomly
crosslinked, end-crosslinked and diamond networks. The first system, an
equilibrated melt with randomly placed crosslinks, certainly resembles
most closely many experimental systems such as those produced by radia-
tion crosslinking or vulcanization.243 These systems have disorder on several
levels. The strand length between subsequent crosslinks are extremely poly-
disperse, as the distribution of chain lengths follow an exponential distribu-
tion.241'244"246 Only a few crosslinks per chain are needed to give a gel-
fraction which is nearly 100%, though the elastically active part of the net-
work is significantly smaller. In this case there are many dangling chain ends
or even some dangling clusters, like little trees which are connected to the
network by only one strand. Those dangling pieces are expected to be
responsible for the extremely slow decay in most experiments.159'247 In addi-
tion loops and knots may play an important role in both the quasi-linear
elasticity and in nonlinear effects. For this the shortest connected piece
going through the cluster is expected to be of special relevance. Such dis-
ordered systems, although it is possible to identify the elastically active part
of the cluster unambiguously,160'242 are extremely difficult to analyze in a
systematic manner. The relaxation of highly crosslinked melts203'248 as well
as the microphase separation of two interpenetrating nets of different poly-
mer species249 have been investigated using the bond fluctuation model.

A somewhat more idealized case is an end crosslinked polymer melt. Such
systems have been considered experimentally as wen.208>209>25°-255 There one
starts with a monodisperse melt. After equilibrating the chains are kineti-
cally crosslinked at the ends. By this all strands in the network have the

Fig. 4.21 Illustration of different classes of polymer networks used in computer simulations.
While analytic theory becomes more and more difficult with increasing disorder, the experi-
mental situation is just the opposite. Simulations can interpolate between the two extremes.
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same length. Thus there are only two sources of quenched disorder in the
system. One is knots. The second is chemical paths through the system,
which again might be polydisperse but now on the level of number of
strands, which are needed to percolate through the system.

Finally one can consider systems, which certainly are somewhat remote
from experiments, where the only source of disorder is due to the occurrence
of knotted loops. Such are the interpenetrating lattice networks.13 They can
be analyzed and investigated in a variety of ways in order to shed some light
on the question of entanglements and conserved topology.

Although all of these simulations are very recent, in the following we
follow the historical development in the order given above.

4.5.3.1 Randomly crosslinked melts

To our knowledge there are only two sets of simulations on completely
mobile randomly crosslinked polymer melts, the MD simulation of Duering
et a/.159 and the bond fluctuation MC simulation of Schulz and
Sommer.203'248 Note that standard lattice models certainly are not applic-
able, since the crosslinks would be immobile. (One might consider certain
tricks of double occupancy near the crosslinks, as sometimes used for star
polymers, though problems may occur with the conservation of the network
topology.)

The bond fluctuation lattice simulations investigate the relaxational prop-
erties of randomly crosslinked polymer melts, starting out from an equili-
brated melt and then add additional bonds between monomers.248 Besides
studying the gelation threshold they are concerned with two cases. One is the
slip link problem, the other the collective relaxation of the whole network.

Sommer256 first studied two knotted chains which are strongly connected
since they cannot pass through each other. However such knots, as they
occur in networks as well, cannot be regarded as fixed crosslinks, since the
chains can slip along each other. Sommer tried to elucidate this point. While
Baumgartner and Muthukumar257 in an earlier attempt simulated the
unwinding of two walks, Sommer tried to estimate the entropy of knotted
paths. These knots are modeled by the classical slip links.46'224 Since only the
entropy of an ideal walk is included, Sommer finds an entropically driven
tendency for the crosslinks to cluster. This is not surprising. This clustering
in a network provides the maximal length of the undisturbed parts of the
strands, which certainly maximizes the total entropy. Though this is an
interesting point for swollen networks, it is questionable whether in a
dense network the knots can be represented by freely movable slip links,
since on the scale of a blob of the tube diameter, many chains pass through
this volume.

More recently Schulz and Sommer203'248 studied randomly crosslinked
polymer networks by the bond fluctuation method and compared their
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results to the generalized Rouse model. In the generalized Rouse model
(GRM) the connectivity of the whole system is considered, but there is no
excluded volume or topology conservation. With the periodic boundary
conditions used in the simulations, such a calculation is expected to describe
the corresponding phantom network. They studied samples containing 84
chains of length N — 50 at $ = 03. Following Paul et al.,59 at this density
the entanglement length is expected to be around Ne « 51. Thus the primary
chains are too short to be entangled from a reptation theory point of view.
The samples were then randomly crosslinked. The smallest crosslink density
used was still very high, as on average 20% of the monomers were cross-
linked, while for the highest crosslinking state 67% of the monomers were
crosslinked. Thus in their samples the average strand length between cross-
links was at most N:s = 5 bonds, or about Ne/5. Thus any significant effect
from the noncrossability of the chains can not be expected. For these model
systems the Rouse matrix was constructed by replacing the bond fluctuation
by a harmonic potential and solved numerically. Except for the highest
crosslink density the effect of the discrete lattice does not seem to be sig-
nificant. For all other cases, the GRE seems to describe the time-dependent
fluctuations reasonably well for the short chain lengths studied. This is of
interest also with respect to the subsequently discussed end-linked networks.
There the mean square displacements follow the phantom model, while the
modulus is much higher.

Duering et al.,159'242 somewhat earlier, studied randomly crosslinked net-
works using the same MD simulation technique used for melts. They con-
sidered systems of chain length N = 50 and up to 400 chains. After
equilibrating a melt of linear chains, crosslinks are introduced randomly.
In Ref. 159 p = 2 crosslinks per chain are introduced by randomly selecting
one monomer in space and then adding a bond to one monomer at random
which is within a distance 1.3cr of the first one. Nearest and next nearest
neighbors along the chains are excluded. The capture radius 1.3<r corre-
sponds to a distance l\JCx. With p — 2, since each crosslink connects two
strands, each chain is linked in the average by four bonds to the network.
For N = 50 about 96% of all chains belonged to the infinite cluster. They
found that the typical distance between crosslinks along the primary chains
is slightly less than nine. This is because the local density near the ends of the
primary chains is slightly reduced. Considering that a chain on average
consists of three inner pieces and two dangling ends, almost 50% of the
monomers are in dangling chain-ends. A detailed cluster analysis actually
revealed that for this case only about 44% of the monomers are considered
to be elastically active. The main purpose of the investigation was to check
whether the conserved topology, even for such short strands, (Ns) ~ Ne/4, is
relevant. It is obvious that there should be a significant difference between a
random walk system and the full SAW system, following the work of Gao
and Weiner,182 who found that with increasing density, the EV interaction
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becomes increasingly important. Here a different approach is taken. Besides
the standard LJ case a second interaction potential C/008 is considered. There
the repulsive Lennard-Jones potential between nonbonded monomers is
replaced by159

Then the parameters of the FENE potential258 of the bonded monomers and
the parameters ea and ra are chosen in a way that a melt of such chains had
the same (R2},(R^), pressure and Rouse friction as the LJ melt. For
p = 0.85cr~3 the parameters are ea = 2.22e, rc = 21/6cr, ra = l.Ocr and
R0 = 1.750- (in the FENE Potential). The amplitude of the FENE was
also reduced by a factor of 0.175.159 Monomers can cross each other with
a penalty of a few kgT. Since the macroscopic properties are not altered,
these two potentials can be used to identify the contributions from the
noncrossability of the chains. The general monomer packing constraints
are only weakly affected, as the pressure and the temperature remain the
same.

Both models were simulated with the same crosslinked configurations. In
both cases the relaxation of the systems was extremely slow. Considering
TN w 180r for N — (Ns) and « 3700r for N = 50 the primary chain length, it
was observed that the characteristic relaxation time increased by about a
factor of 10 compared to TN=50 or more than 100 compared to the Rouse
time of the average inner strand for the LJ case. The soft potential model
displayed an even slower relaxation.

One effect of the conserved topology is seen in the relaxation. The full LJ
interaction reduces the available conformations dramatically, as they are
quenched, and consequently relaxed faster than the system with non-
quenched topology. In both cases the displacements of the middle mono-
mers of the primary chains and the crosslinks exceed the radius of gyration
of the strands significantly. For example, the average mean-square displace-
ment g%(t —> oo) of the crosslinks in the infinite cluster reach about
IO(RQ(NS)) for the LJ system, much greater than expected by the phantom
network theory. The most striking effect of the conserved/nonconserved
topology however is shown by the mode relaxation, which is directly related
to the elastic modulus. Since the samples were not deformed in this study,
the Rouse modes of strands were analyzed in order to measure the modulus.
Following Doi and Edwards5 the time dependent modulus G(t) of the melt
is given by the sum of the autocorrelation function of the Rouse modes,
namely
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Within the reptation theory formulation of the time dependent modulus of a
melt, Cmod is expected to be one. Since the primary chains in the infinite
cluster lose their identity, one can construct a long path through the active
part of the network. These paths are random walks. The Rouse modes of
these paths can be calculated and the modulus determined from eq. (4.41) by
calculating the mode auto correlation functions of these paths. In Ref. 162
different path lengths were employed in order to check the dependency of
the result on the lengths of these so-constructed chains. Following eq. (4.38)
the strand lengths are expected to be far too short to observe any trapping
contribution. Considering the low density of elastically active monomers
(Ns) is far below Ne. In Fig. 4.22 we show G(t) for the original primary
chains and constructed walks for both interaction potentials. The modulus
as derived from the primary chains is too small, since the free dangling ends
are included. Striking, however, is the result of the mode relaxation from the
long constructed walks. G(f) shows a completely different decay for times

Fig. 4.22 Time-dependent modulus G(t) for randomly crosslinked melts. Open squares and
crosses show results for (T008, while full squares and circles give results for LJ interaction.
The lower two curves correspond to the original chains, while the upper give the results of
constructed walks of length N= 100. (From Ref. 159).
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larger than the typical time which defines the monomer friction. For large
times the extrapolation of G(t) for systems interacting with the Lennard-
Jones EV interaction are significantly larger than G(t) for the soft cosine
potential system by about 30%. This can be attributed directly to the con-
servation of topology in clear contradiction to the classical models and
the expectation from the entanglement trapping approach. The question
now is how does this affect the elastic modulus. From eq. (4.41)
G(t -*• oo) = CmodG^. Recently it was found that Cmod ~ 1.5 for the LJ
case and about 1.2 for the cosine potential.13 This was determined by mea-
suring the restoring force and comparing the resulting modulus to the pre-
diction of eq. (4.41). For a melt this means that the Rouse modes of a chain
are not eigenmodes of the system. They actually over estimate the modulus.
The consequences for networks as well as viscosity measurements are dis-
cussed elsewhere.13

Taking this value for Cmod, in account reduces the difference with the
standard model somewhat. The actual value of the modulus then can rea-
sonably well be described by the affine network model for the LJ system.
Including Cmod = 1.5 one gets G°N « 0.027. Using p = 0.37cr~3 (the density
of the elastically active part) one gets within the affine model an effective
strand length ofNeff K 13-14, while the cluster analysis yields Neff « 11. The
soft core model is somewhere in between the affine and the phantom model.

This simulation showed, in nice agreement with the Gao and Weiner
182-184 simuiations, the relevance of the conserved topology and excluded
volume. The question however remains whether these effects have anything
to do with the entanglements that are believed to be important in a melt of
long chains. To investigate this in more detail one has to go to longer chains
and more idealized networks.

4.5.3.2 End-linked networks

Duering et a/.161'162 simulated end-linked model networks for chain
lengths between N = 12 and 100, employing the MD model of Kremer
and Grest.54 Again they started out from an equilibrated melt and then
defined 1/4 of the chain-ends randomly to be crosslinking sites, which can
connect/= 4 ends. Each time a free end came within the capture radius,
which was taken to be the persistence length (measured in units of the bond
length /) /\/Coo = 1.3(7, the two ends are connected.160'162 In this way the
system was crosslinked kinetically until almost all ends were connected. The
gel fraction for the different systems varied between 96% and 100%. The
elastically active part of the systems was at least 93% of the monomers,
giving an effective density of at least 0.93 x 0.85o-~3 « 0.79cr~3. The strand
length varied between about Ne/3 to 3Ne. Since there are no dangling clus-
ters or only a few dangling ends, the relaxation times of these systems are
expected to be considerably shorter than in the case of the randomly cross-
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linked networks. Another important aspect is, because there are few free
ends, contributions due to the more mobile ends, which shift the crossover
from Rouse to reptation to longer chains, are not expected to show up here.
Duering et a/.,162 as in the previous case, measured the modulus via the
mode relaxation, the mean-square displacements of the crosslinks and
monomers and scattering functions, as well as other related quantities.
Both the scattering function and the moduli can directly be related to recent
experiments.253'254 From the extrapolation of the modulus to chain length
Ns —> oc one can directly estimate the trapping contribution and compare
this to the reptation approach. The first interesting quantity is the average
displacement of the crosslinks, with respect to their equilibrium position.
Since the network is a solid, the fluctuations are finite. Vilgis and Boue226

propose for the asymptotic mean-square displacement g%(t —> oo) for the
crosslinks the form

where A2 is of the order of the tube diameter as in a melt. Both constants are
expected to be of order unity. One can either directly determine g^ or inves-
tigate the dynamic incoherent structure factor of the crosslinks.
(Experiments typically measure the coherent structure factor, but since the
typical distance A > 2-rr/q in practical cases there is no difference between
the two.) Figure 4.23 shows the dynamic scattering of the crosslinks in the
convenient Rouse scaling, S(q, t ) / S ( q , 0 ) versus ql\ft. The data clearly show
a ^-dependent deviation from the common curve towards a plateau value.
This indicates that the crosslinks only move a finite distance. It should be
noted that the experimental situation is much less satisfying. A replot of the
neutron spin-echo scattering data for S(q, t) of Oeser et a/.253 in Ref. 162 in
the Rouse scaling form shows no crossover towards a plateau. All their data
are still in the initial Rouse decay regime. The simulation data now can be
interpreted along the lines of the Debye-Waller factor in which the plateau
describes the average smeared-out position of the crosslink. If one assumes
that a crosslink is located in a harmonic potential well, then one can directly
relate the plateau in{S(q, t ->• oo)/S(q, 0)} to gx

2(t ->• oo) by

This relation is fulfilled very well by the simulation results. Thus the com-
plicated interactions of a crosslink with the environment to a very good
approximation can be viewed as a harmonic potential. The next question
goes back to eq. (4.42), namely, is the width determined only by the strand
length Ns or does the melt entanglement length play a crucial role for large
Ns. Fig. 4.24 shows a plot of 1/gf (/ —> oo) versus l/Ns along the description
of eq. (4.42). First consider the data for the shortest chain, Ns = 12. One
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Fig. 4.23 Incoherent dynamic scattering of the crosslinks for Ns = 100 and various wave
vectors q, from top to bottom, qa = 0.49,0.65,0.97,1.29, and 1.62. (From Ref. 162).

finds gf (Ns = 12, t -> oo) = 7.3a2, while (R2(NS = 12)) = I9.la2, which
gives a ratio of almost exactly 3/8 as expected by the phantom model.259

For larger A^ this ratio decreases significantly. This extrapolation to
Ns —> oo yields A2 « (18 ± 3)<r2. This is to be compared to the characteristic
distance monomers move when they crossover into the t1/4 regime for the
reptation problem, which was found to be 20<r2, namely 2(R2

G(Ne)}.54 Thus
asymptotically the crosslinks are confined to a spatial area, which is given by
a sphere of diameter dT. This gives direct evidence for the relevance of the
entanglement length Ne for the case of polymer networks. In a very similar

Fig. 4.24 Extrapolation of the asymptotic displacements of the crosslinks as determined from
gf (t) -> oo (for Ns = 100). (From Ref. 162).
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fashion one can study the motion of inner monomers of the strands.162 By
plotting the chains, one can directly check whether chains of length TV = 100
are long enough to show some confinement to a tube. In Section 4.4, plots of
the primitive chain for the melt for N = 200 were given. There the dissolu-
tion of the tube from the ends was observed. For chains of length N — 100,
the melt showed little sign of a tube. For the end-crosslinked networks, the
ends are localized as part of the crosslink. Figure 4.25 shows a scatter plot of
five different examples of strands in the system of M = 500 chains of length
N= 100. For two strands the ends are relatively close together and resolu-
tion of the tube is not possible. In the three other cases however the tube
confinement is obvious. The actual width of the scattering of the points is
about the expected tube diameter, as can be seen from the diameter of the
big spheres in Fig. 4.25, which is 1.2<r. The data clearly show that the
entanglement length Ne plays a significant role for the fluctuation properties
of the network.

At this point we can come back to the original discussion of Schweizer's
approach for melt dynamics. In the case of the networks we have the ideal
situation that the original reptation tube is conserved. Within the mode
coupling scheme the scatter of the points in Fig. 4.25 should cover an

Fig. 4.25 Sample conformations of five randomly taken strands from the end-linked network
with N= 100. The first conformations are large spheres, while the subsequent conformations
are only shown as points. The total time elapsed between the first and last conformation is
15000r. (From Ref. 162).
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area of a diameter of at least (R2(NS = 100)}1/2 w 13a. Although the chains
are still relatively short, this is not seen for the present simulations. Applied
to the melt, this means that for the time the constraints, as they occur in the
network, are conserved, the monomers are confined to a tube. The only way
however to release these constraints is the motion out of the tube, which is
nothing else than the reptation scheme.

Unfortunately there is not yet enough computer time available in order to
provide a detailed test on the elastic properties under elongational stress.
This would yield the modulus directly. Duering et al.162 estimated the mod-
ulus according to eq. (4.41), which should be good to within about 10%.
Here we do not review in detail their approach to calculate G°N; rather we
show a comparison of the results to experiment, which directly points to the
relevance of entanglements for network elasticity. As was done in Fig. 4.6
for the normalized diffusion constant D/D^OUK, one can also scale the mod-
ulus by its value at Ne. Again one assumes that the entanglement length Ne

plays the crucial role in the behavior of the system. Then one can plot
G(Ne, t —> oo)/G(Ns, t —> oo) versus Ne/Ns. G(Ne, t —>• oo) is the modulus
of a network of strand length Ne. In so doing, simulation and experiment
should fall onto one common curve for large Ns under two conditions. First,
the constant in eq. (4.41) is independent of Ns and, second, the experimental
and simulational Ne describe the same physical quantity, although extracted
by different methods. Duering et al.162 compared their results to recent
experiment on narrow molecular weight distribution end linked PDMS net-
works by Patel et al.254 Figure 4.26 shows that the agreement is almost
perfect. These results can now be compared to the predictions of entangle-
ment theories for polymer networks. For Ns —> oo only the trapping con-
tribution survives, while for Ns up to ss Ne the second term in eq. (4.38) is
expected to be negligible. From these results, Duering et al.162 concluded
that roughly 2.2 entanglement lengths are needed in order to effectively act
as one crosslink within a generalized affine network picture. For more
details see Ref. 162.

So far only fluctuation quantities have been discussed. The stretching
ratio A for the simulations of Gao and Weiner182 however is large enough
in order to expect a strong influence of nonlinearity on the restoring force.
Recently Everaers and Kremer13 started a study of model networks, where
the network connectivity is given by a diamond lattice. In order to have the
situation that the average diamond lattice nearest neighbor distance corre-
sponds to the average chain-end-to-end distance (R2(NS)}

1/2 they had to use
interpenetrating networks. For the same density as above (p = 0.85<r~3) five
internested networks are needed for Ns = 12. This class of systems allows
one to study in detail the influence of random knots. Since in the diamond
lattice topology, all percolating chemical paths through the system are of the
same length, the only source of disorder are knots. In the end-linked case,
knots and a distribution of "short paths" occurs. During the simulation the



2 5 8 E N T A N G L E M E N T E F F E C T S I N P O L Y M E R M E L T S

Fig. 4.26 Scaling of the experimental modulus258 (A) for end-linked PDMS networks and the
MD simulations (o) as discussed in the text. (From Ref. 162).

whole system was mobile and the lattice structure only remains for the
connectivity. Two cases were studied. First the nets are regularly interpene-
trating. The simulation is set up with regularly intercalating networks of
fully stretched chains with full excluded volume. The density of the system is
then decreased to the desired melt density p = 0.85cr™3. Such a system has no
quenched disorder. The other approach is to randomly interpenetrate net-
works where the strands have the correct persistence length, but no excluded
volume. Then the excluded volume interaction can be switched on slowly
until its full value is reached. This second system contains many random
knots, in contrast to the first case. It was found that the zero shear modulus
was different in the two cases, however more interesting is the behavior of
the systems under strong elongational deformation. Figure 4.27 shows the
results of the restoring force as a function of A for systems with Ns — 12. For
the system without disorder the linear regime extends about twice that of the
disordered system. The reason is that the random knots in the system define
topological shortest paths through the system, which are strongly elongated
while the remainder of the strands are still within the Gaussian coil regime.
This is shown by a detailed analysis of the forces along the chains. Here
however we only reproduce one figure from their work, Fig. 4.28. The shade
code is that thick intense chains carry more stress than pale thin chains. The
figure clearly shows that a significant amount of stress in the case of the
disordered system is concentrated on a very few strands, while it is equally
distributed in the case of the regularly interpenetrating nets. Close inspec-
tion actually reveals that the knots behave as slipping links.224 The strands
seem to slip along each other until they get caught at a crosslink.
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Fig. 4.27 Restoring force of two different diamond topology interpenetrating networks, with
and without random knots, as indicated for Ns — 12. (From Ref. 13).

In more realistic networks, of course, there is another source for the onset
of the nonlinear elastic response, namely chemical short paths. Nevertheless
such investigations show the relevance of disorder on the actual elastic
properties.

4.6 Conclusions

The initial question addressed in this review is what role do the constraints
of entanglements play for the dynamics of dense polymers and what are
entanglements. For the first problem, computer simulations in connection
with theoretical models and experiments provide a rather detailed answer.
The second question still remains largely unsolved.

The very nature of an entanglement is still not understood. For the most
simple systems, such as the bond fluctuation MC model, results from dif-
ferent densities suggest that the generalized packing criterion, which takes
the proper effective exponent v on the length scale of the excluded volume
blobs into account, describes the scaling of Ne rather well. This suggests that
the physical origin is the overall coupling of the chains to the surrounding
sea of other chains. At present little else can be said. This is especially true
when the interactions become much more complicated, as is the case for
systems with highly polarizable groups along the chains. In this case the
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Fig. 4.28 Conformation plot of a stretched network with random knots. In the nonlinear
regime there are a few strongly stretched paths, which are shown dark and thick. The less
the stretching, the finer the bonds are shown. (From Ref. 13).

physical parameters determining the value of Ne are not understood. The
results from the work on networks suggest that ultimately the topology
conservation of the strands remains the only relevant parameter. However
a lot of research still remains to be done in this case. This problem is not
only an important theoretical one but one with direct technological rele-
vance, since a controlled manipulation of flow properties is of great interest.

Significantly better is the situation if one discusses the consequences of the
chain connectivity and the occurrence of entanglements. The simulations
clearly show that the entanglement length is the unique length scale, which
governs the slowing down of the overall motion of the polymers. For short
times the middle monomers do not feel whether they are situated in long or
short chains. For longer times, t > re, the monomer mean square displace-
ment for N > Ne is independent of N up to the Rouse time. There is even
some evidence for the second f1/2 regime for the mean square displace-
ment.166 However the data are not accurate enough to distinguish between
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the reptation scheme16'17 and mode coupling approaches.36^38 The mode
coupling assumes that the motion is isotropic. This has been checked directly
by simulations and evidence for anisotropic motion was found in all of them.
This is particularly striking when one examines the motion of a chain in a
network. To test whether it is a good approximation or not to ignore this
anisotropic motion in a mean field sense,116 it is important to compare the
time-dependent scattering function S(q, t) for the mode coupling theory and
experiment. Unfortunately S(q, t) for the mode coupling theories is presently
not available. The time and length scales predicted by the simulations agree
nicely with the recent neutron spin-echo experiments. So far one arrives at a
rather complete and consistent general picture for the role of the chain
connectivity and thus the entanglement length for the melt dynamics. The
long time, or so called terminal regime, however is still beyond the present
capabilities of even the fastest supercomputers. Many interesting questions
still remain unresolved. One of these is to understand the difference between
the N3 power law for the terminal relaxation predicted by reptation theory
and the observed TV3-4 law. Though a variety of different theoretical models
have been proposed, this difference remains a puzzle. It is important to
determine whether any of the anomalies in the relaxation times as observed
for the simulations of semidilute but entangled systems can be related to this
difference in the longest relaxation time. Induced bond orientation by uni-
axial stretching is also another interesting area where simulations can play
an important role. Recent studies on short guest chains260 (N < Ne) in a
matrix of long host chains show induced orientational order comparable to
that observed experimentally.261 Additional studies for guest chains longer
than Ne will be very valuable in clarifying the origin of this effect. Another
potentially very fruitful path of research is pointed out by the first NEMD
simulations on very weakly entangled melts. With the coming better com-
puters this will be very interesting tool, not only to complement the equili-
brium simulations.

Even more complex in many respects but somewhat clearer in others is the
situation for polymer networks. It is obvious from the results reviewed here
that the chain connectivity and the noncrossability of the chains play a very
important role for the relaxation and the elastic modulus. Even for short
chains the conservation of the network topology is crucial. This result
should be seen as complementary to the investigations, in which the stress
along the backbone of the strands and via the EV interaction is analyzed
separately. As in the melt of uncrosslinked chains, the melt entanglement
length turns out to be the crucial length scale for long chains. At this point
the simulations are clearly in a much better state than any microscopic
experiment, as they allow a comparison of macroscopic properties, such
as the modulus, to microscopic properties, such as mean square displace-
ments for well characterized "samples". The confinement to the tube for the
longer chains is clearly demonstrated, also giving additional support to the
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reptation picture in comparison to mode coupling schemes. In this context it
is especially interesting that the modulus in the asymptotic limit of long
chains corresponds to about I/(2.2 ±0.2) for a network of strand length
Ns = Ne. This ratio is the same as the typical ratio between Me and Mc for
the crossover in the viscosity from Rouse to reptation. Here too many
unresolved questions remain. The investigation of networks via computer
modeling is in its infancy compared to the work on melts of free chains. At
this point, only highly idealized systems have been investigated which in
most cases have been confined to the linear regime. The range of interesting
and highly relevant questions is wide, including nonlinear effects for idea-
lized model networks to swelling/stretching of random systems. To our
knowledge there is no study of systems which were crosslinked in the semi-
dilute state and then deswelled. All these questions are of theoretical (cf.
butterfly effect262), experimental and also technological interest.

The coming of new generations of faster computers will allow more
research along the above-discussed lines and should also provide us with
significantly better data on these highly disordered systems. This will
improve the predictive power of the simulations, but also allow one to
build even better bridges between experiments and analytic theory.
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M O L E C U L A R D Y N A M I C S O F
G L A S S Y P O L Y M E R S

Julian H. R. Clarke

5.1 Introduction

Over the past fifty years or so there has built up a considerable understand-
ing of polymer behavior based on the use of highly simplified models; other
chapters in this book exemplify recent progress made in this area. So why
bother with this atomistic modeling? The reason is that there is an important
limitation of the simplified (sometimes referred to as "coarse-grain") models
in that they do not provide a direct connection between monomer level
structure and bulk properties. Atomistic level simulations offer new oppor-
tunities for making such predictions ab initio. Using only a knowledge of
interatomic forces together with the assumptions of classical mechanics it is
possible, at least in principle, to give a complete atomic-level description of a
polymer system. The emergence of these modeling studies is particularly
timely in view of very recent developments in experimental techniques for
detailed investigation of polymer dynamics, such as multidimensional
NMR1 and inelastic neutron scattering.2

Of course, if one is interested in large scale configurational properties, for
instance, then the atomic-level detail may be unimportant, but this is not
true for many properties of dense melts and polymer glasses, where long-
range configurational fluctuations are largely frozen-out and properties are
determined by the detailed interplay of entropy effects with intra- and inter-
molecular forces. One of the great attractions of computer simulation is the
control that one has over the parameters defining a particular system.
Coupled with the ready availability of detailed information from the simu-
lation this means that systematic studies can be devised to show how mole-
cular parameters are related to bulk properties. We can look forward to
computer-aided molecular design as a powerful new tool for the develop-
ment of polymer materials.

The past decade has seen steadily growing activity in the detailed atomis-
tic modeling of polymer melts and glasses using energy minimisation3 and
molecular dynamics simulation.4"7 These studies have been aimed at achiev-
ing an atomistic level understanding of a variety of physical properties such
as stress-strain behavior, diffusion of small solute molecules and local chain
motions. Because of its relative simplicity, polyethylene has come under a

5
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great deal of attention in these early studies. It is ironic that pure amorphous
polyethylene is extremely difficult to prepare in the laboratory so compar-
isons with experiment have been quite limited. From the simulation point of
view, however, it is quite clear that a sound understanding of the simple
systems must be achieved before embarking on more ambitious simulations
of more complex polymers.

There are thus many exciting prospects for atomistic-level polymer mod-
eling but, with such a powerful technique at our fingertips however, it is
necessary to be careful and critical in its application. What you get out of a
simulation exercise depends entirely on what you put into it. The aim of this
chapter is not to perform an exhaustive review of the literature. Rather we
wish to discuss in detail some of the application areas where progress has
been made and also to focus attention on some of important technical issues
that arise in such molecular dynamics simulations, particularly in regard to
modeling the glassy state. The hope is to provide the reader with a survey of
the opportunities that have so far been exploited and also something of a
critical eye when it comes to evaluating the usefulness of simulation studies.

So how do we set about designing a simulation of a particular glassy
polymer? The first question is, can we model a material that in any way
resembles that formed in the laboratory? This is not just a question of
having access to a realistic force field; after all, with the aid of experimental
data, quantum mechanical calculations and a little persistence with empiri-
cal adjustments we can usually find a force field that will reproduce at least
some properties. It is much more a question of the completely different time
scales for the formation of laboratory and simulated polymer glasses. As
discussed in a later section it is important to understand the significant
differences between the glass transformation and the properties of polymer
glasses formed in simulation studies and those obtained in laboratory
experiments.

The application of molecular dynamics to study molecular fluids is well
established8 and many of the techniques can be transferred in a straightfor-
ward way to polymer simulations. The connectivity of polymers, however,
raises some special issues which require careful attention if anything like a
realistic simulation is to be obtained. For instance, the spontaneous config-
urational fluctuations in polymers often cover a very wide range of time
scales—from picoseconds for local motions to milliseconds or even longer
for large-scale fluctuations in the case of polymer melts.9 Since atomistic
modeling techniques are currently limited to times of order nanoseconds
there is here a potentially serious problem of ergodicity; simulations gener-
ally cannot be run long enough to sample fully all the equilibrium fluctua-
tions. In practical terms of course, long time fluctuations may not be
important for the property being examined, e.g., guest molecule diffusion
in polymer glasses. In this case we can avoid non-ergodicity problems by
either using a very large system (N ~ 100 000)10 or by averaging over many
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smaller but independent samples.11 Insufficient averaging of this type has
been the shortcoming of many polymer simulations to date.

Having raised these issues we must nevertheless always keep in mind the
objectives of the simulation, and compromises are unavoidable. For
instance, if we are only interested in local chain dynamics such as motions
of side groups etc., or in diffusion of guest molecules then these are probably
not very dependent on the accuracy of the overall chain dimensions; a much
more important criterion is likely to be the packing density and there is
evidence to suggest, as is noted later, that this property relaxes much faster.
If however we are interested in chain diffusion or mechanical behavior—
properties which involve collective motions—then it is important to have
realistic overall chain dimensions.

5.2 Molecular dynamics for polymers

Molecular dynamics simulation is basically very straightforward. It is a
deterministic method in which the system follows a well defined trajectory
in phase space. It is the only reliable method for examining time-dependent
properties. Assuming the applicability of classical mechanics, it involves the
simultaneous solution of the equations of motion for a small sample of
particles interacting according to a predetermined force field and fixed con-
ditions.

In the simplest case, both the total energy E and the volume V are kept
constant and we have a microcanonical, or (N, V, E) ensemble in which case
the equations to be solved are Hamiltonian. In practical simulations it is
often much more convenient however to control the pressure and, in parti-
cular, the temperature of the system. This can be achieved by modifying the
Hamiltonian or by using more general Lagrangian equations of motion. A
good deal of work has been put into developing and testing such "extended"
molecular dynamics methods to simulate the (N, V, T) and isothermal-iso-
baric (N,P,T) ensembles.8 In simple molecular fluids they all give very
similar results8'12 and they have all been used at various times for polymer
simulations. Whatever method is chosen the equations of motion are solved
numerically using discrete time steps with the aid of well established inte-
gration algorithms.

A characteristic of small sample simulations of dense polymers under
constant volume conditions is that the average pressure tensor is often
anisotropic with substantial differences between the on-diagonal compo-
nents and, in addition, nonzero off-diagonal terms. This has led to the use
of molecular dynamics algorithms which control the pressure tensor, P, and
which allow these dynamic anisotropies to be relaxed out. Once implemen-
ted such methods have the added advantage of being easily adapted to
measure the response of such systems to externally applied pressure fields
as we shall show later.
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For the majority of atomic and "small" molecule systems at equilibrium
in the (N,P,T) ensemble (P is the pressure tensor) it is widely accepted that
the most rigorous approach is to use the controlled pressure technique
proposed by Rahman and Parrinello (RP)13 in conjunction with the
Nose-Hoover thermostat.14'15 However, the choice of method must take
careful account of the material we wish to study, how it is modeled and
any external perturbations which we wish to apply. For polymers the
Berendsen loose-coupling controlled pressure MD technique16 is a good
compromise. Although the theoretical basis of this method has been criti-
cised17 in practice it has been found18'19 that to within statistical uncertain-
ties first-order properties are the same as those obtained by more rigorous
approaches.

The Berendsen method utilizes weak coupling of an external tensorial
pressure field, P*, to the system through a simple feedback loop.18 It is
assumed that provided the coupling is loose enough it will have an insignif-
icant effect on the first-order properties of the system. A very similar scheme
can be used also to control the temperature of a simulation.16'18 For the
detailed discussion of this method readers are referred to the original arti-
cles.16'18

The coupling is implemented by allowing the matrix h, made up from the
basis vectors, a, b and c which determine the shape of the primary dynamics
cell, to respond to imbalances between the internally measured pressure
tensor and an externally applied pressure tensor. The equation for the
rate of change of the h matrix with time is then defined as

where M is a coupling constant and P is the internally measured pressure
tensor, which in this case is defined in an "atomic" frame of reference, i.e.,
the momentum is localized at the positions of the CH2 sites, and hence is
symmetric,

Although the above equation is formally correct, great care has to be taken
in a simulation using periodic boundaries when calculating P. Criteria that
can be used for choosing the value of the coupling constant M have been
discussed in detail elsewhere.18

A simple proportional scaling of coordinates is used to minimize local
disturbances.16'18 If we define a set of scaled coordinates, s, by

differentiation gives the following equation of motion for the sites
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The motion is thus seen to be split into two contributions which are inte-
grated separately, that due to the momenta and that resulting from the
change in shape and size of the cell. The "fast" motions due to the momenta
are dealt with in the usual way using a "leapfrog" algorithm incorporating
an iterative scheme to maintain the constraints whereas a simple first-order
Taylor expansion is considered sufficient to integrate the equation for the
relatively "slow" motion of the box

It can then simply be shown that to first order the motion of the box results
in a scaling of the position of a site

Although the method is less rigorous than the alternative Rahman-
Parrinello (RP) technique13 it does have at least one important practical
advantage. This is that the pressure imbalance is coupled to the first deri-
vative of the basis vectors rather than to the second derivative; this means
that motions of the box are overdamped and so there is little tendency for an
unphysical oscillatory response to changes in the applied pressure. For this
reason this method comes into its own for the calculation of nonequilibrium
properties of dense highly viscoelastic systems.

5.3 Force fields

As in any molecular level simulation one of the first decisions to make is
what inter- and intramolecular force field to use. We have basically two
choices. Firstly, we can set about bringing together as much information
as possible from experiment and quantum mechanical calculations to
develop "good" force fields and in this way to aim for quantitatively accu-
rate modeling. With this approach there is usually little alternative but to
employ a fully atomic representation with, for instance, the GROMOS force
field.20 It must be remembered however that no force field will be completely
accurate and all of them have limitations.

The alternative is to aim for a more generic model which incorporates the
essential features of inter- and intramolecular interactions. For any realistic
polymer model these are connectivity, chain flexibility and van der Waals
interactions. The connectivity may be linear (as for the models discussed
here) or may involve branches and/or crosslinks. The flexibility of chains
will be limited by both "chemical" forces along the chain and local van der
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Waals interactions between chains which restrict torsional and bond angle
motions.

The emphasis here is not on a detailed description of molecular interac-
tions; in fact what is more important is the detail that one can leave out and
still correctly reproduce the essential behavior of the system. An example of
this kind of approach is the identification of functional groups which are
expected to maintain a fairly rigid structure (e.g., CH^ and CH2 groups) and
the representation of them as single interaction sites (see below). Of course,
this kind of simplification is quite different from that of the coarse-grain
models where beads are used to represent statistical units in a polymer
chain.

Since much of this chapter will be concerned with modeling polyethylene
we will briefly outline four different models that have been used in simula-
tions of this material and which use the second of the above approaches. We
identify them as PE I to PE IV and in all four cases the monomer units are
treated as single interaction sites and given masses corresponding to CH2

groups.
There are small differences between the intramolecular potentials but

these are unlikely to cause strong deviations in bulk properties. In models
PE I6 and PE II11 neighboring sites on the chain are connected together by
rigid bonds of length 0.153 nm, whereas harmonic springs are employed in
models PE III5 and PE IV.21 The use of springs usually forces a much
shorter time-step on the simulation unless an artificially small force constant
is used5 in which case there is always a risk of spurious coupling between the
bond vibrations and other degrees of freedom.

Flexibility of the chains is limited by incorporating a harmonic valence
angle potential, $(#), and a torsional potential, $(a), into the model. In the
case of models PE I, PE II and PE III $(0) is of the form,

where k9 = 520 kJ mol" \ 00 = 112.813° for PE I and PE II and kg = 500 kJ
mol"1,^ = 120° in the case of PE III. Use of the cosine of the angle in the
harmonic potential is a computational convenience but it is possible to
express $(6>) directly in terms of angle displacements as in the case of PE
IV which uses kg = 482 kJ mor1 and 6>0 = 111.6°. For small displacements
there is very little difference in the two potential forms. In the absence of
precise experimental data the choice of kg is in any case somewhat arbitrary.

The torsional potential restricting internal rotations about a bond in the
chain can be parametrized in terms of the dihedral angle, a, formed by this
bond and the two adjacent bonds, using experimental and ab initio data for
short chain alkanes. The form used in PE I for instance is that due to
Steele22 and is given below
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where C0 = 8832, Ci = 18087, C2 = 4880 and C3 = -31800.
There are much more significant differences between the force fields used

by the four models for interchain interactions and non-bonded interactions
(those between sites separated by at least three others). All use the Lennard-
Jones (LJ) 12-6 potential form

but the parameters are different. For PE I and II e/k^ = 57 K and
CT = 0.428 nm. The potential however is truncated at different distances,
rc, for these two models. In PE I rc = 2.5a and the appropriate long-
range corrections were made to the potential energy and the virial at each
step according to the density and assuming g(r) = 1 for r > rc so the attrac-
tive interactions are fully represented in this model. This potential gave a
reasonable fit to the density of real polyethylene at 500 K, as extrapolated
from experimental data.23

In PE II the truncation is at the minimum of the potential, so there are no
attractive interactions. It is widely accepted, however, that it is the repulsive
part of the potential that is primarily reponsible for structural effects in
dense fluids.24 In this case the potential is also raised by the well depth

This short-range potential is computationally highly efficient; molecular
dynamics programs run about 3.5 times faster for PE II than for PE I.11

In PE III (./k-Q = 57 K and <r = 0.38nm and in this case the potential is
truncated and raised at 1.5cr5; this is a form previously used in studies of
glass formation in the monatomic Lennard-Jones fluid.25 In PE IV
e/kz = 57 K and a = 0.38 nm but the interaction centre is offset from the
centre of the CH2 unit by an amount 0.042 nm along the bisector of the
obtuse C-C-C angle. This is referred to as an anisotropic united atom
potential26 and it gave an improved fit to the density of molten laboratory
polyethylene over a fairly wide range of conditions.21 No long-range correc-
tions are made to the pressure for PE III and PE IV and, with the dominant
repulsive forces, the measured values are extremely high in molecular
dynamics simulations of the melt. The density has to be arbitrarily adjusted
to fit either experimental data or other simulation data.
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5.4 Preparation of polymer melt samples

5.4.1 Building polymer structures

With simple molecular liquids it is relatively straightforward to prepare an
equilibrium sample from an arbitrary starting configuration using molecular
dynamics or Monte Carlo methods. This method does not lend itself favor-
ably to polymers mainly due to the long time scale required for structural
relaxation in these materials. Roe et al.5 used the method, however, in
simulations of molten polyethylene using the PE III model but only by
starting the system at a very high temperature using highly reduced values
for the intermolecular forces during the initial stages to speed up the equili-
brium before cooling to the required temperature. This method is unlikely to
give configurationally equilibrated samples for long chains in the time scale
of molecular dynamics simulations.

Most simulations to date have used a two-stage process for direct pre-
paration of amorphous samples at the required temperature. The two stages
are chain growth to produce the basic topologies followed by a period of
Monte Carlo or molecular dynamics, sometimes preceded by energy mini-
mization, to "equilibrate" the excluded volume interactions. Again the
device is sometimes used of reducing the magnitude or range of the van
der Waals interactions during the initial period of relaxation. The first stage
consumes a tiny fraction of the total computing time but is extremely impor-
tant since once excluded volume interactions are fully introduced then the
time scale for further topological changes becomes extremely long.

Several schemes have been adopted for the direct preparation of polymer
melt samples of which here we consider only two.

1. Chain growth including excluded volume interactions, followed by
equilibration.

2. Growth of noninteracting chains followed by the introduction of
excluded volume with subsequent equilibration.

In Method 1 a Monte Carlo algorithm was devised which included chain
conformation probabilities given by the rotational isomeric states (RIS)
model together with nonbonded interactions between backbone carbons
separated by four or more bonds. These structures were then relaxed by
energy minimization. The same approach has also been used for polycarbo-
nate,27 polysulfone,28 and polyvinylchloride29 chains.

Method 2 uses an alternative approach of continuous intramolecular
potentials instead of RIS probabilities and and this has been applied to
the PE I model of polyethylene chains30 with 7V = 1000. It has been pointed
out, however, that site-by-site chain growth with excluded volume samples
from a non-Boltzmann distribution of end-to-end distances.31 In addition
the effective density increases during growth so this procedure also gives a
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non-uniform distribution of conformational states along the chain—with an
increased probability of more compact conformers towards the end of the
chain.

A considerable improvement is obtained by carrying out the self-avoiding
random walk (SARW) in the absence of all long-range interactions, a
method referred to as phantom chain growth (PCG).31 This is based on
the idea, first introduced by Flory,32 that in pure melts polymer chains
display the same Gaussian statistics as under theta solvent conditions
where there is full screening of long-range interactions. In the Flory
model chain dimensions in the melt are determined only by local intramo-
lecular interactions along the chain; this approach is further simplified in his
RIS model. There is considerable experimental evidence to support these
proposals, and recent accurate studies of the dimensions of alkane-like
chains using molecular dynamics11 have shown that to within 1-2% Flory
model chains have, for instance, the same mean square radii of gyration as
melt chains with full interactions up to N = 100.

Although PCG removed the nonuniform distribution of state along the
chain, it is still not completely satisfactory since the Monte Carlo growth
method used samples from a biased distribution. The discrepancy can be
quite large—thus the fraction of trans states after growing an N= 1000
polyethylene chain was about 5% below that of an equilibrated melt.31

The problem is easily eliminated, however, by equilibrating the distribution
of phantom chains using, for instance, a pivot MC algorithm.33 Following
growth the required number of chains are then randomly positioned and
oriented with the periodic system and the long-range van der Waals inter-
actions introduced.

5.4.2 Introducing excluded volume

An unavoidable side-effect of either of the growth procedures used above is
that, at a typical melt density, there are bound to be a large number of
overlaps between sites for this initial configuration. In principle, energy
minimization could be used to remove the high energy contacts but mole-
cular dynamics allows relaxation at a specified temperature. It is necessary
however to moderate the forces in the very early stages to avoid breakdown
of the MD algorithm.

Several methods have been proposed for reducing the intensity of repul-
sive interactions in this initial period, such as use of a cosine potential34 or a
"soft core" potential.35 Unfortunately for both these forms the force is
actually zero for r = 0 and there is still a finite chance of sites remaining
superimposed. One method that has proved quite robust uses a "truncated
force" potential31 in which the short-range force for neighbours i and j,
where \i—j\ > 5, is constrained to be constant below a critical separation
rtr i.e.,
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The full definition of the resulting modified potential is then

rtr must be sufficiently small so that only a few pairs will be within this dis-
tance in the equilibrium distribution (which at this stage is unknown), but not
so small that the large magnitude of Fti causes breakdown of the algorithm.

The truncated potential is only applied to the "long-range" interactions
with the full potential retained for the 1-5 interactions. The procedure is to
decrease continuously the value of r^ from 0.9 a to 0.7 <r in an initial run of
time length TV using a time step of 1 fs and re-scaling of particle momenta at
each step to remove the large amounts of thermal energy released. At this
stage the switch is made from the modified potential to the full potential.
Satisfactory results are obtained for PE using rv = 3 ps. So far this approach
has not failed at least for our «-alkane-like models. During this initial stage
it is easiest to carry out the MD simulations at constant volume with the
temperature kept close to 500 K using the loose-coupling method18 with a
coupling constant T7-<0.1ps. Subsequent relaxation can be carried out
either under controlled pressure or constant volume.

5.4.3 Sample relaxation

The growth of representive chain configurations is therefore fairly straightfor-
ward. Unfortunately much of this good work is undone as soon as the full
excluded volume interactions are introduced in the second phase of the pre-
paration! In Fig. 5.1 (a) we show the effect, for instance, on the radius of gyra-
tion for alkane-like chains10; the results are for N = 100 but the effect seems to
be quite general. These simulations were carried out at constant volume but
can equally well be performed under controlled pressure conditions.

There are two striking features of this plot. Firstly, the introduction of
excluded volume causes an immediate and substantial decrease in the radius
of gyration (the chain configurations were initially equilibrated using pivot
Monte Carlo so, within the statistical error of about 1%, the / = 0 value of
the ordinate was unity). Secondly, the relaxation back to equilibrium values
is (as might be predicted) extremely slow, even for these chains of only 100
monomers! Up to N = 100 the relaxation times scale approximately as n2 so
under the same conditions it would require of order 0.3 ms to fully equili-
brate chains with N= 1000. In fact entanglement effects in long chains
would lengthen the time even further.

The reasons for this spontaneous perturbation from the equilibrium con-
figuration are still the subject of debate33 but any explanation must take into
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Fig. 5.1 The relaxation of (a) the square radius of gyration, S2, and (b) the hydrostatic pressure
at 500 K following the introduction of excluded volume in a sample of a melt composed of 640
chains each with 100 monomers of model PE II polyethylene (see Section 5.3). Note the
expanded vertical scale. The simulations were at constant volume; 20 bars pressure discrepancy
would be equivalent to a density discrepancy at constant pressure of about 0.1%. S2 values are
shown relative to those determined assuming complete screening of long-range interactions (see
text). The density is 0.70g cm"3. These results were obtained with a Fujitsu AP1000 massively
parallel computer.

account the fact that both the coordinates and the momenta in these sam-
ples are far from equilibrium during the first stages of these relaxations.
Although the mean kinetic energy of the interaction sites is controlled by the
loose coupling, during the first 10 ps or so there is a significant lack of
equipartition in the kinetic energy between the torsional, center-of-mass
and rotational motions.

All is not lost however since, as shown in Fig. 5. l(b), the relaxation of the
pressure is much more rapid. If the simulations had been performed at
constant pressure there would have been a similar rapid relaxation of the
density. From estimates of the compressibility the calculated density discre-
pancy |/o(oo) - (p(t)} / p(oo)} would be only about 0.1% after 1 ns for this
model polymer with N = 100.33 As indicated in the introduction the density
is by far the more important property in determining local chain motions,
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penetrant diffusion and stress-strain behavior, so equilibration times of
0.5-1 ns may still be adequate for many simulations.

5.4.4 Sample size effects

We briefly consider here the question of choosing a sample size that will
provide a good representation of bulk behavior. The traditional requirement
is that the size of the primary simulation cell is large enough to prevent
molecules interacting with images of themselves through the periodic
boundaries and is also large enough to contain all the important character-
istic structural fluctuations of the bulk system. In the case of a molecular
liquid it is usually satisfactory to take N in the range 100-1000. For a
polymer system with a degree of polymerization n = 1000 this would
imply using up to 106 monomers in a simulation! We could relax the criter-
ion somewhat so that, for instance, the cell dimensions are greater than the
expected mean square end-to-end distance of a polymer molecule. For
n = 1000 we would have to include around 30 chains and a total of 30000
monomers in the simulation which, although feasible, would be a very
expensive calculation.

A more radical, although controversial, approach is to use a cell which is
only larger than the correlation lengths important to the phenomenon being
studied. In this case we might use just one chain of 1000 monomers to form
a dense amorphous polymeric system through the replicative properties of
periodic boundaries. The primary chain spans many neighboring cells. The
model is therefore one of a monodisperse polymer entangled with replicas of
itself. A two-dimensional schematic diagram of this model is shown in Fig.
5.2. Chain ends can be eliminated from the model by arranging that the end
of a chain is attached to the other end of one of its periodic images, giving
"infinite" length.36 It must be remembered, however, that the repeat length
is still the number of monomers in the primary cell.

The effects of boundary conditions in this kind of model have yet to be
fully evaluated but we can expect that one important condition might be the
size of the unit cell in relation to the correlation length along the chain. For
small N there is no doubt that the model gives a poor representation of bulk
behavior, particularly for less flexible polymer chains, but as N becomes
larger we expect it to be an increasingly better approximation to a dense
amorphous system.

5.5 Preparation of polymer glasses

5.5.7 Glass preparation by computer simulation

Glasses are usually formed from the melt either by progressively decreasing
the temperature or increasing the pressure. Cooling has been used to pro-
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Fig. 5.2 Two-dimensional schematic diagram of the polymer model in which a single chain is
replicated by the periodic boundaries.

duce glasses with both the PE I and the PE III polyethylene models.6'37 The
importance of this approach is that it provides an opportunity to character-
ize the transformation process by monitoring certain properties. It must be
emphasized however that the cooling rate is enormous in these simula-
tions—from 108 to 1012 K s"1—so we must be careful in our comparisons
with laboratory glasses (see next section). Under conditions where a mate-
rial appears glassy in a simulation it might well behave as a liquid in the
laboratory.

An alternative and more radical approach is to use the preparation tech-
niques described in Section 5.3 to prepare polymer samples directly in the
glassy state. This method has been used for modeling polypropylene3 and
polyethylene.38 In the latter case careful control over the preparation pro-
cedure was used to construct amorphous samples of the same polymer in
different configurational states in order to examine the relation between
mechanical properties and polymer structure. Such control is only possible,
of course, for nonequilibrium states where the structure can be immediately
frozen in. The transformation to equilibrium liquid behavior from such
samples can be observed by heating.39

Some results of cooling experiments on the PE I model with N = 1000 are
shown in Fig. 5.3. Here the density is plotted as a function of decreasing
temperature with the pressure controlled at 1 atm.6 The set marked PE III is
for N — 500 (see Section 5.3) and these data show little quantitative relation
to polyethylene. For the remainder of this discussion we shall consider only
the results for the PE I model.
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Fig. 5.3 Density as a function of temperature at 1 bar pressure, averaged over five samples of
polyethylene model PE I, with a degree of polymerization of 1000. The cooling rate was about
K ps~' but at each temperature the samples were relaxed for about a further 1 ns. The Lennard-
Jones potential parameters for the van der Waals interactions were adjusted to give a density at
500 K which agreed with a linear extrapolation of experimental data (see text for further
details). Also shown are data reported for a sample of model PE III polyethylene cooled at a
comparable rate.37

Five independent samples were generated and allowed to relax for 500 ps
at 500 K at an applied isotropic pressure of 1 bar. Samples at different
temperatures were then obtained by cooling or heating at a rate of 1 K
ps"1 to the desired temperature under isotropic controlled pressure condi-
tions (1 bar) followed by subsequent periods of relaxation of order 1 ns.
Using this procedure additional samples were generated at 600, 400, 300,
200, 100, and 10 K.

As the temperature is lowered there is a gradual decrease in the thermal
expansivity of the polymer (obtained from the slope of the plot) towards
values typical of amorphous solids. The data in the liquid regime show a
lower expansivity than the laboratory material but this may be due to short-
comings of this simplified model potential.

The decrease in expansivity as the sample is cooled is exactly as expected
upon glass formation. However it would appear that any transition is rather
weak and smeared-out and it seems to occur at an unexpectedly high tem-
perature (we can only estimate Tg for real polyethylene but values found in
the literature40'41 are in the range ~ 150-300 K).

Direct observation of the freezing-out of conformational transitions at a
temperature of about 400 K provides strong supporting evidence of a glass-
like transformation, in accord with the notion that the torsional degrees of
freedom are dominant modes of relaxation in these systems.6 This is shown
in Fig. 5.4 which gives the temperature dependence of the fraction of trans
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conformers averaged over five samples of unperturbed chains at the various
temperatures. A dihedral angle is said to be trans if it lies between ±60°,
otherwise the angle is in one of the two gauche states. The solid line in the
plot is an extrapolation to lower temperatures made on the basis of fitting
the data at 500 K and 1000 K to the form

where X denotes the fraction of trans (T) or gauche (G) states and A and A<&
are the adjustable parameters. The actual values used for the curve shown6

were ,4 = 1.01 and A$/J? = 463K. The nominal difference in energies
between the gauche and trans wells for the dihedral angle potential is
equivalent to 530 K but this takes no account of the excluded volume effects
which, for example, largely prevent sequences of the type G+G~ from occur-
ring.

5.5.2 The glass transformation on different time scales

At first sight it would appear that the characteristics of the glass transfor-
mation observed in the simulated polymer are quantitatively quite different
to what is observed on macroscopic time-scales in the laboratory. Firstly,
the transition is taking place at a much higher temperature than one would

Fig. 5.4 Variation with temperature of the percentage of trans conformers in the cooling
simulation of polyethylene model PE I. The theoretical equilibrium curve was calculated
according to equation (5.14) in the text.
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expect, and, secondly, it appears rather diffuse on the density plot (Young's
modulus similarly shows a broad transition region6). We shall show below
that both the above characteristics can be explained in terms of the very
rapid cooling rates employed in simulations and that they have nothing to
do with the details of the model.

Before proceeding to the explanation we should first note that similar
behavior has been observed in simulations of glass formation for the atomic
Lennard-Jones fluid42'43 using cooling rates of the order 1012 s"1. In addi-
tion, very similar effects have been observed for real materials in the labora-
tory when using "high frequency" probes of the glass transition. For
instance Brillouin scattering measurements44 have been used to probe the
sound velocity at frequencies of about 10 GHz in cooling experiments on the
glass forming liquid 2Ca(NO3)2.3KNO3. The high-frequency longitudinal
compliance and the adiabatic compressibility derived from the measure-
ments both show a smearing out of the transition towards high temperatures
whilst the more familiar static measurements show a sharp transition at the
low end of the transformation range.

The explanation of the behavior is the same for the molecular dynamics
simulations as for the light scattering data.43 Let us consider an idealized
cooling experiment which, for the purposes of the present discussion, is
easiest to think of as occurring in a series of discrete steps. The various
molecular motions have characteristic times which are coupled to the
density fluctuations in the material. As the latter slow down as a result
of cooling or compression we reach a stage where full relaxation of the
density is not complete before the next step in temperature or pressure so
the material falls progressively out of equilibrium, and a glass transition is
observed. This is shown schematically in Fig. 5.5. The faster the cooling
rate the higher is the temperature at which the material falls out of equili-
brium.9 In simulation experiments where the cooling rate is enormous, the
effects are extreme and the transformation occurs at a high temperature
where the material may well show normal liquid behavior in the labora-
tory.

The smearing-out of the transformation in simulations can be under-
stood from the temperature dependence of the relaxation times43'44 as
shown, again schematically, in Fig. 5.6. Simple linear polymers are exam-
ples of "fragile" fluids45 which show a marked temperature dependence of
the activation energies (E,A) for structural relaxation processes. At low
temperatures in the supercooled regime Ea becomes extremely large and
relaxation times may change by one or two orders of magnitude over a
few degrees, thus producing a very sharp transition. At high temperatures
a much smaller value of Ea means that the same change occurs over a
much wider temperature range, thus producing a broad transformation.

Finally it is worth mentioning one additional reason why we might expect
a different character to the glass transition as observed on very short time
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Fig. 5.5 Schematic illustration of the increasingly slower density relaxation in an idealized
stepwise cooling experiment. The shorter the step times the higher the temperature at which
the density falls out of equilibrium and a glass transition is observed.

scales. The above simplified discussion is based on the assumption of just
one relaxation process. Of course in a supercooled polymer there are many
different degrees of freedom to be frozen out. For instance Rouse-like
modes appear to be a reasonable description of chain motion up to the
entanglement length in dense melts46 and it is likely that these motions
have much to do with viscoelastic and mechanical properties. Each of the
p Rouse modes will have a characteristic relaxation time, TP, and tempera-
ture dependence. They can only be "active" in the glass transformation if
the cooling rate is much less than l/rp. On the time scale of current mole-
cular dynamics experiments only the short wavelength modes will be acces-
sible.
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Fig. 5.6 Schematic temperature variation of a characteristic structural relaxation time in a
supercooled polymer melt. It is assumed that approximately a ten times change in the relaxation
time is required to give a significant change in some associated property such as expansivity or
compressibility. This change takes place over a much wider range of temperature on the simu-
lation time scale.

5.6 Stress-strain properties

5.6.1 Uniaxial tension simulations

Mention has already been made that one of the advantages of the controlled
pressure molecular dynamics discussed in Section 5.2 is that the form of the
applied pressure tensor P* can be used to impart strain to a sample as a
function of time in much the same way as in laboratory experiments.
Control of appropriate components of the pressure tensor can be used to
produce, to take just three examples, uniaxial tension, compression or shear
as illustrated in Fig. 5.7

Current limitations on simulation times have meant that very high rates of
strain must be used in order to observe the system response. Nevertheless
the general form of the results show striking similarities to those obtained in
laboratory experiments performed on time scales many orders of magnitude
slower.

To give an example of what can be achieved in such simulations we
discuss below the stress-strain behavior as observed in simulations of the
model PEI of polyethylene at a range of temperatures in the glass and melt.6

The sample size was 1000 monomers formed into a single linear chain as
described in Section 5.4. The cooling curve for these samples is shown in
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Fig. 5.7 Examples of mechanical deformations that can be induced using loose coupling mole-
cular dynamics with an applied pressure tensor P*.

Fig. 5.3. In order to get a representative picture the results were averaged
over only five independent samples so the statistical precision is rather
limited.

The prepared samples were subjected to a gradually increasing uniaxial
tension by changing the y component of the applied pressure tensor, P*y, at a
constant rate

where the tension application rate, T, used was either 5 bar ps~ 1 or 1 bar
ps~l and the minus sign accounts for the fact that tension is a negative
pressure. Employing two different values for T should give some indication
of the extent to which the measured properties are rate-dependent.

The strain induced in the sample is of primary interest so the applied
tension is best considered as a control variable which produces a change
in the strain. The response is given by the measured tension, i.e. -pyy, within
the sample. In these experiments then, both the strain and the measured
tension are dependent variables. The method is preferable to direct control
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of the strain since there is no way a priori of predicting how the shape or
density of the sample will respond to a change in the external conditions.

The simulations were continued until the sample had extended by about
50-100% of its original length. Extensions beyond about 100% were not
possible without violating the truncation radius criterion for the site-site
potential due to the contraction in the transverse direction. The primary
information which results from these tension experiments is the response of
the h matrix, defining the size and shape of the primary cell, and that of the
measured pressure tensor, P. These together allow us to elucidate the stress
versus strain behavior.

The average response of five independent samples at six temperatures
from 10 K to 500 K are shown in Fig. 5.8 for tension application rates of
5 bar ps~!. There is clearly a wide range of behavior observable in the model
system; at low temperatures the material can support the tension up to
strains of ~ 20% before undergoing yield and at progressively higher tem-
peratures there is a gradual change in behavior until at 500 K it is unclear
whether there is any elastic response at all.

The essential difference in character between the elastic low-temperature
behavior and the viscous high-temperature response is shown by plotting the
extension as a function of time (see Fig. 5.9). On a log-log scale an elastic
response should have an asymptotic slope of 1 at low strains for a system
with a well defined Young's modulus, E,

Fig. 5.8 The measured tension (-Pyy) as a function of percentage extension (7£100) for tension
applied at 5 bar ps~' for polyethylene model PE I with N = 1000. The data at each temperature
represent the average behavior over five independent samples.
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Fig. 5.9 The percentage extension as a function of time for the samples subjected to a tension
application rate of 5 bar ps"1. On the log-log plot a slope of 1 indicates an elastic response to the
applied tension whereas a slope of 2 is that expected of a viscous material (see text for details).

Alternatively if the response to the applied tension is viscous, i.e.,

where r)e is an elongational viscosity coefficient, then it is easy to show that
for the experiment performed here that the strain should increase quadra-
tically in time and hence give a slope of two.

Both types of behavior are evident in confirming the trend from elastic (at
low strain) to viscous response as the temperature is increased. The esti-
mated extensional viscosity at 500 K from the simulations is of the order of
0.01 Pa s"1. Although this is much lower than the equilibrium extensional
viscosity of polyethylene it is known that the viscosity does decrease signifi-
cantly with increasing strain rate.47 At the extension rates used in our simu-
lations, 107->109s~ ], the behavior is expected to be strongly non-
Newtonian.

One working definition of the yield stress in the laboratory is the true
stress at the observed maximum tension.48 For convenience we have chosen
to define the yield stress as the measured tension at a strain of 20% which
corresponds closely to observed maxima in the load for those samples that
show a maximum. The resultant values are plotted in Fig. 5.10 and the
behavior is very similar to that found in real systems where the yield stress
decreases approximately linearly with increasing temperature.48
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Fig. 5.10 Tension at 20% extension ("yield stress") as a function of temperature or polyethy-
lene model PE I with N = 1000. Squares and circles refer to tension application rates of 5 bar
ps~' and 1 bar ps~' respectively. Open symbols indicate data for which no discernible yield was
observed; these points are excluded from the curve fits and extrapolations to zero tension. The
error bars shown are the standard deviations in the results for the five independent samples.

The data covers a very wide temperature range which may account for the
slight nonlinearity. It has also been shown in laboratory experiments that
extrapolating the data to zero yield stress results in convergence to a tem-
perature close to the glass transition temperature.48 If we ignore the points
above 300 K for which there is no discernible yield point, our data extra-
polate to zero yield stress at around the same temperature where there is a
change in expansivity (see Fig. 5.3). As for laboratory measurements there is
a dependence on the rate of application of the tension with the lower rate
leading to consistently lower values of the yield stress and hence a lower
extrapolated temperature of zero yield stress.

It will not have gone unnoticed that the observed values of the yield stress
and strain are much larger than those typically observed in the laboratory.
There are several possible reasons for this. For instance, the response of the
system to very high rates of strain will not include slow relaxation processes
such as creep which are important in laboratory experiments. Also, simula-
tion samples are perhaps too homogeneous; they do not contain the nieso-
scale heterogeneities which probably occur in laboratory samples and which
may play a significant role in determining the overall relaxation behavior.

There are other subtle differences between the simulations and laboratory
experience which should make us a little cautious in drawing too close a
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Fig. 5.11 Behavior of the density during the extension experiments for tension application rates
of 5 bar ps~'. Note the distinct density decrease as the extension approaches the yield point at
the lower temperatures. This contrasts with post-yield flow, and the viscous flow observed at
high temperatures.

parallel between the two responses. In Fig. 5.11 we show the behavior of the
system densities as the strain is increased at the different temperatures. At
high temperatures (400-500 K) where the flow process is predominantly
viscous there is a hardly perceptible change in density during the extension
of the samples.

In contrast, at low temperatures there is a noticeable dilation effect as the
tension is applied and the density decrease continues until just beyond the
yield point. Once the material yields the density remains relatively constant
as plastic flow takes place. It appears that for a given tension application
rate this apparent critical density for yield and plastic flow is independent of
temperature over the range 10-300 K.

This behavior of the density has not been observed in laboratory experi-
ments; in fact the density often increases slightly at yield.48 Also it is worth
recalling the well known experimental result that yield can also occur in
amorphous polymers under compression. Simulations of model polymers
under compression have yet to be reported.

One point worth making here is that the decrease in density that occurs
under extension at the lower temperatures is entirely consistent with the
typical values of Poisson's ratio (p) for amorphous polymeric solids
which are generally in the range 0.3 to O.4.49"52 Indeed our estimates of
Poisson's ratio from the extensional and contractile strains
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give values of about 0.41 at the lowest temperatures.

5.6.2 Stress-strain behavior and conflgurational properties

As mentioned previously one of the great advantages of simulations is the
ease with which system parameters can be controlled in order to study some
physical effect. This approach was exploited in a recent study of the ways in
which the phenomenon of strain hardening depends on the conflgurational
properties of an amorphous polymer.38 Samples of the same glassy polymer
were prepared each with different conflgurational properties, the aim being
to avoid any ambiguities introduced by comparing polymers with different
chemical structure. Although it is not evident from Fig 5.8, at high strains
there is nearly always an increase in the modulus which is referred to as
strain hardening. This latter property is of great practical importance since
the extent of strain hardening is associated with the susceptibility of the
material to, for instance, necking and crazing. On a phenomenological
level the large strain behavior of polymers has been rationalized in terms
of mechanical models which comprise elements representing the Hookean,
viscous and rubber elasticity components of the stress53'54 but there is con-
siderable interest in understanding strain hardening in terms of chain topol-
ogy.

Necking and shear banding can also complicate the interpretation of
experimental data since they make true stresses and strains difficult to
determine. True stress—strain curves have been obtained for glasses com-
posed of bis(phenol A) copolymerized to produce carbonate and phthalate
chains of varying stiffness, and in this case it was noted that there was a
correlation between Kuhn length (a measure of chain stiffness) and the
large-strain behavior.53 Similar results have been obtained with polyisocya-
nates which have extremely large Kuhn lengths and pronounced strain hard-
ening so that they extend uniformly without necking.55

Let us consider the ways in which chains in an amorphous polymer can
deform. Elongation can be achieved either by uncoiling the overall chain
configuration as measured for instance by the persistence length, or by
changing the local conformations within the "tube" formed by neighboring
chains in the entangled structure. This alternative "local" mechanism cor-
responds in our model to segments of chains being converted from the
gauche ("short") form to the long ("trans") form; the latter is the lowest
energy state and has a planar zig-zag structure. For the polyethylene model
used, it follows that chains which are either less coiled or contain fewer
gauche states to begin with will be harder to deform. For the study in
question the persistence length was used as a measure of the overall config-
uration. In an equilibrium polymer melt the overall configuration and the
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fractions of conformers are inextricably linked but this restriction does not
apply for nonequilibrium glassy states where changes in the preparation
procedure can provide some measure of independent control of the two
properties.

The persistence length a measures the correlation in the orientation of
successive monomers as we move along a polymer chain. One useful defini-
tion which is easily applied to the polyethylene model used here is32

where e,- is a unit bond vector. It can be further shown that

where the characteristic ratio C^, is given by

The above equations imply that a can only be obtained accurately from an
asymptotic limit. Recent work33 suggests that this limit is only reached when
k > 1000 for the polyethylene PE I model and an accurate result cannot be
achieved with only small samples. Nevertheless correlation lengths can be
deduced from averages over five configurations for values of k up to 100
(these are referred to as QIOO) and it is reasonable to assume that to a good
approximation the ratios of these values reflect the ratios of the true persis-
tence lengths.

