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Preface

The first being so, and so the second,
The third and forth deduced we see;

And if there were no first and second,
Nor third nor fourth would ever be.

from “Faust” by Goethe

The birth of nonlinear mechanics and particularly their geometrical approach is
usually attributed to Henri Poincaré1 and they were fully developed in the second
half of the twentieth century. New concepts were introduced and theorems were
proved by mathematicians, thus putting the foundations for understanding ordered
(stable) and chaotic (deterministic) motions of nonlinear dynamical systems. Now,
a plethora of diverse complex systems are studied by nonlinear mechanics, which
play the role of a unifying theory. In this success the rapid development of com-
puters unequivocally played a catalytic role. Molecules are complex nonlinear
dynamical systems and several research groups around the world rushed at the same
time to investigate the implications of the theory of chaos could have in the
dynamics of molecules. Since atoms and molecules are treated by quantum
mechanics questions of how to interpret nonlinear classical mechanical behaviours
in the quantum world, they quickly became a hot subject in the 1970s giving birth
to what was named quantum chaos.

Nevertheless, in spite of this flourishing and productive period of nonlinear
mechanics, their ideas seem to have no impact on the large community of theo-
retical and computational chemists. Instead, most of the efforts of computational
chemists are still devoted to producing potential energy surfaces the stationary
points of which, minima, saddles, maxima, as well as minimum energy pathways
provide the theoretical background for explaining experimental spectroscopic and

1 Henri Poincaré. Les Méthodes Nouvelles de la Mécanique Céleste, Vols 1–3. Gauthiers-Villars,
Paris, 1892, 1893, 1899. (English translation edited by D. Goroff, published by the American
Institute of Physics, New York, 1993.)
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reaction dynamics observations. In the Born–Oppenheimer approximation,2 the
potential energy surface is used to calculate the forces among nuclei and classical
rather than quantum mechanics are the main theories to study the dynamics of
molecules with a relatively large number of atoms. Classical mechanics combined
with statistical mechanics for extracting average quantities consist what is known
today as Molecular Dynamics.

The limited interest of chemists in nonlinear mechanics is understood if one
considers that even today to produce a reliable potential energy surface for a
medium size polyatomic molecule (up to five atoms) requires substantial effort.
There are also some basic reasons for the reluctance of chemists to introduce
nonlinear mechanics to their ammunition in investigating molecular dynamics.
Hamiltonian mechanics and their geometrical interpretations are essential for
nonlinear mechanics, topics that still remain out of the chemists curriculum in
postgraduate studies. Needless to say, the lack of an introductory book in nonlinear
mechanics for chemists, significantly contributes to their limited interest in this
field. The aim of the present book is to partially fill this gap. On the other hand, in
the last decades there has been enormous progress in experimental techniques,
which provide details at the level of single molecule quantum states. Methods for
spectroscopically assigning highly excited vibrational states of reactant and product
molecules in chemical reactions have been developed. Molecular beams, lasers, and
ion-imaging technologies have contributed to even follow in real time how a
chemical bond in a molecule breaks or is formed. For these achievements in
reaction dynamics Ahmed Zewail was awarded the Nobel prize in 1999.

The book focuses on the basic definitions, theorems, and computational algo-
rithms developed by nonlinear mechanics with examples from small polyatomic
molecules. No mathematical rigor is claimed and by all means this is not another
book on nonlinear mechanics. Emphasis is given to numerical methods which can
be extended to many degrees of freedom systems, thus, assisting one to apply them
to realistic molecular potentials. Most of molecular theories in chemistry consider
molecules as conserved Hamiltonian systems, hence, we present the theory of
nonlinear mechanics pertinent to this class of dynamical systems.

The book is organized along the following directions. After the introduction in
Chap. 1, which also gives a historical overview of the field and its current status,
Chap. 2 presents a brief introduction to Hamiltonian mechanics. An effort is made
to present the theory from the analytical mechanics point of view, which unveils
the geometrical characteristics of the theory, such as its symplectic symmetry. In
Chap. 3 dynamical systems are introduced and the basic invariant structures, the
main subject of nonlinear mechanics, are presented by numerically studying simple
one-, two- and three-dimensional model potentials. Chapter 4 deals with quantum
and semiclassical molecular mechanics. Algorithms and numerical methods for
treating classical nonlinear and associated quantum mechanical equations of motion

2 M. Born and J.R. Oppenheimer. On the Quantum Theory of Molecules. Ann. Physik, 84:457,
1927. Translated by S.M. Blinder, http://en.wikipedia.org/wiki/Born-Oppenheimer_approximation.
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are discussed in Chap. 5 with emphasis to methods developed by us. Chapter 6 is
devoted to applications, which demonstrate how the numerical codes serve to study
real polyatomic molecules. Finally, in Chap. 7, some ideas of how progress in
computer technology will affect the field of nonlinear molecular dynamics are put
forward. An extended Appendix which describes basic mathematical concepts and
theorems of modern mathematical analysis of manifolds supplements the book. The
aim is not to apply mathematical rigor, but to exempt the reader from the need to
look for definitions and explanations of these, admittedly, not very familiar to the
chemists concepts. In the book terms referred to definitions, and when they appear
for first time, are written with italic fonts, whereas those terms which are also
illustrated in the Appendix are written by italic-bold letters.

The book is based on the author’s years of research and the work of his Ph.D.
students and collaborators around the world, in the field of nonlinear mechanics
applied to molecular dynamics. Manolis Founargiotakis, Rita Prosmiti, and
Stamatis Stamatiadis completed their Ph.D. theses by developing parts of the
software and applying it to several molecules. The postdoctoral fellows Raul
Guantes and Jaime Suarez contributed together with Stamatis Stamatiadis to the
development of the variable order finite difference codes for discretizing the
Schrödinger equation. George Contopoulos and the late Chronis Polymilis,
astronomers from university of Athens, assisted to transfer knowledge on periodic
orbits from the macroscopic world of galaxies to the microscopic world of mole-
cules by studying two- and three-dimensional model potentials, common to both
molecular and galactic dynamics. Reinhard Schinke from Max-Planck Institut für
Dynamik and Selbstorganisation in Göttingen has been a collaborator for almost
twenty years, steadily provided me with interesting molecules, which showed
spectroscopic unidentified fingerprints implying unexpected dynamics. I believe,
that most of them found an explanation by treating these molecules as nonlinear
dynamical systems. Hua Guo from University of New Mexico has also been a
provider of accurate potential energy surfaces and results from accurate quantum
dynamics of molecules showing interesting experimental behaviours. Howard
Taylor from the University of Southern California introduced me to the technology
of classical autocorrelation functions, a powerful method for exploring the
molecular phase space. Recently, Vladimir Tyuterev from University of Reims and
then his student Frederic Mauguiére are two of the latest collaborators. Projects on
investigating the isotopic mass effect in the spectroscopy of highly excited mole-
cules, such as water, by periodic orbits were carried out. Vangelis Daskalakis and
Constantine Varotsis from Cyprus University of Technology are the collaborators
with whom the work on the active site of the enzyme cytochrome c oxidase by
periodic orbits was materialized.

Last, but not least, I am grateful to Stephen Wiggins and Gregory Ezra for their
encouragement and useful comments in structuring this brief book. My collabo-
ration with them and Steve’s postdoctoral fellows, Peter Collins and Frederic
Mauguiére, for more than a year now, has helped me to enlighten many aspects of
phase space geometry related to reaction dynamics. Our ‘skype meeting’, almost
one every week, has become for me an exciting scientific event.
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The literature in the field of nonlinear mechanics is really vast. Inevitably, the
references to articles and books cited in this book are those which had the most
influence to the author, or stating it better, with which the author came across. By
no means papers and books not mentioned here are of limited significance for the
field.

Iraklion, Crete, Greece, July 2014 Stavros C. Farantos
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Chapter 1
Introduction and Overview

The study of dynamical properties of molecules entails a quantum mechanical
approach. Considering molecules as aggregates of electrons and nuclei a method to
simplify the Schrödinger equation is to separate the motion of the fast moving elec-
trons from that of the heavy nuclei as was proposed by Born and Oppenheimer [2]
only a year after the birth of quantum mechanics. They applied the adiabatic approx-
imation to separate fast from slow motions and to split the molecular Schrödinger
equation into two uncoupled equations, one, which treats only the motions of elec-
trons with the nuclei frozen at a specific geometrical configuration, and a second
one, that treats the nuclei moving under the average electronic potential. Since then,
the electronic adiabatic Schrödinger equation is numerically solved by a plethora
of robust and versatile in accuracy algorithms to produce what is known as Born–
Oppenheimer (adiabatic) eigenstates for molecules with hundreds of atoms. The
field of Computational Chemistry that encompasses methods and computer codes
for solving the electronic Schrödinger equation is named Quantum Chemistry. The
seminal paper of Born–Oppenheimer could be considered as inaugurating the birth
of the field of Chemical Physics.

Solving the nuclear equations of motion in specific electronic states consists the
second pillar of Computational Chemistry named Molecular Dynamics. Although,
the goal is always to carry out a quantum molecular dynamical study, the fact that
we deal with heavy particles legitimate one to use semiclassical or pure classical
mechanical theories for investigating molecular vibrations, rotations and chemical
reactions. Molecules with thousand of atoms can be treated by solving Newton’s
or Hamilton’s equations of motion and detailed dynamics, equilibrium and non-
equilibrium statistical mechanical properties can be extracted. In spite of the triumph
of quantum mechanics, research on semiclassical theory and comparisons of quantum
to classical mechanics have never stopped almost a century after the discovery of
quantum mechanics.

The separation of electronic from nuclear motion within the adiabatic approxi-
mation had a profound impact to chemistry by introducing the concept of Potential
Energy Surface (PES). This is a function of Fv = 3N −6 internal nuclear coordinates
(for example the bond lengths and angles between them called valence coordinates),
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2 1 Introduction and Overview

on the configuration manifold of a molecule with N atoms.1 PES is the potential that
governs the motions of nuclei at a particular electronic state of the molecule. Minima
on this hypersurface correspond to stable isomers, whereas saddles are approximately
used to define transition states for the isomerization or dissociation of the molecule.
Studying reactions the knowledge of an extended region or even the global PES
is required, whereas to assign low excitation vibrational spectra of a molecule the
determination of the PES in the region around the minimum of a stable isomer is in
most cases enough. Expanding the molecular potential in a Taylor series around the
minimum, the first non-zero terms of the polynomial, apart from a constant term,
involve the second derivatives of the potential function. Thus, by keeping only the
second order terms in the expansion and employing linear transformations to normal
coordinates we can always write a Hamiltonian as a sum of 3N −6 (3N −5 for linear
molecules) independent harmonic oscillators, i.e., the PES in normal coordinates is
approximated as sum of quadratic terms. Hence, the forces are linear functions of
the normal coordinates and similarly the corresponding differential equations that
describe the equations of motion. Higher order terms in the Taylor expansion of the
PES will result in higher order terms in normal coordinates (cubic, quartic, etc.), and
the classical mechanical equations of motion are then named nonlinear. Although,
we can analytically solve the linear equations of motion in normal coordinates for
a multi-dimensional system, this is not any longer feasible for the nonlinear equa-
tions. Under special regimes perturbation methods, such as the powerful method
of normal forms, could separate the coupled differential equations to Fv 1D equa-
tions, thus, approximating non-integrable systems by integrable ones. Nevertheless,
in most cases both the classical and quantum equations of motion must be solved
numerically.

1.1 Nonlinear Mechanics and Molecular Dynamics

It is remarkable that one of the first applications of MANIAC-I, the first computer
constructed in Los Alamos in 1950s, was a project proposed by Fermi, Pasta and Ulam
and involved the solution of Newton’s equations for a one-dimensional, harmonic
chain of particles weakly perturbed by nonlinear forces with the Hamiltonian

H = 1

2

N−1∑

k=1

P2
k + 1

2

N−1∑

k=0

(Qk+1 − Qk)
2 + a

3

N−1∑

k=0

(Qk+1 − Qk)
3, (1.1)

and Q0 = QN = 0.
As it is now known, the Fermi-Pasta-Ulam-Tsingou (FPUT) model (Fig. 1.1) was

used to answer questions of energy equipartition and ergodicity in a many particle
system, which are usually surmised in statistical mechanics [10].

1 The dimension of the PES for linear molecules is 3N − 5.
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1 2 N-1 

Fig. 1.1 The Fermi-Pasta-Ulam-Tsingou model of N -particles in a harmonic chain and perturbed
by cubic nonlinear potential terms (Eq. 1.1)

The investigators carried out calculations for N = 32 particle chain and a = 1/4
by integrating the classical mechanical equations of motion in Cartesian coordinates.
However, the analysis of the results was done in normal coordinates. To the surprise
of investigators, plotting the energy of the different normal modes in time they saw
recurrences which revealed quasiperiodic behaviour and not energy randomization
among all degrees of freedom as it was expected for chaotic trajectories. Specifically,
they found that the energy in the cubic nonlinear terms never exceeded about 10 %
of the total energy.

For quasiperiodic trajectories in the time evolution of the system more quantities
than solely the total energy are conserved. If there are as many constants of motion
as the number of degrees of freedom, then the system is integrable. In this case,
transformations of the normal mode coordinates to cyclic variables exist, named
action-angle variables. Non-integrable systems have chaotic trajectories and con-
serve only global constants of motion, such as the total energy, and the assumption
of ergodicity may be adopted.

For polyatomic molecules the PES is a nonlinear, multivariable function. Even
assuming that we have an analytical function for the PES in internal coordinates,
which is often true for triatomic and tetratomic molecules, to find the kinetic part of
the Hamiltonian involves cumbersome calculations to extract the conjugate momenta
or the corresponding differential operators in the quantum case. Therefore, it is not
surprising that in most of the computer codes available for solving the equations of
motion, either in classical or in quantum mechanics, we prefer to employ Cartesian
coordinate systems. On the other hand, adopting curvilinear coordinates, such as
valence or Jacobi, in molecules and by doing the proper transformations, which lead
to separable or near separable new variables, is a vital step to predict and elucidate
quasiperiodic (regular) behaviour of the system in all or some degrees of freedom.
As a mater of fact, this is the strategy which is followed when we deal with harmonic
potentials. Let us see how this works in the case of carbon dioxide by considering
for simplicity only the two stretching vibrational modes of this linear molecule, the
antisymmetric and symmetric stretches.

Taking the molecule to lie along the z-axis the displacements from the equilibrium
positions of the three atoms are denoted as (δZ O1 , δZC , δZ O2). The transformation
from Cartesian to normal mode coordinates are described in many textbooks [13].
Here, we only sketch out the solution. Although, the equations of motion in normal
coordinates are decoupled, a better understanding of the physical motions of the
molecule is obtained by further transforming to what we call action-angle variables,
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to be defined properly in Chap. 4. Furthermore, we shall see that by transforming
to action-angle variables we can semiclassically quantize the vibrational modes of
the molecule. Hence, considering the existence of successive inverse transforma-
tions from action-angle, (I1, φ1, I2, φ2), to normal mode, (Qss, Qas) to Cartesian
coordinates, we can write symbolically

δZ O1 = gZ O1
[Qss(φ1; I1), Qas(φ2; I2)]

δZC = gZC [Qss(φ1; I1), Qas(φ2; I2)]
δZ O2 = gZ O2

[Qss(φ1; I1), Qas(φ2; I2)]
(1.2)

The importance of these transformations is the realization of the geometry of the
motion in phase space. In Fig. 1.2 we show that in action-angle variables, quasiperi-
odic trajectories integrated in time lie on 2D surfaces embedded in 4D phase space,
with geometry that of a torus. A torus is the the product of two circles, T 2 = S1 × S1

(yellow lines). The regular motions of the decoupled system of harmonic oscillators
survive even when the nonlinear coupling terms in the potential are switched on.
This is proved by the renowned theorem of Kolmogorov-Arnold-Moser (KAM) [30],
which states that most of the tori will remain, although slightly deformed, and only
at large couplings or high excitation energies the tori will be destroyed and chaos
will occupy most of the phase space.

C O1

C 

Z 

X 

2D-TORUS 

C2 

C1 

ss

as 

2 1

O2

O1 O2

Periodic Orbit 

Fig. 1.2 The two vibrational normal modes of carbon dioxide, symmetric stretch (ss) and antisym-
metric stretch (as), portrayed in a Cartesian coordinate system, (δZ O1 , δZC , δZ O2 ), with arrows
and in angle variables (φ1, φ2) of a two-dimensional torus. (I1, I2) are the action variables conjugate
to the angle variables

http://dx.doi.org/10.1007/978-3-319-09988-0_4
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Fig. 1.3 Barbanis-Contopoulos Hamiltonian: H = 1
2 (p

2
x + p2

y + ω2
x x2 + ω2

y y2) − εx2 y. The

parameters used are ω2
x = 0.9, ω2

y = 1.6, ε = 0.08 and ωx/ωy = 3/4. The Poincaré surfaces of
section for several trajectories on the (y, py) plane for x = 0 and px > 0. The sections of several
stable periodic orbits are also plotted and labelled. The scattered points among the islands of the 3:4
resonance are the intersections of one chaotic trajectory. All trajectories correspond to total energy
of about 21 units [11]

The results of the FPUT model demonstrate this quasiperiodic behaviour. Tran-
sition from regular to chaotic dynamics was numerically and systematically studied
by the astronomers Hénon and Heiles with a galactic 2D model potential [19]. Non-
linear dynamical systems show the generic behaviour of regular motions at low
energies and mixed dynamics, quasiperiodic–chaotic, above some energy. This is
best demonstrated by plotting Poincaré surfaces of sections (PSS). For conserva-
tive 2D Hamiltonians trajectories with different initial conditions but constant total
energy lie on a 3D energy surface. By properly choosing a 2D PSS and for bound
systems, a trajectory integrated in time crosses this surface repeatedly leaving traces,
which may form a smooth curve or scattered points. Figure 1.3 is an example of a
PSS obtained with the Barbanis-Contopoulos potential [5, 11]. At fixed energy we
expect closed curves for trajectories lying on tori (quasiperiodic), whereas a chaotic
trajectory which fills the constant energy 3D hypersurface (volume) has scattered
points on the PSS.

In the second half of the twentieth century there was an explosion in theoretical
and numerical studies of nonlinear dynamical systems, which have now led to the
mature theory of nonlinear mechanics.2 Unequivocally, the parallel development
of computers played a catalytic role for the growth of the theory. Applications of
nonlinear mechanics to a diversity of complex systems, from plasmas, atoms and
molecules to galaxies and cellular and metabolic networks, have given to the theory

2 The book “Chaos: Classical and Quantum” (http://chaosbook.org/) is a collaborative work to
present most of the achievements of nonlinear mechanics mainly obtained in the second half of
twentieth century.

http://chaosbook.org/
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a unifying character. By carrying out a nonlinear mechanical analysis one primarily
searches for time invariant structures in phase or state space, which can explain
regularities, rhythms or sudden transitions to irregularities and chaos that are quite
often counter-intuitive.

Generally, elementary chemical reactions, dissociation–recombination–isomer-
ization, involve breaking and forming single chemical bonds and most often signifi-
cant energy is required to overcome potential barriers. Thus, reacting molecules are
vibrationally excited species, far from their equilibrium states, rendering the common
harmonic normal mode analysis valid at low excitation energies, inaccurate. Poten-
tial energy surfaces are nonlinear functions with strong couplings among the degrees
of freedom which allow the energy to flow. For this reason, it is not surprising that
the advances of nonlinear classical mechanics [14, 30] introduced new methods and
concepts in the theories of vibrationally excited and reacting molecules. As found
for general nonlinear dynamical systems with a few degrees of freedom, excited
molecules are expected to show chaotic motions in which the energy is redistributed
to many bonds, resonances among vibrational or vibrational–rotational frequencies,
energy localization in specific bonds and bifurcations of vibrational modes to produce
new type of motions as energy increases.

At the same time, the advent of lasers in the second half of the twentieth cen-
tury as a source for coherently exciting molecules in specific modes, as well as the
development of molecular beams for a detailed study of chemical reactions, brought
new insight in understanding and controlling chemical reactivity at the level of spe-
cific atomic and molecular state. Hence, controlling chemical reactions by selecting
specific bonds or vibrational excited states of the reactants and analysing the energy
disposal into specific vibrational states as well as into rotational and translational
degrees of freedom of the product molecules has been an ambitious project in chem-
ical dynamics [25] for a long time. Deuterated methane is a good example for which
it has been proved that vibrationally excited states control the course of the reaction
with chlorine atoms [7]. Excitation of C–H or C–D overtone states promotes the
formation of CH2D or CH3 product, respectively. Such selectivity and specificity
have been obtained thanks to the progress in experimental spectroscopic techniques
[9] and molecular beams. However, this endeavour reveals the problems related to
the assignment of the spectra of vibrationally excited molecules and the elucidation
of the mechanisms for intramolecular vibrational energy redistribution (IVR) the
solutions of which require a comprehensive understanding of Molecular Dynamics.

Stimulated emission pumping (SEP) and dispersed fluorescence (DF) spectro-
scopic methods to excite the molecule at very high vibrational states are ideal to
deduce the dynamics close to the isomerization or dissociation threshold. As a mat-
ter of fact, the SEP spectra of acetylene were the first which revealed vibrational
(quantum) chaos at energies above the threshold for acetylene to vinylidene isomer-
ization [22]. Vibrational overtone spectroscopy has seen similar developments [20].
Crim and coworkers [6] have combined the photoacoustic spectroscopy with a time
of flight apparatus to control the products in unimolecular and bimolecular reactions
by vibrationally exciting specific chemical bonds of reactant molecules. This bond
selective chemistry reveals energy localization in specific bonds. In our days, imag-
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ing methods [1] for studying molecular photodissociation and bimolecular collision
processes, have successfully been applied to several small polyatomic molecules.
Alternative reaction pathways than those anticipated from the PES landscape, such
as roaming, have been found by employing this kind of experimental techniques [27].

Since the pioneer work of Karplus et al. in 1965 on the study of H + H2 reaction
[23], the classical trajectory method and generally classical mechanics, have been
applied to a variety of problems ranging from molecular collisions, interaction of
electromagnetic radiation with atoms and molecules and the simulation of macro-
scopic states of matter [12]. Even problems in molecular physics which are solvable
in quantum mechanics are treated by classical mechanics in an effort to achieve
a better physical insight. One main reason for the adoption of classical mechani-
cal approximation in chemical dynamics is our ability to perform computations for
many body problems, and of course, to obtain results in reasonable agreement with
the experiment.

A general argument for justifying applications of classical mechanics to quantum
objects such as molecules, has always been the validity of semiclassical theory for
heavy particles. At the beginning, the semiclassical quantization rule of Einstein-
Brillouin-Keller [8] (EBK) was applied to quantize quasiperiodic trajectories, i.e., for
integrable dynamical systems. However, the enthusiasm for a theoretical justification
of employing classical mechanics in molecules was quickly dropped, by realizing
that molecular systems are generally not integrable, and thus, at high energies most
of the trajectories are chaotic for which the EBK semiclassical rule is not valid. The
advances of nonlinear classical mechanics which brought a deeper understanding of
the structure of phase space, i.e., how regular and chaotic trajectories are interwoven
in conservative Hamiltonian systems, inevitably raised again the problem of the
correspondence of classical to quantum mechanics. Particularly, the field of studying
the quantum behaviour of a classically chaotic system has brought much discussion
about the meaning of Quantum Chaos [15].

Thus, the generic picture of phase space for small polyatomic molecules which
has been emerged from all these studies is that, the phase space is predominantly
regular at low energies, predominantly chaotic at high energies, and with regular
and irregular regions coexisting at intermediate energies. This picture is expected
for molecules with one well in the potential energy surface. Most molecules have
usually several isotopomers, and this means that the potential energy surfaces have
more than one minima separated by saddle points. As we shall see this makes the
structure of phase space more complicated. Thus, the classical mechanical study of
molecular dynamics inevitably put forward the question:

Do the classical nonlinear mechanical motions in molecules have quantum mechanical coun-
terparts and which are their spectroscopic fingerprints?

This question has given an impetus for the revival of semiclassical theory [4]
which formulates the correspondence between quantum eigenfunctions and station-
ary classical mechanical objects such as periodic orbits and tori.

Questions related to energy localization and transfer are currently put forward for
biological molecules such as proteins [24]. Time resolved infrared and Raman spec-
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troscopy spanning a time interval from femtoseconds to milliseconds [17], are major
spectroscopic techniques for studying the dynamics of biomolecules. Furthermore,
efforts to find localized motions in infinite periodic or random anharmonic lattices
have led to the concept of discrete breathers [3]. The initial theoretical observations
of localized motions in the work of Sievers and Takeno [26] triggered the discovery
of significant mathematical theorems for the existence of local stationary objects
such as periodic orbits in infinite dimensional lattices.

The landscape of the PES may be drastically altered as some parameters in the
molecule vary [29]. Barriers and minima may disappear or appear. Similarly, the
structure of phase space changes with the total energy. Stable, quasiperiodic motions
may turn to unstable chaotic ones and vice versa. But most importantly, new type of
motions emanate via bifurcations (or branching) of periodic orbits. The bifurcation
theory of multidimensional Hamiltonian dynamical systems has mainly been devel-
oped in the second half of the twentieth century [18]. One important outcome of the
theory is the identification of the elementary bifurcations which are described by
very simple Hamiltonians as we shall see in Chap. 3. In spite of their simplicity they
can also occur in complex dynamical systems at critical energies. This makes ele-
mentary bifurcations generic. For molecular Hamiltonian systems we have identify
as elementary bifurcations the center-saddle, period doubling, pitchfork and Hopf.

Bifurcations are well known in vibrational spectroscopy. For example, the tran-
sition from normal to local mode oscillations, first discovered in symmetric ABA
molecules, can be understood in classical mechanical phase space as an elementary
pitchfork bifurcation [16]. The original local mode models included just the stretch-
ing vibrations [21], but they were extended to include bending vibrations as well.
Now we know, that the notion of a local mode is more general and it is associated with
the bifurcations of classical mechanical stationary objects, such as periodic orbits.
Elementary bifurcations are very common in excited polyatomic molecules with the
simplest one, the center-saddle, to be ubiquitous. By studying periodic orbits in a
parameter space we discover their bifurcations and possible localized eigenstates
along them. Periodic orbits which emerge from center-saddle bifurcations appear
abruptly at some critical values of the energy, in pairs, and change drastically the
geometry of phase space around them. They penetrate in regions of nuclear phase
space which the normal mode motions can not reach. Center-saddle bifurcations are
of generic type, i.e., they are robust and persist for small (perturbative) changes of
the potential function.

1.2 Hierarchical Study of Nonlinear Molecular Dynamics

Nonlinear mechanics offer a systematic way to study complex systems. By investi-
gating the dynamics, what exactly we want is to locate invariant structures in phase
space where trajectories live for a long time. Molecular Hamiltonians are usually
written as the sum of the potential energy function and kinetic energy. Thus, the
hierarchical detailed exploration of the molecular phase space structure, one of the

http://dx.doi.org/10.1007/978-3-319-09988-0_3
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Fig. 1.4 Hierarchical
investigation of the phase
space structure of a molecule
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main subjects of this book, requires, first to locate the stationary points of the poten-
tial function, second to find periodic orbits (PO) that emanate from the equilibria,
and then to describe tori around stable PO as well as the stable and unstable mani-
folds of unstable PO. This strategy is graphically illustrated with Fig. 1.4. Saddles on
the PES are unstable equilibria and associated with them there are normally hyper-
bolic invariant manifolds (NHIM), which have been proved to provide an accurate
definition of the transition state in chemical reactions of polyatomic molecules [28].

A global molecular Hamiltonian describes all isomers and dissociation channels
accessible in the energy interval of interest. We use such a Hamiltonian to locate
equilibrium points and periodic orbits. Further phase space structures around equi-
librium points and periodic orbits are obtained by taking a Taylor expansion of the
global Hamiltonian up to the order which satisfies a predetermined accuracy. The
quadratic part of the Taylor expansion is used to calculate the normal coordinates,
whereas higher order terms in the Taylor expansion of the global Hamiltonian are
used to find the normal form coordinates. The latter allows one to construct an
approximate integrable Hamiltonian, valid however, for energies near to equilibrium
point. The integrals of motion of this integrable Hamiltonian (action variables) can
semiclassically be quantized according to EBK rules [8], provided there is no reso-
nance condition. The latter means that for a n degrees of freedom system there is no
relation

∑n
i=1 miωi = 0, where mi are integer numbers and ωi the fundamental fre-

quencies of the n oscillators. Quantum mechanical calculations are straightforward
in normal form coordinates. In the following chapters we introduce and explain the
above phase space structures and describe methods for their numerical calculation.
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Chapter 2
The Geometry of Hamiltonian Mechanics

In this chapter an introduction to Hamiltonian mechanics is given. Although, most of
the textbooks devote one or more chapters to the Hamiltonian formulation of classical
mechanics, only a few approach the subject from the theory of differential geom-
etry [1, 3, 5]. The latter neatly exposes the geometrical properties of Hamiltonian
mechanics. Modern analysis on manifolds [7] provides the means to develop the the-
ory in a coordinate free way. However, numerical applications require the translation
of the theory to specific coordinate systems. Hence, in this introductory chapter we
follow both approaches to unveil the geometrical properties of Hamiltonian mechan-
ics [4, 6]. This chapter must be read in parallel with the Appendix where some basic
definitions and theorems from the calculus on manifolds are provided.

2.1 Configuration Manifolds and Coordinate Systems

2.1.1 Cartesian Coordinates

We consider a system of N particles whose configurations in a space fixed Cartesian
coordinate system are described by N vectors of three components or with single
vectors of 3N components. The Cartesian configuration space consists an Euclidean
manifold (M) of dimension 3N , M ⊂ R

3N . The number of degrees of freedom for
the system is 3N . The positions of N particles with masses mα, α = 1, . . . , N , in
our 3D world, are described by N vectors rα

rα = xαi + yαj + zαk, α = 1, . . . , N . (2.1)

(i, j,k) denote the unit vectors along the (x, y, z)-axes, respectively.
The mechanical state of the system is defined by the coordinates of the particles

and the rate of their change in time t , the velocities;

© The Author(s) 2014
S.C. Farantos, Nonlinear Hamiltonian Mechanics Applied to Molecular Dynamics,
SpringerBriefs in Electrical and Magnetic Properties of Atoms, Molecules, and Clusters,
DOI 10.1007/978-3-319-09988-0_2
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vα = drα

dt
≡ ṙα = dxα

dt
i + dyα

dt
j + dzα

dt
k

≡ ẋαi + ẏαj + żαk, α = 1, . . . , N . (2.2)

Thus, the time evolution of the system is completely determined by the vectors,
[rα(t), vα(t)], α = 1, . . . , N .