A set of molecular dynamics simulations was carried out on samples
prepared using the direct method described in Section 5.4. In all, four dif-
ferent sample sets of polymer glass were produced by using different pre-
paration procedures. All of the samples were relaxed at 200 K with P* = 1
bar for ~ 1 ns. The final densities were all the same to within 1 % and we
expect all of the samples to have glass transformations in the range 300-
400 K on the simulation time scale. The associated correlation lengths and
fractions of trans conformers obtained from the final 200 ps of these runs
are shown in Table 5.1.

Sample set A was formed by cooling from the melt as described in Section
5.4. Set B was produced by growing chains at 200 K using PCG and relaxing
them for 1 ns at the same temperature. Set C was obtained by "flash" heat
treatment of set B; this involves raising the temperature instantaneously to
1000K for 100 ps followed by rapid cooling back to 200 K. This was not
sufficiently drastic to alter the overall configuration of the chain but it did
allow conformational transitions to occur and the overall result of this
treatment is a net decrease in the trans fraction. As shown in Fig. 5.12 the
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Table 5.1 The percentage of trans conformers, % trans, and correlation
length, #100, calculated for each of the four sample sets.

Sample % trans aioo/A

A 78 5.0
B 82 15.5
C 77 12.0
D 70 5.8

more kinked structure shows noticeable retraction of the polymer chain
within the "tube" formed by its near neighbors.

Sample set D was obtained by phantom chain growth at 200 K with the
torsional and 1-5 interaction potentials scaled down by a factor of 50; this
has the effect of increasing the gauche fraction and produces a highly coiled
chain. Van der Waals interactions were then introduced and subsequent
relaxation with the full interaction potentials produced a polymer glass
with a much reduced fraction of trans states.

The stress—strain behavior of all four sets of samples was obtained by
subjecting them to an externally applied uniaxial tension which was
increased at a rate of 5 bar ps ~!, exactly in the same way as described in

Fig. 5.12 Comparison of the chain structure for one sample before (thin line) and after (thick
line) heat treatment. Only the coordinates of the continuous primary chain have been shown.
The molecular dynamics "unit cell" which is filled by images of the primary chain, is also
shown.
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Fig. 5.13 Measured load plotted as a function of extension for the four sets of samples of the
model linear polymer subjected to uniaxial tension increasing at a rate of 5 bar ps . Data for
each set are averaged over five samples, the four sets are based on polyethylene model PE I. The
samples were prepared directly in the glassy state and sets A-D have different configurational
properties (see Table 5.1) as a result of different preparation procedures.

the previous section. As a result of the small system size, data was obtained
only up to extensions of ~ 100%. In Fig. 5.13 the load on these samples is
plotted as a function of the strain, the load being determined from the
product of the tension and the cross-sectional area. Since the samples are
very small, the loads are also extremely small (of order 10"9 N).

The pattern of the stress-strain plots is similar to that discussed in the
previous section—there is an initial elastic reponse followed by yield and
plastic flow. In detail however the four sets of samples show rather different
behavior; the differences begin to be noticeable after about 10% extension.
Samples B and C both show enhanced resistance to extension beyond the
point at which the A samples yielded (~ 20% extension). The high % trans-
high correlation length samples (set B) show the largest extent of strain
hardening and in particular produce significantly more stress than the set
C which, within the error, has a similar correlation length but lower trans
fraction. Conversely sample set C has practically the same % trans as set A
so the differences here must be due to their contrasting configurational
structure. Set D shows the lowest resistance of all to the applied tension
as was expected from its highly coiled structure with a smaller fraction of
trans conformations. What these results suggest is that both an increase in
the fraction of trans states and an increase in the persistence length can
independently contribute to strain hardening.

It is interesting to note the strain dependence of the fraction of trans
conformers. This data is shown in Fig. 5.14 and they reveal a common
feature of all uniaxial tension simulations to date, namely that there is a
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Fig. 5.14 Percentage of trans conformers plotted as a function of the extension for sample sets
A-D, as in Fig. 5.13

consistently linear dependence of the % trans upon the extension. The lack
of any discontinuities or breaks in the plots at the yield points confirms the
conclusion that this mechanical property has nothing directly to do with the
onset of transitions between different conformational states. Recent work
has shown that the % trans recovers rapidly and almost completely to its
initial value when the applied tension is removed, suggesting that it is to be
associated with the elastic part of the overall deformation.39

5.7 Penetrant diffusion

The diffusion of small molecules such as He, 02 C02, CH4 through glassy
polymers, partially crystalline polymers and polymer membranes is of great
practical interest in relation to a number of current and possible future
practical applications, and it is not surprising that this phenomenon has
already attracted a great deal of attention in simulation studies. This area
offers many opportunities for the use of computer modeling for optimizing
the molecular design of host polymers. Such small diffusing gas molecules
which are present at rather low concentrations are conveniently referred to
as penetrants.

The quantities of prime interest here are the solubility and diffusion coef-
ficient of the penetrant molecules and how these quantities are related to the
structure of the host polymer. Comparisons with the extensive experimental
data available for a wide range of polymers provides a stiff test not only of
the accuracy of potential functions but perhaps more importantly of the
method of preparation techniques and methods of sampling representative
polymer structures. So far only limited quantitative success has been
achieved, and that is under system conditions where the diffusion rate is
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quite high so that the process can be characterized during the time scale of a
simulation experiment. It will be much more of a challenge to compute
reliable diffusion coefficients in glassy polymers and effective barrier sys-
tems where spontaneous diffusion is required to be extremely small. In the
meantime, however, quite a lot of interesting information has already been
obtained concerning transport mechanisms.

At least two research groups56'57 are currently working on theoretical
models of diffusion in polymers based on transition state theory, extending
the idea first introduced more than thirty years ago58 that diffusion in fluids
was related to the redistribution of free volume. The aim here is to use
molecular dynamics or Monte Carlo simulations of specific polymers to
determine spatial fluctuations in the accessible volume for a particular pene-
trant. This information is then used to determine the adjustable parameters
in a transition state theory. The advantage of this approach is that it may be
possible to extend studies to glassy polymers where penetrant diffusion may
be many orders of magnitude too slow for direct simulation studies. This
will however require knowledge of how the parameters change as a function
of temperature and density.

Self-diffusion coefficients in fluids are most commonly obtained in mole-
cular dynamics simulations using the Einstein relation

The diffusion coefficient D is then obtained from the slope of a plot of the
mean squared displacement {Ar2} against time t. The problem is deciding
when the limiting linear regime has been reached. Times of order 100 ps are
usually sufficient to attain this condition in simple fluids. The situation may
not be so straightforward in more complex systems. In viscous molecular
fluids for instance the slope has been observed to change significantly over
the time range 50-300 ps.59 So-called "anomalous diffusion" has been dis-
cussed recently.60 In this case (Ar2) is proportional to something less than
the first power of t; it can occur when the simple random walk is modified
by the presence of obstacles or inhomogeneities, a situation that might well
exist in some polymer structures.

Molecular dynamics studies of penetrant diffusion have so far been per-
formed for polyethylene, polyisobutylene and polydimethylsiloxane.
Calculated diffusion coefficients have not been in particularly good agree-
ment with experiment.60""66 In the case of polyethylene, modeled using the
united atom approximation, diffusion coefficients were much higher than
expected and the activation energies too small although much better results
have been obtained67 using PE IV. Reliable comparisons with experimental
data are made difficult by uncertainties as to the true diffusion coefficients



P E N E T R A N T D I F F U S I O N 301

in pure amorphous polyethylene, which have to be extracted by calculation
from data on the partially crystalline material.

The sorption and diffusion of small gas molecules such as He, O2 and H2

in polyisobutylene has also been studied.60 An all-atom force field with
carefully chosen parameters was used but it was still found that the diffusion
coefficients were up to an order of magnitude too high. Loose coupling was
used to control the pressure around zero but there are no details of the
system density.

Gas solubilities can also be determined by molecular dynamics simula-
tions,60'68 using the Widom test particle insertion method69 to calculate the
excess chemical potential /uex or free energy of the penetrant molecules. The
solubility can be obtained using Henry's law. If E is the interaction energy of
a virtual penetrant molecule with the polymer inserted at random within the
sample (the molecule is "invisible" to the polymer) then

In dense materials however the original implementation of this method can
be quite inefficient. A "smarter" way to sample the structure is to use an
accessible volume map to bias the choice of insertion points,35'70. Of course
the accessible volume will vary according to the nature of the penetrant. For
PIB at 300 K solubilities calculated in this way for He, O2 and H2 were
typically one or two orders of magnitude greater than experimental values60

suggesting that there is far too much spare volume in the model structures.
A similar effect was noted for the solubilities of CH4, and He in polydi-
methylsiloxane.35

It is interesting to speculate on the reasons for these discrepancies. One
possibility is that the force fields have been poorly chosen. This is a con-
troversial issue and is extremely difficult to check especially since at high
polymer densities the diffusion and solubility are likely to be extremely
sensitive to the fine details of, e.g., repulsive van der Waals interactions.

Anomolously high diffusion coefficients and solubilities could also result
from incomplete relaxation of the polymer sample densities; one expects
diffusion coefficients to be extremely sensitive to density in this regime
and this again emphasizes the important issue of how model polymer sam-
ples are best prepared. In one study60 it was pointed out that the bulk of the
thermodynamic solubility of O2 in the sample of model PIB was contributed
by a single large "hole" in the structure emphasizing the need for adequate
sampling of the way in which a penetrant samples the natural structural
fluctuations in the polymer, either by using very large systems or by aver-
aging over many independent simulations.11

There is considerable interest in the mechanism of penetrant molecule
diffusion and this has been investigated in several recent studies. It is widely
accepted that diffusion proceeds by a some kind of "rattle and jump
mechanism" and for low temperatures and largish penetrants these two



3 0 2 M O L E C U L A R D Y N A M I C S O F G L A S S Y P O L Y M E R S

features seem to be distinguishable. For methane in PE at 300 K typical rms
jump lengths appear to be about 0.5 nm with the time between jumps of
order 0.5 ns.67 At higher temperatures the hopping rate increases and the
magnitude of rattling motions increases so the mechanism is less well
defined. Recent simulation studies seem to suggest that the jump events
occur as a result of temporary channels opening up between cavities of
fluctuating size and shape35'60 so the local mobility of the polymer chains
is also important.

In the literature penetrant diffusion has been widely discussed in terms of
free volume theories of polymers, and it is not surprising to see this idea
taken up in simulation studies. The problem is that although geometric free
volume is a physical concept that is easy to comprehend it suffers from lack
of precise definition. In the simulation studies to date it has been identified
with the unoccupied volume in the sample calculated as an average over
many static configurations. Note that this definition is different from the
accessible volume to penetrant molecules discussed earlier in this section.

This has been done for polyethylene, polyisobutylene and polypropylene
models, for instance, by prescribing spheres of a chosen diameter around
each interaction site, or by using Voronoi polyhedra to define the unoccu-
pied space.71'72 The free volume fraction,/v, can be defined by

where v0 is the volume of the simulation unit cell and vc is the volume
occupied by the polymer segments. In the case of united atom models
with a Lennard-Jones representation of the van der Waals forces the a-
size parameter is taken as the hard core diameter in order to calculate vc.
Rather surprisingly values obtained for/v are quite high, giving the fraction
of volume unoccupied as 30-40% in PE IV and model polyisobutylene67

although only a much smaller fraction—typically ~ 0.1%—is accessible to
penetrants.

It is likely that local motions of the polymer chain are also important to
penetrant diffusion. Removal of the torsional potential in polyethylene con-
siderably increases the chain mobility and gave an increase of about a factor
of two in the diffusion coefficient of O2.

73 Conversely, decreasing the mag-
nitude of the torsion angle fluctuations in the polyethylene model PE IV
drastically reduces the diffusion coefficient of methane.67

5.8 Local motions in amorphous polymers

Fast motions in amorphous polymers such as the reorientation of main
chain bonds and side groups and conformational fluctuations can be probed
by a number of spectroscopic techniques such as infrared,74 NMR1 and
inelastic neutron scattering.2 The relevance of computer simulation studies
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here is that they can be used to evaluate current theoretical models and
perhaps to develop new ways of interpreting the experimental data.
Detailed analyses of the orientational dynamics of the bond vectors in the
PE III model of polyethylene have already been described.37 Since molecular
dynamics is particularly suitable for studying short-time dynamics then
there are wide future opportunities for making useful comparisons with
experimental data on, for instance, the motions of side chains and pendant
groups if good representative structures can be prepared.

Most experimental techniques do not probe reorientational motions
directly but measure the time-dependence of properties which themselves
are sensitive to orientation.75 Thus in far infrared and Raman spectroscopy
one measures dipole or polarizability fluctuations with respect to particular
normal modes of vibration. Although the interpretation can be complicated,
in cases where the fluctuations arise predominantly from rotational motions
of localized groups correlation functions of the first and second Legendre
polynomials, C\(f) and Cz(i) respectively, can be retrieved from the data.

Simulation studies are not limited in the above way and one can study the
reorientational motions directly and in great detail by determining the full
probability distribution function W(6, f) for bond reorientation through an
angle 9 in a time t. This has been obtained for polyethylene model PE III.37

As a result of recent developments in multidimensional NMR techniques1 it
should be possible to study this function experimentally in favorable cases
although no relevant data are yet available in the case of polyethylene.

The reorientational correlation functions C\(i) and Ci(t) can of course
both be calculated from W(0, t), e.g.,

The forms of C\(f) and €2(1} can be predicted from various models for
reorientational motion. One of the simplest models is small step rotational
diffusion which requires that both C\(t) and C2(f) should show exponential
decays and that the ratio of the respective correlation times should be
three.75 These predictions are for isotropic motion, so it would not be sur-
prising if the data for bond vector reorientation in PE did not fit this simple
model since we might guess that the motion of a single bond is likely to be
highly anisotropic as a result of restriction arising from the connectivity of
the chains; this has been previously observed in Brownian dynamics simula-
tions of a polyethylene model76 and in a dynamical rotational isomeric
states model of a single chain.77 These effects are also likely to lead to a
long-time tail to the functions.

Neither C\(t) and €2(1) in amorphous polyethylene shows a simple expo-
nential relaxation; there is a rapid initial decay over 10-20 ps followed by a
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much slower decay up to 100-200 ps.37 The correlation functions fit well to
the Kohlrausch-Williams-Watts form

This form for the correlation function fits a wide variety of relaxation data
in complex fluids and, as in the case of many other properties, (3 turns out to
have a value close to 0.5.37 This form for a correlation function is often
interpreted in terms of a distribution of relaxation times; however in the case
of model polyethylene it has been shown that the results cannot be explained
in this way. Instead the result is interpreted in terms of a model for aniso-
tropic motion in which the polymer chain is confined to a "pipe" formed by
its neighbors.78

References

1. H. W. Spiess, Chem. Rev. 91, 1321 (1991).
2. M. Bee, Quasielastic Neutron Scattering (Adam Hilger, Bristol, 1988).
3. D. N. Theodorou and U. W. Suter, Macromolecules 19, 139 (1986);

Macromolecules, 19, 379 (1986).
4. D. Brown and J. H. R. Clarke, J. Chem. Phys. 84, 2858 (1986).
5. D. Rigby and R. J. Roe, /. Chem. Phys. 87, 7285 (1987); /. Chem. Phys. 89,

5280 (1988), Macromolecules 22, 2259 (1989).
6. D. Brown and J. H. R. Clarke, Macromolecules 24, 2075 (1991).
7. D. Rigby and R. J. Roe, in Computer Simulation of Polymers, edited by R. J.

Roe (Prentice-Hall, Englewood Cliffs, NJ, 1991).
8. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon

Press, Oxford, 1987).
9. J. D. Ferry, Viscoelastic Properties of Polymers, 3rd Edition; (Wiley, New York,

1980).
10. D. Brown, J. H. R. Clarke, M. Okuda, and T. Yamazaki, Comp. Phys.

Commun. 83, 1 (1994).
11. D. Brown, J. H. R. Clarke, M. Okuda, and T. Yamazaki, /. Chem. Phys. 100,

1684 (1994).
12. D. Brown and J. H. R. Clarke, Mol. Phys. 51, 1243 (1984).
13. M. Parrinello and A. Rahman, Phys. Rev. Lett. 83, 4069 (1985).
14. S. Nose, Mol. Phys. 52, 255 (1984).
15. W. G. Hoover, Phys. Rev. A. 31, 1695 (1985).
16. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J.

R. Haak, J. Chem. Phys. 81, 3684 (1984).
17. D. J. Evans and B. L. Holian, /. Chem. Phys. 83, 4069 (1985).
18. D. Brown and J. H. R. Clarke, Comp. Phys. Commun. 62, 360 (1991).
19. P. van der Ploeg, H. J. C. Berendsen, /. Chem. Phys. 76, 3271 (1982).
20. H. J. C. Berendsen and W. F. van Gunsteren (eds), GROMOS Reference

Manual (University of Groningen, Groningen, 1987).
21. P. V. K. Pant and R. H. Boyd, Macromolecules 26, 679 (1993).
22. D. Steele, J. Chem. Soc. Faraday Trans. 1181, 1077 (1985).



R E F E R E N C E S 305

23. M. J. Richardson, P. J. Flory, and J. B. Jackson, Polymer 4, 221 (1964).
24. J. D. Weeks, D. Chandler and H. C. Anderson, /. Chem. Phys. 54, 5237 (1971).
25. H. Fox and H. C. Andersen, /. Phys. Chem. 88, 4019 (1984).
26. S. Toxvaerd, J. Chem. Phys. 93, 4290 (1990).
27. M. Hutnik, F. T. Gentile, P. J. Ludovice, U. W. Suter, and A. S. Argon,

Macromolecules 24, 5962 (1991).
28. C. F. Fan and S. L. Hsu, Macromolecules 24, 6244 (1991).
29. P. J. Ludovice and U. W. Suter, in Computational Modelling of Polymers, edited

by J. Bicerano (Marcel Dekker, New York, 1992), p. 401.
30. J. H. R. Clarke and D. Brown, Mol. Simul. 3, 27 (1989).
31. J. I. McKechnie, D. Brown, and J. H. R. Clarke, Macromolecules, 25, 1562

(1992).
32. P. J. Flory, in Statistical Mechanics of Chain Molecules (Hanser Publishers,

New York, 1988).
33. D. Brown and J. H. R. Clarke, /. Chem. Phys. 100, 6011 (1994).
34. K. Kremer and G. S. Grest, /. Chem. Phys. 92, 5057 (1990).
35. R. M. Sok, H. J. C. Berendsen, and W. F. van Gunsteren, J. Chem. Phys. 96,

4699 (1992).
36. T. A. Weber and E. Helfand, J. Chem. Phys. 71, 4760 (1979).
37. R.-J. Roe, D. Rigby, H. Furuya, and H. Takeuchi, Comput. Polym. Sci. 2, 32

(1992).
38. J. I. McKechnie, R. N. Haward, D. Brown, and J. H. R. Clarke,

Macromolecules, 26, 1982 (1993).
39. J. McKechnie and J. H. R. Clarke, /. Chem. Soc. Faraday Trans. 2 (submitted).
40. P. J. Hendra, H. P. Jobic, and K. J. Holland-Moritz, /. Polym. Sci., Polym.

Lett. Ed. 12, 365 (1975).
41. R. Lam and P. H. Geil, /. Macromol. Sci., Phys. B20, 37 (1981).
42. J. H. R. Clarke, /. Chem. Soc. Faraday Trans. 2, 1371 (1979).
43. C. A. Angell, J. H. R. Clarke, and L. V. Woodcock, Adv. Chem. Phys. 48, 397

(1981).
44. C. A. Angell and L. M. Torrell, /. Chem. Phys. 78, 937 (1983).
45. C. A. Angell, /. Phys. Chem. Solids 49, 863 (1988).
46. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon Press,

Oxford, 1986).
47. R. Byron Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of

Polymeric Liquids, Vol. 1 Fluid Mechanics, 2nd Edition (Wiley, New York,
1987), p. 173.

48. I. M. Ward, Mechanical Properties of Solid Polymers, 2nd Edition (Wiley,
Chichester, 1985).

49. L. E. Nielsen, Trans. Soc. Rheol. 9.1, 243 (1965).
50. S. Newman and S. Strella, /. Appl. Polym. Sci. 9, 2297 (1965).
51. M. H. Litt, P. J. Koch, and A. V. Tobolsky, J. Macromol. Sci., Phys. Bl, 587

(1967).
52. W. Whitney and R. D. Andrews, /. Polym. Sci. C, 16, 2981 (1967).
53. F. Bueche, B. J. Kinzig, and C. J. Coven, Polym. Lett. 399 (1965).
54. R. N. Haward and G. Thackray, Proc. R. Soc. Land. 302, 453 (1968).



3 0 6 M O L E C U L A R D Y N A M I C S O F G L A S S Y P O L Y M E R S

55. A. A. Owadh, I. W. Parsons, J. N. Hay, and R. N. Haward, Polymer, 19, 386
(1978).

56. A. A. Gusev and U. W. Suter, /. Chem. Phys. (in press).
57. M. L. Greenfield and D. Theodorou, Macromolecules (in press).
58. M. H. Cohen and D. Turnbull, /. Chem. Phys. 31, 1164 (1959).
59. D. Brown and J. H. R. Clarke, J. Chem. Phys. 86, 6446 (1987).
60. F. Muller-Plathe, S. C. Rogers, and W. F. van Gunsteren, /. Chem. Phys. 98,

9895 (1993).
61. H. Takeuchi, /. Chem. Phys. 93, 2062 (1990).
62. H. Takeuchi, /. Chem. Phys. 93, 4490 (1990).
63. H. Takeuchi and K. Okazaki, /. Chem. Phys. 92, 5643 (1990).
64. H. Takeuchi, R. J. Roe, and J. E. Mark, J. Chem. Phys. 93, 9042 (1990).
65. F. Muller-Plathe, /. Chem. Phys. 94, 3192 (1991).
66. P. V. K. Pant and R. H. Boyd, Macromolecules 24, 6325 (1991).
67. P. V. K. Pant and R. H. Boyd, Macromolecules 26, 679 (1993).
68. F. Muller-Plathe, Macromolecules 24, 6475 (1991).
69. B. Widom, /. Chem. Phys. 39, 2802 (1963).
70. G. L. Deitrick, L. E. Scriven, and H. T. Davis, /. Chem. Phys. 90, 2370 (1989).
71. M. Sylvester |(private communication).
72. D. Rigby and R. Roe, Macromolecules 23, 5312 (1990).
73. H. Takeuchi, R. J. Roe, and J. E. Mark, J. Chem. Phys. 93, 9042 (1990).
74. G. Williams, Chem. Soc. Rev. 7, 89 (1979).
75. J. H. R. Clarke, Advances in Infrared and Raman Spectroscopy, edited by R. J.

H. Clark and R. E. Hester (Heyden, London, 1978), Vol. 4, p. 109.
76. T. A. Weber and E. Helfand, J. Phys. Chem. 87, 2881 (1983).
77. I. Bahar and B. Erman, /. Chem. Phys. 88, 1228 (1988).
78. H. Takeuchi and R. J. Roe, /. Chem. Phys. 94, 7446 (1991).



6

M O N T E C A R L O S I M U L A T I O N S O F T H E
G L A S S T R A N S I T I O N O F P O L Y M E R S

Wolfgang Paul and Jorg Baschnagel

6.1 Introduction

This introduction will present a very sketchy outline of physical properties
of glass forming liquids pertinent to the simulations we want to present and
will then focus on two main questions. Why would one want to study the
glass transition in polymer melts by means of computer simulations? And if
so, what can be the motivation for resorting to the dynamic Monte Carlo
simulation of a lattice model as the model of choice?

The essence of the glass transition in undercooled liquids is "solidification
without crystallization".1 The former manifests itself in a steep increase in
the shear viscosity over more than 10 decades (Fig. 6.12) whereas the latter is
clearly displayed by a look at the structure factor of the undercooled system
(Fig. 6.2). The one shown is taken from the simulation discussed in Section
6.4, but it is representative of an amorphous material with small compres-
sibility (value of S(q) for q —> 0) and an amorphous halo at some mean
particle distance (strand distance in the case of polymers) around 4-5A.
The structure at the large </-values reflects the internal structure of the
polymer model under study. The way data were plotted in Fig. 6.1 led to
the identification of two extreme cases, i.e., "strong glasses", which show
Arrhenius behavior (straight lines), and "fragile glasses", for which the
viscosity can be well described by a Vogel-Fulcher (VF) law

with a seemingly diverging viscosity at some temperature T0. Close to Ts,
which in this context can be defined as the temperature where the viscosity
reaches a value of 1013 poise, the curves cross over to Arrhenius behavior
again. Polymers as a rule are fragile glass formers, obeying this VF law over
a wide range of viscosity values. The inset in Fig. 6.1 shows the excess
specific heat of the supercooled liquid with respect to the crystal. At the
glass transition part of the structural degrees of freedom of the liquid freeze,
leading to a preservation of the liquid-like structure factor in the glassy
regime. The shear viscosity is related to an average stress relaxation time by
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Fig. 6.1 The melt viscosity as a function of inverse temperature normalized to the Tg of the
respective material. This figure is taken from Ref. 2 with permission.

where G^ is the high frequency elastic modulus. Typical values for G^, for
polymers are about 1010Pa,3 so that the range of l(T2-1012Pa s (KT1 to 1013

poise) for the viscosity translates into 10~12-102 s for the typical relaxation
time. Using the Stokes-Einstein relation furthermore to relate the viscosity
to the self-diffusion coefficient

where a is the geometric extent of the diffusing object, we see that the self
diffusion essentially freezes as the temperature approaches Tg. This implies,
as also seen from the specific heat behavior, that the liquid structure appears
to be frozen-in on typical experimental time scales.

None of what we have discussed so far is specific to polymers. One can
almost conclude that every liquid forms a glass on cooling, provided it is
cooled fast enough. A cooling rate of 1012K/s vitrifies liquid argon in a
computer simulation,4 and 105K/s produces glassy metallic alloys,5 whereas
polymers can be cooled as slowly as 10~4K/s and still do not crystallize.6

The frozen-in amorphous structure can be kept at (meta-)stable equilibrium
even close to Tg and may be as close to the thermodynamic equilibrium



I N T R O D U C T I O N 309

Fig. 6.2 The static structure factor for an undercooled melt inthe lattice model. The tempera-
ture of the simulation is 570 K; the wave vector is given in A . See Section 6.4.

structure as we will ever get, especially for atactic polymers. This property
makes polymers ideal systems to study the glass transition and also explains
the technical relevance of such an investigation. Many of the modern poly-
meric materials are glasses and an understanding or even predictability of
their properties is therefore of high technological importance.7

Great effort has been spent to characterize the liquid-glass transition and
glassy regime in polymers as well as in other glass formers. But, despite all of
the experimental and theoretical effort to date, there is no coherent descrip-
tion available covering the temperature and viscosity regime in Fig. 6.1. Due
to the high degree of (meta-)stable equilibrium in a polymer glass, theories
attempting to analyze the glass transition in terms of an underlying phase
transition that is only blurred by the kinetic effects have been very successful
in describing experimental data on the polymer glass transition. These are
motivated by Kauzmann's finding8 that the excess entropy of the super-
cooled liquid with respect to the crystal seems to vanish at a finite tempera-
ture TI when extrapolated into the glass regime. A theory dealing
specifically with polymers is the one of Gibbs and DiMarzio.9 It uses the
Flory-Huggins10 approach for calculating the configurational entropy for a
melt of self-avoiding walks on a lattice. This approach reproduces the find-
ing of a vanishing configurational entropy at a finite temperature TZ. As the
entropy cannot become negative, the approximation, in which it is calcu-
lated, is assumed to break down and a second-order phase transition is
postulated at that temperature. As the kinetic slowing down obviously inter-
venes with the phase transition, its thermodynamic signature need not be
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experimentally observable. Note, however, that a slight change in the calcu-
lation of the configurational entropy leads to T2 = O11'12 and that so far no
order parameter describing this speculative phase transition could be
defined. This theory, as well as approaches based on the concept of a mini-
mal free volume needed for an atom to move in the dense melt,13 is capable
of reproducing the VF law for the viscosity. None of them, however, admits
for a crossover back to Arrhenius behavior around Tg, and all of them lack
a first-principle derivation. At the other end of the spectrum, recent
advances in the application of the mode-mode coupling formalism to the
structural relaxation in supercooled liquids have led to a purely dynamic
interpretation of the glass transition,14 termed the mode coupling theory
(MCT). It was developed for simple liquids and describes the onset of the
need for activated processes in order for an atom to break free of the cage
formed by its neighbors. The theory is applicable in the slightly supercooled
region up to viscosities of around 1000 poise and produces a very detailed
description of the structural relaxation not only of simple liquids but also of
polymers.15 It is not applicable around Ts and therefore falls short of repro-
ducing the experimental phenomenology at lower temperatures.

In this situation, computer simulations have several prospects to offer.
One can design simple models that reproduce the experimental phenomen-
ology and can then be analyzed in far more microscopic detail. The models
themselves can be simplified to such an extent that one can identify the
molecular properties indispensable for defining a glass-forming substance.
This and the complete microscopic information available allow for a guided
search for possible order parameters needed to address the question of a
possible underlying phase transition. Furthermore, a detailed simultaneous
study of the temperature dependence of the structural and conformational
relaxation in polymer melts is possible.

So, as there is good reason to study the glass transition with computer
simulations, why should one want to use the Monte Carlo method for a
lattice model? Polymers are complex molecules showing internal structure
on length scales from 1A to 100 A. The corresponding relaxation times for
unentangled melts range from 10~13 to 10~7 s already at liquid-like tempera-
tures. It is possible to study realistically detailed models of oligomer melts in
a molecular dynamics or stochastic dynamics simulation16 and to obtain
equilibrated structures in the high-temperature phase. If one wants to
study the glass transition in these models, however, one has to resort to
very high quenching rates (109K/s17'18). But this way one loses one of the
most intriguing features of the polymer glass transition, namely the ability
to perform an almost quasi-static cooling, which makes the transition very
sharp. The high quenching rates introduce a strong rounding of the glass
transition.19

If one is only interested in "universal" properties of the glass transition
there is no need to deal with all the chemical details. This idea led to the very
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early studies of a density-driven glass transition with the use of a lattice
model.20 These simulations were done for self-avoiding walks on the dia-
mond lattice and were intended to study the freezing of the polymer self-
diffusion with increasing polymer volume fraction. The mobility of the
chains in this model is mainly determined by crank-shaft type motions21

involving the simultaneous repositioning of three adjacent monomers
along the chain. With increasing density these motions, which need a lot
of empty space around a chain, die out, leading to a freezing of the self-
diffusion. Therefore, suitably defined lattice models should be able to cap-
ture the more universal phenomenology of the glass transition. One of these
in a sense universal properties is the VF law found in a lot of different
polymer systems and in many molecular glass formers, irrespective of
their structure. In order to treat equilibrated samples in a computer simula-
tion to as low temperatures as possible we will therefore resort to as simple a
model as feasible. The defining properties of a polymer are connectivity and
excluded volume. So one starts off with a melt of threads (Gaussian chain
statistics). Such a model does not crystallize easily from the outset; but to
enforce this behavior we can borrow an idea from the field of spin and
orientational glasses.22 We can choose Hamiltonians that create competition
between the energetics of the chain conformation and the packing require-
ments of a dense melt, leading to a frustrated ground state, where there is no
energetically optimal local conformation of the chains. At this point we
should note further, that such a choice of Hamiltonian may be inspired
by the phase transition treatment of orientational glasses, but it also has a
purely kinetic effect in that it creates barriers to local structural relaxation.
The chains have to assume energetically unfavorable conformations in order
for the structural relaxation of their environment to proceed. By then choos-
ing a lattice model and an imposed Monte Carlo dynamics one gets the
numerically most efficient implementation of a still reasonable microscopic
dynamics, which is the numerical realization of a master equation in discrete
time. This stochastic dynamics cannot be expected to reproduce dynamical
features on the time scale of bond length or bond angle vibrations.
Conformational and structural relaxation on longer time scales, however,
is brought about by jumps among the different minima in the torsional
potentials along the chains. These are activated processes with a waiting
time distribution depending on the Newtonian dynamics on the shorter
time scales. For relaxational processes consisting of many of these jumps
the dynamics can be approximated by a stochastic process, and on these
time scales the Monte Carlo dynamics can be expected to be a representa-
tion of the real systems.

The choice of a lattice model also introduces a change in the ensemble as
compared to the experimental situation. Experiments are usually done under
constant pressure, whereas the simulations will be done at constant volume.
The basic phenomenon of the glass transition is of course observable under
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constant volume as well, but when we model a specific polymer in Section
6.4 we will further comment on the deviations to be expected because of the
different ensembles. In Section 6.2 we will discuss the bond fluctuation
model used in the simulations presented further on and define the
Hamiltonians chosen. Section 6.3 will then present results on general fea-
tures of the glass transition in polymer melts, and Section 6.4 will show how
these lattice simulations can be used to model large-scale properties of a
specific polymer material. Finally, Section 6.5 will give a summary and an
outlook.

6.2 Model and simulation technique

6.2.1 The definition of the bond fluctuation model

The simulation results we will be presenting were all obtained using the two-
dimensional or the three-dimensional version of the bond fluctuation lattice
model.23"25 This model was proposed as an intermediate description
between a highly flexible continuum treatment and the traditional lattice
models, where the flexibility of the chains that are then described as self-
avoiding or random walks on the underlying lattice is fully determined by
the structure of this lattice. It bears on the fact that the usual high tempera-
ture persistence length in these lattice models is close to one, meaning that
one repeat unit or monomer in the lattice model represents a group of atoms
along the real chain and that the lattice bond should be interpreted as the
vector joining the mass centers of these groups. Its length and direction will
fluctuate, and the bond fluctuation model brings this idea to the square and
simple cubic lattice in two and three dimensions, respectively. The repeat
unit is taken to be a unit cell on the respective lattice so that the monomer
occupies four lattice points in two and eight in three dimensions. The algo-
rithmic advantage of a lattice model is that one can implement the excluded
volume interaction among the monomers by simply allowing only single
occupancy of each lattice vertex. The set of bond vectors defining the
model in its two- and three-dimensional versions is determined by chain
connectivity as the second minimal ingredient for a polymer model and
the stochastic Monte Carlo dynamics we want to implement. We want to
choose a monomer at random, choose a lattice direction at random, and
then in the athermal case move the monomer to this new position provided
it has been empty and provided no two chains intersect during the move, so
that the chain connectivity is guaranteed. To implement this in a fast algo-
rithm one can limit the set of possible bonds to maximal sets that guarantee
the fulfillment of the chain connectivity requirement as long as one stays
within the sets with each monomer move. In two dimensions this is the set
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where the square brackets denote the equivalence classes of all vectors that
can be generated from these basic ones by applying all lattice symmetry
operations, whereas in three dimensions it is

Figure 6.3 shows the three-dimensional version of the model. In two dimen-
sions there are 36 bonds with six different lengths and 41 different bond
angles, whereas in three dimensions there are 108 bonds with five different
lengths and 87 different bond angles. As could already be seen in Fig. 6.2,
this produces a very flexible polymer model in which the underlying lattice
has no discernible effect on the structure of the melt.

6.2.2 Hamiltonians and cooling procedures

If we want to study a temperature-driven glass transition with this model we
have to augment it with a Hamiltonian using its natural degrees of freedom,
namely the bond lengths and bond angles. The results presented in the next
sections were obtained using three different Hamiltonians. The first two
employed for the simulations discussed in Section 6.3 are simple model
Hamiltonians designed to produce a geometric frustration effect upon cool-
ing, as discussed in the introduction. The first Hamiltonian employed for the

Fig. 6.3 A drawing of the three-dimensional version of the bond fluctuation model showing the
unit cube repeat units and a few of the possible bond vectors.
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simulation of the two-dimensional model, which we will call Hamiltonian A,
is26:

The simulations done with this Hamiltonian used a cooling scheme that is
linear in the inverse temperature

with /?(/) = \/T(t), /?max = I/'Train. = 10 and TQ = 4 • 1(T7. The temperature
is measured in units of the strength of the harmonic potential in eq. (6.6). In
the ground state of this Hamiltonian each bond belongs to the equivalence
class [3,1] but as will be shown in the next section it then blocks one addi-
tional lattice point besides the four vertices taken by the monomer. A
volume fraction of <f> > 0.8 therefore must lead to a geometric frustration
of the ground state.

The second Hamiltonian (Hamiltonian B) set up along this line of reason-
ing is even more simplified, using just a two-level system for the possible
energies

Bonds belonging to the class [3,0,0] resp. [3,0] block four additional lattice
points in 3d and two additional ones in Id, leading to a geometrically fru-
strated ground state for (j> > 2/3. For the quenching runs with this model
the same cooling scheme is used as for Hamiltonian A (eq. [6.7]). In 2d one
quench rate, FQ = 4 • 10~5, is employed, whereas for the simulations in 3D
the effect of the cooling rate was explicitly studied using 14 different rates.27

We will show results for the following five representative rates:
rQ = 4 • 1(T5,8 • 10~6,4 • 1(T6,8 • 1(T7 and 4 • 10"7.

Finally, we will use Hamiltonian C for the modeling of specific polymeric
materials.28 This Hamiltonian is constructed similar to force fields used to
parametri/e bond length and bond angle contributions in real polymers

The four parameters in these potentials will be optimized for the modeling
of specific substances. This procedure and the application to bisphenol-A-
polycarbonate will be discussed in Section 6.4. For these simulations a
stepwise cooling was used, giving the system enough time to equilibrate at
each temperature and cooling it down to as low temperatures as this is
computationally feasible.
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The thus specified Hamiltonians are then used in a dynamic Monte Carlo
simulation29 (see Chapter 1) that is a numerical realization of the discrete
time master equation

where x denotes the configuration of the polymer melt. The transitions
between configurations are implemented by the following steps:

• choose a monomer at random
• choose a lattice direction at random
• check whether the new lattice position is empty (excluded volume)
• check whether the new bonds are in the allowed set (chain connectiv-

ity)
• calculate the energy change caused by the move and accept it with

probability min(l,exp[—/3AE]).

A large computational effort has gone into ensuring a high statistical
accuracy of the data. The results for Hamiltonian A are averages over
12 800 chains or 128 000 monomers, those for Hamiltonian B were obtained
for 28 800 chains and 288 000 monomers, and those for Hamiltonian C used
6600 chains and 132000 monomers. The simulations were done on 64 (A),
500 (B, Id), 16 or 160 (B, 3d) and 33 (C) replicas of a basic simulation box of
size 1002 (A), 602 (B, Id), 303 (B, 3J) and 403 (C).

6.3 Results for the schematic models

If a melt of chemical polymers is cooled down, the bonds of the chains will
try to adopt the energetically favorable "trans" state.30 In order to reach this
state the parts of the chains adjacent to the bonds have to be rotated. This
rotation requires a certain amount of space which may or may not be
available for a specific bond in a dense melt, depending upon the spatial
arrangement of the polymers around it. Therefore the presence of the sur-
rounding polymers can hinder or even prevent the tendency of a chain to
stretch out. This feature is clearly apparent from various attempts to simu-
late the glass transition of polyethylene17'18 rather realistically which are
described in Chapter 5. It is this interplay between the expansive intrachain
interaction with the effectively repulsive interchain forces, which the model
Hamiltonians A and B (see eqs [6.6] and [6.8]) try to mimic in an elementary
fashion and which may be summarized by the term "geometric frustration".
The effects of the geometric frustration cause the melt to maintain its amor-
phous liquid-like structure while it is being continuously cooled down from
the liquid to the frozen glassy phase according to the prescription of eq (6.7).
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Figure 6.4 exemplifies this behavior by opposing a snapshot of a config-
uration belonging to the temperature region of the liquid (i.e., T — 1.0 [Fig.
6.4(a)]) with one which corresponds to the glassy phase (i.e., T = 0.1 [Fig.
6.4(b)]) for a two-dimensional melt that is equipped with the Hamiltonian A
(eq. [6.6]) and consists of chains with TV = 25 at a density of </> = O.8.26 The
snapshots were obtained during a cooling run with a rate FQ = 4 • 10~7,
following eq. (6.7).26 A glance at the global features of these snapshots
shows that both the high- and low-temperature configurations possess a
disordered amorphous structure, proving that the chosen model
Hamiltonian effectively prevents crystallization at the considered density
and forces the melt to vitrify. The Hamiltonian A especially favors the
large bonds of the equivalence classes [3,0] and [3,1]. Since the bond vectors
of these classes either block one (for [3,1]) or two (for [3,0]) lattice sites (see
Fig. 6.5) which are no longer accessible for other monomers, this loss of
volume has to be compensated in order to make the density <p stay the same.
How the melt achieves this compensation is illustrated in Fig. 6.6, which
magnifies the encircled polymer of Fig. 6.4(a) together with its immediate
environment. Most of the bonds of the shaded polymer belong to the
equivalence class [2,2], which allows the chain both to adopt a small energy
(H(\2,2]) = 0.08) and to pack as densely as possible. This compromise
between the energetic and geometric constraints leads on the one hand to
an overall expansion of the chains and on the other hand to a local orienta-
tional correlation among the chains. On the length scale of the average
chain's size these two aspects are the most apparent qualitative differences
between the high- and the low-temperature configuration displayed in Fig.
6.4.

In order to quantify the qualitative observations from the configurations
one should calculate quantities which are sensible to the structural changes

Fig. 6.4 Snapshots of a polymer configuration, generated by the 2d version of model A at
T = 1.0 (a) and T = 0.1 (b), and with the following parameters: N = 25, P = 80 and ij> = 0.8.
The encircled polymer of Fig. 6.4(b) is shown in more detail in Fig. 6.6.
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Fig. 6.5 Three possible positions of a dimer on a square lattice. The marked sites (Q) cannot be
occupied by other monomers without overlapping with the dimer and are thus not available for
them. In a dense melt this blocking of lattice sites leads to a competition between the energetic
and geometric constraints of the chains, which prevents crystallization.

that occur on the different length scales of the melt during the cooling
process. Such quantities are, for instance, the mean bond length, the radius
of gyration, the chain's structure factor and the collective static structure
factor, the temperature and cooling rate dependence of which will be dis-
cussed in the next subsection. From these data one can try to extract the
influence of either the cooling rate or, if one additionally varies the size of
the polymers, of the chain length on the glass transition temperature. The

Fig. 6.6 Magnification of the encircled polymer of Fig. 6.4(b) together with parts of its envir-
onment. Most of the bonds of the shaded polymer belong to the equivalence class [2, 2] since the
energy of the chain then becomes small. The open circles mark sites which are blocked by the
bond vectors belonging to the classes [3, 0] and [3, 1], respectively.
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results of this analysis are presented in Section 6.3.1.3. After having con-
centrated on the structural properties and their corollaries we address the
gists of the dynamical behavior of the melt in subsection 6.3.2.

6.3.1 Structural properties of the melt

A comparison of the temperature dependence of the various structural
quantities, presented in Refs 26, 27, and 31 for the model Hamiltonians A
and B shows that neither the choice of the Hamiltonian nor the spatial
dimension introduces qualitative differences in the freezing behavior of
the melt when the cooling is done at a finite rate. Therefore we want to
base the following discussion on the results obtained for the two- and three-
dimensional version of model B. The cooling-rate dependence of the struc-
tural properties of the melt and of the glass transition temperature will be
exemplified by the three-dimensional simulation, which was done with poly-
mers of length N = 10 at a density of </> = 0.53 (see Section 6.3.1.3), whereas
the influence of the chain length on the glass transition was studied in two
dimensions, using the same density as in the three-dimensional case (see
Section 6.3.1.3).

6.3.1.1 Mean-squared bond length and radius of gyration

Figure 6.727 depicts the temperature dependence of (b^pc)npc for the five
representative cooling rates mentioned in Section 6.2.2. In the high-tempera-
ture region (T e [0.6,2.0]) the curves for the different cooling rates nicely
collapse, indicating that the melt is in a thermally equilibrated liquid state.
In this state it is mobile enough to respond easily to the speed, by which the
temperature is reduced. The effect of the finite cooling rate starts to be felt
below TKI 0.5 and is accompanied by a strong expansion of the mean bond
length. The increase of (b^pc)npc continues until the temperature reaches
T PS 0.2, where the curves level off. In this temperature range the intrinsic
relaxation times of the melt become comparable to the observation time
which is determined by the cooling rate. Then the system falls out of equili-
brium and (b^pc}npc gets locked at a value depending on the cooling rate. The
smaller the cooling rate, the more time the melt has to relax. Therefore this
final value of (b2

npc}npc in the low temperature region (T < 0.2) increases with
decreasing cooling rate. However, it is always smaller than nine, which
would be the expected value for (blpc)npc if all bonds were in the ground
state. This result shows that the model Hamiltonian B (as well as the
Hamiltonian A [see Ref. 26]) indeed introduces strong topological con-
straints leading to geometric frustration. Due to the present frustration
effects and due to the fact that the melt appears to be frozen on the time
scale of the simulation, the above specified low temperature region T < 0.2
will be called "glassy phase".
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Fig. 6.7 Plot of the mean bond length vs. T for five different cooling rates: FQ = 4 • 10~5«>),
FQ = 8 • 10-6 (+),rQ = 4 • ID"6 (D), TQ = 8 • 10~7(x) and TQ = 4 • 10~7(A). This result was
obtained by a simulation of the 3d model B with N = 10, P = 180, and (j> = 0.53.

In addition to the scale of a bond, another important length scale for a
polymer is that of the radius of gyration. This quantity is defined by:

where rnpc is the vector to monomer n in polymer p of configuration c, Rpc is
the vector to the center of mass for the respective polymer, and the symbol
(*)pc stands for:

with the explicit values N= 10, P= 180 and C = 160. The result of the
simulation is shown in Fig. 6.8. Qualitatively the dependence on tempera-
ture and on the cooling rate of the curves resembles very much that of the
mean-squared bond length. In the high temperature range above T = 0.5 all
five curves nicely collapse, proving that the melt is also in equilibrium on
this length scale whereas R^ steeply increases below T = 0.5 before it crosses
over to a constant value in the temperature region where the melt vitrifies.
Despite these qualitative similarities between the shapes of (b^pc)npc and
RQ(T), a closer comparison of the two quantities reveals that the RQ
increases by the same amount (approximately 3%) as the mean-squared
bond length in the high temperature region, whereas at T < 0.5 the cooling
rate crucially affects the strength of stretching on the two length scales. For
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Fig. 6.8 Radius of gyration vs. temperature for the same cooling rates as in Fig. 6.7. The error
bars are only included for the fastest cooling rate for the sake of clarity. The dashed-dotted and
the dashed lines correspond to the generalized nonreversal random walk (NRRW) approxima-
tion.27

TQ = 4-10~5 (b% ) c expands faster than JQ(T) whereas the opposite is
true for rQ = 4-10~7.

In order to illustrate this point further the simulation data may be com-
pared with a generalized non-reversal-random-walk (NRRW)21 approxima-
tion of RQ, which can be obtained from a prescription that Flory describes
in his textbook30 if one uses the bond vector and bond angle distribution
functions from the simulation to perform the necessary averaging.32 This
analytical calculation thus depends upon the details of the cooling process.
The result of the approximation is also shown in Fig. 6.8, exemplified for
three of the cooling rates. Since the NRRW-approximation only partially
takes into account the condition that no two monomers may overlap, the
calculated ^-values are systematically smaller than the simulated ones in
the high-temperature region, because the self-avoidance of the monomers
makes the polymer stiffer. As soon as the influence of the cooling rate starts
to be felt, however, the NRRW-approximation crosses the simulation data
and settles down at a higher value of RQ in the glassy temperature region for
all of the cooling rates. This a priori unexpected result can be rationalized
thus: since the NRRW-approximation only takes into account correlations
between neighboring bond vectors, it is only affected by processes which
happen on the local length scale of a bond. Changes on this length scale
require a shorter amount of time than changes on a larger scale, because
more and more monomers are involved in the regrouping motion the larger
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the length scale is. Hence different time scales belong to different length
scales. If the temperature is lowered very fast, only the local structure of
the melt may be able to adapt to this speed, whereas the larger structures
essentially remain in a state which corresponds to a higher (internal) tem-
perature.

That these retardation effects, inferred from the comparison of the
NRRW-approximation and the simulation data only very indirectly, are
actually present should be seen if one plots the ratio of the radius of gyration
and of the mean-squared bond length, i.e., R2

G/(b2
npc}npc versus temperature

for the different cooling rates. This is done in Fig. 6.9. It is clearly visible
that the mean-squared bond length expands faster than the radius of gyra-
tion if the cooling rate is large. The slower the cooling rate becomes the
more R^ catches up with the stretching of (b2

npc)npc, until a cooling rate is
reached, at which both length scales are affected in the same way (i.e., at
TQ = 4-10"6). For even smaller cooling rates the radius of gyration expands
more strongly than the mean-squared bond length, due to the contribution
of the bond angles to the overall size of polymer.

Presumably it would be possible to verify the result, presented in Fig. 6.9,
in a neutron scattering experiment33 if one measured the structure factor of
a chain in the vicinity of the glass transition for various cooling rates. From
the behavior of the structure factor at small wave numbers q one could
determine R^^TQ), whereas the end of the scaling regime, where the
structure factor is proportional to q2, would yield the temperature- and
cooling-rate-dependence of the persistence length30'34"36. Since a monomer

Fig. 6.9 R2q/(b2
np) pc vs. temperature for the same cooling rates as in Fig. 6.7. Error bars have

only been included for the fastest cooling rate for the sake of clarity.
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of the bond-fluctuation model stands for a group of chemical monomers
(see Section 6.2.1) the persistence length of the chemical polymer chain
should correspond to the bond length of the lattice model. With such a
scattering experiment it would therefore be possible to decide whether the
observed result is a peculiarity of the used model or a characteristic feature
of polymers close to the glass transition.

6.3.1.2 Structure factor and related quantities

The last paragraph was primarily concerned with the influence of the
cooling rate on both the local length scale of a bond vector and the global
length scale of the radius of gyration. In order to extend this analysis, one
should calculate quantities which provide information about the structural
changes on all length scales in the melt, such as the collective static structure
factor or the chain's structure factor.

The collective static structure factor for an isotropic system can be defined
in the following way37:

where rnc is the vector to the center of gravity of the «-th monomer in
configuration c, (•)c represents the average over all independent configura-
tions defined analogously to eq. (6.12), and the symbol [»]g stands for the
lattice analogue of a spherical average in the continuous reciprocal space.38

The result of the simulation for S(q) is plotted in Fig. 6.10 versus q for the
intermediate cooling rate FQ = 4-10~6 and for two representative tempera-
tures from the glassy and the liquid phase, i.e., T = 0.05 and T = 1.8.38 For
these two temperatures the structure factor has the expected shape of a
liquid-like system. Since there are no long-range correlations in a liquid,
its structure factor exhibits a large first peak which corresponds to the
most probable distances between the particles in the liquid and is followed
by a sequence of peaks with decreasing intensity, reflecting the loss of spatial
correlations.37 For a polymer liquid one typically finds two important peaks
for <?-values smaller and equal to that of a bond length, whereby the first one
is usually related to interchain interactions and the second, less intense, is
attributed to the correlations on the length scale of a bond.39 Although this
simulation models a polymer melt, one can observe only one peak in this Ar-
range, having its maximum around q = 3.0, which corresponds to a length
of / w 2.0 in real space, i.e., to the smallest distance that two monomers may
have. This observation can be rationalized by the fact that different chains
interact via a hard-core potential which is only felt if two monomers try to
overlap. Therefore the two experimentally found peaks for polymer liquid
are here combined to one peak, the maximum of which is slightly shifted to
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Fig. 6.10 Plot of the collective static structure factor S(q) vs. q for the temperatures and
r=0.05 (O) and T= 1.8 (+) and for the intermediate cooling rate rQ = 4-l(T6 .
Additionally, a dashed and a dotted horizontal line are shown which correspond to KT/KT
calculated by the block-analysis method, respectively (see text). The model is the same as in
Fig. 6.7.

lower q-values as the temperature is decreased. This effect is certainly due to
stretching of bond vectors caused by the model Hamiltonian. Besides this
weak temperature dependence of the maximum the shape of the structure
factor stays the same for all temperatures in the low #-range. In particular,
no additional peak develops at small ^-values (i.e., q < 2.0) for low tem-
peratures, which would indicate an onset of crystalline ordering. The simu-
lated polymer melt thus conserves the liquid-like structure when it freezes,
i.e., it really becomes glassy. In the large q-range (q > 4.0, which has to be
considered with caution due to a systematic deficiency of the spherical
averaging procedure on the lattice38) the structure factor shows the inter-
esting feature that a small secondary peak quickly loses all its weight as the
temperature decreases. This strong temperature dependence must result
from subtle interference effects, to which mainly the small bond vectors
might have contributed. Since the choice of the model Hamiltonian espe-
cially suppresses them, the intensity of the structure factor will reduce in the
respective ^-range. Another Hamiltonian might therefore affect the shape of
the structure factor quite differently for large ^/-values. This fact is clearly
apparent from the structure factor presented in the introduction (Fig 6.2),
which resulted from the simulation of the bond-fluctuation method with the
Hamiltonian C modeling bisphenol-A-polycarbonate (eq. (6.9); see Section
6.4.2 for more details).40 In this simulation the collective structure factor
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was determined at a temperature of approximately twice the Vogel-Fulcher
temperature1 which corresponds to T fa 0.3 in model B,27 as will be shown
below (see Section 6.3.2.2). This temperature thus belongs to a regime where
S(q) has already significantly lost in intensity for q > 4. Contrary to this
behavior the calculated structure factor of bisphenol-A-polycarbonate does
not decay to small values in the corresponding g-range (Fig. 6.2). However,
the structure factor of bisphenol-A-polycarbonate was calculated after a
long relaxation run, which sufficed to equilibrate the polymers on all length
scales, so that the history of the cooling process was eliminated, contrary to
the simulation with the model Hamiltonian B. Whether the shape of S(q) for
large (/-values is primarily determined by the choice of the model
Hamiltonian or whether the cooling rate also has a crucial influence on it
is still unclear, but will be studied by an analysis of the melt's physical aging
in the future.

In addition to the behavior of the structure factor at large (/-values, also
the small (/-limit of S(q) is interesting because it is related to the isothermal
compressibility «T-37 Moreover, the isothermal compressibility can also be
calculated from the density fluctuations in subsystems, using the so-called
"block-analysis",41 by virtue of the fluctuation-dissipation theorem.37

Therefore there are two independent ways to determine KJ in the simulation,
which should coincide:

In eq. (6.14) the symbol (»); means the thermal average over a subsystem of
linear dimension / and KJ is an abbreviation for the isothermal compressi-
bility of the ideal gas, i.e., «£ = (Tp)~l, whereby p is the average density of
monomers, i.e., p = 0/8. In Fig. 6.10 the result of the block analysis for the
two studied temperatures T— 1.8 and T= 0.05 is included as a dashed and
dotted horizontal line, respectively, proving that the small (/-limit of S(q)
and the calculation of the isothermal compressibility according to the fluc-
tuation-dissipation theorem indeed coincide in our simulation, as required
byeq. (6.14).

The full temperature dependence of the isothermal compressibility for the
cooling rate TQ = 4-10~6 is shown in Fig. 6.II.38 Although a first glance at
this picture immediately reveals that despite the large statistical effort of our
simulation—please note that the averaging is done over about 300000
monomers—the accuracy of the block-analysis is still too poor to draw
quantitative conclusions from it, the statistics suffice for a qualitative inter-
pretation. In the high temperature region (T & [0.6,2.0]) the ratio KT/KT
fluctuates around a mean value in the interval between 0.21 and 0.215
(see the dashed line in Fig. 6.11). This high-temperature behavior of the
isothermal compressibility can be understood if one uses the equation of
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Fig. 6.11 Plot of the temperature dependence of the isothermal compressibility obtained by the
block-analysis method (see text). In addition, a dashed horizontal line at KT/KT = 0.212 is
shown which is the high-temperature result from eq. (6.17). The model is the same as in Fig. 6.7.

state for the athermal bond fluctuation model, derived by Deutsch and
Dickman,42 in order to calculate the ratio KJ/KJ. The result reads:

In this equation ^hs stands for the volume fraction of the hard sphere poly-
mer chains in the continuum of space, and the ratio v(N)/v(l) measures the
increase of the excluded volume for a chain of length N in comparison to a
monomer. Inserting the appropriate values for N = 10 in eq. (6.15) the final
result for the isothermal compressibility of the athermal melt becomes:
KI/KJ = 0.212, which is included as a dashed horizontal line in Fig. 6.11.
This horizontal line describes the high-temperature behavior of the isother-
mal compressibility very well, emphasizing that the structural properties of
the melt are mainly determined by entropic effects in the temperature inter-
val T£ [0.6,2.0]. If one reduces the temperature further the ratio K^/K^
starts to decrease before it levels off in a narrow temperature range around
r« 0.25 and gets locked at a temperature-independent value for T < 0.2, a
behavior reminiscent of that of (b2

npc}npc (see Fig. 6.7) or of R^ (see Fig. 6.8).
Close to T w 0.25 the melt gets trapped in a configuration from which it
cannot easily escape, so that the density fluctuations freeze. This freezing of
the density fluctuation below a certain temperature, which is preceded by a
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decrease of the isothermal compressibility, has been predicted by the mode
coupling approach to the glass transition.14 The behavior of the ratio KI/K\
is thus qualitatively consistent with this theory and seems to indicate the
existence of a critical glass transition temperature14 below TfvQ.25.
However, one has to be cautious with this kind of interpretation in the
framework of the mode coupling theory at the present stage of the simula-
tion, because the melt falls out of equilibrium (around T w 0.25) if the
cooling process becomes too rapid. Therefore an important assumption of
the theory, namely that the system is thermally equilibrated over the whole
interesting temperature range, is not met. Only long relaxation runs at the
respective temperatures can prove whether the freezing of the density fluc-
tuations persists or whether it vanishes as the melt adapts more and more to
the external temperature of the heat bath. These relaxation runs have been
performed for the three-dimensional model B in order to test the predictions
of the mode coupling theory afterwards. The results of this analysis are
summarized in Section 6.3.2.3.

Another interesting quantity in this context is the static structure factor of
the polymer chains Sv(q). Sp(q) can be defined analogously to the collective
static structure factor:

In this equation the sum runs over all monomers of a chain, and symbols of
the averages (»)pc and [•] have the same meaning as in eqs (6.12) and (6.13),
respectively.38

Since experiments suggest that the polymers preserve their Gaussian
shape30'34'35 when the melt vitrifies36 one can try to compare the results of
the chain's structure factor with the Debye formula30'34'35 for some inter-
esting temperatures ranging from the liquid to the glassy region. The Debye
formula is given by the following expression30'34'35:

The results for R2
G, discussed in Section 6.3.1.1, will be used in the Debye

formula in order to compare it to the simulated values of Sp(q).
The simulated values of Sp(q) as well as the Debye formula exhibit a

typical behavior for small and intermediate g-values.30'34'35 Irrespective of
the specific statistics to be applied for the configurational average, the initial
decay of the static structure factor is related to the characteristic size of the
scattering object, i.e., to the radius of gyration of the polymer in our
case30'34'35:
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Therefore the simulated structure factor and the Debye formula must at
least coincide in this range of ^-values if one uses the simulation results
for RQ in eq. (6.17). In addition to the behavior for small <?-values there
is an intermediate g-range between the ^-values corresponding to the length
scale of the radius of gyration and that of the mean bond length (b2

npc}
ljpc

where the static structure factor should become independent of the degree of
polymerization, provided that the chains are very long and behave as
Sp(q) oc q~2, which is the typical scattering law in this ^--regime for
Gaussian statistics, i.e.,30'34'35:

Figure 6.12 exemplifies this comparison of the simulated chain's structure
factor with the Debye formula for the temperatures T= 0.05 and T — 1.8
and the slowest studied cooling rate FQ = 4 • 10~7. If the </-values are very
small (i.e., q <C 0.1) the structure factor of the polymer only depends upon
the number of scattering monomers and not upon their spatial arrangement,
so that Sp(q) is independent of temperature in this range. For larger g-values

Fig. 6.12 Temperature dependence of the static structure factor of a polymer Sp(q) and com-
parison of Sp(tj) with the Debye formula (eq. [6.17]). The diamonds (O) and the crosses (+)
correspond to the simulation results at T= 0.05 and T= 1.8, respectively, whereas the Debye
formula at the two temperatures T = 0.05 and T — 1.8 is represented by the dashed and the
dotted lines. The model is the same as in Fig. 6.7.
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Sp(q) starts to decay as is required by eq. (6.18). Due to the above-men-
tioned independence of this behavior from the configurational statistics, the
validity of eq. (6.18) ceases when the simulated structure factor and the
Debye formula begin to deviate from each other. This deviation occurs
for q « 0.3 which is still distinctly smaller than q = 27T/RQ « 1.627(see eq.
[6.18]). For larger (/-values the Debye curve first lies slightly above the
simulated structure factors at both temperatures before it crosses them in
the interval q e [1,2], an interval which probes the length scale of the radius
of gyration (i.e., q = 2?r//?G ~ 1-6). Whereas one does in general expect the
Debye formula to become invalid for (/-values which are sensitive to changes
on the length scale of a bond vector, since a polymer does certainly not
exhibit a Gaussian structure on that length scale, the slight deviation of
Sp(q) from the Debye formula on the scale of the radius of gyration
could not have been predicted in advance. It shows that the lattice chains
of the bond fluctuation method, having a length of only N = 10, already
approximate the character of highly polymerized substances (i.e., chains
with N —> oo) extremely well. However, they are still a little bit too small
for the scattering law of eq. (6.19) to be observed. The longer the polymers
are the larger the radius of gyration becomes and the more the lower limit
for the validity of eq. (6.19) is pushed to smaller ^-values. Whereas one can
only hope to find the scattering law of eq. (6.19) in the range
2TT/RG K\.6<q< 27r/(b2

npc)
l
n£ « 2.227 for N= 10, for N=25 the lower

bound would probably be shifted to (8-n2 / 5R^(N = 10))1/2 « 1.0 and thus
be more strongly separated from the region of the microscopic lengths, so
that the simulated structure factor and the Debye formula should coincide
even better. Indeed, a chain length of N = 25 suffices to find the asymptotic
scattering law Sp(q) oc q~2, as the analysis of the two-dimensional model A
shows.26 Although a degree of polymerization N = 10 is therefore slightly
too small to allow for a more quantitative comparison with the Debye
formula, the qualitative comparison of Sp(q) with it can explain the tem-
perature dependence of the structure factor. According to eq. (6.17), S®E(q)
decreases if the radius of gyration increases, so that the shift of the simula-
tion results to lower ^-values with falling temperature emphasizes the ten-
dency of the polymers to stretch out not only on the length scale of the bond
vector (i.e., for q € [2,2.5]), but on all others as well. This expansion of the
chains during the cooling process is a general result which is independent of
the specific choice of the model Hamiltonian and the dimensionality of
space.26'27'38

6.3.1.3 Chain and cooling rate dependence of the glass transition
temperature

From the s-shaped curves of Fig. 6.7 or of Fig. 6.8 one can try to extract
the cooling rate dependence of the glass transition temperature Tg if one
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defines Ts as the intersection point of a linear extrapolation from the liquid
and the glassy region.1'27 A glance at the plots for (b2

np^npc and R2
G shows

that only the linear extrapolation from the glassy region is well defined,
whereas that from the liquid region is not. To determine Tg(rQ) from
these quantities would thus introduce systematic errors.27

A quantity much better suited for this kind of analysis is the internal
temperature T; of the melt, which is reflected in the actual distribution of
the bond vectors on the two available energy levels.27 As long as the melt is
in thermal equilibrium the external heatbath, characterixed by the tempera-
ture T, controls the population of the two energetic states, whereas this is no
longer the case when the melt falls out of equilibrium and finally freezes.
Therefore the actually existing energetic distribution of the bond vectors can
serve as a "thermometer" to measure the internal temperature of the melt, if
one requires T; to be27:

In this equation 7V(0), N(e), go and ge stand for the number of bonds in the
ground and the excited state and for the degree of degeneracy of the ground
and the excited state, respectively.27 Figure 6.13 shows a plot of the ratio
T/Ti versus temperature. One can see that the linear extrapolations from
both the glassy and the liquid region are now well defined, so that Tg may be
determined unambiguously. The result of this analysis from Tj, presented in
Fig. 6.14, yields a nonlinear relationship between the Tg and InFQ, which
can be very well described by the following equation:

In this equation Tk stands for the freezing temperature at an infinitely slow
cooling rate (i.e., limrQ_»o ^(FQ) =: TK). The abbrevation TK for this limit
was chosen to remind one of the Kauzmann paradox,8 which originates
from a similar extrapolation procedure. TK will therefore also be referred
to as Kauzmann temperature in the following. In eq. (6.21) TK is a fit
parameter such as A and B. From the fit one obtains: TK = 0.17 ± 0.02,
A = 0.467 ± 0.200 and B = 5.85 • 10~3 ± 2.5 • 10™3. The motivation to set
up eq. (6.21) stems from the experimentally well established Vogel-
Fulcher law for the viscosity jj(T)1 and the possible definition of the glass
transition temperature as that temperature where the simulational observa-
tion time 4im becomes comparable to the relaxation time r(T] of the
considered system.1 Using therefore the Vogel-Fulcher law with
rj(Tg) oc r(Tg) = 4im and eq. (6.7) one immediately arrives at eq. (6.21).
The numerical result for the Kauzmann temperature coincides within the
error bars with the Vogel-Fulcher temperature T0 that one obtains by fitting
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Fig. 6.13 Plot of T/T[ vs. Tfor the five different cooling rates, with the same choices and for the
same model as in Fig. 6.7.

the Vogel-Fulcher law to the chain's diffusion coefficient,27 which will be
discussed in more detail in Section 6.3.2.2. Although both extrapolated glass
transition temperatures are consistent with each other within the numerical

Fig. 6.14 Freezing temperature Tg vs. TQ obtained from the cooling rate dependence of the
internal temperature (see Fig. 6.7). The dashed line represents a nonlinear fit to the data using
eq. (6.21).
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uncertainties, as it is expected from experiments,9 their agreement in this
simulation could also be accidental, since the value of Tk or T0 would
probably change if additional much slower cooling rates could have been
simulated or if the diffusion coefficient could have been reliably determined
for much smaller temperatures. A glance at the diffusion data of Fig. 6.19
shows that the diffusion coefficient decreases by about two orders of mag-
nitude in the studied temperature interval. If one compares this to the
behavior of an experimental transport coefficient, for instance to the
increase of the shear viscosity over its typical value for a fluid in the normal
state, the resulting value of the viscosity typically corresponds to a time scale
of nanoseconds which is more than ten orders of magnitude smaller than
that of the calorimetric glass transition temperature.14 Since extrapolations
will certainly become more and more unreliable the larger the range that
they have to cover, the extrapolated results for the Kauzmann and Vogel-
Fulcher temperature should not be looked upon as an accurate value for the
absolute freezing point of the simulated polymer melt, but rather as an
estimation of the temperature regime in which the interesting glass physics
of this model might occur.

Although quantitative predictions of the here-attained extrapolations are
subject to scepticism due to the limited size of the available temperature or
cooling rate interval, the studied cooling rate interval is still large enough to
show that the experimentally often observed linear relationship between Ts

and In FQ is only to be found if one confines the simulation to a small range
of cooling rates (for instance, to FQ € [1-10~6,1-10~5] in this simulation).
The larger this range becomes the more the actual relationship should devi-
ate from the linear one, because it predicts that Tg diverges as the cooling
procedure approaches a quasi-static and thus thermodynamically well
defined process. How large the cooling rate interval has to be in order to
find a deviation from the linear behavior depends upon the studied glass-
former. Contrary to metallic glasses the glass transition temperature of
polymers changes only slightly with the cooling rate.43 In the case of poly-
vinylacetate or polymethylmethacrylate it decreases, for instance, by about
8°C1'3'44 or by about 11°C,43 respectively, if the cooling rate is reduced by
more than three decades. Nevertheless, polymethylmethacrylate already
possesses a rather pronounced nonlinear relationship between Tg and
InFQ, which may be very well described by eq. (6.21).43

In the same way that one can extract the cooling rate dependence of the
glass transition temperature it is also possible to determine the influence of
the chain length on the freezing behavior of the melt. This influence was
studied for the two-dimensional version of model B. The simulations were
performed at the same density as in three dimensions (i.e., 0 = 0.53) by
monitoring the temperature dependence of the above-discussed quantities
for several representative chain lengths N from the interval N 6 [3,16] while
cooling the melt at the fastest rate (i.e., FQ =4-10~5) used in the three-
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dimensional case.45 The results of these simulations show that the chain
length qualitatively affects the temperature dependence of the melt in the
same way that the cooling rate does. There is a high temperature region
where the melt is in thermal equilibrium, followed by a transition region
where the influence of the finite cooling speed begins to develop, and a
glassy region where the melt is frozen in a state that depends upon the
si/e of the chain length. The properties of this final glassy state are the closer
to equilibrium the smaller the chain length is,45 which stresses how crucially
the chain ends dominate the mobility of the polymers and thus their ability
to relax.