The kinetic energy of the N -particle system is defined by the quadratic function
in velocities

K = 1

2

N∑

α=1

mα(v
α)2

= 1

2

N∑

α=1

mα

[
(ẋα)2 + (ẏα)2 + (żα)2

]
. (2.3)

The interactions among the particles are determined by the potential energy,
V (r1, . . . , r N ), i.e., a function of the position vectors. The resultant force on particle
α is the vector

Fα = −∂V (r)

∂rα
≡ −∂αV (r)

= − ∂V

∂xα
i − ∂V

∂yα
j − ∂V

∂zα
k

= Fxα i + Fyα j + Fzαk. (2.4)

2.1.2 Curvilinear Coordinates

Because of some geometrical constraints or space-time symmetries which result in
conservation laws, such as of the total energy, momentum and angular momentum,
and the possible existence of other constants (integrals) of motion, the orbits of the
particles are constrained in a configuration space with dimension less than 3N . If
there are k holonomic constraint equations1

φi (r1, . . . , r N ) = ci , i = 1, . . . , k, (2.5)

that assign specific values to the associated quantities, geometrical or constants of
motion, then, the number of degrees of freedom is n = 3N − k, and the configu-
rations of the system form a smooth (differentiable) manifold Q of dimension n
(see Appendix A), not necessarily Euclidean. The k constraint equations provide an
implicit representation of the configuration manifold (see Appendix A.2).

1 Holonomic constraints may contain the velocities φi (r1, . . . , rn, ṙ1, . . . , ṙ N ) = ci , which how-
ever, can be integrated to equations without the velocities.
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Taking into account possible constraint equations we may want to study the orbits
of the system on the reduced dimension, n, configuration manifold Q. This may be
an imperative step for extracting the underlying physics out of the dynamics of the
system. Smooth manifolds can be covered by atlases of charts, which locally define
maps of open sets of the manifold to open sets of an Euclidean space. In this way
we introduce generalized coordinates, (q1, . . . , qn), and apply ordinary calculus to
study the dynamics of the system. However, it is worth emphasizing that global
properties of manifolds may be studied without any reference to a local coordinate
system. In principle and with the aid of the k constraint equations, one can find
transformation equations from the n generalized coordinates to the 3N = n + k
Cartesian coordinates

xα = gxα (q
1, . . . , qn, c1, . . . , ck)

yα = gyα (q
1, . . . , qn, c1, . . . , ck)

zα = gzα (q
1, . . . , qn, c1, . . . , ck), α = 1, . . . , N . (2.6)

The generalized velocities (q̇1, . . . , q̇n) are related to Cartesian velocities by the
equations,

ẋα =
n∑

k=1

∂gxα

∂qk
q̇k

ẏα =
n∑

k=1

∂gyα

∂qk
q̇k

żα =
n∑

k=1

∂gzα

∂qk
q̇k, α = 1, . . . , N . (2.7)

Then, the kinetic energy (Eq. 2.3) in generalized coordinates will take the form,

K = 1

2

n∑

i,k=1

q̇ i gik(q,m)q̇k, (2.8)

where, gik(q,m) is the metric tensor and its components are functions of the masses,
m = (m1, . . . ,mα, . . . ,m N ), and generalized coordinates, q = (q1, . . . , qn)T 2 (see
next section). The sum of kinetic and potential energy is the total energy of the system

E[q(t), q̇(t)] = K [q(t), q̇(t)] + V [q(t)]. (2.9)

We must admit that the transformation equations from curvilinear to Cartesian
coordinates and their inverses (Eq. 2.6) are not always easy to find. As a matter of

2 The letter superscript (T ) denotes a column vector and generally the transpose of a matrix.
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fact, to determine the constants of motion for a dynamical system requires one to
know the solutions of the equations of motion. The equations of motion take a simple
form in Cartesian coordinates and can be solved numerically with modern computers
for large systems with thousand of atoms. Combining, integration of equations of
motion in Cartesian coordinates and transforming to specific curvilinear coordinates
to describe the manifolds on which the trajectories lie is an appealing approach to
illuminate Molecular Dynamics.

2.2 The Topological Map of Lagrangian and Hamiltonian
Mechanics

Topological theories by not relying on specific coordinate systems have the advan-
tage to reveal the general geometrical properties of physical systems, and thus, they
are suitable for a qualitative analysis. In reverse, by knowing the topological structure
of the system one can choose a suitable local coordinate system for computational
work. Figure 2.1 portrays the topological structures of the two main formulations of
Classical Mechanics, the Lagrangian and Hamiltonian. By considering the configu-
ration space of a dynamical system as a smooth (differentiable) manifold, Q, there is
always a chart (a local coordinate system), i.e., a homeomorphism (see Appendix A),

φ : U ⊂ Q → φ(U ) ⊂ R
n, (2.10)

of an open set U of Q onto an open set φ(U ) of R
n . Since, the map is on an Euclidean

space (Rn), we can also define a coordinate representation in R
n

qi = f i ◦ φ or φ(s) = (q1(s), q2(s), . . . , qn(s))T ∈ R
n, (2.11)

for every point s ∈ U , and f i are differentiable functions. The tangent space of
Q (the space where the derivatives live) at a point s ∈ Q (Ts Q) is a vector space
(velocities belong to this space) and the union of all tangent spaces for all points s
of Q form the tangent bundle (T Q) with Q the base space

T Q =
⋃

s∈Q

Ts Q. (2.12)

The tangent bundle contains both the manifold Q and its tangent spaces Ts Q called
the fibres and it is a smooth manifold of dimension 2n. Since, T Q is also a smooth
manifold a chart can be defined by the diffeomorphism

Tφ : T U → φ(U )× R
n ⊂ R

n × R
n . (2.13)
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Fig. 2.1 Topological map of Lagrangian and Hamiltonian Mechanics. The tangent bundle (T Q)
of the configuration manifold (Q) is a smooth manifold with charts defined by the generalized
coordinates (qi ) and their corresponding velocities (q̇ j ). The Lagrangian, L[q(t), q̇(t)], is a function
on the tangent bundle to real numbers. The dual space of T Q is the cotangent bundle (M = T ∗ Q),
also named phase space. The phase space is a differentiable manifold of dimension 2n for which
the tangent bundle, T M ≡ T (T ∗ Q) of dimension (2n × 2n), can also be defined with charts
described by the generalized coordinates (qi ), the conjugate momenta (p j ) and their velocities
(q̇ i , ṗ j ). The potential function, V (q), is a function on the configuration manifold to real numbers.
The Hamiltonian, H [q(t), p(t)], is a function on the phase space to real numbers obtained by a
Legendre transform (L) of the Lagrangian. We may consider that the Legendre transform generates
a differentiable map between the tangent and cotangent bundles of Q, FL : T Q → T ∗ Q. Then,
the tangent mapping T FL defines an isomorphism between the tangent of tangent bundle of Q (not
shown) and the tangent bundle of phase space, T FL : T (T Q) → T (T ∗ Q). πQ , π

∗
Q and πM are

canonical projections. Tπ∗
Q is the tangent mapping of π∗

Q . In Chap. 4 we discuss how the Lagrange
formalism of classical mechanics leads to the path integral formulation of quantum mechanics and
the Hamiltonian mechanics to canonical quantum mechanics

This is a linear map and each chart (φ,U ) from the atlas of Q induces a chart
(Tφ, T U ) for T Q. This chart is said to be the bundle chart associated with (φ,U ).

The potential function V is a map of configuration manifold to real numbers R,
V : Q → R. On the tangent bundle we define the state function

L : T Q → R, (2.14)

http://dx.doi.org/10.1007/978-3-319-09988-0_4
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named Lagrangian. Having defined a chart the Lagrangian takes the form

L(q, q̇) = K (q, q̇)− V (q). (2.15)

By using the Lagrangian we define the generalized momenta as

pi (q, q̇) = ∂L

∂q̇i
. (2.16)

To extract the physical meaning of these derivatives we write the Lagrangian in
Cartesian coordinates, Eq. 2.3.

L = K − V = 1

2

N∑

α=1

mα(v
α)2 − V (r), r = (r1, . . . , r N ). (2.17)

The partial derivative of L with respect to the position vector of particle α, rα , is the
force acting on this particle, Eq. (2.4), whereas the partial derivative with respect to
the velocity of particle α is

∂L

∂vα
= mαv

α. (2.18)

The vector quantity

pα = mαv
α = mα(ẋ

αi + ẏαj + żαk), (2.19)

is the momentum of particle α.
Writing the Lagrangian in generalized coordinates,

L(q, q̇) = 1

2

n∑

i, j=1

q̇ i gi j (q,m)q̇ j − V (q), (2.20)

we define the component of the generalized force along the i th degree of freedom as

fi = ∂L

∂qi
, (2.21)

and the component of the generalized momentum along the i th degree of freedom

pi = ∂L

∂q̇i
=

∑

j

gi j q̇
j . (2.22)

The tangent and cotangent bundle (see Appendix A.8), T Q and T ∗Q respec-
tively, exist for any configuration manifold Q. If, however, we can define a metric
on the manifold, i.e., Q is a Riemannian manifold, then, there is a diffeomorphism
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T Q → T ∗Q that sends the coordinate patch (q, q̇) on the tangent space at a point s
of Q to the coordinate patch (q, p) on the cotangent space. Taking as a metric the
covariant tensor rank-2, gi j , that defines the kinetic energy, then, the momentum pi

is the covector of the velocity q̇i , and the velocity q̇ i can be obtained by the inverse
tensor gi j

q̇i =
∑

j

gi j p j , (2.23)

where
∑

l gil gl j = δ
j
i .3

The metric tensor is a 2−form (see A.8), and thus, acts on two vectors of the
tangent space to map them to a scalar. In other words, we can write

gs(v,w) =
n∑

i=1

n∑

j=1

vi gi jw
j , (2.24)

where vi andw j are the components of the two vectors v andw of the tangent space,
Ts Q, at the point s of the manifold Q, respectively in a local coordinate system. In a
coordinate free interpretation of the metric, the kinetic energy is just the half of the
metric, K = 1

2 gs(v, v). We may also consider the metric gs to act only on one vector
field, a mapping from T Q to T ∗Q, i.e.,

gs : T Q → T ∗Q : v �→ gs(•, v), (2.25)

with• to denote a vacancy in the pair of vectors. Thus, gs(•, v) is a 1−form, which can
act on another or the same vector in Ts Q to yield a real number, gs(v, v). The metric
assigns to each vector field X ∈ X (Q) the smooth 1−form g(•, X) ∈ X ∗(Q),
and vice versa. X (Q) is the set of vector fields on the configuration manifold Q
and X ∗(Q) the set of covectors. Therefore, we may conclude that, in charts the
generalized momenta pi , which is canonically conjugate to the coordinates qi , is the
1−form

pi = ∂L

∂q̇i
=

∑

j

gi j q̇
j ≡ gs(•, v), (2.26)

which is a map from the tangent bundle (T Q) to the cotangent bundle (T ∗Q). In fact,
(q, p) ≡ (q1, . . . , qn, p1, . . . , pn) are the local coordinates in the cotangent bundle
which is called the phase space of the dynamical system.

The Hamiltonian, H(qi , p j ), is a function on the phase space to real numbers
obtained by a Legendre transform (L) of the Lagrangian

3 The components of Kronecker delta tensor, δ j
i , are equal to 1 for i = j and 0 for i 	= j .
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H(q, p) =
n∑

i=1

q̇ i pi − L(q, q̇) =
n∑

i=1

q̇ i
n∑

j=1

gi j q̇
j − L(q, q̇)

= 1

2

∑

i j

q̇ i gi j q̇
j + V (q) = K + V . (2.27)

The transformation equations in a new coordinate system in the configuration
space lead to the following transformation equations for the velocities in the tangent
space

Qi = Qi (q1, . . . , qn), i = 1, . . . , n (2.28)

q̇ j =
∑

i

(
∂q j

∂Qi

)
Q̇i , (2.29)

and the new momenta in the cotangent space

Pi = ∂L

∂ Q̇i
=

∑

j

(
∂L

∂q̇ j

) (
∂q̇ j

∂ Q̇i

)

=
∑

j

p j

(
∂q j

∂Qi

)
. (2.30)

2.3 The Principle of Least Action

The function

S(qa, qb; ta, tb) =
tb∫

ta

L[q(t), q̇(t)]dt, (2.31)

is called the action along the path that connects the configuration points qa and qb

at the times ta and tb, respectively;

qa = q(ta), qb = q(tb). (2.32)

In mechanics we accept the Principle of Least Action; among the infinite number of
paths between two fixed configuration points (qa, qb) and times ta and tb the system
will follow that one which minimizes the action (Eq. 2.31),

S0 = min [S(qa, qb; ta, tb)] = min

tb∫

ta

L[q(t)+ δq(t), q̇(t)+ δq̇(t)]dt. (2.33)
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We assume the two end points fixed and we expand S in δq. The variation of S around
an extremum q is

δS =
tb∫

ta

L[q(t)+ δq(t), q̇(t)+ δq̇(t)]dt −
tb∫

ta

L[q(t), q̇(t)]dt

=
tb∫

ta

(
∂L

∂q
δq + ∂L

∂q̇
δq̇

)
dt = 0. (2.34)

Integrating by parts we have

δS =
tb∫

ta

(
∂L

∂q
δq + d

dt

[
∂L

∂q̇
δq

]
− d

dt

[
∂L

∂q̇

]
δq

)
dt

=
[
∂L

∂q̇
δq

]tb

ta

+
tb∫

ta

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δqdt = 0. (2.35)

Since, δqa = δqb = 0 and δS is zero for any positive or negative variation of δq, we
infer that

∂L

∂q
− d

dt

∂L

∂q̇
= 0. (2.36)

These are the Euler–Lagrange equations. Hence, according to the variational prin-
ciple the equations of motion define the path for which the action takes a stationary
value. Generally, for a system with n degrees of freedom is valid

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0, i = 1, . . . , n. (2.37)

For a Lagrangian written as in Eq. 2.17 the Euler–Lagrange equation (Eq. 2.37)
takes the form

fi = ṗi , i = 1, . . . , n, (2.38)

i.e., Newton’s equations. The importance of the Lagrangian stems from its utility to
define the action along a path between two configuration points, (qa , qb). Hence, the
action is a function of the initial and final configuration points as well as the time.
The principle of the least action leads to the equations of motion, which involve the
partial derivatives of the Lagrangian defined on the tangent space, T Q.
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2.4 Hamiltonian Vector Fields

In Sect. 2.2 we introduced the Hamiltonian state function in phase space, the cotan-
gent space of the tangent space of the configuration manifold. As we shall see, the
Hamiltonian formalism of classical mechanics is the most appropriate to reveal intrin-
sic symmetries of the system, and the entrance to quantum and statistical mechanics.
Thus, it is worth formulating classical mechanics in phase space. The Hamiltonian
of a mechanical system in phase space, H(q, p, t), is a function of coordinates,
momenta and possibly of time. Then, the equations of motion can be inferred from
the Principle of Least Action

δS(qa, qb; ta, tb) = δ

⎛

⎝
tb∫

ta

(
n∑

i=1

pi q̇
i − H

)
dt

⎞

⎠ = 0, (2.39)

with fixed end points. This equation is transformed to

δS =
n∑

i=1

tb∫

ta

(
δpi q̇

i + piδq̇
i − ∂H

∂qi
δqi − ∂H

∂pi
δpi

)
dt

=
n∑

i=1

⎡

⎣
tb∫

ta

δpi

(
q̇ i − ∂H

∂pi

)
dt −

tb∫

ta

δqi
(

ṗi + ∂H

∂qi

)
dt +

[
piδq

i
]tb

ta

⎤

⎦

= 0. (2.40)

The last term evaluated at the end points is zero and the independent variations of
δqi and δpi lead to Hamilton’s equations

q̇i = ∂H

∂pi

ṗi = −∂H

∂qi
, i = 1, . . . , n. (2.41)

Equations 2.41 define the local flow of the Hamiltonian vector field. If we denote
this vector field as (X H , (X H ))

T to distinguish coordinates from momenta, then, the
Hamiltonian vector field in local coordinates is written as

(
(X H )

i

(X H ) j

)
=

(
∂H/∂pi

−∂H/∂q j

)
, i, j = 1, . . . , n. (2.42)

Hence, the principle of least action results in the Euler–Lagrange equations in the
Lagrangian formalism, whereas in the Hamiltonian formalism of classical mechanics
it gives Hamilton’s equations. However, it is important to understand that in the
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Lagrangian formalism the dynamics take place in the tangent of the tangent bundle
of configuration manifold, T (T Q), and in the Hamiltonian formalism in the tangent
of the cotangent bundle of configuration manifold, T (T ∗Q). Since, the Lagrangian
and Hamiltonian state functions are connected by a Legendre transform it can be
proved that the two formulations of classical mechanics are equivalent.

Finally, if we consider the action as a function of the initial and final coordinates,
not fixed but taking the path that minimizes the action, i.e., the generalized coordi-
nates describe an integral solution of Hamilton’s equations, then, the variation of the
action is

δS(qa, qb) =
n∑

i=1

tb∫

ta

(
δpi q̇

i + piδq̇
i − ∂H

∂qi
δqi − ∂H

∂pi
δpi

)
dt

=
n∑

i=1

⎡

⎣
tb∫

ta

δpi

(
q̇ i − ∂H

∂pi

)
dt −

tb∫

ta

δqi
(

ṗi + ∂H

∂qi

)
dt +

[
piδq

i
]tb

ta

⎤

⎦

=
n∑

i=1

[
pibδq

i
b − piaδq

i
a

]
, (2.43)

where a and b denote the end points of the path. Thus,

∂S

∂qi
a

= −pia

∂S

∂qi
b

= pib, i = 1, . . . , n. (2.44)

Similarly, if we consider the action as a function of the coordinates and time

d

dt
S(q, t) = L = ∂S

∂t
+ ∂S

∂q
q̇

= ∂S

∂t
+ pq̇. (2.45)

Hence,
∂S

∂t
= L − pq̇ = −H. (2.46)

From the above equations we can write the total differential of action as

d S(q, t) =
n∑

i=1

pi dqi − H(q, p, t)dt. (2.47)
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2.5 The Canonical Equations Expressed with the Symplectic
2−Form

By replacing velocities with momenta not only second order differential equations
(Euler–Lagrange) are replaced by the first order equations of Hamilton, but as we
shall see, generalized coordinates and their conjugate momenta acquire equivalent
significance and reveal the geometry of phase space. Let us first collect the general-
ized coordinates and their conjugate momenta of a dynamical system of n degrees of
freedom to a single vector x = (q1, q2, . . . , qn, p1, p2, . . . , pn)

T of 2n-dimension.
Then, Hamilton’s equations are written in the form

ẋ(t) = J∂H(x), (2.48)

where ∂H is the gradient of Hamiltonian function, and J the symplectic matrix

J =
(

0n In

−In 0n

)
. (2.49)

0n and In are the zero and unit n×n matrices, respectively. It is proved that J satisfies
the relations,

J−1 = −J = J T and J 2 = −I2n . (2.50)

X Hx = J∂H(x) is the Hamiltonian vector field as was defined by Eq. 2.42. In fact,
as was discussed in Sect. 2.2 and from Fig. 2.1 (top) we can infer that x defines a
chart in the tangent space (T M) of phase space M .

Let us denote with θ the 1−forms defined on the phase space manifold M

θ : M → T ∗M : m ∈ M �→ θm ∈ T ∗
m M, (2.51)

and with α the 1−forms on the configuration manifold Q

α : Q → T ∗Q : r ∈ Q �→ αr ∈ T ∗
r Q. (2.52)

Since, α is a linear map from Q to M and θ an 1−form on M we can pull-back θ
to Q to produce the 1−form α∗θ , which lives on the base manifold Q. Then, the
Canonical Poincaré 1−Form is given by

θ̂ =
∑

i

pi dqi , (2.53)

and satisfies the relation

α∗θ̂ = α forall α ∈ X ∗(Q). (2.54)
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θ̂ is invariant under coordinate transformations. This is proved by using Eq. 2.30.
Indeed,

θ̂ =
∑

i

pi dqi =
∑

i

pi

∑

j

∂qi

∂Q j
d Q j

=
∑

j

(
∑

i

pi
∂qi

∂Q j

)
d Q j =

∑

j

Pj d Q j . (2.55)

The Canonical Symplectic 2− Form is extracted by taking the exterior derivative
of θ̂

ω̂ ≡ 2
ω = −d θ̂ . (2.56)

This is a closed 2−form (dω̂ = −d ◦ d θ̂ = 0). In local coordinates (q, p), ω̂ is
expressed by the wedge products (Darboux’s theorem)

ω̂r =
∑

i

dqi ∧ dpi , r ∈ M. (2.57)

If we introduce dx = (dq1, . . . , dqn, dp1, . . . , dpn), the symplectic 2−form
(Eq. 2.57) is written

ω̂ =
n∑

i=1

dxi ∧ dxn+i . (2.58)

We can compute symplectic k−forms by taking the k−fold exterior products
of ω̂

ω̂r =
∑

i

dqi ∧ dpi ,

ω̂r ∧ ω̂r = −2!
∑

i1<i2

dqi1 ∧ dqi2 ∧ dpi1 ∧ dpi2 ,

ω̂r ∧ ω̂r ∧ ω̂r = −3!
∑

i1<i2<i3

dqi1 ∧ dqi2 ∧ dqi3 ∧ dpi1 ∧ dpi2 ∧ dpi3 ,

· · · · · · · · · = · · · · · · · · · (2.59)

The largest 2n−form is

n− f old︷ ︸︸ ︷
ω̂r ∧ · · · ∧ ω̂r = n!(−)[n/2]dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ pn (2.60)
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and this defines the oriented volume form

Ωω̂ = (−)[n/2]

n!

n− f old︷ ︸︸ ︷
ω̂ ∧ · · · ∧ ω̂ . (2.61)

[n/2] is the largest integer smaller than or equal to n/2.
As is illustrated in the Appendix A.9.2, the geometric meaning of forms is that

of an area or volume, objects, which are quite often introduced in chemical theories.
For example, reaction rates are determined by the flux through a multidimensional
dividing surface (transition state) and the evaluation of the density of states of reactant
molecules, both requiring the calculation of phase space areas and volumes [2].

Summarizing, ω̂ is a symplectic form on a manifold M of even dimension 2n and
it is non-degenerate, skew-symmetric, closed 2−form (dω̂ = 0). A pair (M, ω̂) is
said to be a symplectic manifold. Those charts (coordinates) which satisfy Darboux’s
theorem, ω̂ = ∑n

i=1 dxi ∧ dxn+i , are said to be symplectic charts and the local
coordinates are called canonical coordinates. In the following we shall see that
Hamiltonian mechanics and its geometrical properties can be formulated with ω̂.

2.5.1 Symplectic Transformations

The equations
Xi = Fi (x, t), i = 1, . . . , 2n, (2.62)

define a transformation, which may involve both coordinates and their conjugate
momenta, and do not change the equations of motion. These transformations are
called canonical and the Jacobian matrix, (DF), of the transformation, (DF)i j =
∂Fi/∂x j , satisfies the symplectic property

(DF)T J (DF) = J. (2.63)

We can generalize the above transformations. A smooth map F that relates two
symplectic manifolds (M, ω̂) and (N , τ̂ ) is said to be symplectic if F∗τ̂ = ω̂, i.e.,
the pull-back of τ̂ yields ω̂. The symplectic maps are the canonical transformations
of mechanics if the two manifolds (M, N ) are identical

F∗ω̂ = ω̂. (2.64)

Let (M, ω̂) be a symplectic manifold of dimension 2n with ω̂ a canonical sym-
plectic 2−form. The Hamiltonian function H is a smooth function on M = T ∗Q.
The Hamiltonian vector field, X H , is then defined through the condition

iX H ω̂ = ω̂(X H , •) = d H. (2.65)
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iX H ω̂ symbolizes interior product and the triple (M, ω̂, X H ) is a Hamiltonian
system.

Indeed, we have seen that Hamilton’s equations can be written in the form

ẋ(t) = J∂H [x(t)] = X Hx , (2.66)

where H is the Hamiltonian function and X Hx the Hamiltonian vector field at x .
Since, the Hamiltonian vector field in local coordinates is written as

(
(X H )

i , (X H ) j

)T =
(
∂H

∂pi
,− ∂H

∂q j

)T

,

the 2−form ω̂ with a vacant position (•) is transformed to

ω̂(X H , •) =
n∑

i=1

(
dqi (X H )dpi − dpi (X H )dqi

)
,

=
n∑

i=1

(
(X H )

i dpi − (X H )i dqi
)
,

=
n∑

i=1

(
∂H

∂pi
dpi + ∂H

∂qi
dqi

)
,

= d H. (2.67)

With every Y ∈ X (M) we can write

ω̂(X H , Y ) = d H(Y ). (2.68)

The integral curves of the Hamiltonian vector field X H ,Φt (x), are solutions of the
canonical equations of motion Eq. 2.66. If the Hamiltonian does not have an explicit
dependence on time, then, the energy is conserved. Indeed, the Lie derivative of the
Hamiltonian is

d

dt
H(x(t)) = d H(ẋ) = d H(X Hx(t) ) = ω̂(X Hx(t) , X Hx(t) ) = 0. (2.69)

We can also show this with charts.

ω̂(X Hx(t) , X Hx(t) ) =
∑

i

dqi ∧ dpi (X Hx(t) , X Hx(t) )

=
∑

i

[
dqi (X Hx(t) )dpi (X Hx(t) )− dpi (X Hx(t) )dqi (X Hx(t) )

]

=
∑

i

[
−q̇i ṗi + ṗi q̇

i
]

= 0. (2.70)
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Symplectic diffeomorphisms (F∗τ̂ = ω̂) leave Hamilton’s equations invariant.
Using the properties of pull-back (Eq. A.89) we show

iX F∗ Hτ
ω̂ = d(F∗Hτ ) = F∗d Hτ = F∗iX Hτ

τ̂ = iF−1∗ X Hτ
F∗τ̂ = iF−1∗ X Hτ

ω̂, (2.71)

which implies X F∗ Hτ = F−1∗ X Hτ . F−1∗ X Hτ means push-forward the vector field
X Hτ which is related with τ̂ to the vector field X F∗ Hτ associated with the symplectic
2−form ω̂.4

4 For time dependent Hamiltonians, H(q, p, t), we can apply the same formalism of conservative
Hamiltonians by introducing time as a new variable, q0 = t , with conjugate momentum, p0, and
new Hamiltonian, Ht = p0 + H(q, p, t) = 0. Thus, the extended phase space Mt = T ∗ Qt of
the extended configuration manifold, Qt = (t, q1, . . . , qn)T , is of 2(n + 1)−dimension and in its
cotangent bundle we define the Canonical Poincaré 1−Form

θ̂t =
n∑

i=0

pi dqi = p0dq0 +
n∑

i=1

pi dqi = −H(q, p, t)dt + θ̂ , (2.72)

and symplectic 2−form

ω̂t = −d θ̂t = d H ∧ dt − d θ̂ = −dt ∧ d H +
n∑

i=1

dqi ∧ dpi . (2.73)

The new Hamiltonian vector field (X Ht ) is defined by the equation

ω̂t (X Ht , •) = d Ht , (2.74)

(
(X Ht )

0

(X Ht )0

)
=

(
1

−∂H/∂t

)
,

(
(X Ht )

i

(X Ht )i

)
=

(
∂H/∂pi

−∂H/∂qi

)
, i = 1, . . . , n. (2.75)

The Hamiltonian vector field lives in the tangent bundle of the extended phase space, T (T ∗ Qt ), the
base vector fields of which are

(
∂

∂t
,
∂

∂p0

)
,

(
∂

∂qi
,
∂

∂pi

)
, i = 1, . . . , n. (2.76)

(Mt , ω̂t , X Ht ) is a Hamiltonian system and the Canonical Poincaré 1−Form, Eq. 2.72, is related to
the total differential of action (Eq. 2.47). We can see, that with this formulation of time dependent
systems the trajectories are projected at each time t in the physical phase space of the system of
2n−dimension, x = (q1, . . . , qn, p1, . . . , pn)

T , and they are given by Hamilton’s equations of
motion with the time dependent Hamiltonian

ẋ(t) = J∂H(x, t). (2.77)
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The symplectic maps of a symplectic vector space (V, σ̂ ) onto itself

V : (V, σ̂ ) → (V, σ̂ ), F∗σ̂ = σ̂ , (2.78)

form the symplectic group Sp2n . Applying a symplectic transformation to the sym-
plectic matrix J in local coordinate representation yields

(DF)T J (DF) = J. (2.79)

Theorem 1 (Liouville’s Theorem)

If (M, ω̂, X H ) is a Hamiltonian system, and Φt the flow of the vector field X H(
dΦt
dt = X H

)
, then, for all times t the flow is symplectic, i.e., Φ∗

t ω̂ = ω̂. From

this, we conclude that the oriented volume Ωω̂ (Eq. 2.61) is conserved (Liouville’s
Theorem).

2.5.2 Poisson Brackets

f and g are two dynamical quantities acting on the Hamiltonian system (M, ω̂, H).
If X f and Xg are vector fields assigned to the two dynamical quantities, then, they
are defined by the equations

ω̂(X f , •) = d f, ω̂(Xg, •) = dg, (2.80)

which imply

X f =
(
∂ f

∂p
,−∂ f

∂q

)T

and Xg =
(
∂g

∂p
,− ∂g

∂q

)T

. (2.81)

The Poisson bracket is defined as

ω̂(X f , Xg) = d f (Xg)

=
n∑

i=1

[
∂ f

∂qi
dqi (Xg)+ ∂ f

∂pi
dpi (Xg)

]

=
n∑

i=1

[
∂ f

∂qi

∂g

∂pi
+ ∂ f

∂pi

(
− ∂g

∂qi

)]

=
n∑

i=1

[
∂ f

∂qi

∂g

∂pi
− ∂ f

∂pi

∂g

∂qi

]
(2.82)

≡ { f, g} = −{g, f }. (2.83)
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The Lie derivative of a dynamical quantity g with respect to a vector field X f is
defined as the directional derivative of g along the vector X f

L X f g = dg(X f ) = ω̂(Xg, X f ). (2.84)

So, to be consistent with the definition of Poisson brackets (Eq. 2.82) for a Hamil-
tonian vector field we take L X H g = dg(X H ) = ω̂(Xg, X H ) = {g, H}.

Some properties of Poisson brackets are:

P1: The Poisson bracket in terms of Lie derivative is written as

{g, f } = L X f g = dg(X f ) = −d f (Xg) = −L Xg f = −{ f, g}. (2.85)

P2: The quantity f (or g) is constant along the flow of Xg (X f ) if and only if
{g, f } = 0.

P3: LetΦt be the flow of the Hamiltonian vector field X H and g being a dynamical
quantity, then, it is valid

d

dt
(g ◦Φt ) = ∂

∂t
(g ◦Φt )+ {g ◦Φt , H}. (2.86)

P4: Poisson brackets defined on the set of smooth functions F (M) on M generate
a Lie algebra, i.e.,

• { f, g} is bilinear,

• { f, f } = 0, and

• { f, {g, h}} + {g, {h, f }} + {h, { f, g}} (Jacobi identity).

P5: In a local symplectic chart with canonical coordinates (qi , p j ) the following
equations are true

{qi , q j } = 0 (2.87)

{pi , p j } = 0 (2.88)

{qi , p j } = δi
j . (2.89)

P6: F is diffeomorphism between two symplectic manifolds, F : (M, ω̂) → (N , τ̂ ).
This map is also symplectic if preserves the Poisson brackets of functions and/or
1−forms, i.e.,

{F∗ f, F∗g} = F∗{ f, g} forall f, g ∈ F (N ). (2.90)
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Similarly to the previous section we can use the formalism of interior product to
describe Lie derivatives and Poisson brackets. The Lie derivative of a form α is
defined as (Cartan’s magic formula)

L Xα = iX dα + diXα. (2.91)

If α is a function (0−form) then

L Xα = iX dα. (2.92)

A differential form is conserved if

L Xα = 0. (2.93)

An example is the conservation of the canonical symplectic 2−form, ω̂, along a
Hamiltonian vector field X H

L X H ω̂ = iX H dω̂ + diX H ω̂ = −iX H d ◦ d θ̂ + d ◦ d H = 0. (2.94)

The Poisson bracket is defined in terms of interior products as

{g, f } = L X f g = iX f dg = iX f iXg ω̂. (2.95)
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Chapter 3
Dynamical Systems

A general dynamical system is described by the system of ordinary differential
equations

dx

dt
≡ ẋ = F(x, μ), (3.1)

where the independent variables are x ∈ R
n and μ ∈ R

p are parameters of the
system. The RHS of the equations, F = ( f 1(x, μ), . . . , f n(x, μ))T , are smooth
functions and define a vector field or the velocity field ẋ .

Here, we are interested in Hamiltonian systems and flows in even dimensional
phase space, (M, ω̂, X H ). (M, ω̂) is a symplectic manifold of dimension 2n with ω̂
a canonical symplectic 2-form. The Hamiltonian function H is a smooth function
on M = T ∗Q with Q signifying the configuration manifold and T ∗Q the cotangent
bundle of Q. The Hamiltonian vector field, X H , is then defined with the relation

iX H ω̂ = ω̂(X H , •) = d H. (3.2)

iX H ω̂ indicates the interior product of the Hamiltonian vector field X Hx with the
2-form ω̂. If x = (q1, q2, . . . , qn, p1, p2, . . . , pn)

T defines a chart (coordinate sys-
tem) in phase space M , then, the Hamiltonian vector field belongs to the tangent
bundle of phase space (T M ≡ T (T ∗Q))

ẋ(t) = J∂H(x, μ), (3.3)

where ∂H is the gradient of Hamiltonian function, and J the symplectic matrix

J =
(

0n In

−In 0n

)
. (3.4)

0n and In are the zero and unit n × n matrices, respectively.
The study of dynamical systems is not simply restricted to distinguish quasiperi-

odic from chaotic flows (see below), although the onset of chaos by varying the
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34 3 Dynamical Systems

Table 3.1 Low dimensional model potentials employed to study elementary bifurcations of equi-
libria and periodic orbits

Bifurcation Potential

Center-Saddle (Saddle-Node) V (q) = 1
3 q3 − 1

2αq2 − βq − γ

Pitchfork V (q) = 1
4 q4 − 1

3αq3 − 1
2βq2 − γ q − δ

Period doubling and m : n resonances V (x, y) = 1
2

(
ω2

x x2 + ω2
y y2

)
− εx2 y

Complex unstable (Hamiltonian Hopf) V (x, y, z) = 1
2

(
ω2

x x2 + ω2
y y2 + ω2

z z2
)

− εx2 y − ηx2z

parameters in nonlinear dynamical systems was a central point in numerical investi-
gations during the first years of the development of the theory. The description and
location of time invariant structures in phase space of nonlinear dynamical systems
has been an exciting endeavour. By invariant phase space structures we mean equi-
libria, periodic orbits, tori, normally hyperbolic invariant manifolds and generally
stable/unstable manifolds.

Trajectories initialized on these objects will remain on their surfaces for ever.
Nearby trapped trajectories to these objects determine the dynamical behaviour of
the system, and as we shall see, for molecules they can explain observed spectroscopic
characteristics and reaction dynamics. Of great importance is the evolution of these
invariant structures by varying parameters in the Hamiltonian or global constants
of motion like the total energy. At critical values of the parameters bifurcations
(branching) of these invariant structures are observed, which indicate the genesis
of new qualitatively different motions of the system. One of the achievements of
nonlinear mechanics is the classification of elementary bifurcations, which mean
bifurcations described by very simple low dimensional Hamiltonians, nevertheless,
equivalently encountered in generic multidimensional dynamical systems.

In this chapter we describe the different type of elementary bifurcations by numer-
ically studying simple 1D, 2D and 3D model potentials tabulated in Table 3.1.

3.1 Equilibria and Elementary Bifurcations

Equilibria are defined as the solutions of the equations

ẋ(t) = 0. (3.5)

For Hamiltonians written as the sum of kinetic energy, which depends only on
momenta and potential energy, V (q),

H(q, p) = 1

2
p2 + V (q), (3.6)
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the equilibria are the critical points of the potential, i.e., ∂V (q) = 0. There are
excellent books [9, 21] which describe the elementary bifurcations of fixed points of
vector fields. Here, we do not attempt a complete cover of this subject but to discuss
mainly those bifurcations which are met frequently with molecular potentials and
particularly center-saddle bifurcations.

3.1.1 Cubic Potential

We assume a general cubic potential

V (q) = 1

3
q3 − 1

2
αq2 − βq − γ. (3.7)

The equilibrium points of Hamiltonian vector field are the roots of the second order
polynomial

dV (q)/dq = q2 − αq − β = 0. (3.8)

In order to Eq. 3.8 has two real roots (equilibrium points) the discriminant of the
equation, D = α2 +4β, should satisfy, D ≥ 0. Thus, the parabola D = 0 defines the
region in the two parameter space, (β, α), where these two roots exist. Figure 3.1a
depicts this region and Fig. 3.1b shows the evolution of the two equilibria by varying
the parameter β and for α = 0. This graph is a typical continuation/bifurcation
diagram (C/B). We notice, that there are no equilibrium points for negative values
of β and at β = 0 the double root indicates the emanation of the center-saddle (CS)
elementary bifurcation.1 The two branches correspond to stable (solid line) and to
unstable (dashed line) equilibria. Stable means that trajectories close to this point will
remain in the nearby region, whereas unstable points mean that nearby trajectories
will deviate from it. Visualization of the critical points of the corresponding potential
function explains better the stable and unstable terms. Such a plot is shown in Fig. 3.1c
for several values of β.

In this figure we distinguish three different regimes. For β < 0 there are no criti-
cal points, for β > 0 there are two critical points, one minimum and one maximum,
and for β = 0 (dashed line) there is one critical point at q = 0. In Fig. 3.1d several
trajectories are plotted in the phase plane, (q, p), and for β = 1 obtained by solving
Eq. 3.3 . The dashed line depicts the separatrix, i.e., the line that separates the two
distinctly different types of motion allowed for this dynamical system; closed stable
orbits and unbound orbits. This phase space graph is typical of a center-saddle bifur-
cation and for integrable systems as 1D systems are. It is important to emphasize that
the structure of phase space does not change qualitatively by introducing a second
parameter. The C/B diagram remains the same with two branches for α �= 0. The

1 For general dynamical systems this elementary bifurcation is called saddle-node.
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Fig. 3.1 Plots for a cubic potential. a The sign of the discriminant D in the parameter space (β, α)
of a cubic potential. b Continuation/Bifurcation (C/B) diagram of a cubic potential. The coordinates
q of the two equilibria are shown as function of the parameter β and for α = 0. Continuous line
indicates the stable equilibrium points (minima) and the dashed line the unstable equilibrium points
(maxima). c The potential function for several values of β. For β < 0 there are no equilibria, for
β > 0 there are two equilibrium points, one minimum and one maximum, and for β = 0 (dashed
line) there is one saddle point at q = 0. d Trajectories which portray the phase space structure in
the region of a center-saddle bifurcation (β = 1). The dashed line is the separatrix, an invariant
curve which separates two different kinds of motion, bound and unbound. The colored arrows at
the unstable equilibrium depict the direction of the linearized flow at the vicinity of equilibrium

colored arrows at the unstable equilibrium depict the direction of the linearized flow
at the vicinity of equilibrium.

3.1.2 Quartic Potential

A general quartic potential is

V (q) = 1

4
q4 − 1

3
αq3 − 1

2
βq2 − γ q − δ. (3.9)
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The critical points are the solutions of

dV (q)/dq = q3 − αq2 − βq − γ = 0. (3.10)

This cubic equation is reduced to a two parameter equation with the transformation

x = q − α/3 (3.11)

μ = α3

3
+ β (3.12)

λ = 2α3

27
+ αβ

3
+ γ. (3.13)

The reduced cubic polynomial is

x3 − μx − λ = 0, (3.14)

with a discriminant defined by

D = −μ
3

27
+ λ

4
. (3.15)

The roots of Eq. 3.14 are classified according to:

1. For D > 0, there are one real root and two imaginary.
2. For D < 0, there are three different real roots.
3. D = 0, there are three real roots of which two of them are equal.

Figure 3.2a depicts the sign of the discriminant in the parameter space (λ, μ).
The cusp curve defines the values of (λ, μ) where the discriminant is zero. Thus,
crossing this curve from positive to negative values of D we pass from one to three
equilibrium points. A double degeneracy of equilibrium points is encountered at the
cusp curve. The three equilibria in the quartic potential are the two minima and one
maximum of the potential. In Fig. 3.2b we plot potential curves for several values of
λ. As λ approaches zero the kink in the potential is transformed to a double well.

The C/B diagram forλ = 0 and varying the parameterμ is shown in Fig. 3.3a. This
is a typical pitchfork bifurcation. The introduction of a second parameter (λ �= 0)
results in a C/B diagram shown in Fig. 3.3b. In other words, the unstable branch of the
zero root becomes the unstable branch of a center-saddle bifurcation and one stable
branch joins that of zero root. We can think of a continuation/bifurcation diagram as
a folded surface in the (λ, μ, x) space.

Trajectories plotted in the phase plane are shown in Fig. 3.4 for the symmetric
double well potential (λ = 0 and μ = 1). The separatrix (dashed line) emanated
from the maximum of the potential separates the two types of motion encountered in
this 1D system. The two types correspond to closed curves around a minimum and
closed curves which encircle both minima. The colored arrows at the vicinity of the
unstable equilibrium depict the linearized flow.
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Fig. 3.2 a The sign of the
discriminant D (Eq. 3.15) in
the parameter space (λ, μ) of
a quartic potential. b Potential
curves of a quartic
polynomial and for several
values of λ. The dashed line
is the symmetric double well
potential (λ = 0)
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3.2 Periodic Orbits

x(0) denotes the initial conditions of a trajectory at time t1 = 0, then, this trajectory
is periodic if it returns to its initial point in phase space after the time t2 = T
(period), i.e.,

x(T )− x(0) = 0. (3.16)

Thus, to find periodic solutions it is necessary to solve Eq. 3.3 subject to the 2-point
boundary conditions, Eq. 3.16.

The above boundary value problem is converted to an initial value problem by
considering the initial values of the coordinates and momenta s

x(0) = s, (3.17)
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Fig. 3.3
a Continuation/Bifurcation
diagram of a quartic
potential and for λ = 0
showing a pitchfork
bifurcation. b C/B diagram of
a quartic potential and for
λ = 0.01. A center-saddle
bifurcation and a continuous
branch emanate because of
the symmetry breaking for
λ �= 0
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as independent variables in the nonlinear functions

B(s) = x(T )− s. (3.18)

We symbolize the roots of Eq. 3.16 as s∗, i.e.,

B(s∗) = 0. (3.19)

Thus, if s is a nearby value to the solution s∗ we can compute the functions B(s) by
integrating Hamilton’s equations for the period T . By appropriately modifying the
initial values s we hope to converge to the solution, that is, s → s∗ and B → 0.
In Chap. 5 we describe the multiple shooting method for finding periodic orbits and
available software for carrying out such calculations.

http://dx.doi.org/10.1007/978-3-319-09988-0_5
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Fig. 3.4 Phase space
structure of a symmetric
double well quartic potential.
The dashed line is the
separatrix, an invariant curve
which separates two different
kinds of motion. The colored
arrows at the vicinity of the
unstable equilibrium depict
the linearized flow
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3.2.1 Stability Analysis of Equilibria and Periodic Orbits

To investigate the behaviour of neighbouring trajectories to an equilibrium by lin-
earizing a vector field is a common strategy. The Grobman–Hartman theorem [11]
states that the nonlinear flow is locally topologically conjugate to the flow of the
linearized system in the vicinity of a hyperbolic equilibrium. Thus, important con-
clusions obtained for the linearized system can be extended to the nonlinear one.

If x(t) is a solution of Hamilton’s equation a nearby trajectory x ′(t) is given by
the small displacement ζ

δx(t) = x ′(t)− x(t) = ζ(t), (3.20)

the time evolution of which is described by

ζ̇ (t) = ẋ ′(t)− ẋ(t) = J∂H(x ′)− J∂H(x). (3.21)

A Taylor expansion of the RHS of the above equation gives,

ζ̇ (t) = J∂2 H [x(t)]ζ(t)+ h.o.t . . . (3.22)

∂2 H [x(t)] denotes the matrix of second derivatives of the Hamiltonian (the Hessian)
evaluated at x(t). According to the discussion in Sect. A.7.4 of the Appendix, ζ is a
Jacobi field and the Lie derivative along the Hamiltonian flow, Φt x = x(t), is zero.
If, we define A(t) = J∂2 H [x(t)], then, Eq. 3.22 is written,

ζ̇ (t) = A(t)ζ(t). (3.23)
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These are 2n linear differential equations with time dependent coefficients, and are
called variational equations.

The general solution of variational equations is expressed as

ζ(t) = Z(t)ζ(0), (3.24)

where ζ(0) is the initial displacement from a reference trajectory x and Z(t) is the
fundamental matrix, which also satisfies the variational equations as can be easily
proved;

Ż(t) = A(t)Z(t). (3.25)

If x(t; s) denotes the reference trajectory with initial conditions s, then, we can show
that the fundamental matrix has columns the vectors,

zk = ∂x(t; s)

∂sk
, (3.26)

i.e., the derivatives of the trajectory x(t; s) with respect to the initial coordinates
sk, k = 1, . . . , 2n. Indeed, differentiating both sides of Eq. 3.3 we take,

∂ ẋ

∂sk
= J

∂

∂sk
∂H,

d

dt

(
∂x

∂sk

)
= J (∂2 H)

∂x

∂sk

= A(t)
∂x

∂sk
. (3.27)

Thus,
żk = A(t)zk . (3.28)

Obviously, at t = 0, Z is the matrix with columns the vectors (1, 0, . . . , 0),
(0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1), i.e.,

Z(0) = I2n . (3.29)

For a periodic orbit with period T the fundamental matrix at t = T ,

M = Z(T ) = ∂x(T ; s)

∂s
, (3.30)

is named monodromy matrix. As we shall see, the monodromy matrix plays an
important role in the theory of periodic orbits and their stability.

The behaviour of nearby trajectories to the periodic orbit, with the approxima-
tion of linearizing the equations of motion, is examined by studying the eigenvalues
of the monodromy matrix λi . Here are some properties of the monodromy matrix.
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1. M(mT ) = M(T )M[(m − 1)T ]
M(mT ) = M(T )m (3.31)

This is extracted from Eq. 3.24.
2. Since ẋ is periodic in time as well as solution of the variational equations

(Eq. 3.23), we can show that one of the eigenvalues of the monodromy matrix
is equal to one. Indeed, for ζ(t) = ẋ(t), we have

ζ(0) = ζ(T ) = M(T )ζ(0)

(M − I2n)ζ(0) = 0. (3.32)

I2n is the unit matrix. The above equation is true if at least one of the eigenvalues
of the monodromy matrix is equal to one. Hence, if x(t) is a periodic orbit,
the variational equations have a periodic solution (ẋ(t)), and then, one of the
eigenvalues of the monodromy matrix is one. The inverse is also true and very
important; if the monodromy matrix has one eigenvalue equal to one, then, the
variational equations have a periodic solution.

3. We can extend the previous property by proving that for every constant (integral)
of motion there is one eigenvalue of the monodromy matrix equal to one. Let
C(x(0); T ) a constant of motion along a periodic orbit with initial conditions
x(0) = s and period T . Then,

C(x(t; s)) = C(s). (3.33)

Differentiating this equation with respect to the initial conditions

∂x C(x(t; s))
∂x(t; s)

∂s
= ∂sC(s), (3.34)

which at t = T becomes
∂sC(M − I2n) = 0. (3.35)

Thus, we conclude that the monodromy matrix has one eigenvalue equal to one,
provided ∂sC �= 0.

4. For conservative Hamiltonians and Liouville’s theorem we deduce the determi-
nant of the monodromy matrix

det M(T ) = 1. (3.36)

5. The monodromy matrix satisfies the symplectic property

MT J M = J. (3.37)
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From the above two properties we may conclude that the variational equations
of a Hamiltonian system (the linearized system) is also Hamiltonian with the
symplectic property (see also Eq. 2.74). This is already known, since, the funda-
mental matrix is the Jacobian of the Hamiltonian flow, Φt (x0), which defines an
one-parameter group of symplectic diffeomorphisms, Sect. 2.5.1

Z(t) = DΦt (x0) ≡ Φt∗. (3.38)

6. For a conservative Hamiltonian system if λ is an eigenvalue of the monodromy
matrix obtained by solving the linearized approximation, then, λ−1 and their
complex conjugates, λ∗ and (λ∗)−1 are also eigenvalues of M . In other words,
for conservative Hamiltonian systems the eigenvalues of the monodromy matrix
occur in pairs, (λ, λ∗) for complex eigenvalues and (λ, λ−1) for real eigenvalues.
According to the properties 2 and 3 for conservative Hamiltonian systems the
monodromy matrix has always two eigenvalues equal to one.
From Eq. 3.31 we infer

ζ(mT ) = M(T )mζ(0) =

⎛

⎜⎜⎝

λm
1 0 ... 0

0 λm
2 ... 0

... ... ... ...

0 0 ... λm
2n

⎞

⎟⎟⎠ ζ(0), (3.39)

assuming that the coordinate system is defined by the eigenvectors of M . Obviously,
the eigenvalues of the monodromy matrix determine the deviation of a trajectory
from the periodic orbit with an initial displacement ζ(0) after m iterations.

Sometimes it is convenient to express the eigenvalues of the monodromy matrix as,

λ = exp(αT ), (3.40)

the exponents α are called characteristic exponents.
From the properties of the monodromy matrix we may infer the following for its

eigenvalues. Excluding the two unit eigenvalues:

(i) If all the eigenvalues are on the unit complex circle, and multiple eigenvalues
(degenerate) have independent eigenvectors which are equal to the multiplicity
of the eigenvalues, then, the periodic orbit is stable (elliptic), and it is surrounded
by tori. The characteristic exponents are pure imaginary numbers, α = iσ , and
σ may be considered as the frequency of rotation of a neighbouring trajectory
around the periodic orbit. It may happen that,

T/(2π/σ) = m/n, (3.41)

where m and n are integers. Then, it can be shown that the variational equations
have a periodic solution, and there should exist a new periodic orbit of period
T ′ = nT in the neighborhood of the initial one.

http://dx.doi.org/10.1007/978-3-319-09988-0_2
http://dx.doi.org/10.1007/978-3-319-09988-0_2
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Fig. 3.5 Eigenvalues of the
monodromy matrix with
respect to the complex unit
circle. Top from left to right;
The two pairs of eigenvalues
are complex conjugate with
norm equal to one (stable
orbit), one pair of complex
conjugate with unit norm and
one pair of real eigenvalues
(single unstable periodic
orbit). Bottom from left to
right; two real pairs (double
unstable periodic orbit) and a
quadruplet of complex
eigenvalues out of unit circle
(complex unstable periodic
orbit)
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(ii) If there are eigenvalues equal to one, then, α = 0 and a new periodic orbit
of period T also exists in the neighborhood of the parent one. For eigenvalues
equal to −1, α = iπ/T and a new periodic orbit of double period exists nearby.

(iii) If there are real eigenvalues greater than ±1, ζ(t) will deviate exponentially
with time, and the periodic orbit is unstable (hyperbolic) in the directions of
the corresponding eigenvectors.

(iv) If there is a complex eigenvalue, λ, with norm greater than one, then, λ−1, λ∗,
and (λ∗)−1 are also eigenvalues, and the periodic orbit is called complex unsta-
ble.

(v) If there are multiple eigenvalues with independent eigenvectors less than the
multiplicity of the eigenvalue, the periodic orbit is unstable with ζ(t) deviating
not exponentially but with a power of t .

In Fig. 3.5 we plot the eigenvalues of M on the unit complex circle for a system
of three degrees of freedom. The two pairs of eigenvalues which are different than
one may be: complex conjugate with norm equal to one (stable orbits), or one pair of
complex conjugate with unit norm and one pair of real eigenvalues (single unstable
periodic orbits), or two real pairs for double unstable periodic orbits. There are
three different cases in the double instability; positive, negative, or one positive and
one negative pairs of real eigenvalues. Finally, if there is a quadruplet of complex
eigenvalues out of the unit circle the periodic orbit is complex unstable.

The theories to predict when a stable periodic orbit will become unstable by
varying a parameter of the Hamiltonian, as well as the number of branches at the
bifurcation critical value of the continuation/bifurcation diagram are those of Krein,
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Gelfand, and Lindskii [22] and degree theory [13]. In Chap. 5 we discuss numerical
methods to solve 2-point boundary value problems.

3.2.2 Complex Instability

Three degrees of freedom systems exhibit new dynamical phenomena, such as the
Arnold diffusion [9], i.e., the non isolation of the chaotic regions in phase space,
and the phenomenon of complex instability [3]. The latter is related to unstable
periodic orbits whose monodromy matrix has a quadruplet of complex eigenvalues
out of the unit circle (Fig. 3.5). This can happen only for systems with three and
more degrees of freedom. Around complex unstable periodic orbits the trajectories
diverge exponentially while rotating with a characteristic frequency.

Specifically, the system which we have employed to investigate complex insta-
bility is described by the Hamiltonian [3]

H = 1

2
(p2

x + p2
y + p2

z )+ 1

2
(ω2

x x2 + ω2
y y2 + ω2

z z2)− εx2 y − ηx2z. (3.42)

The values of the parameters are, ω2
x = 0.9, ω2

y = 1.6, ω2
z = 0.4, ε = 0.08, and

η = 0.01. The harmonic frequencies satisfy the following resonance conditions;
ωx : ωy : ωz = 3:4:2. This Hamiltonian supports a complex unstable family of
periodic orbits for an extended energy domain. In Fig. 3.6 we depict the projection
of the spiral invariant curve from a complex unstable periodic orbit at energy of 6
and initial conditions, x = 0.0, px = 3.3711353, y = 0.6230596, py = 0.0, z =
0.1892212, pz = 0.0. The analytically obtained points (open squares) are compared
with the numerically calculated points (filled squares), which in most of the cases,
coincide (for details see [3]).

It turns out, that center-saddle bifurcations and complex unstable periodic orbits
are frequently encountered in molecular dynamics, and indeed, at the beginning
it was a surprise to chemists. Contrary to that, these phenomena are well known
to mathematicians as the literature reveals. We quote from the book of Stephen
Wiggins “Introduction to Applied Nonlinear Dynamical Systems and Chaos”, p.
283 [21], ... we might conclude that, in one-parameter families of vector fields, the
most “typical” bifurcations are saddle-node and Poincaré–Adronov–Hopf. Center-
saddle bifurcations are typical in molecular Hamiltonian vector fields as well, and in
Chap. 6 we discuss their striking impact to molecular dynamics with experimental
manifestations.

3.2.3 Existence Theorems for Periodic Orbits

Knowing the existence of PO is essential in the process of locating them. As a matter
of fact, numerically locating periodic orbits in Hamiltonian systems and continuing

http://dx.doi.org/10.1007/978-3-319-09988-0_5
http://dx.doi.org/10.1007/978-3-319-09988-0_6
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Fig. 3.6 Projection of the
spiral invariant curve from a
complex unstable
periodic orbit. The
analytically obtained points
(open squares) are compared
with the numerically
calculated points (filled
squares), which in most of the
cases, coincide [3]

them in the parameter space is as science as ‘art’. In any case, finding a family of
periodic obits one needs the ‘seed’ to start the process of locating the PO as well as
the continuation. Hence, existence theorems are vital.

Poncaré–Birkhoff theorem [2, 10] guarantees the appearance of alternating PO,
stable–unstable, by perturbing commensurate tori in conservative systems. Another
important existence theorem of periodic orbits is that of Weinstein [20]. This theorem
guarantees, that arbitrarily close to a stable equilibrium point of a n degrees of
freedom system there are at least n periodic orbits whose periods are close to those
of the linearized system. Generalizations of this theorem to unstable equilibria were
given by Moser [15]. A survey of the existence theorems of periodic orbits for
nonlinear dynamical systems may be found in [17, 23].

Center-saddle bifurcations of periodic orbits are ubiquitous and their existence is
supported by the Newhouse theorem [16, 21] initially proved for dissipative dynam-
ical systems, and it was later extended to Hamiltonian systems as well [4, 8]. The
theorem states that tangencies of the stable and unstable manifolds associated with
unstable equilibria and periodic orbits, generate an infinite number of period dou-
bling and center-saddle bifurcations. Hence, the originally single unstable periodic
orbits (named Lyapunov orbits) of the fundamental families of index-1 equilibria
are expected to generate such CS bifurcations as their manifolds expand along the
unstable degree of freedom (Sect. 3.4). As a matter of fact, intersections of the stable
and unstable manifolds coming either from the same or different equilibria generate
homoclinic and heteroclinic orbits, respectively [21], which connect remote regions
of phase space. Their numerical location is not easy and that makes periodic orbit
families more precious in studying the complexity of the molecular phase space at
high excitation energies.
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3.3 Tori and Normally Hyperbolic Invariant Manifolds

A well known integrable system to chemists is the vibrational Hamiltonian of a
molecule expressed as sum of harmonic oscillators. To show this we expand the
global Hamiltonian in a Taylor series around an elliptic equilibrium x0, which is
taken to be the origin of the coordinate system. Then, assuming the constant term to
be zero the Taylor series is written as

H(x) =
∞∑

l=0

1

l! Hl(x). (3.43)

Hl is a homogeneous polynomial of degree l + 2 in the variables x = (q1, . . . , qn,

p1, . . . , pn)
T .

H0(x) denotes the quadratic part of the Hamiltonian, H0(x) = 1
2 xT [∂2 H(0)]x ,

where [∂2 H ] is the Hessian of the Hamiltonian evaluated at the equilibrium point.
The linearized Hamiltonian vector field is defined by

ẋ(t) = J [∂2 H(0)]x(t) = Ax(t). (3.44)

By diagonalizing the matrix, A = J [∂2 H(0)], we obtain the normal coordinates of
the molecule which render the quadratic Hamiltonian into a harmonic one2

H0 = 1

2

n∑

i=1

(p2
i + ω2

i qi2), (3.45)

where ωi are the frequencies of the normal modes.
In the Appendix A.10 we show that a quadratic Hamiltonian can be written in

action-angle variables, (Ii , φi ),

H0 =
n∑

i=1

ωi Ii . (3.46)

It is easy to show by writing Hamilton’s equations that Ii are constants of motion
and φi (t) = ωi t +φi0, where φi0 are the initial phases. Thus, the flow lies on a torus.
An example of such a torus was presented in the introduction for the 2D model of
carbon dioxide (Fig. 1.2).

A n-torus is the product of n circles, T n =
n︷ ︸︸ ︷

S1 × S1 × · · · × S1. This is a
n-dimensional compact manifold embedded in a 2n − dimensional phase space.
Trajectories with commensurable frequencies, i.e.,

∑n
i=1 miωi = 0 with mi integer

2 To avoid using many symbols we use (q, p) to ascribe both the internal and the normal coordinates
and conjugate momenta.

http://dx.doi.org/10.1007/978-3-319-09988-0_1
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numbers (mi ∈ Z) are periodic closed orbits, whereas for incommensurable fre-
quencies,

∑n
i=1 miωi �= 0, the trajectories are quasiperiodic and cover the surface

of n-torus.

3.3.1 Kolmogorov–Arnold–Moser Theorem

The very important theorem of Kolmogorov–Arnold–Moser guarantees that tori will
survive even when we accept higher order terms in the Taylor expansion of the
Hamiltonian, Eq. 3.43.