As for the variation of the cooling rate, one can try to determine the chain
length dependence of the glass transition temperature Tg by looking for the
intersection point of the linear extrapolations from the liquid and the glassy
region in a plot of the ratio TjT\ versus temperature. The result of this
analysis from T\, which is presented in Fig. 6.15, yields a linear relationship
between the Tg and the inverse chain length as has been claimed by theory46

and affirmed in many experiments.47

Fig. 6.15 Plot of Tg versus I/TV which was determined from the internal temperature of the 2d
version of model B with N = 10,0 = 0.53, and TQ = 4 • 10~5.

6.3.2 Dynamic properties of the melt

The discussion of the last subsection and of the experimental investigations
on the structural properties of glasses we mentioned in the introduction
showed that no sharp distinction between the fluid and the glassy state exists
on structural grounds. A distinction between these two states can, however,
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be made if one compares their typical structural relaxation times, which
might for instance be measured by the shear viscosity r). Whereas the visc-
osity of a liquid in its ordinary state usually varies between r\ « 10"2 - 10"1

poise, corresponding to a time scale of picoseconds,1'14 its value increases
over many orders of magnitude as the liquid becomes more and more under-
cooled. If the viscosity enters the range of r\ > 1013 poise the associated
structural relaxation time T becomes macroscopic, i.e., r « 102 s or larger.
Then the dynamical behavior of the liquid can no longer be distinguished
from that of a solid on the time scale of the experiment, so that the tem-
perature, corresponding to r? — 1013 poise, has been defined as the glass
transition temperature Ts which has been our main subject in the last sub-
sections. Besides T% there are two other characteristic temperatures for a
fragile glass-former '48 of which one lies below and the other above Ts. The
one below Tg is the Vogel-Fulcher temperature T0 stemming from the
empirical Vogel-Fulcher equation, by which one may rather accurately fit
the strong increase of the viscosity over more than ten orders of magnitude
in the interval r\ e [102,1013] poise.1'14'49 The Vogel-Fulcher temperature
itself defines the temperature where the viscosity becomes infinitely large,
and has thus been looked upon as the transition temperature of the experi-
mentally unreachable underlying thermodynamic liquid-glass phase transi-
tion.1 Contrary to that, the second temperature lies in the experimentally
well accessible region of the undercooled liquid corresponding to
77« 102 — 104 poise or to a typical time scale of r « 10~9 s. It is the critical
temperature Tc of the mode coupling approach to the glass transition14

which explains the initial increase of the viscosity up to 77« 103 poise by
the trapping of fluid particles in cages formed by their neighbors37 as the
critical temperature is approached. Which one of these two additional tem-
peratures—if any—is the most relevant for the structural glass transition is
still a matter of active scientific debate. However, both temperatures were
introduced to characterize or to explain the non-Arrhenius behavior of the
structural relaxation time, which is one of the universal features that all
fragile glass-formers have in common.1'14'50'51 Along with this non-
Arrhenius-like increase of the relaxation times goes a strong stretching of
all structural correlation functions, which is another characteristic trait of
glass-forming substances and which can often be adequately described by
the empirical Kohlrausch—Williams-Watts formula1'14'15:

In the Kohlrausch-Williams-Watts equation the exponent /?K typically
ranges between 0.3 and 0.81 for structural glasses and is often found to be
temperature-independent,15'52 which means that the structural relaxation
time TK carries the whole temperature dependence in the Kohlrausch for-
mula. A plot of the correlation function versus the reduced variable ?/TK
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should therefore make the data from different temperatures collapse onto
one single master curve. This scaling property is called "time-temperature
superposition principle" and believed to be another characteristic feature of
the relaxation behavior of structural glass-formers.1'14

To what extent the schematic model systems A and B for a polymer melt
show this typical relaxation behavior will be addressed in this subsection, by
calculating various structural correlation functions that probe the dynami-
cal changes of the melt on different length scales (Section 6.3.2.1). From
these correlation functions it is possible to extract relaxation times the tem-
perature dependence of which can be studied and compared to that of
transport coefficients, such as the diffusion coefficient. This will be done
in Section 6.3.2.2. The final paragraph of this subsection then deals with the
calculation of the incoherent intermediate scattering function and its quan-
titative interpretation in the framework of the idealized mode coupling
theory (MCT).14

6.3.2.1 Relaxation processes on different length scales

In order to investigate the slowing down of the dynamics on the length
scale of the average chain's size one can calculate the auto-correlation func-
tion of the polymer's end-to-end distance or of the radius of gyration, which
might be defined in the following way:

Motivated by the experimental results on the glassy dynamics, it is especially
interesting to analyze the long time behavior of these correlation functions
and to check whether a scaling variable for the time-temperature superposi-
tion can be found. A hint in the search for such a scaling variable may be
obtained from the Rouse model which provides the simplest description of
the dynamics of a polymer melt composed of short chains.34'53 The Rouse
model shows that the long time behavior of the above correlation functions is
dominated by the ratio 27T2Dt/(R^E)pc, whereby D is the diffusion coefficient
of a polymer. Since the diffusion coefficient is the long time limit of the mean-
square displacement of the chain's center of gravity Rpc, i.e.,

it is tempting to use 2ir2g^(t)/(R^E)pc as a generalized time-temperature
scaling variable for the two functions eqs (6.23) and (6.24). This kind of
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time-temperature superposition was tried for the two-dimensional model A
in which $[REE] and $[RG] were calculated, immediately after the cooling
process without any further relaxation, over a time period of
tmax = 2.5-105 MCS at two different densities 0 = 0.4 and 4> = O.8.54 The
simulations were performed at certain representative temperatures extend-
ing from the liquid to glassy region, i.e., from T = 1.0 to T= 0.1. Figure
6.16 shows the result of this analysis for chains with N = 10. In fact, the data
superimpose nicely on a single master curve for almost all times and for
both semidilute (<f> = 0.4) and glassy system (^ = 0.8), despite the dramatic
slowing down of the polymer's mobility with decreasing temperature when
going from the semidilute to the glassy system. This means that the ratio
g3(t}/(R^E)pc accurately contains all information about the dependence

Fig. 6.16 Scaling plot of the auto-correlation functions <&[REEI(?) (a) and <&[Ro](?) (b) versus
g3(()/(^?|E) for different temperatures, obtained by a simulation of the Id version of model
A. The front (left) part refers to </> = 0.4 and back (right) part to <f> = 0.8. The chain length is
N= 10.
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upon temperature, density and release of constraints built up during the
cooling process, for those correlation functions to which all Rouse
modes34 contribute. Therefore the mean-square displacement of the chain's
center of gravity may be looked upon as the underlying fundamental quan-
tity for the motion of a polymer, so that the theoretical understanding of its
time evolution might provide valuable insight in the dynamics of a polymer
melt above and close to the glass transition.

Another important length scale in the melt is that of a bond. Information
about the dynamics on this local scale may be extracted by calculating, for
instance, the bond auto-correlation function26'54 or a generalized spin auto-
correlation function which is defined in the following way55: one associates
an Ising spin variable snpc with each monomer n of the polymer p in config-
uration c. This variable is set to snpc = +1 if the monomer is unable to move,
and to snpc = -1 if it is mobile. With this definition and the corollary that
s^pc(t) = 1 for all times, a correlation function can be constructed which
measures the slowing down of the local mobility of the monomers with
decreasing temperature55:

The temperature-dependent time evolution of $(<) was studied for a melt
composed of polymers with N = 10 and equipped with the Hamiltonian A
at a density <p = 0.8 after having equilibrated the melt for about a Rouse
time.55 Contrary to the results described for $[REE] and 3>[Ro] the history of
the cooling process was eliminated in this simulation before calculating the
spin auto-correlation function over about six decades in time for several
temperatures from the interval T& [0.22,1.0], For this function one can
also look for the time-temperature superposition property. Since there is
no theory available which would provide an educated guess for a suitable
scaling variable, the most natural trial to superimpose the data consists in
shifting the curves for different temperatures by an amount t^T) until they
collapse within a limited time interval at least. The time interval chosen in
Ref. 55 was the interval of the final decay of $(?), because the time-tem-
perature superposition property is experimentally observed 14>15'52 and the-
oretically rationalized14 for late times. The result of this simple shifting
procedure is depicted in Fig. 6.17. It reveals that it is indeed possible to
superimpose the last 20—30% of the decay of $(?) onto a single master curve
and that the self-similarity of the simulation data increases with falling
temperature so that the time zone over which scaling is valid expands.
However, such an impressive collapse of the data, as is shown in Fig.
6.16, cannot be obtained by the simple shifting procedure at any tempera-
ture, which indicates that the temperature dependence of the whole decay of
$(/) is too complicated to be condensed in a single number t^T).
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Fig. 6.17 The generalized spin auto-correlation function $(«) for temperatures
r= 0.40,0.30,0.25,0.23, and 0.22 are plotted versus t/tsc (in logarithmic scale) where
tx = 130,400,1160,2260 and 3700 for the respective temperatures. All the curves collapse
onto a single curve at late times. This result stems from a simulation of the Id version of
model A with JV = 10, P = 200, and </> = 0.8 after eliminating all cooling rate effects.

6.3.2.2 Relaxation times and diffusion coefficients

A quite general way to extract a relaxation time from a correlation func-
tion is to determine the area under the correlation function. In Ref. 55 this
method was applied to the above-discussed generalized spin auto-correla-
tion function in order to derive the temperature dependence of the mono-
meric relaxation time r. Figure 6.18 compares the result of this analysis to
the temperature dependence of the Rouse time TR which was assessed by the
intersection point ofg^(t) with the mean-square displacement of a monomer
measured in the coordinate system of the chain's center of gravity.55

Although T and TR probe the dynamics of melt on different length scales,
their dependence on temperature is remarkably similar. At high tempera-
tures the relaxation times follow an Arrhenius law before they cross over to
a Bassler law,14'56 i.e., to r oc TR oc exp[—A/T 2] at low temperatures. For
both T and TR the crossover temperature between the two relaxation regimes
lies around T w 0.3 and the value of the constant A, which is a measure of
the activation energy, is A KI 0.18. Hence the relaxation time of the chain
essentially depends upon temperature in the same way as that of the local
monomeric hopping motion, a behavior which is also borne out by experi-
ments on (three-dimensional) polymer glasses.

In Ref. 55 the results of this analysis were interpreted in the following
way: although fast quenching of the melt with a finite cooling rate yields a
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Fig. 6.18 1/ln TR (Q) and 1/ln r (+) are plotted against T. The data can be fitted by an
Arrhenius law (solid and dashed line) for high temperatures and to a Bassler formula
(dashed curve with heavy dashes and dotted line) for low temperatures. The model is the
same as in Fig. 6.17.

glass transition at a non-zero temperature (see discussion in the last subsec-
tion) the limit of infinitely slow cooling, to which the relaxed data of Ref. 55
actually correspond, seems to shift the thermodynamic glass transition tem-
perature to zero. However, whether this is really the case cannot conclu-
sively be inferred from the simulation data for two reasons: on the one hand,
the temperature interval over which the Bassler law fits the simulation data
is rather narrow, so that a stronger increase of the relaxation times at even
smaller temperatures than predicted by this law may not be excluded. On the
other hand, an extension of the available temperature interval for the diffu-
sion coefficient over that used in Ref. 55 opens the possibility for a nonzero
thermodynamic glass transition temperature in this two-dimensional model.
Figure 6.19 presents these extended results and compares them with the
Vogel-Fulcher formula, i.e.,

Since Dx was measured by a simulation at infinite temperature (yielding
Dec =4.7-10~4), eq. (6.27) only possesses two fit parameters, which were
determined to be: A = 0.652 ± 0.012 and T0 = 0.097 ± 0.009. Hence a non-
zero Vogel^Fulcher temperature of T0 « 0.1 results from this fit. However,
again one has to realize that the two-dimensional diffusion data only
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Fig. 6.19 Comparison of the temperature dependence of the two- (O) and three-dimensional
(+) diffusion data, simulated by the Id version of model A with N_= 10, P = 200, and 0 = 0.8,
and the 3d version of model B with N=\0,P= 180, and (/> = 0.53. The dashed and the dotted
lines represent the best fit by the Vogel-Fulcher formula, yielding T0 a 0.097 (Id) and
ro « 0.17 (3d), respectively.

decrease by one to two orders of magnitude in the investigated temperature
interval, which certainly results in a strong overestimation of the absolute
freezing point of this model, as mentioned above. One cannot exclude a
vanishing T0 then, if it was possible to extend the measurement of the
diffusion coefficient to much smaller temperatures. This overestimation
problem is not limited to the two-dimensional data, but applies to the
three-dimensional results for D(T), which are shown in Fig. 6.19 for the
sake of comparison as well. The three-dimensional values for D(T) were
obtained from a simulation of model B with chains of length N = 10 and at
a density of <j) = 0.53. Also for these three-dimensional data the Vogel-
Fulcher formula works best in comparison with a Bassler or an Arrhenius
law, yielding: £><» = 8.61-10~4 ±0.32-10~4, A = 0.396 ± 0.041 and
T0 = 0.17 ± 0.02. Although the three-dimensional Vogel-Fulcher tempera-
ture has to be considered with the same reservations as the two-dimensional
one, it is larger than the latter, expressing the general tendency that the
three-dimensional diffusion coefficient decreases faster with temperature
than in the two-dimensional case. Such an influence of the spatial dimension
on the thermodynamic glass transition temperature could have been antici-
pated from the physical consideration that the configurational constraints
are much stronger in three than in two dimensions.
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6.3.2.3 Mode coupling theory

During the last eight years a new theoretical approach to the structural
glass transition, the mode coupling theory (MCT),14'57 has been developed
which claims that the initial increase of the structural relaxation time in the
region of the undercooled liquid is caused by a prolongation of the lifetime
of the fluid particles in their cages, as the liquid is cooled towards a critical
temperature Tc situated well above rg.

14'57'58 At this critical temperature the
dynamics of the undercooled liquid qualitatively changes. For T < Tc the
original idealized MCT14'58 predicts that the fluid particles are permanently
trapped in their cages, so that density fluctuations (measured for instance by
the coherent or incoherent intermediate scattering function in a neutron
scattering experiment33) suddenly freeze at Tc and thus lead to a sponta-
neous breaking of ergodicity.14>58 However, a complete freezing of the den-
sity fluctuations has not been observed experimentally up to now, so there is
the need to complete the theoretical description by processes that succeed
in counterbalancing the localization property of the cages. This can be
achieved by the inclusion of so-called hopping processes which restore ergo-
dicity for the whole temperature region around the critical point.57 The
subtle competition of ergodicity breaking and restoring forces close to Tc

results in a two-step decay of the coherent or incoherent intermediate scat-
tering function, whereby the first step corresponds to the relaxation of the
particles in their cages, and the second step signals the breaking of the cages
and with that the onset of the structural relaxation. The time windows where
this two-step process develops and where the final structural relaxation
takes place are called /3- and a-relaxation regime, respectively.14'57

Although the derivation of the MCT originally started from the theory of
simple liquids, its central result, the existence of Tc, is independent of the
specific details of the microscopic interaction.14 It was thus supposed that
the applicability of the MCT is not restricted to simple liquids, but that it
approximately grasps the essential universal features which dominate the
dynamics of all fragile glass formers in the undercooled state. Hence it
should also be possible to test the theory for a polymer melt. Such a test
of the universal predictions of the MCT was performed for the three-dimen-
sional version of model B at a density of </> = 0.53 and with chains of length
N = 10.59 Since this simulation aimed at a quantitative comparison with the
idealized version of the MCT, the melt was equilibrated for about 5-106

MCS before the incoherent intermediate scattering function <£*(/) was cal-
culated and averaged over 28800 monomers.59

For this correlator ^sJt) the idealized MCT predicts that it consists of two
parts in the /3-relaxation regime: the time independent non-ergodicity para-
meter/;?, and a part for which the wave vector and the time dependence
factorize, i.e.,
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In eq. (6.28) s means the reduced distance to the critical temperature, i.e.,
e := (Tc — T)/TC, and hP and ceg(t/te) are called the critical amplitude and
the /3-correlator, respectively. The scaling function g(t/te) of the /?-correla-
tor can be expanded on the liquid side (e < 0) as60

The exponents a and b, ranging in the intervals a e]0,0.5[ and b e]0,1],
respectively, are related to each other by the exponent parameter A which
may adopt all values from the interval A e [0.5,1[.14 This short and the long
time expansion o f g ( t / t e ) match with an accuracy of about 1% on the /3-time
scale te and thus can be used to construct the full scaling function.60 With
these formulae one can try to fit the simulation data in order to derive the
critical temperature by

if one knows the temperature dependence of the microscopic time scale t0.
This microscopic time scale and the time scale of the a-process were deter-
mined from the initial decay of <K(f) by a fit with the Rouse model, and
from the final decay by a fit with the Kohlrausch-Williams-Watts formula,
respectively, in Ref. 59.

Figure 6.20 shows the results of the simulation for $^(f) which was cal-
culated at the maximum of the static structure factor q = 2.92 (measured in
units of the reciprocal lattice constant) in the temperature interval
Te [0.16,0.21]. In this temperature interval a two-step process develops
which we analyzed by the asymptotic expansions.29 This analysis splits the
studied temperature interval in a high-temperature part (T> 0.19), where
the idealized MCT can account for the relaxation of $* (?) in the /3-regime,
and a low-temperature part (T < 0.19), where it overestimates the freezing
tendency of the melt. This behavior is exemplified for the two marginal
temperatures T= 0.19 and T= 0.18 in Figs 6.21 and 6.22, respectively. In
the high-temperature region the fit leads to the following results:

With these parameters it is possible to fit the simulation data over about two
to three decades in time for the temperatures T>0.19. The results at
T= 0.19, presented in Fig. 6.21, exemplify how the asymptotic expansions
of the idealized MCT are tailored so that they can complete each other in



Fig. 6.20 Simulation data of **(/), calculated at the maximum of the static structure factor
4 = 2.92, for the six different temperatures, i.e., T=0.16 (O), T= 0.17 (+), T= 0.18 (Q),
T = 0.19 (x ) , T = 0.20 (A), and 7 = 0.21 (*). This result stems from a simulation of the 3d
version of model B with N = 10, P = 180 and 0 = 0.53 after eliminating most of the cooling rate
effects.

Fig. 6.21 Comparison of the simulation data (solid line) and various fitting formulae at
T = 0.19. The short time expansion of the Rouse model and the Kohlrausch law are represented
by a dashed line with long dashes and by a dashed-dotted line, respectively. The dashed line
with the short heavy dashes corresponds to the short time expansion of the scaling function (eq.
[6.29]) whereas the dotted line refers to its long time part. The model is the same as in Fig. 6.20.

342
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Fig. 6.22 Comparison of the simulation data at T = 0.18, with the same fitting formulae and
the same choice for the types of the lines as in Fig. 6.21.

the description of the decay of $*(£). First the short time expansion of eq.
(6.29) (labeled by the exponent a in Fig. 6.21) starts to fit the data, before
the long time expansion (labeled by the exponent b in Fig. 6.21) joins it on
the time scale te and then extends the fit to longer times, whereas the short
time expansion deviates from the simulation curve. The time window of the
/3-process, where the MCT applies, is preceded by an interval, where the
Rouse theory accounts for the decay of <M(/), and followed by the a-process
which can be described by a Kohlrausch law with a temperature-indepen-
dent exponent /3K = 0.515 ±0.020 (see eq. [6.22]).59 Therefore the time-
temperature superposition principle seems to apply to the long time decay
of the correlator $*(<).

If the temperature is reduced to T = 0.18 (see Fig. 6.22) only the initial
part of the first step of the correlator can adequately be fitted by the short
time expansion of eq. (6.29), whereas for longer times $*q(i) decays much
more strongly than predicted by the idealized MCT. Hence, the idealized
theory overestimates the freezing tendency of the polymer melt in this simu-
lation. This result is, however, theoretically expected if one takes the above-
mentioned hopping processes into account. In this extended version of the
MCT it turns out that the asymptotic expansions of the idealized theory are
only applicable to the initial decay of the correlator, whereas more compli-
cated formulae have to be used for longer times.61 Since one can therefore
interpret the decay of 4>^(?) partly qualitatively and partly quantitatively in
the framework of the MCT, the results of the fit for the /3-time scale (not
shown here) and the critical amplitude (see Fig. 6.23) were used in Ref. 59 to
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Fig. 6.23 Plot of (/!*ce)
2 versus T (see eq. [6.30]). The diamonds represent the results of the fit,

and the dashed line is a least-square fit, yielding a critical temperature of Tc = 0.153.

estimate the critical temperature. From the straight line fits to these data one
finds Tc = 0.146 + 0.006/- 0.008 for te (not shown here) and
Tc = 0.153+ 0.005/-0.009 for hs

qce. These values agree with each other
within the error bars and can be combined to an average critical temperature
of rc = 0.150 + 0.005/- 0.009.59

6.4 Modeling of specific polymers

6.4.1 How to map naturalistic models to abstract models

As discussed in the introduction there are some rather general features to the
glass transition in fragile glasses, and in polymers in particular. We have
made use of that finding by devising very simple model systems that never-
theless exhibited the experimental phenomenology and allowed for a very
thorough simulational treatment. One of these general features is the pos-
sibility to describe the behavior of the melt viscosity as a function of tem-
perature for up to 10 decades in range, using the Vogel-Fulcher law. Let us
for a moment view this as sort of a universal feature for polymers with
system specific constants. Borrowing an analogy from the treatment of
phase transitions we should be able to do a coarse-graining on a miscrosco-
pically detailed model of a polymer that leads to a simplified description of
this polymer, losing information on short length and time scales but retain-
ing the constants in the macroscopic laws such as the VF law. The same can
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be done on any abstract polymer model such as, for instance, the bond
fluctuation lattice model. The idea of how to create a lattice model that
reproduces the macroscopic behavior of a certain polymer is now to match
the two coarse-grained descriptions on the mesoscopic scales. We will have
to identify physical properties that capture the structural and dynamic beha-
vior on this mesoscopic scale and map the coarse-grained information about
the lattice model onto that of the detailed model by optimizing energy
parameters chosen for the lattice model. This way we should end up with
a lattice model reproducing the polymers' macroscopic behavior. We modify
the old Kuhnian63 idea of a coarse-graining along the polymer, in that we
have to stay below the statistical segment length in our step size to retain
information on the species under study. For bisphenol-A-polycarbonate
(BPA-PC) we define a coarse-grained chain by connecting points along
the backbone one repeat unit apart. This generates coarse-grained bond
vectors L. Their distribution is relatively smooth, as it is produced by six
torsional degrees of freedom inside one repeat unit. Figure 6.2432 shows an
example of these distributions for the above-described coarse-graining and
several temperatures. At the high temperature of T = 570 K the distribution
of the coarse-grained bond length shows structure from 7 to 12 A with a
mean value of around 10.5 A. The mean value slightly increases with
decreasing temperature (T = 420 K is the glass transition temperature,
and T— 130 K is deep in the glassy state) whereas the width of the distribu-
tion drastically decreases (Fig. 6.24[a]). The corresponding shifts in the
mean of the angle 0 between consecutive coarse-grained bonds and in the
width of the distribution P(Q) are much smaller and not easily resolved on
the scale of Fig. 6.24(b). We take the first two moments of the distributions
P(L) and P(Q) to be a description of the local geometry of the chain. The
distributions are obtained by computer-generating random walks on the
monomer length scale, using quantum chemically calculated BPA-PC
force fields and sampling their statistical properties at the respective tem-
perature.32 On the bond fluctuation side we coarse-grain over three bonds of
the lattice model. Here both distributions can be obtained from a double
trimer which can be treated by exact enumeration.64 The choice of mapping
three bonds in the lattice model onto one BPA-PC repeat unit can be moti-
vated by mapping the same number of conformationally relevant degrees of
freedom among the two chains. There are six torsions in one BPA-PC repeat
unit and we have three bond lengths and three bond angles per bond fluc-
tuation trimer. To match the moments of the coarse-grained bond lengths
we have to translate the lattice constant of the simulation to the natural unit
of A. To this end we require the simulation to exhibit the experimental
number density



Fig. 6.24 Probability distributions for the length of coarse-grained bonds (a) and the angle
between consecutive coarse-grained bonds (b). Data are for BPA-PC at the indicated tempera-
tures.32 The subscript 1 refers to a coarse-graining of one repeat unit of the polymer.

346
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(p = mass density; <j) = 0.5, volume fraction; n = 1 m — 3). Then s is the
conversion factor translating lattice constants into angstrom.

So far we have matched the coarse-grained geometric structure of the
chains. To reproduce dynamic properties we must furthermore match
time constants on the mesoscopic scale. The rate of conformational changes
in a polymer is determined by the rate of barrier crossings in the various
torsional potentials along the chain.32 Applying rate theory we can write
these as a product of attempt frequencies and activation factors. This way
we could define a mean rate of conformational change as a function of
temperature. As we do not yet have a microscopic way of translating the
time scale of the simulation (Monte Carlo steps, MCS) to the natural time
scale (seconds) we cannot make use of a rate and have to simplify this
further by taking the attempt frequencies to be equal. Let Et be the potential
energy at minimum / and AEy, j = !,...«,- the heights of the barriers separ-
ating minimum i from its n,- neighboring minima j. Then, the probability for
a transition from one minimum to another one is

with Z = J]ftor MiexP("~/^i)- From this we can define a mean barrier as

The corresponding rate in the lattice model, with its Monte Carlo dynamics,
is the acceptance rate for the moves. Here we also drop the arbitrary time
constant of the Monte Carlo process and define a mean barrier as

The average is performed over all possible trimer configurations and jumps
of the inner monomer of these trimers, which is again amenable to exact
enumeration. Matching the geometric moments and this mean barrier in a
nonlinear optimization procedure fixes the constants in Hamiltonian C (eq.
[6.9]) as a function of temperature. This nontrivial nonlinear optimization
problem is discussed in more detail in Ref. 64.

6.4.2 Modeling bisphenol-A-polycarbonate

The Hamiltonian C is used as input in a dynamic Monte Carlo simulation,
where a stepwise cooling procedure is applied and one equilibrates the
system to as low a temperature as possible. The system is regarded as
equilibrated after the mean center of mass displacement exceeds the value
of the mean-squared radius of gyration.65'66 This time is approximately
equal to the Rouse time as the longest relaxation time in the system. The
mean-square displacement of the center of mass of the chains is then used to
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measure the self-diffusion coefficient according to eq. (6.25). As the con-
formational dynamics of these chains is nicely describable by Rouse theory67

the self-diffusion coefficient translates into a measurement of the viscosity

The Rouse theory, furthermore, contains only one rate constant which is
connected to the monomeric friction coefficient

where £ is the monomeric friction coefficient and a is the statistical segment
length of the chains. This Rouse rate can be measured by analyzing the
mean-square displacement of monomers on short length and time scales

The results we want to show were obtained by a somewhat preliminary
and simpler version of the mapping,28 which nevertheless exhibited the
properties required in the above description. The structure factor shown
in the introduction (Fig. 6.2) was taken at the lowest temperature that
still allowed the system to be equilibrated. This corresponds to an under-
cooled melt of BPA-PC. A comparison to the experimental structure factor
of BPA-PC68'69 does, of course, show some deficiencies in the lattice
approach. As the detailed atomistic structure is not accounted for, the posi-
tion of the amorphous halo is shifted and there is additional intrachain
structure in the simulation. The shift exceeds the amount one would expect
due to the difference in temperature between the experiment and the simula-
tion, if one took this into account approximately by rescaling affinely with
the change in specific volume. An additional peak around 0.6 A due to
dipolar interactions between the carbonyl groups is also of course absent in
the simulation. The ratio of the intensity at the amorphous halo compared
to the q —> 0 limit (the compressibility) is, however, correctly reproduced. A
closer match between the simulated and real structure could only be
obtained by reinserting the atomistic structure into these globally equili-
brated simulations. Figure 6.25 shows a comparison of the temperature
dependence of the Rouse rate, W, and the chain's self-diffusion coefficient,
D, in the form of an inverse activation plot.40'70'71 Both quantities follow a
VF temperature dependence leading to Vogel—Fulcher temperatures around
300 K. This once more shows the strong coupling due to the chain connec-
tivity of the local relaxation (conformation and structure relax by the same
type of monomer movements) to the overall conformational relaxation of
the chains. To make contact with experiments we have to use eq. (6.36) to
calculate the viscosity our simulation would predict for short BPA-PC
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Fig. 6.25 Inverse activation plot for the Rouse rate, W, and the chain self-diffusion coefficient,
D. The normalization values for T = oo for both quantities were measured in independent
simulations. VF laws are straight lines extrapolating to a finite value on the abscissa, whereas
an Arrhenius law extrapolates to T = 0.

chains. Figure 6.26 shows the result for a simulation of chains of length
N — 20 equilibrated down to 570 K. It is compared to experimental data for
BPA-PC oligomers (N = 20 corresponds to 7-mers) that were measured at
Bayer72 as a check for the computer simulation results. The Vogel-Fulcher
temperatures one obtains from the simulation (321 ± 27 K) and from the
experiment (322 K) are virtually identical and the activation energies
(simulation: 950 ± 113 K; experiment: 1053 K) agree within the error bars.

Here we have to come back to the change in ensemble imposed by using a
lattice model for the simulation of the glass transition. The specific volume
in the simulation is matched to the experimental one at 570 K. Keeping it
constant at the larger temperatures means that all properties measured there
would correspond to experiments done under higher pressure. Irrespective
of the fact that the real polymer is of course not stable any longer at the
highest temperatures of the simulation, we suppose that the change in pres-
sure required does not exceed a few hundred atmospheres. Tg(p) for BPA-
PC changes at about 4.4 K for every 100 atmospheres.73 This effect then can
be expected to be small compared to the uncertainties inherent in the
approximations made in the whole mapping procedure. The high degree
of quantitative agreement among the Vogel-Fulcher temperatures is cer-
tainly fortuitous. A larger effect should be expected for the activation ener-
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gies, as we cut across the isobars, starting on the high pressure ones. This
effect is hard to quantify but may be in part responsible for the larger
difference in the measured activation energies. In experiments on polyvi-
nylchloride74 it was found that the increase in relaxation time at constant
volume and that at constant pressure followed very similar Vogel-Fulcher
curves. The one at constant pressure showed a stronger deviation from
Arrhenius behavior in the intermediate viscosity regime, indicative of a
larger activation energy. The deviation seen in the simulation goes in the
same direction. On the whole, the rather good agreement between experi-
ment and simulation suggests that the freezing process is mainly dominated
by the repulsive part of the atomic interactions19 (the simulation used only
excluded volume interactions). Inclusion of the attractive interactions will
allow for a treatment of enthalpic properties and will certainly modify the
Vogel-Fulcher parameters, but the latter can be expected to be a minor
effect compared to the repulsive part of the interactions. For Fig. 6.26 the
vertical scales had to be adjusted by equating the amplitude prefactors in the
VF laws found in both simulation and experiment. This translates one
Monte Carlo step into 1.5 • 10~14 s, meaning that the typical time window
for the MC simulations would extend from 10~14 s to some 10~7 s, exceeding
that of MD simulations by two orders of magnitude. This means that this

Fig. 6.26 Comparison of the viscosity measured in the simulation of BPA-PC to experimental
data for BPA-PC oligomers corresponding to the same degree of polymerization. Also included
are the VF laws fitted to the simulational and the experimental data separately. Vertical adjust-
ment is done by identifying the T —> oo limits, which converts Monte Carlo time into seconds
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way of mapping the mesoscopic length and time scales of a real polymer
onto a computationally tractable simplified model is a procedure to produce
equilibrated macroscopic properties in a temperature range not open to
other simulational approaches.

6.5 Summary

We have shown in this chapter how the Monte Carlo simulation technique
can be used to study various aspects of the glass transition in polymer melts.
The model we employed is the bond fluctuation lattice model, which exhibits
a relatively high degree of flexibility, placing it in between continuum mod-
els which are computationally more demanding and the standard lattice
models where the polymer structure is too much determined by the
underlying lattice. Using then the simple Hamiltonians A and
^26,27,31,38,45,54,55,59,62 ̂ j^ omy associate an energy with the bond lengths
and leave interaction between the monomers of the melt to be purely repul-
sive, many experimental features of the glass transition can be reproduced.

These model Hamiltonians generate a competition between the energy of
a chain conformation and the density, which makes both the two- and the
three-dimensional melt freeze in a liquid-like structure if the relaxation times
of the melt become comparable to the time scale of the simula-
tion.26'27'31'45'55 Therefore the freezing does not take place at a well defined
temperature, but it depends upon the choice of the cooling rate and addi-
tionally upon the chain length. If one extracts from the simulation data these
dependencies of the glass transition temperature Tg, a non-linear relation-
ship results between Ts and the logarithm of the cooling rate27 whereas the
chain length is inversely proportional to TK.45 Both functional relationships

i i ' - T, 4^ 44 47are observed in experiments. ' ' '
Other prominent characteristics of the glass transition are the nonexpo-

nential, strongly stretched decay of the structural relaxation functions
(partly obeying the time-temperature superposition principle) and the
Vogel-Fulcher behavior of transport coefficients (as the diffusion coefficient
of a chain). Both of these features are present in either the two- or the three-
dimensional model.26'27'54'55'62 During the long relaxation runs to obtain
these dynamical results the melt ages considerably, so that a two-step
decay of the incoherent intermediate scattering function was discovered in
the three-dimensional simulation in a temperature region which belonged to
the glassy phase immediately after cooling.59 This two-step decay could be
interpreted within the framework of the mode coupling theory, supplying
the first evidence from simulations that this new theoretical approach to the
glass transition might also be of relevance for the dynamics of undercooled
polymer melts.

As concerns the modeling of a real polymer by the use of a lattice model,
we have shown how a mapping on a mesoscopic scale can be defined to
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match descriptions on different levels of abstraction. Transferring informa-
tion on mesoscopic length and time scales obtained from a microscopically
detailed description into the computationally more easily tractable lattice
model, we showed that one can reproduce the Vogel-Fulcher parameters of
the polymer under study.

In future it should be possible to extend the analysis of the glass transition
of these models in very diverse ways: for instance, by combining the results
of the two- and three-dimensional model in order to learn more about the
influence of the spatial dimension on the glass transition; or by analyzing in
detail the physical aging of the melt; or by calculating suitable dynamical
correlation functions in the temperature region where mode coupling effects
seem to be important for the three-dimensional model, in order to assess the
applicability of the MCT for glass transition in polymer melts. Due to the
wealth of available information which is partly hard to obtain or even
inaccessible in experiments, the models studied seem to be very promising
for further investigation of the static and dynamical aspects of the structural
glass transition.

In the modeling of real polymer systems there are several obvious avenues
to follow. One is of course the modeling of other polymers, especially struc-
tural modifications of BPA-PC, to establish structure-property correlations.
Others include the consideration of polydispersity effects and the inclusion
of attractive interactions. In the long run the modeling of polymeric sub-
stances will only be successful through the synergistic application of differ-
ent simulation techniques. Thus, in our opinion, the method of choice would
be to use the mapping to an abstract model (the procedure is of course not
limited to the bond fluctuation model) to generate equilibrated structures on
a large scale and to use these structures to reinsert chains described in all
chemical detail. They would then have to be re-equilibrated on the short
length scales, which is a computationally feasible task with standard MD
techniques. A combination of methods with suitable interfaces defined
between them should be able to produce information on all interesting
length and time scales.
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B L E N D S A N D B L O C K C O P O L Y M E R

T H E R M O D Y N A M I C S

Kurt Binder

7.1 Introduction

For mixtures of simple fluids, it is now possible to simulate phase behavior
taking into account full atomistic detail with chemically realistic forces.1'2

Apart from the region near a critical point, it suffices to simulate small
boxes containing atoms or molecules in the order of 103 in the respective
Monte Carlo1'2'3 or molecular dynamics3'4 methods—both of them methods
which have been well developed.

These methods work because fluids off critical points are already essen-
tially homogeneous on a length scale of 10 A, and staying away from the
glass transition region5 the relaxation time needed to reach equilibrium is
very small (in the picosecond range). However, for mixtures of long flexible
macromolecules the situation is fundamentally different.6'7 As emphasized
in Chapter 1 of this book, already a single chain exhibits structure in the
length of a chemical bond (« 1 A) to the persistence length (« 10 A) to the
coil radius Rgys: (sa 102A). The latter length scale is a lower bound to the
correlation length £ of concentration fluctuations in polymer mixtures.
While in small molecule mixtures correlation lengths in the order of 103 A
occur in the immediate vicinity of critical points only, in polymer mixtures
such large correlation lengths occur in a much larger part of the phase
diagram. This is easily understood since in the relation for the correlation
length8 £ « £|1 - T/TC\~V (Tc being the critical temperature, T the^tempera-
ture, v the associated critical exponent) the "critical amplitude" £ is of the
order of jRgyr rather than the order of the interaction range r0, as in small
molecule mixtures (both for small molecule mixtures and for polymer mix-
tures, r0 is of the order of a few A only).9"12

The same conclusion emerges when one considers the dynamics of phase
separation in experiments where one quenches a polymer blend into the two-
phase region underneath the miscibility gap (Fig. 7.1). The initially inhomo-
geneous state is unstable and fluctuations grow with time t after the quench;
their characteristic wavelength \m(t) (which shows up by a peak in the
scattering function S(q,t) at a wavenumber q = qm(t) = 2-7r/Am(/)) again
is typically of the order of12"14 103A.
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Fig. 7.1 Schematic plot of a quenching experiment at a concentration c that leads to a tem-
perature T < Tcin the unstable region (inside the "spinodal curve", shown as broken curve). As
the time t after the quench passes, all Fourier components of concentration fluctuations where
wavelengths A exceed a critical wavelength \c grow with time (according to the linearized theory
of spinodal decomposition, the maximum growth occurs for \m = \f2\c). Growth of these
"concentration waves" is indicated for one spatial direction (x). As time / passes, nonlinear
effects lead to a coarsening of the A-rich domains (having a concentration according to the left
branch of the coexistence curve, Ccoex) and of the B-rich domains (of concentration cSx), i.e.,
\m(t —> oo) —» oo. (From Binder.12)

Similar large length scales are found for the thickness of wetting layers
near walls that favor one component of the blend15 and for the length scales
characterizing the mesophase ordering in block copolymer melts.12'16"18 For
example, in the "weak segregation regime" of a symmetric diblock copoly-
mer melt (NA = NB = N/2), i.e., in the disordered phase, the characteristic
wavelength A is in the order of a random coil size, A « Rgyi <x aN1/2, where a
is the size of an effective segment. But in the "strong segregation
regime"12'16"18 the coils are strongly stretched in the direction perpendicular
to the lamellae of the lamellar mesophase (Fig. 7.2),19 and then the wave-
length characterizing the lamellar ordering is much larger, A oc Rgyr oc aN2^.

Treating such phenomena on the length scale of 103 A with simulations of
models that include all chemical detail is clearly impossible, and thus cru-
dely simplified coarse-grained models must be used.6'7 The same conclusion
emerges when one considers the second factor that controls simulation
feasibility (cf. Chapter 1 for a more thorough discussion), namely time
scales: long wavelength degrees of freedom relax very slowly! Thus it is
an experimental fact that the time scale for the growth of the concentration
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Fig. 7.2 (a) Chemical architecture of a diblock copolymer. A diblock copolymer consists of a
polymerized sequence of A-monomers (A-block, shown as full curve) covalently attached at a
junction point (dot) to a similar sequence of B-monomers (B-block, shown as dashed curve), (b)
The microphase separation transition occurs when a compositionally disordered melt of copo-
lymers (right) transforms to a spatially periodic, compositionally inhomogeneous phase (left) on
lowering the temperature (or on increasing the Flory-Huggins x-parameter,9 respectively). For
nearly symmetric copolymers the ordered phase has the lamellar structure shown, where the
junction points order in parallel planes a distance A/2 apart. (From Fredrickson and Binder.19)

fluctuations shown schematically in Fig. 7.1 is in the order of 1 s for many
polymer mixtures or even larger.12"14 Similar slow relaxation occurs for the
growth of wetting layers,15 for the equilibration of well-ordered regions of
the block copolymer mesophases when one cools them through the transi-
tion temperature,16 etc.

Fortunately, such very crude models were also used to develop the basic
theoretical concepts on these phenomena. A good example is the Flory-
Huggins lattice model of polymer blends20 (Fig. 7.3): Disregarding the
local chemical structure of the chains, and any resulting disparity between
the size and shape of the subunits, chains are modeled by mutually and self-
avoiding walks on a lattice.

In addition, the actual interaction potentials are not explicitly considered,
their effect is simply lumped into some "effective" interaction parameters
f-AAif-AB and eBB between the respective nearest neighbor pairs. Also the
Leibler21 theory of mesophase ordering in block copolymers may be thought
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Fig. 7.3 The Flory-Huggins lattice model describes the two types of polymer chains (A,B) as
mutually and self-avoiding walks of NA(NB) steps on a lattice. Each lattice site is thus either
taken by an A-monomer, a B-monomer, or vacant (V). The volume fractions of these mono-
mers are (/>A,<J>B, and </>„ = 1 - <J>A - <t>a- Interaction energies eAA, CAB and HBB are assumed
between nearest-neighbor AA, AB and BB pairs, respectively.

of as a continuum approximation to an analogously coarse-grained lattice
model of block copolymers.

Why is it useful to simulate models which are as crude as the model of
Fig. 7.3? What can we learn from studies such as these? Well, the Flory-
Huggins theory20 of polymer mixtures is a good example to answer that
question. This very theory is not only based on such a crude model, but
invokes a number of additional uncontrolled approximations. In principle,
what one should do is to consider all possible configurations of how to place
the two kinds of chains and the vacancies on the lattice (Fig. 7.3). From the
total energy £(conf) of each configuration we obtain its statistical weight,
the Boltzmann factor exp[-£"(conf)/^Br] (ks = Boltzmann's constant).
Desired physical properties (coexistence curve, critical temperature Tc,
etc.) then follow from the partition function Z and the free energy F,
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Of course, it is not possible to carry out this program posed by statistical
mechanics exactly, in spite of the crudeness of our model (Fig. 7.3). Thus,
Flory and Muggins20'22'23 proposed an approximation, which will be dis-
cussed next.

The excess free energy of the mixture (relative to a pure polymer) is
written as the sum of an entropy of mixing term, and an enthalpy term.
In the latter, only a reduced energy parameter e enters, which is related to
the Flory-Huggins x parameter

z being the coordination number of the lattice. Then (FH stands for Flory-
Huggins; <$>A,<I>B are the volume fractions of the two types of monomers)

If we had three low molecular weight components (NA = NB = 1), the first
three terms on the right hand side of eq. (7.3) describing the entropy of
mixing would be exact, since then each lattice site can be filled independently
of its neighbors. For polymers, this entropy expression is approximate
only—independent occupation of sites obviously neglects the condition
that the chains must not intersect themselves or other chains.

The enthalpy term X^A^B is only approximate, too—what would be
needed is the energy e/kBT multiplied by the probability P(<J>A,</>B) that a
site is taken by an A-segment and a nearest neighbor of this site by a B
segment. Writing a product expression P(<pA,(f>B) = 4>A$B obviously neglects
correlations in the occupancy of neighboring sites.

A further error is introduced by counting the number of neighboring sites:
a segment in the interior of an A-chain can have at most z — 2 B-neighbors
instead of z B-neighbors—at least two neighboring sites are automatically
taken by the A-chain itself. Replacing z by z — 2 in eq. (7.2), as is sometimes
done,24 has the disadvantage that it is not good for small NA,NB-

Now, asking the question, how reliable is this theory with all these
approximations? Obviously, this question is not easily answered by compar-
ing the theory to experiments: in most cases, the agreement is not good, but
one cannot tell whether the discrepancies are due to inadequacies of the
model—after all the model in Fig. 7.3 is a crude caricature of reality—or
due to inaccuracies of the approximations. Sometimes such problems are
also hidden because too many adjustable parameters are available, so
experimental data can be fitted—but one does not know whether the result-
ing fitted parameters are really meaningful. Obviously, such problems occur
for the many extensions of Flory-Huggins theory, where one adds correc-
tion terms to it and considers a possible volume-fraction dependence of the
X-parameter.25
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Since the simulation can be performed on exactly the same model which
the analytical theory considers (but avoiding the uncontrolled mathematical
approximations of the latter), the simulations provide "benchmarks"
against which these theories can be reliably tested. A typical example of
this sort of application is shown in Fig. 7.4, where Monte Carlo data26'27

for the critical temperature of a symmetrical polymer blend (NA = NB = N)
are compared to the Flory-Huggins theory as well as a treatment based on
Born-Green-Yvon (BGY) integral equations on a lattice.28"30 One sees that
while both FH and BGY treatments predict a strictly linear variation in
agreement with the simulation in this model (the bond fluctuation model at
a volume fraction <pv = 0.5 of vacant lattice sites, interaction range up to a
distance of \/6 lattice spacings at the simple cubic lattice,26'27 the prefactor
in this relation is strongly overestimated by FH, but slightly underestimated
by the BGY treatment.30

We also note that the same Monte Carlo data26'27 have helped to sort out
an inadequate approximation in the context of the polymer reference inter-
action site model (PRISM) theory,31"36 which yielded a relation Tc oc ^/N
while now Tc oc N is generally accepted.26"28'37"41 It has been very difficult
to provide convincing experimental evidence41 on this issue—true symme-
trical monodisperse polymer mixtures hardly exist, and the temperature
range over which TC(N) can be studied is limited by the glass transition
temperature from below and by chemical instability of the chains from

Fig. 7.4 Comparison of the critical temperature versus chain length between the Monte Carlo
data of Deutsch and Binder (D&B)26'27 to the Flory-Huggins (FH) prediction (dot-dashed) and
the Born-Green-Yvon (BGY) treatment (full curve). (From Sevian et a/.30)
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above. Simulations are free of such limitations, of course, and can test such
theories much more stringently than the experiment.

In addition, simulations have helped to validate a new version of the
PRISM theory,37"39 which should be a promising starting point (as an
off-lattice theory) to allow a much more realistic description of polymer
blends rather than the model of Fig. 7.3.

Similar examples that show the fruitful interplay between simulation,
analytical theory, and experiments can be given for spinodal decomposi-
tion,6'10"12'42^14 surface enrichment and wetting,15'45"51 block copolymer
ordering,12'16"19'21'24'52"66 etc. Some of this material will be discussed in
later sections.

In this chapter, we focus on simple lattice models of polymers, of the type
shown in Fig. 7.3 and the bond fluctuation model,67'68 and work on simple
off-lattice models will also be occasionally mentioned.2'69'70 But we shall
neither address simulations based on continuum generalizations of eq.
(7.3), where chains are no longer explicitly considered,71"74 nor attempt to
explain the x-Parameter in terms of simulations of chemically realistic
monomers.75 Both approaches involve many—in our opinion unsolved—
questions on methodic aspects that are out of scope here.

7.2 Simulation methodology

7.2.7 Dynamic algorithms and the role of vacancies

Simulations of polymer blends or block copolymers involve two rather dis-
tinct aspects: one aspect is the generation of equilibrium configurations of
dense polymer melts and the relaxation of the configurations of individual
chains;7'76 this aspect is not essentially different from simulations that deal
with one-component polymer solutions and melts, as treated in other chap-
ters of this book. The work described in the present chapter has used
dynamic Monte Carlo methods such as combinations of "kink jump" and
"crankshaft rotation" algorithms (Fig. 7.5(a))77"79 or simple hops of effec-
tive monomers in randomly chosen lattice directions (in the case of the
bond fluctuation model26'27'40'67'68) or the "slithering snake" technique.
52-54,55,80,81 ^yj these algorithms need a nonzero concentration of vacancies,
of course. In an attempt to work strictly in the limit of <f>v = 0, however, the
"bond-breaking method"82 and the "collective motion algorithm"24'83"85

have occasionally also been implemented. Apart from the fact that neither
of these techniques86'87 can be mapped to the real dynamics of polymers in
melts,7 even in a coarse-grained sense, and hence cannot be used to study
dynamical phenomena such as interdiffusion,68 spinodal decomposition 2'8

or block copolymer ordering dynamics, these algorithms have certain other
drawbacks—the bond-breaking method82'86 produces some polydispersity;
the collective motion method24'83"85'87 amounts to a very complicated algo-
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Fig. 7.5 In dynamic Monte Carlo simulations of the original Flory-Huggins model chain
configurations are relaxed by end-bond rotations, kink jump motions, and 90° crankshaft
moves (A). Only such moves are allowed that do not violate the excluded volume constraint.
In a semi-grand-canonical simulation, where the chemical potential difference A/i between A-
and B-monomers is fixed, A-chains are taken out of the system and B-chains are inserted in
exactly the same configuration, or vice versa (B). (From Binder.77)

rithm neither suitable for vectorization nor parallelization and performs
relatively slowly and also the problem of its "dynamic correlations" and
hence the judgement of statistical errors89'91 is difficult. In view of these
problems, we do not share the view of these authors24'84'85 that those algo-
rithms offer a great advantage: first of all, physical polymer melts do have a
nonzero, albeit small compressibility, and qualitatively this property is only
reproduced by a rigid lattice model if it contains a nonzero fraction of
vacancies; secondly, the theories which one wishes to test are often easily
extended to include a nonzero <j>v, and checking the variation of properties
with 4>v provides an additional test of these theories. Thirdly, all experience
tells US

24>68>79.82 that the properties of interest extrapolate smoothly towards
their limits reached for <j>v —> 0. Since a comparison of the bond fluctuation
model (with <j>v = 0.5 or thereabouts) has in many respects very similar
properties92 to more realistic off-lattice models of dense polymer melts,93
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we consider the presence of vacancies an advantage rather than a disadvan-
tage.

The second aspect is relaxation of the long wavelength degrees of freedom
related to phase transitions occurring in the studied systems: for the unmix-
ing of polymer blends, these are long wavelength Fourier components of the
volume fractions of species A, B in the system. In conditions where the total
numbers of both A-chains and B-chains are kept fixed, the conservation law
of the concentration leads to "hydrodynamic slowing down"92'93 of these
Fourier components, i.e., extremely slow relaxation. Near the critical point,
the problem becomes even worse due to an anomalous growth of relaxation
times ("critical slowing down"),93'94 and there are severe finite size effects on
the transition95"98 in addition. These problems will be considered in the
following subsections.

7.2.2 The semi-grand-canonical technique for polymer blends

For symmetrical polymer blends (as well as weakly asymmetrical ones) the
problem of hydrodynamical slowing down of long wavelength concentra-
tion fluctuations can be elegantly avoided by carrying out the simulation in
the semi-grand-canonical ensemble rather than the canonical ensemble: only
the total number of chains n = nA + nB is fixed, while the ratio
4>A/(1 - <t>v) = HANA/(nANA +nBNB) fluctuates, in equilibrium with a
given chemical potential difference A// = \J,A — /As between the chains
(Fig. 7.5(b)) with ^>A + &B = 1 — <t>v = const. In the thermodynamic limit,
where HA,HB —* oo, the different ensembles of statistical mechanics yield
completely equivalent results, and for such equilibrium properties it then
does not matter whether one computes them in the grand-canonical ensem-
ble (both HA and p,B are given separately, «^ and nB can fluctuate indepen-
dently from each other), the semi-grand-canonical ensemble, or the
canonical ensemble (where both HA and nB would be fixed, while //^ and
HB would both be fluctuating). Of course, the grand-canonical ensemble is
less useful for dense polymer systems, since it is practically impossible suc-
cessfully to insert a chain in a randomly chosen configuration in a many-
chain system: almost always the excluded volume constraint would be vio-
lated, and such moves therefore would be forbidden.

Of course, experiments are done in the canonic ensemble only, and chain
"identity switches" as indicated in Fig. 7.5(b) do not occur, but due to this
equivalence between the statistical ensembles that distinction does not mat-
ter, in the thermodynamic limit. As will be discussed below, finite size effects
are rather different in these various ensembles, and since one is usually able
to simulate rather small boxes containing less than 103chains only, these size
effects must be considered carefully. If one is interested in dynamical proper-
ties, e.g., the study of initial stages of phase separation (Fig. 7.1), one must
use the statistical ensemble that exactly corresponds to the experiment,
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namely the canonical ensemble. The semi-grand-canonical ensemble for
such simulations can only be used to prepare equilibrium initial states,42

from which the quench (at a temperature T0, Fig. 7.1) starts.
We first discuss the strictly symmetrical situation, where both

NA = NS = N and eAA = eBg, so the two types of chains differ only by
their labels. The "order parameter" of the unmixing transition can then
be written as

the volume fractions being

Because of the symmetry of the problem against an interchange of A and B,
phase coexistence can occur only for A/i = 0, and the critical point must
occur for a critical value of the volume fraction

While the partition function in the canonical ensemble is given by eq. (7.1),
in the grand-canonical ensemble it is

For the symmetrical case considered in eqs (7.4)-(7.6), the first exponential
factor in eq. (7.7) can be rewritten as

The number of chains n in a simulation in the semi-grand-canonical ensem-
ble is constant; only the order parameter m (eq. [7.4]) can fluctuate.
Therefore the first factor on the right hand side of eq. (7.8) is constant
and cancels out from the Monte Carlo averages.

In carrying out the Monte Carlo moves shown in Fig. 7.5 one applies the
Metropolis method1™3'7'76'89'93'99 in a fairly standard way, i.e., the transition
probability for the semi-grand-canonical move where one goes from an old
configuration (c) to a new configuration (c1) via an "identity switch" of a
chain, A ̂  B (Fig. 7.5(b)), is

Here E, m are energy and order parameter in the old configuration, E' and
m' refer to the new trial configuration, f^is compared to a random number
z, uniformly distributed between zero and one: only if W exceeds z is the
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trial configuration accepted as a new configuration; otherwise it is rejected
and the old configuration is counted once more for the averaging. For the
standard moves such as shown in Fig. 7.5(a), essentially the same procedure
applies, except that m' = m and hence the first exponential factor in eq. (7.9)
trivially is unity.

A somewhat delicate question is how often one performs the identity
switch (Fig. 7.5(b)) relative to the local moves (Fig. 7.5(a)) needed to equili-
brate the chain configurations. For asymmetric compositions (</># < <^),
which occur in the one phase region in thermal equilibrium choosing
A/z > 0, the mean square gyration radii (J^A), (^B) °f tne two types of
chain are not identical: one finds77""79'100' that both types of chain con-
tract somewhat in comparison to the noninteracting case (e/kgT= 0), and
the minority chains are distinctly smaller than the majority ones. As a con-
sequence, each chain should relax its configuration by many local motions
after each identity switch,79 before the next identity switch is attempted. In
order to avoid any bias and satisfy detailed balance, the choice of beads for
the moves in Fig. 7.5(a) and the choice of chains for the identity switch
should be random, and the two types of moves should be randomly mixed:
note that in the absence of the exponential factor in eq. (7.9) the "a priori
probability" for the move c —> c' must equal the a priori probability for the
inverse move, c1 —> c.

A useful transformation is to write the semi-grand-canonical partition
function Zso(T, A/z) in terms of the density of states T(E,rn), which does
not depend on the parameters (T, A/I) characterizing the considered ther-
modynamic state:

The Monte Carlo sampling yields a number ,/K of configurations that are
distributed proportional to PT,\^(E,m} given as

In a simulation one may record a "histogram" HT^(E,m) just counting
how often one observes the possible values of E and m. For a large number
Jf of statistically independent states, this histogram approximates
PT^(E,ni). Therefore HT,&,i(E,m) can be used for a whole range of neigh-
boring values 7", A/z' around T, A/z, by a suitable reweighting102"104
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This "single histogram extrapolation" is only practical in use for such a
range of parameters104 where the exponentials in eq. (7.12) do not empha-
size values of E, m far out on the wings of the histogram H, where the
statistical accuracy is bad. But, for polymer mixtures near Tc, the number
of chains n in the simulated boxes is often rather small,108 and then the
distributions Pj',^1 (E, m) are all rather broad and this reweighting works
nicely over a reasonably broad range of T and A// (Fig. 7.6).

It is often desirable to combine histograms from several simulation runs
to get extrapolations over a wider parameter range and to increase the
accuracy.104"108 If s simulations are performed at parameters
{(Ti, A//,-), i = !,...,*}, the generalization of eqs (7.10) and (7.12) for the
density of states is {^Vi is now the number of states recorded in simulation /
for histogram HT,,^,(E,tn)}

Fig. 7.6 Distribution function P(m) = f dEPTtA(i (E, m) of the order parameter m for A/u = 0
plotted over a range of temperatures for N = 128, L = 80 lattice spacings, </>„ = 0.5, using the
bond fluctuation model of symmetric polymer mixtures at a simple cubic lattice and using the
extrapolation formula, eq. (7.12), with data from a single temperature run at kBT/e = 266.4.
The number of statistically independent samples was */K = 16 800. (From Deutsch and
Binder.27)



368 M O N T E C A R L O S T U D I E S OF P O L Y M E R B L E N D S

The weight w, with which the histogram of the rth simulation enters is
determined by minimizing the statistical error of T(E,m) and is found
00104-106,108
ctS

where

Figure 7.7 gives an example where this technique was used to obtain both
the absolute value of the order parameter (|m|) and its fluctuation
"susceptibilities" S^q = 0) = n((m2) - (m)2), S^(q = 0) = n((m2}-
(|m|) ) for A/z = 0 in the bond fluctuation model of symmetrical polymer
mixtures for a variety of lattice sizes.40 Sm\\(q) describes the scattering
of neutrons, x-rays or light under scattering vector q for a state with
order parameter (m)(i.e., volume fractions <$>A = (1 — ^)(1 + (m))/2,
<J>B = (1 — </>„)(! - (mj)/2) in the one phase region. For A/z = 0 we have
also (m) = 0, i.e., these data refer to the critical concentration (Eq. [7.6]).
Thus one expects that8"12

where C+ is a critical amplitude and 7 a critical exponent. Of course, for a
finite volume it is obvious from the definition of Sco[i(q = 0) that it can
never diverge, where instead it smoothly increases and reaches a saturation
value Scoii(q = 0) = n (in our normalization) for T= 0. For the bond fluc-
tuation model shown in Fig. 7.7, where each effective monomer occupies the
eight corners of an elementary cell of the sc lattice, the three choices of L
shown correspond to n = 108, 256, and 500, respectively. Therefore it is no
surprise that the three curves splay out in the critical region, and are not
immediately suitable to read off the critical temperature. Similarly, the
quantity S'ml\ (q) describes (in the thermodynamic limit) the scattering inten-
sity at a path that follows the coexistence curve of the miscibility gap (Fig.
7.1). For finite L, S'co\\(q = 0) has a maximum of finite height, and this
maximum is offset from the value of Tc seen in the thermodynamic limit.
The same conclusion, that finite size effects mask the location of Tc, is also
seen for the smeared-out behavior of the order parameter (Fig. 7.7(a)) and
the anomaly of the specific heat78 (Fig. 7.8). Using finite size scaling the-
ory95"98 in conjunction with the theoretical values of the critical exponents
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Fig. 7.7 Order parameter (\m\} (a) and order parameter susceptibilities Scon(g = 0) =
n((m2} - (mf), S^(q = 0) = n((m2} - (\m\)2) (b) plotted vs. temperature for AT =64,
<f,v = 0.5, and three choices of L as indicated in the figure, using the bond fluctuation model
on the simple cubic lattice and a purely repulsive interaction £ = eAB if two monomers of
different kind occur at the shortest possible distance (two lattice spacings), HAA = £BB = 0.
Open symbols (triangles, squares, and circles) show the data directly observed at these tem-
peratures where (always using A/i = 0) the actual simulations were made, including error bars
indicating the size of the statistical errors when these exceed the size of the symbols. Broken
curves (labeled by the volumes L3) indicate the multihistogram extrapolation based on the use
of all data on PT(m) at all considered temperatures. In (b) the upper set of curves (only present
for kBT/e > 10) refers to Sco\i(q = 0), while the lower set refers to S[.oK(q — 0). Full curves are
based on finite size scaling extrapolations towards the thermodynamic limit (see Section 7.2.4).
In (a) the broken curve with stars (marked "spinodal") is obtained from a linear extrapolation
of S^n(q = 0) at constant (m) as function of t/kaT. Note that the order parameter (\mf)
extrapolated at A/* = 0 to L —> oo yields the coexistence curve (or "binodal") which near
Tc(kBTc/e = 9.9261) is well fitted by (\m\) =• 1.38(1 - T/TC)03X in this case. (From Deutsch
and Binder.40)
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(for small enough N these should be9"12 the exponents of the Ising
model8'109), one can find Tc by extrapolation78 of the maxima of
smii((l = °) or the specific heat,78 (Fig. 7.8). But it is also evident that
with a single lattice size24 only a very rough estimation of the phase transi-
tion temperature would be possible. In Section 7.2.4 these finite size effects
will be discussed in more detail.

The study of fully symmetric mixtures is relatively simple, since the coex-
istence curve (and the critical point) occur for A/z = 0, due to the symmetry
against interchange of A and B. The problem is more difficult if this sym-
metry is destroyed, e.g., by making one chain stiffer than the other, choosing
an intrachain potential acting differently on the two types of bonds of A-
chains and B-chains, or, most simply, using a choice110"112 CAA ^ ZBB-
Choosing eBB = -CAB = —e, tAA = \CBB with A > 0 one must perform a
search in a two-dimensional space (T, A/it) to locate the critical point
Jc, A/zc = A^COex(rc), and also locating the phase boundary of the first
order transition at A//coex(T < Tc) from the A-rich to the B-rich phase is
a nontrivial task.

In this case it is useful to record a four-dimensional histogram containing
the numbers HAA , HBB , HAB of A-A, B-B and A—B interactions, and the order

Fig. 7.8 Specific heat per chain C/kB plotted vs. reduced temperature kBT/e for the self-
avoiding walk model shown in Fig. 7.3 but on the simple cubic lattice, for
N = 3>2,<j>y = Q.2,CAB = Q,tAA = CSB =-t, and four lattice sizes as indicated. Insert shows
that extrapolation of temperatures of the specific heat maxima yields the critical temperature
Tc consistent with the cumulant intersection point, if one uses the theoretical correlation length
exponent v of the Ising model,109 v ss 0.63. (From Sariban and Binder.78)



S I M U L A T I O N M E T H O D O L O G Y 371

parameter m. From these histograms, one can obtain all quantities of inter-
est (such as S^^q = 0), see Fig. 7.9(a)) in the full (T, A//) plane and also
carry out extrapolations over a whole regime of values for A. One sees that
S^^q = 0) has a maximum along a "ridge" in the (T, Aju) plane and

Fig. 7.9 The reduced fluctuation of m,S'cA(q = 0) = n((m2} - (\m\)2 (a) and the ratio R
describing phase coexistence (see eq. [7.18]) (b) plotted in the (T, A/j) plane for an asymmetric
polymer mixture (asymmetry parameter A = 2) and chain lengths NA=NB = N=32 for the
bond fluctuation model on the simple cubic lattice (system, size 563, </>y = 0.5). Functions
shown are obtained from multihistogram extrapolations using data for A = 1.0, 1.1 and 1.5,
respectively. (From Deutsch and Binder.110)
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reaches a peak near (Tc, Aj/e). This ridge already yields a rough estimate for
A/Ucoexl?1)- A more precise estimation is obtained from the probability dis-
tribution P(m), which appears to be just as is shown in Fig. 7.6 for a path
along the ridge, while for T < Tc either the left peak (representing the B-rich
phase) or the right peak (representing the A-rich phase) is quickly sup-
pressed, if one moves at a value A// ^ A/ucoex(T). This observation suggests
to define "total probabilities" PA-rfch, -Ps-rich for the two phases,

m* being the location of the minimum in between the two peaks of P(m). As
an estimate for m*, one can take the extremum of S^u(q = 0). Then we
define as ratio R of these two probabilities

It is seen (Fig. 7.9(b)) that R is appreciably different from zero only along a
rather narrow strip around A/icoex(r) in the (T, A/z) plane. In Section 7.2.4
we shall describe how one uses such data to reliably estimate the coexistence
curve.

The most interesting asymmetry, of course, is an asymmetry of chain
lengths (NA ^= NB). In the general case, the semi-grand-canonical technique
is not expected to work, however, since the insertion of the longer A-chain
replacing the shorter B-chain will almost always be rejected, due to the
excluded volume constraint. This is the same difficulty that hampers the
measurement of chemical potentials by the Widom test-particle insertion
method.113 Since for short chains this problem can be overcome by the
configurational bias Monte Carlo technique,114"116 it is likely that one can
generalize this approach to blends with a small difference in chain lengths.
Also the special case where NA is a simple integer multiple of NB can be
treated117: when NA = kNg, with k = 2, 3 or 4, one can replace an A-chain
by k B-chains or vice versa. Of course, taking out k B-chains simultaneously
and replacing them by an A-chain requires that 2(k — 1) chain ends are
within the allowed neighborhood for bond vectors, and hence the accep-
tance rate for such moves rapidly decreases with increasing k. Nevertheless,
first results with this technique seem to be rather promising.117

7.2.3 Other ensembles

As mentioned above, fully grand-canonical ensembles are difficult to use for
polymers, due to the problem of inserting chains in a random, unbiased
configuration in a dense polymer melt. But of course, the standard canonical
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ensemble where both HA and HB are held fixed can always be used, and has
the advantage that it is closest to the experimental reality. In fact, for
dynamic studies (interdiffusion,68'118 early stages of spinodal decomposi-
tion42'80'81'89) the grand-canonical ensemble would make no sense, while
the canonical ensemble can be used.

One can obtain information on the phase behavior in equilibrium from
studies such as these in several ways: one approach117 rests on generalization
of techniques for the estimation of chemical potentials in dense polymer
systems114"117'119'120 to chemical potential differences. It turns out that
this approach is hampered by slow relaxation effects (which are expected
due to both hydrodynamical slowing down93 and critical slowing down, as
discussed above) and hence we are not going into detail here.

Another technique rests on calculating the structure factor S(q). As
demonstrated first by Sariban and Binder,121 though in the framework of
a semi-grand-canonical simulation, one can estimate the spinodal curve
from a linear extrapolation of S~l(q —*• 0) versus e/k£T: estimating the
temperature T where S~l(q —> 0) = 0 for various concentrations yields an
estimate of the spinodal curve. Figure 7.7(a) did include an estimation of
this kind. Although the linearity of this extrapolation is intrinsically a mean-
field concept, and thus the critical temperature is slightly overestimated, this
technique should yield Tc with relatively small errors for large chain lengths,
if one were able to obtain data for S(q) with precision that is good enough.

A rather interesting method,83 motivated by successful applications to
studies of liquid-gas phase separation of Lennard-Jones fluids and other
fluids in the canonical ensemble,122"126 starts from the observation that the
temperature variation of the order parameter distribution can be analyzed in
subsystems of linear dimension i. Although in the total system (of linear
dimension L) the order parameter is conserved, for t <C L neighboring sub-
systems can freely exchange different types of monomers (and chains). Of
course, subsystems must be large enough, so that they still contain many
chains.