Theorem 3.1 (Kolmogorov-Arnold-Moser (KAM) Theorem)
A Hamiltonian system is written by H = H0 + εH1, with H0 an integrable

Hamiltonian and εH1 a small perturbation which makes H non-integrable. The
KAM theorem guarantees that incommensurate tori, which exist for ε = 0, will also
exist for 0 < ε << 1. As ε increases the tori are destroyed and the trajectories
become chaotic with no constants of motion.

3.3.2 Normally Hyperbolic Invariant Manifold

In the case of a hyperbolic equilibrium point instead of an elliptic one, for example
a saddle of index-1, the quadratic part in the Taylor expansion of the Hamiltonian,
Eq. 3.43, is written in scaled normal coordinates as

H0 = λQ1 P1 + 1

2

n∑

i=2

ωi (P
2
i + Qi2), (3.47)

where we have taken (Q1, P1) to be the unstable degree of freedom in the saddle. To
go beyond the quadratic approximation by including higher order terms in the Taylor
expansion of the Hamiltonian, one can apply the Poncaré - Birkhoff method to obtain
the appropriate normal form coordinates (F, PF ) as are described in the Appendix
A.10. We can go on by defining action-angle variables related to the normal form
coordinates with the same transformations as applied to normal coordinates,

Ii = (Fi2 + P2
Fi )/2, i = 2, . . . , n, (3.48)

and for the unstable degree of freedom

J1 = F1 PF1 . (3.49)

The local normal form Hamiltonian is written in terms of action variables only,
HL(J1, I2, . . . , In). Since, the transformation to the normal form coordinates is
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symplectic, Hamilton’s equations do not change (see Eq. 2.71), and thus, one can
write

Ḟ1 = ∂HL

∂PF1
= ∂HL

∂ J1

∂ J1

∂PF1
= λ1(J1, I2, . . . , In) F1,

Ḟ i = ∂HL

∂PFi
= ∂HL

∂ Ii

∂ Ii

∂PFi
= ωi (J1, I2, . . . , In) PFi , i = 2, . . . , n,

ṖF1 = −∂HL

∂F1 = −∂HL

∂ J1

∂ J1

∂F1 = −λ1(J1, I2, . . . , In) PF1,

ṖFi = − ∂HL

∂PFi
= −∂HL

∂ Ii

∂ Ii

∂Fi
= −ωi (J1, I2, . . . , In) Fi , i = 2, . . . , n. (3.50)

λ1 is the rate with which neighbouring trajectories diverge transversely along the
unstable degree of freedom and ωi , i = 2, . . . , n, the vibrational frequencies in the
stable degrees of freedom.

These equations can be used to define the normally hyperbolic invariable manifold
(NHIM). Keeping F1 = PF1 = 0 we obtain the NHIM and for F1 = 0 and PF1 �= 0
or F1 �= 0 and PF1 = 0 we construct the stable/unstable manifolds, (W s/W u), of the
NHIM.3 For a (2n)D phase space the energy hypersurface is of (2n − 1)-dimension
and a NHIM associated to a saddle index-1 is a sphere (S2n−3) of (2n − 3)D in the
energy shell. The stable/unstable manifolds of the NHIM, (W s/W u), are (2n − 2)D
objects with the geometry that of a cylinder, S2n−3 × R with the NHIM as equator.

NHIM with their stable/unstable manifolds have the correct dimension to act as
dividing surfaces (transition states) in chemical reactions as Wiggins and collabora-
tors have demonstrated in the last years [19].

3.4 Poincaré Surfaces of Section

Having the picture of a 2D torus embedded in a 4D phase space we take a section of
this surface with a plane. Then, the quasiperiodic trajectory which covers the surface
of the torus will cut the plane of section several times and it will leave traces that
form a closed orbit (see Fig. 1.2). This is what we call Poincaré surface of section
(PSS). We expect integrable systems to have PSS filled with closed regular curves.
On the other hand, if the trajectory covers in infinite time the total energy surface,
as chaotic ones do, we expect the trajectory to have points scattered in the plane of
section, since the plane intersects the 3D energy surface in the 4D phase space.

As an example Fig. 3.7A shows a typical PSS for the model potential [5]

V (x, y) = 1

2

(
ω2

x x2 + ω2
y y2

)
− εx2 y. (3.51)

3 Examples of stable/unstable manifolds (separatrices) are shown in Figs. 3.1d and 3.4, where the
arrows explain the directions of the linearized flow in the neighbourhood of the unstable equilibrium.

http://dx.doi.org/10.1007/978-3-319-09988-0_2
http://dx.doi.org/10.1007/978-3-319-09988-0_1
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(a)

(b)

(A)

(B)

Fig. 3.7 A Barbanis–Contopoulos potential [5]: V (x, y) = 1
2

(
ω2

x x2 + ω2
y y2

)
− εx2 y. The para-

meters used areω2
x = 0.9, ω2

y = 1.6, ε = 0.08 andωx/ωy = 3/4. The Poincaré surfaces of section
for several trajectories on the (y, p) plane for x = 0 and px > 0 are shown. The intersections of
several stable periodic orbits are also plotted and labelled. The scattered points among the islands
of the 3:4 resonance are the intersections of one chaotic trajectory. Points near the border of the
graph, 0/1, do not correspond to the chaotic trajectory but to several regular orbits. All trajectories
correspond to total energy of about 21 units. B Inner and outer separatricies of the 3/4 resonance at
energies (a) 23 and (b) 25. The double turnstiles can be seen in one of the islands which surround
the elliptic points
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The plane of section, (y, p), is defined by x = 0 and px > 0. The periodic orbits
provide the ‘skeleton’ of phase space structure. In Fig. 3.7A the PSS of a few tori
around the stable periodic orbits are shown at the energy of 21 units. The randomly
scattered dots among the islands at 3/4, 5/7, and 5/10 resonances are the intersections
of one chaotic trajectory with initial conditions close to the unstable 3/4 periodic orbit.
The chaotic region increases with the energy. As the energy increases the branches
which emerge from the 1/2 and 0/1 families go away from the parent family and
proceed to enter the unstable region of 3/4 PO.

The inner and outer separatrices of the 3/4 resonance are shown in Fig. 3.7B for
two different energies (a) E = 23 and (b) E = 25 units. These separatrices divide
the phase plane in in- and out-resonance regions. To compute the separatrices two
successive hyperbolic points are first chosen on the x = 0 plane of section. The
eigenvectors of the monodromy matrix in the variational equations define the stable
and the unstable manifolds associated with the hyperbolic points at the linear approx-
imation. By taking initial conditions for a set of trajectories along these eigenvectors
and propagating them forward in time for the unstable manifold and backward in time
for the stable manifold for several periods, we construct numerically the separatrices.
Each manifold can never intersect itself and that results in a complex pattern as the
other hyperbolic point is approached. However, the unstable and stable manifolds
can intersect and that leads to the formation of the turnstiles. There is an infinite
number of intersections which define infinite homoclinic (heteroclinic) points. The
homoclinic points correspond to trajectories which approach the hyperbolic points
in infinite time from both forward and backward directions. According to MacKay
et al. [14] and Bensimon and Kadanoff [1] theory the area of the turnstile gives the
flux to get in (out) the resonance region and it can be calculated from the actions of
homoclinic orbits.

To calculate PSS for a Hamiltonian system we usually take the plane, which the
trajectory intersects, to be defined by one of the coordinates, for example x1 = c,
and requiring its conjugate momentum to be positive, p1 > 0. The best method
to compute PSS is that of Hénon [12], who suggested to replace the integration
variable in equations of motion by the coordinate, say x1. In other words, we replace
the equations of motion

dxi

dt
= f i (x), i = 1, . . . , 2n, (3.52)

by the equations
dt

dx1 = 1

f 1 , . . . ,
dx2n

dx1 = f 2n

f 1 . (3.53)

In practice, the trajectory is integrated in time and we check regularly when it crosses
the plane of section. Once this has happened, the equations of motion are replaced
by the Eq. 3.53 and we integrate them from the current point of x1 to c. The x1-axis
need not be perpendicular to the Poincaré surface of section; any xi can be chosen
as integration variable provided the xi -axis is not parallel to the Poincaré surface of
section at the trajectory intersection point.



52 3 Dynamical Systems

3.5 Non-periodic Trajectories

3.5.1 Maximal Lyapunov Exponent

Chaotic systems show a sensitivity to the initial conditions of trajectories. Tiny per-
turbations to the initial conditions lead to exponentially divergent neighbouring tra-
jectories. A measure for the rate of divergence is the Maximal Lyapunov Exponent
(MLE) [18]. MLE is obtained by integrating two initially close trajectories and esti-
mating the rate of divergence of one trajectory with respect to the reference trajectory.
Although, this quantity is defined for infinite integration time of the reference tra-
jectory, in practice we integrate the trajectory initialized at the point x(0) for finite
times. This is a local property and it is computed by the formula

Λ = lim
τ→∞

1

τ
ln

( ||δx(τ )||
||δx(0)||

)
, (3.54)

where ||δx(τ )|| usually means the Euclidean distance of the two trajectories at time
τ . To avoid overflows in the exponential separation of the two trajectories, it is better
to integrate for small time intervals and rescale the separation δx(τi ) by the factor
δx(0)/δx(τi ). Then, we compute the sum

Λ = lim
τ→∞

1

τ

∑

i

ln

( ||δx(τi )||
||δx(0)||

)
, τ =

∑

i

τi . (3.55)

Averaging over several neighbouring trajectories provide average local MLE,
< Λ >= 1

N

∑N
i=1Λi .

It is not difficult to realize that by calculating the rate of divergence of nearby
trajectories to the phase space point x(0) and for infinitesimal displacements the
quantity involved is nothing else than the Jacobi field (Eq. 3.22). In other words,
what we compute is δx(τ ) = Z(x(0), τ )δx(0) with Z(x(0), τ ) the fundamental
matrix, Eq. 3.24. The maximal Lyapunov exponent is then expressed by the equation

Λ = lim
τ→∞

1

τ
ln

( ||Z(x(0), τ )δx(0)||
||δx(0)||

)

≈ 1

τ
ln (|λm(x(0), τ )|) , (3.56)

where λm(x(0), τ ) is the maximal eigenvalue of matrix Z at time τ .

3.5.2 Autocorrelation Functions

The average behaviour of a batch of trajectories in time can be traced by calculating
autocorrelation functions (or survival probability functions). These are defined as
follows
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Ω(t) =
∫
ρ[x(0)]ρ[x(t)]dx . (3.57)

The classical initial distribution ρ[x(0)] is very often assumed to be a Gaussian
function centered at a chosen region of phase space. The spectrum is then defined as
the Fourier transform,

Ic(ω) =
∫

eiωtΩ(t)dt. (3.58)

If we represent a conserved in time phase space distribution function, ρ, with a
dynamical variable which depends on time, g ◦ Φt = ρ[q(t), p(t), t], then, its Lie
derivative along the Hamiltonian flow,Φt , is zero and this gives Liouville’s equation
(Sect. 2.5.2 (P3))

L X H g = d

dt
(g ◦Φt ) = ∂

∂t
(g ◦Φt )+ {g ◦Φt , H} = 0, (3.59)

where {, } is the Poisson bracket and H is the classical Hamiltonian. Liouville’s
equation is simply written as

∂ρ

∂t
= −{ρ, H}. (3.60)

The classical survival probability function, Eq. 3.57, and its Fourier transform,
Eq. 3.58, have successfully been used in molecular dynamics [6, 7]. An example is
shown in Fig. 3.8 for the 3D model potential tabulated in Table 3.1 [3].

Fig. 3.8 Comparison of the
square amplitude of the
quantum mechanical
autocorrelation function
(continuous line) with its
classical mechanical analog
(broken line) for the 3D
model Hamiltonian given in
Table 3.1 [3]

http://dx.doi.org/10.1007/978-3-319-09988-0_2
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In the next chapter we examine how the classical survival probability function is
related to its quantum mechanical analogue.
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Chapter 4
Quantum and Semiclassical Molecular
Dynamics

Exploration of the structure of phase space (location of the phase space invariants)
provides a detailed description of molecular dynamics. However, molecules are quan-
tum objects and the study of quantum molecular dynamics should always be followed.
In eighties, a plethora of numerical investigations of classical and quantum dynam-
ics of molecules with model and realistic potential energy surfaces revealed that the
eigenfunctions are localized in the same regions of phase space where invariant struc-
tures are. The importance of periodic orbits to identify these regions was emerged by
demonstrating that eigenfunctions are scarred by unstable periodic orbits or the reso-
nance region of stable periodic orbits [18, 19]. Even examples where eigenfunctions
are influenced by the stable and unstable manifolds of unstable periodic orbits have
been reported [31]. A clear distinction of the statistics of the eigenenergy distributions
in cases of regular and chaotic classical dynamics was also identified [4].

In this chapter, after an introduction of the basic principles of quantum mechanics
in their two main formulations, the canonical and the path integral, we present the
theory for numerically solving Schrödinger equation for polyatomic molecules. The
semiclassical analogue of the quantum mechanical propagator is also discussed.

4.1 Canonical Quantum Mechanics

To pass from classical to quantum mechanics we replace the 2n-dimensional tangent
bundle (TQ) of the configuration manifold Q of n-dimension with the Hilbert space,
H , of complex functions (|ψ〉) that form a vector space of finite or infinite dimension.
We use Dirac’s notation to denote the vectors of Hilbert space , the kets, |ψ〉. Similarly
to classical mechanics, we also work with the dual vector space of Hilbert space,
H ∗, the set of linear transformations acting on H the vectors of which are denoted
by the bras, 〈ψ |.

As both H and H ∗ are linear vector spaces, we can define a basis set |ei 〉 in H
and its dual basis 〈ei | in H ∗, such that

© The Author(s) 2014
S.C. Farantos, Nonlinear Hamiltonian Mechanics Applied to Molecular Dynamics,
SpringerBriefs in Electrical and Magnetic Properties of Atoms, Molecules, and Clusters,
DOI 10.1007/978-3-319-09988-0_4
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|ψ〉 =
∑

j

ψ j |e j 〉

〈ψ | =
∑

i

〈ei |ψi =
∑

i

〈ei |ψ i∗, (4.1)

where the coefficients ψ i∗1 are the complex conjugate of the coefficients ψ i of the
ket-vectors. Having introduced the dual of Hilbert space we can also define an inner
product as a linear function that belongs to the dual Hilbert space

(|φ〉, •)(|ψ〉) ≡ 〈φ|ψ〉 =
∑

i

φi∗∑

j

ψ j 〈ei |e j 〉

=
∑

i

φi∗ψ i . (4.2)

The latter equation is the result of adopting an orthonormal basis set, 〈ei |e j 〉 = δi
j .

With an orthonormal basis a state is represented as

|ψ〉 =
n∑

k=1

ck |ek〉, (4.3)

and the coefficients ck are extracted by projecting |ψ〉 on the basis vector |ek〉,
ck = 〈ek |ψ〉. Thus,

|ψ〉 =
n∑

k=1

〈ek |ψ〉|ek〉 =
n∑

k=1

|ek〉〈ek |ψ〉. (4.4)

The above equation implies the completeness relation

n∑

k=1

|ek〉〈ek | = In . (4.5)

In is the identity operator in H , a unit n × n matrix.
Canonical quantization is introduced by the following axioms:

1. For an isolated system the state vectors |ψ〉 form a Hilbert complex vector space.
2. For every classical observable, i.e., a function in phase space O(q, p), there is a

Hermitian operator,2 Ô , acting on H .

1 We have defined ψi = ψ i∗.
2 Hermitian is the operator which is equal to its adjoint, Ô = Ô†. Having defined a basis set
the representation of the Hermitian operator satisfies 〈ei |Ô|e j 〉 = 〈ei |O†|e j 〉 = (〈e j |Ô|ei 〉)∗; in
matrix notation, Oi j = O∗

j i .
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3. The Poisson bracket between two observables {O1, O2} (Sect. 2.5.2:(P3)) is re-
placed by the commutator of the corresponding operators by the rule

{O1, O2} → 1

ı�

[
Ô1, Ô2

]
= 1

ı�

(
Ô1 Ô2 − Ô2 Ô1

)
, (4.6)

with ı = √−1 and � = h/2π is the reduced Planck constant.
4. For a system in state |ψ〉 ∈ H the expectation value of an observable O at time

t is given by

〈Ot 〉 = 〈ψ |Ô(t)|ψ〉
〈ψ |ψ〉 (4.7)

5. For any physical state |ψ〉 ∈ H , there exist an operator for which |ψ〉 is one of
its eigenstates,

Q̂|ψ〉 = q|ψ〉. (4.8)

From the classical Poisson equation (Sect. 2.5.2(P3)) between the observable O
and the time independent Hamiltonian function H

d O(t)

dt
= {O, H} , (4.9)

we get the quantum mechanical equation of motion in the Heisenberg picture

d Ô(t)

dt
= 1

ı�

[
Ô(t), Ĥ

]
, (4.10)

which can be solved for a time independent Hamiltonian to yield

Ô(t) = exp(ıĤ t/�)Ô(0) exp(−ıĤ t/�). (4.11)

Proof We define U (t) = exp(−ıĤ t/�) and U+ = exp(ıĤ t/�), so

Ô(t) = U+ Ô(0)U. (4.12)

We calculate

d Ô(t)

dt
= d

dt

(
U+ Ô(0)U

)

= dU+

dt

(
Ô(0)U

)
+
(

U+ Ô(0)
) dU

dt

= ıĤ

�

(
U+ Ô(0)U

)
−
(

U+ Ô(0)
ıĤ

�
U

)

http://dx.doi.org/10.1007/978-3-319-09988-0_2
http://dx.doi.org/10.1007/978-3-319-09988-0_2
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= ı

�

[
Ĥ
(

U+ Ô(0)U
)

− U+ Ô(0)(UU+)ĤU
]

= ı

�

[
Ĥ
(

U+ Ô(0)U
)

−
(

U+ Ô(0)U
) (

U+ ĤU
)]

= ı

�

[
Ĥ Ô(t)− Ô(t)Ĥ

]

= ı

�

[
Ĥ , Ô(t)

]

= 1

ı�

[
Ô(t), Ĥ

]

�
The unitary operator, U (t) = exp(−ıĤ t/�), is called propagator and it is used

to transform from the Heisenberg picture with time dependent operators to the
Schrödinger picture with time independent operators. Indeed, from the expectation
value of the observable O at time t we get

〈ψ |Ô(t)|ψ〉 = 〈ψ |eıĤ t/�Ô(0)e−ıĤ t/�|ψ〉
=
[
〈ψ |eıĤ t/�

]
Ô(0)

[
e−ıĤ t/�|ψ〉

]
. (4.13)

If we write |ψ(t)〉 = e−ıĤ t/�|ψ〉 we can see that the expectation value of Ô at time
t is given as the expectation value of a time independent operator at time dependent
states

〈ψ |Ô(t)|ψ〉 = 〈ψ(t)|Ô(0)|ψ(t)〉. (4.14)

Differentiating in time the equation |ψ(t)〉 = e−ıĤ t/�|ψ〉 we get the time dependent
Schrödinger equation

ı�
∂|ψ(t)〉
∂t

= Ĥ |ψ(t)〉. (4.15)

The Schrödinger equation in the dual space takes the form

− ı�
∂〈ψ(t)|
∂t

= 〈ψ(t)|Ĥ . (4.16)

We define the transition amplitude in the Schrödinger picture as the probability
amplitude for a particle to be found in the position x f at time t f from an initial
position xi at time ti

K (x f , t f ; xi , ti ) = 〈x f , t f |xi , ti 〉 = 〈x f | exp
(
− ı

�
Ĥ(t f − ti )

)
|xi 〉. (4.17)

In a coordinate representation of quantum states, |xi , ti 〉 denote the state vectors in
Heisenberg picture,

q̂|xi , ti 〉 = xi |xi , ti 〉, (4.18)
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|xi 〉 are the state vectors in Schrödinger picture

q̂|xi( f )〉 = xi( f )|xi( f )〉, (4.19)

and K (x f , t f ; xi , ti ) is called the evolution operator or propagator.
Therefore, the transition probability density from the initial position xi at time ti

to the position x f at time t f is given by

P(x f , t f ; xi , ti ) = |K (x f , t f ; xi , ti )|2. (4.20)

Spectral decomposition of the transition amplitude for time independent Hamil-
tonians is done by the following equations. Given

Ĥ |n〉 = En|n〉, (4.21)

eıĤ t/�|n〉 = eıEnt/�|n〉, (4.22)

and ∑

n

|n〉〈n| = Î , (4.23)

then

K (x f , t f ; xi , ti ) = 〈x f | exp
(
− ı

�
Ĥ(t f − ti )

)
|xi 〉

= 〈x f |
∑

n

|n〉〈n| exp
(
− ı

�
Ĥ t f

)
exp

( ı

�
Ĥ ti
)∑

n′
|n′〉〈n′|xi 〉

=
∑

n

〈x f |n〉e−ıEnt f /�

(
∑

n′
〈n|n′〉eıEn′ ti /�(〈xi |n′〉)∗

)

=
∑

n

ψn(x f )ψ
∗
n (xi )e

−ıEn(t f −ti )/�. (4.24)

4.1.1 Quantum Hamilton’s Equations

q̂ is the coordinate operator with eigenvalues and eigenvectors q̂|x〉 = x |x〉 and
normalized such that 〈x |y〉 = δ(x − y), where δ(x − y) is Dirac’s delta function.3

The definition of delta function is

δ(t) =
(∞, t = 0

0, t �= 0

)
(4.25)

3 x designates the coordinate vector in a general coordinate system.
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∞∫

−∞
δ(t)dt = 1, and

∞∫

−∞
f (t)δ(t)dt = f (0). (4.26)

At this point it worth mentioning, that both δ-function and Gaussian function are
employed to define initial distributions in phase space and they are related by the
equation

δ(t) = lim
α→0

1

α
√
π

e
− t2

α2 . (4.27)

If we use as basis set the coordinate basis |x〉 the representation of the state |ψ〉 is

|ψ〉 =
∞∫

−∞
ψ(x)|x〉dx . (4.28)

The coefficient ψ(x) is called wavefunction and it is a complex function, ψ(x) ∈ C.
Taking wavefunctions normalized to one

〈ψ |ψ〉 = 〈ψ |
⎛

⎝
∞∫

−∞
|x〉〈x |dx

⎞

⎠ |ψ〉 =
∞∫

−∞
|ψ(x)|2dx = 1, (4.29)

we interpret |ψ(x)|2 as the probability to find the particle in the interval [x, x + dx].
With the orthonormal coordinate basis the completeness relation is written

∞∫

−∞
|x〉〈x |dx = Î . (4.30)

In the following we adopt the coordinate representation of the state vectors using
wavefunctions in the Schrödinger picture, ψ(x, t). We expand the wavefunction
ψ(x, t) of a dynamical system in an arbitrary complete basis set,χi (x), i = 1, . . . , n

ψ(x, t) =
n∑

i=1

ci (t)χi (x). (4.31)

In this expansion the basis functionsχi are time independent, whereas the coefficients
ci depend on time. ψ are solutions of the Schrödinger equation

ı�
∂ψ(x, t)

∂t
= Ĥψ(x, t), (4.32)



4.1 Canonical Quantum Mechanics 61

and their complex conjugate the equation

− ı�
∂ψ∗(x, t)

∂t
= ψ∗(x, t)Ĥ . (4.33)

We assume ψ to be normalized, 〈ψ(x, t)|ψ(x, t)〉 = 1, at any time. Then, by sub-
stituting Eq. 4.31 to the average value of the Hamiltonian, 〈H〉, we obtain

〈H〉 = 〈ψ |Ĥ |ψ〉 =
∞∫

−∞
ψ∗ Ĥψdx

=
∑

i

∑

j

c∗
i c j

∞∫

−∞
χ∗

i Ĥχ j dx . (4.34)

We differentiate with respect to c∗
i

∂〈H〉
∂c∗

i
=
∑

j

c j 〈χi |Ĥ |χ j 〉

= 〈χi |Ĥ |ψ〉
= ı�

dci

dt
. (4.35)

Similarly, we take

∂〈H〉
∂c j

=
∑

i

c∗
i 〈χi |Ĥ |χ j 〉

= 〈ψ |Ĥ |χ j 〉
= −ı�

dc∗
j

dt
. (4.36)

We define the complex variables (Qi , Pi ) by introducing the real functions q(t)
and p(t) to be assigned to the classical quantities of particle coordinates and conjugate
momenta

Qi (t) = ci (t) = 1√
2

[
qi (t)+ ıpi (t)

]

Pi (t) = ı�c∗
i (t) = ı�√

2

[
qi (t)− ıpi (t)

]
. (4.37)

Eqs. 4.35 and 4.36 are the quantum equivalent of Hamilton’s equations of motion
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Q̇i = ∂

∂Pi
(〈ψ |Ĥ |ψ〉)

Ṗi = − ∂

∂Qi
(〈ψ |Ĥ |ψ〉). (4.38)

We can take the inverse of Eq. 4.37 and write the real functions q(t) and p(t) as

qi (t) = 1√
2
[ci (t)+ c∗

i (t)]

pi (t) = −ı√
2
[ci (t)− c∗

i (t)]. (4.39)

4.1.2 Complexification of Classical Hamilton’s Equations

Hamilton’s equations in classical mechanics can also be defined in a complex mani-
fold by complexification of phase space, i.e., by introducing the symplectic transfor-
mation

z = 1√
2
(q − ıp)

w = 1√
2
(−ıq + p)

= ız, (4.40)

where ız means the complex conjugate of ız. The inverse transformation is

q = 1√
2
(z + ıw)

p = 1√
2
(ız + w)

= ız. (4.41)

For a harmonic oscillator in scaled normal coordinates (Sect. A.10) introducing these
complex coordinates results in

H0 = 1

2
ω(Q2 + P2)

= 1

2
ω

[
1

2

(
z2 − w2 + 2ızw

)
+ 1

2

(
−z2 + w2 + 2ızw

)]

= ıωzw. (4.42)
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Since, the transformation to complex coordinates and conjugate momenta is sym-
plectic, Hamilton’s equations are also written as

ż = ∂H ′(z,w)
∂w

ẇ = − ∂H ′(z,w)
∂z , (4.43)

where H ′(z, w) = H [Q(z, w), P(z, w)] is the complex Hamiltonian.

4.2 Quantum and Classical Autocorrelation Functions
and Spectra

A spectrum is calculated by first evaluating the time autocorrelation function defined
as

C(t) = 〈ψ(x, 0)|ψ(x, t)〉, (4.44)

and then computing its Fourier transform,

I (E) = 1

2π�

∞∫

−∞
exp(ıEt/�)C(t) dt. (4.45)

To see how the eigenvalues are extracted from Eq. 4.44, we expand |ψ(x, t)〉 as a
series of the eigenfunctions |n〉 of the Hamiltonian Ĥ (Eq. 4.21)

|ψ(x, t)〉 = exp(−ıĤ t/�)|ψ(x, 0)〉 =
∑

n

exp(−ıEnt/�)|n〉〈n|ψ(x, 0)〉. (4.46)

By introducing the overlap integral, cn = 〈n|ψ(x, 0)〉, the spectrum becomes

I (E) = 1

2π�

∑

n

|cn|2
∞∫

−∞
exp[−ı(En − E)t/�]dt

= 1

2π�

∑

n

|cn|2 lim
T →∞

T∫

−T

exp[−ı(En − E)t/�]dt

= 1

2π

∑

n

|cn|2 lim
T →∞

2 sin[(En − E)T/�]
En − E

=
∑

n

|cn|2δ(En − E). (4.47)
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Thus, for infinite integration time (absolute resolution) we have a sum of delta
functions located at the eigenvalues En . Finite integration in time (low resolution)
will yield a sum of broaden peaks which may cover several En .

We could also extract the eigenfunctions |n〉 by computing the Fourier transform

|n〉 = 1

cn

∞∫

−∞
exp(ıEnt/�)|ψ(x, t)〉dt. (4.48)

It is clear, that in a time dependent calculation, we locate those eigenfunctions
which overlap significantly with the initial wavefunction |ψ(x, 0)〉. Since, we expect
localization of the eigenfunctions at certain regions of configuration manifold, we
simulate the spectrum by taking the appropriate initial wavepacket centered at the
place of interest. It can be either an experimental spectrum or a theoretical one, which
will reveal those states that are localized at particular regions of phase space.

Although quantum mechanical calculations are always what we should ask, how-
ever, they are not feasible at present for many degrees of freedom systems. It is
useful then, to find the classical analogue of the quantum spectrum. In this case, the
correspondence between spectrum and phase space structure is more straightforward.

The following formulation has been used in the past [1, 14, 15, 20]. By taking the
square of the absolute value of the correlation function C(t) (the survival probability
function)

|C(t)|2 = |〈ψ(x, 0)|ψ(x, t)〉|2 = 〈ψ(x, 0)|ψ(x, t)〉〈ψ(x, t)|ψ(x, 0)〉, (4.49)

and introducing the identity relation,

Î =
∑

n

|n〉〈n| (4.50)

we get,

|C(t)|2 = 〈ψ(x, 0)|ψ(x, t)〉〈ψ(x, t)|1̂|ψ(x, 0)〉
=
∑

n

[〈n|ψ(x, 0)〉〈ψ(x, 0)|ψ(x, t)〉〈ψ(x, t)|n〉]

= tr [ρ̂(0)ρ̂(t)]. (4.51)

ρ̂(0) is the density operator,

ρ̂(0) = |ψ(x, 0)〉〈ψ(x, 0)|

and

ρ̂(t) = |ψ(x, t)〉〈ψ(x, t)| = e−ıĤ t/�|ψ(x, 0)〉〈ψ(x, 0)|eıĤ t/�, (4.52)
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is the Heisenberg representation of ρ̂(0).
We can pass to the classical analogue by replacing the trace in Eq. 4.51 with an

integral over the phase space, and by replacing the density operators with classical
distribution functions,

Ω(t) =
∫
ρ[q(0), p(0)]ρ[q(t), p(t)]dqdp. (4.53)

The classical initial distribution ρ(0) is usually a Wigner or a Husimi transform of
the initial quantum wavefunction, |ψ(q, 0)〉, [24, 32]. The spectrum is then defined
as the Fourier transform,

Ic(ω) =
∫

eıωtΩ(t)dt. (4.54)

If we count a conserved in time phase space distribution function , g = ρ[q(t),
p(t), t], as a dynamical variable, then, its time evolution is determined by solving
Liouville’s Equation (Sect. 2.5.2(P3))

dρ

dt
= ∂ρ

∂t
+ {ρ, H} = 0, (4.55)

where {, } is the Poisson bracket, H is the classical mechanical Hamiltonian and ρ
the phase space density. Liouville’s equation is stated as

∂ρ

∂t
= −{ρ, H}. (4.56)

4.3 Path Integral Quantum Mechanics

The probability to find a particle initially located at the position xi the time ti at the
point x f and later time t f is given by the transition amplitude 〈x f , t f |xi , ti 〉 in the
Heisenberg picture. To convert it to the Schrödinger picture we use the Eq. 4.11

q̂(t) = eıĤ t/�q̂(0)e−ıĤ t/� ≡ eıĤ t/�q̂e−ıĤ t/�, (4.57)

and the relation between the position eigenvectors in the two pictures is

|x, t〉 = eıĤ t/�|x〉. (4.58)

From the above equations we conclude that the transition amplitude in the Schrödinger
picture is generated by

K (x f , t f ; xi , ti ) = 〈x f , t f |xi , ti 〉 = 〈x f |e−ıĤ(t f −ti )/�|xi 〉. (4.59)

http://dx.doi.org/10.1007/978-3-319-09988-0_2
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Let us consider a Cartesian Hamiltonian

H = p2

2m
+ V (x). (4.60)

If the time interval [ti , t f ] is split in n small subintervals, such as t0 = ti and
tk = t0 + εk (0 ≤ k ≤ n) and tn = t f , then, the transition amplitude takes the form

K (x f , t f ; xi , ti ) = 〈x f , t f |
∫

dxn−1|xn−1, tn−1〉〈|xn−1, tn−1|

×
∫

dxn−2|xn−2, tn−2〉〈|xn−2, tn−2| · · ·

×
∫

dx1|x1, t1〉〈|x1, t1|xi , ti 〉, (4.61)

where we have taken as ε = (t f − ti )/n and applied the completeness relation,
Eq. 4.30. As n → ∞ we approximate

〈xk, tk |xk−1, tk−1〉 ≈
√

m

2π ı�ε
e

ı
�
ΔSk , (4.62)

where

ΔSk = ε

[
m

2

(
xk − xk−1

ε

)2

− V

(
xk−1 + xk

2

)]
. (4.63)

Hence, we find

K (x f , t f ; xi , ti ) = lim
n→∞

( m

2π ı�ε

)n/2
∫

exp

(
ı

�

n∑

k=1

ΔSk

)
�n−1

j=1dx j . (4.64)

We recognize that for a path from (xi , ti ) to (x f , t f ) and for n → ∞ the quantity∑n
k=1ΔSk is the action integral along this path

S[x(t)] =
t f∫

ti

[m

2
v2 − V (x)

]
dt, (4.65)

where v is the velocity. Since, xk are considered as variables we interpret the integral
4.64 as a functional integral over all possible paths which connect the points (xi , ti )
and (x f , t f ) and it is symbolically written as
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K (x f , t f ; xi , ti ) = 〈x f , t f |xi , ti 〉 =
∫

exp

⎡

⎢⎣
ı

�

t f∫

ti

L

(
x,

dx

dt

)
dt

⎤

⎥⎦Dx, (4.66)

with L to symbolize the Lagrangian function. Equation 4.66 is the path integral
formulation of the transition amplitude [9]. Notice, that the normalization factor in
Eq. 4.64 has been incorporated in the symbol Dx .

For paths which start and end at the same configuration point, x f = xi = x , the
path integral for trajectories over imaginary time can be identified with the quantum
statistical canonical partition function of the system and with Hamiltonian that of
Eq. 4.60. Indeed, if we take a Wick rotation, t = −ıτ , then

dx

dt
= ı

dx

dτ
, (4.67)

exp(−ıĤ t/�) = exp(−Ĥτ/�), (4.68)

ı

�

t f∫

ti

[
m

2

(
dx

dt

)2

− V (x)

]
dt = −1

�

τ f∫

τi

[
m

2

(
dx

dτ

)2

+ V (x)

]
dτ.

The canonical partition function is written in coordinate representation as the trace

of the operator e−ıĤ(t f −ti )/� = e−β Ĥ as

Z(β) =
∫

〈x |e−β Ĥ |x〉dx, (4.69)

where we have defined the imaginary time β = ı(t f − ti )/�. For a Hamiltonian
written in Cartesian coordinates the partition function becomes

Z(β) =
∫

closed_paths

exp

⎧
⎨

⎩−
β∫

0

(
m

2

(
dx

dτ

)2

+ V (x)

)⎫⎬

⎭ D̃x, (4.70)

where the integral is over all closed paths in [0, β].
Evaluating the trace of the propagator in a basis of energy eigenstates |ψn〉,

Ĥ |ψn〉 = En|ψn〉, the partition function is written

Z(β) =
∑

n

exp(−βEn), (4.71)

where En are the eigenenergies of the Hamiltonian operator. Hence, we may conclude
that if we are able to calculate the path integral over closed orbits and for time
independent Hamiltonians, then, we can extract the energy spectrum.
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4.4 Semiclassical Approximation

4.4.1 Gutzwiller’s Periodic Orbit Semiclassical Quantization

Semiclassical theory can be formulated by applying the stationary phase approxi-
mation (SPA) (also known as the saddle point approximation) to the path integral
expression of transition amplitude. We have seen that the propagator is written

K (x f , t f ; xi , ti ) = 〈x f , t f |xi , ti 〉

=
∫

exp

⎡

⎢⎣
ı

�

t f∫

ti

L

(
x,

dx

dt

)
dt

⎤

⎥⎦Dx

=
∫

exp
[ ı

�
S[x]

]
Dx, (4.72)

where L(x, ẋ) = T − V is the Lagrangian function.
The basic tenet of the stationary phase approximation of such integrals is that

for small � (� → 0), the integrand oscillates so rapidly that the integral over any
small x-interval will yield zero unless one is close to a stationary point xc of S[x],
δS[xc] = 0, for which to first order around xc there are no oscillations. This suggests
that for � → 0 the integral is dominated by the contribution from the neighbourhood
of some stationary points xc of S[x], and that therefore in this limit the dominant
contribution to the integral can be obtained by a Taylor expansion of S[x] around
x = xc.

Thus, SPA for the evaluation of the complex integral in Eq. 4.72 involves,

1. first the calculation of the stationary points of the integrand

δS[x f , xi ] = δ

t f∫

ti

L

(
x(t),

dx(t)

dt

)
dt = 0, (4.73)

2. and second, expansion of the integrand to a Taylor series around the stationary
points, usually up to the second order

S(xc + δx) ≈ S(xc)+ δS(x)+ 1

2
δ2S(x)+ · · · . (4.74)

For the integral curves of the Hamiltonian flow with fixed initial and final coordinates
[x f , xi ], it is valid δS(x) = 0. Under these approximations the propagator takes the
form [12, 18]
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〈x f | exp(−ıĤ t/�)|xi 〉 =
∑

roots

[
(2π ı�)n

∣∣∣∣
∂x f

∂pi

∣∣∣∣

]−1/2

× exp
[
ı
(
S(x f , xi , t)/� − μπ/2

)]
. (4.75)

This is the semiclassical approximation to the transition amplitude (Van Vleck [18]).
The sum is over all root of Eq. 4.73. μ is the Maslov index and it depends on the
number of turning points in oscillatory motion. Ĥ is the Hamiltonian operator for
a system with n degrees of freedom. S(x f , xi , t) is the action along the trajectories
from the initial configuration point xi to the point x f arriving at the time interval t ,
and pi the conjugate momentum of xi . To find the roots of Eq. 4.73, one must solve
a nonlinear boundary problem. As it is expected, this involves linearization of the
equations of motion and computation of Jacobi fields.

We have shown, that the path integral formulation of the propagator can take
the expression of the canonical partition function if we adopt closed paths, Eq. 4.70.
We can further show that the semiclassical approximation of the transition amplitude
involves periodic orbits in phase space. Invoking the stationary phase approximation
for trajectories returning to the initial configuration (x f = xi = x) in the time
period T

∂S(x, x, T )

∂x
= 0 (4.76)

and recalling Eqs. 2.43 and 2.44, we find that the major contributions to the integral
in Eq. 4.75 come from the periodic orbits [18]

[
∂S(x f , xi , T )

∂xi
+ ∂S(x f , xi , T )

∂x f

]

xi =x f =x

= −pi + p f = 0. (4.77)

This result signifies the importance of periodic orbits in computing molecular spectra.
Furthermore, we have already seen that the scarring theory of Heller [19] demon-
strated that the eigenfunctions may stay localized around unstable periodic orbits.
It turns out, that the scarring of the wavefunctions by stable or the least unstable
periodic orbits is a general phenomenon in polyatomic molecules.

4.4.2 The Semiclassical Trace Formula

The fluctuating part, N (E), of the density of states, D(E), for a bound system with n
degrees of freedom and at energy E , is predicted by Gutzwiller’s trace formula [18],

D(E) =
∑

n

δ(E − En) = Dav(E)+ N (E), (4.78)

http://dx.doi.org/10.1007/978-3-319-09988-0_2
http://dx.doi.org/10.1007/978-3-319-09988-0_2
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where

N (E) = Re
∑

po

Tpo

π�

∞∑

j=1

exp[ı j (Spo/� − μpoπ/2)]
[det (M j

po − 1)]1/2
. (4.79)

Dav(E) designates the average density of states and ı = √−1. The summation in
Eq. 4.79 is over all periodic orbits with period Tpo, action Spo, and for an infinite

number of loops j . μpo is the Maslov index and M j
po is the linear stability matrix

(monodromy matrix), which describes the results of the transverse displacements off
the periodic orbit after j loops. The determinant in Eq. 4.79 is evaluated from the
eigenvalues of the monodromy matrix, Eq. 3.39,

det (M j
po − 1) =

2(n−1)∏

i=1

(λ
j
po(i)− 1), (4.80)

where λ j
po(i) is the j th power of the i th eigenvalue (a complex or real number) of the

monodromy matrix which corresponds to a perpendicular direction of the periodic
orbit . All the above quantities are computed as functions of the total energy during
the periodic orbit analysis.

Generalizations of the trace formula have been given [2, 3], and Miller [26]
has proved a relation for semiclassically quantizing specific stable periodic orbits.
According to Eq. 4.79, the calculation of the density of states requires a summation
over all periodic orbits and for an infinite number of loops of each periodic orbit.
This, of course, is impossible for real systems, and therefore there are convergence
problems with this equation. Nevertheless, applications of the trace formula, such as
the hydrogen atom in strong magnetic fields [11], have shown that satisfactory results
may be obtained by employing a finite number of periodic orbits. Although, accurate
eigenvalues is difficult to achieve, low resolution characteristics of the spectra can
be identified, and thus, a connection of particular periodic orbits with spectral peaks
to be made [29].

4.4.3 Einstein-Brillouin-Keller Quantization Rule for Integrable
Systems

For integrable systems of n degrees of freedom the Einstein-Brillouin-Keller semi-
classical quantization is applied. Integrability implies the existence of n-action vari-
ables, which are quantized according to the equation [8]

1

2π

∮

Ci

pi dqi =
(

mi + 1

4
μi

)
�, i = 1, . . . , n, mi = 0, 1, 2, . . . , (4.81)

http://dx.doi.org/10.1007/978-3-319-09988-0_3
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where pi are the conjugate momenta to the coordinates qi , Ci the n topologically
independent closed integration curves, and μi the Maslov index (grossly speaking
the number of turning points in the i th coordinate).

4.4.4 Initial Value Representation Semiclassical Quantization

Miller [27] has proposed a semiclassical method appropriate for polyatomic mole-
cules studied by classical dynamics. The latter mainly involves Hamiltonians formu-
lated in Cartesian coordinates. The name of this method is Initial Value Representa-
tion (IVR) to emphasize that the semiclassical formula for the transition amplitude
can be written by an equation which requires the solution of an initial value problem
than of a nonlinear boundary problem as is more often met in semiclassical theories.

Writing the probability amplitude for a transition from the state ψn1 at time zero
to stateψn2 at time t requires averaging over the initial (x1) and final (x2) coordinates

Kn2,n1(t) = 〈ψn2 | exp(−ıĤ t/�|ψn1〉
=
∫

dx1

∫
dx2ψ

∗
n2
(x2)ψn1(x1)〈x2| exp(−ıĤ t/�)|x1〉. (4.82)

By employing the semiclassical approximation for the matrix elements 〈x2| exp(−ıĤ
t/�)|x1〉, i.e., the Van Vleck approximation, Eq. 4.75, the transition amplitude be-
comes

Kn2,n1(t) =
∑

roots

∫
dx1

∫
dx2

× ψ∗
n2
(x2)ψn1(x1)

[
(2π ı�)n

∣∣∣∣
∂x2

∂p1

∣∣∣∣

]−1/2

× exp [ı (S(x2, x1, t)/� − μπ/2)] . (4.83)

The initial-value-representation “trick” is based on realizing that the Van Vleck

determinant,
∣∣∣ ∂x2
∂p1

∣∣∣, is nothing else but the Jacobian of the transformation from the

position x2 to the initial momentum p1. Thus, by replacing the summation over the
roots and the integration over x2 by

∑

roots

∫
dx2 =⇒

∫
dp1

∣∣∣∣
∂x2

∂p1

∣∣∣∣ , (4.84)

we obtain the IVR formula of the transition amplitude
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Kn2,n1(t) =
∫

dx1

∫
dp1

× ψ∗
n2
(xt )ψn1(x1)

[
(2π ı�)n

∣∣∣∣
∂xt

∂p1

∣∣∣∣

]+1/2

× exp [ı (S(xt , x1, t)/� − μπ/2)] . (4.85)

We see, that the nonlinear boundary value problem has been replaced by an initial
value one, which is much simpler since for each initial position and momentum, there
is only one classical trajectory. Moreover, the singularities of the Van Vleck deter-
minant have been replaced by zeroes of its inverse. The initial value representation
can describe classically forbidden processes such as barrier or dynamical tunnelling,
using real-valued trajectories.

Comparing Eqs. 4.79 and 4.85 we immediately see the similarities as both for-
mulae are founded on the semiclassical approximation of the transition amplitude.
The trace formula for the density of states includes summation over an infinity num-
ber of specific orbits (periodic), whereas the application of IVR formula requires
sampling over random trajectories initialized from a predetermined initial distribu-
tion. Nevertheless, the convergence difficulties encountered in both formulae arise
from the oscillatory imaginary term. Miller and coworkers have proposed several
ingenious ‘tricks’ to meliorate the semiclassical approximation and the successful
applications of IVR approach make this semiclassical method quite promising for
polyatomic molecules [27, 28]. However, it is fair to admit that for small molecules
(triatomic/tetratomic) is simpler to solve the Schrödinger equation than trying to
converge semiclassical approximations.

4.5 Solving Schrödinger Equation in Cartesian Coordinates
via Angular Momentum Projection Operators

Accurate Quantum Molecular Dynamics (QMD), which require the numerical so-
lution of the Schrödinger equation [23], apart from providing physical insight into
the nature of the processes, are also imperative for studying quantum effects such
as tunnelling and interferences in chemical dynamics and spectroscopy. Moreover,
they produce quantitative results that can be used as benchmark for other approx-
imate approaches, such as classical and semiclassical methods suitable for large
systems [27].

Variational methods usually approximate the solutions of Schrödinger equation
assuming considerable knowledge about the system; this can become especially awk-
ward for large and complex molecules. There is also the problem of choosing the
appropriate basis set of functions on which the process will be described, and the
subsequent check of its completeness. On the other hand, a time dependent repre-
sentation simplifies the interpretation of the dynamics as well as the identification
of the degrees of freedom involved in the computation, as it was explained in [21].
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Hence, much effort is being devoted to developing new techniques for solving the
Schrödinger equation (time dependent and time independent) for realistic molecu-
lar systems. Nevertheless, their numerical implementation requires a considerable
computational load.

Solving numerically the Schrödinger equation, we must take into account that the
sparsity of the Hamiltonian matrix is increased by using the so called local methods,
where local means that the action of the Hamiltonian operator on the wavefunction
is carried out using information from the surrounding coordinate points. To this end,
Variable Order Finite Difference method (VOFD) [13, 16, 17] for approximating
the second order derivatives in the kinetic energy operator is a versatile and widely
applied method. In Chap. 5 we describe the VOFD method. However, before devel-
oping the new algorithms for QMD, one must first decide on the most convenient
and general coordinate system.

The standard way of describing a polyatomic molecule with N atoms in the
absence of external fields is to introduce the center of mass, three Euler angles and
3N − 6 internal coordinates (frame transformation) [22]. The problem with this
methodology is twofold. First, there is the analytical derivation of the Hamiltonian
operator in curvilinear coordinates and Euler angles or angular momentum operators.
Not only this is a cumbersome task for more than three atom molecules [5], but this
procedure has to be repeated for every choice of curvilinear coordinates and angles
necessary for studying different molecules and phenomena. Second, the appearance
of cross derivatives in the kinetic term of the Hamiltonian implies a computational
effort that scales as N 2.

An alternative theoretical approach can be devised for avoiding these limitations
and easily extending the applications to polyatomic molecules by not separating
rotations at the operator level but to use projection techniques to conserve the total
angular momentum. The total translation of the molecule can easily be eliminated
by choosing N − 1 Jacobi vectors [25]. This yields a 3N − 3 Cartesian coordinate
system which results in a diagonal and generic formula for the kinetic energy operator
compared to the standard curvilinear coordinate procedures, as was shown in [30].
This part will be explained in detail in the next section where the computational
methods are described.

4.5.1 Computational Methods

If the vector x denotes the 3N −3 mass-weighted Cartesian coordinates of a molecule
with N -atoms, the time dependent Schrödinger equation (TDSE) is written as

Ĥψ(x, t) =
[
−�

2

2

n∑

i=1

∂2

∂x2
i

+ V (x)

]
ψ(x, t) = ı�

∂ψ(x, t)

∂t
, (4.86)

http://dx.doi.org/10.1007/978-3-319-09988-0_5
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where ı = √−1, Ĥ the Hamiltonian operator andψ(x, t) is the wavefunction at time
t . On the left side of the equation we find the kinetic and potential energy operators.
The potential function, V , is assumed to be time independent. Equation 4.86 has then
the formal solution

ψ(x, t) = U (t, Ĥ)ψ0(x) = exp(−ıĤ t/�)ψ0(x), (4.87)

where U (t, Ĥ) = exp(−ıĤ t/�) is the time propagator and ψ0(x) is the initial
wavefunction (wavepacket) at t = 0.

The proposed algorithm for solving Eq. 4.86 comprises four steps. (I) We discretize
the wavefunction on a grid of points in the Cartesian coordinate space, then, we
approximate the wavefunction over these grid points with Lagrange interpolation
polynomials [10]. The latter allows us to compute the second derivatives of ψ . (II)
The projection of the initial wavefunction,ψ0, at a specific irreducible representation
subspace of the total angular momentum, J , of dimension 2J + 1 [34] is taken. (III)
We evaluate the action of the Hamiltonian operator on the projected wavefunction
ψJ . (IV) The propagation of the wavefunction in time by means of an extrapolation
procedure is executed.

4.5.2 The Angular Momentum Projection Operators

For a specified total angular momentum, J , we assume that a projection operator,
π̂J , exists that projects out the wavefunction,

ψJ (x) = π̂Jψ(x), (4.88)

onto the subspace spanned by all eigenfunctions of the Jz component of angular
momentum, each assigned by the quantum number K (−J ≤ K ≤ J ). Thus, one
has to find projection operators, π̂J , which are idempotent, Hermitian, and commute
with Ĥ due to the rotational invariance of the Hamiltonian, i.e.,

(π̂J )
2 = π̂J , (π̂J )

† = π̂J , [Ĥ , π̂J ] = 0. (4.89)

Equivalently to the projection of ψ to ψJ , we may also consider the Hamiltonian
ĤJ = π̂J Ĥ π̂J acting on ψ . This is the operator that is derived in frame transforma-
tion theory for every choice of internal coordinates, Euler angles and total angular
momentum. We now show below that rotation group theory can avoid its explicit
derivation [6].

Considering that the rotations about the center of mass are described by the three
Euler angles, (φ, θ, γ ), then, the operators R(Ω) = e−ıφ Jz e−ıθ Jy e−ıγ Jz , constitute
the elements of the rotation group of the system, while the associated irreducible
representations of the group are provided by the Wigner functions [33]
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D J
M K (Ω) = e−ıMφd J

M K (θ)e
−ıKγ . (4.90)

From the group shift operators

π̂J M K = 2J + 1

8π2

∫
dΩD∗J

M K (Ω)R(Ω), (4.91)

and their properties

∑

J

π̂J = 1, π̂J =
∑

K

π̂J K K , (4.92)

we can construct the projection operator onto the space of the total angular momentum
J as the K sum of the π̂J K K operators [6, 7].

We can deduce several properties of the molecule from the solutions of time depen-
dent Schrödinger equation by introducing autocorrelation functions. Many molecular
properties such as spectra and cross sections can be obtained by Fourier transforming
the time correlation function for a specific angular momentum J

CJ (t) = 〈ψ(0)|π̂J exp(−ıĤ t/�)π̂J |ψ(0)〉 = 〈ψ(0)|exp(−ıĤ t/�)|π̂Jψ(0)〉.
(4.93)

This expression is the key to the method: introducing the angular momentum is
equivalent to propagating a projection of the total wavefunction onto the J subspace,
which is obtained from

ψJ (x) = π̂Jψ0(x) = 2J + 1

8π2

∫
dΩ

∑

K

D∗J
K K (Ω) R(Ω)ψ0(x). (4.94)

The projection of the initial state is carried out only once, at the beginning of the
calculations, and it is normally, much faster than the time propagation step. Notice,
that the cumbersome projected Hamiltonian ĤJ does not appear in the autocorrelation
function of Eq. 4.93. In the next chapter we describe all the steps to solve the TDSE
by discretizing a Cartesian coordinate space.
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Chapter 5
Numerical Methods

The theories developed in the previous chapters, classical and quantum mechanical,
are put in action by discretizing the corresponding differential equations. The variable
order finite difference approximations to the unknown solutions and their derivatives
are the preferred methods, not only because of their well understood convergence
properties and the relatively easy way of their programming, but also, finite differ-
ences provide a uniform approach to the different type of equations, especially when
we work in a Cartesian coordinate system. With respect to Schrödinger equation
several grids are examined and comparisons with the more popular pseudospectral
methods is made. For the location of periodic orbits the multiple shooting method
is developed as it has been thoroughly tested. Finally, computer codes for studying
classical nonlinear molecular dynamics and solving the Schrödinger equation are
described.

5.1 Discretizing the Schrödinger Equation

5.1.1 Variable Order Finite Difference Methods

Expanding functions in a series of polynomials is a common practise to find solutions
of differential equations as well as representing molecular potential as Taylor series
around equilibrium points. Therefore, robust numerical methods to compute high
order derivatives are required and finite difference is one of them. Finite Difference
(FD) approximations of the derivatives of a function F(x) can be extracted by inter-
polating F(x) with Lagrange polynomials, Pn(x). This allows one to calculate the
derivatives analytically at arbitrarily chosen grid points and with a variable order of
approximation.

© The Author(s) 2014
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SpringerBriefs in Electrical and Magnetic Properties of Atoms, Molecules, and Clusters,
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Let N to be the total number of interpolation points and n a subset of it employed
for the interpolation of the function F(x). The Lagrange fundamental polynomials
of order n are defined by

Ln
k (x) =

n∏

j=0

′
(x − x j )/

n∏

j=1

′
(xk − x j ), n = 0, 1, . . . , N , (5.1)

where the prime means that the term j = k is not included in the products. The
values of Ln

k (x j ) are zero for j �= k and one for j = k by construction, i.e., Ln
k (x j )

consist a cardinal set of basis functions

Ln
k (x j ) = δ j,k, 0 ≤ j, k ≤ N , (5.2)

and

δi j = 1, i = j,

= 0, i �= j. (5.3)

The function can then be approximated as

F(x) ≈ Pn(x) =
n∑

k=0

Ln
k (x)F(xk). (5.4)

Pn is a polynomial of order n. The coefficients in Eq. 5.4 are simply the values of the
function F at the collocation points xk .

The main requirements for the basis functions are these approximations, F(x) ≈
Pn(x), must converge rapidly to the true solution with the order of approximation n,
and that, given the coefficients F(xk), the determination of b(m)j,k such that

dm

dxm

(
n∑

k=0

Ln
k (x)F(xk)

)∣∣∣∣∣
x=x j

=
n∑

k=0

b(m)j,k F(xk), n = 0, . . . , N , (5.5)

should be efficient. Thus, we define

b(m)j,k = dm Ln
k (x)

dxm

∣∣∣∣
x=x j

, (5.6)

and by Taylor’s theorem we can write Ln
k (x) as

Ln
k (x) =

n∑

m=0

b(m)j,k

m! xm . (5.7)
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Also, it must be possible to convert quickly between the coefficients F(xk) and the
values of the sum Pn(x j ) at the set of collocation points. Equation 5.5 for all the x j

can be expressed as a matrix-vector multiplication

dm Pn(x)

dxm
= Dm · vT , (5.8)

where the differentiation matrix Dm contains the coefficients necessary for calcu-
lating the mth derivative at the collocation points and vT is the column vector of
dimension N + 1 containing the basis functions.

The functions Ln
k (x) are obtained recursively by the equations

Ln
k (x) = x − xn

xk − xn
Ln−1

k (x), (5.9)

Ln
n(x) =

∏n−2
l=0 (xn−1 − xl)∏n−1

l=0 (xn − xl)
(x − xn−1)L

n−1
n−1(x), (5.10)

and initializing with

b(0)0,0 = 1. (5.11)

With these iteration equations the matrix Dm is computed with the lth derivative,
l = 0, 1, . . . ,m, and k = l, l +1, . . . , N . A fast algorithm for calculating these coef-
ficients for any order and arbitrarily spaced grid points has been produced by Forn-
berg [19]. We have successfully applied the above Lagrange interpolation scheme to
molecular problems [22–24].

5.1.2 Pseudospectral Methods

Grid representations of the Schrödinger equation can be obtained by first defining
global smooth and analytic basis functions, φ j (x), to expand the wavefunction as

ψ(x) ≈ ψN (x) =
N∑

j=1

a jφ j (x). (5.12)

Different global basis functions define different Pseudospectral methods. From such
so-called Finite Basis Representation (FBR) we can transform to a cardinal set of
basis functions, u j (x), or the Discrete Variable Representation (DVR) as is usually
called, by choosing N grid points, xi , at which the wavefunction is calculated. The
cardinal functions obey the δ-Kronecker property

u j (xi ) = δi j , (5.13)
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so that the wavefunction is represented in the set of grid points as

ψN (x) =
N∑

j=1

ψ(x j )u j (x). (5.14)

Notice, that the expansion coefficients are the exact wavefunction values, ψ(x j ), at
the chosen grid points.

The transformation from FBR to the cardinal basis set is unitary and the new basis
is expressed in terms of the old one by:

u j (x) =
N∑

i=1

< φi |u j > φi (x), j = 1, . . . , N . (5.15)

A common procedure now is to evaluate the matrix elements< φi |u j > by Gaussian
quadrature, such that the integral becomes exact for a polynomial type basis. A
number of different approximation methods can be obtained by defining different
basis functions and quadrature rules [7, 27, 37]. In general, using the δ-Kronecker
property of u j (x) (Eq. 5.13) we can write

< φi |u j >=
N∑

k=1

wkφ
∗
i (xk)u j (xk) = w jφ

∗
i (x j ), (5.16)

where φ∗
i is the complex conjugate function of φi , and the grid points xk and the

corresponding weights wk depend on the chosen quadrature rule.

5.1.2.1 Periodic Uniform Grids

Most of vibrational Hamiltonians or Hamiltonians describing molecule-surface
encounters, atom-diatom or four-atom chemical reactions require the use of angular
variables, and therefore, periodic boundary conditions. It is interesting to see if FD
methods can be applied to angular variables with the same effectiveness demon-
strated for radial variables and to investigate if the same limits can be approached
here. In this context, it is worth studying FD approximations with different grid dis-
tributions. Doing this we can compare some local approaches to the solution of the
Schrödinger equation with well established DVR methods used for angular variables,
such as Legendre or Chebyshev orthogonal polynomial expansions which lead to non
uniform grids compared to Fourier method which is based on uniform grids.

A widely used set of basis functions in the solution of Schrödinger equation is the
Fourier set:

φ j (x) = 1√
2π

exp(ı2π j x/L), (5.17)
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where L is the length which defines the periodicity of the function, j =
−M, . . . , 0, . . . ,M and ı = √−1. We can transform these functions to a set of
cardinal functions by using a uniform grid in x with an odd number of points,
N = 2M +1, and employing Chebyshev quadrature. This results in the real trigono-
metric series [19],

u j (x) = w j

2π
[1 + 2

M∑

k=1

cos(2πk(x − x j )/L)], (5.18)

The weights are equal to w j = L/N for Chebyshev quadrature. Assuming for sim-
plicity that x is an angular variable with period L = 2π , and using the trigonometric
identity

1

2
+

M∑

k=1

cos(kα) = sin[(M + 1/2)α]
2 sin(α/2)

, (5.19)

Eq. 5.18 gives the Fourier cardinal functions

u j (x) = sin[N (x − x j )/2]
N sin[(x − x j )/2] . (5.20)

The δ-Kronecker property can be immediately checked, and we can derive ana-
lytically the derivatives of the wavefunctionψ(x)when it is expanded in the cardinal
functions u j (x) (Eq. 5.14):

dmψ(x)

dxm

∣∣∣∣
x=xk

=
N∑

j=1

b(m)k, j ψ(x j ), (5.21)

with b(m)k, j the mth derivative of u j (x) evaluated at x = xk .
In the next section we show how Fourier cardinal functions and Finite Differences

are related. Fourier cardinal basis can be seen as a sum of Sinc basis functions repeated
periodically with periodicity 2π , i.e.,

sin[N (x − x j )/2]
N sin[(x − x j )/2] =

k=∞∑

k=−∞
Sinc[(x − x j + 2πk)/Δx], (5.22)

Δx = 2π/N in this case and we have used the fraction expansion π/ sin(πx) =∑k=∞
k=−∞(−1)k/(x + k) [21].
A cardinal basis function widely used in interpolation theory is the Sinc function

[44], defined as Sinc(x) ≡ sin(πx)/πx . The Sinc function can be naturally generated
from the Fourier basis discussed above, because it can be considered as the Fourier
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transform of a Fourier basis function in momentum space (see for instance [19]):

Sinc[(x − x j )] =
∞∫

−∞
e−ıpx φ̃ j (p)dp, (5.23)

where

φ̃ j (p) =
{

eı2πx j p |p| < π

0 |p| > π

}
(5.24)

Note, that the optimum grid for interpolation with Sinc functions must also be equi-
spaced and centered, x j = jΔx, ( j = 0,±1,±2, . . . ,±N/2). By the properties of
the Fourier transform, we see that the discrete version of Eq. 5.23 above will span
all the momenta up to the value pmax = π/Δx and therefore Fourier and Sinc
pseudospectral methods are completely equivalent in accuracy. The coefficients b(m)k, j
which give the approximation to the mth derivative can be obtained by analytically
differentiating the Sinc function, Sinc[(x−x j )/Δx]. For the second derivative, which
is the case of interest for the kinetic energy term in the Schrödinger equation, the
coefficients read:

b(2)k, j =
{

2(−1) j+1

j2Δx2 j = ±1,±2, . . .