Figure 7.10 presents, as an example, concentration distributions for a
mixture of flexible (A) and stiffer (B) chains of length N = 10 on the face-
centered cubic lattice. It is seen that the distribution of the volume fraction
of the monomers belonging to the stiffer chains resemble nicely a Gaussian
around the average volume fraction (chosen as 4>s = 1/2 here) at the highest
temperature shown, T = 0.25, where the stiffness is least pronounced. As T
is lowered and the stiffness of the B-chains increases, a double peak struc-
ture clearly develops. It is seen that unlike Fig. 7.6 the distributions are very
asymmetric, i.e., one peak occurs nearly at <j>s = 1, while the position of the
other peak is strongly temperature-dependent. This means that in the
regions rich with stiff chains (which are expected to be aligned in a
liquid-crystalline type order127"130) almost none of the flexible chains are
dissolved, unlike the regions rich in flexible chains, which can accommodate
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Fig. 7.10 Distribution function N(<j>s) of the volume fraction of stiff chains at several tempera-
tures, for a subsystem of linear dimension I = 8 of a total system with linear dimension L = 30,
using a face-centered cubic lattice with 4>v — 0 and the cooperative motion algorithm. Both
chain lengths of the stiff (s) and flexible (f) chains are equal, Nf = Ns — N = 10, and their
volume fractions are equal and constant, (j>s — <pf— 1/2. For the stiff chains, energies 0, 0.5,
1.0, 1.5 apply for angles TT, 27r/3,7r/2 and ?r/3 between successive bonds. Here temperature is
measured in energy units. (From Gauger and Pakula.83)

a certain fraction of stiff chains. One should note that the separation
between A- and B-chains in Fig. 7.10 is purely entropy-driven, i.e., no
energy between different chains was assumed, irrespective of their character:
eAA = eBB = HAB = 0. Note that the flat part of the distribution in between
the peaks is attributed to interfacial contributions, which are a difficulty of
this subsystem approach as discussed by Rovere et a/.124

For small molecule systems, the most popular ensemble to study phase
coexistence is the "Gibbs ensemble".2'131"135 For binary (AB) mixtures
below Tc, this amounts to simulating two systems (i.e., two simulation
boxes) which can exchange particles (and volume, in the case of an off-
lattice model). Thus both systems are in full thermal equilibrium with
each other, i.e., they are at the same temperature, pressure and the same
values of the chemical potentials ^AI^B- For polymers, the use of this
ensemble in its original form meets the same difficulties that grand-canoni-
cal simulations do (moves where chains are to be inserted in an already very
dense system almost always will be rejected). Of course, for symmetrical
mixtures one can resort to a semi-grand-canonical variation of the Gibbs
ensemble69'136: it is attempted to exchange an A-chain in Box 1 and a B-
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chain in Box 2. Usually one works only well below Tc, where one box always
stays in the A-rich phase and the other box in the B-rich phase (Fig. 7.11).
While this type of analysis works well for strongly unmixed phases, the
extrapolation into the critical region clearly is somewhat uncertain. But
Fig. 7.11 contains at least qualitative evidence that the critical temperature
of phase separation is suppressed with decreasing film thickness (for a model
where neither component is preferentially attracted towards the confining
walls).

7.2.4 Finite size scaling

As is well known, sharp phase transitions do occur only in the thermody-
namic limit95"98: in our case the number n of chains in the considered system
should tend to infinity. Computer simulations usually consider very small
systems (where n is of the order 102 to 103), and hence the finite size round-
ing and shifting of the transition needs to be seriously considered. In fact,
Figs 7.6-7.8 provide typical examples: the distribution of the order para-
meter m (eqs [7.4], [7.5]) of an unmixing transition in a polymer blend
changes completely gradually from a single-phase Gaussian above Tc to a

Fig. 7.11 Phase diagrams for a symmetrical off-lattice mixture with NA = NB = N = 20, where
both components are modeled as bead-rod chains, and all nonbonded beads interact with
standard Lennard-Jones potentials which are truncated at 2.5<r, for the choice of interaction
parameters <JAA = OBB = CAB = a, HAA = CAB = f, CAB = 0.9e, T* = kBT/e., for a monomer den-
sity p* = pa3 = 0.7 in each box. Here x\ = <J>A/(<J>A + <t>s), and data are shown for a bulk system
(full dots) and thin films with repulsive walls for thickness 10.5u (squares) and 5<r (triangles).
Lines represent a fit according to x\ - x\c oc (T — T^)1/3. (From Kumar et al.69)
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double-peak distribution below Tc when the temperature is lowered. While
from data from finite systems one can define various pseudo-critical tem-
peratures TC(L)—e.g., the temperature where the specific heat (Fig. 7.8) or
S[.oli(q —> 0) (Fig. 7.7(b)) have maxima, or where P(m) starts to develop its
central minimum—these temperatures TC(L) do not agree with each other;
they depend on the quantity that is considered and on the linear dimension
L.

However, for large enough L where finite size scaling holds, one can show
that certain reduced moment ratios should intersect exactly at Tc. This is
seen by noting97 that the linear dimension L scales with £, the correlation
length of concentration fluctuations8"12

where the two signs ± of the critical amplitude |± refer to the sign of
T/TC - 1(= -t), and v is the critical exponent (v w 0.63).109 This statement
means that the Mi moment {|»i|fc} = J^1 m\kP(m)dm of the order para-
meter distribution P(m) does not depend on L and the temperature distance
t from the critical point separately, but rather in the scaled form

where Mk(L/£) is the scaling function and (3 the critical exponent of the
order parameter,

B being the associated critical amplitude. Note that eq. (7.20) reduces for
k = 1 to eq. (7.21) since M\(z » 1) oc z^/v = L^V^&IV, using also eq. (7.19).
From eq. (7.20) one now concludes that reduced moment ratios (where
ki = if)

depend on the ratio L/£ only. Since £ —> oo for t\ —> 0, eq. (7.19), for all L
the ratios U^f must yield the same value t^(O), and hence plotting ifff as
function of T, all curves for the different choices of L must intersect in one
common intersection point, as announced above. The temperature of this
intersection point is an estimate for the critical temperature Tc.

Figure 7.12 tests these concepts using data for symmetrical polymer mix-
tures for N = 64 and N = 256, in the framework of the bond fluctuation
model with interactions between nearest-neighbor effective monomers. °
For chains not too long (N < 64) there is indeed a common intersection
point, and Tc can be estimated with high accuracy (ksTc/e = 9.9261).

At first sight it is surprising that for larger chain length (e.g., TV = 256,
Fig. 7.12(b)) there is not such a well-defined intersection property, but
rather, with increasing L the intersection point shifts somewhat to a lower



Fig. 7.12 (a) Ratio of moments tf\\ = (m2)/(\m\} for the symmetric bond fluctuation model
of polymer mixtures at <j>y = 0.5 plotted vs. temperature for TV = 64 (a) and N = 256 (b). The
model is the same as in Fig. 7.7. Different curves result from histogram extrapolations for
different choices of L as indicated in the figure. (From Deutsch and Binder.40)
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value of C/i2 and to a somewhat lower temperature. It turns out that these
deviations from finite size scaling are not due to insufficient equilibration
and/or statistics, but reflect a basic physical aspect of the problem: the
crossover from Ising-like critical behavior to mean-field critical behavior
as 7V^ oc.9"12>40'137-140

This crossover is physically due to the fact that in a dense three-dimen-
sional polymer melt the chain configurations are random-walk-like, i.e., the
gyration radius behaves as Rgyi « a^/N, a being the size of an effective
monomer, and hence the density of one chain within its own volume
(Pchain oc /?jjyr) is pchain = -/V/Fdiain a a^N~1/2. Since the melt density is of
order or3, it follows that there must be monomers of N1/2 other chains in the
same volume, i.e., each chain interacts with N1/2 other "neighbors". This
situation is reminiscent of an Ising spin model where each spin has a coor-
dination number A/1/2, and thus clearly for N1/2 —> oo mean field theory
becomes correct.9

A more quantitative description of this problem shows that one can
describe this crossover by comparing the reduced temperature distance t
to the so-called Ginzburg number40'141'142 Gi, which for the Flory-
Huggins theory20 of a symmetric polymer mixture reduces to40

For t\ » Gi one has mean-field behavior, i.e., the correlation length £ scales
as

while in the inverse limit (\t\ < Gi) eq. (7.19) holds, with |± oc Nl~v w N037.
For \t\ w Gi, i.e., £ « £cross ~ aN& smooth crossover between eqs. (7.19) and
(7.24) occurs (Fig. 7.13).

Now there is an additional complication: in the mean-field critical region
of polymers there is no finite size scaling of the form postulated in eqs
(7.20)-(7.22); L does not scale with £ but rather with a "thermodynamic
length" I defined by40'143'144

where we have used the critical properties of Flory-Huggins theory10"12'78

and

As in eq. (7.19), the two signs ± of the critical amplitude C±F refer to the
sign of T/TC — 1. Equation (7.25) is made plausible by approximating the
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Fig. 7.13 Crossover scaling of characteristic lengths for a polymer mixture. For 12> Gi, i.e.,
-log? to the left of -logG/, one has mean-field behavior, with two characteristic lengths
£MF oc \/Jft~}/2 and lotNl/3r2/3. These lengths smoothly merge in the crossover regime
t RJ Gi) and in the non-mean-field critical regime a single characteristic length £ oc Nl~"r"
takes over. (From Deutsch and Binder.40)

two peaks in Fig. 7.6, describing the coexisting A-rich and B-rich phases, as
simple Gaussians

where we have used the fact that it is the structure factor S^(q = 0) that
controls the width of the distribution, via a fluctuation relation.

As a consequence of eqs (7.25) and (7.28), in the mean-field critical region
of a polymer mixture eq. (7.20) does not hold, and should rather be replaced
by

- While in the mean-field critical region we hence expect for the maximum
value of the scattering function S^q = 0) = n((m2) - (\m\2} oc (L?/tf)
«m2)-(H)2) a behavior [S^(q = 0)]raax ex L^/N = L^/N, in the
non-mean-field critical regime we should have [from eq. (7.20)]
[5^(0 = 0)] otL3-Wv/N&LL91/N, using the Ising model critical
exponents8' (f3/v « 0.515). While the latter law for short chains is well
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fulfilled, even long chains such as N = 256 and TV = 512 do not yet show
the mean-field exponent 1/2 (Fig. 7.14[a],40 but rather an "effective expo-
nent" occurs (weff«1.73) in between the Ising and mean-field values.
However, combining data for all chain lengths studied in a crossover scal-
ing plot (Fig. 7.14[b]),40'145 better evidence for the theoretical exponents can
be obtained.

These examples show already that the accurate estimation of Tc and the
other critical properties of a symmetrical polymer mixture is a delicate
matter, if one wishes to study rather long chains, comparable to experimen-
tal molecular weights.139'140 Note that it would not easily be possible to go
to much longer chains (the maximum chain length so far used is40 N = 512)
and lattice sizes (the largest lattice used so far is a simple cubic lattice with40

1603 = 4096000 sites, containing for $v = 0.5 in total 256000 effective
monomers): altogether an effort of about 3000 hours CPU at a CRAY-
YMP was spent, with about one half of this time being needed to equilibrate
the initial starting configurations of a homopolymer melt for the various
lattice sizes.

When the "effective exponent" v (Fig. 7.14[a]) has been obtained as well
as Tc (Fig. 7.12), one fits another effective exponent u (which would be equal
to l/v in the Ising critical regime) by plotting Lv(\m\} versus the variable L"t
and choosing u such that an optimal fit on a "master curve" is obtained,
since eq. (7.20) can also be written in the form (for k = 1)
{H)Z//" = Mi(L/£) =fl(L

l/vt), where/i is another scaling function. In
fact there are other, more direct, methods to estimate u; we refer for a
discussion of this approach to the original papers.27'78'79'108 From the beha-
vior of the master curve fi(Ll^t) for Ll>vt » 1, /i = B ( L l / v t ) f t , one can
estimate the critical amplitude B of the order parameter, eq. (7.21). In this
way finite size scaling theory provides a systematic method to extrapolate
data from small lattices towards the thermodynamic limit. This is how the
coexistence curve (binodal) described by eq. (7.21) was constructed in Fig.
7.7(a). These techniques carry over to the response functions Scon(q = 0),
S^q = 0) as Well.27'78'79'108 We are not going into details here, however,
because in the general context of critical phenomena such methods are well
documented.89'93'96-98

It remains to briefly mention how this approach is carried over to asym-
metric polymer mixtures, where the critical point can only be located by a
search in a two-dimensional space (r, A//), see Figs 7.9(a), (b). It was
already shown (Fig. 7.9[b]) that the coexistence between A-rich and B-rich
phases at A/i = A/xcoex(7

1) can be located rather precisely by the ratio R
characterizing the double-peak structure of the distribution function P(m).
However, these data do not yet give an indication where the critical point Tc

occurs along the ridge in Fig. 7.9(b). This happens because above Tc there is
also a value of A// where the probabilities PA-rich, -Pe-rich defined in eq. (7.17)
have equal magnitude, even though P(m) then may have only a single peak.
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maximal susceptibilities

Fig. 7.14 (a) Log-log plot of the maximum value of the response function n[(m2} — (|m|) ]
versus L, for the model of Fig. 7.7(b). Different symbols denote various chain lengths N, as
indicated in the figure. Straight lines (with the slopes 1.95 and 1.73, respectively) indicate power-
law behavior with "effective" exponents, (b) Same data as in (a) but replotted as a finite size
scaling crossover plot, [S'^^q — 0)]max normalized by L^/N2 is plotted as a function of L/N.
Full and broken straight lines indicate fits to power laws which have the theoretical exponents
-101v 5=3-1.03 or -2v = -3/2, respectively. (From Deutsch and Binder.40)

101
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Thus one can view the line of maximum R in Fig. 7.9(b) in an asymmetric
mixture as the analog of the temperature axis of a symmetric mixture below
and above Tc.

However, the endpoint Tc of the first-order transition line at
Afjt = Ayucoex(r) can now be estimated, looking for an intersection of the
moment ratios Ul'ki for different lattice sizes along a path of maximal R in
the (r, A//) plane. These ideas110'111 indeed allow one to estimate Tc with
reasonable precision (Fig. 7.15[a]). Using these values of Tc and the order
parameter (Am) in a finite size scaling analysis, one can obtain the coex-
istence curve and critical concentration very accurately (Fig. 7.15[b]).110

The raw data for the volume fractions of the coexisting phases follow in
full analogy to eq. (7.17) from

and using the translation from the order parameter m to the volume frac-
tions (f>A,<t>B (eq. [7.5]) one obtains the phase diagram as shown in Fig.
7.15(b). Again it is clear that the "raw data" have a dramatic size effect,
for temperatures 4kBT/[3 + A)e] exceeding 65, and it would be difficult to
estimate reliably the critical point if only one lattice size were available.

7.2.5 Technical problems of simulations of block copolymer mesophases

Simulating mesophase formation in block copolymers, one encounters simi-
lar problems as for the simulation of macroscopic phase separation in poly-
mer blends. Again the need arises to equilibrate both the local structure of
the chain configurations and the long wavelength collective properties.

Minchau, Fried and coworkers52~55 have combined the "slithering snake"
algorithm (Fig. 7.16[a]) with a head-tail interchange move (Fig. 7.16[b]).
Their lattice model of the chains is fully analogous to Fig. 7.3, describing
chains by self-avoiding walks on the simple cubic lattice, and choosing
pairwise interactions eAA, CBB and eAB between effective monomers on near-
est-neighbor sites. The only distinction now is that a fraction/of the mono-
mers of each chain are A-monomers, and a fraction 1 —/are B-monomers.
This identity of the monomers must be properly taken into account in the
moves of Fig. 7.16. For example, in addition to the change of the end link in
the standard "slithering snake" algorithm146'147 one must also shift the A—B
junction point along the chain (Fig. 7.16[a]). Both moves in Fig. 7.16 are
only accepted with a probability P = min{exp(—AE/kgT), 1}, AE being the
energy change due to the move.

For block copolymers, the average composition of the system is fixed and
equal to / just as the composition of each individual copolymer chain.
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Fig. 7.15 (a) Plot of l/Q = (m2}/{|m|)2 versus reduced temperature, along the line of maximal
R (eq. [7.18]) in the (7", A/u) plane, for the same model as shown in Fig. 7.9 (N* - NB = N = 32,
asymmetry parameter A = CAA/CBB = 2). Three different linear dimensions are shown.
From the intersections critical parameters are estimated as 4kBTc/[(3 + A)e] =
69.7 ± 1.0, A^/e =-2.327 ± 0.02, c^f/O^n-00 = 0.498. (b) Phase diagram of the asym-
metric polymer mixture (^=32,^ = 2) in the plane of variables {T,<j>A/(<t>A + <i>B)}- The
dashed lines are the histogram extrapolations for mArich (right) and ma rich (left) for the
three simulated system sizes. The full line denotes the two branches of the coexistence
curve, following from the finite size scaling analysis, and the circle denotes the critical
point. (From Deutsch and Binder.110)
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Fig. 7.16 Examples of a "slithering snake" motion (a) and of an A-B interchange motion (b)
for a model of symmetric diblock copolymers (/ = 1 /2) of chain length N = 10. The arrows in
both figures signify that motions in both directions are considered at random. The lattice sites
1,2,3 are the possible new locations (on a square lattice) for the end monomer of the white block
(upper part, left); on the right part of this panel the vacant site labeled 3 has been chosen as the
new location for this monomer. The remaining monomers advance along the chain one lattice
constant. For the inverse move, the end monomer of the block could move to sites 4 or 5 but not
to site 6, due to the excluded volume constraint.(From Fried and Binder.53)

Hence simulations can be carried out at fixed values of/only; an analog to
the semi-grand-canonical technique (where A// rather than the composition
is fixed) does not exist. As a consequence, it is very important that long-
wavelength composition fluctuations relax fast enough. It is this considera-
tion that led Fried et a/.52"55 to choose the moves shown in Fig. 7.16:
although not microscopically realistic, the "slithering snake" algorithm
leads to a particularly fast self-diffusion of the chains: in the absence of
backjump correlations, the self-diffusion constant DN is independent of N,
if one measures the time in units of N attempted moves per chain, since in
each move the center of gravity moves a distance in the order of the radius
divided by N, i.e., |AJCCG| oc a\fN/N, and then DN oc (&xco)2N oc a2. And
the move of Fig. 7.16(b), if it is accepted, should lead to a particularly fast
relaxation of Fourier components of the concentration with wavelength
comparable to the chain radii and hence comparable to the wavelength of
the lamellar ordering.

In practice, the slithering snake move in Fig. 7.16(a) is slowed down if the
vacancy concentration </>„ is small, and thus Fried et a/.[52-55] used
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<j>v > 0.2. With the cooperative motion algorithm, simulations with <£„ = ()
were also performed.24'84'85 As for the case of polymer blends,79 one finds
that the radii of the chains increase with increasing vacancy content of the
system. However, this trend occurs already in the absence of any interac-
tions between A and B monomers,24'78'148 and thus it is of interest to check
for the effect of temperature on the linear dimensions of the radii measured
in units of the radii of athermal chains, Fig. 7.17(a). However, within the
range of scatter of the data the radii seem to coincide on a master curve for
all vacancy concentrations, at least for temperatures T> Tc. The phase
transition temperatures in this study have been estimated only rather
roughly, by locating the specific heat maxima for a single lattice size (Fig.
7.17[b]). Consistent with earlier findings for a different model,53 there is a
decrease of the transition temperature with increasing vacancy content (Fig.
7.17[b]). Since, as will be explained below, a reliable study of the ordered
phase for block copolymers is very hard to perform, and finite size effects
and finite observation time effects are very difficult to handle for T < Tc,it
is not clear whether the deviations between data for (j>v = 0 and <pv ^ 0 for
T < Tc in Fig. 7.17(a) are a physical effect, or due to such limitations.

In principle, one could generalize the considerations of Section 7.2.4 to a
study of block copolymer mesophase ordering, by suitable identification of
the order parameter of the transition. For the lamellar mesophase (Fig. 7.2),
this order parameter is written in terms of concentration waves for the local
concentration of component A, for instance

where A is the amplitude and <p the phase of the (complex) order parameter,
and the wavevector q* = q*n describes both the wavelength \*(T) of the
lamellar ordering and the orientation of the lamellae (n being a unit vector
perpendicular to the lamellae). This order parameter obviously is much
more complicated than the simple order parameter m of an unmixing transi-
tion (eqs [7.4], [7.5].)

From eq. (7.31), the difficulties encountering the study of such ordering
phenomena from simulations in small boxes can easily be deduced: for a
given choice of box geometry and boundary conditions, the linear dimen-
sion L will in general not be commensurate with the wavelength \*(T)—
only at special temperatures L can there be an integer multiple of A* (T) , but
since this temperature-dependent wavelength is not known beforehand, a
serious distortion of the ordering due to the lack of commensurability must
be expected.

This fact has been explicitly demonstrated by simulating the block copol-
ymer model of Fig. 7.16 in a L x L x D thin film geometry,149 where at the
two repulsive walls of linear dimensions Lx L an energy parameter CAS > 0
was applied, which is repulsive to the A-monomers only. Choosing in the
bulk CAA = ZBB = 0, CAB > 0, and HAS = £AS/2, there is a tendency for the



Fig. 7.17 (a) Radius of gyration for symmetrical block copolymers (/= 1/2) of chain length
N = 32 on the face-centered cubic lattice, for the three different vacancy concentrations
<t>v ~ 0, 0.2 and 0.4, respectively, and normalized by their radii at infinite temperature.
Energy parameters and units are chosen as eAA = tSB = 0, eAB/kB = 1. All data are for lattice
linear dimensions L = 20, choosing a bond length ^/2, with 4000 (1 — </>(/) monomers per
system, (b) Specific heat versus temperature for the same model as in (a); curves are guides
to the eye only. (From Weyersberg and Vilgis.24)
386
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block copolymers to form B-rich layers adjacent to the walls, and hence the
lamellar ordering occurs preferentially with lamellae oriented parallel to the
walls. Assuming thus that the unit vector n in eq. (7.31) is perpendicular to
the walls, one can check eq. (7.31) directly, by simply recording the profile of
the density difference PA(Z) — PB(Z) as a function of the coordinate z in the
direction perpendicular to the walls (Fig. 7.18). Indeed, one can see that for
D = 10, 18 a wave-like structure of the type assumed in eq. (7.31) develops,
with n oriented along the z-axis, stabilized by the special boundary condi-
tions described above. Near the ordering temperature it seems that for
D — 10 a single wavelength X*(T) just fits, while for D = 18 two wavelengths
fit.Thus it is no surprise that for D — 14 the thickness is incommensurate
with this lamellar structure, and thus only a rather weak modulation occurs
(simply due to the attraction of B-monomers to the walls which then are
removed from an adjacent depletion layer). A closer examination shows150

that this system with D = 14 also orders, but now the vector n is tilted
relative to the z-axis, and thus PA(Z) — PB(Z) is no longer sensitive to the
ordering. In fact, snapshot pictures of configurations of block copolymer
systems in L x L x L geometry with periodic boundary conditions some-
times also show a tilting of n with respect to the lattice directions.24'84

Using such data for the order parameter profiles in thin films for a large
range of temperatures T and thickness D, one can draw a contour plot of
constant values of the order parameter in the center of the film (Fig.
7.19).149 One sees that the contours where the order parameter is zero are
not simply parallel to the abscissa, but tilted: since the boundary condition
at the wall favors a wave trough at the surface, the position of the nth zero
then means (In — l)/4 wavelengths occur up to this position. The first zero,
of course, is not included in Fig. 7.19, and thus one wavelength just fits
halfway in between the lines of the first and second zero that are included in
Fig. 7.19. From this plot one hence can infer which thickness should be used
at each temperature to provide an optimum fit of the lamellar structure. For
a finite size scaling analysis, however, this would be rather cumbersome,
since one would need to work with multiples of the thickness which is
optimal at Tc, whereas the precise location of Tc is also not known before-
hand.

In this situation, most Monte Carlo work has emphasized the behavior
of the collective structure factor52"55 and of the chain linear dimensions
24,52-55,84,85 JQ ̂  disordered phase of the bulk copolymer melt. Assigning
a spin variable a(r) that takes the values a(r) = -1,0,+1 if lattice site f is
taken by A, V, B species, respectively, the collective structure factor is
defined as the Fourier transform of the spin pair correlation function,
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Fig. 7.18 Profiles of the order parameter pA(z) - pe(z) for the symmetric (/= 1/2) block
copolymer model with N= 16, <$>v = 0.2, and L x L x D simple cubic lattices with periodic
boundary conditions in the x and y directions, while at the two repulsive walls of size L x L
a repulsive energy of strength eAS = e^/2 acts on A-monomers, with units such that
fAB/ka = 1- Linear dimension L in parallel directions is always L = 16, while the linear dimen-
sion in z-direction is D = 10 (a), 14 (b), and 18 (c). Normalized inverse temperatures are
indicated by different symbols: l/r=0.3 (circles), 0.4 (diamonds), 0.5 (triangles), and 0.6
(squares). The critical temperature in the bulk is estimated as53 \/Tc » 0.52 ±0.05. (From
Kikuchi and Binder.149)

This quantity is of particular interest, since it is readily accessible experi-
mentally via small angle scattering techniques56'57 and also, its behavior is
predicted by various theories.16'21'58'64

Choosing a simple cubic lattice of linear dimensions L with periodic
boundary conditions, obviously only discrete values of q are accessible,
namely
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Fig. 7.19 Contour plot for the order parameter PA(Z)~PB(Z) at the center of the films shown in
Fig. 7.18 (averaged over the layers z = D/2 and z = D/2 + i, choosing all possible even integers
for D in the range 8 < D < 32), in the plane of variables D and l/T. Temperature is measured in
units of CAB/ke- The solid lines denote contours of order parameter values +0.7 (enclosing the
lightest region), +0.5,+0.3,+0.1,-0.1,-0.3, -0.5, -0.7 (enclosing the darkest region). The
dashed lines indicate the zeros of the order parameter, PA(Z) - PB(Z) = 0. (From Kikuchi and
Binder.149)

Thus there is also a long wavelength cut-off at qm\n = 2-K/L, and also for the
absolute value \q$\ that is of interest for a spherically averaged structure

factor, only values #min are accessible. It makes sense to

consider such a spherical average, since in the disordered phase there is no
spontaneously broken symmetry and hence no preferred orientation n, of
course. Due to the choice of a lattice, one expects some (unphysical!) lattice
anisotropy effects, but they should become appreciable only for uninterest-
ingly large values of and hence are not further considered here.

Fig. 7.20 shows examples for the type of simulation results that can be
obtained.53'55 No data are available in the small q regime (qRg < 0.5) here.
Data for large qRg have not been obtained either, firstly because the calcu-
lation of •Sf

Coii(<7) then would be too time-consuming, and secondly there



Fig. 7.20 The spherically averaged collective structure factor for N= 20, L — 16,/= A (a) and
N = 40, L = 32,/= | (b) plotted vs. the scaled variable x = ̂ (e, W), ̂ (e, N) being the gyra-
tion radius at the considered reduced interaction parameter e = tAti/ksT, for a simple cubic
lattice model of block copolymers of the type shown in Fig. 7.16, with a vacancy content
<f>y = 0.2. Curves in case (b) are only guides to the eye, while in case (a) they are least-square
fits to a generalized Leibler21 formula, NS^^(q) = ^[F(qRg) — 6], where F(x) is the result for
NS~gtl(q) proposed by Leibler, but with a, 6, Rg being fit parameters. Different symbols in both
parts indicate various values of e as shown in (b), while they are in (a)
£ = 0,0.05,0.1,0.2,0.3,0:35 (from below to above). Note that the Leibler theory (which
assumes Rg = Re)

21 predicts the maximum for/= i, to occur at x" ?s 1.95, independent of e,
as indicated by a straight line. For/= 3/4, the maximum should occur for x* = 2.053 while the
actual maxima are off-set and shift with increasing e to lower values (arrows). (From Fried and
Binder.53'55)

390
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might possibly occur lattice anisotropy artifacts. Even in the restricted wave-
number range from 0.5 <, qRg <; 3.5 there is some statistical scatter, despite
large efforts in computer time. Note that the points shown in Fig. 7.20
include all possible values \qa\ in the quoted range, and thus near Tc the
precise location of the maximum due to this discreteness of reciprocal space
also becomes a problem. As a consequence, the analysis of Sm\\(q) is not
suitable for a precise estimation of the microphase separation transition
temperature either. As a matter of fact, none of the existing simulations
of block copolymer melts24'52"55'84'85 have yielded a reasonably accurate
estimate of Tc so far. Nevertheless these studies have been very useful, as
they have indicated qualitative deviations from the standard weak segrega-
tion theory21 and its underlying theoretical concepts (such as the random
phase approximation [RPA]9'151) already in the high-temperature region
above Tc. Although this behavior was not originally expected,16'59'60 it has
found experimental verification.57'66 We shall return to these phenomena in
more detail in Section 7.4.

7.2.6 Interfacial structure, surface enrichment, inter diffusion, spinodal
decomposition

For simulating bulk properties of materials, one uses periodic boundary
conditions in all three spatial directions throughout. However, other bound-
ary conditions are needed for simulating interfacial and surface phenomena.

In models of Ising ferromagnets a common method152 to stabilize one
interface between spin-up and spin-down phases is the use of antiperiodic
boundary conditions in one direction of the system, a(fi + L±ez) = —cr(Py),
where ez is a unit vector in the z-direction (perpendicular to the interface
that is stabilized), and L± is the linear dimension of the system perpendi-
cular to the interface. In the jc, j-directions parallel to the interface, where
one then uses linear dimensions L\\ which may be chosen different from L±,
standard periodic boundary conditions are used (a(fi + L\\ex) = <y(rt) if ex is
a unit vector in ^-direction, etc.). Remembering that the Ising spin model
translates into the model of a binary AB mixture (this fact has already been
invoked writing the collective structure factor in eq. [7.32] in a pseudospin
representation), 0^(F,) = [1 - t7(F,)]/2,(fo(F,) = [1 +<7(F,)]/2 if CT(^) = ±1,
this antiperiodic boundary condition stabilizes an interface between an A-
rich phase and a B-rich phase of a binary (AB) mixture, if one simulates a
system at phase coexistence (A/x = 0) for T < Tc.

This method can be straightforwardly generalized to lattice models of
symmetrical polymer mixtures153: an A-chain part of which leaves the box
through the boundary at z = Lj_ re-enters the system at z — 1 as a B-chain,
etc. Comparing such a simulation with a simulation with standard periodic
boundary conditions in all directions for the same L\\ x L| x L± geometry,
one can obtain excess properties due to the interface,152 such as the inter-
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facial excess (internal) energy Umt- From t/int one finds the interfacial free
energy F{nt by standard thermodynamic integration techniques152 {using the
relation Uint(/3) = dFint((3)/d(3 where /? = \/kBT\.

One disadvantage of this technique, of course, is that there is no pre-
ferred location of the center of the interface—there is still a translational
symmetry that allows the motion of the interface in z-direction arbitrarily.
Even if one initializes the system such that at the start of the simulation
the interface is in the center of the box (at z = Ai/2), during the course of
the simulation for any finite L| we expect diffusion of the interface to
neighboring positions. In lattice models of metallic alloys, this diffusion is
pronounced only for temperatures higher than the interfacial roughening
transition154: for polymer mixtures such a transition would be a lattice
artifact, of course, since in fluid mixtures interfaces are rough due to
capillary wave excitations at all temperatures.155 If one studies interfacial
profiles, one can impose a constraint localizing154 the interface in the
center by requiring that the total order parameter of the system is fixed
at zero, w = 0, so that always an equal number of A-chains and B-chains
are in the system.

Another choice for maintaining an A-B interface is to abandon in the z-
direction both the periodic and the antiperiodic boundary condition, rather
using hard wall boundary conditions there.68'118 In Ising models, one uses
the "fixed spin" boundary condition, where left neighbors of spins with
z = 1 are always up, and right neighbors of spins with z = L±_ always
down156; alternatively, one may choose "boundary fields" at the walls
that prefer component B near z = 1 and component A near z = Lj_. A
variant of this "boundary field technique" has recently been used for
block copolymers149'157 in order to stabilize the lamellar phase, with the
A-B interfaces being perpendicular to the interface. In this manner, one
can study the interfacial structure between the A-rich and B-rich layers in
the lamellar mesophase (Fig. 7.18), as well as the surface enrichment that
occurs at the hard walls due to the boundary fields (in Fig. 7.18, species B
was favored at both walls) and the density reduction that occurs both near
the hard walls and at these A-B interfaces150 (Fig. 7.21[a]). Such boundary
energies preferring one component are also used when one simulates surface
enrichment in polymer blends50'157'158 (Fig. 7.21[b]).

Cifra et a/.158 use a wall-monomer interaction twA = CWB but consider
different volume fractions fa ^ </>g in the bulk of their thin film system,
carrying out the simulation in the canonical ensemble, while the data of Fig.
7.21(b)50 are obtained from semi-grand-canonical techniques. The simula-
tion by Cifra et a/.158 is of great interest as a first step towards the modeling
of the situation used in experiment, where one normally has two inequiva-
lent interfaces: one is the interface between the thin film of the polymer
blend and an adsorbing substrate, and the other is an interface between
the film and vacuum or air,51'159 respectively. Cifra et a/.158 achieve this
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Fig. 7.21 (a) Profiles of the total density ptot for the symmetric (/= 1/2) block copolymer
model of Fig. 7.16 with N = 16,<j>v = 0.2 in aiy x L\\ x D geometry with D =10 and periodic
boundary conditions in x and y directions, but two hard walls L\\ x L\\ at which a repulsive
energy of strength eAS = e^B/2 acts on A-monomers, for N = 16,i= 16, and normalized
inverse temperatures 1/J=0.0 (crosses), 0.3 (circles), 0.4 (diamonds), 0.5 (triangles) and 0.6
(squares), choosing units such that CAB Iks = 1. The corresponding order parameter profile has
been shown as in Fig. 7.18(a) (From Kikuchi and Binder. ) (b) Profile of the volume fraction
0a(z) of B-monomers and of the total volume fraction </>(z) = <J>A(Z) + 4>B(z) [insert] for the
bond-fluctuation model at average volume fraction </>= 0-5, simulating a symmetrical AB
mixture with chain length 7V = 10 and temperature kBT/e= 11 at bulk phase coexistence
(A/i = JIA — IJ,B = 0). Lattice dimensions chosen were L^ = 100, L± = 40. Interactions in the
bulk are CAA = ZBB = —CAB = -e < 0, if the distance between monomers is less than \/8 lattice
spacings; interactions at the walls are ZWA = $,ZWB = —Mie if r = 1 or z = L±, respectively.
Different curves correspond to various choices of /j,\ as indicated. The critical temperature of
the model is26 kfTc/e K: 22.85 and hence (j>B is very small in the bulk of the A-rich mixture at
ksT/e=ll. (From Wang and Binder.50)
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situation by following techniques of Madden160 where one first confines a
film between two walls and then removes one wall.

Interfaces between compatible polymers were also considered,68'118 in an
attempt to study the broadening of interfacial profiles with time due to
interdiffusion (Fig. 7.22). While the existing work based on Monte Carlo
simulations of the bond fluctuation models proves the feasibility of such
simulations, which are desirable since they mimic the experimental proce-

Fig. 7.22 Simulation of the time evolution of the concentration profile </>B(z, t) of polymers
across an A—B interface, using the bond fluctuation model of polymers on the simple cubic
lattice, chain lengths NA = NB = 20, a fraction <j>v = 0.58 of vacant sites, jump rates
FA = rfl = 1 for both types of monomers, and an attractive energy eAB between unlike mono-
mers which are less than three lattice spacings apart from each other, at a temperature
ksT/fAB = -18/5. In the initial configuration of a 20 x 20 x 80 lattice with two hard walls
at z = 0 and at z = 81 and periodic boundary conditions in x.^-directions all chains with center
of gravity positions z > 40 are considered as B-chains, while all chains with center of gravity
positions at z < 40 are treated as ,4-chains. Time t is measured in attempted Monte Carlo steps
per monomer (MCS). To gain statistics, 48 systems are run in parallel at a vector processor, and
averaged together. From the broadening of the profile with increasing time one can infer the
interdiffusion constant, following corresponding experimental work.161 (From Deutsch and
Binder.68)
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dure161—and there are still many questions open—one must stress the
important caveat that the Monte Carlo dynamics completely lacks the
hydrodynamic forces. Velocity fluctuations are coupled to the order para-
meter fluctuations in a fluid binary mixture and contribute to the interdiffu-
sion, as is well known from the study of critical dynamics in fluid binary
mixtures,94'162 and this coupling needs to be taken into account for a calcu-
lation of the interdiffusion constant.163 The Monte Carlo dynamics treats
the polymers as if one were to consider interdiffusion in a rigid solid struc-
ture. Here we thus actually encounter a point where the simple lattice mod-
els, the successes of which have been given so much emphasis in this chapter,
do miss some important physics! In principle, a molecular-dynamics (MD)
simulation of bead-spring models164 (see also Chapters 3-5 of the present
book) would be a much more suitable approach to simulate interdiffusion,
but we are not aware of any MD counterparts of Fig. 7.22. Due to the
slowness of the interdiffusion process and the need to sample over many
chains to get sufficient statistics, however, such studies would be computa-
tionally very demanding.

Similar problems concern the study of phase separation kinetics in poly-
mers.10"14 Due to the slowness of this process, Monte Carlo simula-
tions,42'80'81'88 could only study the early stages of spinodal
decomposition, even for very short chains. During this initial growth of
concentration fluctuations, the hydrodynamic effects mentioned above are
less important,165 although there is broad evidence that the hydrodynamic
couplings need to be taken into account during the late stages.12"14 The
quantity that one wishes to study is the dependence of the collective struc-
ture factor Scon(q, t) (eq. [7.32]) as a function of time t after the quench to
the considered state inside the miscibility gap. In addition to problems with
the discrete character of reciprocal space (eq. [7.33])—which are rather
serious here since one is really interested in a long wavelength limit (small
q)—there is the problem that Sm\\(q, t) exhibits the so-called "lack of self-
averaging"166: the relative statistical error of Scoi\(q,t) obtained from «
observations decreases only as ^/2/n), irrespective of the size of the simu-
lated system (it does not decrease with increasing volume Ld). Conversely,
the statistical error of quantities such as the order parameter or internal
energy decreases inversely proportional to the square root of the volume, if
one stays outside of the regions where phase transitions occur. Thus reason-
ably accurate data for Smi\(q, t) inevitably need a large number of samples «.

7.3 Results for polymer blends

In the previous section, the methodic aspects of computer simulations of
phase transitions in polymer blends were emphasized. In the present section,
we briefly review some of the most important results that have been
obtained so far.
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7.3.1 Test of the Flory-Huggins theory and of the Schweizer-Curro theory

Already in the introduction it was pointed out that the Flory-Huggins
approximation20 for the excess free energy of mixing (eq. [7.3]) involves
many doubtful approximations, the accuracy of which is hard to ascertain
a priori. In view of the fact that a fit to experimental data usually involves
adjusting both the concentration dependence and the temperature depen-
dence of the x-parameter, the feasibility of such a fitting procedure clearly is
not a sensitive test of the theory.

One of the basic consequences of eq. (7.3) for a symmetric mixture is the
condition for the critical temperature Tc {remember e = CAB — (CAA + f-Bs)/^}

Thus one finds that Tc is proportional to the chainlength N and the volume
fraction 1 - <j>v of sites that are not vacant, and only one combination e of
the three energy parameters e^, CAB and CBB enters.

The first test of these predictions, for the model of Fig. 7.3, revealed
surprising discrepancies (Fig. 7.23).78'79'167 It is seen that the Flory-
Huggins theory strongly overestimates the critical temperature. Obviously,
the theory gets worse the larger the vacancy concentration. For low vacancy
content (</>v —> 0) there is still a discrepancy by a factor of two,82 and
although this discrepancy is reduced when one considers instead the approx-
imation proposed by Guggenheim,168 the latter clearly is also not exact.

For low polymer concentrations (1 — </>y <, 0.4) it is also no longer true
that Tc depends on CAA, CAB and CBB only via the single parameter e, since
then the three curves in the upper part of Fig. 7.23 should superimpose. In
contrast, the strong increase of T™JTC for the purely repulsive case
(£AB 7^ 0, f.AA — CBB = 0, crosses in the upper part of Fig. 7.23) is qualitative
evidence for the prediction169"174 that polymer blends in a common good
solvent become compatible in the semidilute concentration regime. This
happens because the short-range repulsive interactions are effective only
on length scales larger than the screening length £$ for the excluded volume
interactions, which scales with the volume fraction <j> of monomers as9

where ve is the exponent describing coil dimensions in good solvents
((-R^yr) oc N2"'). This means that over length scales of the order of £, suc-
cessive monomers of a chain can be grouped into "blobs", such that the NB
monomers inside a blob {£s oc N"£, i.e., NB((/>) oc 0~1/(3"«~1)} essentially have
no interactions with monomers of other chains. As a consequence, a chain
of length N can be rescaled into a chain of Netf = N/N\,\0b(4>) oc Aty1/^,-!)
blobs, with a renormalized interaction Xeff(^) between blobs instead of the
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Fig. 7.23 Ratio between the Flory-Huggins critical temperature, TF
C

U = N(l - 4>y)ze/(2kB) and
the actual critical temperature Tc for the self-avoiding walk model of polymer mixtures on the
simple cubic lattice (Fig. 7.3) plotted versus concentration 1 - <t>v of sites taken by monomers
(upper part) and versus the inverse square root of the chain length (lower part). Upper part
refers to N = 16 (for 1 - <py = 0.8, all three choices of the energy parameters coincide; this is
marked by a solid dot). Curves are only drawn to guide the eye. Both the Flory approximation,
eq. (7.34), which implies T™/TC = 1, i.e., a horizontal straight line, and the Guggenheim
approximation168 (which is available for <f>v = 0 only) are indicated. (From Sariban and
Binder.79)

original interaction x (eq. [7.2]) between monomers. Renormalization group
theory predicts 169~174

which implies that the number of unfavorable contacts vanishes in the semi-
dilute limit. This reduction of the effective x-parameter due to reduction of
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the binary contacts is tested in Fig. 7.24,175 where the critical temperature in
units of this effective interaction parameter is plotted versus ./V/jVbiob (</>)• It
is seen that the data are reasonably compatible with this blob picture.

The fact that T™/TC increases with increasing N (Fig. 7.23, lower part)
has been interpreted by Schweizer and Curro34'37 as a piece of evidence for
their PRISM (polymer reference interaction site model) prediction31 that
Tc oc TV1/2 due to correlation effects: then N/TC oc N1/2 —» oo as N —> oo.
Indeed, on the basis of short chains as studied by Sariban and Binder,78'79

a conclusion such as that cannot be ruled out. However, Deutsch and
Binder25'27 studying the bond fluctuation model67'68 provided rather clear
evidence (Fig. 7.4) that the original PRISM result Tc oc TV1/2 is incorrect,
and one rather has Tc oc N as in Flory-Huggins theory20 (although the
prefactor in the relation Tc oc TV is much lower than predicted20). This con-
clusion that Tc oc N holds is corroborated by a more recent version of the
PRISM theory.38'39

Fig. 7.24 Normalized critical temperature eN~x/kgTc, using x = 0.22169 for the model of Fig.
7.3 plotted vs. M^1/'3"'"1' (this means a rescaling of N with the number JVbiob(</>) of effective
segments per blob, cf. Ref. 9). Straight line shows the asymptotic exponent of the scaling
function for large N, 1 + x w 1.22. This plot includes data in the regime 0.15 < 1 - <j>y < 0.4,
and 8 < N < 64. (From Sariban and Binder.175)
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The increase ofN/Tc (Fig. 7.23) with increasing N can be attributed to a
correction due to the free ends of the chain,

where both constants A,B are expected to be model-dependent. While a
positive constant B (as found for the bond fluctuation model at 4>v = 0-5
when €AB = —CAA = —ZBB = e^Q if neighboring monomers are at distances
2 or \/5 or V6 lattice spacings, respectively, Fig. (7.4)) is physically plausible
because a monomer at a chain end may have more neighbors from other
chains than a monomer in the chain interior, a negative constant B may
occur as well (Fig. 7.25).40 Fig. 7.25 also shows that very large N may be
needed until TC(N)/N becomes independent of N.

For all models studied (Figs 7.4, 7.23, 7.25) the Flory-Huggins theory20

overestimates the critical temperature TC(N) by a rather large factor. It turns
out that this overestimation is simply due to an overestimation of the num-
ber of nearest-neighbor contacts between monomers of different chains (Fig.
7.26).79'176 We distinguish here between the number of contacts nc(AB) per

chain length dependence of critical temperatures

Fig. 7.25 Variation of the observed normalized critical temperature kBTc(eN) with JV~'/2, for
the bond fluctuation model on the simple cubic lattice where e = CAB, ZAA = CBB = 0, <jV = 1/2,
and the interaction is nonzero only if two monomers are at the closest possible distance (two
lattice spacings). Vertical bars along the abscissa indicate the chain lengths for which calcula-
tions were made. Note that in this case the effective coordination number40 is zeff « 5, and hence
eq. (7.34) would predict kBTc(f)/Nfy 1.257V, while the actual data are well fitted by
kBTc(fL)/NKi 0.161 - 0.227/N. (From Deutsch and Binder.40)
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Fig. 7.26 Number of contacts nc between different types of nearest-neighbor pairs plotted vs.
temperature, for the model shown in Fig. 7.3 and the simple cubic lattice, using parameters
N = 32, <j>v = 0.6, CAB = 0, (.AA = ZBB = -e/2. The data refer to A/i = 0, i.e., the system is at
critical composition (at T < Tc = \0.9e/kB it then corresponds to a system exactly at the
binodal or in a two-phase mixed state, respectively). (From Sariban and Binder.176)

chain involving different monomers and between contacts of the same type
nc(AA) + NC(BB) involving different chains, as well as the corresponding
intrachain contacts. It is clear that the latter can only drive a collapse of
chains, but not a phase separation between different chains. Therefore it is
only the total number of interchain contacts that should be compared with
the corresponding number of Flory-Huggins theory,20 which is w'ot(.F/f)
= zN(\-4>v), or the Guggenheim theory,168 nl°\G) = {(z - 2)N+ 2]
(1 - 4>v). For the example shown in Fig. 7.26, one would conclude
niot(FH) «77, n^l(G) «54, while the actual count is «l

c
ot =

nc(AE) + nc(AA) + nc(BB) w 27 [interchain contacts] (at high temperatures)
to «'ot w 32 (at low temperatures), i.e., «'ot is lower than estimated by a
factor of two to three. To some extent this reduction in the actual contact
number is due to the intrachain contacts (there are seven to eight such
contacts for the example shown in Fig. 7.26), and in part due to the effect
that vacancies are more effective in lowering «'ot due to small-scale blob
effects than via the factor (1 - <j>r). If one would correct the Flory-Huggins
theory by introducing a reduced effective coordination number consistent
with the actual number n'ot of interchain-monomer contacts, it would over-
estimate the critical temperature only slightly, similar to the mean-field
approximation of the standard Ising model. Thus we refute the
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(unfounded) suggestion of Guevara-Rodriguez et al.111 that the Monte
Carlo critical temperatures should be raised by a factor of two when com-
paring to the Flory and Guggenheim or cluster variation178 theories.

7.3.2 Critical phenomena and the Ising—mean field crossover

In Section 7.2.4 it was shown that via a finite size scaling analysis a mean-
ingful extrapolation of simulation data to the thermodynamic limit is possi-
ble, and in this way one can extract estimates for both critical exponents
(/3,7) and amplitudes (C+(N), C-(N) and B(N)} of the collective scattering
function above Tc (eq. [7.16]) and below Tc {Scoii(q = 0) =C-(N)r^,
t=\- T/TC -> 0} or the order parameter {(H) = (4>T*-
(j)cJjit)/(t>'fi = B(N)t0}, respectively. While for short enough chains
(N < 32), data both for the simple self-avoiding walk model of Fig. 7.3
and for the bond fluctuation model are nicely consistent with the expected
critical exponents for the three-dimensional Ising models8'109

(/? « 0.325,7 « 1.241), for N > 64 one rather finds "effective exponents"
due to the gradual crossover from Ising critical behavior to mean-field beha-
vior expected for N —> oo9"12'40 (see Fig. 7.13). Thus already the coexistence
curve in Fig. 7.7(a) involves an effective exponent /?eff « 0.358, and similarly
the scattering function in Fig. 7.7(b) involves another effective exponent
7eff « 1.247. While these numbers are still relatively close to the Ising values,
larger deviations are found27'40 for the larger N. But it is also obvious when
one plots these effective exponents extracted from the size-behavior at Tc

from data around a mean lattice linear dimension Lm against the appropriate
scaling variable Lm/N (see Fig. 7.14), that these deviations are just due to a
gradual crossover from one universality class to another (Fig. 7.27).40

Here also the behavior of the amplitude ratio C^/C? is included, which
has the universal value 2 in the mean-field limit and 4.9 in the Ising limit.179

Unfortunately, there is considerable scatter in these data, and thus Fig. 7.27
should not be considered as a reliable estimation of a crossover scaling
function: more powerful computers than currently available would be
needed to accurately obtain such crossover scaling functions.

This conclusion is reiterated by a study40 of the crossover scaling of the
order parameter (Fig. 7.28[a]) and collective scattering function (Fig.
7.28[b]) plotted versus the reduced temperature distance from Tc. But
these data are qualitatively similar to corresponding experimental
data,140 and confirm the conclusion that polymer mixtures with short
chain lengths have no mean-field critical behavior, and one must use
very long chains to see pure mean-field like behavior because the crossover
region is very wide. In this respect these data reject early statements9'10'137"
139 suggesting that for polymer mixtures non-mean-field effects are rather
unimportant. While the simulations40 cannot match the accuracy of the
corresponding experiment,140 they have the advantage that data both for
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Fig. 7.27 Semi-log plot of the effective exponent 7efr of the collective scattering function
•Sccii (q —* 0) (upper part), of the order parameter exponent /3eff (middle part) and the ratio of
critical amplitudes Cijff/Clff(lower part) versus the crossover scaling variable Lm/N, which is
proportional to the ratio of characteristic lengths Lm/£ctoss. Lm is the mean size of the lattices
used in the finite size scaling analysis. Asymptotic limits are shown as dashed straight lines.
Open circles refer to the bond fluctuation model which has EAA = ZBB = 0, ZAB 5^ 0 for effective
monomers two lattice spacings apart (Fig. 7.25), full dots to the version of the bond fluctuation
model with27 C.AB = -F-AA = -CUB = t and zeff sa 14 (critical temperatures of this model are
included in Fig. 7.4). Curves through the points are guides to the eye only. (From Deutsch
and Binder40)

T > Tc and T < Tc are available, and the simulated polymers are strictly
monodisperse and ideally symmetric. In contrast, the experiment140 possi-
bly suffers from effects due to asymmetry of the two polymers, polydis-
persity, etc; the fact that several chemically different polymer blends must
be combined in the analysis in order to have a wide enough variation of the
(effective) chainlength TV (with Tc being in a physically accessible range)
complicates the analysis further. This example hence nicely illustrates the
fact that although both simulation and experiment have their own limita-
tions, taking their complementary evidence together, significant progress
can be obtained.

7.3.3 Asymmetric mixtures

As discussed in Sections 7.2.2 and 7.2.3, the studies of asymmetric mixtures
are still quite scarce and so far restricted to few types of asymmetry and



Fig. 7.28 (a) Log-log plot of Nl/2(\m\) vs. Nt, which is proportional to the variable tjGi
controlling the Ginzburg criterion (Fig. 7.14), using the fits resulting from finite size scaling.
For each N the power law (|m|) = Bea(N)^etf yields a straight line, which is always shown
around t & 0.01 only, (b) Log-log plot of N~2Scon(q = 0) vs. N(-t), for T > Tc, using the fits
resulting from finite size scaling, Scon = &ft(N)(-t)~'rti!, for -t around t fa -0.01. Numbers at
the straight lines show the chain lengths N used. The mean-field limits are indicated as broken
curves. Note that the coexistence curves are almost parallel to the T-axis (From Deutsch and
Binder40)
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rather short chain lengths only. Here we give some further details for the
model already discussed in Figs 7.9 and 7.15, where still NA = NB = N, but
CAA = \cBe with A ̂  1. This model was studied again with the motivation to
check whether Flory-Huggins theory20 accounts for asymmetry effects cor-
rectly.110 In fact, eq. (7.34) can be rewritten for eAB = — CBB = £ as
kBT™/e = zN(l -0F)(3 + A)/4. Therefore the temperature scale in Figs
7.15(b) and 7.29 is normalized such that in the Flory-Huggins approxima-
tion the critical temperatures would occur for the same abscissa value.
Indeed one finds that for N = 32

for 1 < A < 5; thus, although Flory-Huggins theory overestimates the con-
stant in eq. (7.38) by about a factor 3 (since z « 14 for the model of Figs 7.15
and 7.29), it describes the dependence of Tc on the asymmetry parameter A
correctly.110'111 We also emphasize that for N = 32 the critical behavior of
the model is nicely consistent with Ising exponents, irrespective of A. Also

Fig. 7.29 Phase diagrams in the (T, A/J) plane for the bond fluctuation model on the simple
cubic lattice with asymmetric energy parameters (eAA = \£BB, ZBB = ~£AB = -<=) for
N = 32, 4>y = 0.5 and two choices of A. First-order transitions describe the coexistence of A-
rich and B-rich phases, as shown in the T, 0-plane in Fig. 7.15(b). Critical points are denoted as
circles. (From Deutsch and Binder.110)



R E S U L T S FOR P O L Y M E R B L E N D S 405

the model with NA ̂  NB that has recently been studied117 is compatible with
Ising exponents.

7.3.4 Chain conformations in blends

A common tool for the study of concentration inhomogeneities in polymer
blends is the small angle scattering of light, neutrons or x-rays.9"14 The
standard tool for interpreting the scattering intensity of such experiments
is a formula proposed by de Gennes9 using the so-called random phase
approximation (RPA).9'151 In its simplest version for an incompressible
mixture, which is modeled by a Flory-Huggins lattice with <j>v — 0, this
RPA result is

where <$>A + </>B = 1 and SA(<I), SB(<}) are the single-chain structure factors as
one finds them in pure A (B) melts. Describing them by the Debye func-
tion9'20

and analogously for SB(<J), one usually assumes that the structure factors
SA(<I), SB(q) (and the mean square gyration radii {-R2

yr]A,}, {^gyr,B>)) do

not depend on the thermodynamic state of the mixture (as described by
X, <pA or temperature T and chemical potential difference A/z, respectively),
but are simply the corresponding quantities of the pure melt. It should be
noted that eqs (7.39) and (7.40) are also a starting point to construct an
effective free energy functional for inhomogeneous states in polymer
blends,10'180'181 to consider interfacial problems,46"49'182"184 spinodal decom-
position,10"12'180 etc.

Thus it is of interest to check the accuracy of eq. (7.39) by testing the basic
assumption that the mean square gyration radii are independent of the state
of the mixture (Fig. 7.30).100 It is seen that for T > Tc this assumption still is
a reasonable approximation, since deviations from this approximation are
in the order of several percent only. However, considering a mixture of
asymmetric composition (<J>A ̂  <fo) as done in Fig. 7.30, one notes that
the chain contraction of the minority component is distinctly stronger than
for the majority component (Fig. 7.30[a]). This effect becomes particularly
dramatic for dilute mixtures, where one may consider states with T <^TC

without entering the miscibility gap. Such isolated chains in an energetically
very unfavorable matrix tend to contract strongly, as is obvious from Fig.
7.30(b): the chains tend to gradually collapse as T decreases and thus
maximize favorable (i.e., attractive) interactions eSB (or minimize unfavor-
able, i.e., repulsive e^-interactions, respectively). Fig. 7.31 demonstrates
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Fig. 7.30 (a) Normalized mean-square gyration radius at constant 0x/(l - <i>v) = 0.9 plotted
vs. inverse temperature for the model of Fig. 7.3 on the simple cubic lattice, choosing
N = 32, <f>y = 0.6, (.AB = 0, (.AA = ZBB = —*•• The crosses refer to the majority component (A),
the circles to the minority component (B). The largest value of c/kBT shown corresponds
to a state at the coexistence curve. (From Sariban and Binder.79) (b) Mean-square gyration
radius of an isolated B chain in an A-rich matrix, for the same model as in (a) but three
chain lengths. Note that the inverse critical temperatures for these mixtures are
f / k B T f a 0 . l 6 6 ( N = 16),0.092(^=32), and 0.049(N = 64), respectively.79 (From Sariban
and Binder.100)

that for Ne/kBT^, 5, i.e., TC/T~£ 3, isolated chains are already in a col-
lapsed configuration ((&)e/kaT oc </&r)£/jti7, ex N^ while (R2}0 ex {^>fl

oc TV).
The behavior in Figs 7.30(b) and 7.31 signifies a serious breakdown of the

simple RPA, of course—remember that the simple RPA would imply hor-



R E S U L T S F O R P O L Y M E R B L E N D S 4 0 7

Fig. 7.31 Data such as shown in Fig. 7.30(b) replotted in scaled form on a log-log plot vs.
Nc/kgT. Three values of N are included, N = 16 (squares), N = 32 (triangles) and N= 64
(circles). Upper part refers to the mean-square end-to-end distance and lower part to the
mean-square gyration radius of the minority chain, in both cases normalized by the value of
the noninteracting limit, c/ksT —> 0. Straight lines with slope —1/3 indicate the collapsed
behavior. (From Sariban and Binder,100 in replotted form.)

izontal straight lines in all these plots. While qualitatively such deviations
can be interpreted in terms of the screening of interactions resulting from a
perturbation theory based on the Edwards185 Hamiltonian,24'61'186'187 a
quantitative description of data such as shown in Figs 7.30 and 7.31 is
still a challenge to theory!

7.3.5 Inter diffusion and phase separation kinetics

As already discussed in Section 7.2.6, studies of interdiffusion have focused
on the nonequilibrium behavior where in a compatible (AB) system a layer
of pure A-polymers is brought on a layer of pure B-polymers, and one
studies the broadening of the resulting interfacial profile between A- and
B-monomers with time (Fig. 7.22).68'118 These studies have attempted to
address theoretical ideas about the relation between interdiffusion (Ant)
and self-diffusion constants (A) in blends, and to check for the so-called
"thermodynamic factor". In fact, if one extends simple mean-field concepts
to the dynamics of interdiffusion in polymer mixtures,10'11 one finds that the
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effect of the interactions (as described by the Flory-Huggins parameter x)
for a symmetric blend (NA = NB = N) can be cast in the simple form10'11'68

Here the right-hand side of the equation is simply the "thermodynamic
factor" which hence should be linear in the variable NX- The Monte
Carlo test of eq. (7.41) revealed68 a rather pronounced curvature of this
ratio Ant(x)/Ant(x = 0) as function of x, however; also the short chains
accessible (N = 10, 20, and 40, respectively) did not conform to the expected
scaling in terms of the variable NX- This problem certainly deserves further
study, however, since the chain lengths used are very short, and there are
also possible systematic errors: in principle, one should deduce Ant(x) from
interdiffusion of layers which differ in their concentrations <pA , (j)A only a
little (rather than having <$ = 0, ̂ /(^ + ̂ ) = 1> as done in the avail-
able studies.68'118 Already in Section 7.2.6 it was pointed out that one cannot
compare such studies to experiment directly, since the hydrodynamic inter-
actions left out in the Monte Carlo work do have important physical con-
sequences.

Similar restrictive comments need to be made about the existing simula-
tions of spinodal decomposition in polymer blends. First studies addressed
the two-dimensional case.80'81 In this case, there is no chain interpenetra-
tion, and since polymer mixtures in d = 2 dimensions are not predicted to
become mean-field-like for N —> oo, one expects the same behavior as in
small molecule mixtures, and this is what has been found.80'81 Using the
slithering snake algorithm,146'147 the dynamics of the model is neither rea-
listic at short times (where the chain dynamics should be described by
Rouse-model type motions188'189) nor at late times (where hydrodynamic
effects play a role, as discussed above,163 at least in d = 3 dimensions).

Here we only briefly discuss studies42 of early stages of spinodal decom-
position for the model of Fig. 7.3 on the simple cubic lattice, where chain
motions as shown in the upper part of Fig. 7.5 are used: this model is
expected to yield a Rouse-like dynamics. Since the available chain lengths
are very short (N < 32) and the model that has been studied has a relatively
high vacancy content ($v = 0.6), the chains are definitely not entangled.
Even for this limit, where the chain dynamics is much faster than it would
be for dense melts of highly entangled chains189 only rather deep quenches
(TC/T^ 2) are accessible, because otherwise the kinetics would be too slow
because of critical slowing down94; and in addition the critical wavelength
Xc = 2-K/qc of spinodal decomposition10"13 would be rather large and neces-
sitate the simulation of very large systems. From these remarks it is obvious
that even when one uses crudely simplified coarse-grained models, the simu-
lation of spinodal decomposition of polymer blends for shallow quench
depths (TC/TKI 1.1) and long chains (102 < N < 103), as they are used in
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experiment,13'14 would be prohibitively difficult. Only for relatively short
chains and deep quenches have such studies thus far been at all feasible.42'121

Figure 7.32 shows the time evolution of the equal-time collective structure
S(q, f) and compares it to predictions of the linearized theory of spinodal
decomposition.10'11'180'190 While the latter predicts roughly correctly the
position qm, where S(q, t) in the early stages develops a peak, one cannot
identify a critical wavenumber qc which would have the predicted indepen-
dence of time, S(qc, f) = const: this would imply that the curves shown in
Fig. 7.32(a) should have a common time-independent intersection point.
And while the linearized theory10'11'180'190 predicts an exponential increase
of the intensity with time, the observed increase (Fig. 7.32[b]) is linear in
time or even slower. In this respect, the behavior found in this simulation42

is more similar to small-molecule mixtures44'191'192 rather than mixtures of
polymers with high molecular weight, where one does find the predicted10'11

initial regime of exponential growth.13'14 This discrepancy is not unexpected,
since the simulation deals with very short chains and relatively high vacancy
content. Figure 7.33 then compares the normalized critical growth rate
q~2dS(q, t/dt (=0 with the corresponding theoretical prediction.10'42

Although the general trend is similar, the simulation results do not yield
any clear evidence for the critical wavenumber qc where the growth rate T~I

of the structure factor S(q, t) vanishes, according to the linearized the-
ory.10'190"192 Figure 7.33 shows that for deep quenches the "Cahn
plot",190"192 where q~2dS(q,t)/dt\l=0 is plotted versus q2, is nonlinear
already on the level of the linearized theory, unlike the case of shallow
quenches (TC/T- 1 < 1).

Thus the curvature of the plot in Fig. 7.33(a) is no evidence against the
usefulness of the linearized theory. We also emphasize that both simulation
and theory predict that for deep quenches the growth of concentration
fluctuations starts on wavelengths less than a coil size (^2{7?2

yr) > 1). At
later times, however, coarsening sets in (Fig. 7.34) and the characteristic
wavenumber q\(t) becomes steadily smaller as time t after the quench
increases. At late times, however, the Monte Carlo simulation of quenching
experiments should not be trusted, since it does not account for the effect of
hydrodynamic interactions, as mentioned above. Finally we mention that in
deep quenches there is also a pronounced chain contraction that occurs
during the very early stages of the quench.42

7.3.6 Surfaces of polymer blends and wetting transitions

In Section 7.2.6 we have already discussed that choosing a L\\ x L\\ x L±
thin film with two L\\ x L\\ hard walls a distance L± apart it is simply
possible to study surface enrichment of polymer blends, by choosing a
wall potential that prefers one component (Fig. 7.21[b]). If we choose con-
ditions such that for a symmetric mixture (NA = NB = N) the system is at a



Fig. 7.32 (a) Collective structure factor S(q,t) for a symmetric polymer mixture
(NA = NB = N = 32,4>y = 0.6, the model of Figs 7.3 and 7.5 on the simple cubic lattice with
f = (AB; (,AA = tgB = 0 is used) plotted vs. wavenumber <? at various times / after a quench from
f/kBT=0 to t/kBT= 0.20, at critical concentration ̂  = <6j, = (1 - <i>v)/2. Choosing q in a
lattice direction, S(g, i) is defined only for the discrete values qv — (2wv)/L, v — 1,2,3,... Thus
only the points at the integer values of qL/(2w) are significant, and only for clarity have these
points been connected by straight lines. Note that t/kBTc = 0.105 and L = 40 was used. Time is
measured in attempted Monte Carlo steps per monomer. Arrows show the predictions of the
linearized theory of spinodal decomposition10 for the wavenumber of maximum growth (qm)
and the critical wavenumber (qc). (b) Same as (a) but S(q, t) plotted vs. time for the seven
smallest values q,, (data are labeled by v}. Slopes of the straight lines indicate estimation of the
initial growth rate dS(q, t)/dt\,=0. (From Sariban and Binder.42)
410



Fig. 7.33 (a) Initial growth rate for quenches that lead through the critical point and four
different ratios of TC/T (as indicated in the figure) plotted vs. q2(R2

gjI). Data for dS(q, t)/dt
are estimated, as shown in Fig. 7.32 (b). (b) Plot of the normalized relaxation rate r~l /q2 of the
linearized theory of spinodal decomposition for quenches that lead through the critical point
(feit, Tc) to a temperature T versus x = q2(R2

gjr}. The theory of Ref. 10 yields
T~l/q2 = ra{\Tc/T-^[\ -1(1 - exp(-x))]}; the time scale factor TO in the figure has been
absorbed in the ordinate scale. Various curves are plotted for the same values of TC/T as part
(a). (From Sariban and Binder.42)

411



4 1 2 M O N T E C A R L O S T U D I E S O F P O L Y M E R B L E N D S

Fig. 7.34 Log-log plot of the first moment q\ (f) of the structure factor S(q, t) versus time. Here
q\(t) is normalized with the gyration radius (R^,) , and the time t is normalized with a
"diffusion time" T = (R^yr)/Deff(t), Dea(t) being an effective self-diffusion constant of the
chains. The data refer to N = 32,<>K = 0.6,^ = fa = (1 - </>y)/2 and kBT/t = 1 (i.e., the
deepest of the quenches shown in Fig. 7.33), both for the case of repulsive interactions
(r}[tAB = e ,CAA = ZBB = 0] and for attractive (a) interactions (tAB = 0,eAA = CBB = -e).
(From Sariban and Binder.42)

temperature T below the critical temperature Tc at phase coexistence
(A/j, = 0) in the A-rich phase, one may observe a wetting transition.46~
50,182,193,194 yj^ we^mg transition (which was recently also observed experi-
mentally159 shows up in the Monte Carlo simulation (Fig. 7.21[b]) as a
divergence of the excess density <j>, of the component (B) that is enriched
at the wall, where the bulk density
(J)B (z —* oo) = c^oo is taken in practice as the density in the center of the
film, as long as the system is still "nonwet" (= incompletely wet,194 respec-
tively). Figure 7.35(a) shows that this wetting transition can be first order
(then <j>s discontinuously jumps from a finite value to infinity) or second
order (then (j>s should have a logarithmic divergence when one approaches
the transitions from the incompletely wet side46'194). For a first-order wet-
ting transition, the local concentration near the wall (<f>i = $B(Z = 1)) jumps
discontinuously to a value which is in excess of the other branch of the
coexistence curve, while for a second-order wetting transition (j)\ varies
perfectly smooth (Fig. 7.35[b]). The resulting phase diagram (Fig. 7.36)
disagrees in one important aspect with mean-field theory,46 as it yields a
second-order wetting transition at rather low temperatures and a first-order
wetting at higher temperatures, while mean-field theory predicts a second-
order wetting transition near the bulk critical point only. The reason for this
discrepancy is unclear. The change of the chain linear dimensions near the
wall has also been studied for this model,157 but it turns out that there is
little difference between A and B chains near the wall, despite the surface
enrichment: only in the bulk are fi-chains distinctly smaller, since they are
rather dilute and the chain contraction effect discussed in Section 7.3.4
occurs.