− π2

3Δx2 j = 0

}
(5.25)

Note, that these coefficients decay as O(1/j2). In common physical applications
we want our wavefunction to decay exponentially with j (for instance it can initially
be a Gaussian wavepacket), i.e., we want the boundary conditions u(x → ∞) = 0 to
be satisfied. Therefore, the derivative sum, Eq. 5.21, will differ from the infinite series
by an amount which decreases exponentially with the order N , since, contributions
of u(x j ) for large j will be negligible. We can effectively compute the derivative
with the accuracy of the full infinite series if N is sufficiently large. The “sufficient”
value of N to reach the pseudospectral limit of course depends on the problem we
are investigating.

In quantum Molecular Dynamics, the number of grid points (number of terms in
the expansion) one should use for a sufficient sampling of the phase space volume, is
given by the requirement of “one point per Planck cell” [30], which leads to a relation
between the grid spacing and the maximum value of the wavenumber k (p = k�)
we want to represent:

Δx = π

|kmax | . (5.26)

This is precisely the same relation arising in the Sinc or the Fourier PS methods as
discussed above. The maximum momentum can be obtained from physical consid-
erations, since, we want in general our wavefunction to be zero at sufficiently distant
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points of the grid, ψ(xmax ) = 0, and we calculate the potential energy at x = xmax

and the momentum as |pmax | = √
2mV (xmax ).

5.1.3 Relations Between FD and PS Methods

That PS and FD approaches must be related can be seen intuitively from the fact
that PS methods also provide the exact derivatives of the interpolation polynomial
passing through the collocation points. We can be more specific and take the limit
N → ∞ of the Lagrange interpolating polynomial. Consider an equi-spaced grid
around x = 0 with spacing Δx = 1 extended over N = 2M + 1 grid points. The
Lagrange fundamental polynomial will be:

L M
j (x) = (x + M) · (x + M − 1) · . . . · (x − j + 1) · (x − j − 1) · . . . · (x − M)

( j + M) · ( j + M − 1) · . . . · (1) · (−1) · . . . · ( j − M)
.

(5.27)

Starting from the central factors, this can be rearranged as the product
∏M

k=1(1 −
(x − j)2/k2), which in the limit M → ∞ becomes

lim
M→∞ L M

j (x) =
∞∏

k=1

(
1 − (x − j)2

k2

)
= sin[π(x − j)]

π(x − j)
. (5.28)

Therefore, the infinite order limit of FD gives a PS method with Sinc functions as
the expansion basis functions [19]. This has also been noted by Colbert and Miller
[12] in the context of a discrete variable representation for the calculation of reaction
probabilities.

The infinite order coefficients of a FD approach or equivalently the Sinc DVR
expansion coefficients, (Eq. 5.25), decrease only as O(1/j2) and therefore the
approximating series to the derivative of the wavefunction converge slowly if ψ(x)
is of the same order of magnitude as the coefficients (i.e., we are above the aliasing
limit [39], Eq. 5.26). This means that truncation of the Sinc PS method using less
points than the needed from the relation Eq. 5.26 will give very poor results. If we
want to improve the convergence of the trigonometric series in order to be able to
use less terms (less grid points) in the approximation, we should use an acceleration
scheme, which in turn implies to multiply the terms in the series by some acceleration
weights. A classical example is the Euler’s transformation [36].

A general alternating series is

SM =
M∑

j=0

a j z
j , (5.29)



86 5 Numerical Methods

with

a0 = bk,0
a j = bk, j cos (k jΔx),

(5.30)

where bk, j are the Sinc weights defined in Eq. 5.25 (note that they alternate in sign).
Alternating series are ideal candidates for linear acceleration techniques [8, 9]. Boyd
has shown that the M th order Finite Difference approximation is equivalent to the
accelerated series [9]:

SF D
M =

M∑

j=0

cM, j a j z
j , (5.31)

with acceleration weights

cM,0 = (6/π2)
{∑M

j=1 1/j2
}

cM, j = (M !)2/[(M − j)!(M + j)!], j = 1, . . . ,M.
(5.32)

Since, Sinc functions are the infinite order limit of an equi-spaced FD, the cor-
respondence now is that periodically repeated FD stencils will tend to the PS limit
of Fourier functions as the number of grid points in the stencil approaches the total
number of grid points in one period. Also, because equi-spaced FD can be considered
as a robust sum acceleration scheme of a Sinc function series, we expect the same
convergence properties of the FD approximation to the Fourier series.

Hence, we have discussed how FD is related to the Sinc-DVR method by taking
the limit in the two above mentioned senses:

i) An infinite order limit of centered FD formulae on an equi-spaced grid yields
the Discrete Variable Representation (DVR) result when we use as a basis set
the Sinc functions (Sinc(x) ≡ sin(πx)/πx) [12, 19]. Although, this limit is
defined formally as N , the number of grid points used in the approximation,
tends to infinity, some theoretical considerations [19] as well as numerical results
[22, 23] lead us to expect that the accuracy of the FD approximation is the same
to that of the DVR method as we approach the full grid to calculate the FD
coefficients.

ii) FD can also be viewed as a sum acceleration method which improves the con-
vergence of the pseudospectral approximation [8]. The rate of convergence is,
however, non uniform in the wavenumber, giving very high accuracy for low
wavenumbers and poor accuracy for wavenumbers near the aliasing limit [39].
However, this does not cause a severe practical limitation, since, by increasing
the number of grid points in the appropriate region we can have an accurate
enough representation of the true spectrum in the range of interest. This is one
property which makes FD useful as an alternative to the common DVR and other
PS methods such as Fast Fourier Transform techniques (FFT) [30].
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5.1.3.1 Periodic Non Uniform Grids

For periodic problems trigonometric expansions satisfy all the above stated require-
ments [30] (the efficiency due to the use of the FFT algorithm), while the Sinc method
is applied in the context of the DVR [12]. As we have discussed it before the two
methods are closely related. For non periodic problems a very successful type of basis
functions is orthogonal polynomials of Jacobi type, with Chebyshev and Legendre
as the most important special cases (see the discussion in Ref. [20]).

Using an orthogonal polynomial basis in Eqs. 5.15 and 5.16, φk = Pk , to obtain
the cardinal basis functions we take

u j (x) = w j

N∑

k=1

Pk(x j )Pk(x), j = 1, . . . , N . (5.33)

x j are the zeros of the polynomial PN+1 of degree N . Notice, that in Eq. 5.33 the
summation starts from 1 which corresponds to the constant term in the polynomial.
Hence, PN denotes a polynomial of degree N − 1. The δ-Kronecker property of
the cardinal functions is satisfied by the Christoffel-Darboux theorem for orthogonal
polynomials [32, 47]. To show that the FD formulae are also the limit of orthogo-
nal polynomial expansions in DVR methods, we have to establish the equivalence
between the DVR functions, Eq. 5.33, and the Lagrange fundamental polynomials,
L j (x), of order N − 1.

First we note, that by the definition of Gaussian quadrature L j (x) satisfy the
orthogonality property:

b∫

a

Li (x)L j (x)dx = w jδi j , i, j = 1, 2, . . . , N , (5.34)

if they are evaluated at the zeros of some orthogonal polynomial. Then, an expansion
of a function F(x) in orthogonal polynomials can be represented with the series

F(x) ≈
N∑

k=1

Fk Pk(x), (5.35)

where the coefficients are

Fk =
b∫

a

F(x)Pk(x)dx, (5.36)

and therefore, F(x) can be defined through the integral

F(x) =
b∫

a

F(x j )KN (x j , x)dx j . (5.37)
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The kernel KN (x j , x) is defined by

KN (x j , x) =
N∑

k=1

Pk(x j )Pk(x). (5.38)

On the other hand, expanding F(x) in terms of Lagrange fundamental polynomi-
als, Eq. 5.1, we obtain

F(x) =
N∑

k=1

F(xk)Lk(x) =
b∫

a

F(x j )w
−1
j

N∑

k=1

Lk(x j )Lk(x)dx j , (5.39)

taking into account the orthogonality relation, Eq. 5.34. Since, the kernels in (5.37)
and (5.39) must coincide, we have that

L j (x) = w j

N∑

k=1

Pk(x j )Pk(x), (5.40)

using the δ-Kronecker property of L j (x).
Hence, we have shown that when we use the N roots of the PN+1 polynomial

as interpolating grid points the Lagrange fundamental polynomials are the cardinal
functions that correspond to the orthogonal polynomials Pk(x), k = 1, . . . , N .

5.1.4 Remarks

The current interest in Finite Difference methods is fully justified when solutions
of the Schrödinger equation are required for multidimensional systems such as
polyatomic molecules. The present most popular methods employed in quantum
molecular dynamics are the Fast Fourier Transform and the Discrete Variable Rep-
resentation techniques. FFT generally uses hypercubic grid domains which result in
wasted configuration space sampling. A large number of the selected configuration
points correspond to high potential energy values, which do not contribute to the
eigenstates that we are seeking. Global DVR methods allow us to choose easily the
configuration points which are relevant to the states we want to calculate, but still,
we must employ in each dimension all grid points. Local methods such as FD have
the advantages of DVR but also produce matrices with less non zero matrix elements
provided that the PS accuracy is achieved at lower order than the high order limit.

There are some other benefits for FD with respect to global pseudospectral meth-
ods. Convergence can be examined not only by increasing the number of grid points
but also by varying in a systematic way the order of approximation of the derivatives.
Finite Difference methods may incorporate several boundary conditions and choose
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the grid points without necessarily relying on specific basis functions. The topogra-
phy of the multidimensional molecular potential functions is usually complex. The
ability of using non equi-spaced grids is as important as keeping the grid points in
accordance to the chosen energy interval. The computer codes for a FD representa-
tion of the Hamiltonian can be parallelized relatively easily, since, the basic operation
is the multiplication a sparse matrix by a vector. Parallelization is an obligatory task
when we deal with systems of more than three degrees of freedom and we look for
highly excited states.

Sinc-DVR methods are appropriate for radial variables where the wavefunction
must vanish at the edge of the grid (ψ(R) = 0 for a ≥ R ≥ b). The FD weights
required in approximating the derivatives of the wavefunction close to the borders of
the grid can be calculated for this boundary condition by extending the grid intervals
with fictitious points. Another type of radial coordinates frequently encountered in
molecular dynamics are those which can not be extended with fictitious points. Such
a variable is the distance of an atom from the center of mass of a diatomic molecule
in Jacobi coordinates which may start from zero for linear configuration. In this case
it is necessary to employ one-sided FD formulae.

In summary, we find the following advantages of FD approach in solving the
Schrödinger equation:

1. Finite Differences allow a systematic search of the convergence properties with
respect to the number of grid points as well as the order of approximation of the
derivatives.

2. We can use a large number of grid points for better representing the wave function
and save computer time and memory by employing low order approximations.

3. FD with stencils the total number of grid points are equivalent to the most common
PS methods (Sinc, Fourier, Chebyshev, Legendre).

4. Truncated PS methods are generally bad approximations, whereas Finite Differ-
ences show smooth convergence behaviour by increasing the order.

5. There is flexibility in choosing the grid points without necessarily any dependence
on specific basis functions.

6. Algorithms for a fast generation of the weights in the FD approximations of the
derivatives by recursion relations are available.

7. The computer codes can be parallelized.

5.2 Shooting Methods

Locating periodic orbits may be seen as a 2-point boundary value problem. The
boundary conditions are the equations of closing the trajectory in phase space. There
are two classes of numerical methods for solving in general 2-point boundary value
problems [39]. The shooting methods involve those in which the 2-point boundary
value problem is converted to an initial value one. Choosing initial values for the
trajectory we integrate the equations of motion and check the non closure of the
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trajectory. By varying the initial conditions or some free parameters we successively
approach the trajectory which satisfies the boundary conditions.

The second class is referred to the relaxation methods. In these the differential
equations are replaced with difference equations by discretizing the variables. Then,
starting with an approximate solution we try to bring it into successively closer
agreement with the finite difference equations, and the boundary conditions.

Both classes of methods have been applied to locate periodic orbits in molecular
systems. The shooting methods, also known as Newton methods, are the most popular
[18]. There are several variants of it resulted from fixing the total energy or the period
of the periodic orbit, using or not a Poincaré surface of section, and using analytical
second derivatives of the Hamiltonian or numerically estimating the gradient in the
Newton-Raphson method by integrating neighboring trajectories. The Monodromy
Method of Baranger and coworkers [1, 6, 14] is a technique which is classified in
the relaxation methods.

An extension of the shooting techniques which tries to incorporate the benefits
of the relaxation technique is the multishooting method [15, 16, 28, 40, 41, 45]. In
this case the 1-point initial value problem is converted to (m − 1) initial value ones
by choosing m nodes in the independent variable. We do not take a finite difference
representation of the equations of motion but instead, we integrate (m−1) trajectories
and by varying their (m − 1) initial conditions we approach to a smooth trajectory
which satisfies the boundary values.

5.2.1 The 2-Point Boundary Value Problem

Taking qi , (i = 1, . . . , n) generalized coordinates and pi , (i = 1, . . . , n) conjugate
momenta as the components of the vector x ,

x = (q1, . . . , qn, p1, . . . , pn)
T , (5.41)

where (T ) denotes the transpose of the (2n)D row vector. The equations of motion
written in components are,

ẋμ ≡ dxμ

dt
=

2n∑

ν=1

Jμν
∂H

∂xν
≡

2n∑

ν=1

Jμν∂νH, μ = 1, . . . , 2n. (5.42)

H is the Hamiltonian and J the symplectic matrix (Eq. 2.49).
The equilibrium points are defined by requiring

.
x= 0, or

∂νH(x) = 0, ν = 1, . . . , 2n. (5.43)

If x(0) denotes the initial conditions of a trajectory at time t1 = 0, then this
trajectory is periodic if it returns to its initial point in phase space after the time

http://dx.doi.org/10.1007/978-3-319-09988-0_2
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t2 = T (period). Hence, the Hamiltonian flow Φt satisfies the condition

ΦT [x(0)] = x(0). (5.44)

Thus, to find periodic solutions it is necessary to solve the above nonlinear equations.

5.2.2 The Initial Value Problem

The above boundary value problem is converted to an initial value problem by con-
sidering the initial values of the coordinates and momenta s

x(0) = s, (5.45)

as independent variables in the nonlinear functions

B(s) = x(T ; s)− s. (5.46)

We denote the roots of Eqs. 5.46 as s∗, i.e.,

B(s∗) = 0. (5.47)

Thus, if s is a nearby value to the solution s∗ we can compute the functions B(s) by
integrating Hamilton’s equations for the period T . By appropriately modifying the
initial values s we hope to converge to the solution, that is s → s∗ and B → 0.

5.2.3 The Newton-Raphson Iterative Method

The common procedure to find the roots of Eq. 5.47 is the Newton-Raphson method.
This is an iterative scheme and at each iteration, k, we update the initial conditions
of the orbit

sk+1 = sk +Δsk . (5.48)

The corrections Δsk are obtained by expanding Eq. 5.46 in a Taylor series up to the
first order

B(sk+1) ≈ B(sk)+ ∂B

∂sk
Δsk = 0,

B(sk)+
[
∂xk(T ; sk)

∂sk
− I2n

]
Δsk = 0, (5.49)
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where at the kth iteration

B(sk) = xk(T ; sk)− sk . (5.50)

The Jacobian matrix

Zk(T ) = ∂xk(T ; sk)

∂sk
, (5.51)

is the Fundamental Matrix which is evaluated by integrating the variational equations
(see Sect. 3.2.1 and Eq. 3.25). Thus, to complete the kth iteration in the Newton-
Raphson method we first integrate for time T the differential equations

ẋk(t) = J∂H [xk(t)]
Żk(t) = Ak(t)Zk(t), (5.52)

with initial conditions

xk(0) = sk

Zk(0) = I2n . (5.53)

Then, we solve the linear algebraic equations

[Zk(T )− I2n]Δsk = −B(sk), (5.54)

in order to find the initial conditions for the (k + 1)th iteration (Eq. 5.48).

5.2.4 The Underrelaxed Newton-Raphson Method

Quite often the Newton-Raphson method diverges, although, when it converges it
does that quadratically. Sometimes problems of divergencies are cured by scaling
the corrections with a parameter λk

sk+1 = sk + λkΔsk, (5.55)

where 0 ≤ λk ≤ 1, and λk → 1 as sk → s∗. Several schemes for selecting λk have
been proposed [15]. A simple one is

λk = λmin

max(λmin, ||Δsk ||) . (5.56)

http://dx.doi.org/10.1007/978-3-319-09988-0_3
http://dx.doi.org/10.1007/978-3-319-09988-0_3
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λmin is an input minimum value for the parameter, and || || denotes the norm of the
vector (Euclidean). For convergence criteria we use the norms

||B(sk)|| =
[

2n∑

i=1

Bi (sk)
2

]1/2

< d1, (5.57)

and

||Δsk || =
[

2n∑

i=1

Δs2
i(k)

]1/2

< d2. (5.58)

The linear system of Eq. 5.54,Δsk , may be solved by several algorithms; (i) LU-
decomposition methods, (ii) SVD-Singular Value Decomposition, and (iii) Iterative
methods such as the conjugate gradient, variable metric, and quasi-Newton meth-
ods [39].

5.2.5 The Multiple Shooting Method

The idea of multishooting is to combine shooting and relaxation techniques. Let
us assume that we divide the period T in (m − 1) time intervals, while first for
convenience we introduce a new scaled time τ = t/T, (0 ≤ τ ≤ 1),

0 = τ1 < τ2 < · · · < τm−1 < τm = 1. (5.59)

Thus, for the simple shooting method m = 2.
From now on we drop the index for the iterations k, and we use the index j to

denote the nodes in the periodic orbit. If the initial conditions of the trajectory at each
node j is s j at time τ j , and the final value of the trajectory at time τ j+1 is denoted
by x(τ j+1; s j ), then (m − 2) continuity conditions should be satisfied

C j (s j , s j+1) = x(τ j+1; s j )− s j+1 = 0, j = 1, 2, . . . ,m − 2, (5.60)

together with the boundary conditions

B(sm−1, s1) = x(τm; sm−1)− s1 = 0. (5.61)

Now, we have to solve (m − 1) initial value problems, and for that we follow the
linearized Newton-Raphson method of the previous sections

C j (s j , s j+1)+ ∂C

∂s j
Δs j + ∂C

∂s j+1
Δs j+1 = 0, (5.62)
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which become

C j (s j , s j+1)+ Z j (τ j+1)Δs j −Δs j+1 = 0, 1 ≤ j ≤ m − 2. (5.63)

Using the boundary conditions (Eq. 5.61) we get

B(sm−1, s1)+ Zm−1(τm)Δsm−1 −Δs1 = 0, (5.64)

where,

Z j (τ j+1) = ∂x(τ j+1; s j )

∂s j
. (5.65)

Eqs. 5.63 and 5.64 are written in a matrix form of dimension 2n(m −1)×2n(m −1)

⎡

⎢⎢⎢⎢⎣

Z1 −I2n 0 · · · 0 0
0 Z2 −I2n · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · Zm−2 −I2n

−I2n 0 0 · · · 0 Zm−1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

Δs1
Δs2
· · ·
Δsm−2
Δsm−1

⎤

⎥⎥⎥⎥⎦
= −

⎡

⎢⎢⎢⎢⎣

C1
C2
· · ·
Cm−2
B

⎤

⎥⎥⎥⎥⎦
(5.66)

The above system of linear equations is solved by invoking the so called condens-
ing algorithm [28]

Δs1 = −E−1u, (5.67)

Δs j+1 = Z jΔs j + C j , j = 1, 2, . . . ,m − 2, (5.68)

where

E = Zm−1 Zm−2 · · · Z2 Z1 − I2n,

u = B + Zm−1(Cm−2 + Zm−2(Cm−3 + Zm−3(Cm−4 + · · · + Z2C1) · · · )).

5.2.6 Implementation

The (m−1) fundamental matrices required in the multishooting method may be eval-
uated either from numerically obtained derivatives or analytically. The first requires
the integration of 2n(m − 1) neighboring trajectories, and the derivatives are then
computed by finite differences. In the case that the analytic second derivatives of
the Hamiltonian are available, we integrate Hamilton’s and the variational equations
together, Eq. 5.52, with initial conditions the Eq. 5.53. After converging to the peri-
odic orbit we can have an estimate of the Monodromy Matrix from the product of
matrices.
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M = Zm−1 Zm−2 · · · Z2 Z1. (5.69)

Sometimes it is desirable to bring all periodic orbits on a common Poincaré surface
of section. The Hénon method [26] is not suitable for highly unstable systems. Then,
it is more convenient to increase the boundary conditions by fixing one coordinate
(momentum), i.e.,

xl − ξ = 0, (5.70)

and to consider, that the period of the periodic orbit satisfies the trivial differential
equation [41]

Ṫ = 0. (5.71)

Thus, a (2n + 1) dimensional boundary value problem must be solved.
In the continuation of a family of periodic orbits we found it useful to vary the

period as a parameter, and for that we use predictor-corrector algorithms with trivial
or secant predictors [2].

5.3 Computer Software

5.3.1 GridTDSE

We have developed a parallel FORTRAN 95 code (GridTDSE) [46] for obtaining
the solutions of the time dependent Schrödinger equation and the spectrum of the
Hamiltonian by filter-diagonalization [49] and Lanczos methods [31].

5.3.1.1 Discretization of the Wavefunction

In the implementation of the code the first step is discretization of the wavefunction
in the coordinate space. The Finite Difference method is introduced as a local approx-
imation of a certain function u(x), which is represented at the grid points with an
ensemble of ns (ns = 2s + 1 with s an integer) Lagrange interpolation polynomials.
This yields the approximation formula for the derivatives:

dmu(x)

dxm

∣∣∣∣
x=xk

≈
ns∑

j=1

bm
k, j u(x j ), (5.72)

where the bm
k, j coefficients are computed by using Fornberg’s algorithm [19]. For the

case m = 0, Eq. 5.72 turns into a (ns − 1)-order polynomial interpolation formula
of u(x).
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Adopting a center of mass Cartesian coordinate system the wavefunction is rep-
resented by a vector whose

∏3N−3
i=1 ni elements are the values of the wavefunction at

each grid point, with ni points per dimension (i). Equation 5.72 is then equivalent to
the action of a matrix (differentiation matrix) on this vector. The ns-point truncation
(called stencil) in the series of Eq. 5.72 means that information from the ±s neigh-
bouring points plus the value of the function at the specific grid point are needed
for the evaluation.1 The accuracy of the approximation improves very fast while the
number of points in the stencil ns is increased.

5.3.1.2 Evaluation of ĤψJ

The evaluation of the action of the Hamiltonian operator over the projected into the
proper angular momentum subspace initial wavepacket requires to compute ĤψJ

(Eq. 4.88). This is needed in the time propagation step as we shall see in the next
subsection, but also in extracting the eigenenergies and eigenfunctions by iterative
methods such as filter-diagonalization [11, 33–35, 49] and Lanczos [10, 25, 31].
In a discretized scheme and a FD approximation of the Hamiltonian, this operation
turns into a sparse matrix-vector multiplication, which can be calculated with the
appropriate computational algorithms for linear systems.

The Hamiltonian matrix encompasses the potential energy and the kinetic energy
operators. The first one refers to a local property of the system, and thus it is
represented by a diagonal matrix. For the second one, the Laplacian is evaluated
using Eq. 5.72. The sparsity of the Hamiltonian depends on the length of the stencil
(ns = 2s + 1) employed in the calculation of the Laplacian, which is a matrix with
(3N −3)(ns −1)+12 non zero matrix elements per row. In the present version of the
computer code, we use matrix-vector multiplication subroutines from the Portable
Extensible Toolkit for Scientific Computation (PETSc) [3–5].

5.3.1.3 Time Evolution of the Wavepacket

The final step of the algorithm involves the propagation of the wavepacket in time.
There are several efficient ways to calculate the evolution operator U (t, Ĥ) by means
of a polynomial expansion [29, 50], two of them have been implemented in our code.
The Second Order Difference (SOD) [30] method has the main advantage of the
simplicity of the algorithm. The time propagation is performed using the recursive
formula:

ψ(t +Δ) = ψ(t −Δ)− 2ıΔ

�
Ĥψ(t), (5.73)

1 We assume a center difference scheme to compute the derivatives, but more general schemes can
be adopted [19].
2 We assume stencils with the same number of points in each dimension.

http://dx.doi.org/10.1007/978-3-319-09988-0_4
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whereΔ is the time step. Wavefunctions at two previous times are needed; therefore,
apart from the known initial wavefunction, in order to get the next wavefunction
we apply at the beginning of the propagation an Euler scheme [39] to advance the
wavepacket by one time step. Although the wavefunction is propagated conserving
the norm and the total energy, the approximation is only correct up to the second order
(O(Δ2)), requiring small time steps in the propagation. Higher order polynomial
approximations of the evolution operator have been published [51] and implemented
in our code.

The second method is based on a Chebyshev expansion of the propagator, and it
has been explained in detail by Tal-Ezer and Kosloff in [48]. It can be viewed as an
interpolation in the energy space, where the propagator U (t, Ĥ) is expanded on a
basis of M + 1 Chebyshev polynomials Tk [39] which are functions of a normalised
Hamiltonian H̃

ψ(t +Δ) ≈
M∑

k=0

ak Tk

(
−ıH̃Δ

�

)
ψ(t). (5.74)

The convergence in the series is ensured by the rapid exponential decay of the Bessel
functions, resulting in a highly accurate method. Unlike the SOD method, Chebyshev
scheme is not unitary by construction, and neither the norm nor the energy are
guaranteed to be conserved. The main advantage of this method is that calculations
with long time step, Δ, can be accurately carried out by increasing the order in the
expansion. However, this scheme implies that any intermediate time information is
lost. In order to follow the time evolution during the process, the scheme has to
be repeated many times, which yields a linear propagation of error, ε, in first-order
approximation.

Finally, as was mentioned before (Sect. 4.2), properties of the molecule can be
calculated from the autocorrelation function C(t):

C(t) =< ψ(x, 0)|ψ(x, t) >=
∫
ψ∗(x, 0)ψ(x, t)dx, (5.75)

and its Fourier transform I (E), Eq. 4.45.
For infinite integration time and bound systems, the quantity I (E) consists of an

ensemble of delta functions that are placed at the eigenvalues of the molecule. Thus,
the energy resolution of this representation depends on the characteristics of the time
integration scheme. Increasing the resolution of the spectrum, and thus the accuracy
of the energy levels, implies a longer time integration.

For multidimensional systems, evaluating Ĥψ becomes the most cumbersome
task of the program. The parallelization of the code takes place at each matrix-vector
operation. For the moment, there are no general parallelised codes for Quantum
Molecular Dynamics. In our case, parallelization is implemented by employing sev-
eral subroutines of PETSc, which is a set of libraries that manipulate a particular
family of objects, among others vectors and matrices. PETSc is especially efficient

http://dx.doi.org/10.1007/978-3-319-09988-0_4
http://dx.doi.org/10.1007/978-3-319-09988-0_4
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for carrying out parallel vector-vector and matrix-vector operations. PETSc bases its
parallelization on the Message Passing Interface (MPI)3 for communication among
processors.

Internally, the matrix is stored in a Compressed Row Storage (CRS) format,
appropriate for sparse matrices. This is implemented by three vectors: One for storing
the non zero elements of the matrix, one integer vector for the corresponding column
indexes and another integer vector for the locations that start a row. In the FD scheme,
the dimensions of these vectors would be [Ndim(ns − 1)+ 1] nNdim

g for the first two

and nNdim
g + 1 for the last integer vector, where nNdim

g would be the dimension of the
wavefunction and Ndim the number of Cartesian coordinates [46].

A convenient rectangular coordinate space grid is usually employed. However, the
spherical symmetry of the potential reduces the suitability of the rectangular grid. In
fact, we know that the relative volume of the hypersphere to the hypercube decreases
rapidly with the dimensionality as

πNdim/2/
(

2NdimΓ (Ndim/2 + 1)
)
.

Γ (Ndim/2 + 1) denotes the gamma function. A very convenient way to increase the
efficiency of the grid and to impose correct boundary conditions is to use a cut-off
value (Vc) for the potential, neglecting the contribution of those points where the
potential is over the pre-defined threshold, V (x) > Vc, as there the wavefunction is
approximately equal to zero. As is expected, the effect of introducing the cut-off is
more pronounced in the high-dimensional case.