Fig. 7.35 (a) Surface excess density <j>s of a symmetric polymer mixture of chain length
NA = Ns — N = 10, using the bond fluctuation model with (/>y = 0.5 on the simple cubic lattice
and A/i = 0, linear dimensions L\\ = 100, LL = 40. Interactions in the bulk are
6AA = CBB — —^AB = —e <0, if the distance between monomers is less than v'S lattice spacings;
interactions at the walls are ewA = O,CWB = —AMe if z = 1 or z = L±, respectively. Data are
shown as function of /jti for kaT/f. = 11 (inverted triangles), 15 (circles), 17 (squares) and 18.5
(triangles on their baseline), respectively, (b) Surface concentration <j>\ of the enriched species vs.
surface chemical potential jj,\, at bulk concentration (j>x for the model of part (a) but three
different chain lengths. Values of <t>x (and corresponding temperatures kBT/e) are, from right
to left: for N= 20,0.01(25),0.022(29),0.048(35),0.095(39); for N= 10, 0.004(11), 0.018(15),
0.033(17), 0.047(18.5); and for N= 5,0.014(8),0.038(10). (From Wang and Binder.50)
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Fig. 7.36 Phase diagram of the wetting transition, in the plane of variables /it and 4>oo, f°r the
model of Figs 7.21 and 7.35. Different symbols denote different chain lengths: N = 5
(diamonds), N = 10 (circles), and N = 20 (squares). The solid symbols indicate that the transi-
tion is second-order. Note that the bulk critical concentration is ̂  = 1/4 (since </>y = 1/2),
and thus all data are far from bulk criticality. Curves are guides to the eye only. (From Wang
and Binder.50)

Cifra et al.l5S studied surface enrichment effects in blends for N = 30
(using the model of Fig. 7.3 on the simple cubic lattice) at various composi-
tions in the one-phase region of the blend. They made the choice
eWA = eWB = eAA = eBB = -0.5 and varied CAB, choosing eAB < 0 as well
to ensure miscibility in the bulk. Although tWA = CWB m their study, they
find that the majority component is enriched both at the hard wall and at
the interface polymer-vacuum which they also study. This enrichment is all
the more pronounced the more asymmetric their blend composition is, but
occurs only if e = eAB - (CAA + e&s)/2 is nonzero. Their model contains a
nontrivial total density profile as well, which adjusts itself as a result of the
energy parameters mentioned above. For the chosen parameters, Cifra et
a/.158 find vacancy concentrations in the order of 5-15% in the bulk of their
films and argue that the resulting nonzero finite compressibility of their
model has the typical value for melts of linear polymers. Cifra et al.15S

argue that their results are also in contradiction with the simple mean-
field theory, and they also study the change of coil dimensions near the
wall (note that for their choice of attractive A-B interactions there is an
increase of radii195 with increasing interaction strength in the bulk, in con-



R E S U L T S F O R B L O C K C O P O L Y M E R S 4 1 5

trast to the model with attractive AA, BE interactions discussed in Section
7.3.4).

Clearly, all these simulations of surface effects on polymer blends50'157'158

are very stimulating, but at this point they may be considered to be first
steps only. The effect of long range polymer wall interactions48 should also
be considered.

7.4 Results for block copolymers

While the simulation of phase transitions in polymer blends dates
back78'167 to 1987 and the necessary tools (finite size scaling, etc.) are well
developed, studies of mesophase formation in block copolymers have only
just begun,24'52^55'84'85 and only rather short chain lengths have been acces-
sible (N < 60). We consider this work as rather preliminary, and hence this
section can be relatively short.

7.4.1 Test of the Leibler theory

First studies52"54 addressed the transition of symmetrical block copolymers
(/= pfN+pf = 2) fr°m the disordered melt to the lamellar mesophase (Fig.
7.2), choosing the model of Fig. 7.16 (see Section 7.2.5 for a discussion) and
focusing attention on the collective structure factor (Fig. 7.20[a]). According
to the Leibler theory21 it has the explicit form

where x = q(R2
g} here, and (7?2) the mean square gyration radius of the

total polymer. From eq. (7.42) it is easy to show that the minimum of F(x)
occurs at x* = 1.95, and therefore Smn(q) has a maximum at a value inde-
pendent of x and N when one chooses x as the abscissa scale, as done in Fig.
7.20(a). It is clear that there are rather pronounced deviations from this
prediction.

A further consequence results when we note that x should simply be
proportional to e = f.ABjksT for this model: one then predicts that
S~^(q*) should simply decrease linearly with the product eN, and
^coii(^*) = 0 tnen determines the microphase separation transition tempera-
ture. In this section we have redefined the meaning of e, in order to have a
notation consistent with the original literature.53'54 Figure 7.37 demon-
strates that there is pronounced curvature on a plot of NS^(q*) versus
eN, rather than a linear decrease. This behavior is reminiscent of both
experimental findings56'66 and theoretical predictions due to Fredrickson
and Helfand,58 who have taken fluctuation corrections to the Leibler theory



Fig. 7.37 The inverse collective structure factor NS^(q*) is plotted vs. the product eJV (note
« = fAB/ksT here), for/= \ (a) and/= f (b). Several choices for N are included (in case [a],
these are N = 16, circles; 20, squares; 24, triangle on base; N= 32, diamonds; and N= 40,
inverted triangles). In case (a), the transition is estimated to occur for eN fa 8.3 ± 0.7, while in
case (b) it occurs for eN = 11 ± 1 (arrow). (From Fried and Binder.53'55)
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into account. They predict that for/= 1/2 the transition should be a fluc-
tuation-induced first-order transition, while according to the Leibler theory
it is second-order for/= 1/2 and first-order for /^ 1/2. However, due to
finite-size rounding of the transition the weak singularity in S^u(q*) tnat

can be seen experimentally66 is not visible in the simulations at all (Fig.
7.37). Neither can one deduce accurate transition temperatures from the
specific heat maxima24 (Fig. 7.17[b]) without finite size scaling analysis,
and hence a significant test of the Fredrickson-Helfand theory58 is not yet
possible (this would also require much longer chains than are so far avail-
able). We also note that this theory implies that a simple scaling in terms of
the variable eN is not valid. While the data of Fig. 7.37 are suggestive of
such a scaling, the small but systematic deviations prevent one from drawing
conclusions that are too definite. Note also that the range of chain lengths N
available in Fig. 7.37 is simply too small for a significant test of this point.

As will be discussed in the next section, the shift of q* with increasing eN
(Fig. 7.20) can be interpreted as resulting from an onset of chain stretching.
While experimentally57 it was suggested that the transition from Gaussian
coils to stretched chains that occurs at a temperature T* above Tc is rather
sharp, the more complete simulation data on this point54 show that this
stretching of the chains sets in very gradually.

7.4.2 Chain conformations and the breakdown of the random phase
approximation (RPA)

It is one of the huge advantages of simulations that the interplay between
coil conformations and thermodynamic properties can be studied in detail,
while a similarly complete experimental study would be very cumbersome to
perform. It turns out that already in the disordered phase of block copoly-
mers, distinct changes of the polymer configuration with increasing interac-
tion strength occur: they were first detected by simulations52 and later57

confirmed by experiment; although one can understand the existence of
these phenomena by theoretical arguments qualitatively,24 we are not
aware of a quantitatively reliable theory yet that could explain these phe-
nomena.

Figure 7.38 summarizes some of the main results53"55 (see also Fig.
7.17[a]). One sees that while the gyration radius increases only by about
7% from the noninteracting case to the transition, an increase of 15%
occurs for the distance R^B between the center of gravities of the A-block
and the B-block. This behavior is due to a gradual stretching of the chains;
the block copolymer conformation deforms from a Gaussian coil towards a
dumbbell-like conformation. If one were formally to associate a positive
charge to A and a negative charge to B, the chain conformation change
would imply the formation of a rather large dipole moment. While due to
this gradual chain stretching the total gyration radius increases, the gyration
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Fig. 7.38 (a) Radius of gyration Rg = (R2
gyt)

l/2 and distance RAB = ((R^u - «£M)2}1/2

between the center of mass R£M of the A-block and the center of mass R^,M of the B-block
are shown as a function of cN where e = CAB/ksTand the model of Fig. 7.16 with 4>v = 0.2 on
the simple cubic lattice is used. Data for different e and N are averaged together at the same
values of the product of eN to gain statistics. (From Fried and Binder.53) (b) Distance RAB
normalized by its value of e = 0 plotted vs. eN, both for/= 1/2 and/= 3/4. Arrows show the
location of the transition temperatures, (c) Radius of gyration Rg of the total chain, of the A-
block (RA) and of the B-block (RJ) plotted vs. eN for/= 3/4. Three different chain lengths are
indicated by different symbols. Arrow shows the transition to the cylindrical mesophase. (d)
Plot of the normalized principle radii (Ri/Rg)

2
fN/(Ri/Rg)* vs. eJV, for/= 3/4 and three choices

of N as indicated. (Parts [b]-[d] from Fried and Binder/5)
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radii of the individual blocks contract initially (Fig. 7.38[c]). Only in the
transition region does the stretching tendency begin to take over, also for the
individual blocks. This chain stretching also means that the shape of the
polymer configuration gets more and more elongated, as a study of the
principal radii of the chains reveals54'55 (Fig. 7.38[d]). One radius increases
while the other two decrease. While for/= 1/2 one finds the shrinking of
the other two to be identical, for/= 3/4 (where an asymmetric dumbbell
forms!) the smallest radius has the most pronounced reduction.

We emphasi/e at this point that all these pretransitional chain stretching
effects found in the simulations are at variance with the simple RPA treat-
ment as embodied in Leibler's theory21: this simple form of the RPA would
mean only that all the ratios shown in Fig. 7.38 should be strictly unity,
irrespective of e and N. Thus the simulations reveal rather drastic deviations
from RPA, a hitherto somewhat unexpected result, since for dense melts the
RPA has been taken as basically exact by many researchers. In this context,
it is also important to recall that these deviations from the RPA should not
be attributed to the vacancy content of the model (recall that Fig. 7.17(a)
has studied this behavior for variable vacancy content, and behavior inde-
pendent of <py for T > Tc was found24).

It is now possible to account qualitatively for the dumbbell formation
seen in Fig. 7.38, by a theory24 that computes effective renormalized inter-
actions from the Edwards Hamiltonian. However, a quantitative description
of these data presented in Figs 7.17(a) and 7.38 is still lacking. While experi-
mental results57'66 have also been interpreted in terms of chain stretching, it
is important to recall that experiments up to now could measure Sm\\(q)
only: an independent measurement of both q* and Rg for the same material
has thus far not been feasible. This fact again illustrates one advantage of
simulation, namely that it makes a much more detailed insight possible in
that all quantities of interest can be "measured" simultaneously from one
model system.

7.4.3 Asymmetric block copolymers; ring polymers

For linear diblock copolymers with asymmetric composition (/^ 1/2) the
lamellar mesophase (Fig. 7.2) competes with the (hexagonal) cylindrical
structure and with cubic structures.16"18'21 In the hexagonal structure, the
blocks of the minority (B)-component form long B-rich cylindrical rods
which are oriented parallel to each other in the A-rich matrix, and form a
triangular lattice in the plane perpendicular to the orientation vector of the
cylinders. The occurrence of this ordering has been inferred55 from Monte
Carlo simulations of lattice models with/= NA/(NA + NB) = 3/4 (also at
compositions near this value196), from an inspection of "snapshot pictures"
of the chain configurations. For still smaller B-content one expects the
formation of micelles,17 i.e., the block copolymers gather together in objects
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like star polymers with many arms, the B-rich spherical cores of these
"stars" then arrange in a cubic lattice in the ordered phase.16"18 So far we
are not aware of any Monte Carlo work on these phases, nor have any
studies been feasible addressing other, more complicated, ordered phases
of block copolymers.16'62

For asymmetric composition already in the disordered phase the peak
position q* of the collective structure factor depends on / (cf. also Figs
7.20[a], [b]) and this problem has already been addressed by Leibler's21

RPA theory. Figure 7.39 shows that in the noninteracting limit the theory
predicts this position q* correctly, but with increasing strength of the inter-
action eN the peak position q*(T) decreases, and in the transition region
x* = ^r*(/?gyr) has only about 80% of its value in the noninteracting limit.
Unfortunately, neither an accurate location of the transition temperature
nor a study of the order of the transition has been possible so far. The value
of e at the transition increases55'196 with increasing deviation of/from 1/2,
which is qualitatively consistent with theoretical predictions.16'21'58'63

Unfortunately, the Monte Carlo data are too crude to allow any quantita-
tive test of the theory. Also Fig. 7.39 reveals small but systematic deviations
from the scaling with the variable eN, but again the data are too crude to

Fig. 7.39 Peak position x*(t, N) = q*Rg(e, N) where S(q, f) has its maximum plotted vs. eJV for
/= 3/4 and N= 24 (triangles on base), N = 32 (diamonds) and N = 40 (inverted triangles).
Here e = tAa/kBT> Q,Rg = (^yr) ' . (From Fried and Binder.55)
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allow a statement whether this is due to the fluctuation corrections of
Fredrickson and Helfand.58

A very interesting! study concerns microphase separation in topologically
constrained ring polymers85: here the two types of chains (A, B) are cova-
lently bonded at both ends to form closed loops (avoiding catenation, so no
rings are permanently locked together). Here, already in the noninteracting
case, the coils do not have Gaussian statistics; due to the topological con-
straint the scaling exponent v in the relation Rg oc N" is not v = \ but
v w 0.40-0.46 in a ring polymer melt.85'197'198 Consequently, one might
expect the deviations from RPA to be much more dramatic than for linear
polymers. But it turns out that the ratio of critical temperatures
7^near/77cUc» 1.7±0.1 (which could only be estimated very roughly,
since the same problems as discussed in Sections 7.2.5 and 7.4.1 apply) is
roughly in agreement with the RPA prediction.199 Weyersberg and Vilgis85

also find that the structure is lamellar with a wavelength smaller by a factor
of 0.51-0.55 than for corresponding linear polymers.

7.4.4 Block copolymers in reduced geometry: thin films, interfaces, etc.

Already in Sections 7.2.5 and 7.2.6 we mentioned that one way to stabilize
the direction of the orientation vector describing the lamellar order is the
choice of a thin-film geometry. Choosing a boundary field that favors the B-
component on both walls, the order fits to the film geometry only if there is
a special commensurability condition satisfied between film thickness D and
wavelength \(T) of the lamellar order, namely149 D = n\(T), where n is an
integer. Figures 7.18 and 7.19 have given evidence for this effect, and surface
enrichment of the B-component at the walls was also seen in the disordered
phase, as well as the enrichment of vacancies both at the walls and at the A—
B-interfaces (Fig. 7.21[a]).I5°

It is interesting to analyze in more detail the phenomena that occur when
the above commensurability condition is not satisfied. Figure 7.40 presents
some snapshot pictures where only the A-monomers are shown as black
dots, neither B-monomers nor bonds connecting the monomers being
shown. It is known from a study of the order parameter profiles (such as
shown in Fig. 7.18) that the intrinsic wavelength of lamellar order that the
system wants to form is about A « 9 lattice spacings. Choosing D = 30, with
a slight distortion (A = 10 instead of A = 9) three wavelengths fit into the
film, if one orients the lamellae parallel to the wall (Fig. 7.40[a]). On the
other hand, for D = 14 choosing either one wavelength (A = 14) or two
wavelengths (A = 7) would be too strongly distorting the natural order
that the system wants to form: then a better alternative is to choose a
perpendicular rather than parallel orientation of the lamellae, since with
L = 24 and n = 3 only a slight distortion results (A = 8). This snapshot
picture shows that the profiles shown in Fig. 7.18(b) do not mean the system
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stays disordered at low temperatures; they only imply that the biasing effect
of the wall is not strong enough to enforce orientation of the lamellae
parallel to the film.

For D = 24 now, the system could form lamellae with A = 8 and n = 3
with orientations either parallel or perpendicular to the walls, having chosen
L = 24 as well. Figure 7.40(c) shows that in the simulation a domain state
resulted instead, where two lamellae run parallel to the walls in the upper
part of the film, and three perpendicular to the walls in the lower part. Thus
with these choices of boundary conditions and linear dimensions one could
also study domain interfaces in the ordered structure of block copolymers.
So far this direction of research has not been exploited.

A very interesting problem is the adsorption of block copolymers at the
interface between incompatible homopolymers,200"207 which lower the inter-
facial tension and therefore act as compatibilizing agents in such blends.
This phenomenon has been studied theoretically (e.g., Refs 200-203, 207),
experimentally (e.g., Ref. 206), and by Monte Carlo simulation.204 In the
last work the A, B homopolymers are not included explicitly in the simula-
tion, however, and their existence shows up only indirectly via suitable
energy parameters which differ in the A-phase (for z > L/2) from those in
the B-phase (for z < L/2). The A-B interface hence is sharp on the scale of
the lattice spacing and treated as strictly localized. Wang et a/.204 treat L3

lattices with lattice sizes up to L = 50 and up to 400 chains of composition
NA = NB = 10 or variable / with N =20 up to /= 3/4, and discuss the
description of the block copolymer adsorption at the A-B interface in
terms of Langmuir-type isotherms.

7.5 Discussion

In this chapter simulations of the thermodynamics of binary blends of linear
polymers and of diblock copolymers were reviewed, with an emphasis on
work devoted to testing elementary theories such as the Flory-Huggins
theory of blends, the Leibler theory of block copolymer mesophase forma-
tion, and the random phase approximation. We emphasize that despite the
length of this chapter, a complete coverage of the subject was not
attempted—thus, for instance, we have neither treated simulations of
block copolymer micellization205 nor microphase separation in interpene-
trating polymer networks.208 The strategy of this article was to explain the
kind of questions that one can answer with Monte Carlo simulations of
polymer blends and block copolymer melts as well as the specific techniques
that one uses in this context (semi-grand-canonical ensemble, histograms,
finite size scaling, etc.) by describing typical "case studies" in some detail.
For simplicity, these examples were for the most part taken from work in the
group of the author. But recently there has been growing activity on these
subjects in many other groups, for example particularly relevant work on



Fig. 7.40 Snapshot picture of typical configurations of the symmetrical block copolymer model
(chain length N= 16,/= l/2,<j>v = 0.2) of Fig. 7.16 in a thin film geometry (L x L x D, with
L = 24 and a repulsive interaction e^s = fAB/2 at the two hard Lx L walls). All snapshots refer
to tjtB/kBT = 0.6, and show only A-monomers as block dots, while neither B-monomers nor
vacancies are shown, and also the bonds connecting the monomers are not displayed. Part (a)
refers to D = 30, part (b) to D = 14, part (c) to D = 24. (From Kikuchi and Binder.150.
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block copolymer simulations can be found in a very recent paper by
Larson.209

It has been shown that the study of simplified lattice models has given
valuable insight on various questions debated in the literature. For example,
the simulations have shown that the Schweizer—Curro prediction that the
critical temperature Tc of symmetrical blends scales with ^/N is incorrect,
and thus they have helped to find an improved version of this valuable
integral equation theory which does not suffer from this defect. While
already Flory-Huggins theory correctly predicts Tc oc N, it severely over-
estimates the constant of proportionality in this relation, and thus there is
still need for better theories. The Monte Carlo work provides benchmarks
against which these theories can be tested stringently, since all model para-
meters in the simulations are precisely fixed, and one can perform a com-
parison between simulation and theory that is not obscured by unknown
adjustable parameters. Similarly, the simulations have given valuable hints
to chain conformational changes induced by the interactions, such as pre-
transitional stretching of chains in block copolymer melts.

For some problems, however, the shortness of the chains is still a limita-
tion, as well as the lattice structure (which prevents the study of critical
dynamics, later stages of spinodal decomposition, etc., where the fluid nat-
ure of real polymer melts and blends is essential). While future work could
clearly address questions such as mixtures of block copolymers and homo-
polymers, asymmetry effects (different stiffness of chains, etc.) and interfa-
cial structure, one needs to develop complementary molecular dynamics
methods for the study of dynamical phenomena in mixtures and block
copolymer melts.

D I S C U S S I O N
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S I M U L A T I O N S T U D I E S O F P O L Y M E R
M E L T S A T I N T E R F A C E S

D. Y. Yoon, M. Vacatello, and G. D. Smith

8.1 Introduction

The structures and properties of polymer melts at various interfaces have
been the subject of numerous studies in recent years due to the critical role
interfaces play in such important polymer applications as thin films, coat-
ings, lubricants, adhesives and composite matrix materials. Experimentally,
development and application of new techniques, such as the surface force
apparatus,1^ grazing incidence X-ray scattering,5 and neutron reflectivity,6

have generated many new and unexpected results. These experiments allow
one to investigate the structures and dynamic properties of polymer thin
films and interfaces at small dimensions down to the 1 nm range. At such
small dimensions, the conventional continuum concepts of polymer struc-
ture-property relaxationships in bulk states are not applicable. For exam-
ple, recent surface force apparatus experiments indicate that solid surfaces
cause even the low viscosity Newtonian liquids of low molecular weight
polymers to become solidified or rubbery at the interfaces.2^1

Such novel experimental findings have prompted very active theoretical
studies of polymer interfaces that encompass both analytical models7"9 and
simulation methods in order to obtain a fundamental understanding of both
the equilibrium and dynamic properties of polymer melts confined by var-
ious interfaces. Because of the inherent difficulties encountered in analytical
approaches, simulations have been the more popular theoretical approach.

To date, simulations studies have employed lattice chains,10"13 bead
chains,14"20 and atomistic polymethylene chains of both united atoms,21"31

and explicit atoms.31'32 However, the implications of the various approxi-
mations adopted in representing polymer chains on simulations results and
the connections between the various models have not been thoroughly inves-
tigated.

In this review, we have chosen to focus mainly on the atomistic chain
simulations, and will describe in detail equilibrium and dynamic properties
of polymer melts at interfaces predicted by these simulations. The ability of
the simulations to provide insight into the equilibrium and dynamic beha-
vior of the interfaces as seen experimentally will be discussed. A brief
description of systems of bead chains will also be presented, as these models
also take into account the off-lattice continuum nature of the interface that
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is critical to many properties but is difficult to handle in a lattice model. For
equilibrium properties, it has been demonstrated that simulation results for
lattice chain melts at interfaces are well reproduced by the Scheutjens-Fleer
lattice theory.13 The connection between lattice and off-lattice models will
therefore be explored briefly by comparing results of atomistic simulations
with predictions of the Scheutjens-Fleer theory.25 For dynamic properties,
there exists no analytical theoretical model, and hence, simulation results
will become important in formulating key steps and testing new theoretical
approaches to describe polymer dynamics at interfaces.

8.2 Systems of atomistic chains

8.2.1 General considerations

Computer simulation studies of melts of chain molecules at interfaces, in
which the chain molecules are modeled at the atomic level (that is, with
realistic chain structure, geometry and interatomic interactions), have
been limited to relatively short hydrocarbon chains. Section 8.2 reviews
the general features of these models and the predicted equilibrium and
dynamic properties of the chain molecules in the interfacial regions. The
main aim of the studies discussed here is to elucidate the packing of the
monomers at interfaces, the associated orientational correlations of chain
bond vectors, and anisotropy of the molecular motions, on a nanometer
length scale (Fig. 8.1). The following sections describe the models and sys-
tems that have been employed for this purpose. Section 8.2.2 provides a
discussion of the various models and methods that have been employed for
the atomistic chain simulations. Monte Carlo studies of liquid «-tridecane
(Ci3H28) in broad slits with solid surfaces modeled as impenetrable walls,21

and in a broad and a narrow slit in equilibrium,22 with the surfaces mod-
deled as ordered atomistic layers and including the effects of diluents,23 are
discussed in Sections 8.2.3 and 8.2.5, respectively. Molecular dynamics
simulations of liquid tridecane, H-octacosane (CisI^) and «-hexacontane
(CeoHi22) chains between neutral24 and attractive25 unstructured solid sur-
faces are presented in Section 8.2.4. Section 8.2.4 also includes molecular
dynamics simulations of liquid «-hexadecane (C16H34) between strongly
attractive atomistic surfaces under various external loads29 and of systems
of H-octane and 2-methylheptane between weakly attractive surfaces for
various surface separations at constant chemical potential.27'28 Systems of
alkane liquids with two free surfaces,26 or with a solid surface and a free
surface29 are discussed in Section 8.2.6. Recently, explicit atom simulations
of liquid «-tridecane have been performed for atomistic surfaces at constant
volume31 and constant pressure,32 and for systems with free surfaces.32

These results are presented in Section 8.2.7. Finally, a comparison is pre-
sented between the predictions of equilibrium properties of polymer melt
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Fig. 8.1 Schematic view of the basic unit cell adopted in the Monte Carlo simulations of Refs
22 and 23. The shaded areas represent layers of hexagonally packed units.

interfaces from the Scheutjens-Fleer lattice theory and atomistic simulations
in Section 8.2.S.25

8.2.2 Models and methods

8.2.2.1 Monte Carlo simulations

The system simulated in Ref. 21 consisted of a box with periodic bound-
ary conditions in the x and y directions. The two faces of the box perpendi-
cular to the z axis were impenetrable, in the sense that they cannot be
crossed by the C-C bonds. The n-tridecane (C13H28) molecules were mod-
eled as sequences of 13 point units (united atom or UA approximation) with
fixed bond lengths (0.153 nm) and fixed bond angles (112°). Units belonging
to different chains or belonging to the same chain but separated by more
than three skeletal bonds interacted through a 12-6 Lennard-Jones potential
with minimum energy -0.14 kcal mor1 at a distance of 0.4 nm. The inter-
actions were truncated at 0.5 nm, and the potential energy was shifted to be
zero at this distance. As in Ref. 33, the nonbonded interactions of units
separated by three skeletal bonds in the same chain were separately com-
puted by using a torsional potential of the form

with Fm = 4.0 kcal mor1 and x - 0.163. These values yield 0.5 kcal mor1

and 3.6 kcal mol"1 for the energy difference and the barrier height, respec-
tively, between the trans and gauche state.

The system contained 2885 «-tridecane chains in a box with edges 15.0 nm
along both the x and y directions in the film plane, while the separation of
the plates, that is the box edge along the z axis, was 5.0 nm. The initial model
was generated by introducing at random the chains in the basic cell one at a
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time, in such a way that two nonbonded units could not come within
0.32nm of each other. The system was then equilibrated at room tempera-
ture (T — 300 K) by standard Monte Carlo techniques utilizing reptation
moves. That is, a tridecane molecule was selected at random at each step,
one of its two terminal units was removed and a new unit was randomly
added at the opposite chain end. The new configuration was accepted when
r < exp(—AE/kT), with r being a random number in the [0, 1] range and
A£ the total energy change. When r was greater than exp(-AE/kT), the
original configuration was restored and counted and a new reptation
attempt was started. The results were averaged over 10 equilibrium models
obtained in sequence and separated by 106 accepted reptation steps.

A good indication that the force field adopted in the calculations provides
an adequate description of the structural properties of liquid tridecane and
that the Monte Carlo method used to equilibrate the system is statistically
unbiased comes from examination of the properties of molecules with center
of mass at distances from the walls greater than 1.5nm. These properties
were found to be in remarkable agreement with those calculated for ideal
unperturbed rotational isomeric state (RIS) chains,34 showing that the
chains in contact with the walls can be considered in equilibrium with the
unperturbed bulk liquid and that the perturbation due to the presence of the
walls does not extend more than 1.5nm into the liquid.

Monte Carlo simulations of liquid tridecane in narrow and broad slits in
equilibrium were performed using a three-dimensionally periodic box with
edges IS.Onm, 8.0 nm and 5.0 nm in the x, y and z directions, respectively.22

The solid surfaces were modeled as planar arrays of hexagonally packed
units perpendicular to the z axis. These arrays are infinitely extended par-
allel to the y axis, while they are only extended from x = 0to x = 11.0 nm in
the x direction. The basic box is illustrated in Fig. 8.1. A tridecane chain in
the all trans conformation is also shown in the correct proportions, with the
circles around some of the units having a radius of 0.2 nm. Two separate
calculations were performed, with h = 1.2 nm in the first case, and
h = 1.0 nm in the second case. Due to the periodicity along the z axis, the
region of the box between x = 0 and x = 11.0 nm consists of two slits of
thickness 1.2nm and 3.8nm in the first calculation, and of thickness 1.0 nm
and 4.0 nm in the second calculation.

As shown in Ref. 21, tridecane molecules at a distance from the nearest
surface greater than approximately 1.5nm are essentially unperturbed.
Hence, more than 25% of the volume of the basic box is filled with unper-
turbed bulk liquid in the calculations of Ref. 22. The simulation system is set
up such that molecules close to the solid surfaces, included those in the
narrow slits, are in equilibrium with this reservoir of bulk liquid. In parti-
cular, the density in the narrow slits is not established a priori, but is deter-
mined by the balance of all the interactions at play. Since the r.m.s. end-to-
end distance and r.m.s. radius of gyration of unperturbed tridecane chains at
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300 K are 1.13 nm and 0.394 nm,21 respectively, the assumption is made that
molecules located between x = 2.0 nm and x = 9.0 nm in Fig. 8.1 are repre-
sentative of molecules between surfaces infinitely extended in both the x and
the y directions.

The simulations in Ref. 22 were performed using the UA approximation
(see above) with the methods and the force field already described. The same
6-12 potential was used for the mutual interactions of the methyl and methy-
lene groups and for their interactions with the atomic units comprising the
solid surfaces. A total of 1297 tridecane molecules was introduced in the
basic cell one at a time in such a way that two nonbonded units (including
those of the solid surfaces) could not come within 0.32nm from each other.
The system was then equilibrated at 300 K using the reptation technique.
The results shown in the next sections represent the average over 10 different
equilibrium models obtained in sequence and separated by more than
800000 accepted reptations. It was verified that the tridecane molecules
were able to diffuse during the simulation from the narrow slits to the
wider slits and vice versa.

Similar techniques were used in Ref. 23 to simulate systems of tridecane
chains in the presence of small amounts of a diluent component. As in Ref.
22, the tridecane chains were represented as sequences of point units with
fixed bond lengths and angles, while the diluent molecules were represented
by isolated point units. The same 6-12 potential was utilized for the non-
bonded interactions of all the units in the system, including the diluent and
the units constituting the solid surfaces. In all, 1190 tridecane chains and 819
diluent molecules (5 wt% of the total units) were introduced in the basic cell
such that two nonbonded units could not approach within a distance less
than 0.32nm. The system was then thoroughly equilibrated at 300 K using
reptations for the tridecane molecules and local displacements for the dilu-
ent. When a given diluent molecule was selected for an attempted move, trial
coordinates were randomly generated inside a sphere of 0.1 nm radius cen-
tered on the old position. The results shown in the Section 8.2.5 represent,
for each calculation, the average over 12 different equilibrium models
obtained in sequence and separated by approximately one million accepted
Monte Carlo steps.

8.2.2.2 Molecular dynamics simulations

Molecular dynamics simulation techniques maintain certain advantages
over other simulation techniques. The primary advantage of the molecular
dynamics techniques is that during a simulation the time evolution of a
system follows a reversible trajectory through phase space. As a result,
dynamic properties of the system can be determined directly. Expression
of the potential energy of a system of molecules in terms of simple intra-
molecular and intermolecular potential functions allows for the calculation
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of the force acting on each force center, or "atom", of the system. Through
simple numerical integration, the position and velocity of each atom can be
determined as a function of time. The integration time step is limited by the
highest-frequency motions in the system, as the forces are usually assumed
to be constant during an integration step. Constraining high-frequency
motions such as bond stretches allows for use of larger integration time
steps. Simulations of this type are at constant energy (e.g., Ref. 26).

It is usually desired to perform molecular dynamics simulations at con-
stant temperature. In the simulations considered here, constant temperature
is accomplished in one of two ways. In the first, stochastic forces and asso-
ciated frictional forces are introduced which act individually on each atom
of the system. This approach is hereafter referred to as stochastic dynamics
(SD) simulation. The mean-square magnitude of the stochastic forces, which
are purely random and Gaussian, is proportional to the temperature of the
system, as described in Ref. 24. A canonical ensemble is simulated if the
friction coefficient 7 for the frictional forces is chosen such that 1/7 is much
smaller than the total simulation time. The resulting damping forces do
influence dynamic quantities, however, and this is the primary drawback
of the SD method. The SD method was used in Refs 24, 25 and 31. The
second method for constant temperature simulations involves either direct
scaling of atomic velocities, as in Refs 29 and 30, or the inclusion of an
additional "temperature" degree of freedom to the system by the Nose
method,35 as applied in Refs 31 and 32. Such simulations are hereafter
referred to as molecular dynamics (MD) simulations. Of the MD methods
considered, only the Nose method yields a true canonical ensemble.

Both SD and MD simulations of alkanes melts confined by solid surfaces
(solid/liquid interfaces) and MD simulations of liquid alkanes at free sur-
faces (liquid/vapor interfaces) have been performed. The alkane molecules
were represented by realistic atomistic force fields with constrained bond
lengths. In all cases except Refs 29 and 30, the bond angle flexibility was
maintained and in all cases the torsional flexibility was maintained. In most
simulations the methyl and methylene groups were represented by single,
spherically symmetric Lennard-Jones (LJ) force centers, i.e., the united atom
(UA) approximation. Results from simulations which explicitly include the
pendant hydrogen atoms as individual force centers, which we refer to as the
explicit atom (EA) representation, will also be discussed.

The MD and SD systems considered are divided into three classes: con-
stant density, constant chemical potential and constant pressure. In constant
density systems periodic boundary conditions are applied in the x and y
direction, and the chains are confined between two parallel solid surfaces or
plates perpendicular to the z axis. The density of these systems is determined
by the dimensions of the periodic system and the number of molecules
contained in the system and is fixed during the simulations. The constant
density systems simulated in Ref. 24 consisted of a series of «-alkanes
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(CnH2«+2, n = 13, 28 and 60) confined between neutral, flat solid surfaces. In
the z direction, structureless, purely repulsive smooth surfaces were placed
with a separation of 3.5 nm. The range of the potential was limited to u, the
van der Waals diameter of the UA force centers. After equilibration, SD
simulations of 3.74ns, 11.22ns, and 3.74ns, respectively, for systems of 77
tridecane chains at 300 K, 36 octacosane chains at 400 K, and 68 hexacon-
tane chains at 400 K, were performed with an integration time step of
3.74fs. The x and y dimensions were such that the densities at the center
of the films matches experimental melt densities for tridecane at 300 K and
for octacosane and hexacontane at 400 K.36

Constant density simulations were also performed in Ref. 25. Here, the
effect of including attractive interactions between the surface and the mono-
mers was studied by considering systems where every monomer experiences
the attractive potential (attractive surface simulations) and systems in which
only the chain ends experience the attractive potential (sticky end simula-
tions). The attractive surface simulations were performed on an ensemble of
49 tridecane chains with a surface separation of 3.0nm. The sticky end
simulations were performed on an ensemble of 40 octacosane chains with
a surface separation of 4.0 nm. The temperatures, densities, integration
scheme and potential functions were as described above for Ref. 24, with
a SD simulation time of 7.5ns for both systems. The additional attractive
surface-monomer potential was of the form

where z is the separation of the monomer from a surface, and zc is the cutoff
distance for the potential (0.8 nm). The polynomial form of the potential
yields a smooth decay of the potential to zero at the cutoff. The factor eatt

was chosen to be SOkcal nm/mol. The function corresponds to the interac-
tion of a particle charged with 0.25 e.u. and a flat metal surface. The total
potential between the surface and a monomer has a minimum at about
0.25 nm with a magnitude of — 1.2kcal/mol. This attraction is much greater
than the monomer-monomer attraction (0.14kcal/mol maximum), but
somewhat less than the — 1.7kcal/mol per monomer which has been esti-
mated as the potential minima for a C24H5Q molecule on a graphite sur-
face.37

The final constant density system considered involves a comparison of SD
simulation results for an UA and an EA tridecane system.31 The systems
studied were identical to the system of Ref. 24, with the exception of the
structure of the surfaces. Here the surface topography, instead of being
structureless, reflected a (111) face of an fee solid with the nearest-neighbor
distance between particles being 0.4 nm. The surface particles interacted
with the tridecane atoms as united atoms in the UA simulations and as
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carbon atoms in the EA simulations, and hence constitute a weakly attrac-
tive surface.

The simulations described above were performed at constant density, i.e.,
a volume was imposed on the system irrespective of the resulting pressure or
chemical potential. MD simulations performed at constant chemical poten-
tial, where the confined liquid is in equilibrium with a vapor or bulk liquid
phase, have also been performed. Simulations with free surfaces, i.e., with
vapor/polymer interfaces, allow for the study of the equilibrium liquid-
vapor interface structure and the calculation of the surface tension, a ther-
modynamic property fundamental to the understanding of the behavior of a
material at interfaces. An MD study of the equilibrium liquid-vapor inter-
face structure and surface tension of thin films of «-decane and n-eicosane
(C2oH42) has been performed in Ref. 26. The system studied consisted of a
box with periodic boundary conditions in all directions. The liquid polymer,
however, while fully occupying the x and y dimensions, occupied only a
fraction of the system in the z direction, resulting in two liquid-vapor inter-
faces. The liquid phase ranged from about 4.0 to 7.0 nm in thickness.
Simulations were performed at 400 K for both decane and eicosane, with
additional decane simulations at 300 K. A similar system of tridecane mole-
cules, using a well calibrated EA force field,38 has been studied at 400 K and
300Kin Ref. 32.

Systems with a solid and free interface, which can be thought of as thin
films of alkane melts lying on a solid substrate, have been simulated in Ref.
30. Here the system was periodic in the x and y directions only. The systems
consisted of n-hexadecane at 350 K for films of 1.0, 2.0 and 4.0nm in nom-
inal thicknesses. The surface was modeled after a gold (001) plane. The well-
depth parameter for the monomer-surface atom interaction was 0.429 kcal/
mol, indicating a relatively strongly attractive surface.

The final constant chemical potential configuration considered represents
a film of alkane melts sandwiched between two solid plates in Refs 27 and
28. The system was periodic in the x and y directions, but only a portion of
the surfaces in the y direction was occupied by the solid substrate. Constant
chemical potential was maintained using the reservoir method, where the
liquid bubbles which form at the edge of the substrates are in equilibrium
with a vapor phase which interacts across the periodic boundaries. The
surfaces were modeled as static surfactant crystalline monolayers which
interacted with the alkanes as united atom CH2 and CH3 groups (weakly
attractive surface). Both K-octane and 2-methylheptane systems were studied
as a function of surface separation.

Constant pressure, or external load, systems have been studied in Refs 29
and 32. In Ref. 29, n-hexadecane melt films in a semidroplet configuration
were considered, where the surfaces and liquid were periodic in the x direc-
tion but limited in extent in the y direction, with the entire substrate being
occupied in the x direction but only partially occupied in the y direction.
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The system was studied as a function of external load on the surfaces. As
molecules which detached from the droplet were removed from the simula-
tion, the system was not in equilibrium with the vapor phase. The solid
substrates were modeled after crystalline solids with both weak attraction
(e3 = 1) and strong attraction (e3 = 3) between the surface atoms and the
polymer segments, which were treated as UA monomers; here e3 is the well-
depth of the surface-monomer potential and is measured in units of the
well-depth of the monomer-monomer potential. Bond angles were con-
strained in the simulation. In Ref. 32, constant pressure simulations of
liquid tridecane were performed for a system periodic in the x and y direc-
tions. The surface structure was that of the (111) face of an fee crystalline
solid. Here, an explicit atom representation of the alkane chains was used.
Results are presented for surface atom-polymer atom interactions equal to
those of the carbon-carbon and carbon-hydrogen interactions for carbon
and hydrogen atoms, respectively (a weakly attractive surface) for films
nominally 4 nm thick at 450 K.

8.2.3 Liquid \\-tridecane near impenetrable walls by Monte Carlo
simulations

The first calculation on atomistic systems of chain molecules near solid
surfaces was performed in Ref. 21 modeling the surfaces as two impene-
trable walls placed at a distance much greater than the molecular dimen-
sions. The overall chain density of the model has been chosen such that the
local density far from the walls was equal to that of the bulk liquid at 300 K.
Since all the properties of molecules far from the walls were found to match
those of unperturbed chains, as described by the rotational isomeric state
(RIS) model at this temperature,34 the chains in contact with the impene-
trable walls can be considered to be in equilibrium with the unperturbed
bulk liquid.

8.2.3.1 Segmental density distribution

Figure 8.2 plots the reduced segmental density p, defined as the ratio of
the density in sublayers of thickness 0.05 nm parallel to the wall surfaces
divided by the density of liquid tridecane, as a function of the distance (z) of
the sublayer from the nearest wall surface. The presence of a wall perturbs
the segmental density distribution over a distance smaller than 1.5nm, giv-
ing rise to a large maximum at z = 0.13 nm followed by a series of progres-
sively less intense minima and maxima. The overall aspect of the curve is
that of a damped cosine function with periodicity very close to 0.4 nm and
shifted 0.13nm along the z axis. Hence, the two impenetrable surfaces
placed at z = 0 and at z = 5.0 nm have the same effects of two densely
packed and ordered layers of methylene units at z — 0.27 nm and at



Fig. 8.2 The reduced segmental density, p, as a function of the distance from the nearest wall
for impenetrable surfaces (open circles, redrawn from Ref. 21) and atomistic surfaces (filled
circles, redrawn from Ref. 22).

z = 5.27nm. In other words, the system simulated in this calculation is
equivalent to a sample of tridecane melts between two parallel surfaces of
the latter kind separated by 5.54nm.

The segmental distribution along the z axis near the surfaces has also been
examined for the different chain units along the chain. All the distribution
curves show a maximum, approximately located at z = 0.l(k— l)nm, k
being the sequence number of the chain unit considered (1 < k < 1 for
tridecane). This indicates that methylene units in the middle of the chains
(k = 7) tend to avoid the walls. In practice, 48% of the units in the first
sublayer of thickness 0.05nm adjacent to the walls are methyl groups or the
first methylene units adjoining them. The tendency of the chain ends to
accumulate at the walls is simply explained by considering that internal
chain segments in the proximity of the walls experience greater orientational
and conformational constraints than segments at the chain ends (see Section
8.2.3.3).

8.2.3.2 Molecular distribution, size and shape

The reduced density of molecular centers of mass (cm), that is the density
of centers of mass divided by the corresponding bulk value, shows a large
maximum at z between 0.1 and 0.3 nm (Fig. 8.3). This distinct maximum
shows that most of the chain segments adjacent to the walls belong to the
practically flat two-dimensional chains. The distribution of units of chains
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Fig. 8.3 The reduced density of centers of mass, pcm, versus the distance from the nearest wall.
(Redrawn from Ref. 21.)

that belong to the second peak of molecular mass center profile, located
between 0.4 and 0.6nm from the walls, is nearly unperturbed. However,
terminal portions of these chains extend up to the first segmental peak
layer and contribute to the high density of units in the latter. In particular,
approximately 1/3 of the methyl chain ends in the first layer belong to chains
with center of mass in the second maximum. The enhanced density of
methyl ends in the immediate proximity of the walls is entirely explained
by the contribution of the terminal portions of these chains.

8.2.3.3 Order parameters and conformation

Figure 8.4 plots two order parameters, sc and sn, for two-bond chain
segments with center-of-mass in the various sublayers of thickness
O.OSnm. The chain axis order parameter sc is defined to be
(1/2)(3 < cos2 9 > — 1), 9 being the angle between the z axis and the vectors
connecting units of the same chain separated by two bonds; the segment
plane order parameter sn is the corresponding order parameter with respect
to the z axis of vectors perpendicular to the direction of the two-bond
segments and contained in that two-bond segment plane.

Both sc and sn are negative in the first sublayer in contact with the walls
for obvious geometrical reasons. However, in the region of z corresponding
to the first segment density maximum of Fig. 8.2, sc is negative and sn is
positive. Hence, the high-density packing in this region is realized with
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Fig. 8.4 The order parameter along the z axis of the vectors connecting units j - 1 and 7 + 1 in
the same chain (sc) and of the vectors perpendicular to the latters and contained in the plane of
j — l , j and j+[ units (sn) as a function of the distance from the nearest wall. (Redrawn from
Ref. 21.)

two-bond segment chain axis aligned parallel to the surface, but with their
planes preferentially oriented perpendicular to it. Moreover, this orienta-
tional ordering is different for internal and for terminal two-bond chain
segments. That is, the average value of sc for segments at z < 0.3 nm is
-0.12 in the case of terminal segments, while it is -0.23 for segments in
the middle of the chains. The fact that internal chain segments in the proxi-
mity of the walls experience greater orientational constraints than the exter-
nal chain segments seems to be the major reason for the observed tendency
of the former to avoid the walls and the higher concentration of methyl
chain ends in the first sublayers near the walls.

The perturbation of the conformational characteristics due to the con-
straints of the surfaces is most noticeable in the first sublayer (0.05nm
thickness), where the fraction of trans conformations is as high as 0.80 for
obvious geometrical reasons, as compared with 0.63 in the bulk liquid.
However, in the other regions the chains are apparently able to adapt to
the strongly anisotropic environment near the walls without any substantial
changes of their local-scale conformations. Figure 8.5 plots the inter-
molecular segmental orientational correlation parameter Sij(ry) = (1/2)
(3 < cos2 6q(rij) > —1), where By(ry) is the angle between any two-bond
segments i and j belonging to different chains and separated by a distance
ry. The circles have been calculated considering only two-bond segments
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Fig. 8.5 The intermolecular orientational correlation parameter of two bond segments, sij(d), in
the first layer of 0.2 nm thickness adjacent to the walls and in a similar layer far from the walls.
(Redrawn from Ref. 21.)

with center-of-mass within a layer of thickness 0.2 nm adjacent to the walls,
while the triangles refer to a similar layer far from the walls (bulk). Figure
8.5 confirms that orientational correlations in bulk liquid n-alkanes are
small and limited to first-neighboring segments at most.33 The behavior in
the first layer near a solid surface is quite different, since the orientational
correlation between neighboring segments is significantly higher than the
limiting value (0.06) imposed by the common (partial) alignment parallel to
the surface. This implies that the nearly two-dimensional chains contained
in the first layer tend to exhibit significant orientational correlations among
the neighboring chain segments. The lateral dimension of such correlated
regions, however, does not appear to be large.

8.2.4 N-Alkane systems near neutral and attractive surfaces by SD and
MD simulations

United atom (UA) atomistic computer models of liquid tridecane, octaco-
sane (C28H58) and hexacontane (C60H122) confined by flat, neutral (i.e.,
purely repulsive) solid surfaces have been studied in Ref. 24. Similar systems
of liquid tridecane and octacosane between ordered atomistic surfaces, and
between flat surfaces that are attractive with respect to all the chain seg-
ments or with respect to the chain ends only, have been studied in Ref. 25. In
these cases, the thickness of the films is such that the density at their centers
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matches the experimental density of the corresponding melt at the simula-
tion temperatures (300 K for tridecane, 400 K for octacosane and hexacon-
tane). Hexadecane films between weakly and strongly attractive solid
surfaces for systems in which the film thickness is allowed to adjust accord-
ing to the applied load have been simulated in Ref. 29. In Refs 27 and 28, n-
octane and 2-methylheptane films were simulated at constant chemical
potential as a function of surface separation for surfactant monolayer
(weakly attractive) surfaces.

8.2.4.1 Segmental distribution, order parameters and conformations

Figure 8.6 shows the normalized segmental density, the order parameters
sc and sn and the fraction of trans bonds, Ptrans, as a function of the separa-
tion z from the flat surface for a tridecane melt at 300 K between neutral
surfaces (dotted lines) and between attractive surfaces (solid lines), for the
segment-surface potentials shown in Fig. 8.7.25 The behavior of these prop-

Fig. 8.6 The normalized segmental density, the order parameters sc and sn and the fraction of
trans bonds, Ptrans, as a function of z for a tridecane melt at 300K between neutral surfaces
(dotted lines) and between attractive surfaces (solid lines). (Redrawn from Ref. 25.)
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Fig. 8.7 The potential energy of an attractive surface. The dotted line represents the Lennard-
Jones potential for the flat surfaces, the dashed line represents the attractive part (eq. 8.2), and
the solid line is for the resulting potential.

erties in the film with the neutral surfaces is found to be in very good
agreement with the results obtained near impenetrable walls by Monte
Carlo simulations in Ref. 21. In particular, starting from a surface, the
segmental density (Fig. 8.6) shows a series of progressively less intense
maxima and minima with a periodicity close to 0.4 nm, as observed in
Fig. 8.2. However, the first maximum is obviously located near
z = 0.4 nm, as compared to z = 0.13 nm for the impenetrable walls of Ref.
21, which simply disallowed any segment placement with its center beyond
the surface planes. A similar shift is seen in the plots for sc and sn, all the
other features practically coinciding with those reported in Ref. 21. The
same is true for the fraction of trans conformations, showing significant
deviations with respect to the unperturbed distribution only for segments
located very close to the surfaces. None of the properties shown in Fig. 8.6
are substantially changed when the neutral flat surfaces are substituted by
neutral ordered atomistic surfaces (in Ref. 21 and Section 8.2.5.1 below).

As expected, the segmental density in the first or adsorbed layer for
attractive surfaces is significantly higher than for neutral surfaces, as
shown in Fig. 8.6. Although strongly attractive when compared with neutral
walls, the potential plotted in Fig. 8.7 are somewhat less attractive than a
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graphite surface.37 The first maximum of the segment density is observed at
z = 0.3 nm, very close to the minimum of the attractive potential between
surface and chain units (0.29 nm). At this density maximum, the order para-
meter sc indicates an almost perfect two-dimensional alignment of the chain
segments parallel to the surface, while the fraction of trans bonds is greater
than the unperturbed bulk value. Hence, the first layer of chains in contact
with attractive surfaces is much more ordered than near neutral surfaces (see
Section 8.2.4.2). Furthermore, the first maximum in the density is followed
by a deep depletion region and by a second less intense maximum. Both the
depletion region and the second maximum are more pronounced than those
near neutral walls. Analogous results have been obtained in Ref. 29, in which
the degree of layering was found to be much greater for strongly attractive
surfaces and to increase with increasing external load. The orientation of
two-bond segments caused by the surfaces is also found to persist farther
into the melts with increased adsorption strength. For the weakly attractive
surfaces, the preferential orientation is found to decay very rapidly, essen-
tially vanishing for distances greater than 0.5 nm from the nearest surface. In
contrast, greater oscillations in chain axis orientation, corresponding to pre-
ferential alignment parallel to the surfaces in high density regions separated
by preferentially perpendicular alignment to the surfaces in a region of low
density, are observed near strongly attractive surfaces.

Systems in which the chain-ends are preferentially attracted by the sur-
faces yield a much higher fraction of chain-ends in the first segmental layer.
This results in a partial destruction of the tendency to form high segmental
density layers near the surfaces, since the chain-ends take up more volume
than the other units.25

8.2.4.2 Molecular distribution, size and shape

Like the segmental properties, the molecular properties calculated for
liquid tridecane near neutral surfaces are in excellent agreement with
those obtained near impenetrable walls by Monte Carlo simulations in
Refs 21 and 22. In particular, the distribution of molecular centers of
mass shows a maximum at z = 0.4nm, which becomes much more intense
near attractive walls, where the corresponding density of chain centers of
mass is nearly six times greater than in the bulk. Furthermore, the maximum
occurs at z = 0.3 nm, coincident with the minimum of the interaction poten-
tial between surfaces and chain units. Hence, most of the monomer seg-
ments adjacent to the attractive surfaces belong to flat, two-dimensional
chains. This is shown in more detail in Fig. 8.8 by investigating the content
of trains, tails and loops, which are defined as follows, focusing on the
skeletal bonds as the basic units for the atomistic chains:

• The thickness of the interface is chosen to be 0.7 nm.
• Trains are successive bonds in the interface.
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Fig. 8.8 The probability distribution of trains (a), tails (b) and loops (c) defined by eq. 8.3 found
in tridecane melts at 300 K in the system of neutral surfaces (triangles) and of attractive surfaces
(circles).

Tails are sequences of bonds which contain chain-ends located outside
the interface and the other end of the sequence connected to a monomer
within the interface.
Loops are sequences of bonds which are out of the interface, with both
ends of the sequences connected to monomers in the interface.
If a train connects to a tail or loop, the division point is defined by the
orientation of the last bond belonging to the interface. If the angle
between the z-axis and the axis defined by the last two bonds is smaller
than 45°, the last bond of this train is switched to tail or loop.
The frequency of the occurrence of train, tail and loop sequences were
counted and averaged over the simulation period, and the weighted prob-
ability was calculated, defined by

where N is the total number of bonds in the simulation box and/(() is the
number of the sequences of i bonds in length. Thus, P(i) corresponds to the
probability of a bond to be found in a certain sequence of length i.
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Figure 8.8 reveals that the fraction of tridecane molecules totally con-
tained in a layer of thickness 0.7 nm near a surface (i.e., trains of 12
bonds) is strongly enhanced for the attractive surfaces. This enhancement
in long trains is accompanied by a reduction of both shorter trains and
longer tails. Similar results have been obtained in Ref. 29, where the ten-
dency of entire «-alkane molecules, or large sequences of methylene units, to
be adsorbed on the solid surfaces increases dramatically as the strength of
the surface-chain attraction is increased. This tendency was also found to
increase with increasing external load.

Very different behavior was found in Ref. 25 near surfaces with prefer-
ential attraction for the chain-ends of «-C28H58 melts. As shown in Fig. 8.9,
longer trains were found to decrease and shorter trains increase in this case,
with a simultaneous increase of long tails and loops. This behavior is well
explained by the abundance of chain-ends in the first segmental layer close
to the surfaces, which somewhat excludes the other chain units from this
region. These characteristics due to sticky chain-ends for «-C28H58 melt
systems are reproduced quite well by Scheutjens-Fleer self-consistent-field
lattice theory (see Section 8.2.8).25

Fig. 8.9 The probability distribution of trains (a), tails (b) and loops (c) defined by eq. 8.3 found
in the systems of octacosane melts at 400 K with neutral surfaces (triangles) and sticky ends
(circles).
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8.2.4.3 Effects of chain branching

Recently, simulations of rc-octane and 2-methylheptane have been per-
formed at constant chemical potential^ as a function of surface separa-
tion.27'28 Comparison of the results for w-octane and 2-methylheptane
yields insight into the effects of chain branching on the segmental/molecular
layers of n-alkanes and on solvation forces. Solvation forces, denoted as
forces between the solid surface and molecules comprising the central region
of the confined film, as a function of surface separation are shown in Fig.
8.10. The «-octane solvation forces show oscillations with a period of about
0.4 nm, the same period as is seen in the layering and modulation of the
segment density profile. This oscillatory behavior qualitatively reproduces
what is seen in surface force apparatus experiments.1 The slight amount of
chain branching present in 2-methylheptane can be seen to reduce signifi-
cantly the oscillatory nature of the solvation forces. Branching also signifi-
cantly reduces the oscillations in the density profiles for separations which
correspond to an integral number of layers at small separation distances
(two or three layers). In these cases, it appears that the bulkiness of the
chain-end in 2-methylheptane significantly interferes with the ability of the
alkane molecules to fit into the dense layers.28

Fig. 8.10 Solvation forces as a function of separation between solid surfaces for n-octane
(dotted line) and 2-methylheptane (solid line) at 297 K. Surfaces separations are the distances
between the centers of the outermost layers of atoms forming the solid surfaces minus one C-C
bond length (0.153nm). (Redrawn from Ref. 28.)
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8.2.4.4 Dynamic properties

Because of the anisotropic character introduced into the system by the
presence of the solid surfaces, the molecular mobility of chains near the
surfaces is expected to be anisotropic. Moreover, this anisotropy will be a
function of the distance of the molecular center of mass from the nearest
surface. This effect is illustrated in Figs 8.11 and 8.12. Figure 8.11 plots the
apparent diffusivity £>ap

for tridecane molecules near neutral and attractive surfaces; here zcm is the
separation of the chain center-of-mass from the surface, rcm is the position
vector of the center of mass and tc = 750 fs. The apparent diffusivity Z)ap,
reflecting chain mobility, is seen to be nearly independent of zcm near neutral
surfaces, while it shows a substantial decrease near attractive surfaces.25

Figure 8.12 shows the normalized parallel component (upper curve) and
the perpendicular component of Dap, with respect to the surface, for n-
C2gH58 (octacosane) chains near neutral surfaces.24 In the central region,

Fig. 8.11 The apparent diffusion constant as a function of the distance between the surface and
the center of mass of a molecule in a system of tridecane melts at 300 K confined between
neutral surfaces (triangles) and attractive surfaces (circles). (Redrawn from Ref. 25.)
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Fig. 8.12 The normalized x—y (parallel) components and the z (perpendicular) component of
Dap for octacosane chains near neutral surfaces. (Redrawn from Ref. 24.)

the apparent diffusivity shows isotropic, bulk behavior, as was also seen for
the static properties. As one approaches a surface, the diffusivity in the
direction perpendicular to the surface is decreased, while that parallel to
the surface is enhanced. As a result, the overall diffusivity is practically
independent of zcm. The decrease of chain mobility, as shown by Dap,
near attractive surfaces is due to a decreased diffusivity both perpendicular
and parallel to the surfaces, the latter effect being probably due to the
enhanced density and hence reduced free volume found near the surfaces.

8.2.5 Liquid tridecane in a narrow and a broad slit in equilibrium

The molecular arrangements and conformation of liquid tridecane at 300 K
in broad slits of thickness 4.0 nm and 3.8nm, in equilibrium with very
narrow slits of thickness 1.2nm and 1.0 nm, respectively, have been studied
in Ref. 22, adopting the simulation set-up shown in Fig. 8.1. Similar systems
containing 5% of a diluent having the size and the interactions of a methy-
lene group have also been simulated in Ref. 23. The systems are such that
the liquid between the solid surfaces can be considered in equilibrium with a
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tank of bulk liquid tridecane at room temperature and pressure (see Fig.
8.1). Also, in order to check the effects of the structure of the surfaces in
such narrow slits, the surfaces are comprised of two-dimensional arrays of
units having the same size and interaction parameters of a methylene group,
packed as in the (111) face of the fee lattice.

8.2.5.1 Segmental distribution

In view of the results of Ref. 21, molecules located in the center of the
broad slits and molecules located between x = 11.0 nm and x = 15.0 nm (see
Fig. 8.1) and far from the borders of the solid surfaces are expected to be
representative of the unperturbed bulk liquid. In fact, these regions are
characterized by a density equal to that of liquid tridecane at room tem-
perature (750kg/m3), and by molecular properties practically identical to
those of unperturbed chains at the same temperature. This shows that the
molecular arrangements near one of the surfaces in the broad slits are not
influenced by the presence of the other surface, such that they are represen-
tative of the situation of liquid tridecane near a single, atomistic surface.
Furthermore, the calculations in Ref. 22 and those in Ref. 25 lead to the
same conclusion that the range of influence of the surfaces on the structural
organization of the liquid does not depend on the atomistic topographic
details of surface structures.

The normalized density (p) of units in sublayers of thickness 0.05 nm in
the broad slits is plotted as a function of the distance (z) from the nearest
surface in Fig. 8.2. Only units with x between 2.0nm and 9.0nm are con-
sidered. Figure 8.2 shows the series of progressively less intense maxima and
minima with a periodicity slightly greater than 0.4nm, the first maximum
being centered at z = 0.4 nm. The intensities of the various maxima and
minima are generally comparable to those observed for impenetrable
walls, with the exception of the first maximum, which is slightly more
intense near structured surfaces than near impenetrable walls. Hence, the
atomistic structure of the surfaces has a fairly minor influence on the beha-
vior of the segmental density, limited to the first layer of units at most.

Figure 8.13 plots the normalized density of units in the slit of thickness
1.2nm, calculated as before, as a function of z. The dotted curve shows the
behavior expected in the absence of cooperative effects due to the simulta-
neous presence of two surfaces. That is, it shows the z < 0.6 nm zone of Fig.
8.2 in the first half-slit, and its mirror image in the second half-slit. The
tendency of the tridecane molecules to form densely packed segmental layers
near the solid surfaces is slightly increased in a slit of thickness 1.2nm, while
it is almost totally destroyed when the slit thickness is reduced to 1.0 nm (not
shown). In particular, the two density maxima corresponding to the first
layers near the surfaces are more intense in Fig. 8.13 than that in Fig. 8.2,
while the intermediate minimum is deeper. On the contrary, the maxima are
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Fig. 8.13 The normalized density of units as a function of z in a narrow 1.2nm slit. The dotted
curves represent the behavior expected in the absence of cooperative effects due to the simulta-
neous presence of the two plates. (Redrawn from Ref. 22.)

less intense for the 1.0 nm slit than in Fig. 8.2, and the intermediate minimum
is practically absent. There is an associated difference in the total density of
units in the two slits. In fact, the total number of methyl and methylene
groups in the narrow slit of 1.2nm thickness is twice the corresponding
number in a layer of thickness 0.6 nm near one of the surfaces in the broad
slits. For the slit of 1.0 nm thickness, the overall density is approximately
10% less than the value expected in the absence of cooperative effects of the
two surfaces. A simple explanation for this behavior is that two layers of
methylene units can be accommodated quite well in a slit of thickness 1.2 nm,
while there is no room for them in a slit of thickness 1.0 nm.

As found in Ref. 21, the density of chain-ends near the surfaces is in all
cases higher than the density of any other chain unit. For instance, the
methyl groups are 1.7 times more abundant than any of the internal chain
units (i.e., unit 5, 6 or 7) in the region z < 0.4 nm of the broad slits. This
effect is much less pronounced in the narrow slits, where the corresponding
ratio is approximately 1.3.

8.2.5.2 Liquid tridecane in the presence of a diluent

Simulation studies show that the chain-ends tend to be more abundant in
the first segmental layer in contact with the solid surfaces, both in narrow
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and in broad slits. This effect originates from the higher restrictions imposed
by the presence of the surface on the orientational and conformational
freedom of internal chain segments as compared with those of terminal
segments. Therefore, the addition of a small amount of a short-chain com-
ponent (diluent) can be expected to influence the properties of a melt of
chain molecules at various interfaces.

The calculations in Ref. 23 show that the distribution of total units
(tridecane plus diluent) obtained in the case of the pure liquid is not modified
by the inclusion of small amounts of a diluent. In particular, the tendency of
the tridecane molecules to form densely packed segmental layers is somewhat
increased in a slit of thickness 1.2nm (in Fig. 8.1 with h — 1.2nm) in com-
parison with the situation near a single solid surface, as was found for the
system without a diluent. The fraction of chain-ends and the fraction of
diluent molecules in layers of thickness 0.05 nm parallel to the xy plane are
shown in Fig. 8.14, plotted along the z direction as an average for the units
between x = 2—9 nm in Fig. 8.1. Both fractions show a pronounced increase
near the surfaces, the average fraction of diluents in the first 0.4 nm being as
high as 0.10, which is more than twice the bulk value of 0.045. The tendency
to concentrate near the surfaces is greater for the diluent than for the chain-
ends. For instance, the average fraction of chain-ends in the same 0.4 nm
region is 0.20, that is about 1.4 times larger than the corresponding bulk

Fig. 8.14 The fraction of chain-ends and diluents in sublayers of 0.05 nm thickness for a system
with 1.2nm slit, plotted along the z axis, at x = 2-9 nm region, in the system shown in Fig. 8.1
with h = 1.2nm. (Redrawn from Ref. 23.)
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value (0.146). In other words, the diluent molecules replace part of the chain-
ends in the first segmental layer in contact with the surfaces, thus decreasing
both the number of chain molecules in these regions and the probability that
the tridecane chains form two-dimensional train configurations.

The preferential adsorption of chain-ends and diluents at solid surfaces
differs in an important aspect. The preferential adsorption of chain-ends
takes place on a local scale, in that this effect is absent over the length
scale of the radius of gyration. For example, the proportion of chain-ends
and internal chain units in the first 0.6 nm near a surface is not much higher
than 2/13 = 0.154. This proportion is obviously 0.154 in narrow slits and in
the bulk liquid of tridecane. In contrast, the adsorption of diluent molecules
corresponds to a net migration of diluents from the bulk region to the
narrow slits and to the interfacial region of the broad slits. In fact, the
fraction of diluent molecules far from the solid surfaces in the two simulated
systems is as small as 0.045, indicating that the equilibration of a liquid
mixture of this kind with solid surfaces leads to a segregation of diluents,
even without any preferential interactions with surfaces.

8.2.6 Systems with free surfaces

Simulations of systems with free surfaces, i.e., vapor/melt interfaces, allow
for the study of the equilibrium liquid-vapor interface structure and the
calculation of the surface tension, a thermodynamic quantity fundamental
to the understanding of the behavior of a material at interfaces. The liquid-
vapor interfaces of films of n-decane and «-eicosane have been recently
simulated in Ref. 26 using the UA approximation. The simulations predict
that although the total monomer density profile decreases monotonically as
one proceeds from the film center toward the vapor phase, the chain center
of mass and central segment density profiles are strongly peaked at the point
where the total monomer density begins to decrease. These features are
illustrated in Fig. 8.15. The outer edge of the interface is dominated by
chain-ends, as has also been observed near solid surfaces (see above).
With decreasing temperature and increasing chain length, the width of the
interfacial region decreases, while the amount of local segregation increases.
It is also found that the chains are slightly flattened parallel to the interface
in the outer regions, while they are slightly elongated and aligned tenden-
tiously perpendicular to the interface in the region corresponding to the
peak of the center of mass profile. These effects can be understood in
terms of the large energy penalty associated with bringing a chain into the
region of decreasing monomer density.26

Surface tensions have been calculated from the virial tensor as



Fig. 8.15 Scaled density profiles of the end segments (cross), middle segments (open circle),
chain centers of mass (- - -), and total hydrocarbon (—) of (a) eicosane at 400 K, (b) decane at
400 K and (c) decane at 300 K. (Redrawn from Ref. 26.)
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where 7 is the surface tension and A is the total surface area of the two
interfaces. The components of the atomic virial tensor are
Vaa — (1/2) SS/0"'""'-'' where the double sum is over all the atoms in
the system, and f0"1 and r°"> are the components of the force and distance
vectors between atoms i and j, respectively. The molecular virial
Vaa = (1/2) S IC/""" i"a*b, where the force is now calculated between mole-
cules a and b and the distance vector is between the centers of mass of the
molecules, can also be used. As forces beyond the cut-off distance (0.976 nm
in Ref. 26) are not included, the surface tension or the virial tensor must be
corrected for this truncation. The calculated surface tensions with trunca-
tion corrections for «-decane and eicosane were overestimated by 20 to 50%
compared to experimental values. The effect of including hydrogen atoms
explicitly on the calculated surface tensions is discussed in Section 8.2.7.

A system with a solid and a free interface can be thought of as a thin film
of material lying on a solid substrate. JV-hexadecane films of thickness 1.0,
2.0 and 4.0 nm, with the solid surface modeled after a gold (001) plane, have
been simulated in Ref. 30. The resulting segment density profiles and the
diffusion constants, both parallel and perpendicular to the interfaces, are
shown in Fig. 8.16. The segment density profiles show strong layering
effects, with high density layers separated by lower density depletion
regions. The liquid/vapor interface shows a monotonic decrease in segmen-
tal density, as already shown for systems with two free surfaces26 (see
above). For the thick film (4.0 nm), monomer segregation or layering is
not apparent beyond 1.8nm from the solid surface, even for the highly
attractive surface used in these simulations. A significant increase in the
fraction of torsions in the trans state was found in the adsorbed layer. As
discussed above for w-alkanes confined between two solid surfaces, this
effect has been found to be dependent upon the nature of the surface/poly-
mer interactions and is enhanced for attractive surfaces.

For the thin film (1.0 nm), diffusion perpendicular to the surfaces is essen-
tially zero, as seen in Fig. 8.16. However, the molecules remain highly
mobile parallel to the surfaces. For the thick film, the diffusion constant
profiles indicate a drop in molecular mobility both parallel and perpendi-
cular to the surfaces as one approaches the solid surface, indicating a drop
in overall mobility. This is in contrast to systems confined between neutral
surfaces, where the decrease in the perpendicular mobility is much less dra-
matic and the parallel mobility is actually enhanced at the surfaces (see Fig.
8.12). It is qualitatively consistent with results for systems confined between
attractive surfaces, although in Ref. 25 the decrease in mobility at the sur-
face was significantly less than seen here. This discrepancy may be due to the
difference in surface topography, indicating that for strongly attractive sur-
faces, atomistic surface topography may have a much greater effect on the
mobility than flat, structureless surfaces. These differences emphasize the
importance of the nature of the interactions between polymer and solid
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Fig. 8.16 (a) Segment density profiles for three thicknesses of adsorbed n-hexadecane films at
350 K, plotted vs. distance for the solid surface, with the original at the center of atoms in the
top layer of the solid substrate. An error-function fit for the tail region (marked by arrows) of
the thickest film is shown in the inset, (b) Diffusion constants in the directions parallel and
perpendicular to the surface plotted vs. distance. Circles and triangles correspond to the thin-
nest (about 0.1 nm) and thickest (about 4.0 nm) films, respectively. Solid symbols denote par-
allel diffusion and empty ones perpendicular diffusion. (Redrawn from Ref. 30.)

surfaces on the chain dynamics at the interfaces. However, even for an
atomistic, strongly attractive surface, the chains maintain a rather high
degree of mobility, indicating that a true solidification is not occurring. In
contrast to the solid/polymer interface, an increased mobility parallel to the
interface can be seen in the polymer/vapor interfacial region. If one takes the
perpendicular mobility of the diffusivity in the 4.0nm film at 2.5nm from
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the solid surface as representative of the bulk diffusivity, a total diffusion
constant of about 3 x 10^5 cm2/s is obtained. This value is about three times
larger than the experimental value for hexadecane at 350 K.36 The discre-
pancy is indicative of the limitations of using the UA approximation in
obtaining quantitative dynamical results.31

8.2.7 Explicit atom simulations ofn-alkanes at interfaces

The UA approximation, where methyl and methylene groups are repre-
sented as single, spherically symmetric Lennard-Jones centers, has proved
to be adequate for gleaning qualitative information about the interface
between alkanes and solid surfaces. However, the UA force field must be
calibrated, primarily by adjusting the van der Waals radius of the united
atoms, for alkanes of different chain lengths in order to reproduce proper-
ties such as X-ray scattering patterns, P-V-T behavior and self-diffusion
rates in the melts.31'38'39 Even when accurately calibrated with respect to
these properties, the UA force field may not reproduce well chain confor-
mation and local chain dynamics.38 In contrast, a single explicit atom (EA)
force field, taking account of all the hydrogens atoms explicitly, can accu-
rately reproduce these properties for various molecular weights, the price
being obviously paid in terms of simulation CPU time.31'38 Both UA and
EA calculations have recently been performed to simulate a system of tri-
decane chains between planar arrays of carbon atoms packed as in the (111)
face of a fee solid (weakly attractive surface).

Figure 8.17 compares the monomer density, the two-bond order para-
meters sc and sn and the trans bond fraction profiles obtained for the UA
system at 300 K and EA systems at 300 K and 450 K. The tendency toward
layering of the monomers is much stronger in the EA system, where the high
density layers and low density depletion regions are much better defined.
Indeed, a third layer, not seen in the UA simulations, appears in Fig. 8.17.
The center of mass density profile (Fig. 8.18) shows that the tendency
toward a greater degree of segregation exists in the EA system also on a
molecular level. Additionally, the orientational order parallel to the surfaces
in the region of high segment density and perpendicular to the surfaces in
the depletion regions is significantly more pronounced in the EA system.
However, the influence of the surfaces on the local chain conformations is
limited to segments (from the trans bond fraction profile) very close to the
solid surfaces in both the UA and EA chains. On the other hand, the z-
component of the characteristic ratio in Fig. 8.18 (Cn = (R2)/(n— I)/2,
where n the number of monomers, (R2} the mean square end-to-end dis-
tance, and / is the bond length) reveals that the two-dimensional character of
the chains, seen in the first layer for both the UA and EA simulations,
extends to the second molecular layer only in the EA simulation.
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Fig. 8.17 Monomer density profile (normalized to the bulk value), order parameters, and trans
bond fraction profile for confined «-tridecane melts using an united atom force field at 300 K
and an explicit atom force field at 300 and 450 K. (Redrawn from Ref. 31.)

The cause of the difference in both monomer and molecular segregation
and orientation observed between the UA and the EA system in Ref. 31 is at
least in part due to calibration effects. In fact, the force fields employed in
Ref. 31 were not calibrated to reproduce the P-V-T behavior of tridecane.
Subsequent simulations of bulk liquid tridecane with well calibrated force
fields show that the simulated structure factors depend significantly on the
force field parameters for the UA system, while the results for the EA system
exhibit only minor dependence on parameters.38 In this regard, it should be
noted that details of structural and dynamical properties of chain molecules
at interfaces depend not only on the interactions between the suface atoms
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Fig. 8.18 Center of mass density profile (normalized to the bulk value) and characteristic ratio
Cn for confined n-tridecane melts at using an united atom force field 300 K and an explicit atom
force field at 300 and 450 K. (Redrawn from Ref. 31.)

and chain segments, but also on the accurate description of the polymer-
polymer interaction.

Constant pressure simulations of tridecane confined between atomistic,
weakly attractive parallel plates using a calibrated EA force field have been
performed for films of nominal 4nm thickness as 450 K.32 The most inter-
esting difference between these and earlier UA simulations is the extension
of ordering effects near the surfaces farther into the bulk, similar to the
effects seen in the previous constant volume EA simulations (see Fig.
8.17). The monomer density profile and order parameter for the constant
pressure EA simulations at 450 K are very close to those for the constant
volume EA simulations. The apparent diffusivity perpendicular to the sur-
faces shows the characteristic decrease as one approaches the surfaces, while
the overall mobility is essentially unaffected. This is consistent with previous
results obtained for surfaces which are not strongly attractive. The bulk
value of the diffusion constant of 3.3 x 10~5 cm2/s, obtained from the dif-
fusivity at the center of the 4nm film, agrees reasonably well with the
experimental value of 5.0 x 10"5 cm2/s. This is in contrast to some UA



464 S I M U L A T I O N S T U D I E S OF P O L Y M E R M E L T S

simulations, where the diffusion constant for molecules in the center of the
film is significantly greater than the experimental value (see above).

Surface tensions for alkanes where hydrogen atoms are considered expli-
citly have been recently determined for tridecane at 300 K and 400 K.32

Values of 30.5 dyne/cm and 23.4 dyne/cm, including truncation corrections,
were obtained, respectively, at 300 K and 400 K, with uncertainties of about
3 dyne/cm. These values were obtained using a truncation distance of
0.9 nm. Values obtained using a truncation distance of 0.6nm did not differ
significantly from these values. Experimental values are 25.4 dyne/cm and
16.7 dyne/cm at 300 K and 400 K, respectively.40 The differences between
simulation and experimental values are comparable with those reported in
Ref. 26 for united atom alkanes. Apparently, the systematic overestimation
of the surface tension obtained by simulations using simple two-body non-
bonded interactions, which has also been observed in simple Lennard-Jones
fluids,41 is not alleviated by explicit treatment of the hydrogen atoms.
Therefore, it seems necessary to include the three-body forces to accurately
predict the experimental values, as was done successfully for Ar and Xe
systems.42

8.2.8 Comparison of atomistic simulations with Scheutjens-Fleer lattice
theory

Recently, the results of SD simulations for a UA model of octacosane
(n-C28H58) chains with neutral and sticky chain-ends to surfaces have
been compared with the predictions of Scheutjens-Fleer lattice theory.25

For this purpose the octacosane melts between two flat surfaces separated
by 3.5nm spacing were compared with a lattice chain system. The system
consisted of a 90% filled cubic lattice consisting of seven layers (layers 1 and
7 being the surface layers), each layer corresponding to the dimensions of
about 0.45 nm observed between monomer density peaks. The chains were
eight segments in length since a lattice segment of about 0.45 nm corre-
sponds to around 3.5CH2 monomer units. The attractive energy for the
end segments to the surfaces was set at 1 kcal/mol, and calculations were
performed at 400 K. The reader is referred to Ref. 13 and the references
contained therein for details of the SCF calculations. The resulting train
probabilities are compared with simulation results in Fig. 8.19. The decrease
in the number of long trains and the increase in the number of short trains
for the sticky end system is reflected in the SCF calculations. The dramatic
increase in the probability of a train consisting of an entire chain (length ri)
with respect to a train of length n — 1 is also predicted by the SCF calcula-
tions, as is the fact that the probability of a train of length n is not signifi-
cantly changed by the presence of sticky ends. For the SCF lattice
calculations with the neutral surface, the increase in the probability of a
train of length n relative to a train of length n — 1 is simply the result of the
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Fig. 8.19 The probability distribution of trains for octacosane melts at 400 K with neutral
surfaces and sticky ends, compared to SCF lattice theory predictions. The SCF probabilities
have been scaled by (8/27) for comparison. (Redrawn from Ref. 25.)

fact that there are more lattice sites available on the surface for the nth unit
(4) than off the surface (1). For the case of sticky ends, the probability of the
«th unit being on the surface is dramatically increased by the attractive
energy, but as the probability of long train sequences is reduced by the
high concentration of chain-ends on the surface, the net result is that the
probability of a train of length n is not significantly affected by the attractive
potential.

Although the SCF lattice theory reproduces chain conformations quite
well, the restricted nature of the lattice precludes prediction of features

S Y S T E M S O F A T O M I S T I C C H A I N S
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Fig. 8.20 Monomer density profile for octacosane melts at 400 K with neutral surfaces and
sticky ends, compared to SCF lattice theory predictions (squares). (Redrawn from Ref. 25.)

which occur primarily due to the continuum nature of the atomistic model.
This can be seen in Fig. 8.20, where the monomer density profiles for octa-
cosane from simulation and SCF lattice theory are compared.

8.3 Systems of bead chains

8.3.1 General considerations

As discussed in Section 8.2, the atomistic systems have been limited to rather
low molecular weight hydrocarbon systems. In attempting to gain general
understanding for high molecular weight polymer systems, one popular
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development has been modeling the polymer chains as long necklaces of
beads, each bead representing an isodiametric unit of a real polymer chain.
The general features of the equilibrium arrangements near impenetrable
surfaces have been studied by Monte Carlo calculations on liquids of freely
jointed chains with realistic nonbonded interactions among the beads.14'15

More recently, analogous methods have been applied to a system mimicking
the dimensions, shape and interactions of the chains in a polyethylene
melt.16 The Monte Carlo method has also been used to simulate systems
of short chains of hard spheres between impenetrable walls at various den-
sities,17 and mixtures of these chains with monomers in broad and narrow
slits.18 The dynamic properties of dense systems of bead-spring model chains
with up to 30 monomers between structureless solid surfaces have been
studied by molecular dynamics techniques.19 The same model chains have
been studied in narrow slits with structured surfaces under shear.20

8.3.2 Models and methods

8.3.2.1 Monte Carlo calculations

In the simulations of Refs 14-16, the polymer chains are represented as
necklaces of beads connected by links of length a. Beads belonging to dif-
ferent chains or belonging to the same chain but separated by two or more
links interact through a 12-6 Lennard-Jones potential with minimum energy
E(a) = -0.42 kcal/mol, truncated at the distance a. The value selected for
E(u) is such to mimic the interactions among isodiametric units in poly-
ethylene when u is taken to be 0.46 nm. The model chains are freely jointed
in the calculations of Refs 14 and 15, while the chain flexibility has been
reduced in Ref. 16 by adding a bending potential of the form
E(ff) = (Ks/2)(0—ir)2, with 0 the angle between consecutive links and
Kg = 0.82 kcal/mol. The value of {cos6>} predicted on the sole basis of
this bending potential is approximately 0.46 at 400 K, and is not modified
by the inclusion of Lennard-Jones interactions between beads separated by
two bonds. Hence, an unperturbed model chain of N beads subject to this
bending potential is expected to have the same shape and dimensions of an
unperturbed polyethylene chain comprising approximately 3.57V methylene
groups.

In each calculations, the initial model has been generated at random such
that the centers of two nonbonded units could not come within 0.65<r from
each other. The systems have been then equilibrated at 400 K using repta-
tion and crankshaft movements. The latter mechanism, which cannot be
used in atomistic calculations, consists in the rotation of a randomly selected
sequence of one or more beads around the vector connecting the two adjoin-
ing beads in the same chain; when the selected sequence terminates with one
of the chain-ends, it is rotated around a random vector. After each attempt,
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the resulting trial model is accepted or rejected according to the outcome of
a standard Boltzmann test (see above). The size and the composition of the
systems that have been modeled are listed in Table 8.1. In all cases, the
periodicity is 50 in the x and y directions, while the systems are constrained
along the z axis by two impenetrable walls at the distances given in the third
column of Table 8.1, mimicking two ordered and well packed parallel layers
of beads with centers at a distance approximately greater by la. Therefore,
the simulated systems represent reasonably long chain lengths and a very
high bead density nearly l.Oo-"3.

8.3.2.2 Molecular dynamics calculations

The bead-spring model of polymer chains utilized for molecular dynamics
calculations in Ref. 19 consists of beads interacting through a truncated and
shifted 12-6 Lennard-Jones potential

and t/bb(X) = 0 for r > 21/6<r. Consecutive beads in the same chain are con-
nected by finite extensibility nonelastic springs with spring potential
Us = fesln[l - (r/Ro)2], where r is the actual spring extension, ks = 33.75e
and RQ = 1.54cr. The basic cell is periodic in the x and y directions with
edges 8.Ocr, while the two faces of the cell perpendicular to the z axis are two
structureless walls interacting with the beads through a 10-4 potential of the
form to represent weakly attractive, strongly attractive, and neutral inter-
actions. The density of the simulated systems is approximately 0.65<r~3, and
the temperature is in all cases equal to e/k, with k the Boltzmann constant.
The initial bead coordinates have been obtained by lattice Monte Carlo
calculations, followed by short constant temperature MD simulations

Table 8.1 Size and composition of the systems of bead chain polymers simu-
lated in Refs 14-16.

Bending potential
System Beads/chain Wall separation No. of chains (Kg kcal/mol)

A 200 50 625 0
B 100 50 1250 0
C 100 10 250 0
D 100 5 125 0
E 100 50 1250 0.85
F 50 50 2500 0
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with scaling of the bead velocities. Chains in the range of 6-30 beads have
been simulated in the slits of 6<r—20cr in width.

8.3.3 Results

8.3.3.1 Bulk chains

Since the wall separation of 50<r, used in most of the calculations in Refs
14-16, is several times larger than the unperturbed radius of gyration of the
chains, chains with center of mass located far from the walls are expected to
assume their unperturbed geometry and conformation. This is seen in Table
8.2, showing the r.m.s. end-to-end distance ((R2) ), the r.m.s. radius of
gyration ({R2

G}112) and tne characteristic ratio (Cn = (R2}/(N- l)^2) of
chains with center of mass in the central region of systems with wall separa-
tion equal to 50cr. The last column shows the characteristic ratio (C^)
obtained when a is taken to be 0.46 nm and each bead is considered to
consist of 3.5 CH2 groups, with the C-C bond length 0.153 nm. A value
of the order of 1.5 for Cn is approximately what one would expect for nearly
unperturbed chains in the first three cases. Remarkably, the value of C'n
found far from the walls for the chains with bending potential (system E)
is practically equal to the experimental result for unperturbed polyethylene
chains at 400 K.34 Also, the ratio (j?2)/{^?G) is in all cases very close to 6,
showing that the distribution of units around the center of mass follows a
Gaussian statistics. In particular, this indicates that system E constitutes a
good description of the molecular arrangements of a melt of polyethylene
chains confined between two walls.

8.3.3.2 Segmental density and order parameters

In agreement with the results obtained for short chain hydrocarbons near
solid surfaces, the calculations in Refs 14-16 show that the composition of
the first layer of beads in contact with the walls is substantially different
from the composition of the bulk liquid. For instance, the density of beads

Table 8.2 Average dimension of the chains in the central region of systems
with wall separation equal to 50<r.

Beads/chain

200
100
50

100 (system E)

18.14
12.40
8.64

16.05

7.54
5.09
3.52
6.50

5.79
5.94
6.01
5.93

1.60
1.54
1.49
2.58

4.13
3.98
3.85
6.68
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in a layer of thickness a in contact with one of the walls is between 1.1 and
1.2 times the bulk value. This high density is associated with a large increase
of the fraction of chain-ends, which is as high as 1.5 times the bulk value in
this layer. When examined in greater detail, the bead density profiles show
an intense maxima in proximity to the walls, followed by progressively less
intense minima and maxima with a periodicity equal to a. This behavior,
though similar to that observed for small molecule fluids,43'44 is damped
considerably for the polymer systems, presumably due to the unfavorable
entropic effect of constraining chain configurations at the interfaces.

The calculations in Refs 14-16 show that the perturbation of the bead
density does not extend into the liquid more than approximately 2<r from the
walls. A similar result is obtained for the order parameter with respect to the
z axis of the links between consecutive chain beads. The order parameter is
obviously negative for links with centers very close to the walls. It becomes
slightly positive at a distance along the z axis of 1.5(7 and assumes its iso-
tropic value of 0 at the distance of ca. 2a. The same behavior has been
observed in all the calculations performed, irrespective of chain length,
wall separation and chain flexibility. These findings are very similar quali-
tatively to the results obtained for liquid M-alkane systems (see above). The
simulation results are also in good agreement with the predictions of the
mean field lattice models of Helfand7 and Scheutjens-Fleer.8 Therefore, one
can conclude that the perturbation due to the wall on the packing and
orientation of the chain segments is limited to the first or the first two layers
of beads immediately adjacent to the walls. The packing of the beads and
the disorder of the chain links in all the other layers are identical to those in
the unperturbed bulk liquid.

8.3.3.3 Chain statistics near the surfaces

As a consequence of the previous results, one expects that the chain
statistics is perturbed only for chains having beads in contact with the
walls, all the other chains being practically unperturbed. Figure 8.21 plots
the distribution along the z axis (-DCm) of the centers of mass of the chains
having beads in the first layer of thickness in contact with the walls for the
polyethylene-like bead chains in system E of Table 8.1. Each chain has been
given a weight equal to the number of beads contained in the first layer.
About 90% of all the beads in contact with the walls are seen to belong to
chains with center of mass at a distance from the walls smaller than the
radius of gyration. As far as the nature of this perturbation is concerned, the
r.m.s. end-to-end distance and the r.m.s. radius of gyration of chains in the
proximity of the walls are not substantially different from their unperturbed
bulk values. However, these chains tend to be flattened in the x—y plane.
This is seen in Fig. 8.22, plotting the reduced z-component of the radius of
gyration ({^GZ}) of the polyethylene-like chains in system E (with
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Fig. 8.21 The distribution, Z>cm, of centers of mass of chains having beads in the first layer of
thickness near the walls in system E listed in Table 8.1. Each chain has been given a weight
equal to the number of beads in the first layer.

N= 100), as a function of the distance of their center of mass from the
nearest wall. For the same system, Fig. 8.22 also plots the reduced density
of centers of mass (pcm)- Both quantities are normalized to their unper-
turbed bulk values. For z between 2cr and 5cr, where pcm shows a maximum,
(RQ z) is still less than one half of its unperturbed value. Hence, most of the
chain segments located within the radius of gyration from the surface belong
to the polymer chains which are substantially flattened parallel to the sur-
face. Analogous results have been obtained for long freely jointed
chains,14'15 for short chains of hard spheres,18 and for the bead-spring
chains.19

The gradual increase of {RQZ} in Fig. 8.22 corresponds to a gradual
evolution of the molecular shape from nearly two-dimensional structures
near the walls to three-dimensional Gaussian random-coils at a distance
from the walls close to the unperturbed radius of gyration. The molecular
shape of chains with center of mass close to the walls, when examined in
details, can be described as an apparently random combination of train and
loop sequences. The average length of train sequences (that is, a sequence of
beads located in the first layer of thickness a near a wall) is 4.1 beads for
chains of 100 beads in the absence of a bending potential, and increases to
4.6 beads for the polyethylene-like bead chains simulated in system E, which
corresponds to approximately 16 methylene units. Hence, one should take
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Fig. 8.22 The reduced z-component of the mean-square radius of gyration ((RQZ)) and the
reduced density of centers of mass (pw) as a function of the distance from the nearest wall

care in relating the results of atomistic simulations and experiments on short
chains to high molecular weight polymer systems, since the entire length of
most «-alkane systems investigated does not exceed the average train
sequence length predicted for the polymer.

8.3.3.4 Dynamic properties

The influence of the solid surface on chain dynamics has been investigated
in Ref. 19 by monitoring both the chain center of mass diffusion and the
longest relaxation time of chains as a function of the distance of the chain
center of mass from a solid surface. The longest relaxation time of the chain
is given by the end-to-end vector autocorrelation function and is directly
related to the viscosity. As with static properties, it was found that the
dynamic behavior of chains in the central region of the thick slit (width
= 20<r) was unperturbed by the presence of solid surfaces.

Near the surfaces, the diffusivity showed the typical anisotropic behavior
as the center of mass of the chains approached a solid surface. For neutral
walls, the overall apparent diffusivity showed essentially no dependence on
the chain center of mass distance from a wall. In these cases, mobility
perpendicular to the wall decreased significantly as the wall was
approached, but this effect was offset by an increase in mobility parallel
to the walls. In the case of strongly attractive walls, the mobility parallel to
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the walls showed no enhancement near the walls, and the mobility perpen-
dicular showed a greater decrease than for neutral walls, resulting in a
decrease in the total mobility near the attractive surfaces. This effect is
attributed to the increase in segment density near the surfaces for cases
with strongly attractive surface-bead interactions.

Because significant displacement of the center of mass of the chains
occurs over the time scale of the longest relaxation time of the chains, the
longest relaxation time is not truly a local property. For neutral surfaces, no
dependence of the longest relaxation time on the initial center of mass
position of the chains was seen. For strongly attractive surfaces, a significant
increase in the longest relaxation time was seen for shorter chains (10 beads)
in the vicinity of the solid surfaces. This effect decreases significantly for
longer chains (20 beads), again indicating that the longest relaxation time is
not a local property. The significant increase in the longest relaxation time
for the shorter chains near the strongly attractive surface does indicate,
however, that such effects may occur in higher molecular weight systems
given a high enough degree of molecular layering. It is worth noting that the
degree of segmental and molecular segregation appears to be greater in the
atomistic systems.

8.4 Conclusions

In this chapter the main focus has been on interfaces of alkane melts; but, as
has already been noted above, related questions show up in the context of
various other models in the literature as well.45"48 Experiments have shown
that polymer melt interfaces possess many interesting equilibrium and
dynamic properties that are not easily understood. Atomistic simulations
have been able to provide significant insight into much of this observed
behavior. Atomistic simulations indicate the presence of several layers of
relatively high segmental density separated by depletion regions of low den-
sity. The oscillations in solvation forces observed experimentally as a func-
tion of film thickness have been shown to be a directed result of this
segmental layering. The layer nearest the surface is a region of relatively
high segmental density that consists of segments of molecules lying nearly
parallel to the surface (trains). For «-alkane molecules, these trains often
consist of entire molecules. For high molecular weight systems, the results of
bead-chain simulations indicate the average length of train sequences to be
approximately 16 methylene units for polyethylene. Therefore, one should
take caution in relating the results of short chain systems to the long poly-
mer chains, since the effects of the segmental layering and train sequences on
physical properties may vary strongly with the overall chain length.

While every off-lattice simulation predicts the general same behavior, the
persistence of the layering from the surfaces and the degree of orientation
within the layers depends strongly upon the details of the model. It is there-
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fore apparent that the quantitative predictions require an accurate represen-
tation of the polymer and surface structure and the interactions. That quan-
titative predictions of surface properties are possible is supported by the
reasonably good agreement between predicted and experimental surface
tensions for w-alkane melts. From an analytical approach, the distribution
of trains, tails and loops predicted by the atomistic simulations is repro-
duced quite well by the Scheutjens-Fleer lattice theory. The modulation of
local density, however, is not predicted by the lattice theory.

Despite the success in explaining (at least at a qualitative level) the equili-
brium properties of polymer melt interfaces, simulations have not contrib-
uted significantly to explaining many of the dynamic properties of these
systems, except perhaps to indicate what is not occurring at these interfaces.
Although significant increase in orientation of segments in the surface layers
is seen, there is no indication of epitaxial crystallization, even for strongly
attractive surfaces. Additionally, while a decrease in molecular mobility is
seen near strongly attractive surfaces, the decrease does not indicate solidi-
fication (or vitrification) of the polymers in contact with surfaces. Therefore,
the dramatic changes in dynamic properties seen experimentally for thin
polymer films remain an open area for further investigation by simulation
techniques.
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C O M P U T E R S I M U L A T I O N S O F
T E T H E R E D C H A I N S

Gary S. Grest and Michael Murat

9.1 Introduction

The study of tethered polymer chains' is an area which has received increas-
ing attention in recent years. These are systems in which one or both ends of
the chain are constrained in their motion because they are attached to a d
dimensional surface. This surface could be a point or small central core
(d = 0) as in the case of a many-arm star polymer, a line (d = 1) as in the
case of a comb polymer, or a flat surface (d = 2) as in the case of a polymer
brush.2 Polymers attached to themselves to form a polymer network or a
tethered membrane are also examples of tethered chain systems. An inter-
esting example of a tethered membrane is the spectrin/actin membrane ske-
leton of the red blood cell skeleton.3'4 A schematic illustration of these four
examples of tethered chain is shown in Fig. 9.1. Additional interest in teth-
ered chains is due to their technological applications in colloidal stabili/a-
tion and lubrication.5'6

The distinctive feature of tethered chain systems is the presence of a new
length scale which is not present in other systems. This new length scale is
the distance s between tethering or grafting points. When the tethering
density is high, nearby chains crowd each other, forcing the polymer to
stretch out away from the grafting site in order to gain interaction energy.
The stretching, however, is accompanied by a penalty in terms of the elastic
energy, due to a decrease in configurational entropy. The more highly
curved the surface, the more accessible volume the chain has as a function
of the distance from the tethering site, and the stretching becomes less
significant. For chains tethered to a line or a flat surface, this stretching is
strong enough to change the scaling of the end-to-end distance R and the
radius of gyration R& with the chain length N, from that of a free chain in a
comparable solvent. While polymers attached to themselves to form a poly-
mer network or membrane are not locally stretched in the same manner, the
tethering can give rise to interesting structures which globally increase in size
with the total number of monomers N in ways which are quite different than
predicted by simple scaling theories.

This interesting property that tethered chains could be strongly stretched
was first noted by Alexander7 in his study of chains end-grafted onto a flat
plane. De Gennes8 and Cantor9 stressed the importance of tethered chains in

9
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Fig. 9.1 Examples of topologies of polymers tethered to (a) a point, (b) a line, (c) a plane, and
(d) themselves.

understanding the self-assembly of diblock copolymers in a selective solvent.
Daoud and Cotton10 and Birshtein et al.n later generalized the Alexander
approach to star polymers. For chains tethered to a d dimensional object,
these theories which are based on a blob model suggest that for moderate
grafting densities pa, the monomer density p(r) decreases from the grafting
surface as

where v is the correlation length exponent for a dilute chain, R ~ N". For a
good solvent v = 0.588 in three dimensions12 and 1/2 in a 6 solvent. For a
star polymer (d = 0) in a good solvent, the density decays as r"1-30, while for
a polymer brush (d = 2), the density is constant up to a height h. As will be
seen below that eq. (9.1) works quite well for a star polymer but not for a
brush. This scaling theory also predicts that the end-to-end distance R
increases more rapidly with TV than for a free chain for d > 0,

For a star polymer, for N » 1, there is sufficient space for the arms and R
scales as N", exactly as for a free chain. However for chains grafted to a line
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or a flat surface, R increases more rapidly. For a polymer brush R ~ N,
independent of solvent quality. While these simple predictions are not
always valid, they give a clear indication of how tethering polymers can
change their properties. Since these scaling theories were worked out,
there has been an extensive amount of work using numerical and analytic
self-consistent field calculations, renormalization group techniques, compu-
ter simulations and experiments investigating various aspects of tethered
polymer chains. Here we will review this work.

The concept of tethered chains can be used to bring together a number
of diverse fields. As an example consider the simple case of polymers
tethered to a point. While many-arm star polymers can be made by che-
mical reactions, star-like aggregates also occur for diblock copolymers in a
selective solvent, polymers with one ionic end group in a low dielectric
media and for end-functionalized polymers grafted to a small colloidal
sphere. When the length of each arm is long, the size of all four of
these systems has the same dependence on number of arms / and chain
length N. Similarly the scaling properties of a polymer brush made from
diblock copolymers in a selective solvent or grafted end-functionalized
polymers are the same. This means that one can elucidate many of the
common global features of these systems without a detailed analysis of
their local structure. By considering tethered systems as a group and not
isolating polymers attached to a point from, say, those attached to a plane,
one can arrive at a better understanding of each.

In this paper we will review how simulations on relatively simple coarse-
grained models have been helpful in developing a more complete under-
standing of tethered chain systems. In the next section, we discuss the
various methods, both Monte Carlo (MC) and molecular dynamics
(MD) which have been applied to these systems. Because at least one
end of each chain is constrained, some methods commonly used for free
chains have to be modified. In addition, the extra constraints and high
monomer density near the tethering point often lead to very slow relaxa-
tion processes. In the following four sections, we will review the properties
of polymers attached to J-dimensional surfaces and to themselves starting
with star polymers in Section 9.3. In Section 9.4, we consider polymers
tethered to a line, both rigid and flexible. Then, in Section 9.5, we discuss
polymer brushes for which the most extensive amount of work has been
done. In Section 9.6, we discuss tethered membranes in which linear poly-
mers are connected to form a D dimensional surface. The case D = 2 has
generated a lot of interest in recent years. Finally in Section 9.7, we pre-
sent a brief summary of the important results and discuss the outlook for
the future of simulations in this area. In all cases, we have tried to com-
pare the simulation results to both theory and experiment for a variety of
solvent qualities.
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9.2 Models and methods

In this section we will review the basic models and methods that have been
used to simulate tethered chain systems. Before beginning a simulation, one
obviously must decide whether to use Monte Carlo or molecular dynamics.
If one decides on MC, then one has a further choice, namely whether to do
the simulation on a lattice or in the continuum. It is also important to decide
how detailed a microscopic model to use. For the long time, large-distance
phenomena which are of interest here, a realistic, microscopic model for the
polymer would require too much computer time. Instead, we use simple
coarse-grained models, which incorporate the essential physics such as the
noncrossability of the chains. In this section, we will briefly present an
overview of these techniques and discuss some of the advantages and dis-
advantages of each, particularly as applied to tethered systems. Because of
the additional constraints due to the tethering, some methods, particularly
some standard lattice MC methods do not work as well as they do for linear
chains. In addition to these two simulation methods, we will describe how
one numerically solves the self-consistent field (SCF) equations, since this
method has been very important in understanding the properties of polymer
brushes and block copolymers.

In the MC method the subsequent configurations of the polymers are
generated stochastically. The collective motion of a chain is modeled by
the acceptance of attempted new configurations. Under certain circum-
stances one can use such an approach not only for static properties but
also for the investigation of the dynamics of the system.13"21 In order to
use MC methods for the simulation of the dynamical properties of poly-
mers, one needs a method which is based on local stochastic moves. For a
nonreversal random walk (RW), that is a random walk with excluded
volume for nearest and next-nearest neighbors along the chain only, it can
be shown22 that this method reproduces the Rouse model.23 In such a case
the local configurations and the attempted moves are the same as in the case
in which one includes the excluded volume interaction between all mono-
mers. In order to fulfill this requirement, it is necessary to structure the
algorithm according to the following simple rules.15 First, one should
choose a monomer at random, then choose one of the possible moves at
random and finally check whether the attempted move is allowed or not. If
one includes only excluded volume interaction, then all moves that fulfill the
excluded volume constraints are accepted. If additional interactions are
included, then the allowed moves are accepted according to a Boltzmann
weight.15 This approach can be applied to both lattice and off-lattice poly-
mers. The natural unit for a time-step then is one attempted move per
monomer, which measures time up to an unknown but constant prefactor.
For a discussion see the chapter on entanglement effects in polymers by
Kremer and Grest, Chapter 4 of this volume.
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In addition to MC methods, molecular dynamics has also been a very
powerful method for studying the properties of liquids.24"27 In this method,
one simply solves Newton's equations of motion for each monomer. The
total momentum and energy of the system are conserved quantities and the
simulations are in what is known as a microcanonical ensemble. However to
sample the entire phase space there must be an exchange of momentum and
energy of each polymer chain with its surroundings. For large, dense sys-
tems with many chains, this is not a problem as is the case for dense polymer
melts.28 However, for dilute chains one has to be more careful. In this case,
one has two ways to proceed. The first is to take the solvent molecules
(monomers or very small chains) explicitly into account. This is how one
studies hydrodynamic effects.29'30 However because one typically needs as
many as 20 times or more solvent particles per monomer, this makes the
algorithm very inefficient and it can only be used for small systems.31 An
alternative method is to treat the solvent as a continuum. In the simplest
approximation, the solvent acts as a heat bath for the polymer and produces
a viscous drag when the polymer moves. While this neglects any hydrody-
namic contributions, adding only these two terms to Newton's equations
turns out to produce a very efficient algorithm for studying the structure of
tethered polymers and membranes. Because of the random noise term, the
chains satisfy free-draining Rouse dynamics23 at long times, similar to MC.
The method is particularly effective at high density, where the MC methods
run into difficulty.

9.2.1 Lattice models

9.2.1.1 Standard lattice algorithms

MC simulations for lattice polymers in which a flexible polymer chain is
modeled by a self-avoiding random walk (SAW) on a periodic lattice have
been widely used to study the properties of linear and ring polymers, both
for dilute chains as well as for entangled chains at moderate density.13"21 In
this case, the walk is a succession of N steps subject to the condition that no
lattice site is visited more than once. Typically one uses the diamond lattice
or the simple cubic lattice. Figure 9.2 illustrates the typical moves one
includes for the simple cubic lattice. If one only includes the end-bond
and two-bond kink jump32 alone, this method is very inefficient since the
kink-jump move does not create any new bond vectors connecting the
neighboring bonds, but only exchanges the two neighboring bond vectors.15

In this case new bonds can only diffuse into the chain from the ends, causing
an artificial slowing down of the dynamics. A ring polymer, for instance,
could never equilibrate if one includes only moves which exchange bonds,
such as the 2-bond move in Fig. 9.1 and the relaxation would be very slow
for stars or brushes because one end is fixed. Thus it is essential to include
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Fig. 9.2 Illustration of some of the possible moves on the simple cubic lattice for the standard
kink jump algorithm.

other moves, such at the 90° crankshaft motion.22'33'34 This choice of moves
reproduces the Rouse dynamics for the nonreversal RW.15 The lattice model
as shown in Fig. 9.2 also allows for some blocked configurations,35 which in
principle the system can never reach or get out from. Though they are not
important for low densities, care must be taken that they are not in the
initial configurations from which one starts the simulation. For chain
lengths of practical interest, Sariban and Binder36 have shown that the
statistical weight of these forbidden configurations are negligibly small
and can be safely ignored. However as the chain length increases, these
blocked configurations become more and not less important. In some
cases, it is helpful to introduce additional moves37 which move the bond a
finite distance along the chain, without rotating it by moving two bond
vectors in opposite directions along the chain. These moves are purely
exchanges which speed up the local diffusion of bond-vectors along the
chain. While they do not create new bond directions as the 3-bond crank-
shaft move shown in Fig. 9.2, they help to equilibrate the system more
quickly, particularly for dense systems.

The advantages of working on a lattice are clear. Since one is dealing
with a discretized system, one can use integer arithmetic instead of floating
point. This means that determining the distance between two monomers
can be done very quickly leading to a very fast update procedure. For
large enough memory, as is standard for modern computers, one can store
the entire lattice and check the excluded volume constraint simply by
checking the occupation of the lattice sites. However, in order to move
the chains a significant amount, one needs a reasonable acceptance rate of
the attempted moves typically larger than 0.1. Consequently, since one
usually attempts to move several monomers simultaneously, one is con-
fined to relatively low densities. This simple algorithm becomes difficult to
equilibrate in regions where the density is high, as for example in a
melt16'37 of linear chains, near the center of a star polymer or for a poly-
mer brush at high density.38'39
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Another advantage of MC methods is the that one can use nonlocal
moves which are not dynamically correct to equilibrate the system rapidly.
One simple example of such a move is the slithering snake or generalized
reptation motion, first discussed by Kron40 and Wall and Mandel.41 In this
move, a monomer from one end of the chain is removed and added to the
other end of the chain in a random orientation. However in many cases,
such moves are not very useful for tethered chains, since the nonlocal move
typically violates the constraints. One exception to this was developed by
Dickman and Hong42 in their simulations of polymer brushes. In their
lattice SAW (self-avoiding walk) model for end-grafted brushes, they used
a combination of local bond-flips, which permit a kink to diffuse along the
chain, and the nonlocal slithering snake motion. However, since the grafting
point should remain fixed, the whole chain is then translated to bring the
new end of the chain back to the correct grafting site. Both the bond-flip and
the slithering snake moves are rejected if they violate the nonoverlap or wall
constraints. Unfortunately much of the advantage of the nonlocal move is
lost, since a global search has to be made to check for possible overlaps
when the chain is translated. Another nonlocal move is to transport beads
from kinks or chain ends along the chain contour to another position along
the chain.43^15 This method, known as the cooperative motion algorithm, is
much more efficient than algorithms which only use local motions and can
be used in situations such as ring polymers or end-grafted brushes, where the
original slithering snake algorithm is not applicable. Since the beads are
moved cooperatively along a closed path, the method is the only method
that works at very high densities, where other lattice methods fail. It has
been applied to study end-grafted brushes in a melt and at high density.46'47

Another nonlocal method, developed by Murat and Witten48 to study cross-
linked polymers in which the motion of the ends is restricted, has been
applied by Baljon-Haakman and Witten49 to study associating polymers.
Finally, we should mention global pivoting schemes,15'50"54 in which a chain
monomer is chosen at random and the entire chain segment beyond that site
is rotated rigidly so that the rotated section again fits on the lattice. For
polymers attached to an impenetrable surface, the original pivot algorithm
can be modified35'52'53 so that the section of the chain not attached is con-
sistently pivoted with respect to the section which is attached. Also one can
apply the pivot moves only to interior sections of the chain in cases when
either one or both ends are tethered.35

In addition to dynamic MC methods, in which one uses time averages
along stochastic trajectories in phase space, static MC methods are often
used to generate polymer chains by constructing walks either step by step or
by larger units. Each successively constructed chain is independent of the
previous one. This method has been widely used to study the properties of
dilute chains under a variety of solvent conditions. While a review of these
methods is beyond the scope of this chapter, we would like to point out a
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few examples where they have been used to study tethered chain systems.
For a complete review of these methods, the reader should see Ref. 15.
Mazur and McCrackin,55'56 Kolinski and Sikorski,57 Lipson et a/.58"60

and Barrett and Tremain61 have investigated branched polymers, such as
stars and combs, using the inverse restricted Rosenbluth-Rosenbluth62 MC
algorithm. However while this method works well near the © point, it is
known to be dangerous for even moderate N in a good solvent.63'64 For a
good solvent, Batoulis and Kremer64 used a newer, modified version of the
dimerization method of Suzuki65 and Alexandrowicz66 to study good sol-
vent stars with /< 6 arms on a fee lattice with overall polymerization
fN ~ 400. Using this improved method, they were able to reduce the uncer-
tainty in exponents such as -j(f) which describes the dependence of the
partition function Z(N) on N,Z(N] ~ N1^1 for large N. The dynamical
methods cannot determine 7. At the 6 temperature, Tg, Batoulis and
Kremer67 used the inverse restricted sampling method for /< 12 and
showed that the Tg for a star polymer is the same as for a linear chain.
Ohno and Binder68 have recently developed a completely stochastic
(unbiased) sampling method and studied star polymers with N up to 125
and /= 20 in two dimensions. In a related work, Lescanec and
Muthukumar69 used an off-lattice kinetic SAW algorithm to study comb-
burst and starburst molecules.70"73

9.2.1.2 Bond fluctuation algorithm

In order to circumvent some of the difficulties of the standard lattice MC
methods, particularly at high density, one might try to construct a chain of
small spheres and allow the bond angle and maybe even the bond length to
vary. Off-lattice simulations in which the bond angle but not the length is
allowed to vary, the pearl necklace model,13'14'74 as well as models in which
both the bond angle and length are allowed to fluctuate, the bead-spring
model,19 have become very popular recently, particular for studying dense
melts and tethered chain systems. However before discussing these models in
detail, it is important to mention a second class of lattice models first used
by Carmesin and Kremer.75 This method is known as the bond fluctuation
algorithm and combines ideas from standard lattice MC methods with the
notion that one should allow the bond angle and the bond length to vary to
produce a very efficient algorithm. Because the method only involves local
moves, it is useful for investigating dynamic as well as static properties.
Figure 9.3 illustrates the method as it was used to study a two-dimensional
polymer melt.75 Each monomer consists of 2d lattice sites. In addition to the
excluded volume interaction, the bond length / is restricted to a maximum
extension to avoid bond crossing. On the square lattice, one has the con-
straint that 1 < / < VT3. For d= 3, the situation is slightly more compli-
cated. In this case a set of 108 different bonds are allowed.76 Since each
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Fig. 9.3 Illustration of the bond fluctuation method for a 2d linear polymer. Possible moves of
the two monomers are indicated.

monomer occupies 2d sites, but every jump only requires 2d ' empty sites,
the method works at relatively high densities. It also suffers less from the
nonergodicity problems due to blocked configurations than the standard
methods. The method has been widely used to study two-75 and three-
dimensional77 polymer melts, at densities as large as 0.8 and 0.5, respec-
tively. This is effectively a much higher density than for the same number of
occupied sites using the standard lattice models. The method also works well
for branched and tethered polymers and has been applied to study end-
grafted polymer brushes by Lai and Binder,78"80 Dickman and Hong,42

and Dickman and Anderson81 and star polymers by Su et a/.82'83 The
model has also been used to study polymer networks84'85 and glasses.86'87

A variant of this model in which each monomer consists of only one site on
a sc lattice and the bond lengths are allowed to fluctuate among the values
1,2'/2 and 31/2 has been used by Shaffer88'89 to study polymer brushes and
melts. Excluded volume interactions are enforced by tracking the locations
of the midpoints of all bonds on a secondary lattice.

One advantage of the bond fluctuation method is that it works well on a
variety of platforms, including vector computers,76 massively parallel com-
puters,77 and super scalar processors.78'79 For a dense polymer melt in three
dimensions, the vectorized code gives ca. 1.7 x 106 attempted moves per
second for one processor on the Cray YMP for a volume fractions of
4> = 0.4L On massively parallel computers,77 the program has only been
run to date in such a way that each processor ran one independent system.
While the method should be parallelizable across multiple processors, this
has not been done yet.
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9.2.1.3 Starting the simulation

One final issue in regard to lattice simulations is how does one start the
simulation so that the system is not trapped in configurations which it
cannot get out of. This has been handled in a number of different ways.
The simplest procedure is to start the system in an ordered state. For linear
chains in a melt, this can be done by stretching out the chains or folding
them in a simple pattern. However this method is not very efficient since the
system is far from equilibrium. Often this procedure is not practical for
tethered chains, due to topological constraints. Cases where it has been
used are for star polymers, where one can begin with all arms fully extended
or for end-grafted polymer brushes, with all chains aligned perpendicular to
the grafting plane. An alternative way is to grow the chains with the correct
topological constraints taking the self-avoidance into account whenever
possible.77'78 If one is careful to avoid highly knotted structures, which
might become artificially favored during the growth process, then the simu-
lation should be ergodic. One can then use the standard simulation proce-
dures to produce configurations which are self-avoiding. At high density,
the cooperative motion algorithm,43'44 is a very efficient way to go from a
configuration where some of the bonds overlap to a self-avoiding config-
uration. Chakrabarti and Toral38 simultaneously grew and equilibrated
chains90 in their work on polymer brushes. Chains already in the system
are equilibrated using elementary moves that involve bead jumps and crank-
shaft motion. In addition, after every MC step, an attempt is made to insert
an additional chain (represented as a SAW) in which one end is attached
randomly to a grafting site on the surface. This trail insertion fails if the new
chain overlaps with chains already present. By this method, they can reach
moderate surface coverages, in a reasonable amount of CPU time. The
method can easily be generalized to other tethered chain systems in which
only one end of the chain is tethered. For higher densities, it is possible to
grow the additional chains, monomer by monomer, instead of trying to
insert an entire chain. This will be particularly important for long, branched
chains.

9.2.2 Off-lattice models

Although the bond fluctuation method can be applied to a wide variety of
problems, as noted above, the use of a lattice inevitably has some limita-
tions. As discussed above, ergodicity problems15'17'35 are expected to
become severe, particularly at high density or in the presence of random
obstacles.91 For very high density, the lattice simulations often show pre-
cursors of the glass transition which result from artificially long-lived high
density states. Many tethered chain systems are very inhomogeneous with
high density regions near the tethering points and lower-density ones away
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from the tethering region. An example of this is a multi-arm star or star-
burst molecule. While the lattice simulation methods may be very efficient at
handling the low-density regions, they can often be very inefficient at relax-
ing the fluctuations in the higher-density regions. In a lattice model, it is also
very difficult to determine certain quantities such as the osmotic pressure.42

In addition, the lattice structure may give rise to artifacts at high density as
observed by Lai and Binder79 in their simulations of polymer brushes. For
these reasons, it is often desirable to carry out the simulation off-lattice,
using either MC or MD.

The easiest way to include excluded volume effects is to put spheres
centered at each connection point on the chain. The spheres can either be
hard92' 93' 94 or soft. For soft spheres, a Lennard-Jones interaction is often
used, where the interaction between monomers is

Here e characterizes the strength of the interaction, a is the unit of length
and rc is the interaction cut-off. The potential is applied between all pos-
sible pairs of beads. In many cases,13'28'95"109 the interaction is truncated at
rc = 21//6cr, such that the potential is purely repulsive. This is an efficient
model for studying good solvent conditions. Since the potential is close to
a hard sphere, we refer to this case as athermal for convenience. To
introduce the effect of solvent quality, the range of the interaction is
often extended. The cut-off was set to infinity by Baumgartner110 in his
study of the collapse transition and Sheng et a/.111 in their studies of the
vapor—liquid phase diagram for linear chains and by Freire et al. in
their study of star polymers. However for many chain systems, it is com-
putationally more efficient to truncate the potential at a finite value, such
as rc = 2.Sa.113"120 Thus by changing T, it is possible to vary the relative
importance of the monomer-monomer attraction and change the effective
quality of the solvent without explicitly introducing a solvent. To deter-
mine Tg, one can measure the mean-squared radius of gyration (R^) an<V
or the end-to-end distance (R2),

for a variety of N and T. Here r, is the position of rth monomer and rcm is
the center-of-mass of the chain. Tg is the temperature near which both of
these quantities scale as NF(N^rr), where rr = (T — Tg)/Tg is the reduced
temperature and 0 = 1/2 in d= 3. At Te, both (R2

G} and (R2} ~ N. The
exact value of Tg depends sensitively on the details of both the bonded
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and non-bonded interactions, particularly the range of interaction.
110,111,114,115,118 jn a gOO(j soivent5 simulations with the purely repulsive
potential and those with rc > 2'/6cr are equivalent, though the former are
significantly faster.

The bond length can be either be of fixed length (pearl necklace model) or
allowed to vary (bead-spring model). In the former, rigid links of length /
connect the monomers. The local motion of a chain is achieved through
random rotation of bonds around the axis connecting nearest-neighbor
beads. If the beads are hard spheres, one accepts the move if it does not
violate the excluded volume condition. For a soft sphere, one has to com-
pute the energy change SU associated with the move and accept the move
with probability 1 if SU < 0 and probability exp(-SU/kBT) if6U>0 where
kB is the Boltzmann constant. This procedure can be proved to satisfy
detailed balance and ensures that one generates configurations with the
correct Boltzmann weight. In order to obtain a reasonable acceptance
rate, it is often necessary to restrict the maximum size of the attempted
bond rotation to very small values for high density. In addition, if the
diameter of the hard sphere or the unit of length in the Lennard-Jones
interaction a is less than about 0.9/, then one has to explicitly check that
the rotation does not cut bonds. This additional check, which must be done
every time-step is very time-consuming and diminishes the efficiency of this
method considerably. At high density, it is often useful to supplement the
basic crankshaft move by a cooperative relaxation121 of several bonds on a
chain. In their work on polymer brushes in a poor solvent, Weinhold and
Kumar119 removed sections of the chain and regrew them in a manner that
samples low-energy conformations preferentially. In this extra move, a ran-
dom bond is chosen where the chain is cut and each bead is regrown in
sequence by sampling a number of random vectors. The entire move is then
accepted or rejected using a criterion121 which is based on the Rosenbluth
and Rosenbluth62 importance sampling idea.

In the spirit of coarse-grained models, there is no reason to keep the
bond length fixed. In fact, there are a number of advantages, as noted in
the discussion on the bond fluctuation model, to allowing the bond length
to vary. In a MC simulation, this enables one to use a very simple set of
moves, namely choose a monomer at random and attempt to displace it a
random amount in a random direction. The move will be accepted or
rejected based on the Boltzmann weight as in the pearl necklace model.
In MD simulations, it is significantly more efficient to allow the bond
length to vary than to have to apply constraints to keep the bond length
fixed.25 The actual form of the interaction is not that important, as long as
the maximum extent of the bond is small enough that bonds crossing is
inhibited. If the nonconnected monomers interact with the Lennard-Jones
interaction, eq. (9.3), then as long as the maximum extent of the bond is
less than about 20%, the probability of bond crossing is less than 10^6 and
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no further checks for bond crossing is necessary. The simplest interaction
between connected monomers is a harmonic potential of the form,

where 10 is the mean bond length and k is the spring constant. If 10 = a, then
k should be greater than about 500kBT/a2 so as to inhibit bond crossing, k
is usually chosen to depend linearly on T so that the fluctuations in the bond
length are independent of T. To make the model more flexible locally, k can
be decreased but then the maximum extent of the bond must be limited by
introducing a finite extensibility into UcH(r). In a MC simulation, one can
simply introduce an upper cut-off, /max, and a lower cut-off, /m;n, such that
for r < /m;n and r > /max, Uch(r) = oo.91>122~128 Since one has the extra para-
meter, /max, to limit the maximum extent of the bond, the spring constant k
can be quite weak or even vanish, as done in several simulations on tethered
membranes.122"128 The harmonic potential can also be modified to include a
maximum cut-off. One widely used model which does this is the finite
extendible nonlinear elastic (FENE) model first introduced by Bird et
a/.129 In this model, the connected monomers interact with the Lennard-
Jones interaction plus a second interaction of the form129

This second, attractive interaction has its minimum at r = 0. Thus the
anharmonic spring tries to pull the connected monomers close together
while the Lennard-Jones repulsion at short distances, pushes them apart.
In several early simulations using this model,130 the spring constant k was
too small and the upper cut-off RQ too large to ensure that the chains did not
cross. A careful study28 of the parameter space revealed that a reasonable set
of parameters which allowed for a rather flexible spring that does not stretch
too much are k = 25 ^- ^Ok^T/a2 and RQ = 1.5<r. This gives an average
bond length of 0.97<r. Another possible tethering potential has been used
by Abraham and coworkers100'101'107'108'113 in their studies of tethered mem-
branes, in which the potential vanished for a range of lengths and diverged
at the upper and lower limits as a power law.

The MD simulations which we will discuss here are based on the bead-
spring model131 in which each monomer is weakly coupled to a heat bath.
For a discussion of simulations on more realistic models for polymers, see
the article by Clarke in Chapter 5 in this volume. Denoting the total poten-
tial of monomer i by Uf, the equation of motion for monomer i of mass m is
given by
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Here F is the bead friction which acts to couple the monomers to the heat
bath and W,-(f) describes the random force acting on each bead. The
strength of the random force is coupled to the bead friction by the fluctua-
tion-dissipation theorem,

For a single, free polymer, the Einstein relation leads to an overall diffusion
constant D0 = ksT/TN. For this method to be efficient, the value of F
cannot be too small, since then the coupling to the heat bath will be too
weak and the system will not sample phase space very well. However, if the
coupling is too strong, then the viscous damping term and the random force
term dominate over the inertia term in eq. (9.7). The motion will then be
dominated by Langevin dynamics even for very early times and there would
be very little cooperative motion of the monomers which is important,
particularly in dense systems. In this limit the algorithm would also be
very ineffective. For a given bead friction, the motion of a monomer for
/ < F~' is undamped, subject only to the chain constraint, while for t » F^1

the motion is Rouse-like.28

Provided that F is not so large that the inertia term becomes irrelevant,
the equations of motion can be integrated with any standard algorithm.
Third- and fifth-order predictor-corrector132 and velocity-Verlet133 algo-
rithms have been tested.19 For Lennard-Jones interaction, eq. (9.3), between
all monomers and the FENE model between connected monomers, the
equations of motion for each monomer can be stably intergrated with a
time step At between 0.006-0.012-r, where r = cr(m/e)1/2 is the unit of
time in Lennard-Jones units. F in the range 0.5 < FT < 2.0 gives good
results. For the purely repulsive potential, rc = 21/6<r, and T ~ e/kg, the
velocity-Verlet algorithm was found19 to be stable for a time step At
about a factor of 2 larger than for the predictor-corrector algorithm. For
longer-range interactions, it is necessary to reduce At. Also, the higher T,
the smaller At. Note that since this is a coarse-grained model, T cannot be
mapped directly to a microscopic time.28 In the original implementations of
the code, Gaussian distributed noise in eq. (9.8) was used.28'98'99 However
Diinweg and Paul134 have recently pointed out that the Gaussian noise term
can be replaced by equally distributed random numbers, which have the
same mean and second moment as required by eq. (9.8). Since simulations
using both types of noise give the same results, we now use equally distrib-
uted random numbers, saving 5-15% in CPU time, depending on the range
of interaction. An additional advantage of including the coupling to the heat
bath is that one can use a larger time step At than if F = 0. This more than
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compensates for the extra computer time needed to generate the pseudo-
random numbers.

Another advantage of off-lattice simulations is the ability to carry out the
simulations at constant pressure in addition to constant volume as has
widely been done in the study of bulk fluids and solids.25 For chains tethered
to a surface, constant surface pressure Ua simulations can be very efficient
particularly for studying a wide range of grafting densities. For a polymer
attached to a two-dimensional flat surface, constant pressure MD simula-
tions can be carried out following the method suggested by Andersen135 and
Parrinello and Rahman136 for three-dimensional systems. In this method,
the size of the simulation cell is not kept constant during the simulation, but
rather allowed to vary to keep the pressure constant. Therefore, in addition
to the equations of motion for the monomers, extra equations are intro-
duced to describe the time dependence of the lengths of the simulation cell.
For polymers attached to a d = 2 surface, Lx and Ly, parallel to the grafting
surface are allowed to vary.116 A mass Mw is assigned to the walls perpen-
dicular to the x and y directions. The applied surface pressure Ha is balanced
by the internal osmotic pressure Pa in the a = x and y directions,

Here m is the monomer mass, ria is the a coordinate of particle /,
rija = >"ia — rja, and fi/a is the force between monomers r and j. The
"potential energy" associated with the surface area is HaA and the extra
kinetic energy is

The shape, as well as the size of the simulation cell may vary during the
simulation. In order to keep the simulation cell a square, one can also apply
the average osmotic pressure Pa = (P\ +-P2)/2 in both directions. One
advantage of the constant pressure simulation method is that the grafting
density pa can be changed dynamically by simply varying na.

Because we are interested in systems with rather short-range interactions
with a well-defined cut-off, it is inefficient to examine all of the pairs of
particles if at each time-step to determine which ones have a nonzero force
between them. An alternative is to divide the simulation cell into smaller
cells of size rc + rs, where rs is a small skin of order 0.3-0.5<r. Now one
simply has to check pairs within neighboring cells to determine which pairs ij
have a nonzero force. The extra skin rs allows one to create a list of neigh-
bors,137 which only has to be updated every 10-20 time steps. Combining
the link cell with a Verlet neighbor table is the most efficient method for
doing any off-lattice simulation with short-range interactions. To obtain
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peak vector performance, one has to do some additional organization in
order to take advantage of the hardware architecture. For inhomogeneous
systems, like star polymer, brushes and tethered membrane, we used the
vectorized link cell method discussed by Grest et a/.138 For homogeneous
systems, the layer link cell method138'139 is more efficient. The difference is
that the layer link method requires more work to set up the Verlet neighbor
table so that the DO loop which sums all the forces on particle i can be
vectorized. However for inhomogeneous systems, this extra work exceeds
the gain in vectorizing this one loop. MD codes can also be parallelized
using link cell methods.140 On the new superscalar workstations, the most
efficient algorithm is to follow the procedure discussed in Ref. 138 for the
link cell method, but simplify the DO loop where the forces between pairs ij
are determined. In this case, one can determine the distance between all pairs
which are in the list and use a simple GOTO statement to bypass the rest of
the computation if r > rc. In the vectorized code, the same calculation has to
be done in a more roundabout way in order for the loop to vectorize.138

For off-lattice simulations, how one starts the simulation is usually not as
much a concern as on a lattice. One simple technique is to use a simple MC
procedure to grow RW chains with the appropriate bond length and some
restriction to avoid backfolding.22'28 This can be done very simply by requir-
ing that |F}_] — ?i+\\ > r0 where r0 is of order 0.3—1.OCT. To remove the over-
lap, one can either use any of the MC procedures described above or carry
out a standard MD simulation for a few thousand steps with a softer poten-
tial which does not diverge at short distance,28 before turning on the actual
potential.

From the previous discussion the question arises as to which method is
best to use for studying tethered chain systems. The answer depends a lot on
the particular system under consideration and whether it is better to work in
the continuum or not and whether it is acceptable to have stochastic
dynamics on all time scales. On a lattice, the best method is clearly the
bond fluctuation method. For off-lattice, MD using a bead-spring model
is very efficient particularly on vector supercomputers. On super scalar
workstations, there are some indications that MC for the bead-spring
model is also efficient.91 The bond fluctuation algorithm as well as the
MD are highly vectorized, while the MC bead-spring simulations have
not been vectorized as of yet. Comparisons between the various methods
are difficult, particularly between lattice and off-lattice simulations since the
models and methods are so different. In some cases, such as polymer
brushes and tethered membranes, all three of these methods are equally
applicable and it is more of an individual choice which method to use.
However in some applications, such as a constant pressure simulation,135'136

or for polymers under shear, one should use a continuum model. Similarly,
if one is interested in the behavior of gels or polymer networks under swel-
ling or elongation or the forces between polymer brushes, then a continuum
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simulation using MD is probably the most appropriate way to proceed.
Continuum simulations, either MC or MD, are also essential for simulations
on the more detailed, microscopic polymer models.141'142 For a dense melt
of linear chains, a detailed comparison is possible and has been discussed by
Kremer and Grest143 in Chapter 4 of this volume.

9.2.3 Numerical solution of SCF equations

Although not a simulation method, the numerical solution of the self-con-
sistent mean-field (SCF) equations144"148 is a very powerful technique
applicable to a variety of tethered chain systems. In the SCF models, the
excluded volume interaction is incorporated not by excluding segments from
occupied positions but by using a potential field created by the configura-
tions of all the other segments. The potential field is in turn a function of the
segment distribution which must be determined self-consistently. The chain
statistics are then described as those of a RW under an average potential
field. While the method neglects fluctuations of the potential, it includes
fluctuations in the single chain. Unlike the MC and MD methods described
above, equilibrium is guaranteed and it is very fast, even on small compu-
ters. The method is suitable for complex systems and requires fewer assump-
tions than analytic self-consistent methods.

While the method is not limited to a lattice, the derivation of the equa-
tions is more transparent on a lattice. As in standard lattice MC, the poly-
mer chain is made up of repeat units of length a, the lattice spacing. The goal
is to compute the polymer chain distribution function il>(s,r, r'), which
describes the probability that a polymer chain of segment length s starting
at r' is at position r. Often, the system has some sort of symmetry that
reduces the problem to a one-dimensional one. The distribution function
can then be written in terms of z and z', i/}(s, z, z1}, and is determined by the
self-consistent potential generated from all possible polymer configurations
which are consistent with some set of boundary conditions. For example, for
a polymer end-grafted to a surface, the boundary condition imposed is that
one end is attached to the surface which is otherwise impenetrable. The set
of polymer configurations is made finite by imposing a spatial lattice and
discretizing the path of a chain from T(S) to a sequence of lattice positions
labeled by {5,-}. Since it is assumed that the interaction energies (polymer—
polymer, polymer-solvent and polymer-surface) are evaluated in a mean-
field approximation, they depend only on the average density p(z) of the
polymer and the solvent volume fraction in each layer. One can then write
an equation for i/;(s, z, z1) inductively as149
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That is, to arrive at z in 5 steps, a chain must have been at one of the
adjoining layers on the previous step. The factors 1/6 and 2/3 are for a
simple cubic lattice. If one imposes appropriate boundary conditions on
ip(\,z), then one can iteratively solve eq. (9.11) for a given V(z). For chains
end-grafted to a planar wall, F(0) = oo and i p ( l , z ) = Sz,\.

The monomer density p(z) for a given ip(s, z, z') is the normalized weight
for a chain to travel from its origin z' = 0 through the point z in s steps to
some other endpoint z', which it must reach in N — s steps. For a one
component brush in a solvent, the origin is the grafting surface and as such

The self-consistency comes in because V> depends on p(z) through V(z). This
set of equations can then be solved by a relaxation technique. For diblock
copolymers and blends, additional distribution functions are necessary, but
the general form of the solution is similar. Scheutjens and Fleer148 were the
first to exploit the numerical solution of the SCF equations on a lattice for
polymers in solution using eq. (9.11). It is possible now to generate an
extremely large number of conformations and study N as large as 100000.
Their method has been widely applied to study adsorption of poly-
mers,148'150 block copolymers,151 and polyelectrolytes152 as well as polymers
end-grafted on a flat or curved surface.153"160 It has been subsequently
modified to study homopolymer melts near a surface,161 surface segregation
of poly dispersed chains,162 diblock copolymers at an interface between
immiscible homopolymers163 and between two parallel walls,164 lamellar
blends of a diblock copolymers and homopolymers,165 and end-grafted
brushes in equilibrium with a blend of adsorbing and nonadsorbing poly-
mers.166 In the standard lattice model approach, the density of the mono-
mers is assumed to be dependent only on the distance from the surface.
However these equations can be generalized to include a second dimension,
parallel to the surface as shown by Huang and Balazs167 in their study of
polymer brushes in a poor solvent.

The SCF equations were originally written144"147 in terms of a
diffusion equation for ^(j, r, r'). If one expands exp(— V(r)/ksT}
= !/(! + V(r)/ksT), which is exact in the large N limit, then it is easy to
see that eq. (9.11) is simply the discrete representation of the modified diffu-
sion equation of Edwards,144'145

The polymer chain is then treated as a continuous curve and space is dis-
cretized into steps of length a, the segment size.145 After an initial guess for
the distribution function, often a RW, the local segment density is calculated
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and inserted into the partial differential equation, leading to the calculation
of a new distribution function. This procedure is iterated as in the lattice
version, until the difference between the new and previous iteration is less
than some predetermined amount. This method has been used to study
diblock copolymers in spherical and lamellar phases,146 and homopolymer
and diblock copolymer mixtures.147 End-grafted polymer brushes attached
to a flat surface in a solvent have been studied by Muthukumar and Ho168

and Whitmore and Noolandi169 and to a curved surface by Dan and
Tirrell.170

A numerical method, based upon the statistical thermodynamic theory of
Ben-Shaul et a/.171 for amphiphilic aggregates, has been generalized to poly-
meric systems by Carignano and S/leifer.172"174 The theory is a mean-field
approximation in which one looks at a central chain in the mean field of the
other chains and the solvent. Unlike the SCF methods, where the chains are
taken as RWs on a lattice, more microscopic details of the chains are
included by treating the interaction energies within a chain more precisely
by generating a large number of representative conformations of a single
chain. This has been done using either a rotational isomeric state model or
one of the potentials described above. The constraint of volume filling, for
an incompressible system of solvent and polymer segments, leads to a mean-
field equation for the concentration profile of the polymer segments.
Although derived using a thermodynamic theory, the resulting equations
are very similar to the SCF equations and can be applied to both lattice
and off lattice polymers.

9.3 Polymers tethered to a point

Star polymers are one special class of branched polymers, in which one end
of each linear chain is tethered to a small central core to form a single
molecule.175"183 Many arm stars with a narrow molecular weight (Mw)
distribution can now be made by chemical reactions with up to 56 arms
for polyisoprene180 and up to 270 arms for poly butadiene.181 Polymers with
one ionic end group naturally associate into star-like agglomerates in a low
dielectric media.184'185 Asymmetric diblock copolymers in a selective good
solvent for one of the blocks can also form star-like micelles in dilute solu-
tion. These have been studied extensively both theoretically147'186"191 and
experimentally.192"196 The scaling picture10'11 for stars has been used to
understand how end-grafted chains stabilize colloidal particles.197 While
most stars which have been studied have equal length arms of chemically
identical chains, it is also possible to make asymmetric stars in which the
length of each arm is not the same179 or where the arms are made of more
than one polymer type.198 Halperin199 has considered theoretically the case
where the arms of the star are made of two chemically distinct polymers. In
the dilute limit, light and neutron scattering and viscometry have been used
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to give several measures of the size of the star, including the radius of
gyration, the hydrodynamic radius and the thermodynamic radius. The
dynamics of the entire star as well as of any individual arm have been
studied by neutron spin-echo scattering200'201 and dielectric relaxation.202

The crossover from a dilute to a semidilute solution of stars up to 18
arms has been studied by small angle neutron scattering,203"205 light scatter-
ing206 and small angle X-ray scattering.196

Theoretically, many of the same techniques which work well for linear
chains can also be applied to star polymers, including some exact results,207

scaling,10'11'208 and renormalization group.209"211 Daoud and Cotton10 and
Birshtein and Zhulina11 generalized the de Gennes scaling212 model for
linear polymers to star polymers. In this approach, the star consists of
three regions, an inner melt-like extended core region, an intermediate
region resembling a concentrated solution and an outer semidilute region.
In this outer region, a blob model is used to describe the overall structure of
a star. Since the volume accessible to a given chain increases with the dis-
tance r from the center of the star, the monomer volume fraction p(r) is
expected to be a decreasing function of r. Each arm can be seen as a succes-
sion of growing spherical blobs as shown in Fig. 9.4. Within one blob each
arm behaves as an isolated chain. At a given distance r from the center, a
sphere of radius r is cut by/arms. The star looks like a semidilute solution
with a screening length £(r), where £(r) is a function of r and the number of
arms/. Each blob contains monomers of a single chain. Since/blobs cover
the sphere of radius r, the blob radius is

Fig. 9.4 A representation of scaling model ' of a many-armed star, in which each arm is made
of a succession of blobs of size £ increasing from the center of the star to the outside. (From Ref.
197.)
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As in any semidilute solution, each blob contains n(r) ~ £,(r)l/v monomers.
Here v is the correlation length exponent, which is 0.588 for a good solvent
in three dimensions.12 From this picture, one can easily verify that p(r), the
number density of monomers falls off as

which is the same as eq. (9.1) for d = 0. Qualitatively, this scaling behavior is
nicely illustrated in Fig. 9.5(a), in which we present a projection of a typical
configuration of a star polymer with N = 50 monomers per arm for/= 10,
30 and 50. This simulation was carried out using the MD method for mono-
mers interacting with a Lennard-Jones interaction, eq. (9.3), truncated at
rc = 2.5cr. The good solvent results are for T = 4.Qe/kB. This figure nicely
shows the density falloff and corresponding increase in £(r) with increasing
r, as expected. A similar projection for the purely repulsive Lennard-Jones
interaction is shown in Ref. 96. For the mean-squared average center-to-end
distance {.R2} and radius of gyration (RG),

Fig. 9.5 Projection of a typical configuration of a star of/= 10, 30 and 50 arms with N = 50
monomers per arm for (a) a good solvent (T = 4.0e/fcB) and (b) a 0 solvent (T = TQ = 3.0e/fcg).
The pictures give an impression of the increasingly homogeneous density in the/= 30 and 50
arms cases, while the 10 arms star is obviously governed much more by single-chain properties.
These are from MD simulations with a Lennard-Jones interaction, eq. (9.3), cut-off at rc = 2.5cr
between nonbonded monomers.
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In a good solvent, (R2} ~ A/1-18/0-41. As the solvent quality is decreased and
one approaches Tg, the range over which this result is valid decreases.213 At
Tg (Fig. 9.5[b]), each arm can be pictured as a succession of ideal spherical
blobs and «(/•) ~ £(r)2 and eq. (9.15) is replaced by

This last result is also valid in the intermediate region, though the crossover
from the outer to the intermediate region has not been observed.

9.3.1 Star polymers in a good solvent

Simulations, both MC and MD, have been used to test these scaling pre-
dictions and to determine other properties of a star polymer, including the
static structure factor in the dilute limit. At present, it is not possible to
simulate a melt or even a semi-dilute solution of many-arm star polymers
due to the long relaxation times. For few-arm stars (f<, 12) MC methods
are clearly most efficient, while for large number of arms, MD methods
work very well. For small /, the density of monomers of the star is low
almost everywhere and static MC methods in which one generates the chains
by constructing walks can be used.55'58'61'64'67'214 Using this method,
Batoulis and Kremer67 were able to make very accurate estimates of the
exponent 7 as well as p(r) and (R^} for/< 6 in a good solvent. Dynamic
MC also works well in this limit, particularly if one invokes nonlocal moves,
such the pivot algorithm.52'215 However as/increases, the interior becomes
very dense and many of these methods fail or become inefficient. In this case,
one can use either MD methods or a local stochastic MC method such as the
bond fluctuation method on a lattice82'83 or a simple off-lattice MC in which
one attempts to move one monomer at a time. It is also possible to use
nonlocal moves in the dilute, outer regions of the star and local moves
near the interior, though this has not been done to the best of our knowledge.