5.3.2 POMULT

POMULT is a FORTRAN 90 code for locating Periodic Orbits and Equilibrium
Points in Hamiltonian systems based on 2-point boundary value solvers which use
multiple shooting algorithms [17]. The code has mainly been developed for locating
periodic orbits in molecular Hamiltonian systems with many degrees of freedom
and it utilizes a damped Newton-Raphson method and a secant method. POMULT
provides routines for a general analysis of a dynamical system such as fast Fourier
transform of the trajectories, Poincaré surfaces of sections, maximal Lyapunov expo-
nents and evaluation of the classical autocorrelation functions and power spectra.

We have adopted to POMULT the Molecular Mechanics suite of programs, TIN-
KER [38] in order to calculate empirical potential functions for polyatomic molecules
together with their first (for solving Hamilton’s equations) and second (for solving
the variational equations) derivatives analytically.

3 We have used OPEN-MPI to compile PETSc (http://www.open-mpi.org/).

http://www.open-mpi.org/
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5.3.3 Normal Forms

To construct tori, NHIM and (un)stable manifolds we need to transform a global
Hamiltonian in physical coordinates to a local one in normal forms around a particu-
lar equilibrium point. Software for computing the classical and semi-classical normal
forms in the neighbourhood of equilibria of n-degrees-of-freedom Hamiltonian sys-
tems has been developed at the School of Mathematics of the University of Bristol
by Wiggins and collaborators [13]. The code is written in C++ and PYTHON.

The program provides routines for forward and backward transformations between
physical and normal form coordinates (Sect. A.10). This is important when we select
initial conditions of trajectories lying on invariant phase space structures and for inte-
grating them in the physical coordinates of the system.

5.3.4 AUTO_DERIV

AUTO_DERIV [42, 43] is a module comprised of a set of FORTRAN 90 procedures
which can be used to calculate the first and second partial derivatives of any continu-
ous function with many independent variables. The function should be expressed as
one or more FORTRAN 90 or FORTRAN 77 procedures. A new type of variables is
defined and the overloading mechanism of functions and operators provided by the
FORTRAN 90 language is extensively used to define the differentiation rules.
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Chapter 6
Applications

In this chapter we review a few results from the application of the nonlinear
Hamiltonian mechanical methodologies developed in the previous chapters in order
to demonstrate their power in unveiling the intriguing indeed behaviour of highly
excited molecules. Nonlinear mechanics have been applied to molecular dynamics
for several type of molecules, in electronic ground and excited states, and a recent
review of this work has been published [6].

The theoretical treatment of molecular spectroscopy and reaction dynamics
involves the construction of the potential energy surfaces pertinent to the energy
range we study, and then quantum and/or classical mechanical calculations to extract
spectra and rate constants. Progress in the experimental techniques has imposed con-
siderable requirements to the theory. Although, methodologies in calculating ab ini-
tio PES for polyatomic molecules have made significant progress, accurate quantum
dynamical calculations are mainly restricted upto four-five atom molecules with six-
nine internal degrees of freedom because of computer limitations. Nevertheless, for
polyatomic molecules even if the quantum dynamical calculations were possible, the
interpretation of the experimental and numerical results would require one to extract
the physics by employing low dimensional models. For highly excited or reacting
molecules we have already argued that the utilization of nonlinear mechanics is
unavoidable.

Molecular spectroscopy has seen significant advances in both frequency and time
domain in the last decades [40]. Techniques such as stimulated emission pumping
(SEP), dispersed fluorescence (DF), and high resolution Fourier transform and laser
spectroscopy have contributed to the detailed study of small polyatomic molecules
[1]. Laser femtosecond spectroscopy and molecular beams [12, 40] have allowed
spectroscopists and dynamicists to study isolated molecules and to follow a chemical
reaction in real time, where bonds are broken and new ones are formed. Furthermore,
spectroscopic methods for studying structural and dynamic properties of complex
molecules such as multiple dimensional NMR and optical spectroscopy utilizing
multiple ultrafast coherent laser pulses have allowed the study of protein structure
and dynamics and femtosecond solvation dynamic [11, 38, 39].
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A result of the nonlinear mechanical behaviour of a dynamical system at high
energies is the coexistence of ordered motions and chaos, as well as the genesis of
new type of motions via bifurcation phenomena. As a matter of fact, the progress of
nonlinear mechanics forces us to reexamine the mechanisms of the breaking and/or
forming a single chemical bond as it happens in elementary chemical reactions. New
assignment schemes which allow the classification of quantum states in a meaningful
and useful way are required and such novel methods have indeed been developed
thanks to the theory of periodic orbits (PO), their bifurcations and the semiclassical
quantization theories. The concept of the transition state in chemical reaction theories
has found a new and more accurate interpretation formulated on Normally Hyperbolic
Invariant Manifolds (NHIM) and their stable/unstable manifolds [32].

Molecules are complex systems and as experiments provide more dynamical
details all theories, quantum, classical and semiclassical, must be combined to inter-
pret the results. Nonlinear mechanics and their stratified methodologies are of para-
mount importance to successfully accomplish the endeavour. In this chapter we
present a few examples to demonstrate how by applying nonlinear Hamiltonian
mechanics, after the construction of the pertinent PES, reveal the dynamics of excited
molecules and its reactivity. Ab Initio PES can be used in dynamical calculations
either by fitting the calculated energies to analytical functions, including interpolation
polynomial like cubic splines and Lagrange polynomials, or by doing calculations
on the fly, i.e., by computing first and second derivatives simultaneously to the ener-
gies with an ab initio method. However, for large molecules the use of empirical
analytical potential functions the parameters of which are fitted to experimental or
theoretical data is at present ineluctable because of computer limitations.

In the past years, we have applied the methods of locating PO developed for small
molecules to biological molecules, such as peptides described with empirical poten-
tial functions. Combining POMULT with TINKER molecular dynamics software to
construct the PES, we have studied alanine dipeptide [4] as a prototype system, and
we have shown how one can systematically trace regions in phase space where the
trajectories stay localized in specific vibrational modes of a conformation or of a tran-
sition state. With continuation techniques we obtain families of periodic orbits for
an extended energy range and we find elementary bifurcations such as Hamiltonian
center-saddle (CS) and Hopf like [5, 14]. In a similar fashion, we have studied the
active site of cytochrome c oxidase [2], the enzyme which catalyses oxygen molecule
to water and contributes in the production of the energy in the cells. In the following
sections we present a few results from this work.

6.1 Small Polyatomic Molecules and Ab Initio Potentials

By studying periodic orbits in a parameter space we discover their bifurcations and
possible localized eigenstates along them. As it was discussed in Chap. 3, periodic
orbits which emerge from center-saddle bifurcations appear abruptly at some critical
values of the energy, usually in one pair (two branches), and change drastically the

http://dx.doi.org/10.1007/978-3-319-09988-0_3
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phase space around them. They penetrate in regions of nuclear phase space which
the normal mode motions cannot reach. Center-saddle bifurcations are of generic
type, i.e., they are robust and remain for small (perturbative) changes of the potential
function [21, 22].

To the best of our knowledge, phosphaethyne (HCP) was the first molecule where
CS bifurcations were identified spectroscopically (Ref. [13] and references therein).
In this study, complementary experimental and theoretical examinations showed the
evolution of specific spectral patterns from the bottom of the potential well up to
excitation energies of approximately 25,000 cm−1, where large amplitude, isomer-
ization type motion from HCP to CPH is prominent. Distinct structural and dynam-
ical changes, caused by an abrupt transformation from essentially HC bonding to
mainly PH bonding, set in around 13,000 cm−1. They reflect center-saddle bifurca-
tions of periodic orbits associated with the bending motion of the molecule, which
result in characteristic patterns in the spectrum and the quantum number dependence
of the vibrational fine structure spectroscopic constants. Two polar opposites are
employed to elucidate the spectral patterns: the exact solution of the Schrödinger
equation, using an accurate ab initio potential energy surface and an effective or
resonance Hamiltonian (expressed in a harmonic oscillator basis set and block diag-
onalized into polyads), which is defined by parameters adjusted to fit either the mea-
sured or the calculated vibrational energies. The combination of both approaches
together with nonlinear classical mechanics and semiclassical analyses provided a
detailed spectroscopic picture of the breaking of one bond and the formation of a
new one.

Further studies for HOCl, HOBr, HCN, CH2 and ground and excited electronic
states of O3 showed that cascades of CS bifurcations of PO pave the road to dissoci-
ation or isomerization, as the molecule is excited along the reaction coordinate [6].
Two molecules are discussed here, hydrogen hypochlorite (HOCl) in its electronic
ground state and the excited state of nitrous oxide (N2O).

6.1.1 Hydrogen Hypochlorite

As an example of what we learn from a periodic orbit analysis of a highly excited
triatomic molecule we review a study of HOCl [35]. A complete quantum mechanical
calculation has been carried out for this molecule. Accurate high level quantum
chemistry calculations have produced an analytical potential function valid for the
global nuclear configuration space. Then, the nuclear Schrödinger equation is solved
in Jacobi coordinates, the distance of Cl atom from the center of mass of OH, R, the
bond length of OH, r , and the angle between the distances, γ , to produce hundreds
of vibrational eigenstates with zero total angular momentum.

The eigenfunctions are visually examined to find out regularities and the degree of
localization in the configuration space. As energy increases, the assignment becomes
cumbersome, since, most of the wavefunctions show a complicated nodal structure.
However, overtone states may appear regular at even very high energies, and thus,
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Fig. 6.1 a Minimum energy path for HOCl along the dissociation coordinate R; the potential is
minimized in the other two degrees of freedom. The symbols indicate the energy and the extension of
the wavefunctions in two overtone progressions of eigenstates (0, 0, v3) and (0, 0, x)D , respectively.
b Minimum energy path of HOCl along the dissociation coordinate R; the potential is minimized
in the other two degrees of freedom. The bold lines indicate the maximum extension of the periodic
orbits in R. R denotes the principal family of PO, and SN2 and SN center-saddle (saddle-node)
bifurcations, respectively [35]

they become easily assignable. Most interesting is the normal mode overtones which
lead the molecule to dissociation, and for HOCl this is the R mode.

It was found, that while initially the eigenfunctions are localized along the R
coordinate, at some energy they started to deviate from this route. Simultaneously,
a new progression of eigenfunctions emerged which were localized and properly
oriented towards to the dissociation channel.

In Fig. 6.1a we show the overtone states of the R mode plotted on the minimum
potential energy path. The circles depict the energy of the eigenstates, and also the
extension of wavefunctions (localization). We can see, that at energy of about−0.5 eV
the initial normal mode series, (0, 0, v3), diverges and a new series of eigenfunctions
localized along the R coordinate appears, (0, 0, x)D . v3 and x are the number of
quanta in the R mode. A similar analysis with periodic orbits is shown in Fig. 6.1b.
The curves depict the energy of PO and the maximum extension in R. The principal
family which corresponds to the R stretch deviates at about −0.5 eV and a new family
appears after a center-saddle bifurcation. The continuation/bifurcation diagram of
PO is depicted in Fig. 6.2a and the good correspondence among PO and overtone
wavefunctions in Fig. 6.2b. For more details we address the reader to the review
articles [13, 15, 16].

Another approach to study nonlinear phenomena in molecules is by employing
spectroscopic Hamiltonians fitted to reproduce part of an experimental or theoret-
ical spectrum. Then, by using Hamiltonian normal form expansion and semiclas-
sical quantization the correspondence between classical and quantum mechanics is
achieved [18, 28].
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Fig. 6.2 a Continuation/Bifurcation diagram of PO (continuous lines) and quantum mechanical
eigenlevels (filled circles, squares and triangles) of HOCl, b eigenfunctions and periodic orbits of
HOCl [35]

6.1.2 Nitrous Oxide

The diffuse vibrational bands observed in the ultraviolet photodissociation spectrum
of nitrous oxide (N2O) by exciting the molecule in the first 1A′ electronic state, have
recently been attributed to resonances localized mainly in the NN stretch and bend
degrees of freedom. The origin of this localization was investigated by locating the
fundamental families of periodic orbits emanating from several stationary points of
the 1A′ potential energy surface as well as bifurcations of them. It was demonstrated
that center-saddle bifurcations of periodic orbits are the main mechanism for creating
stable regions in phase space that can support the partial trapping of the wavepacket,
and thus, they explain the observed spectra. A nonlinear mechanical methodology,
which involved the calculation of equilibria, periodic orbits and transition states in
normal form coordinates, was applied for an in detail exploration of phase space.
The fingerprints of the phase space structures in the quantum world were identified
by solving the time dependent Schrödinger equation and calculating autocorrelation
functions [19].

6.1.2.1 Equilibrium Points and Periodic Orbits

A portrait of the ab initio potential energy surface is shown in Fig. 6.3 in Jacobi
coordinates (R the distance of O from the center of mass of NN, r the NN bond
length and γ the angle between R and r ). Eight stationary points were found and
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Fig. 6.3 Excited potential
energy surface of N2O (A1A′)
(γ = 0) in Jacobi
coordinates. The black bullet
depicts the initial position of
the quantum wavepacket

this demonstrates how complex a PES may become for an electronically excited
state, even for a triatomic molecule. This is the result of avoided crossings with
higher/lower electronic states.

Continuation/bifurcation (C/B) diagrams have been computed by locating families
of periodic orbits that emanate from the minimum EP1 (stable), and the saddles EP3
(index-1) and EP5 (index-2). These equilibria are close to the Franck-Condon region
in the photoexcitation of the molecule, and thus, they are related to the dissociation
dynamics of N2O. Figure 6.4 shows a projection of the C/B diagram of periodic orbits
in the total energy—period plane, which emanate from the minimum EP1 (black
lines) and the saddle EP3 (red lines). Center—saddle (CS) bifurcations, which we
have associated with the diffuse bands of the photoabsorption spectrum of nitrous
oxide [26] are also shown with blue lines. mi , i = 1−3, denote the fundamental
families emanated from the minimum, m2

2 a period doubling bifurcation of m2 and
CS1 a CS bifurcation which is continued up to the spectroscopic excitation energies.
In Fig. 6.5 we show representative periodic orbits of the CSi (i = 2−4) type families
projected on three different Jacobi coordinate planes together with equipotential
contours. 2SR and 2Sr are the two fundamental families of EP3 equilibrium. The
plateau observed in the 2SR family at about 54,280 cm−1indicates a period doubling
bifurcation.

6.1.2.2 Normal Form Hamiltonians

To further investigate the dynamics of the molecule we have calculated the NHIM
around the EP3 equilibrium point (EP). Details of how to compute normal forms
(NF) are given in Sect. 5.5.3 and in the Appendix A.10.

http://dx.doi.org/10.1007/978-3-319-09988-0_5
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Fig. 6.4 A projection of the continuation/bifurcation diagram on the energy—period plane for
families of periodic orbits, that emanate from the minimum of the 1 A′—PES, EP1, (black lines),
and the saddle EP3 (red). Center—saddle (CS) bifurcations, which are associated with the diffuse
structure of the photoabsorption spectrum of nitrous oxide are also shown with blue lines. mi , i =
1−3 denote the fundamental families emanated from the minimum, m2

2 a period doubling bifurcation
of m2 and CS1 a center—saddle bifurcation associated with the minimum. 2SR and 2Sr are the
fundamental families of EP3 equilibrium [19]

The expansion of the global Hamiltonian in Jacobi coordinates as a Taylor series
is obtained by a least square fitting of the ab initio PES in a dense grid of points
around the equilibrium and using spline interpolation to produce intermediate values.
Another method could be the interpolation of the potential function at the equilibrium
with Lagrange polynomials [8]. Then, we can evaluate all derivatives at any order by
using Fornberg’s algorithm. The order of the truncation and the accuracy of the NF
expansion depend on the type of applications we want to do. Several accuracy criteria
have been proposed [31, 32] and all of them are based on our ability to inversely
transform from normal form to the natural (internal) coordinates. For the present case
which includes an ab initio PES fitted by polynomials, we compare potential energy
curves along the Jacobi coordinates by selecting points from the NF Hamiltonian.
The normal form Hamiltonian is used to find initial conditions for the periodic orbits
and this also provides another test for the accuracy of the NF expansion.

The order of the normal form Hamiltonian must be at least equal to the order of the
Taylor expansion of the original Hamiltonian, otherwise the accuracy of the Taylor
expansion is lost by not taking into account high order terms in the normalisation
process. We have examined expansions up to tenth order. However, a Taylor expan-
sion up to sixth order was employed for the EP3 equilibrium point and up to fourth
order for EP5. Of course, convergence is not uniform for all degrees of freedom
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Fig. 6.5 Representative periodic orbits of CS2 (red), CS3 (green) and CS4 (blue) families projected
on the three Jacobi coordinate planes together with equipotential contours [19]

with that along R to be the worse. Comparison with the global potential gave good
agreement up to energies about 1,000 cm−1above the equilibrium. Including terms
higher than six and four respectively, the polynomial was improved at larger energies
but deteriorated at lower. Since, we want high accuracy at energies close to equilibria
we decided to truncate the expansion up to the orders mentioned above.

For a three degrees of freedom system the NHIM of EP3 equilibrium is three
dimensional, whereas its stable and unstable manifolds (W s(u)) four dimensional.
The backward transformation described in Eq. A.119 helps to transform selected
points in normal form coordinates back to Jacobi coordinates, whereas the forward
transformation, Eq. A.118, maps phase space points in Jacobi representation to nor-
mal form coordinates.

Trajectories initialized properly on the (un)stable manifolds of the NHIM
(W u,W s) are integrated forward and backward in time to produce the unstable and
stable manifolds, Fig. 6.6. Description and details about forward-backward transfor-
mations can be found in references [29, 31, 36, 37]. As these authors have demon-
strated the calculation of the stable and unstable manifolds of the NHIM allows the
exact selection of reactive and non-reactive trajectories in normal form coordinates,
which can then be transformed to the internal coordinate system. Figure 6.7 depicts
the manifolds of NHIM projected on the nuclear configuration space. Because of the
symmetry of the potential at γ = 0 the unstable degree of freedom is along γ .
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Fig. 6.6 The stable and unstable manifolds of the NHIM projected in the (R, γ, Pγ ) Jacobi space.
Three representative trajectories, one reactive (red) and two non-reactive (green) are also shown
[19]

Fig. 6.7 The stable (green) and unstable (blue) manifolds of the NHIM shown in Fig. 6.6 projected
in the Jacobi coordinate space [19]

6.1.2.3 Globalization via Periodic Orbits

Normal form Hamiltonians provide a local representation of the system and for ener-
gies not far away from the equilibrium point. Particularly, for complicated topologies
such as the excited nitrous oxide, the PES cannot be described satisfactorily by a
Taylor series expansion far from the equilibrium. Thus, Waalkens et al. [31] have
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proposed a globalization procedure to explore phase space regions far from the neigh-
bourhood of the EP by propagating trajectories with initial conditions selected from
the NF Hamiltonian, and then, transforming them back to the physical coordinate
system. Still, with this method we are restricted to energies where the NF Hamiltonian
is valid, i.e., close to equilibrium points. On the other hand, PO families generated
by continuation methods explore the phase space at higher energies. Normal form
Hamiltonians close to an EP are still useful, since, they can provide initial conditions
for the first PO needed to start the continuation of the family. This method is impor-
tant for high index saddles, where the first periodic orbit needed for the continuation
of the family is difficult to obtain, in contrast to the PO of a NF Hamiltonian which
are easily located.

A normal form Hamiltonian can also be formulated around a periodic orbit con-
sidering it as an equilibrium point of a Poincaré map, i.e., by defining a surface of
section. However, the procedure to expand the Poincaré map in a Taylor series around
the equilibrium is more cumbersome, since, it requires the simultaneous integration
of a large number of trajectories in order to evaluate the high order derivatives. Sim-
ilarly to equilibria, a normal form expansion will allow us to approximate reduced
dimension tori as well as (un)stable manifolds around PO beyond the quadratic terms.

6.1.2.4 Quantum Mechanical Calculations

Wavepackets launched on periodic orbits at selected energies are propagated in time
by solving the Schrödinger equation

ĤΨ (q, t) = ı�
∂Ψ (q, t)

∂t
, (6.1)

where ı = √−1, Ĥ the Hamiltonian operator and Ψ (q, t) is the wavefunction at
time t . In Jacobi coordinates and for a rotationless molecule the Hamiltonian takes
the form

Ĥ = − �
2

2μR R

∂2

∂R2 R − �
2

2μr r
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2

2

(
1

μR R2 + 1

μr r2

)
1

sin γ

∂

∂γ
sin γ

∂

∂γ
+ V (R, r, γ ), (6.2)

whereμR andμr are the reduced masses for O-N2 and NN, respectively. Recurrences
of the wavepacket to the initial region are traced by calculating the autocorrelation
function, C(t) = 〈Ψ (t = 0)|Ψ (t)〉 (see Sect. 4.2). The Fourier transform of the
autocorrelation function yields the absorption spectrum [24] and it has been discussed
before [25, 26].

To propagate wavepackets in time we used the parallel code GridTDSE [27] (see
also Sect. 5.3.1), which can be applied to general Cartesian coordinate systems. The

http://dx.doi.org/10.1007/978-3-319-09988-0_4
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separation and conservation of the total angular momentum is obtained not by trans-
forming the Hamiltonian in internal curvilinear coordinates but instead, by keeping
the Cartesian formulation of the Hamiltonian operator and projecting the initial wave-
function onto the proper irreducible representation angular momentum subspace. The
increased number of degrees of freedom by three, compared to previous methods for
solving the Schrödinger equation, is compensated by the simplicity of the kinetic
energy operator and its finite difference expressions [9, 10] which results in sparse
Hamiltonian matrices.

We have computed autocorrelation functions with initial wavepackets launched
on periodic orbits. The calculations have been carried out with a grid (R, r, γ ) →
(161, 230, 100) points and γ ∈ [0, 90] degrees and propagating the wavepacket for
130 fs [19].

6.2 Biological Molecules and Empirical Potentials

Biomolecules are complex systems, and therefore, it is not surprising that statistical
mechanical methods are employed for their study. The systematic methods of nonlin-
ear mechanics based on hierarchically calculating stationary objects such as periodic
orbits, tori and stable and unstable manifolds are considered only for systems with
a few degrees of freedom. However, we argued before that periodic orbits offer the
means to extract the physics from complicated calculations, and even to get reliable
estimates of eigenenergies. Indeed, we have demonstrated that periodic orbits can
be located in biomolecules such as the dipeptide of alanine, a molecule with sixty
internal degrees of freedom [4].

6.2.1 Alanine Dipeptide

Empirical potential functions for biomolecules are usually constructed with pair addi-
tive potentials. Chemical bonds are described with harmonic as well as anharmonic
potentials, such as Morse type functions. For angles periodic functions are employed,
whereas intermolecular interactions are described by Lennard-Jones and Coulomb
potentials suitable for interactions among charged species. Potential functions as
those appeared in Eqs. 6.3–6.7 are the most commonly found in the literature [23].
The parameters in these functions are fitted to experimental as well as to theoretical
results.

V (R) = V (R)internal + V (R)external (6.3)
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Fig. 6.8 The geometries of the two lowest minima of alanine dipeptide (2-acetamido-N-
methylpropanamide, CH3CONHCH(CH3)CONHCH3) at −16.53 kcal/mol (min1), −15.59 kcal/
mol (min2), and the index-1 saddle at −15.00 kcal/mol (ts1). Oxygen atom is displayed in red,
nitrogen in blue, carbon in gray and hydrogen in white [4]

V (R)internal =
∑

bonds

Db[exp(−2αbx)− 2 exp(−αbx)]

+
∑

angles

Kθ (θ − θ0)
2 + h.o.t.

+
∑

dihedrals

Kχ [1 + cos(nχ − σ)] (6.4)

V (R)external = V (R)L J + V (R)C (6.5)

V (R)L J =
∑

nonbonding

εi j

[(
Rmin,i j

ri j

)12

−
(

Rmin,i j

ri j

)6
]

(6.6)

V (R)C =
∑

nonbonding

qi q j

εDri j
+ m.e. (6.7)

The potential of alanine dipeptide has been constructed by using the parameters
of Charmm27 force field [7], Morse functions for the bond stretches and harmonic
potentials for the angles. For a sixty degrees of freedom molecule like alanine dipep-
tide, the number of stationary points found is large. Here, we focus on the isomer-
ization process between the two lowest minima. Figure 6.8 depicts the geometries of
the two minima (min1 and min2) and the configuration of the index-1 saddle (ts1).
We have located the fundamental families of periodic orbits,1 f 23 and f 24, which
are related to the isomerization of dipeptide [4]. It was found, that contrary to our
expectation due to the small barrier, domains of phase space where trajectories are
trapped for tens of picoseconds even at high excitation energies can be traced from
these stationary points.

1 At the vicinity of the equilibrium point the fundamental (or principal) families of periodic orbits
are in one-to-one correspondence with the harmonic normal modes.
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Fig. 6.9 Continuation/bifurcation diagram of alanine dipeptide in energy-frequency plane for the
three equilibria studied [4]

In Fig. 6.9 the continuation/bifurcation diagram for the f 23 and f 24 fundamental
families of periodic orbits originated from the three equilibria of the molecule is
shown. The anharmonic behaviour of the vibrational modes is evident. For the f 24
mode of min1 and ts1 equilibrium points a center-saddle bifurcation is observed.
This means that at a specific energy the continuation line levels off, decreasing its
anharmonicity, and a new pair of families of periodic orbits emerge, one of them with
stable periodic orbits and the other with unstable ones (we show the stable branch).

We have visually examined the motions of the atoms for all families of PO at
several energies. We confirmed that the f 23 and f 24 modes are mainly local type
motions even at high excitation energies. By minimizing the energy starting from
phase space points along the periodic orbits, we found that points in the region of
f 23 mode lead to min1, whereas by quenching from the region of f 24 mode the
system converges to min2.

The present study unequivocally demonstrates the existence of stable periodic
orbits for substantial energy ranges in alanine dipeptide described with an empiri-
cal potential function. Empirical potentials are not unique, which means, that other
functions can reproduce the data used to adjust the parameters. However, the advan-
tage of locating stationary classical objects, such as periodic orbits, is proved by the
expected structural stability of these objects. This means, that small perturbations
either in the potential function of the molecule or its environment will not introduce
major topological changes but only small differences in the numbers. In other words,
center-saddle bifurcations will continue to exist in the perturbed system. Although,
one has also to prove that localization remains in quantum calculations, the previous
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work on small molecules [13] supports our expectations that such phenomena will
remain in the quantum world.

We have found [4] different times in the isomerization process depending on the
excitation of specific vibrational mode and for different conformations. In spite of
exciting similar modes in the three conformations their dynamics differ substantially.
Controlling chemical reactions at such a level is one of the goals of chemical dynam-
ics. For example, novel spectroscopic methods have indeed appeared which study
small peptides in subpicosecond time scale. In an investigation of alanine tripeptide
in water by two-dimensional vibrational spectroscopy, conformational fluctuations
at the time scale of 0.1 ps have been reported [38].

6.2.2 Active Site of Cytochrome C Oxidase

A model for the active site of oxoferryl intermediate of cytochrome c oxidase has
been constructed with 95 atoms [2]. Density functional theory has been employed
to find equilibrium structures, harmonic frequencies and charge distributions for the
active site. These data together with the force fields of Amber99 [33] and Charmm27
[7] have been used to construct an empirical potential function for the active site.
The resulting analytical potential employs Morse type functions for the stretches,
harmonic potentials for the angles, cosine functions for the torsions, and Lennard-
Jones and Coulomb intermolecular interactions [23]. The geometry at equilibrium is
shown in Fig. 6.10.

In Fig. 6.11 we plot the C/B diagram of periodic orbits in energy-frequency pro-
jection plane for those fundamental families that are mainly associated with the
heme a3−FeIV=O species. The labels correspond to the harmonic normal modes
numbering from which the family originates [20, 34]. We can see three major fre-
quency regions. The low frequency f134 family corresponds to a breathing mode of
the Imidazole in the proximal area of iron (Fig. 6.10). The f139 is associated with an
oscillation of Fe−N bond in the Imidazole−Fe=O species, but it appears to be highly
anharmonic. This anharmonicity results in a center-saddle bifurcation, cs139a.

The f139 family of PO is an example of how anharmonicity and coupling to other
degrees of freedom can drastically change the harmonic vibrational frequency of the
mode even with a small increase in energy. Unfortunately, it is difficult to foresee such
nonlinear phenomena. Usually, spectroscopic investigations or detailed calculations
are required.

The middle frequency families, f141, f142 and f143 differ only by a few wavenum-
bers and show small anharmonicities. They involve oscillations of Fe with the por-
phyrin ring. The higher frequency periodic orbits of the f145 family show slight neg-
ative anharmonicity and represent asymmetric oscillations of the Imidazole−Fe=O
species. In all these families the hydroxyl group attached to CuB shows appreciable
displacements.

Examining the stability of periodic orbits we found that most of them remain stable
for all energies studied, except the f139 family which turns to single unstable, i.e., only
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Fig. 6.10 Equilibrium conformation for the active site of the oxoferryl intermediate of cytochrome
c oxidase. The model contains a CuII

B metal coordinated to two Imidazoles, a cross-linked Imidazole-
phenol unit and a hydroxyl (−OH) group, and a heme a3−FeIV center, in which the axial coordina-
tion of ferryl iron contains an Imidazole (replacing Histidine 411 according to the aa3 Paracoccus
denitrificans numbering) and an oxo (O2−) ligand. The heme a3 is taken without the propionate
groups (A and D) and it is represented by an iron-porphyrin with only a CH(OH)CH3 group sub-
stituting the hydroxyethylfarnesyl side chain. This latter group interacts via a hydrogen bond with
the cross-linked protonated phenol. Oxygen atom is displayed in red, nitrogen in blue, carbon in
gray and hydrogen in white [2]

one degree of freedom is unstable. This means, that the nearby trajectories can escape
through the unstable degree of freedom, and thus, explore larger regions of phase
space. Stable periodic orbits trap the trajectories in their vicinity for considerably
longer times, and thus, they contribute to coherent motions in the molecule.

To see how these periodic orbits affect the spectra we integrate trajectories by
randomly selecting the velocities of atoms and scaling them accordingly to achieve
an average temperature of 300 K. From a time series of 2.5 ns for Fe=O bond, we
produce the power spectra shown in Fig. 6.12. For comparison we depict several
curves. The absolute Fe=O spectra of the active site without constraints (c) (blue
curve), keeping the Fe−N(Imidazole) distance constant at its optimized value (b)
(red), and the Fe−N absolute spectrum of the active site when Fe=O distance is kept
constant at its optimized value (a) (dark-yellow).