In a good solvent, the results from various groups agree very 

^52,55,57,58,61,64,82,83,96,97,112,216,217,218,2^
 though ̂  Qf ̂  ^ for

small /. For small /, the tethered end of each arm can easily be attached
to a single point. However, for large /, either the size of the central region
must be increased or the maximum length of the bond between the central
site and the first monomer must be increased.96 Toral and Chakrabarti94

have studied the crossover from star to brush as the radius of curvature of
this sphere increases (see Section 9.5). In the dynamic methods, both MC
and MD, the initial state of a star can be easily generated by growing chains
from a point or a small sphere. Usually these simulations are initialized by
simply letting the chains overlap in the initial configuration and equilibrat-
ing them, as discussed in Section 9.2, until the excluded volume conditions
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are all satisfied. As an example, results for (RG}/(RGI) and (^2}/{y?gj),
where (R^} is the radius of gyration for a single polymer chain of N
monomers is shown in Fig. 9.6. The off-lattice MC simulations of Freire
et al. 112 and the MD simulations of Grest et a/.96'117 are presented.
Experimental results for polystyrene and polyisoprene180 are also shown.
Note that by normalizing (RG) by (R'QI) for a single arm, the results for
both the simulations and experiment fall on the same curve. By dividing out
of the single chain radius of gyration, one can compare results from different
simulations as well as different experiments. Even though both simulations
were carried out for coarse-grained models, in which no local bending and
torsion terms were included, the simulations describe the experimental
results very well. As expected from the scaling theories, the global properties
of the star are universal. The solid line in Fig. 9.6 indicates the predicted
asymptotic power, 0.41. Note that the limiting scaling form is reached very
early. Comparison of experimental results with renormalization group cal-
culations are reviewed in Ref. 220. The density profile p(r) scaled by/0-65 is
shown in Fig. 9.7 for four values of/ranging from 4 to 50, with N = 100. m

The measured slope is approximately 1.30 ±0.03 for /> 10, in excellent
agreement with the expected value 1.30. The rapid decay for large r is due
to the finite chain length. As clearly seen, p(r) scales with the number of
arms / as predicted by scaling theory. This is in agreement with earlier
simulations of Grest et al. 96 for N = 50 for a range of /and Batoulis and

Fig. 9.6 Radius of gyration (R^}/(Rs}} (lower curve) and average squared end-to-end distance
(upper curve) versus / for a good solvent. (R^) is the mean-squared radius of

gyration for a single polymer chain. The solid circles are data for polystyrene and polyisoprene
from Ref. 180. The crosses are from the off-lattice MC simulations of Freire et al. for N = 49
or 55. The other symbols are from MD simulations96'117 for monomers interacting with a purely
repulsive Lennard- Jones interaction, eq. (9.3), at T=l.2e/kg for JV=100(o) and at
J= 4.0e/fcB for rc = 2.5<r for N= 50(A) and 100 (D). The solid line has slope of 0.41.
(From Ref. 117.)
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Fig. 9.7 Log-log plot of the density p(r) scaled by/'3"-1)/2" =/°-(i5 versus r/c for the/= 50,
20, 10 and 4-arm stars with N = 100 monomers per arm in a very good solvent. The larger/, the
further the curves extend in r. These results are for T = 1.2e/&s for a purely repulsive Lennard-
Jones interaction, eq. (9.3), truncated at rc = 2'/6<r. (From Ref. 117.)

Kremer64 for 3 </< 6. Using a SCF model, Dan and Tirrell170 and
Wijmans and Zhulina159 found that p(r) scaled as predicted by eq. (9.15).
As seen in Fig. 9.7, the scaling is valid even at very short distances from the
center indicating that, at least for these stars, the simulations clearly exhibit
the scaling predicted for a swollen star and there is no need to consider the
core region. This core region is important for micellar stars and for chains
grafted onto a small colloidal particle.

Because the interior of the star can become quite dense as/increases, one
would expect that the free end of the chain is excluded from the core region
by simple steric effects. The expected width of the distribution P(R] of
center-to-end distances R can be estimated from the scaling model,10'11 by
considering the distance R of a chain confined in a narrow cone of opening
0 = 2/"1/2, since a cone subtends a solid angle which is I//of the sphere.
The end-to-end distance of such a chain fluctuates as though it were con-
fined in a straight tube of diameter R9. The free energy of this chain, relative
to an unconfined chain, is of order kBTR/(R9) or kBT per blob of size R9.
Decreasing R to zero costs a further energy of this order. Thus the free
energy associated with a small fluctuation A/? of R away from its average
value is of order kBTR/(RO)[AR/R]2. Thus thermal fluctuations in AR, of
energy ~ kBT, are expected to be of order (/?)0'/2 = 21/2(JR}/~1/4. For
/3> l,P(R) should approach a Gaussian shape of width A.R <c (R). For
small r, Ohno and Binder208 found that in the scaling limit
P(R) ~ (R/(R)f^, where 0(/) is related to the exponent 7(7) (see
Section 9.2). For large /, 0(/) ~/1/2 in three dimensions,208 and P(R)
will appear to have an exclusion zone, although strictly speaking it does
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not. Li and Witten221 used a variational approach to minimize the free
energy with respect to the free end distribution and the stretching profiles
of the polymer chains. Their results suggest a very large exclusion zone for
the free ends and a different functional form for P(R) for large /. The free
ends would be restricted to the last 6% of the layer height and P(R) would
not be Gaussian. However as seen in Fig. 9.8(a), P(R) for a 20- and a 50-
arm star for N = 100 in a very good solvent are Gaussian as predicted by the
scaling theory.117 For smaller/, as shown in Fig. 9.8(a) for/= 10, there is
some deviation from the Gaussian, particularly for very small /, as the

Fig. 9.8 Distribution function P(R) for the center-to-end distances versus R for (a) a star with
/= 10, 20 and 50 arms in good solvent and (b) a/= 20-arm star for T= 2.0, 3.0 i
(from left to right). The results for (a) are for a purely repulsive Lennard-Jones potential at
r= 1.2e/fcg, while the results shown in (b) are for the potential, eq. (9.3), truncated at
rc = 2.5<T. The solid line is the raw data, while the dashed line is a Gaussian with the same
width and standard deviation as the data.
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Gaussian overestimates the number of free ends near the origin. As the
quality of the solvent decreases, P(R) becomes somewhat nonsymmetric,
with the center shifted slightly to the center to that of the Gaussian.117

This result is in agreement with the numerical SCF calculation of
Wijmans and Zhulina159 for polymers attached to the surface of a highly
curved sphere.

While the center of the distribution P(R) is clearly dependent on the
number of arms, the absolute width depends only weakly on /.m The
width depends mostly on the solvent quality and N. Thus the relative
width decreases roughly as l/(R) ~/~°'2- This behavior is consistent con-
sistent with the simple theoretical arguments97 discussed above and with
the variational calculation of Li and Witten.221 They predict that the
relative width of the end distribution does not decrease to zero but reaches
a finite asymptote of about six percent. Since the observed widths are
much larger than this, stars with several times larger number of arms
than those that have been used so far are necessary to approach the
predicted relative width. Is is also important to note that for a highly
curved cylinder where they were able to also solve the SCF equations
exactly, the size of the exclusion zone decreased significantly compared
to the variational approach. In addition the variational approach appears
to work less well as the dimension of the surface being tethered to
decreases presumably because the strong stretching ansatz which they
use is not as applicable. Thus this lack of agreement is not too surprising
and if the theory is correct, it applies only when the number of arms is
very large. Finally, because many arms are attached to a central core,
steric effects which are not included in these calculations must play an
important role. Thus while the scaling theory is clearly an oversimplifica-
tion, it describes the distribution of free end very well for / in the range
often studied experimentally.

Experimentally, small angle neutron scattering200"204'222"224 is a useful
way to determine not only the size of the star but also something about
its internal structure. The measured scattering intensity, I(q), as a function
of the scattering wave vector q = 47r/Asin(#/2), where A is the incident
neutron wavelength and 0 is the scattering angle, can be represented by
the product S(q)P(q). Here S(q) represents the interparticle structure factor
determined by the interaction potential between the star molecules, while
P(q) represents the form factor of the individual stars determined by the
structure of the star. In a dilute solution, the interactions between stars can
be neglected, S(q) = 1 and the intensity I(q) ~ P(q). Usually P(q) is deter-
mined by selectively labeling a small fraction of the stars so that S(q) can
then be deduced from I(q)/P(q). Benoit225 derived P(q] for a Gaussian star
in 1953. The influence of excluded volume interactions were incorporated by
Alessandrini and Carignano.226 P(q) can also be determined from the simu-
lations,
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where the sum is over all Ay monomers. Note that in most papers on poly-
mers the intra- and interparticle correlations are not separated and are
simply referred to as the structure factor S(q) which is proportional to
I(q). For a star, there are at least three characteristic lengths which must
be considered: the radius R of the star, the correlation length £max of the
largest blob and the monomer size a. For qR < 1, P(q) has the normal
Guinier behavior: P(q] = Nf[l - q2(R2

G)/3+ O(q4(R2
G)2)}. For

£mL ^ 1 ̂  a~l> ̂ e scattering can be understood by covering the polymer
with spheres of radius q~l. In the absence of strong correlations between the
positions of the spheres, these scatter incoherently. The resulting scattering
intensity NfP(q) is the number of spheres times the structure factor of a
single sphere. In the star, the majority of these imaginary spheres are con-
tained within blobs much larger than the spheres. The correlations between
spheres are thus nearly the same as in a simple excluded volume of polymer.
This gives a fractal scattering law P(q] ~ q^/v, independent of/and N. In
between these two limits, P(q) must fall from about Nf to about (£max/0") .
While the simplest way to connect these two regimes, is by a power-law
decay q~d, the actual scattering is more complex.96 In this regime, q~l is
larger than the largest blob, and the polymer chain structure is invisible to
the scattering. The dominant scattering is from the relatively sharp (see Fig.
9.7) outer boundary of the star, which gives rise to a faster decrease in the
scattering envelope, q~d~l. For large/, oscillations superimposed on this
Porod envelope should also be seen. Results for P(q) are shown in Fig.
9.9 for star polymers with N = 50 and/< 50. For high q, one finds the
expected scaling of P(q), though for large/ the observed v = 0.65 ± 0.05,
which is larger than expected. This is only a finite size effect due to the fact
that N is only 50.1I7 It is also possible to measure other partial structure
factors by labeling only the inner N/2 monomers of each arm or the outer
N/2 monomers. These partial structure factors plus the single-arm P(q}
were investigated in Ref. 96 and compared to small angle neutron scattering
data by Richter et al200

9.3.2 Star polymers in a 0 and poor solvent

At the 0 point, the self-repulsion of the monomers, due to the excluded
volume, is just compensated for by the interactions with the solvent. While
this tricritical point is well understood for linear chains, less is known about
the properties of stars at T$. Candau et a/.227 assumed that at T0 all the arms
can interpenetrate each other completely. This means that all virial coeffi-
cients vanish and the size of the star is given by the Zimm-Stockmayer228

equation,
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Fig. 9.9 Form factor P(q) versus qa for four-star polymers in a good solvent with/=10-50 for
N = 50 simulated by MD for a purely repulsive Lennard-Jones interaction between nonbonded
monomers from Ref. 96. Also shown are the results for two linear polymers with 50 and 100
monomers. The data have been offset for clarity.

While this is obviously an oversimplification, it turns out to work quite well.
As seen from eq. (9.17), the Daoud and Cotton scaling argument gives
s(f) ~/ '^2- However since at TO, the second virial coefficient between a
pair of arms vanishes, a third arm still gives a repulsive interaction.11

Batoulis and Kremer67 have argued that because of this effect, two, but
not more than two, arms of the star can share a blob of diameter £(r) at
TO and one needs more arms than in a good solvent to observe the Daoud-
Cotton scaling. They estimated that the RW results, eq. (9.19), should cross
over to the scaling result for 5 </< 10.

To study the importance of three body interactions on stars, Batoulis and
Kremer67 carried out high precision MC simulations of linear and star
polymers on the fee lattice for 1 </< 12 and N < 900 using the inverse
restricted sampling method.62 These simulations extended earlier simula-
tions on smaller stars by Mazur and McCrackin.55 They found that Tg
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was independent of/for N -> oo. Similar results were found experimentally
for polyisoprene stars in dioxane180 where the temperature at which the
second virial coefficient AI vanishes for small / and N is lower than T$
for a linear chain but increased as TV increased. In the limit of large
MW, Tg for the star is the same as for a linear chain.

The g-factor obtained from simulations and experiment are compared to
the RW result in Table 9.1. Lattice MC results,67 MD results on the bead-
spring model,117 and experimental data for polystyrene177 in cyclohexane
and polyisoprene180 in dioxane are presented. Comparison of experimental
and earlier MC results to renormalization group calculations are presented
in Ref. 220. Since the 0-point is only known approximately for the off-
lattice bead-spring model, the MD results are probably not as accurate as
the lattice MC results of Ref. 67. Results from the off-lattice MC simula-
tions of Freire et a/.112 for/= 6 and 12 also agree very well with the two
simulations listed, while their results for /= 18 are somewhat too low.
Zifferer215 found g = 0.640, 0.385, and 0.285 for/=4, 8 and 12, respec-
tively, using a pivot algorithm on the tetrahedral lattice. For small/ the RW
result gives a reasonable approximation for g, though for larger / the RW
result underestimates the size of the star. Note that all of these results are in
contrast with those of Bruns and Carl214 who interpret their MC results in
terms of an/-dependent 6 point and, at least for 4 </< 6, g is within their
numerical accuracy essentially the same as the RW result. For /;> 8 the
polyisoprene data deviate significantly from both the simulations and the

Table 9.1 g values for T= Te.

f RW MCb MDC PSd PIe

3
4
5
6
8
10
12
18
20

0.778
0.625
0.520
0.444
0.344
0.280
0.236
0.160
0.145

0.79
0.68
0.55
0.48
0.39

0.28

0.73
0.69
0.55
0.45
0.40
0.34

0.20

0.76
0.63

0.45

0.27
0.22

0.69

0.47
0.44
0.42
0.37
0.29

" Random walk, eq. (9.19), Ref. 228.
' Monte Carlo results of Batoulis and Kremer.67

c Molecular dynamics results of Grest117 for T=T<> = 3.0e/kB for N = 100.
d Polystyrene (PS) results for/= 4 and 6 from Ref. 176 and for/= 3, 12 and 18 from Ref. 177.
' Polyisoprene (PI) results from Ref. 180.

Where available g was determined from extrapolations for large molecular weight when
possible, otherwise the data for the longest arms were used.67
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Fig. 9.10 Radius of gyration {^c)/{^ci} versus/for a © solvent. The solid circles are for
polyisoprene in dioxane,180 the solid squares are for polystyrene in cyclohexane177 and the solid
triangles are for polybutadienes in dioxane.178'182'18 The crosses are from the MC simulations
of Batoulis and Kremer67 extrapolated to large N. The open triangles (TV = 50) and squares
(N = 100) are from MD simulations117 in which nonbonded monomers interact with a
Lennard-Jones interaction, eq. (9.3), cut-off at rc = 2.5a for T = Tg = 3.0e/fcB. (From Ref.
117.)

polystyrene data. The reason for this difference is unclear. In Fig. 9.10,
(^G)/(^GI) i§ plotted versus / for the MC simulations of Batoulis and
Kremer67 and the MD simulations in which the monomers interact with a
Lennard-Jones interaction, eq. (9.3), truncated at 2.5(7 for N = 50 and
100.117 Experimental data for polystyrene,177 polyisoprene180 and polybuta-
diene178'182'183 are also shown. For small f<, 8, the results for all three
experimental systems agree reasonably well with both the MC and MD
results, though for larger / the results from the three experiments and the
simulations scatter significantly. The polyisoprene data can be fitted reason-
ably well with the scaling form over the entire range of/, while the poly-
styrene and polybutadiene data as well as the MD results suggest that
scaling can only be reached for much larger values of/. This is in contrast
to good solvent results where the data for different experimental systems
agree very well. The disagreement for this supposedly universal value
between the three data sets is surprising and unexplained. Some of it may
be due to finite chain length effects as seen in the simulation results for
N = 50 and 100 and from the uncertainty in determing the O temperature
for both simulation and experiment.

The monomer density p(r) for a & solvent was found by Grest117 to agree
nicely with the scaling prediction, /1//2r~1. As in a good solvent the free ends
are excluded from the center of the star. The distibution of free end for stars
with/= 20 for a good, O and poor solvent is shown in Fig. 9.8(b). Note that
the distributions are approximately symmetric, with a slight shift towards
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the center of the star. A Gaussian form is a pretty good fit, particularly for
large /. However for small /, it overestimates the number of free ends near
the origin.117 As the radius of curvature of the central core increases, the
distributions are no longer described by a Gaussian as discussed in Section
9.5.6.

9.3.3 Relaxation of star polymers

The scaling picture of a star can also be used to predict its dynamic relaxa-
tion processes.97 There are at least three qualitative distinct relaxation pro-
cesses for a star, which occur on different time scales and only weakly couple
to each other. While all three of these mechanisms also occur for linear
polymers, in a star they are easily separable.

First the star relaxes via an overall shape fluctuation or elastic modes.
This time scale is that of cooperative diffusion over the star size R. A second
process is rotation diffusion of the object. For linear polymers, these first
two have the same relaxation time, up to constants of order unity. However
for large/, the shape fluctuations relax progressively faster. Hence these two
processes are expected to have the same dependence on N but a different
dependence on /. The rotational diffusion is slower since it is not enhanced
by the pressure within the star, as are the elastic modes. The third process,
and by far the slowest, is the disentangling of two or more interwined arms.
Such a configuration can easily survive the shape or rotational relaxations.
The larger /, the better one can distinguish these processes. If excluded
volume interactions are ignored, as done by Zimm and Kilb229 in the very
first study of the dynamics of branched polymers, then these three different
relaxation mechanisms could not have been distinguished.

The fastest process is the shape fluctuations, which can be measured
directly by studying the fluctuations of the inertia tensor M which is
given by

where rcm is the center of mass of the whole star. Defined this way,
(R^ = (Mxx + Myy + Mzz}. The typical shape fluctuations are then given
by the time autocorrelation function of the elements of M, R2

G,R2
Ga, or

^2 82,96,97,219 pQr exampie; fa* autocorrelation function of CR(t) is defined by

Results for CR(I) for stars in a good solvent are presented in Fig. 9.11 for a
series of four stars with N = 50.96 The relaxation times, re\ for the elastic
modes, which are determined by the slope at long times on this semilog plot
are essentially the same. Su et al.S2 found similar results for 3- and 4-arm
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Fig. 9.11 Autocorrelation function CR(() for the end-to-center distance (solid lines) and single-
arm radius of gyration (dashed lines) for four stars in a good solvent. The curves have been
displaced by 0.4 for clarity. Note that the relaxation times are essentially the same for all four
values of/ (From Ref. 96.)

stars using the bond-fluctuation method. This curious result that rei is nearly
independent of/is in contrast with the independent strand model of Zimm
and Kilb229 which predicts that r ~/but can be explained using the scaling
picture.96 Consider the fluctuations in R, the center-to-end distance for a
single arm. The fluctuations in the total length arise from independent
fluctuations of order £ within each blob. Thus R fluctuates by an amount
of order £,(R/£,)2. For a star, the largest length available is given by the size
of the largest blob, which has a diameter £max ~ Rf~1/2. The bulk of the
monomers are to be found in this largest blob.10'11 Thus the relative ampli-
tude of the fluctuations in (R2} falls off as £,max/R ~/~1//2. The longest
relaxation time TB of such a local fluctuation is given by the Rouse time
of an isolated chain of «5max monomers, TB ~ £maxwfimax, where
«5max~£max- In the scaling picture, «smax ~ Nf~1/2 and thus
TB ~ (Nf~l/2)(-l+2"\ This describes the initial stage of the local relaxation.
In order to produce an overall shape fluctuation, a density fluctuation must
diffuse a distance of the order of the diameter of the star, which is R. The
diffusion constant for a semidilute solution is given by £2 divided by the
local relaxation time rB. Thus rei is of order,

In a good solvent, rei ~ Ar2.i8y-o.o9; while at the Te,Tei ~ TV2/0. Thus the
dependence of rei on / is expected to be very weak, in agreement with the
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results shown in Fig. 9.11 for a good solvent for N = 50. Similar results for
chains of length N = 100 were observed by Grest117 for stars in both a good
and a 0 solvent. Even for undiluted stars, Boese et a/.202 found using dielec-
tric relaxation that the relaxation times of the center-to-end distance for cis-
polyisoprene stars depended imperceptibly on/for 3 </< 18.

The next relaxation time is for the entire object to rotate or to move a
distance comparable to its own diameter, since the same time is needed
for the star to move its own distance or to make a complete rotation. For
an assembly of Nf objects subjected to independent random forces as in
the Rouse23 model, the diffusion constant is given by D ~ (Nf)~ . Within
the diffusion time TD, the system moves a distance of about its own
diameter,

This time is smaller than for a linear chain of Nf monomers212 but much
larger than rei. Since D is very small, it is difficult to measure in a simulation
and has not been done. The rotational diffusion time, which should be
comparable to TD, can be analyzed by studying97 the time autocorrelation
function of the center-to-end vector R or the autocorrelation of the squares
of the second-order spherical harmonics of the angles at which the principal
axes of the ellipsoid are oriented with respect to a fixed-coordinate system.82

However even for small/,82 there was no linear region in the semilog plots of
C(t) for the times that can presently be simulated, making it impossible at
present to test eq. (9.23).

Even when a star moves its own distance, the topological arrangement of
two arms may be largely intact. A simple way to think about this is to
imagine two interwined arms which can follow the shape fluctuations of
the star without changing its topological character. Grest et al.97 argued
that this time should scale as

where c is a constant. To measure this time, one needs to observe the
relaxation of some quantity which survives both the shape fluctuations
and rotation of the entire object, but does not survive the disentangling
fluctuations. One such sensitive quantity is the scalar product of two arbi-
trary center-to-end vectors: Rj • Rj, where RI is the vector from the vertex to
the free end of the z'th arm. This dot product is largest for nearby arms,
which are the most likely to interwine. The product for two arms which were
initially nearby relaxes to zero as these disentangle. Quantitatively, one can
define the entanglement correlation function Ce(t) as



P O L Y M E R S T E T H E R E D TO A L I N E 509

This angular correlation can only decay after two arms which are strongly
entangled have disentangled. Overall rotation of the star does not affect
Ce(t). Simulation results97 for Ce(t) clearly demonstrated a strong depen-
dence of re on /, but the decay was too slow to determine re accurately.

The three relaxation times discussed above are for the Rouse23 model,
which applies to almost all the simulations on stars. However, experimen-
tally hydrodynamic effects are important.200'201 At present it is only possible
to include solvent molecules explicitly in a simulation for very small stars
(Nf ~ 50). Smit et a/.31 have studied a 3-arm star with N = 6 in the presence
of a solvent. While the introduction of hydrodynamic effects changes two
of the relaxation times, there remain three distinct times for a star. In
the Zimm230 model, one can show97 that rei ~ AT3"/(2-3")/2 and
TD ~ TV3"/^1-")/2. As in the Rouse case, re\ and TD have the same jV-depen-
dence but very different / dependences. The prediction for re remains
unchanged. In a good solvent, rel ~ TV1-77/0-125 and rd ~ TV1-77/0-62. As stu-
dies of hydrodynamic effects on linear chains has only been feasible in the
past few years,29'30 it is not surprising that little has been done on simulating
many arm stars with a solvent explicitly present. At present at least another
order of magnitude in computer speed will be necessary for a serious study
of the hydrodynamics of stars. Experimentally there are a number of inter-
esting results200'201 for which simulations can be very useful in helping to
interpret when such simulations are more feasible.

9.4 Polymers tethered to a line

Polymers attached to a linear backbone form another class of tethered
chains, which are intermediate between the stars and brushes. Long-chain
comb polymers are branched polymers in which branches of length N are
attached to a flexible polymer chain.231 The branches can either be equally
spaced or random. When the branches are long and closely spaced, excluded
volume interactions among the tethered side chains can significantly stiffen
the central contour.232 Though such "bottlebrush" polymers have been
synthesized,233 so far the backbone has been substantially shorter than the
side branches. In this case, the structure will not be very different than for a
star polymer in which the branches (arms) are attached to a central point.234

Diblock copolymers in a selective solvent can also form cylindrical micelles
that have similar structures.192'235

In this section, we present three examples of polymers tethered to a line.
First, we test the scaling predictions for polymers tethered to a straight
backbone which is inflexible. In this case, the scaling theory236 predicts
that the height of a bottlebrush should scale as 7V°i74p°'26 in a good solvent,
where pi is the number of branches per unit length. This is in between the TV
for a star and N for a planar brush (Section 9.5). We then discuss how the
length and density of the branches increase the persistence length of the



5 1 0 C O M P U T E R S I M U L A T I O N S O F T E T H E R E D C H A I N S

backbone, and how (R^) for long branches attached to a short, flexible
backbone, compares to (-Rg) for a star with an equal number of arms.
For large N and small /, attaching the branches to a central point or a
flexible line is equivalent, though for large /, {7?|} for the star increases
slower with/than for chains attached to a line.

9.4.1 Polymers tethered to an inflexible line

The scaling theory discussed above for stars can also be applied to chains
grafted to a line.236 Each branch or arm is again treated as a series of
spherical blobs. Since the volume accessible at a radial distance r from the
grafting line increases, the monomer density decreases and the size of the
blobs increases with r. At a distance r from the grafting line, a cylinder of
length L has p/L blobs of radius £(r) covering a cross-sectional area of Lr.
Therefore the blob radius,

Each blob contains £'/" monomers and the monomer density falls off as

For a good solvent, p(r) ~ (r/pi)~°'65, while in a 6 solvent,
p(r) ~ (r/pi)~1/2. This is significantly slower than for a star, reflecting the
fact that the volume available to the chains increases with r faster for a star
than for a cylinder. Figure 9.12 shows a typical configuration for polymers
grafted to a line for three different values of pi for 50 chains of length
N = 50 in a good solvent.104 The polymers are projected on the plane per-
pendicular to the grafting line. The figure is taken from a MD simulation
with a purely repulsive Lennard-Jones interaction between nonbonded
monomers. In comparison to stars, the chains are much more stretched.
The average height h of the bottlebrush can be derived by noting that
p,N ~ /* p(r)rdr,

In a good solvent h oc TV0-74/??'26-
Li and Witten221 have used a variational approach to determine the prop-

erties of polymers in solution grafted to convex surfaces when only binary
interactions are present. For a strongly curved cylinder, they were also able
to solve the equations exactly. For polymers grafted to a line, both methods
gave the result that the free chain ends were strongly excluded from a region
near the grafting line. In their variational approach, they found that the
exclusion zone was out to 79% of the brush height h, while in the exact
solution the exclusion zone was significantly less, 42%. The variational
approach predicted that p(r) would decay as eq. (9.27) in the exclusion
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Fig. 9.12 Typical configurations of systems of 50 chains of length TV = 50 grafted on a line at
linear density (a) p/a = 0.38, (b) 3.14, (c) 6.28 in a good solvent. The chains are projected on the
plane perpendicular to the grafting lines. Note that these are not star polymers. (Results are
from Ref. 104.)

zone and more rapidly thereafter. The exact solution for p(r) is in terms of
Gauss' Hypergeometric function and has the power law form, eq. (9.27), for
r <C h. For general r, p(r) decays somewhat less rapidly, particularly in the
mid-region of the brush.

Both MD simulations104 and numerical SCF analysis170 found that in a
good solvent the monomer density profiles p(r) scaled with pf65 and were
insensitive to TV in the power law regime as expected. However both also
found indications that p(r) decayed more slowly than eq. (9.27), with the
exponent of the power law being closer to 0.5 than to 0.65. This difference
may be an indication that Li and Witten221 are correct in their prediction of
a somewhat slower decay for p(r) in the central portion of the brush, since
this would likely appear as a lower power law, particularly considering that
the largest value of N considered was 300.17° To clarify this point, it would
be necessary to study much longer chains in order to distinguish a power law
from the exact solution of the SCF equations. In addition, Dan and
Tirrell170 also found that the brush height as a function of N reached the
asymptotic limit predicted, while Murat and Grest104 observed that h scaled
with pi as predicted.

In the simple blob picture, the free ends are assumed to be within the last
blob. Analytic solutions of the SCF equations, both for polymers in solu-
tion221 and in a melt237 strongly suggest that there is an extensive regior
from which the free ends are excluded for a strongly curved cylinder.
However as will be discussed in Section 9.5, this exclusion zone vanishes
as the radius of curvature of the surface goes to infinity. As seen in Section
9.3, there clearly exists an exclusion zone in a star, though it is significantly
narrower than predicted by Li and Witten.221 The existence of an exclusion
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zone for the free ends has been studied by both simulations and numerical
SCF for the present case. In Fig. 9.13, we plot the monomer end density
pe(r) for four values of p/ from our MD simulations with a purely repulsive
Lennard-Jones interaction.104 For low pi, the chains are not highly stretched
for this chain length (N = 50) and as a result there is no exclusion zone. As
pi increases an exclusion zone appears. However at such high pi, steric
packing constraints also play a role, as the monomer density is very large
for several monomer diameters away from the grafting line, forcing the free
ends away from this region. To really validate the theory, it would be
necessary to study much longer chains at coverages comparable to
pia = 0.38. Dan and Tirrell170 and Wijmans and Zhulina159 also looked
for a dead zone using a numerical SCF theory. Though the smallest radius
of curvature for the cylinder presented by Dan and Tirrell was Rc = 5cr at a
surface coverage paa

2 = 0.3, which corresponds to pia = 9.4, their results
for pe(r) are very similar in shape to curves c and d in Fig. 9.13. Their studies
included chains of length 50 < N < 300 for pa > 0.10. To quantify the size
of this zone, Dan and Tirrell defined the width XQ of the exclusion zone as
the distance from the surface where the density of the free ends reaches 5%.
They showed that for small ratios of Rc/h(< 0.2),XQ grew linearly with h,
consistent with the analytical predictions. However because of the large pa

Fig. 9.13 Distribution of the free ends for chains attached to a line as a function of the distance
r/<r from the grafting line for (a) p,v = 0.38, (b) 1.51, (c) 3.14 and 6.28. Results are from the MD
simulations of Ref. 104 for a purely repulsive Lennard-Jones interaction between nonbonded
monomers.
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used, their results cannot be used to prove that the analytic theories are
correct. The recent work of Wijmans and Zhulina159 for higher curvature
(small Rc) and longer chains (N = 1000) shows a dead zone even for
pier = 0.6, but not for 0.03. These results strongly support the analytic
SCF calculations, in that they are first to identify numerically an exclusion
zone for such low coverages and long chain lengths that only binary con-
tacts and not steric effect are important.

9.4.2 Polymers tethered to a flexible line

The addition of branches to a flexible linear chain increases its persistence
length. However because the local density is also increased, the overall size
of a comb polymer is actually reduced relative to a SAW chain having the
same number of total monomers. Experimentally there are only limited data
on long combs231 and there have been no scattering experiments using
labeled monomers to measure the persistence length of a comb as a function
of the number and length of the branches. The data which are available are
for the size of a comb which can be compared to the size of the chain
without branches. Theoretically, there have been several analytic studies
using a Gaussian model238 which showed significant discrepancies with
MC results for combs56'60 in contrast to the results of similar comparisons
for stars with only a few arms58 and H-combs.59'239 Fredrickson240 found,
using a Flory theory, that there are three scaling regimes which describe the
size of the polymer. For pi <C TV"9/10, the branches are so far apart that the
backbone excluded volume dominates the branch excluded volume and the
flexible coil is unperturbed. For intermediate pi, 7V~^9/10 <C pi <C N~3/5, the
excluded volume of the branches dominates that of the backbone and
R ~ ppTV9/25/^5, where Nb is the length of the backbone. For
Pi 3> /V^3/5, the system is more like a semiflexible rod. In this limit, the
persistence length is very large and the fact that the backbone is flexible is
only important at very long length scales as for cylindrical micelles. The
overall size has the same scaling with TV as for an inflexible line,
R ~ P[20N3/4NI'5. These different regimes have not been tested by simula-
tions. The only MC simulations on dilute comb polymers have either used
quite short side branches, N < 9,58 or a short backbone chain, N/, = 20.241

Lipson60 compared her MC results for the end-to-end distance of the comb
as a function of the weight fraction of material in the backbone Wbb to
experimental data and found reasonable agreement, even though the
branches were arranged regularly in the simulations while experimentally
they were randomly attached. However {-^2)comt,/(-^2)sAW does nat- depend
only on w/,b but also on the length of the branch. Short, closely spaced
branches stretch the comb backbone more than long widely spaced
branches, though the effect may not too large. In the high density regime,
for a given Wbb(piNconstant), R ~ /V"1/10 within Flory theory. Clearly more
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simulations with longer branches and a range of branching densities as well
as experiments on labeled chains are needed before a complete understand-
ing of the properties of comb polymers can be achieved.

In the high branching regime, there has been limited progress in synthe-
sizing molecules with axisymmetric branching around a central backbone
contour.233'234'242 Though such polymers have been synthesized, the back-
bone has not been substantially longer than the side chains. Tsukahara234

has determined the size of 14 such polymers and found that they were not
very different from stars of the same MW- However as the length of the
backbone increases, the bottlebrush polymer, which has no reason to remain
spherically symmetric, will become elongated in order to alleviate over-
crowding. This crossover from star-like to a more elongated, axially sym-
metric polymer can easily be studied by computer simulations. Since the
density in the interior of the bottlebrush is high, MD is an ideal method
for simulating such systems. Here we present some new MD results in a
good solvent for monomers interacting with a Lennard-Jones interaction
truncated at rc = 2.5cr. Figure 9.14 shows a projection of a typical config-
uration of a 40-arm star and bottlebrush with N = 50 monomers per arm.
Note that the star is symmetric while the bottlebrush is more elongated. For
this case, the ratio of (-Kg) for the bottlebrush to that of the star is 1.3. In
Fig. 9.15, results for (R%) versus/for the two types of polymers are pre-
sented. Note that as expected, for small/<; 20 for N = 50, (R^) for the two
cases is the same, in agreement with Tsukahara.234 However for larger
/, (RG) for the bottlebrush increases significantly faster than for a star.
In this case the crossover is at/« N/2, though additional simulations on
larger systems are necessary before one can determine how general this
result is.

9.5 Polymeric brushes

The structure formed when one end of a chain is tethered to a d = 2 surface,
is referred to as a "grafted layer" or more commonly as a "brush". Brushes
can be made by attaching a functional group to one end of a chain that can
then bind to the surface. The binding energy can either be quite high (several
hundred ksT), in which case the end is chemically attached,243 or of order
ten ksT, in which case it is physi-adsorbed.244'245 Diblock copolymers, in
which one of the blocks (usually the shorter one) adsorbs strongly to the
surface, while the other does not, also form brushes,154'246"253 as well as a
diblock copolymer at the air-liquid interface of a selective solvent.254"257 A
qualitatively similar system is formed by a symmetric diblock copolymer in a
lamellar phase in the strong segregation limit, where the junctions between
the two segments of the copolymer lie on a plane.258 Although the junction
points are not fixed to the surface, and are free to move, this movement is



Fig. 9.14 Projection of a typical configuration of two branched polymers both with/= 40 arms
and N = 50 monomers per arm for a good solvent. The results are at T = 4.0e/kg for monomers
interactions with a Lennard-Jones interaction truncated at rc = 2.5<r. Polymer (a) has the
topology of a star, with all 40 arms attached to a small central core, while (b) is a bottlebrush
made of 40 arms which are tethered to a flexible backbone.

Fig. 9.15 Radius of gyration (-Kg) for a polymer made off arms each of length TV = 50 attached
to a small central sphere (•) or to a flexible line (o). The simulations were carried out under
good solvent conditions at T= 4.0f/ks-
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strongly damped by the repulsive interaction with other chains. This system,
which closely resembles a pair of brushes brought into contact, has been
reviewed by Binder.21'259

When the grafting density pa increases above a critical density, the chains
overlap and stretch away from the grafting surface to avoid overcrowding.
The stretching effect of tethering is much stronger for a brush than for
polymers grafted on a point or on a line. The reason for this stretching
and the amount of stretching depend upon the environment of the brush.2

One can differentiate between wet and dry brushes, depending upon the
presence or absence of a solvent. In a wet brush, the stretching is due to
the attraction between the polymer segments and the solvent. The amount of
stretching is determined both by the quality of the solvent and by the bind-
ing energy of the end group to the grafting surface. In a dry brush, the
driving force for stretching is the incompressibility of the polymer chains,
which prevents overfilling of the space occupied by the brush.

A large number of experimental, theoretical and numerical studies on
brushes have been published during the last several years, including two
excellent review articles.1'2 In this section, we shall discuss simulations on
brushes and related systems, and compare their results with experiments and
theoretical predictions. Although there has been some recent interest in
brushes with chains of different chemical composition,260"265 we shall
limit our discussion to brushes whose chains are of identical chemical com-
position.

9.5.1 Brushes in good solvents

As first noted by Alexander7 and de Gennes,8 grafting polymer chains in a
good solvent densely onto a surface leads to a deformation of the chains
from their equilibrium configurations. This deformation is a result of the
competition between the entropic elastic energy of the chain and the mono-
mer-monomer interaction. Alexander7 assumed that the chains are uni-
formly stretched and that the density of the monomers is constant up to a
height h from the grafting surface. The free energy can then be written using
a Flory approximation as the sum of elastic stretching energy of Gaussian
chains and binary monomer-monomer interactions.8 Minimizing this free
energy with respect to h, one finds that h scales as

One can alternatively view the brush as a stack of blobs, as was done for
stars and polymers grafted on a line except that brushes are even simpler
since the blob size is independent of the distance from the surface. This
approach gives h ~ Npa . Using z/ = 0.588 for a good solvent, one
obtains h ~ Np°a

35. However, it has been common practice in the literature
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to use the Flory value v = 3/5 and h ~ NplJ3, identical to eq.(9.29). This
result is rather striking, as the thickness of the grafted layer increases
linearly with N, significantly different than the N0-59 for self-avoiding
walks and star polymers and the N0-14 for polymers grafted to a line.

Numerical SCF calculations153"160'168 have also been applied to the study
of end-grafted chains. These showed that the density of the monomers is not
uniform. Skvortsov et al. 155 found that their numerical results can be fitted
with a parabolic decay of the monomer density from a maximum near the
grafting surface to zero at the brush height. Later Milner et al.266'267 and
Zhulina et al26* independently proposed an analytical theory based upon an
observation by Semenov.269 When the stretching is strong, a chain of length
N whose free end is at a specified point, fluctuates very little around the
"most favorable" configuration than minimizes the classical action. The
relative amplitude of this fluctuation diminishes with increasing N. As
TV —» oo, this configuration dominates. For binary interactions, analytical
solutions for the properties of the brush can be obtained. The brush height
was found to have the same scaling with N and pa as predicted by
Alexander,7 although the numerical coefficient is slightly larger. This agree-
ment in the overall size scaling confirms the SCF assumption that the
stretching diminishes the fluctuations around the most favorable configura-
tion. The monomer density p(z] in this theory varies with the distance z
from the grafting distance as

where both d depend only on the excluded-volume parameter. This para-
bolic density profile is valid in the limit of very long N and moderate pa,
where binary interactions dominate. In order to demonstrate the validity of
the analytical theory, we show in Fig. 9.16 the density profile (eq. [9.30]) for
Pao2 = 0.1 and several values of N, together with the corresponding numer-
ical SCF calculations. 57 The agreement, obtained without any adjustable
parameters, is excellent. The size of the "tail" region at the outer edge of the
brush, where there is a small difference between the theory and the numer-
ical calculations, decreases with increasing N.

Another important difference between the scaling approach and the SCF
theory is the location of the free ends of the chains. Unlike the implicit
assumption of the scaling analysis that all the free ends are at the outer
boundary of the brush, the density of the free ends is nonzero everywhere
within the brush. For moderate pa,

266

where h is the value of z at which the monomer density vanishes. For high
pa, Milner et al266 showed that pe(z) diverges at z = h as
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Fig. 9.16 Monomer density profile for pa = 0.1 and various values of N within the SCF approx-
imation. The solid lines are from numerical calculations based on the Scheutjens-Fleer theory.
The dotted curve is from eq. (9.30). Note that the ordinate is the potential field V(z), which is
proportional to the density profile. (From Ref. 157.)

Thus, at the high density limit, most of the ends are concentrated near the
outer edge of the brush, as assumed by Alexander7 and de Gennes.8

Numerous experimental studies and computer simulations have been car-
ried out during the last several years to check the results of these two
theoretical approaches. Some of the experimental work was aimed at study-
ing the scaling of h by measuring the force between two brushes.244'246"249'251

The inner structure of the brushes has been probed by small angle neutron
scattering243'270^272 and neutron reflectivity.252'253'255'256'273 All these studies,
as well as the simulations, gave results that were consistent with the analy-
tical SCF predictions.

Figure 9.17 shows typical configurations of an off-lattice brush consisting
of 50 chains with N = 50, with three values of pa. The value of h increases
significantly with increasing pa. The scaling h ~ Npl

a has been confirmed in
several simulations.38'78'98 These showed that provided pa is above the cri-
tical overlap density p*a ~ N~6/5, the brush size, as measured by the first



P O L Y M E R I C B R U S H E S 519

Fig. 9.17 Typical configurations of brushes with TV = 50 and different values of pa, taken from
Ref. 98. Each of the 50 chains in the brushes is grafted onto a randomly chosen point on the
lower surface. Periodic boundary conditions are used in the horizontal plane.

moment of the density distribution (z) or the z-contribution to the mean-
squared radius of gyration, (R2

Gz}, approaches the predicted scaling form, as
seen in Fig. 9.18, curve (a). When pa < p*,h is almost independent of pa, as
expected in the mushroom regime. Since p*a ~ N~6/5, the scaling variable
evaluated at the lower crossover, Np*a ~ N3/5, is not universal but
increases with N in agreement with the results shown in Fig. 9.18, curve
(a). For large pa, Grest116 has shown that there is another TV-dependent
threshold, pa\, above which the brush size scales as Np% with x approxi-
mately 1/2. This behavior, seen in curve (a) of Fig. 9.18, is in agreement with
Raphael, Pincus and Fredrickson213 who showed that at high surface den-
sities where three body interactions dominate over two body terms, there is a
second scaling regime with x = 1/2. Experimentally this regime is difficult to
study, as such high grafting densities are not easily accessible. The limited



520 C O M P U T E R S I M U L A T I O N S OF T E T H E R E D C H A I N S

Fig. 9.18 Average monomer height (z}/Np*a versus Npx
a for brushes in (a) a good solvent with

x = 1/3 and (b) a 0 solvent with x = 1/2. The results for Q are shifted by 0.2 for clarity. (From
Ref. 116.)

width of the scaling regime, p*a < pa < pa\ within which (z) ~ N p a , also
makes it difficult to test the dependence of h on pa experimentally.256 If the
chains are not long enough, p*a ~ pa\ and there is no regime in which the
data scale as predicted theoretically, as seen for N = 25. For intermediate
length chains, the scaling regime is very limited, as for N = 50 in Fig. 9.18,
curve (a). For N = 50 and 100, h scales almost linearly116 with pa for a wide
range of pa from the mushroom regime to paa

2 « 0.30 and 0.11, respec-
tively. This may explain the data of Factor et at.256 for PS in a good solvent
for Mw up to 175 000, who found that h varied approximately linearly with
pa over the entire range studied. Only for long chains is p*a significantly less
than pai and the scaling prediction valid over an extended range.

Force measurements between two brushes yield experimental information
on the brush size, since the brushes first interact when the distance between
their respective grafting surfaces is 2h. Taunton et a/.244 applied this method
to brushes consisting of polystyrene chains attached to a mica surface via a
zwitterionic head group. The chains were deposited onto the surface from a
concentrated solution of the polymer. The measurement of the contact dis-
tance gave the seemingly surprising result that the brush height scaled as
N0-6 rather than as the expected N. Similar behavior was also observed in
brushes consisting of diblock copolymers, with only one of the blocks
adsorbing on the surface.247'248'250 However, unlike the assumption of the
theory or the simulations, in which the grafting density is constant, these
experiments were conducted under conditions of constant binding energy of
order 10fcBr between the functional end-group and the grafting surface. The
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as well as the simulations, gave results that were consistent with the analy-
tical SCF predictions.

Figure 9.17 shows typical configurations of an off-lattice brush consisting
of 50 chains with N = 50, with three values of pa. The value of h increases
significantly with increasing pa. The scaling h ~ Npl

a has been confirmed in
several simulations.38'78'98 These showed that provided pa is above the cri-
tical overlap density p*a ~ TV"6/5, the brush size, as measured by the first
moment of the density distribution (z) or the z-contribution to the mean-
squared radius of gyration, (RGZ), approaches the predicted scaling form, as
seen in Fig. 9.18, curve (a). When pa < p*a, h is almost independent of pa, as
expected in the mushroom regime. Since p*a ~ TV"6/5, the scaling variable
evaluated at the lower crossover, Np*a ~ TV3/5, is not universal but
increases with N in agreement with the results shown in Fig. 9.18, curve
(a). For large pa, Grest116 has shown that there is another TV-dependent
threshold, pa\, above which the brush size scales as Np? with x approxi-
mately 1/2. This behavior, seen in curve (a) of Fig. 9.18, is in agreement with
Raphael, Pincus and Fredrickson213 who showed that at high surface den-
sities where three body interactions dominate over two body terms, there is a
second scaling regime with x= 1/2. Experimentally this regime is difficult to
study, as such high grafting densities are not easily accessible. The limited
width of the scaling regime, p*a < pa < pa\ within which (z) ~ Npa , also
makes it difficult to test the dependence of h on pa experimentally.256 If the
chains are not long enough, p*a ~ pa\ and there is no regime in which the
data scale as predicted theoretically, as seen for TV = 25. For intermediate
length chains, the scaling regime is very limited, as for TV = 50 in Fig. 9.18,
curve (a). For TV = 50 and 100, h scales almost linearly116 with pa for a wide
range of pa from the mushroom regime to paa

2 w 0.30 and 0.11, respec-
tively. This may explain the data of Factor et a/.256 for PS in a good solvent
for Mw up to 175000, who found that h varied approximately linearly with
pa over the entire range studied. Only for long chains is p*a significantly less
than pai and the scaling prediction valid over an extended range.

Force measurements between two brushes yield experimental information
on the brush size, since the brushes first interact when the distance between
their respective grafting surfaces is 2h. Taunton et a/.244 applied this method
to brushes consisting of polystyrene chains attached to a mica surface via a
zwitterionic head group. The chains were deposited onto the surface from a
concentrated solution of the polymer. The measurement of the contact dis-
tance gave the seemingly surprising result that the brush height scaled as
TV0-6 rather than as the expected TV. Similar behavior was also observed in
brushes consisting of diblock copolymers, with only one of the blocks
adsorbing on the surface.247'248'250 However, unlike the assumption of the
theory or the simulations, in which the grafting density is constant, these
experiments were conducted under conditions of constant binding energy of
order I0ksTbetween the functional end-group and the grafting surface. The
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Fig. 9.19. (a) Scaling plots of monomer density for a brush in a good solvent. From MC
simulations of Lai and Binder.78 The different symbols refer to simulations with 30 < N < 60
and 0.05 < pav

2 < 0.2. See Ref. 274 for further details. The solid curve is the SCF prediction,
(b) Monomer number density p(z) for brushes in a good solvent for chains of length N = 50,
100 and 200 for pa<r2 = 0.03, 0.07 and 0.10. (Taken from MD simulations of Ref. 115.)

density of chains on the surface is then determined by a balance between the
stretching energy and the energy of the attachment.244 To estimate pa within
the scaling picture,7'8 note that the chains consist of (N/ng) blobs, of size
£ ~ Pa • Each keTof binding energy can support about one blob.244 For a
fixed number of blobs, the larger N, the larger each blob. Since the size of a
blob is related to the number of monomers in it, £ ~ n"B, h ~ TV1"2"/3 = N3/5,
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Carignano and Szleifer172"174 proposed a new statistical thermodynamic
theory of polymeric brushes, based upon the probability distribution func-
tion of chain conformations, which depends on the local osmotic pressure.
The interactions between the monomers within a chain are taken into
account "exactly" by generating a large number of representative conforma-
tions. Mean-field approximation is used to evaluate the interactions between
the chains. The resulting equations are then solved numerically. The theory
was applied both to off-lattice and lattice chains. Calculations for the former
were carried out for the same systems that were used in the MD simulations
of Murat and Grest,98 to allow for detailed comparison. Excellent qualita-
tive and quantitative agreement was observed for all the systems, including
those with very high grafting densities. This observation supports the ade-
quacy of the mean-field approximation to grafted polymeric systems in good
solvents, in which chain fluctuations at large length scales are suppressed by
the strong stretching.

In contrast to the surface force experiments, neutron reflectivity and small
angle neutron scattering give information on the inner structure of the
brushes. These have provided additional support for the parabolic density
profile predicted by the SCF theory. Field et al.252 determined the density
profile of polystyrene-poly(ethylene oxide) (PS-PEO) block copolymers
adsorbed from deuterated toluene (which is a good solvent for PS) onto
quartz. The PEO block is much shorter than the PS blocks, and adsorbs
strongly to quartz. Neutron reflectivity data for brushes with chains of MW
between 80000 and 502000 were fitted to density profiles of the form
A — Bz". A and B are determined by the volume fraction of the polymer
at the interface, and the layer thickness of the adsorbed polymer. Except for
the highest molecular weight chain, the best fits were obtained for
1.9 < n < 2.6, with an uncertainty of about 0.5. This agrees well with the
prediction of a parabolic profile. Brushes with Mw = 502 000 gave
n = 4.6 ± 1.5. This large exponent was attributed to the low segment density
associated with this high molecular weight brush, whose scattering length
density profile becomes indistinguishable from that of the solvent away
from the grafting surface. As a result, the fit becomes less sensitive to n.
The fitted profiles, however, correspond to reflectivity curves that have an
oscillatory behavior. The oscillations can be damped by the addition of an
exponential tail to the parabolic profile. Equally satisfactory fits were
obtained by using a trial form such as an error function. This gives a density
profile identical to the parabolic one, except that it vanishes gradually at the
outer edge of the brush, without requiring an additional correction. Neutron
reflectivity methods were also applied by Cosgrove et a/.280 to brushes with
small N. Their results were in agreement with the parabolic profile, as well
as with profiles obtained using Scheutjens-Fleer SCF lattice model.148'154

Additional experimental evidence for the parabolic density profile came
from the small angle neutron scattering experiments on PS chains grafted



524 C O M P U T E R S I M U L A T I O N S OF T E T H E R E D C H A I N S

onto porous silica.243'272 By analyzing the monomer-monomer and the
monomer-solid surface structure factors, they showed that both are consis-
tent with a parabolic density profile with an exponential tail. Furthermore,
they observed that at large scattering vectors (small distances) scattering is
dominated by concentration fluctuations. The blob size that was identified
from the behavior in this regime was found to increase linearly with the
interanchor distance, as expected. This showed that the small-scale behavior
is dominated by density fluctuations (as in the scaling picture), while the
large-scale behavior is free from these fluctuations (as in a mean-field
description).

In addition to structural information, simulations also allow one to
calculate the surface osmotic pressure Ua = dfc/dp~l within a brush,
where fc is the free energy per chain. In off-lattice simulations, one can
calculate this quantity through the evaluation of the virial25 from the
forces between monomers. Although Iia can be determined in a constant
pa simulation, Grest116 carried out a constant Ha simulation and deter-
mined the dependence of TLa on pa. Figure 9.20(a) shows na for brushes in
a good solvent. Ua is scaled by NpJ , which is the SCF prediction2 for this
quantity. The prediction of the scaling theory7'8 for Ha in a good solvent is
Ua ~ Npl

a
l/6. The data in Figure 9.20(a) are best fitted by Ua ~ Np^, with

y = 2.5 ± 0.2. Simulation result for y is larger by about 1 than the predic-
tions of both theories. A possible reason116 for the discrepancy may be the
finite volume of the monomers which is not included in either theory. On
the other hand, the value of y is very close to the exponent 2.4 found in
the statistical thermodynamic theory of Carignano and Szleifer,172 which
takes into account the finite volume of the monomers. Another possible
explanation is that the systems used in the simulations are not yet in the
scaling limit, since the average monomer density (j> within the brush was
quite high, (jxr" ^ 0.1 in almost all cases. In order to check this possibility,
simulations with much lower pa and higher N (of order 1000) are needed.
Such simulations are not feasible presently. These results are also consis-
tent with the results of Kent et a/.,255 who studied PDMS-PS diblock
copolymers in a selective solvent (ethyl-benzoate), in which the PDMS
block spreads at the liquid-air interface and the PS block is submerged
in the solvent. The grafting density in these experiments can then be
changed by applying a surface pressure. Thus, constant na simulations
represent this experimental situation better than constant pa. Kent et
al.257 found that lia increases much more rapidly with pa than predicted
by the SCF and scaling theories. One recent simulation by Shaffer88

seems to be in variance with the above results. Shaffer's lattice MC simu-
lations for the free energy seem to agree well with the predictions of
scaling and SCF theory for low and moderate densities and short
(N < 60) chainlengths. The reasons for the observed differences are not
understood.



Fig. 9.20 (a) Scaling plot of Tl/Np^3 versus pa in a good solvent at T = 4.0 for chain lengths
N = 25(A),50(»), 100(B) and 200 (o). (b) Scaling plot of I1/N(% versus pa in a 6 solvent
(r= 3.0). Symbols are the same as in (a). (From Ref. 116.)

Almost all the simulations mentioned in this section have dealt with
brushes in which the grafting head is firmly attached to the surface, at a
point which cannot move within the grafting surface. In some experimental
situations, such as diblock copolymers at the air-liquid interface of a selec-
tive solvent,254^257 the grafting end is free to move, as long as it stays close to
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the surface. Simulations that allow the grafting site to move within the
grafting surface78'116 ("annealed" brushes), have shown that the structure
of these annealed brushes is identical to those of brushes in which the ends
are firmly attached. However two small differences have been observed. The
first one is that at fixed Ha, the additional force between the grafting site and
the first monomer gives a slightly different equilibrium value for pa.

n6

However, this difference decreases as N~l, as expected for an end-effect.
An additional difference is observed in the dynamics of the brushes, as
discussed in subsection H on time-dependent phenomena in brushes.

9.5.2 Brushes in O and poor solvents

As the quality of the solvent decreases, the structure of the brushes changes
considerably. Halperin281 carried out a Flory-type mean-field analysis of the
collapse of grafted layers as the solvent quality is reduced. For nonoverlap-
ping chains (mushroom regime), the transition was found to be similar to
that of free chains, in which the scaling of the chain size changes from Ar3/5

in a good solvent to N1/3 in a poor one. For higher densities (overlapping
chains), he found that this transition is replaced by a "weak collapse", where
the brush dimension diminishes, but the chains still remain stretched, h ̂  N.
Shim and Gates276 and Zhulina et a/.282 generalized the analyses of Milner et
a/.266 and Zhulina et a/.,268 valid for good solvent conditions, to solvents of
lower quality. For a Q solvent, they found an elliptical density profile, with a
vertical asymptote at z = h. Their results are consistent with the numerical
SCF studies of Wijmans et a/.158 who studied the effect of finite chain length
for T = Tg. For poorer solvents, the density profile is expected to be quite
flat up to the outer edge of the brush, where it drops discontinuously to
zero. Ross and Pincus283 calculated the structure factor of brushes within
the random phase approximation. They found that the brush collapses
continuously as the solvent quality is reduced, with the density fluctuations
in the plane parallel to the grafting surface damped by the positive osmotic
pressure in the brush. In a twice-grafted layer (chains with both ends
attached to two parallel plates), which cannot undergo a uniform collapse,
the chains form "bundles" with monomer-rich and monomer-poor
regions.283'284 Yeung et a/.,285 Huang and Balazs,167 Williams285 and Tang
and Szleifer287 on the other hand, predict such lateral instabilities in singly
grafted layers for finite chain lengths, with the spatial dimensions of the
fluctuations depending upon chain length, solvent quality, and grafting
density.

Brushes under variable solvent conditions have been simulated by Lai and
Binder79 using a bond fluctuation model and by Grest and Murat115 using
MD. The O temperature for the bond fluctuation model was calculated
from an independent study of a single chain to be Te = 1.9e. The MD
simulations used a FENE potential, eq. (9.6), between bonded monomers
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and a LJ potential truncated at rc = 2.5a to represent the attractive inter-
actions of the monomers, as described in detail in Section 9.2. The 6 tem-
perature was found to be Tg = 3.0 ± O.I.115

Dramatic changes are found to occur as the temperature (quality) of the
solvent is decreased. Figure 9.21 shows snapshots of three chains out of 40
in a brush at two temperatures. While the chains are strongly stretched at
the higher T, they shrink considerably at the lower one, which is below Tg.
Curve (b) in Fig. 9.18 shows the normalized brush height scale as Np% at Tg,
with the predicted281'282 exponent x = 1/2. As in a good solvent, this scaling
is observed only in a limited range of pa. Low grafting densities are char-
acterized by the "mushroom" behavior in which the height is insensitive to
the grafting density. One should note, however, that the critical coverage p*a

at which the chains first overlap is itself dependent upon the solvent quality.
p*a scales as TV"1 for a 9 solvent, compared to A/"6/5 for a good solvent. For
Pa > pal, height increases somewhat more rapidly than predicted, due to the
high monomer densities reached in this regime.116 For T < Tg, the brush
height increases roughly linearly115 with pa, as predicted.282 However, in this
regime, p*a ~ TV"2/3, so that very long chains are needed to observe substan-
tial stretching in simulations. Furthermore, as will be discussed later in this
subsection, brushes with pa < p*a undergo a phase separation under constant
pa conditions.79'115 Note that chains which overlap under good solvent
conditions may be in the mushroom regime as the T is lowered. Due to

Fig. 9.21 Typical configurations for three of the 40 chains for a polymer brush for two tem-
peratures, (a) T = 3.3 and (b) T = 1.4. Here N = 40 and ft, = 0.1. The first is in a good solvent
above Tg = 1.9, while the second is in a poor solvent. The results are from the MC simulations
of Lai and Binder.79
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these limitations, it is difficult to observe the predicted height scaling in
simulations, unless one uses much larger N.

The qualitative change in the brush structure with the solvent quality is
also manifested in the monomer density profile, as demonstrated in Fig. 9.22
for brushes with N = 200 at constant grafting densities of paa

2 = 0.03 and
0.1, in the vicinity of 70. The maximum extent of the density profile
decreases with decreasing T, with a corresponding increase in the monomer
density within the brush. Similar results are found in the constant Ha simu-
lations of Grest,116 except that pa changes smoothly with T, such that the
height remains approximately constant. A quantitative comparison between
the simulation results and the analytical SCF predictions for the density
profile reveals a much worse agreement at 70 than at high temperatures
(good solvent). Analytical SCF theory predicts276'282 that the monomer
density decays to zero as an ellipse,

Fig. 9.22 Monomer number density p(z) versus z for a chain of length N = 200 at T = 2.0c/kB,
and T= 4.0e/kB for (a) p^ = 0.03 and (b) pa<f- = 0.10. (From Ref. 115.)
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Both MC79 and MD115 simulations find that the density cannot be fitted by
this functional form. The agreement does not seem to get better with
increasing chain length. While the scaling suggested by eq. (9.33), namely,
that p(z)/'p]/2 versus z/Npa should exhibit a data collapse, seems to be
confirmed in the MC simulations,79 the plots are for a very limited range of
N (between 30 and 50) and of pa(paa

2 between 0.075 and 0.125). Even so, the
scaling plot shows some systematic deviations. These were magnified in the
MD simulations115 that were run using a larger range of chain lengths
(between 50 and 200). Similar deviations are observed in the scaling plots
of the structure factor.115

The lack of agreement between the simulations and the analytical SCF
predictions is also reflected in the density of the free ends. Zhulina et a/.282

found that pe(z) grows linearly with z from the grafting surface up to the
brush height, at which point it drops sharply to zero. Although a rough
linear increase is observed in the simulations79'115 at short distances from the
grafting surface, the drop to zero is found to be very smooth, probably due
to the finite length of the chains. The scaling behavior suggested by the SCF
prediction seems also not to hold, especially when data from a wide range of
N and pa are taken into account.115

The reason for the disagreement is presumably the relatively large mono-
mer densities reached within the brush. In principle, for very long chains and
very low pa, one may reach a situation in which the monomer density is
small even near Tg. This regime has not been reached in any of the simula-
tions. On the basis of the mapping115 of the coarse-grain model treated in
the simulations to the experimental systems,244 it is difficult experimentally
to satisfy both the conditions of strong chain overlap and dominance of
binary interactions, implicit in the analytical SCF study.282 This is consistent
with the numerical SCF calculations of Whitmore and Noolandi.169

Below Tg, simulations79'115'119 show that the monomer density becomes
almost uniform up to the brush height, which grows roughly linearly with
Npa. The monomer density in this regime becomes quite high, close to the
melt density, making the simulations difficult to perform. In MC simula-
tions, the acceptance rate of the MC moves becomes very low, while in MD
simulations, chain relaxation slows down considerably. However, for mod-
erate N, equilibration can be reached, but needs to be checked carefully115

by verifying that identical results are obtained by different paths.
In their experiments on grafted poly(dimethylsiloxane) chains, Auroy and

Auvray271 changed the solvent quality using two different methods: by
modifying the chemical composition of a binary mixture, and by changing
T around Tg of a single solvent. In the former method, the brush height is
found to change dramatically (by a factor of about three) at a critical
composition. This effect is shown to be due to the "preferential solvation"
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of the good solvent by the polymer chains.288'289 This phenomenon has not
been studied yet by computer simulations, since such a study would require
explicit representation of a large number of solvent molecules, demanding
considerable computer resources. The method of changing T induced a
much more gradual variation of the brush height as a function of T.
Perahia et a/.273 found, using neutron reflectivity, that h is insensitive to
the solvent quality. Their experiments were carried out on PS chains grafted
to silicon with a binding energy of ~ 8kBT, in equilibrium with a dilute
solution of chains. In this case, the equilibrium grafting density is also
dependent upon the solvent quality and is obtained when the chemical
potential of the brush equals that of the solution. Equilibrium is determined
by a balance between the stretching energy and binding energy.273 A similar
situation is found at constant lia simulations.116 While the experimental
situation is different than that of the constant na simulations, it is interest-
ing that both give a brush height which is nearly independent of solvent
quality. The agreement suggests that experimentally, the surface osmotic
pressure is probably approximately constant as the solvent quality is varied.
However, we are not aware of any argument which would suggest that equal
chemical potential for the brush and solvent would lead to a constant or
nearly constant surface osmotic pressure.

An interesting phenomenon observed in the simulations is the separation
of the brush into monomer-rich and monomer-poor regions79'115 below Tg
for fixed pa, as shown in Figs 9.23(a) and (b). This phenomenon is attributed
to the instability of the grafted layer to tangential fluctuations in a suffi-
ciently poor solvent,285"287 and arises since the overlap concentration p*
increases as solvent quality decreases. For fixed pa, the brush may be
stretched in a good solvent, but be below p*a in the poor solvent regime.
In this case, the brush will try to phase separate. However, as the grafting
site is firmly anchored, the best that the system can do is phase separate
locally. A similar result was found in a two-dimensional numerical mean-
field model167 in which the monomer density is a priori assumed to depend
upon a coordinate parallel to the grafting surface as well as on the coordi-
nate z perpendicular to it. As expected, at a given pa, this phase separation
disappears as Nis increased.79'115'287 Furthermore, the chain length at which
the transition from the "dimpled" layer to a "uniform" state decreases as
the chains overlap more. For instance, for paa

2 = 0.03, the layer is inhomo-
geneous even for TV =200. When pad1 is increased to 0.1, brushes with
chains as short as 50 monomers do not exhibit a strong phase separation,
as shown in Fig. 9.23(c). Results of Ref. 285 confirm this observation. This
lateral structure in a poor solvent has also been observed recently using
atomic force microscopy.290'291 Israels et al.292 have shown that this phase
separation can be used to produce a pH-controlled gating by fabricating a
surface with regions where grafted chains are absent. A similar type of
microscropic phase separation can occur if the free ends of the chain have



Fig. 9.23 Projection of all monomers onto the z = 0 plane to show the phase separation at
T < Tt for various N and pa. (a, top) N = 50 and pa = 0.03; (b, middle) N = 100 and pa = 0.03;
(c, bottom) N= 50 and pa = 0.1. (From Ref. 115.)
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an associating group attached.293'294 One should note that the phase separa-
tion should be observed only for brushes in which the chains are chemically
adsorbed to the surface, with no free chains in the solution. If the brush is in
equilibrium with polymers in solution, the free chains will phase separate to
fill the exposed regions. One also does not expect to observe phase separa-
tion under constant surface pressure conditions. For fixed Yla, pa increases
continuously as T decreases and the system does not phase separate. This
was observed in constant na simulations.116 While such a uniform and
continuous collapse is consistent with a number of theoretical calcula-
tions,276'281"283 it should be noted that these studies did not allow for the
possibility that the brush may become unstable to tangential density fluc-
tuations in a poor solvent. Finally, Tang et a/.295 have studied the phase
behavior of tethered polymers with lateral mobility in poor solvents and
mapped out the phase diagram.

As in the good solvent case, the dependence of the osmotic pressure on the
surface coverage under O solvent conditions, as found in simulations,116

disagrees with both scaling results7 and analytical SCF theory.2 Both
these theories predict the osmotic pressure to increase as IIa ~ p2. The
simulation results, shown in Fig. 9.20(b), are best fitted by Ha ~ Np^,
with y = 3.0 ± 0.2. As in good solvents, y is larger by about 1 than the
scaling and SCF predictions. It agrees however with the value 3.0 found
by Carignano and Szleifer172 in their statistical thermodynamic model.
Reasons for this deviation are identical to those suggested for the good
solvent case.

9.5.3 Attractive grafting surfaces

In most of the brush simulations, there is no adsorption of monomers, since
the wall-monomer interaction is taken to be short-ranged and purely repul-
sive. This repulsive interaction leads to a depletion layer few monomers wide
near the wall, where the monomer density is lower. As T is lowered, the
monomers reduce their free energy by being closer to each other than to the
wall, increasing the size of this exclusion zone.115 In some experiments,273'296

on the other hand, a slight excess layer of the monomers near the surface is
observed. Effects of an attractive wall on the brush structure have been
discussed by Alexander.7 When the purely repulsive wall-monomer poten-
tial is replaced with a contact attraction or an attractive well,38'154 or with an
attractive Lennard-Jones potential115'116 a similar surface excess is found in
the simulations as well, provided the magnitude of the attractive interaction
is of the order of the monomer—monomer interaction parameter.
Qualitatively similar results were obtained in numerical SCF calculations.154

The competition between the monomer-wall attraction and the binding
energy of the end group may lead to interesting phenomena.7'297 When the
magnitude of the former is much smaller than that of the anchoring energy,
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but is of order the monomer-monomer interaction, and pa is low, there is
enough room at the surface for all the monomers to be next to the wall. This
leads to a flat structure, the so-called "pancake". However, as pa increases,
the monomers will be pushed away from the grafting surface, and a brush-
like layer will be formed. This transition is predicted7'297 to be a first-order
phase one. Chakrabarti298 studied this pancake-to-brush transition in a MC
simulation. He used an interaction parameter Xs = G.5keT to represent the
difference between the energy of adsorption of a monomer and that of a
solvent molecule. Chains with N = 50 and 100 at 0.0002 < pan2 < 0.04 were
studied. Figure 9.24 shows the mean height of the layers (the first moment of
the density profile) as a function of pa for the two chain lengths. At low pa,
the height is independent of N and corresponds to a monolayer. Above a
critical pa, a rapid increase of the height is observed. The increase is faster
for the longer chains. The same qualitative transition to the brush behavior
is observed in the density of the monomers and of the free ends as well. This
result is consistent with the experiments of Ou-Yang and Gao.299 However,
the limited range of N does not allow for the determination of the order of
the transition.

Other effects of an interacting surface on the brush structure have also
been studied using a SCF approach300'301 and MC simulations.38 Both treat-
ments find that in the presence of an attractive surface (within the brush
regime), the brush height decreases as h/h$ = (1 — A) ' , where /ZQ is the
brush height for a neutral surface and A is a measure of the strength of

Fig. 9.24 The thickness of the grafted layer with an attractive surface as a function of the
grafting density pa for two values of the chain length, N = 50 and 100. (From Ref. 298.)
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the surface interaction. The SCF predictions301 for the amount of the sur-
face monomer excess due to the attractive interactions also compares well
with the numerical results. This agreement between the simulations and the
SCF approach is yet another demonstration of the validity of neglecting
chain fluctuations, in these strongly stretched chains. When the monomer-
wall interaction is repulsive, with a wide potential barrier, the end density
within the repulsive region is found to vanish (dead zone), although the
monomer density is still finite,38 consistent with the predictions of Ref. 301.

9.5.4 Polydispersity effects

Until now, we considered brushes in which N is equal for all chains. Some
degree of polydispersity is to be expected in most experimental systems.
Extensions of the theory show that polydispersity in a brush may have
significant implications. For instance, forces between brushes are found to
extend farther even with small polydispersity.302"305 Klushin and
Skvortsov306 showed that the height fluctuations that are of order
(<W2) ~ N2 in monodisperse brushes are strongly depressed even for a rela-
tively narrow chain length distribution. Milner et a/.303 found that for a
uniform distribution of chain lengths, the density profile may change com-
pletely and lose its parabolic character. This was verified in the MC simula-
tions of Chakrabarti and Toral,38 who simulated brushes with a uniform
distribution of chain lengths between 17 and 80, and showed quantitative
agreement with the predicted density profile of Ref. 303.

The case of a bimodal chain length distribution has received a more
quantitative treatment, both in the context of SCF theory303'307'308 and
simulations.38'309 SCF theory predicts that in a bidisperse brush, the free
ends of the shorter chains (of length Ns~) are confined to a height hs from the
grafting surface. The free ends of the longer chain (of length Nj), on the
other hand, reside between hs and a larger height /?/. This complete segrega-
tion is valid only for very long chains. It is further assumed that both chains
are under strong stretching conditions. For an overall grafting density pa,

where p is the fraction of the longer chains, hg ~ Nspa/:> is the height of a
monodisperse brush of the shorter chains at pa and n = Ni/Ns — 1 is the
relative difference in the chain lengths, hi is the total brush height. This
segregation leads to a bimodal monomer density distribution, which is iden-
tical to the distribution of a monodisperse brush with chains of length Ns

and pa up to the distance hs from the grafting surface. Beyond that distance,
the density profile has a more complicated form, with a discontinuous deri-
vative at z = hs. Similar functional behavior is exhibited by the distribution
of the free ends.



P O L Y M E R I C B R U S H E S 535

Tests of these predictions were carried out using MC simulations.
Chakrabarti and Toral38 studied the case of a brush with NI = 98 and
Ns = 49, p — 05. They found good agreement with the distribution functions
predicted by the SCF analysis,303'307 both for the monomers and for the free
ends. The discontinuity in the slopes of both distributions was smoothed by
the finite length of the chains; nevertheless an incipient kink was apparent.
Lai and Zhulina309 undertook a comprehensive comparison with the SCF
predictions, using a bond-fluctuation model. They simulated brushes with
20 < Ns < 40 and 40 < NI < 80 at various pa,p and n. The scaling of the
heights hs and hi, as well as the scaling of the first moment of the distribution
of the free ends of both types of chains, were found to be consistent with the
SCF theory.303'307 Similar agreement is found for the monomer density
distribution, with the "kink" becoming more prominent as the chain lengths
get larger. When the different contributions to the total density from both
chains are plotted separately, it is found that the profile of the monomers
from the short chain is independent of the length of the longer chain, as
predicted by the theory. Some deviation from the predicted density profile is
seen near the outer edge of the brush, probably due to insufficient stretching
of these segments. The effect of finite N has been investigated by Dan and
Tirrell308 using a numerical SCF theory.

Unlike the assumption of Refs 303 and 307 that the free ends of the two
species of chains are completely segregated, interpenetration of the free ends
of each chain into the domain of the other is clearly observed in the simula-
tions38'309 and numerical SCF.308 Figure 9.25 shows the end distribution of
short chains with Ns = 20 and of long chains with NI = 40 and 60 taken
from the simulations of Ref. 309. Also shown is the end distribution of
monodisperse chains of length Ns at this grafting density. The interpenetra-
tion seems to be asymmetric, with more of the short chains penetrating into
the outer layer than vice versa. The penetration of the longer chains into the
short chain region decreases with increasing NI, indicating that this is a finite
N effect. The free end distribution of the short chains is also found to be
independent of NI, similar to the monomer density. Other properties, like
the average position of the /th monomer, and the orientation vector of the
/th bond also agree reasonably well with the SCF analysis, especially for the
larger NI. The discrepancies found originate from the interpenetration of the
chain ends, a finite size phenomenon not accounted for in the analytic SCF
theory.

9.5.5 Interaction between brushes

Two brushes repel each other as they are brought into contact. This repul-
sion, which is a result of the osmotic interaction between the polymer seg-
ments, is the basis for colloidal stabilization.5'197'310 It has also been utilized
to probe the brush structure.244"249'251 Most of these studies have been on
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Fig. 9.25 Free end distribution for brushes with Na = 20 and pa = 0.1. The brush contains an
equal number of long and short chains. (O)NI = 40, distribution for short chains; (D)-W; = 40,
distribution for long chains; (A) monodisperse brush; (o)-/V/ = 60, distribution for short chains;
(V)JV; = 60, distribution for long chains. (From Ref. 309.)

symmetric brushes, in which both surfaces have the same surface coverage
and molecular weight. Recently Watanabe and Tirrell311 have studied asym-
metric brushes, in which the two surfaces have equal pa but different N or
different pa and different N but about the same weight per unit area of
polymer. They also studied the case where there is chemical asymmetry of
the grafted polymers.

Simulations in which two brushes are pushed towards each other give
detailed information about these interactions, including the force-distance
profile, changes in the monomer density as a result of compression and the
amount of interpenetration of the two brushes. This last quantity is usually
ignored in theoretical treatments, as it is expected to vanish for infinitely
long chains.312 In experimentally relevant systems,115 however, the amount
of interpenetration will be finite due to the finite length of the polymer
chains. Interpenetration affects the interaction between grafted surfaces,
as well as the rheological behavior of a collection of such surfaces,245 and
can be calculated directly in a computer simulation.

Simulations of the interaction between two parallel brushes in a good
solvent have been carried out using MD99 and MC42'74'81'93'313 methods.
The MD study of Murat and Grest" concentrated on the interpenetration
of two symmetric brushes as well as on the force between them as a function
of their separation. The force profile was compared to experimental results
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obtained for terminally attached polystyrene chains, van Lent et a/.156 and
Wijmans et a/.160 applied numerical SCF theory to study the effect of free
polymer on the structure and interaction between brushes. In the former, the
interest was in determining the effect of the free polymer chains on colloid
stabilization. Chakrabarti et a/.313 studied interpenetration in both sym-
metric and asymmetric brushes, comparing the results in detail to numerical
SCF study of Shim and Cates.314 Dan and Tirrell308 found that the inter-
penetration of bimodal brushes and equivalent length monodispersed
brushes was very similar. MC studies of the interaction between two brushes
were carried out by Dickman and Hong42 and Dickman and Anderson81

using a novel technique to measure the force. Carignano and Szleifer173

determined the force between plates using their statistical thermodynamic
model for both linear chains and 3-arm stars grafted to the surface at one
end.

As two brushes are brought into contact, two processes are found to
occur concurrently: interpenetration and compression. When the distance
D between the brushes equals twice the maximum extent /zext of each, the
parabolic profiles of both brushes begin to overlap and the density increases
everywhere between the two grafting surfaces. At small separations the
density becomes almost uniform in the gap between the grafting surfaces.
However, for low to moderate compressions, the density profile of each
brush remains roughly parabolic. This behavior is observed in all the simu-
lations mentioned here, as well as in the numerical SCF calculations of
Muthukumar and Ho.168 The amount of interpenetration at a given separa-
tion decreases as the N increases. One can quantify the amount of interpe-
netration in several ways. The quantity I(D), where

was suggested in Ref. 99. Here p\(z) is the contribution of one of the brushes
to the overall density and z is the distance measured from the grafting sur-
face of that brush. Results of the SCF theory of Milner et al.266 together
with a scaling argument by Witten, Leibler and Pincus315 can be used to
show" that I(D) has the following scaling form with TV and pa,

where x = D/2hpai. Here /zpar is the brush height derived from the parabolic
density profile predicted by the SCF theory. In addition to giving the inter-
penetration as a function of the separation for a given brush, this expression
also shows that the I(D) at a given separation decreases as N~2^pa . Since
the decay with TV is rather slow, the amount of interpenetration is expected
to be significant for experimental systems. Figure 9.26 shows this functional
behavior, together with the MD data from different systems with N = 50
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Fig. 9.26 Interpenetration /(£>) scaled as in eq, (9.36) for several cases. N= 100,
ft, = 0.03 (•);#= 50, ft, = 0.03 (•);# = 50,pa = 0.05 (x) ; JV= 50,^ = 0.1 (A); N = 50,
pa = 0.2 (o). (FromRef. 99.)

and 100 and 0.03 < pa&
2 < 0.20.. The data are found to collapse reasonably

well for small compressions. Even though N = 50 is barely in the scaling
limit (see Fig. 9.18[a]), the results for N = 50 behave similarly to those for
N = 100, which has a wider range of scaling behavior. The data for
paa

2 = 0.2 (> pai) deviate from this curve at lower values of compression,
than those for pao-2 = 0.1. This can be qualitatively understood by noting
that when the overall monomer density approaches unity, the density profile
is almost uniform and further decrease of D causes a uniform compression
rather than an increase in the interpenetration. As such high densities are
achieved at smaller compressions the higher pa, I(D) curves for those cases
saturate first.

Following Shim and Gates,314 Chakrabarti et a/.313 used a different mea-
sure for the amount of interpenetration,

Here Oj (i = 1,2 for the two brushes) is the sum over pi(z) over all layers z.
With this definition, total interpenetration corresponds to /3(D) = 1. Results
from both lattice and off-lattice MC simulations were compared with the
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numerical SCF calculation314 for identical N and pa. Simulations for asym-
metric brushes (cases for which the two brushes have different length chains
and/or surface coverages) were also included. The agreement is found to be
better for high compressions. It should be noted however, that these simula-
tions dealt with quite short chains (N = 50 for off-lattice and N < 40 for
lattice), and therefore the amount of interpenetration is significantly higher
than in the other simulations mentioned for comparable compressions. For
instance, the density of the monomers of one of the brushes at the grafting
surface of the other is finite for D ~ /zext, while it decays to zero long before
reaching the other surface for TV = 100 (Ref. 104) and for N = 80 (Ref. 42)
at the same compression.

The force between grafted polymers in a good solvent is repulsive at all
separations. There are also no hysteresis effects, indicating fast equilibration
and lack of entanglement. This was observed both in experiments244"249'251

and simulations.42'81'99 In MD simulations, forces between the brushes can
be calculated in a straightforward manner. As the forces between the mono-
mers are known at each time step, one can calculate the osmotic pressure
from the virial.25 The force per unit area/(D) between the two plates is then
found by subtracting the pressure at D = 2/zext. The force between the
brushes is found to relax very rapidly, in contrast to other equilibrium
properties, which take much longer to relax. Some experiments measure
the interaction energy E(D),24S

rather than the force per unit area. Both scaling arguments312'316 and SCF
theory266 predict that this energy should scale as E(D) ~ hpx

aE(D/2h), with
x = 3/2 and 4/3 respectively. The difference originates from the dependence
of the osmotic pressure on the monomer density in the two theories. These
predictions are obtained assuming that there is no interpenetration, so that
bringing the two brushes into contact results only in their compression. The
repulsive force is then calculated from the increase in the free energy due to
the compression. The two theories also predict different scaling functions
E(x). Figure 9.27 shows the MD simulation results for E(D) scaled as
suggested by the scaling theory. The energies for N= 50, paa

2 = 0.01 and
the two different values of N at paa-2 = 0.03 collapse to a single curve. The
other cases converge to this curve only for D/2/zext —> 1, although all the
curves have the same basic form. The inset in Fig. 9.27 shows the results of
Taunton et a/.244 from experiments with terminally attached polystyrene
chains of various MW. The solid line is a smooth curve passing through
the simulation data points for paa

2 = 0.03. Since the energy scale in simula-
tions is arbitrary, this line is vertically shifted to lie on the experimental
points for comparison. The overall agreement between the simulation and
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Fig. 9.27 Energy per unit area of interaction between plates. The symbols are identical to those
in Fig. 9.26. Additional results for TV = 50 and pa = 0.01 are shown as triangle inside square.
The inset shows results of Taunton et al. 244 (data points) and the MD simulation results (full
line) for N= 100, pa = 0.03. The simulation results are vertically shifted by an arbitrary
amount. (From Ref. 99.)

the experimental results is excellent. (This fit between the MD simulations
and experiments at intermediate values of surface coverage has been uti-
lized115 to map the simulation to real physical systems.) We emphasize that
the fit is achieved using no adjustable parameters, except the vertical shift
due to the arbitrary energy scale of our simulations. The length scale used in
the scaling of D is taken from simulations of a single brush and not from
those of interacting brushes.

Although the data collapse shown in Fig. 9.27 is with the functional form
predicted by the scaling analysis, a comparable collapse of the data is
obtained using the prediction of the SCF theory. This is also the case
with experiments.244'317 Therefore it is difficult to confirm either one of
the two theories using force measurements only. Only by probing the
inner structure of the brushes can one decide which of the two theories
describes the situation better. This has been done by both experiments
and simulations, as explained earlier in this chapter.
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We expect the agreement between the simulations and the theoretical
predictions to break down at high compressions when </>, the average density
of the monomers between the surfaces, approaches unity. At this limit, the
osmotic pressure diverges logarithmically with !-</>, rather than increase as
a power of <j>, as assumed by both theories. In Fig. 9.27 we indeed see this
deviation for paO2 = 0.10 and 0.20 at D/2/zext ~ 0.6 and 0.8 respectively,
since this dense regime is already reached at these compressions. Such a
trend, however, is not seen in the experiments,244"246'249 which are at rela-
tively low pa or in simulations with a lower pa. Because experiments were
done for a system of only a few ksT binding energy, pa decreased with
increasing N, as noted in subsection 9.5.1, and consequently high values
of pa were not achieved.

Calculation of the inter-brush force in lattice simulations is not as
straightforward as in off-lattice simulations where the forces are easy to
measure. On a lattice, Dickman and Hong42 devised a statistical mechanical
method for calculating the force in terms of the variation of the configura-
tional probabilities of chains when the separation of the grafting surfaces is
changed from D to D — 1. The method was applied to two-dimensional,42

and more recently, to three-dimensional81 bond fluctuation simulations of
brushes. The resulting force profiles were found to be consistent with the
SCF predictions,266 except at large separations (small compressions), due to
the tail in the density profile of finite length chains. No quantitative com-
parisons with experiment were carried out.

With decreasing separation of the brushes, the distribution of the free
ends of the brushes also undergoes qualitative changes. The distribution
gets wider, with significant penetration into the range of the opposite
brush. Interestingly enough, the free ends migrate preferentially towards
the depletion zone near the grafting surfaces, where the density of the
monomers is low. The distribution function of the free ends of each brush
increases near both grafting surfaces; that is, the free end of a chain prefer-
entially visits both grafting surfaces. This is observed in both MD99 and
MC42,8i,3i3

9. 5.6 Brushes on curved surfaces

In many applications, including colloid stabilization,5'197'310 polymers are
end-grafted onto large particles which are intermediate between the planar
brush and a star. Curved brushes, with either spherical or cylindrical sym-
metry, can also be formed by asymmetric diblock copolymers in the strong
segregation limit.258 When the grafting surface curves towards the polymers
(concave curvature), the volume available to the polymer chains is lowered
compared to a flat surface. In this case, the chains are stretched throughout
the brush and the brush is qualitatively unaltered from the flat case.237'269

MC simulations on a tetrahedral lattice for chains inside a spherical cavity

simulation
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have been carreid out by Limpouchova and Prochazka.318 Here we will be
concerned only with convex curvature for which the available volume grows
with the distance from the grafting surface, and the chains become less
stretched. The structure of the brush is then altered considerably. The limit-
ing cases of vanishing radius of curvature for spherical and cylindrical graft-
ing surfaces are a star polymer and chains tethered on a rigid line,
respectively. These were already discussed in previous sections. Here we
discuss the intermediate case corresponding to the crossover from these
highly curved surfaces to a flat one.

Simulations of curved brushes have been carried out by Murat and
Grest104 for cylindrical surfaces using MD and by Toral and
Chakrabarti94 for spherical surfaces using off-lattice MC (pearl necklace).
Both studies treated cases in which the radius of curvature Rc is of the order
h. The monomer density profile for three cases is shown in Fig. 9.28. The
density is given as a function of the distance from the grafting surface. For
the case of the largest radius of curvature (Rc = 20<r), the density profile is
practically indistinguishable from the parabolic profile obtained for a flat
brush. As the radius decreases, the density profile changes its shape, going
over to one with a steeper increase near the surface. The maximum density
that is attained somewhere close to the surface decreases as well. An iden-
tical behavior is seen in the numerical SCF study of Dan and Tirrell170 and
Wijmans and Zhulina159 except that the layering near the surface observed
in Fig. 9.28, does not appear in the SCF study. For spherical brushes, a
similar transition from a concave monomer density profile (for Rc = 5cr) to
a qualitatively parabolic one (for Rc = 11.18<r) is observed for N = 50
chains, as shown in Fig. 9.29, where the MC results of Toral and
Chakrabarti94 and the statistical thermodynamic results of Carignano and
Szleifer174 are shown. Note the excellent agreement between the two.

SCF treatment for a flat brush had shown that the free ends of the
brushes are not excluded from any region in the brush; there is a finite
probability of finding them anywhere within the brush. For stars, on the
other hand, the free ends of the chains are pushed outwards, due to the fast
decay of the monomer density at the outer regions. This leads to a "dead
zone" for the free ends, whose size is a finite fraction of the star's radius.97

The question naturally arises whether such a "dead zone" exists for brushes
with finite radii of curvature. Ball et al.237 predicted the existence of a dead
zone in cylindrical brushes in a melt while Wijmans and Zhulina159 pre-
dicted similiar behavior for chains immersed in a low molecular weight
solvent. In a melt, a SCF analysis237 found that in the limit of very high-
molecular-weight chains grafted at a small pa, there is a dead zone whose
thickness grows from zero for flat brushes to a fraction 2/ir of the brush
height for strongly curved cylinders. For intermediate curvatures, the size of
the dead zone is not negligible; when the cylinder radius equals the brush
height, the thickness of this zone is about one-third of the layer thickness. Li
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Fig. 9.28 Monomer density profile p(r') of brushes with N = 50 and pa = 0.03, grafted onto a
cylinder of radii (a) Rc = 20, (b) Rc = 5 and (c) Rc = 2. Each curve is shifted vertically with
respect to the previous one by 0.02 for clarity, r1 is the distance from the surface of the grafting
cylinder. (From Ref. 104.)

and Witten applied a variational approach to the problem of polymers
grafted on convex surfaces and extended the treatment of Ball et a/.237 to
strongly curved brushes in a solvent. Their work confirmed the existence of
a finite dead zone for brushes in a good solvent, although the addition of the
solvent was found to decrease the size of the dead zone.

The free end density as a function of the distance from the grafting surface
i94shows no indication of a dead zone for various cylindrical and spherical

systems in which the ratio h/Rc is between 0.4 and 3.5. Indications of a dead
zone appear in the simulations94'104 only when the radius of the grafting
surface is very small compared to the brush height. Thus there seems to be a
discrepancy between the simulations and the analytical SCF analysis for
intermediate values of the radius of curvature. Numerical SCF calculations
of Dan and Tirrell170 and Wijmans and Zhulina159 with comparable values
of N and pa also showed no immediately apparent exclusion zone, except for
the very high N, high curvature limit. (See Section 9.4 for a discussion of the
dead zone at this extreme limit.) As noted by Toral and Chakrabarti,94 it
may be difficult to observe an exclusion zone in simulations with finite radii
of curvature, as the width of this zone may be comparable to the length scale
over which finite chain length effects in the density are important. In order
to observe such a zone, it may be necessary to use chains of length much
larger than the ones used (N < 100) in the present simulations.



Fig. 9.29 Density profile in brushes of chains with N = 50 grafted onto spherical surfaces of
radius Rc = 5 and 11.18 at various grafting densities pa. The closed symbols are from the MC
simulations of Toral and Chakrabarti94 and the open symbols from the statistical thermody-
namic theory of Carignano and Szleifer.174 (From Ref. 174.)

544
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9.5.7 Brushes without a solvent

All the preceding discussion in this section was related to brushes in which
the monomer-monomer interactions are mediated by a low molecular
weight solvent. This type of a grafted layer which contains a high concen-
tration of the solvent, is referred to as a "wet brush". When grafted chains
are in contact with a melt of shorter, chemically identical chains of length
P < N, the free chains screen the excluded volume interactions and reduce
the overlap coverage to p*a ~ ^-6/5p-2/5.8'213'319'320 For pa ~ P~2, the P
chains are almost completely expelled from the brush and h ~ Npa. This
case is commonly referred to as a "dry brush". In the intermediate regime,
h ~ NP~l/3pl

a . The driving force for the stretching of the chains is then the
incompressibility of the chains. When there are no free chains within the
brush, the density is nearly uniform, independent of the distance from the
grafting plane. Compared to the wet brushes, there have been fewer theore-
tical8,46,47,i60,i66,2i3,269,3i9-32i ̂  experimental322-324 studies of dry brushes.
There have been no brush simulations in which the solvent molecules are
explicitly taken into account, even for P = 1. The only simulations of dry
brushes use a repulsive wall at height h ~ Npa to achieve melt densities in
the brush monomers.

Simulations of dry brushes are also rather difficult to equilibrate, due to
the high monomer densities within the brush, which give rise to very long
equilibration times. Although MD has been applied to a melt of chains in
the bulk,28 there have been no MD simulations of brushes in the melt
regime, with or without solvent chains. In standard MC algorithms, the
acceptance rate of the attempted moves becomes extremely low in this
regime. However, the method of cooperative rearrangements,43'44 in which
kinks and chain-ends are moved along the chain, is relatively efficient in this
regime. Pakula and Zhulina46 have used this method to study a dry brush in
contact with a repulsive wall. They also studied the case where the other wall
can adsorb the free end of the chain.47

In a system of dry layers formed by chains of length N at a sufficiently
high grafting density, the chains will stretch considerably with respect to
their unperturbed dimension. Much larger N are needed in order to stretch a
dry brush than a wet brush, due to the overall large monomer density. The
stretching is not homogeneous, with the segments near the grafted wall more
stretched than the ones in the outer regions. Following Semenov's SCF
analysis for block copolymer melts,269 Pakula and Zhulina46 used a mean-
field free energy functional in terms of the local stretching and of the dis-
tribution of the free ends. Unlike the case of good solvents, their functional
contains only the elastic term, since the monomer-monomer interactions are
completely screened out. Minimizing this functional, with the constraints
that the density is uniform everywhere in the brush and the chain length is
conserved, they obtained
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for the free end distribution and

for the stretching dz/dn at point z of a chain whose free end is at z'. Using
these quantities, they were able to calculate various characteristics of the
melt brushes, such as the mean and the mean-squared height of the free
ends, the orientational order parameter, and the spatial distribution of the
centers of mass of the chains. These were then compared with the results of
simulations.

Simulations46 of brushes with 40 < N < 160 and 0.25 < pa < 0.5 showed
satisfactorily good agreement with the predictions. For these systems, the
ratio of the brush height to unperturbed height of the chains is between 1.6
to 6.3, so that the brushes are moderately stretched. For comparison, non-
grafted chains between two neutral walls with a separation of h were also
simulated. The stretching of the chains is accompanied by their orientation.
The order parameter, defined as ry = (3{ cos2 #} - l)/2, where 9 is the angle
between the end-to-end vector of a chain and the normal to the grafting
surface, is shown in Fig. 9.30 for both grafted and ungrafted chains. Chains
whose centers of mass are close to the grafting wall align parallel to it. The
same effect is seen for nongrafted chains as well. Far away from the walls,
the nongrafted chains are randomly oriented, while grafted chains with the
free ends far away from the wall become more oriented. Local orientation of

Fig. 9.30 Order parameter of the end-to-end vector of grafted and nongrafted chains in the
melt, as a function of the position of the center of mass of the chain. The chains are of length
JV = 80. Nongrafted chains are confined between two neutral walls at a distance of 40 lattice
units from each other. (From Ref. 46.)
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the chain segments is also found to be consistent with the predictions based
upon the mean-field analysis. Distributions of the free ends and of the
centers of mass show increasingly better agreement with the analytical
results as N increases.

Another system at melt density that was recently simulated is that of a
brush in which the free ends are weakly adsorbing. The functional end-
group interacts with a wall at a distance H > h from the grafting wall,
with h being the height of the brush without functional end-groups.
Adsorption of the free ends onto the wall (with an adsorption energy e of
order kBTor larger) may lead to a "bridging" effect where a fraction^ of the
the chains are connected to both walls. This bridging effect has also been
studied by Johner and Joanny325 for brushes in a good solvent, using an
extension of the SCF method266 developed for brushes without the interact-
ing free ends. They found that p remains small except for unrealistically
large adsorption energies, and that there exists a "dead zone" near the
adsorbing wall from which free ends are excluded. The existence of the
dead zone leads to a very slow bridging kinetics.325 Zhulina and Pakula47

treated a similar problem under melt conditions, using both SCF analysis
and MC simulations with the cooperative rearrangement algorithm.43'44

They found that bridging is governed not by e alone but rather by e//^o,
where JJLQ ~ Np2

a is the chemical potential of the brush with no interacting
free ends. Therefore, increasing N at constant e decreases the fraction of
chains attached to both walls, in agreement with the results of Johner and
Joanny325 for brushes in a good solvent. Noticeable bridging is expected to
take place only for adsorption energies e ~ N. In this case, the fraction p of
the bridging chains is found to increase sharply with e/fiQ, with a possible
phase transition at zero e//j,Q. A dead zone for the unattached free ends is
observed in the melt case as well. The thickness of the free zone increases
with increasing p (or equivalently, with increasing e///0). The simulations
reproduced the mean-field results quite well, with the agreement becoming
better with increasing N.

9.5.8 Time-dependent phenomena

Most of the simulation work on brushes has concentrated on structural
properties. Much less work has been done in studying time-dependent phe-
nomena. Following Halperin, Tirrell and Lodge,1 it is convenient to divide
the time-dependent phenomena into kinetic, which includes the assembly
and dissolution of the chains in the brush, and dynamic, which describes
the shape fluctuations of the chains, and their response to external pertur-
bations.

As already mentioned, the binding energy of the grafting end group is
very often several ksT and the chains are in dynamic equilibrium with free
chains in the solution. In equilibrium, pa is determined from the balance
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between the elastic energy and the binding energy. Lai 80 was the first to
attempt such a simulation, though only for short chains, N < 20. Even for
these short chains, the equilibration time turned out to be of order 107 to 108

MC steps/monomer. More recently, Zajac and Chakrabarti326 have studied
the kinetics of brush formation for chains up to 200 monomers. Both of
these simulations showed that when one starts from a situation in which the
grafting surface is bare, and all the chains are in the solution, the initial rate
of adsorption is fast and the kinetics is governed by diffusion. Later on in
the adsorption process, the chains have to overcome the barrier set by the
chains already adsorbed. The equilibrium coverage attained at very long
times increases with the binding energy and decreases with N. A quantitative
comparison with a theoretical327'328 treatment of this process was not pos-
sible in Lai's work since the theory assumes a reservoir of chains in the
solution, while his simulation was performed with a fixed number of chains.
In contrast, Zajac and Chakrabarti did their simulations in a situation where
the brush was in contact with a bulk reservoir. They found that even though
the density profiles scale, they were not parabolic due to the presence of free
chains which penetrated into the brush layer to some extent. For the chain
lengths and binding energies used, they found that their chains were not
strongly stretched. In both simulations, when the initial configuration is
such that all the chains in the system are artificially grafted to the surface,
the same final grafting density and monomer density profile are obtained,
demonstrating that equilibrium is established in both cases. A related pro-
blem is to understand the kinetics of expulsion of a single chain detached
from the surface of a brush.329'330 This gives some important insight into the
full kinetics problem, since expulsion of a chain is one aspect of the inter-
change of chains in solution with those on the surface. Wittmer et a/.330 find
that a chain cut off from the wall is expelled at a constant center of mass
velocity. This velocity decreases as the inverse of the chain length and
increases with grafting density pa. In the early stages of the expulsion, the
tension of the monomers close to the wall relaxes and the chain retracts. The
rinsing of the brush by a pure solvent has also been studied by simula-
tion.326'330

The simulations of Lai80 and Zajac and Chakrabarti326 also provide valu-
able insight into the phenomenon of the replacement of the long chains by
the shorter ones, as observed in some recent experiments,331"333 and pre-
dicted theoretically.334'335 When a solution of short chains are added to a
brush of long chains, the shorter chains replace the longer ones, reaching
equilibrium coverages that depend upon the length of the two chains and the
relative binding energies. The driving force for this replacement is the larger
elastic energy of the longer chains. When the binding energy of the end-
group to the surface is the same for both the long and short chains, the
higher elastic energy of the longer chains leads to their detachment from the
surface. The longer chains are also found to be highly stretched in the inner
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layer of the brush (which contains mostly the short chains) and less stretched
at the outer layer, resembling the structure observed in polydispersed
brushes with fixed grafting density.309 In the limit of large end adsorption
energy, all but the shortest species are excluded from the brush, irrespective
of the solution composition and the width of the molecular weight distribu-
tion.335 The simulations of Zajac and Chakrabarti326 are the first to study
this exchange in a simulation.

The dynamics of brushes is easier to deal with in the simulations than the
kinetics. In fact, even while calculating the equilibrium properties of the
brush, one routinely calculates the equilibration times to make sure that
the simulations are carried out on time scales much longer than the equili-
bration times. A convenient way to calculate the relaxation time is to eval-
uate the autocorrelation function Cx(t), defined in eq. (9.21). Here x is any
structural quantity, such as Ro,R or their z components, RGz and Rz. The
MD simulations of brushes in a good solvent98 showed that the relaxation
times derived from the decay of these autocorrelation functions increases
with N as TX ~ Napb

a, with a and b in the range 2.4-3.1 and 0.8-1.1 respec-
tively. Bond fluctuation MC simulations78 gave a similar result, with
a = 3.0 ±0.1 and b = 0.83 ± 0.08. A scaling argument,98 based on the
idea that the monomers within the blobs obey Rouse dynamics23 and a
chain relaxes when the fluctuations within the blobs diffuse through the
whole chain, gave rx ~ N2pa . This expression, which is similar to the
one obtained for the relaxation of a chain restricted to move in a tube,336

is in contradiction with the simulation results. This argument had also been
suggested for the relaxation time of the individual arms of stars97 (see
Section 9.3), where it was found to be consistent with the simulation results.
The difference between the two cases is that in a star the largest (outermost)
blobs dominate the relaxation process, whereas in the brush, all the blobs
contribute equally to the fluctuations. Klushin and Skvortsov337 proposed
instead that rx is determined by the fluctuations of the end-to-end distance
of the chains. These fluctuations have a mean-squared average magnitude
(<5/z2) ~ h2 ~ N2pa . Excluding hydrodynamic interactions (as is the case in
simulations), the diffusion constant D of a chain of N monomers is propor-
tional to TV"1.279 This gives TX ~ (8h2)/D ~ N3p%3 for the relaxation times,
in reasonable agreement with the simulations, although the exponent b is
slightly smaller than the values observed in the simulations. Lai and
Binder78 suggested that the MC results should be corrected by the depen-
dence of the monomer jump rate on pa. This correction changes the value of
b from 0.83 to about 0.6, which is slightly smaller than the prediction of
Klushin and Skvortsov. It should be noted that the TV3 dependence is not
related to the reptation or the entanglement of the chains; it follows from
the fact that a chain-end has to traverse a distance of order TV before the
chain completely relaxes.
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Johner and Joanny325 and Wittmer et a/.330 used the Zimm model in their
work based upon a SCF theory which includes the entropy of chain-end
distribution, and found a relaxation time of order TX ~ h3 ~ N3pa. Although
this is consistent with the simulation results, a direct comparison cannot be
made, as this theory takes into account the hydrodynamic interactions
within the correlation blobs, which is not included in the simulations. The
collective relaxation dynamics of a swollen brush in a good solvent has
recently been studied by Farago et al. 338 by neutron spin-echo spectro-
scopy. They observe a multi-decay time relaxation which can be described
by treating the brush as a semidilute polymer solution with a varying con-
centration profile. Another method of investigating the dynamics is by nmr.
Blum and coworkers have used this technique to study the effect of solvent
quality on the dynamics of chain monomers.339

At the 0 point, the chain relaxation is found to be slower. Lai and
Binder79 found TX ~ N3p^6. Applying the Klushin and Skvortsov argu-
ment337 with h ~ Npl

a'
2 in a 6 solvent, one finds TX ~ N3pa. Therefore,

the dependence of the relaxation times on pa is stronger in the simulations
than the scaling arguments of Klushin and Skvortsov. Even with the correc-
tion79 for the dependence of the jump rate on pa, the exponent of pa is still
expected to be at least 1.2. Interestingly enough, the Zimm model325'330 gives
an exponent of 3/2 for the grafting density, very close to the simulation
results.

Unlike the autocorrelation functions that are related to the overall relaxa-
tion of the whole chain, the mean-squared displacements

give information on the local dynamics of the monomer /. Lai and Binder
studied the behavior of the displacements for both good78 and 6-solvents.79

In a good solvent and for intermediate times, gz
t(t) ~ Z1/2, typical of Rouse

dynamics, except for monomers very close to the grafting site. At times of
order rx, this displacement saturates. For the monomers at the free end of
the chains, the saturation value of gz is of order h2. Monomers close to the
grafting site have almost no time regime which satisfies Rouse-like
dynamics, due to the restricting effect of grafting. Motion of the chains in
the Jty-directions exhibits a behavior similar to the z motion. However, for
chains that have grafting groups that are mobile in the plane, gj~(t] crosses
over to free diffusion (g^-(t) ~ f) at the same time that gf (/) saturates. One
can then in principle calculate a diffusion constant for the lateral motion by
extrapolating g^(t)/4t to infinite times. Reliable values of the diffusion
constant cannot be derived from existing data, due to the very limited

and
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gL(t) ~ t regime observed in the present simulations. Simulations with much
longer chains are needed to evaluate the diffusion constant and its depen-
dence on N and pa accurately. The MC study of Milik et al. 39 on short chain
brushes with mobile adsorbed heads exhibit similar dynamic behavior, with
a transition from a Rouse regime to free diffusion, through a limited t1/4

regime which the authors attribute to entanglement effects. This explanation
does not seem plausible, however, as both in this study and in Ref. 78, the
slowing down is most pronounced for the end monomers, whereas chain
entanglement is expected to most affect the chain center. In a 0 solvent,79

the behavior ofgf( f ) is qualitatively similar to the good solvent case. The
transverse motion, gf-(t), on the other hand, is found to behave as ?'/4,
indicating possible entanglement effects at the high monomer densities
observed at this solvent condition.

9.6 Polymers tethered to themselves

In the previous three sections, we reviewed the properties of chains tethered
to a fif-dimensional surface. Another interesting case is when the polymers
are tethered to themselves. Probably the most familiar example of chains
tethered together is that of crosslinked rubber,340'341 in which a melt of long
chains is randomly crosslinked, either by chemical reaction or radiation.
Above a critical concentration of crosslinkers, the system is a solid and
has a well defined shear modulus. Random crosslinked rubbers have a
broad distribution for the number of monomers between crosslinks and
length of dangling ends.342 These dangling ends are similar to the arms of
a star polymer in that they are tethered at one end. However they are
elastically inactive and do not contribute to the modulus. While random
crosslinked rubbers are easy to make, most theoretical work is on ideal
networks, in which the chemical distance between crosslinks is a delta func-
tion and there are no dangling ends. Both types of networks are reviewed by
Kremer and Grest143 in Chapter 4 of this book and will not be discussed
further here.

While polymer networks which are produced by crosslinking chains in a
melt or semi-dilute solution are clearly three-dimensional, it is also possible
to imagine other circumstances, where chains tethered to each other form a
fractal. In 1984, Gates343 introduced the term "polymeric fractal" to
describe systems which are made of flexible polymer chains at short length
scales but have an arbitrary self-similar connectivity at large distances. A
linear chain is the simplest example of a polymeric fractal. Other examples
include swollen gelation/percolation clusters at the percolation threshold pc,
Sierpinski gaskets and branched polymers. Such fractals are interesting
because they have no inherent rigidity and are locally very flexible. In equi-
librium, they take on shapes which often have a very different fractal dimen-
sion df than when they were first constructed. Tethered, self-avoiding
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membranes in which monomers are connected to form a regular D dimen-
sional surface embedded in d dimensions122'344 can also be classified as
polymeric fractals though they were not first perceived this way. The reason
is that the global properties of tethered membranes are the same if one
connects linear chains together to form a D dimensional array107"109 (see
Fig. 9.1[d]) or if each of these chains is of length one. While the local
flexibility of the membrane depends on the length of the chains, the overall
global properties do not.

In this section, we review some of the recent progress in simulating poly-
meric fractals, with particular emphasis on tethered membranes made of
linear polymer segments connected together to form a two-dimensional sur-
face.107"109 After a brief review of the theory, we present results from a
number of groups which show that two-dimensional tethered membranes
remain flat and do not crumple. We then consider the effect of changing the
solvent quality by adding attractive interactions between nonbonded mono-
mers. While there is clear evidence for a collapsed phase113 at low T, the
nature of the crossover from flat to compact state remains unclear.

9.6.1 Flory theory

As a first approximation, it is convenient to neglect self-avoidance and use a
Gaussian approximation212'345 to estimate the fractal dimension d/ which
relates the number of monomers N of the fractal to RG, RQ ~ N. Within this
approximation, it is straightforward to show343'344 that dj depends only on
the object's connectivity through its spectral dimension d,

Here the subscript o indicates that the excluded volume interactions are
absent. For a linear polymer d= 1, eq. (9.43) reproduces the result for a
Gaussian chain, namely df0 = \/v0 = 2.212 Levinson346 found that it also
works well for triangular Sierpinski gaskets (d= 2 In 3/In 5 « 1.365)347

embedded in dimension 3 < d < 8. For percolation clusters at pc,
d ~ 4/3,348"350 and d/0 = 4, which has been confirmed by Grest and
Murat102 using MD. For tethered membranes, d = D = 2 and df0 = oo. A
more detailed analysis by Kantor et al. 122'344 found that RGo ~ In N which
they confirmed by MC simulations.

Self-avoidance can then be introduced at the level of Flory theory345 as
for linear polymers by balancing the elastic (entropic) free energy of the
phantom object without self-avoidance with the mean-field estimate of the
excluded volume interaction,343
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Here v is the excluded volume parameter. By minimizing eq. (9.44) and
using eq. (9.43) to relate RGO to N, the Flory estimate for df is

Thus even in the case when self-avoidance is important, df depends only on
the spectral dimension d and the dimension of space d.

Despite the fact that the Flory argument is a simple mean-field theory, it
works very well for a number of cases, often producing estimates for df
which differ from the exact result by only a few percent or less for
d < duc. Here duc = 4d/(2 — d) is the upper critical dimension above which
self-avoidance is irrelevant.343'351"354 For a linear polymer eq. (9.44) works
extremely well for d < duc = 4. In three dimensions, the theory predicts
i/ = \jdf = 3/5, which is very close to the best renormalization groups esti-
mates12 of 0.588. Percolation clusters at the percolation threshold are
another example where eq. (9.45) works well. Since d ~ 4/3 in all dimen-
sions,348"350 eq. (9.45) predicts that df~2(d+2)/5, independent of the
dimension in which it was generated. In d= 3, J/~ 2. Daoud et a/.355 also
found that for gelation clusters generated just below pc (df ~ 2.5)df was
reduced to 2, after the excluded volume interactions from the nearby clusters
are screened (removed). Their arguments were identical to those presented
here, though they did not express their result in terms of d. Since gelation
and percolation clusters are believed to be in the same universality class,356

this is a good test case for eq. (9.45). Adam et a/.,357 using light scattering,
found that the undiluted gelation clusters have df = 2.5±0.09, while
Bouchaud et al. 358 found using small angle neutron scattering, that the
diluted clusters have df = 1.98 ± 0.03. Recently, we102 carried out a detailed
MD simulation study of percolation clusters generated near pc with both
two- and three-dimensional connectivity embedded in three dimensions and
found that df was 2.0 within our numerical resolution. Any deviations from
Flory theory were very small.

While the Flory approximation works well for some systems, this is not
always the case. Two such examples are Sierpinski gaskets359 in d = 2 and
two-dimensional tethered membranes in d = 3. For tethered membranes, the
Flory-level theory predicts that df = 5/2ford=D = 2 and d=3. This state
is commonly referred to as a crumpled membrane since the relaxed mem-
brane should be isotropic. This expectation that the membrane would crum-
ple was supported by renormalization group calculations122'351"353 and early
MC simulations122 on small systems. However a number of more detailed
MC123~128 and MD100"103'107"109 simulations found that the membranes
remained flat, P?G ~ N, and did not crumple. Instead the largest two
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eigenvalues of the moment of inertia tensor M scaled as N, while the
smallest eigenvalue scaled as M, with (< 1. Various estimates for ( are
discussed below.

It is interesting to consider in more detail why some systems, in particular
those for which d is close to 1, crumple and others do not. The lack of a
crumpling transition in d = 3 for two-dimensional tethered membranes has
recently been explained101 in terms of an implicit bending rigidity which is
induced by the self-avoidance requirement even when such a term is not
present in the microscopic Hamiltonian. If bending rigidity is relevant, then
the Flory theory is not expected to work. To support this argument,
Abraham and Nelson101 simulated tethered membranes with only second-
neighbor-excluded volume interactions. They found that this is sufficient to
produce a flat phase even when further neighbor interactions are turned off.
Additional support of this idea is given by Abraham107 and Petsche and
Grest109 who found that a network of flexible linear polymers connected to
form a two-dimensional tethered membrane remains flat even for long poly-
mer chains. Removing sites102 or bonds360 randomly from the membrane
also did not cause it to crumple. Kroll and Gompper's361 finding that a
membrane of flexible tethered strings362 in which self-avoidance is enforced
by ensuring that the elementary triangles are impenetrable is asymptotically
flat also supports this idea. In all of these cases, the membrane remains flat
even though the local bending rigidity is quite low, suggesting that the
interactions inducing the long-range bending rigidity, whatever they are,
must be relevant under renormalization. Had this not been the case,
then above a critical length for the polymer chains, the induced bending
rigidity would fall below the critical value necessary to keep the mem-
branes flat363"365 and the membrane would crumple.

To understand why excluded volume interactions do not generate a com-
parable bending rigidity for gelation/percolation clusters near pc or for
linear chains, it is informative to consider the relevancy of higher interaction
terms in the Hamiltonian. Since renormalization group approaches expli-
citly take into account the two-body repulsive interactions, it seems reason-
able to assume that higher order terms are responsible for generating the
implicit bending rigidity that keeps a tethered membrane fiat. At least within
Flory theory352'354 it is straightforward to determine for a given d and d
whether the «-body interaction vn is relevant or not. The line where vn

becomes relevant is

Two-body terms are irrelevant for d > duc as mentioned above. Three-body
terms are irrelevant for d > 4d/(6 + d). For polymeric fractals embedded in
d = 3, three-body terms are irrelevant for d < 4/3. This explains why there is
no induced bending rigidity for linear chains and gelation/percolation clus-
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ters near pc. This may also explain why these systems satisfy eq. (9.45) so
well. However, for tethered membranes Flory theory suggests that four-
body interactions are relevant below six-dimensions and must be taken
into account.354 In fact, three-, four- and five-body interactions are relevant
and six-body terms are marginal in d = 3, according to Flory theory. If
three-body terms are sufficient to generate an effective bending rigidity,
then Flory theory would predict that above d — 6 membranes should crum-
ple, while if four-body terms are necessary to generate the bending rigidity,
then the crumpling would occur above d = 4. While there is no reason to
take the Flory theory very seriously as to the exact dimension at which a
tethered membrane will crumple, it does suggest that crumpled membranes
may exist, albeit in dimensions higher than three. Grest103 carried out MD
simulations for two-dimensional tethered membranes embedded in
3 < d < 8 dimensions which showed that for d > 5, the membranes do in
fact crumple. Recent MD simulations366 in d = 4 with a hard-core bead
diameter a as small as 10% of the bond length failed to find a crumpled
state. For d = 5, they also find that the membrane is crumpled. These results
are in agreement with recent analytic results by Goulian367 who used a
Gaussian variational approximation and Le Doussal368 who did an expan-
sion in large embedding space dimension d. They found that the fiat phase is
stable for d = 3 and tethered membranes crumple only for d > 4 for D = 2
in agreement with Grest.103 For d > 4, their results for d/ are much closer to
the simulation results than the Flory theory, eq. (9.44). Guitter and
Palmeri369 used a variational approach for large d and found that the mem-
branes with D = 2 in d = 3 lie at the boundary of the always-flat phase. A
phase diagram for polymeric fractals for (d, d) summarizing where the
crumpled and flats occur and where self-avoidance is relevant is presented
in Ref. 103. This diagram follows an earlier one by Levinson.346

9.6.2 High-temperature flat phase

The simplest model of a tethered membrane is composed of purely repulsive
spheres which are connected together to form a planar triangulated net-
work. In MC simulations, the spheres are taken as hard spheres, while in
MD simulations, they interact with a purely repulsive Lennard-Jones inter-
action, eq. (9.3). A variety of tethering potentials have been used, as dis-
cussed in Section 9.2, usually for a hexagonal sheet of size L containing
N = (3L2 + l)/4 monomers. These systems are often referred to as "open"
since the perimeter is free. To minimize finite size effects, some simula-
tions126 have been done on "closed" systems in which the monomers are
connected to form a spherical shell. Abraham370 used periodic boundary
conditions and a computational cell which was allowed to vary in size using
a constant-pressure MD technique. More recently, simulations have been
carried out for membranes in which linear chains of n monomers are
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connected together to form a hexagonal lattice107'108 or triangular lattice.109

In the former case, the simulations are for open membranes in which the
chains are connected at three-point vertices. In the latter case, the membrane
is closed and all of the vertices are sixfold except for 12 which are five-fold,
in order to form a closed vesicle. An illustration of an open membrane with
n = 8 is shown in Fig. 9.31. The largest simulations have been with
N = 29 420 for open membranes and 25 002 for closed membranes, both
for n = 8. In this review we consider the case where the hard sphere diameter
or Lennard-Jones length a is comparable to the bond length between teth-
ered monomers. There have been several studies100'124'128 which have con-
sidered the case in which a is smaller than the bond length. In all these cases,
the membrane was asymptotically flat, for nonzero a, provided the repulsive
interaction acted between all monomers independent of their chemical dis-
tance.128

In Fig. 9.32, a typical configuration is shown for a tethered membrane
with N = 4219 particles (L = 75,« = 0) from the MD simulations of
Ref. 101. Note that in two directions the membrane is very large while
quite thin in the third direction, consistent with the fact that the two largest
eigenvalues of M scale as TV and £ < 1. In Fig. 9.33, similar results are shown
for closed membranes with N approximately 4000 for three values of n.109

Note that for small n, the membrane retains some memory of its initial
icosahedral topology. This system has a relatively large local bending rigidity
due to the large connectivity, similar to the open membrane in Fig. 9.32. For
larger N, the shape will become more spherical. For n = 8 and 16, however,
the local bending rigidity is significantly reduced and there is little evidence
of the icosahedral topology even for systems as small as a few thousand

Fig. 9.31 Illustration of a tethered membrane of size N = 29 420 with n — 8 monomers between
each vertex. (From Ref. 107.)
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Fig. 9.32 Typical configuration of an open self-avoiding tethered membrane of 4219 monomers
(n = 0) from Ref. 101. The tethering bonds are drawn between bonded neighbors, whose hard-
core size is not shown.

monomers. A configuration for a larger membrane, N = 16 002 is presented
in Ref. 109. To demonstrate that these membrane are flat, consider how (-Kg)
scales with L. In Fig. 9.34, results from Abraham107 are presented for three
values of « = 0, 1, and 9. Note that, independent of «, (R^} ~ L. Similar
results were found by Petsche and Grest for closed membranes.109

One of the original motivations for studying large membranes made of
linear chains was to investigate whether reducing the local bending rigidity
would cause the membrane to crumple. Abraham107 showed very conclu-
sively in his study of open membranes that the order parameter,363 defined
as the ratio of {-R^} to the square of the membrane size, vanishes only as the
mass fraction of the tethered membrane vanishes. Petsche and Grest109

found similar results for closed membranes. In Fig. 9.35, we plot (P^/L2
0

versus the mass fraction, for both the open107 and closed109 membranes.
Here L0 is a measure of the membrane size, which for an open membrane is
its length in the perfectly flat state and for a closed vesicle is the length along
an edge in the initial icosahedral configuration. Since for a crumpled mem-
brane, the order parameter vanishes, the results strongly support the con-
clusion mentioned above that tethered membranes remain flat, even when
the holes are quite large and the mass fraction is quite low.

It is not necessary to use a finite-range hard-core repulsion to ensure self-
avoidance, as is done in the standard bead-spring models for tethered
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Fig. 9.33 Typical configuration for a closed self-avoiding membrane for (a) N = 4002 (n = 0),
(b) N = 4002 (n = 8) and (c) N = 4412 (n = 16).

membranes. Self-avoidance can also be guaranteed by requiring that the
elementary surface triangles do not intersect.361'362 This results in a very
flexible surface which can fold in on itself without any cost in energy. The
resulting surface is therefore much rougher than those constructed with
hard spheres and small n, more like what one would expect for bead-
spring models in the limit of large n. Kroll and Gompper361 found that
such a surface is asymptotically flat in disagreement with earlier statements
by Baumgartner362 that this system crumpled. This result is also consistent
with the data shown in Fig. 9.35, which shows that the membranes remain
flat for all finite n.

While it is now commonly accepted that self-avoiding membranes without
attractive interactions remain flat and do not crumple, the flat phase still
exhibits some interesting properties. For a membrane containing N mono-
mers, the transverse displacements have an amplitude (/z2) ~ N1* where
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Fig. 9.34 The mean radius of gyration as a function of membrane size L for membrane with n
monomers between each vertex. Here n = 0 (•),« = 1 (+) and n = 8 (•). Note that the com-
pact membrane (n = 0) has the same slope as the perforated membranes. The slope of each line
is 1.0.

1/2 < £ < I.371 The smallest eigenvalue of M is a convenient way to measure
(/z2) for an open membrane. The scale-dependent bending rigidity K in the
flat phase scales as A^/2, with rj = 2 — 2£, while the scale-dependent shear
modulus scales as N~^12, with ̂  = 4( - 2.372'373 Nelson and Peliti372 car-
ried out a one-loop, self-consistent calculation and found that C = l/2>
which would mean that the membrane would have a finite shear modulus
on large scales. Recently, Le Doussal and Radzihovsky374 carried out a self-
consistent screening approximation which improved on the Nelson-Peliti
theory by allowing nontrivial renormalization of the elastic moduli. They
found C = 0.59 and that the Poisson ratio is -2/(Z> + 2). Early simulations
on open, triangular networks (n — 0), gave ( in the range of 0.63-
0.65,101'125'375 slightly larger than predicted by Le Doussal and
Radzihovsky. However some earlier estimates of £ were closer to 1/2.
Lipowsky and Girardet371 carried out MC simulations for a continuum
model of a solid-like elastic sheet and found that their data were consistent
with £ = 1/2. They did not give any error bars, but did claim that their
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Fig. 9.35 Order parameter as a function of mass fraction for various n. The open circles are
from Abraham10 and the closed circles are from Petsche and Grest.109 Here L0 is a measure of
the membrane size, which for the open membrane is its length when it is perfectly flat and for a
closed vesicle it is the length along an edge in the initial icosahedral configuration.

results were inconsistent with C in the range 0.63-0.65. However their data
could not rule out C, slightly larger than 1/2. They associated the difference
with earlier simulations with a crossover effect since for membranes with
n = 0, the actual values of (/z2) are relatively small and it is difficult to
determine C accurately. Abraham370 has pointed out that the larger values
for C may also be due to finite size effects since all these bead-spring type
simulations were performed on open membranes with a free perimeter.
Abraham replaced the free-perimeter with periodic boundary conditions
and found C = 0.53 ± 0.03, consistent with Lipowsky and Girardet371 but
still lower than the best theoretical estimate of 0.59.374

Another way to reduce finite size effects is to study closed vesicles. The
first simulations on closed vesicles («= 0) were by Komura and
Baumgartner.126 For a closed vesicle in the flat phase, all three eigenvalues
of M should scale linearly with N and a new measure of the height fluctua-
tions and C are needed. At first thought, one might try to measure (A2) from
the fluctuations in the mean-square radius of gyration,126

However, unlike an open membrane, a spherical shell or tethered vesicle
cannot bend without being stretched.376 That is, there is a linear coupling
between the out-of-plane undulation modes and the in-plane phonon modes
which causes a strong suppression of out-of-plane fluctuations at long
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length scales. This leads to new scaling behavior376 for XRG which is
different from (h2). Zhang et a/.376 found that XRG~N^, with
Ci = (2 - rj/2)/(2 + r)). They also showed that the fluctuations in the
volume scaled as xv ~ 7V3/(2+»j)_ In Fig. 9.36, results109 for xRa versus N
are shown for n = 0 and 8 for closed vesicles in which the monomers interact
with a purely repulsive Lennard-Jones potential. Least-square fits to the
slope give Ci = 0.55 ± 0.02 for n = 0 and Ci = 0.56 ± 0.02 for n = 8. This
gives C = 0.57 ± 0.02 for n = 0 and C = 0.59 ± 0.02 for n = 8. Zhang et a/.376

simulated the same model and found that 2Ci = 1.31 for « = 0, which gives
C = 0.59 ± 0.02. They also measured xv and found r\ = 0.79 ± 0.03 and
C = 0.60 ± 0.02. Within the statistical uncertainty, both these simulations
give C in very good agreement with the theoretical predictions of C = 0.59
by Le Doussal and Radzihovsky.374

A second, important, unresolved issue concerns the interpretation of
recent scattering experiments on polymerized membranes. Laser scattering
measurements377 of the static structure function S(q) for graphite oxide
crystalline membranes suggests that they are crumpled and not flat as
indicated by computer simulations. For a flat membrane, one expects
that for large enough systems, S(q) ~ q~2 while for a crumpled membrane
S(q) ~ q~2-5. While Wen et a/.377 do observe a power law decay with a
slope of 2.54, one should not interpret this as convincing evidence for a
crumpled phase, since these experiments are on randomly oriented mem-
branes. Recently, experiments on this system have been repeated by
Naranjo et al.378 using freeze-fracture electron microscopy and static
light scattering. They find that the membranes are flat with some curling
at the edges. Abraham and Goulian108 have shown that for a wide range

Fig. 9.36 Fluctuations in the mean-squared radius of gyration X_RO, eq. (9.47), versus TV for i
closed vesicle with n = 0 and 8. (From Ref. 109.)
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of q, the isotropically averaged S(q) ~ q~235 for open, tethered membranes
containing as many as 29420 monomers. They found no evidence for a
q~2 regime even though these membranes are definitely flat. The expected
q~2 regime which must be present for large enough samples is apparently
suppressed and only the rough regime379 in which S(q) ~ q~3+<> is
observed. This interpretation is consistent with the computer simulations
of Abraham and Goulian108 on open membranes where £ K 0.64. It also
agrees with recent X-ray and light-scattering experiments380'381 on isolated
red blood cell (RBC) skeletons in high salt in which a q~2 regime at low q
was followed by a q~23S regime for larger q, consistent with the behavior
expected for a flat membrane. While it is fairly certain that the interactions
in the red blood cell skeletons are purely repulsive, it is possible that
attractive interactions382 are important for the graphite oxide crystalline
membranes and they are in fact crumpled. Additional experiments are
needed to clarify whether attractive interactions play a role in this
case. Recently, Stupp et al.333 have synthesized two-dimensional polymers
which may be very useful in experimentally testing the results discussed
here.

While the graphite oxide crystalline membranes377'378 are open mem-
branes with a large local bending rigidity, induced by the close packing
of monomers, the RBC skeleton is a closed vesicle, roughly spherical,
made up of flexible worm-like chains in a triangulated network. The
RBC skeleton is attached to the cytoplasmic side of the liquid lipid cell
membrane3'4 and can be isolated by detergent treatment. The spectrin
tetramers which make up the chains have a contour length of w 2000 A
and a persistence length of 100-200 A in high ionic strength buffer.
Mammalian RBC skeletons contain ~ 70 000 triangular meshes.
Obviously, this system is too complex to simulate directly on the compu-
ter. However, the essential properties of the membrane on intermediate
length scales can be obtained from a study of a coarse-grained bead-spring
model which has the same topology. In high salt, the actin oligomers have
a mean spacing of 400-500 A, or about 1/5-1/4 of their fully extended
length. Using this as a means of mapping to a bead-spring model, Petsche
and Grest109 estimated that each linear chain should contain about 50-60
monomers. However even this is too large to simulate for more than a few
hundred triangles since the largest systems one can study in a few hundred
hours of Cray time is about 25000-30000 monomers. The largest systems
studied to date have been for n < 16. Larger systems will have to wait for
the next generation of supercomputers. However, in spite of the fact that
the largest samples are about 50 times smaller than the experimental sys-
tems and contain only excluded volume interactions, the cross-sections of
the simulated membranes compare very favorably with the shape of RBC
skeletons.381 Results for S(q) are also in agreement with recent X-ray and
light scattering studies of Schmidt et al..381
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9.6.3 Effect of attractive interactions

In the previous section, we saw that in a good solvent with no attractive
interactions, the membrane is flat due to an entropic bending rigidity.
However, what happens when the solvent quality is lowered is not com-
pletely clear. Will there be a 6 point which separates the high T flat phase
and a low T phase or will there be a range of intermediate T where the
attractive interactions balance the entropic bending rigidity to produce a
phase in which the membrane is crumpled? What is the nature of the low
temperature phase? Abraham and Kardar113 have conjectured that the high
T flat phase is separated from a low T collapsed phase by either a sequence
of folding transitions or by a crumpled phase. There is presently evidence for
both scenarios. Here we will briefly review the three simulations which have
addressed these points. Additional simulations in this area would be helpful.

The first question to address is the nature of the low-temperature phase.
For a very poor solvent, one would expect that the monomers would try to
collapse into a compact state with d f = 3 . However as noted by Kan tor et
al.122 finding such a state is nontrivial due to the self-avoidance constraint.
Abraham and Nelson101 turned the attractive part of the Lennard-Jones
interaction on (rc = 2.5<r) and found that at low T = l.4e/ks, the membrane
collapsed, (Rg) ~ TV1/3. Thus at least for membranes up to size N = 4219,
the monomers were able to find a low-temperature collapsed configuration
without violating the excluded volume constraint. Whether this is possible
or the concerns raised by Kantor et al.122 in regard to the problem of finding
a collapsed state are valid for much larger systems is unclear. When T was
raised to 3.5e/kB, the flat phase was recovered.

At intermediate T, Abraham and Kardar113 found that the membrane
underwent a series of folding transitions. All of their simulations were for
open membranes with n = 0. At T\ (L), which depended strongly on the size
of the membrane, the membrane folded once. A crease neatly divided the
membrane in half. The folded structure had nearly the same width as the
unfolded one, so that the in-plane density was twice as large. On further
cooling, a second fold occurred at Ti(V) and the membrane divided itself
into roughly four equal parts folded together. For the system sizes studied
(L < 75), no additional transitions were observed. Finite size effects are
expected to play an important role particularly for range of L which
can presently be handled on present day computers. Abraham and
Kardar found that for the largest system studied, T\(15) ~ 3.2e/kB

and T2(75) ~ 2.8e/kB, while for L = 49, 7^(49) ~ 2.9e/kB and
72(49) ~2.2e/kg. For small L, there is a competition between the free-
energy gain from folding (~ bL2/2) and the energy loss due to creasing
(~ ecL). For small b < 0, a finite membrane remains flat until b is suffi-
ciently negative to compensate for the crease energy. The singly folded
membrane then has a higher energy barrier to create a second crease,
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thereby lowering TI relative to T\ for small L. However for large L,
Abraham and Kardar113 predict that there will be a sequence of folding
transitions for finite L which converge with each other as L —> oo.

The unfolding transition of singly folded membranes is closely related to
the unbinding transition of two distinct surfaces.384 Using this analogue,
Abraham and Kardar113 developed a scaling picture for the change in free
energy for a single fold. They found that for sufficiently large membranes,
the energy loss of creasing is actually irrelevant compared to the entropy loss
of edge fluctuations. Thus the folding temperature and the temperature for
unbinding two membranes should be very close. From simulations of the
unbinding of a bimembrane, they estimated that the single fold transition
would occur at T\ ~ S.le/ke for L —> oo, compared to 3.2e/ks for L = 75.
At these high temperatures, the creases would presumably be more rounded
to minimize the cost of bending. The sharp creases found for L<75 are due
to the relatively low T of the transition for finite L.

Liu and Plischke382 reported MC results for a hard sphere model in
which a longer range attractive potential was added. Though the details
of the interaction and the simulation method were different than that used
by Abraham and Kardar,113 they expected to find a sequence of folding
transitions separating the flat and collapsed phases. However Liu and
Plischke found that the equilibrium states were not characterized by a
series of folds. Instead they observed that for a range of intermediate T,
the membrane appeared to crumple. That is, (R^) ~ N2/df, with df ~ 2.5.
For the range of L studied, 7 < L < 33, the static structure factor S(q)
scaled nicely with qL2ldf for three intermediate temperatures. For high T,
the membrane was flat while for low T, it collapsed. However since the
largest N was 817, it is not possible to determine whether, for larger N,
this intermediate range would collapse to a single temperature, like the 0
point for linear chains, or whether there actually exists a range of T where
the attractive interactions counterbalance the entropic bending rigidity to
produce a stable crumpled phase. More recently, Grest and Petsche120

studied closed membranes in which the attractive interactions were turned
on by extending rc to 2.5a. In this case the low temperature phase is
collapsed and not folded. They find no evidence for an extended range
of T where the membrane is crumpled. For n = 4, there is a first order
transition from the high temperature flat phase to the intermediate tem-
perature crumpled phase with considerable hysteresis. The flat phase could
be supercooled to about 3.0e/fc#, while the low temperature phase was
stable up to 3.25e/kf. The simulations for n = 8 showed an entirely dif-
ferent behavior. In this case, there appeared to be a continuous or very
weak first order transition from the high temperature flat phase to the low
temperature collapsed phase at T = 2.89 ± Q.03e/kB. Assuming the transi-
tion is continuous, a scaling analysis suggests that at the transition there is
an intermediate state which has a fractal dimension d/ ~ 2.4, somewhat
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smaller but close to the value predicted by the Flory theory for a crumpled
membrane.

9.7 Conclusions

Tethered chains comprise a very active field of research in which experi-
ments, theory and simulations continue to interact strongly with one
another. In this chapter, we have tried to emphasixe this collaborative effort,
even though our primary interest was in computer simulations of these
systems. We hope we have achieved this goal.

The constraint of tethering induces new structures that involve new length
scales which are not present for free chains in solution. The crowding of
other chains near the tethering points often forces the polymer to stretch out
away from the grafting site in order to gain interaction energy. This stretch-
ing is accompanied by a penalty in elastic energy due to a decrease in
configurational entropy. The interplay of these two contributions leads to
interesting structures which depend strongly on the dimension d of the
tethering surface. Tethering to a flat surface induces the greatest amount
of stretching since the volume accessible to the chains does not increase as
the distance from the grafting site increases, as occurs for chains grafted to a
point or a line. As shown here, simulations have been a very valuable tool in
clarifying the properties of these systems and bridging the gap between
experiment and theory.

We believe that we have shown in this review that simulations have been
helpful in improving our understanding of many of the basic properties of
tethered chain systems. However a lot of interesting work remains to be
done. All of the work presented here has been for chain length N typically in
the range of 50-100 monomers, though a few simulations were carried out
for TV as large as 200. For good and 0 solvents this seems to be a reasonable
length, in that it is large enough to reach the predicted scaling regime, as
shown in Fig. 9.18 for the height of a brush. However in a poor solvent,
much longer chains are needed (probably N% 1000) to access the scaling
regime in a brush. This is because as the solvent quality decreases, the
excluded volume interactions are screened and the overall monomer density
increases substantially. For a given N, the overlap density is significantly
larger in a poor solvent compared to a good solvent. For TV of order 100, the
chains are simply not very stretched unless one goes to very large grafting
densities. This is one area of interest for the future. However a more inter-
esting problem involves the explicit introduction of solvent molecules, either
small molecules of size one monomer or polymer chains of length P. Then
one can study hydrodynamic effects as well as the exclusion of the solvent as
the chainlength P increases. For a star polymer or brush in contact with
linear chains of length P < N, we estimate that systems of approximately
20 000 to 30 000 monomers are needed which should take of order a hundred



566 C O M P U T E R S I M U L A T I O N S OF T E T H E R E D C H A I N S

hours on a Cray-YMP per phase point (N,P,pa~). Considering the recent
advances in computer speeds this is not unreasonable. Studies of hydrody-
namic effects would require much larger systems and longer times, due to
large finite size effects,29'30 but should be possible within the next few years.
Interaction of star and other branched polymers in solution will require
substantially more time due to their slow diffusion and slow relaxation
and are probably not feasible in the next few years.
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data structures 101-5
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diffusion equation 129, 493
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Gibbs ensemble 374
Ginzburg number 378, 403
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147, 150-2, 155, 156, 495
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incompressible mixtures 405
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intrachain contacts 400
intrinsic viscosity 147, 151, 154-9
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ionic strength 167, 169, 175
ionomers 18
irreducibility 61, 78
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392, 400-5
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join-and-cut algorithm 56, 96, 97, 98, 114

Kauzmann paradox 329
kinematic viscosity 132, 143
kinetic energy 37, 140, 282, 490
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leapfrog algorithm 276
least-squares estimation 106, 107
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linear lists 101, 102, 104
linear probing 105
link-cell methods 13, 143, 490, 491
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lipids 6, 22, 562
liquid-crystalline order 373
liquid—gas transition 8, 373
liquid-vapor interface 440, 459, 460
localization transition 208, 220, 340
local moves 79, 81, 85
long-range interactions 125, 126, 129, 159,

160, 170, 282, 415, 439
long time tail 303
loops 248, 249, 448-50, 471, 474
loose-coupling method 275, 281, 290
lubricants 433, 476
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mapping of models 19, 22, 23, 27, 213, 221,
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Markov chain/process 56, 61, 95, 98
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mean-square displacements 25, 27, 132,

135, 136, 140, 198, 202, 206, 208, 211,
217, 223, 224, 227, 228, 233, 239, 241,
250, 251, 255, 260, 300, 334, 336, 337,
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93

orientational correlations 213, 316, 434,
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pancake-to-brush transition 533
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484
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483, 487, 542
penetrant diffusion 213, 283, 299-302
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perturbation theory 49, 163
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plastic flow 294, 298
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Poisson-Boltzmann equation 165, 175
Poisson's ratio 294
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polyamphilyte 125, 159
polybutadiene (PEB-2) 211, 238, 494, 505
polycarbonate (PC) 19, 213, 279
polydimethylsiloxane (PDMS) 213, 234-6,
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polyelectrolyte brushes 186
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polymer dynamics 14, 16, 17, 22 Redner-Reynolds algorithm 50, 75
polymeric fractal 551-565 relaxation time 7, 8, 25, 28, 29, 78, 132,
polymer membrane 299 195, 201, 204, 206, 207, 211, 212, 215,
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polymethylmethacrylate (PMMA) 331 reptation 8, 17, 40, 82, 89, 127, 128, 169,
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