In Fig. 6.12 we can see that, by constraining the Fe−N (Imidazole) bond to its
crystallographic value the 773 cm−1band disappears (b, red curve), while constrain-
ing the Fe=O distance the band with a peak at 776 cm−1is the dominant one in the
frequency of Fe−N spectrum for the same spectral region (700–860 cm−1) (a, dark-
yellow). In accordance to the periodic orbit analysis, we assign the 773 peak to a
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Fig. 6.11 Continuation/bifurcation diagram in the energy-frequency plane of the active site of
cytochrome c oxidase [2]

breathing motion of Imidazole at the proximal region of iron. Comparing spectra of
the total protein [2] with those of the active site we find a good agreement in the
positions of the peaks at 798 cm−1, which demonstrates that the active site alone can
reproduce vibrational frequencies of the enzyme. The smoothed absolute spectrum
of the active site (c) exhibits three bands, 773, 810–820 and 840 cm−1, in accordance
to the PO analysis. How these bands are affected by the protein environment and
how they change in the protonated/deprotonated counterparts have been discussed
in Ref. [2].

The sensitivity of the spectra on different protonated intermediate of oxofer-
ryl found before led us to examine the spectra of the model system by varying
the dielectric constant in the Coulomb potential. The dielectric constant varies in
the range of [1–80] and the frequency moves from 823 to 796 cm−1[17]. This is the
observed frequency range in resonance Raman spectra [30].

In the reaction of the mammalian mixed valence form of CcO with O2, in which
only heme a3 and CuB are reduced, the frequency at 804 cm−1probed by resonance
Raman spectroscopy has been attributed to FeIV=O bond. Contrary to that, in the
reaction of the fully reduced enzyme with O2 either two bands are identified with
prominent frequencies at 790 and 804 cm−1or only one [30] at 790 cm−1. Simula-
tions and experimental spectra support the view that the one or two bands spectra
is the result of the different Coulomb environment which may result from different
protonation states of the enzyme.

Further support to these findings has come from quantum mechanics/molecular
mechanics and molecular dynamics studies [3]. These highly elaborate calculations,
supported by several calculations on smaller model systems, demonstrate the sensitiv-
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Fig. 6.12 Power spectra of the active site of cytochrome c oxidase: a (Fe−N(Imidazole)) absolute
spectrum of the active site when Fe=O distance is kept constant at its optimized value (dark-yellow),
b (Fe=O) absolute spectrum with Fe−Imidazole distance constant at its optimized value (red), and
c spectrum without constraints (blue curve) [2]

ity of vibrational frequencies on the Coulomb field of heme a3 and their dependence
on the distance of the adjacent CuB to the heme a3−Fe atom. This distance effect
seems to be associated with the protonation state of the heme a3 propionate A, and we
proposed that it plays a crucial role on the function of CcO. More specifically, it was
found a multiple (1:1:2) resonance among the frequencies of FeIV=O bond stretching,
the breathing mode of Histidine 411, and a bending mode of the His411−FeIV=O
species (aa3 from Paracoccus denitrificans numbering). Furthermore, calculations on
model systems demonstrated that the position of CuB in relation to heme a3 iron-oxo
plays a crucial role in regulating that resonance.

Summarizing, continuation/bifurcation diagrams of periodic orbits portray the
geometry of phase space, and thus, they uncover nonlinear dynamical effects in
complex biomolecules. Bifurcations of periodic orbit families indicate important
resonances among vibrational modes which may have significant consequences in
the dynamics and spectroscopy of the molecule. We have demonstrated that among
the plethora of vibrational modes of model systems, such as the alanine dipeptide
and the active site of oxoferryl intermediate of cytochrome c oxidase, center-saddle
elementary bifurcations emerge from anharmonic fundamental modes which affect
the isomerization process and the vibrational frequencies of the model molecules,
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respectively. Furthermore, for oxoferryl it is shown that this anharmonic frequency
is also sensitive to the electrostatic environment, causing a shift in the vibrational
frequency of N−Fe=O species.

The development of novel spectroscopic methods for the study of isolated mole-
cules as well as in solutions at sub-picosecond times will increase the need for
systematic theoretical investigations such as the periodic orbit analysis offers.
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Chapter 7
Epilogue

In the previous chapters the effort was focused to unveil the role of classical nonlinear
mechanics in studying molecular dynamics by unfolding the geometry of phase space.
This is obtained in a systematic way by locating time invariant structures, such as
equilibria, periodic orbits, tori, normally hyperbolic invariant manifolds, stable and
unstable manifolds. The hierarchical methodology of nonlinear mechanics to explore
the structure of phase space is delineated in Fig. 1.4.

For decades tremendous effort has been put by chemists to construct molecular
potential energy surfaces. The next step of locating the families of periodic orbits
associated to particular stationary points on the PES is rarely executed, and that, in
spite of the numerous and computationally expensive molecular dynamics calcula-
tions which usually follow the construction of PES. However, one must admit that
by moving from the coordinate configuration space to phase space not only a deeper
understanding of molecular dynamics is obtained, but furthermore, accurate classical
mechanical calculations can be done by exploiting the local nature of the motions.
The degree of the resolution in discovering phase space structures depends on the
particular problem, and definitely, it can go beyond the experimental and quantum
mechanical resolution.

Molecules are quantum objects, i.e., they obey the quantum mechanical laws.
Solving the Schrödinger equation or an equivalent in other formulations of quantum
mechanics, is restricted to small molecules and for a limited range of energies. What
we have learnt by studying the phase space structure of several molecules, localized
motions due to the existence of approximate constants of motion is very common
even at high excitation energies. The ubiquitous center-saddle bifurcations of periodic
orbits is a mechanism for creating regular regions embedded in chaotic sea, and thus,
intriguing molecular spectroscopy and dynamics are elucidated or predicted. More
importantly, by knowing the phase space structure approximate Hamiltonians (for
example in normal forms) or empirical effective Hamiltonians based on spectroscopic
data can be constructed to solve the quantum equations of motion or for carrying
out a semiclassical quantization. In other words, by utilizing stationary phase space
objects to form a Grid on which quantum mechanics is built, it turns out to be a
promising method to study polyatomic molecules and for long time dynamics.

© The Author(s) 2014
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Advances in computational chemistry have always been associated with progress
in computers. As computational power increases larger molecular systems and more
accurate electronic structure and molecular dynamics calculations are pursued. Quan-
tum chemistry electronic structure and molecular dynamics computer codes have
been developed almost independently of each other. Nowadays, the growth of par-
allel distributed computing [2] and high performance computers have made feasible
the on-the-fly molecular dynamics, in which electronic structure calculations and
integration of the classical equations of motion are executed simultaneously. Among
these methods the most popular are the Born-Oppenheimer molecular dynamics
(BOMD) [3]. These new algorithms, which unify Newton’s and Schrödinger’s equa-
tions, allow for complex simulations without relying on any adjustable parameter. Ab
initio molecular dynamics simulations facilitate calculations on much larger mole-
cules and time scales than previously thought feasible. With the knowledge obtained
from a phase space analysis which reveals localization of the motions, we believe
that BOMD calculations will become more efficient and accurate for even larger
molecules and longer integration times.

To exploit present day computer technology suitable software is needed. Numer-
ical calculations for both electronic structure and molecular dynamics are facili-
tated by employing Cartesian coordinates and discretizing space and time. We have
shown, that variable order finite difference methods offer an unifying method for
solving ordinary and partial differential equations. Nevertheless, the comprehension
of physics and chemistry from lengthy computations on polyatomic molecules is
not straightforward. The trajectories lie on non-Euclidean manifolds with variable
dimensionality and this accents the importance of nonlinear mechanics. The inter-
play between quantum-classical theory and configuration-phase space manifold is
the meaning that Fig. 2.1 conveys.

The necessity of approaching the theory of molecules by nonlinear mechanics
is further stressed by the enormous progress in experimental techniques in the last
decades. Methods based in ion-imaging technologies [1] allow one to excite reactant
molecules and to characterize product molecules at specific quantum states, thus,
enabling better control of chemical transformations. Such experimental techniques
are expected to increase in the future with significant consequences to innovation in
nanoscience, bio- and materials-science.
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Appendix A
Calculus on Differentiable Manifolds

A.1 Topological Space

A topological space is a set T of arbitrary elements, the points, and a class of subsets
U , called the open sets of T , such that the class contains the empty set (∅) and itself
(T ), and it is closed under the formation of finite intersections (U ∩ V ∩· · ·∩ W ) and
arbitrary unions (U ∪V ∪ . . . ). The class of open subsets U “defines” the topology of
T [5, 9]. The above definition introduces the concept of continuity in the topological
space by considering that every point of the set T has a neighborhood.

If for every pair of distinct points of T one can define neighborhoods that do not
overlap, then this is a Hausdorff topological space.

Furthermore, if we can find a collection B of countable open sets Ui , such that
every open subset of the topological space is represented as the union of elements of
B, then T has a countable basis.

The Euclidean space of dimension n, R
n , is a topological Hausdorff space with

a countable basis. For R
n every neighborhood U of a point p there is an open set

Ui ⊂ U .
A topological space is compact if from every covering of T by open sets, we can

find a finite number of sets that still cover T .
A topological space is connected if it cannot be represented as the union of two

or more disjoint non-empty open subsets.

© The Author(s) 2014
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A.2 Differentiable (Smooth) Manifold

A manifold M of dimension m is a topological Hausdorff space with a countable basis,
for which we can define a chart (a local coordinate system), i.e., a homeomorphism1

(φ) (Fig. A.1),
φ : U ⊂ M → φ(U ) ⊂ R

m, (A.1)

of an open set U of M onto an open setφ(U ) of R
m . Since, the map is on an Euclidean

space, we can also define a coordinate representation in R
m

qi = f i ◦ φ or φ(p) = (q1(p), q2(p), . . . , qm(p))T ∈ R
m, (A.2)

for every point p ∈ U , and f i are smooth functions,2 i.e, they map the point φ(p)
in the Euclidean space to real numbers3 [3, 8, 9].

By defining a chart at every point p ∈ M we form an atlas, that covers all the
manifold M . If any pair of two charts overlap smoothly (diffeomorphically, i.e., there
are smooth invertible transformations of one coordinate system to another (Fig. A.2),
then we have a differentiable or smooth manifold.

For an Euclidean topological space, R
n , a manifold M ⊂ R

n with dimension
m, 0 < m < n, is defined by the set of points q = (q1, q2, . . . , qn)T , that satisfy a

Fig. A.1 A coordinate chart
is defined by the smooth
(differentiable) function
φ(U ) of an open set U ⊂ M
at a point p ∈ U of the
manifold M onto an open set
φ(U ) ⊂ R

m

1 A function φ between two manifolds is called a homeomorphism if it is bijective (one to one),
continuous and with an inverse function, φ−1, also continuous.
2 A smooth function is loosely defined as a differentiable function as many times as it is required.
3 The letter superscript (T ) denotes a column vector and generally the transpose of a matrix.



Appendix A: Calculus on Differentiable Manifolds 127

Fig. A.2 A transition map
which describes a
diffeomorphic coordinate
transformation,
F = ψ ◦ φ−1 : φ(U ∩ V ) 	→
ψ(U ∩ V )

V

U

(U)
(V)

-1

q1 

qn wm

w1 

M

system of k = n − m scalar equations: [4]

φi (q1, q2, . . . , qn) = ci , i = 1, . . . , k, (A.3)

where φ are smooth functions, φ : R
n → R

m, φ = (φ1, φ2, . . . , φk)T , q ∈ D ⊂
R

n and c = (c1, c2, . . . , ck)T , a column vector of constants.
The manifold M is smooth (differentiable), if φ are smooth and the rank of Jaco-

bian matrix Dqφ is equal to k at each point q ∈ M .

Dqφ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂φ1

∂q1 . . .
∂φ1

∂qn−1
∂φ1

∂qn

∂φ2

∂q1 . . .
∂φ2

∂qn−1
∂φ2

∂qn

...
...

...
...

∂φk−1

∂q1 . . .
∂φk−1

∂qn−1
∂φk−1

∂qn

∂φk

∂q1 . . .
∂φk

∂qn−1
∂φk

∂qn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.4)

k = n − m is the codimension of M , and equations φi = ci , i = 1, . . . , k, give an
implicit representation of the manifold M .
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A.2.1 Implicit Function Theorem

Theorem A.1 (Implicit Function Theorem)

(i) Implicit Representation - φ

We consider that we are given: φ : D → R
m, D ⊂ R

n n > m,

φ = (φ1, φ2, . . . , φk)T ∈ R
k (A.5)

has
φ(q∗) = c, (A.6)

for some q = (q1, q2, . . . , qn)T ∈ D and c = (c1, c2, . . . , ck)T ∈ R
k, k =

n − m. If the Jacobian matrix Dqφ evaluated at a point q is non-singular, then
near q, the level set of φ at c,

Lφ(c) := { all q∗ ∈ D,which satisfy φ(q∗) = c}, (A.7)

is a (m = n − k) - dimensional manifold embedded in D.

The tangent space (Sect. A.5) of this manifold at q∗ is perpendicular to the row
vectors of the matrix Dqφ.

Dqφ(q
∗) =

⎡

⎢⎢⎢⎢⎢⎣

∂1φ
1(q∗) . . . ∂n−1φ

1(q∗) ∂nφ
1(q∗)

∂1φ
2(q∗) . . . ∂n−1φ

2(q∗) ∂nφ
2(q∗)

...
...

...
...

∂1φ
k−1(q∗) . . . ∂n−1φ

k−1(q∗) ∂nφ
k−1(q∗)

∂1φ
k(q∗) . . . ∂n−1φ

k(q∗) ∂nφ
k(q∗)

⎤

⎥⎥⎥⎥⎥⎦
(A.8)

(ii) Explicit Representation - χ

The implicit function theorem can also be stated in the following way. There
are smooth locally defined functions

qm+i = χ i (q1, q2, . . . , qm), i = 1, . . . , k(= n − m), (A.9)

such that

φi (q1, q2, . . . , qm, χ1(q1, q2, . . . , qm), . . . , χk(q1, q2, . . . , qm)) = ci

(A.10)
for all q in some neighborhood of q∗ ∈ D ⊂ R

n, which belong to the level set

Lφ(c) := { all q∗ ∈ D which satis f y φ(q∗) = c}. (A.11)
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We define the column vectors q ′ = (q1, . . . , qm)T , and q ′′ = (qm+1, . . . , qn)T .
The derivatives of χ at (q

′∗) are given by

∂χ i

∂q j
= −

k∑

l=1

([
∂φ

∂χ

]−1
)i

l

[
∂φl

∂q j

]
, (i = 1, . . . , k), ( j = 1, . . . ,m).

(A.12)
(iii) Parametric Representation - ψ

The parametric representation of the manifold M of dimension m assumes
that the n coordinates of Euclidean space, R

n, n > m, can be expressed
as one-to-one functions f = ( f 1, f 2, . . . , f n),∈ R

n of the parameters ψ =
(ψ1, ψ2, . . . , ψm), ψ ∈ R

m

q = f (ψ1, . . . , ψm). (A.13)

If we assume that the system

f (ψ)− q = 0, (A.14)

can locally be solved with respect to (ψ1, . . . , ψm, qm+1, . . . , qn) as functions
of the other variables, (q1, . . . , qm), then we have an explicit representation of
the m−manifold in (q1, . . . , qm) coordinates

ψ i = Fi (q1, . . . , qm), i = 1, . . . ,m

qm+i = f m+i [F1(q1, . . . , qm), . . . , Fm(q1, . . . , qm)]. (A.15)

A.2.2 Inverse Function Theorem

Theorem A.2 (Inverse Function Theorem)
If f : D → R

n, D ⊂ R
n, f = ( f 1, f 2, . . . , f m),∈ R

m and Dq f (q∗) is a linear
isomorphism (Jacobian) for some q∗ ∈ D, then

(i) There exists a neighborhood U of q∗ and a neighborhood V of w∗ = f (q∗)
such that the restriction of f to U is an invertible function f : U → V .

(ii) f −1 is differentiable at w∗ = f (q∗), and the derivative is given by

Dw f −1(w∗) = [Dq f (q∗)]−1. (A.16)
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A.2.3 Example: 2D Torus in a 3D Euclidean Space

Fig. A.3 depicts a 2D torus.

• Implicit representation

(
R −

√
x2 + y2

)2

+ z2 − r2 = 0 (A.17)

R is the distance from the center of the tube to the center of the torus and r is
the radius of the tube.

• Explicit representation

z = ±
√

r2 −
(

R −
√

x2 + y2

)2

(A.18)

• Parametric representation

x(u, v) = (R + r cos v) cos u (A.19)

y(u, v) = (R + r cos v) sin u (A.20)

z(u, v) = r sin v (A.21)

Fig. A.3 A 2D—torus
embedded in a 3D Euclidean
space
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A.3 Smooth Functions and Maps on Manifolds

A smooth function f on a manifold M is a map from M to the real numbers R,

f : M → R : p ∈ M 	→ f (p) ∈ R, (A.22)

which is differentiable. This means

f ◦ φ−1 : φ(U ) ⊂ R
m → R, (A.23)

where (U, φ) is a chart with U an open set in the m-dimensional manifold M con-
taining p. The set of all smooth functions on a manifold M is denoted by F (M).

We can also define a map F on a manifold M with dimension m to a manifold
W of dimension n. If (U, φ) a chart on M and (V, ψ) a chart on W , such that if
p ∈ U ⊂ M then F(p) ∈ V ⊂ W , the coordinate transformation is the function
y = ψ ◦ F ◦ φ−1 : R

m 	→ R
n (Fig. A.4). If y is a smooth vector-valued function

defined on an open set of R
m then F is a differentiable map at p ∈ U ⊂ M with

differential DF = F∗, a linear map (the Jacobian) of the tangent space Tp M of M
at the point p onto the tangent space TF(p)W at the point of F(p) (Fig. A.10).

A diffeomorphism is a smooth mapping F : M 	→ W which has an inverse
mapping, which is also smooth. The set of all diffeomorphisms F : M 	→ M is
denoted as Di f f (M) and it is a group.

M 

W

p

F(p) 

F  

U      

(U) 

(V) 

 F -1  

q1 

qm  
wn  

w1 

V

Fig. A.4 A differentiable map between manifolds
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A.4 Curves on Manifolds

A smooth curve in an Euclidean space R
n , γ (t), is defined as a map, that leads from

an open interval I of the real axis R to the R
n ,

γ : I ⊂ R → R
n : t ∈ I 	→ γ (t) ∈ R

n . (A.24)

By defining a coordinate system with a basis set ei the curve and its derivative are
described by the equations

γ (t) =
n∑

i=1

γ i (t)ei , (A.25)

dγ (t)

dt
=

n∑

i=1

dγ i (t)

dt
ei , (A.26)

or

γ̇ (t) =
n∑

i=1

γ̇ i (t)ei . (A.27)

A.5 Tangent Vector Space

If the curve γ lies on the manifold M and at t = 0, γ (0) = q0, then the derivative
γ̇ (0) is a tangent vector of M . Since, infinite curves may pass through the point q0 we
may say that their derivatives define a tangent vector space at q0, Tq0 M (Fig. A.5).

In the implicit representation of the manifold M with dimension m (φi = ci , i =
1, . . . , k = n − m) embedded in an Euclidean space R

n of dimension n, a m -

Fig. A.5 If a coordinate chart
is defined at a point q0 ∈ U of
the manifold M , then the
derivatives ∂i |q0 ≡ ∂

∂qi |q0

define a coordinate system in
the tangent space Tq0 M

1

2
q0

M

Tq0(M)
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dimensional tangent vector space, Tq0 M is defined and any vector v of the Tq0 M is
perpendicular to ∇φi (q0) (Theorem A.1).

The dimension of the tangent vector space is that of the manifold, m. Given a
coordinate system (a chart) at the point q0 with basis ei , i = 1, . . . ,m, then the
basis set for the tangent space is ∂i ≡ ∂

∂qi , i = 1, . . . ,m,

v ∈ Tq0 M : v =
m∑

i=1

vi (q0)∂i |q0 . (A.28)

If the (contravariant) vector v ∈ Tq0 M acts on a smooth function f ∈ F (M),
then

v( f ) =
m∑

i=1

vi∂i f (q0). (A.29)

Also,

Theorem A.3 If f ∈ F (M) is a smooth function on the manifold M, then, there
exists a unique vector, ∂ f (q0) ∈ Tq0 M, such that for all curves γ ∈ M with
γ (0) = q0,

ḟ (γ (t))|t=0 =
m∑

i=1

γ̇ i (0)∂i f (q0) = < ∂ f (q0)|γ̇ (0) >, (A.30)

where< | > denotes scalar (inner) product. ∂ f (q0) is called intrinsic gradient of f
at q0.

If f is also defined on the n - dimensional Euclidean space R
n , then, its gradient

(∂ f (q0)) has the intrinsic derivative (∇ f (q0) to be distinguished from ∂ f (q0)) as its
orthogonal projection on the tangent space at q0 (Fig. A.6). That is, there are unique

(

f

q0 

M 

f 

[ (q1, q2) = c]

) 

Fig. A.6 The manifold M has the implicit description of φ(q1, q2) = c with its gradient ∂φ at
the point q = q0 to be perpendicular to the intrinsic derivative, ∇ f , of the function f (q). The
gradient of the function f at the point q0, (∂ f ) is a 2D vector, but the intrinsic derivative lies in
the 1D tangent space of the manifold. From the relation (∂ f (q) − λ∂φ(q)) • ∂φ(q) = 0 we take
λ = ∂ f (q)•∂φ(q)

||∂φ(q)||2 . So, the intrinsic derivative is defined as ∇ f (q) = ∂ f (q)− ∂ f (q)•∂φ(q)
||∂φ(q)||2 ∂φ(q)
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scalars λ = (λ1, . . . , λk), such that

∇ f (q0, λ1, . . . , λk) = ∂ f (q0)−
k∑

i=1

λi∂φ
i (q0). (A.31)

λi , i = 1, . . . , k, are called Lagrange Multipliers.

A.5.1 Extrema of a Function on a Manifold

The extrema of the function f (q1, . . . , qn) with n variables, which satisfy k con-
straints (n > k > 0)

φi (q1, . . . , qn) = 0, i = 1, . . . , k, (A.32)

are the extrema of f on the manifold which has the implicit representation given by
Eq. A.32. Thus, we are seeking the extrema of the function

f ∗(q, λ) = f (q1, . . . , qn)−
k∑

i=1

λiφ
i (q1, . . . , qn), (A.33)

i.e., the intrinsic derivative of f ∗ should be zero

∇ f ∗(q, λ) = ∂ f (q)−
k∑

i=1

λi∂φ
i (q) = 0. (A.34)

The Lagrange Multipliers λi are k unknown parameters to be determined by solving
the system of equations Eqs. A.32 and A.34.

A.6 Tangent Bundle

At each point p of a m-dimensional manifold M we associate the tangent vector
space Tp M . The set of all tangent spaces of the (differentiable) manifold form the
tangent bundle of M , which is also a (differentiable) manifold,

T M =
⋃

p∈M

Tp M. (A.35)
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Fig. A.7 A schematic
(approximate) representation
of the tangent bundle of
manifold M TpM 

TqM 
TrM 

M 

p 

q 

r 

The bundle contains both the manifold M and its tangent spaces Tp M called the fibres
with M the base space (Fig. A.7). Thus, the dimension of the bundle is dim(T M) =
2m.

When we define charts (coordinates by the function φ) and an atlas on the mani-
fold, then we can also define the tangent space of the chart

Tφ = T U 	→ φ(U )× R
m . (A.36)

T M locally has the product structure M × R
m . However, its global structure may be

more complicated.

A.7 Vector Field

A vector field VF on a smooth manifold M is a map that assigns to every point p of
M a specific tangent vector vp taken from the vector space Tp M :

VF : M 	→ T M : p ∈ M 	→ vp ∈ Tp M. (A.37)

The set of all vector fields of M is denoted as VF (M).
Vector fields acting on functions of F (M) are the directional derivatives of F

(Sect. A.7.3).

A.7.1 Coordinate Transformation in Overlapping Charts

The base fields on two contiguous, overlapping open sets U and V with the charts
(φ,U ) ≡ ( f 1 ◦ φ, . . . , f n ◦ φ)T = (q1(p), . . . , qn(p))T and (ψ, V ) ≡ (w1 ◦



136 Appendix A: Calculus on Differentiable Manifolds

ψ, . . . , wn ◦ψ)T = (w1(p), . . . , wn(p))T , respectively, are related as follows for a
function g ∈ F (M) (Fig. A.2)

∂(g ◦ φ−1)

∂ f i
=

n∑

k=1

∂(g ◦ ψ−1)

∂wk

∂(ψk ◦ φ−1)

∂ f i
, (A.38)

or

∂
φ
i |p(g) =

n∑

k=1

∂
ψ
k |p(g)

∂Fk

∂ f i
. (A.39)

The matrix ∂(ψk◦φ−1)

∂ f i is the Jacobian matrix, Dp F , of the transition map F =
(ψ ◦ φ−1) (see Fig. A.2). In coordinates, we usually write wi = Fi ( f 1, . . . , f n).

A.7.2 Local Flow

A local flow or a local 1-parameter group of diffeomorphisms, Φt (q), satisfies the
differential equation

∂

∂t
Φt (q) ≡ ∂tΦt (q) ≡ Φ̇t (q) = v(Φt (q)), (A.40)

where v is a vector field acting on the curve passing through q. Thus,Φt is an integral
curve of the vector field vq . It is proved that, for each point q ∈ M there is precisely
one integral curve Φ with initial point at t = 0, Φ0 = q.

For the times t, s and t + s it is valid that

Φt ◦Φs = Φt+s = Φs ◦Φt (A.41)

A.7.3 Directional Derivative

The directional derivative of a function f on M is defined as the action of a vector
field VF on the function

VF ∈ VF (M) : f ∈ F (M) 	→ VF ( f ) ∈ F (M) (A.42)

: f (p) 	→ vp( f ) =
∑

i

vi∂i f. (A.43)

In a chart (φ,U ), a vector field can be represented locally by means of coordinate
vector fields, or base fields. For every point p of an open neighborhood U ⊂ M , the
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base ∂i |p, is defined as a vector field on U :

∂i : U 	→ T U : p ∈ U 	→ ∂i |p. (A.44)

So, if we denote the chart map by φ(p) = (q1(p), . . . , qn(p)), any smooth vector
field VF defined on U ⊂ M has the local representation on U

VF =
n∑

i=1

[VF (q
i )]∂i =

∑

i

vi
F∂i , (A.45)

where vi
F the i th component of the vector field (see Fig. A.5).

A.7.4 Lie Derivative of Vector Fields

Let X and Y be pair of vector fields on a manifold M and letΦt = Φ(t) be the local
flow generated by the field X (Φ̇tq = Xq ). Then, Φtq is the point at time t along the
integral curve of X , the orbit of q , that starts at time t = 0 at the point q. The Lie
derivative of Y with respect to X is defined to be the vector field LX Y whose value
at q is

[LX Y ]q = lim
t→0

[YΦtq −Φt∗Yq ]
t

,

= lim
t→0

[Φ−t∗YΦtq − Yq ]
t

,

=
{

d

dt
(Φ−t )∗YΦtq

}

t=0
. (A.46)

i.e., we compare the vector YΦtq at that point with the result of pushing Yq to the
point of Φtq by means of the differential Φt∗ = DΦt (Figs. A.8 and A.10).

It is proved that the commutator (the Lie bracket), [X, Y ], of two vector fields X
and Y , with all of them (X, Y,LX Y ) ∈ VF (M), satisfy

LX Y = [X, Y ] = XY − Y X. (A.47)

A Lie derivative acting on f ∈ F (M) gives

LX Yq( f ) = [X, Y ]q( f ) = [Y ( f )]Xq − [X ( f )]Yq . (A.48)

In local coordinates qi the components of the Lie bracket are written
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Fig. A.8 Geometrical
interpretation of the Lie
derivative of the vector field
Y with respect to the vector
field X which generates the
flow Φtq

tq*Y(q)

tqY(q) 

Y( tq) 

q 

-tq*Y( tq)
X 

[X, Y ]i =
∑

j

[(
∂Y i

∂q j

)
X j −

(
∂Xi

∂q j

)
Y j
]
. (A.49)

If we take Xi = dqi/dt = q̇ i along the orbit, we can also write

[X, Y ]i = [LX Y ]i =
∑

j

(
∂Y i

∂q j

)
q̇ j −

∑

j

(
∂Xi

∂q j

)
Y j

= dY i

dt
−
∑

j

(
∂Xi

∂q j

)
Y j . (A.50)

The vector field Y along an orbit of X is invariant if

YΦt q = Φt∗Yq . (A.51)

Then

Fig. A.9 Lie derivative of the
vector field Y = δq with
respect to the vector field X
which generates the flow Φtq

q0

q(t)

q0 

Yq  = q(t) 

q0 + q0 

q(t)+ q(t)  

X = q 
.
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M 

W

p

F 

DF = F* 

TpM

T F (p) W 

F(p) 

Fig. A.10 F is a smooth map between the manifolds M and W . F∗ = DF is a linear map of the
tangent space Tp M of M at the point p onto the tangent space TF(p)W at the point of F(p)

[LX Y ]i = dY i

dt
−
∑

j

(
∂Xi

∂q j

)
Y j = 0. (A.52)

Even more, if we take a variation vector δq , an infinitesimally near point to q, to be
the vector field Y (Fig. A.9), then

d(δqi )

dt
= Xi

q+δq − Xi
q

=
∑

j

(
∂q̇i

∂q j

)
δq j + h.o.t. (A.53)

The higher order term (h.o.t.) is a function of the displacement δq at time t , which
contains all the terms in the Taylor expansion larger than the first order. The deriva-
tives are computed at the reference trajectory Xq . Y = δq is called Jacobi field and
the equations

dY i

dt
=
∑

j

(
∂Xi

∂q j

)
Y j , (A.54)

variational equations.
In general, the Lie bracket is preserved under diffeomorphisms.

A.8 Cotangent (Dual) Space and Covectors

A linear functional on a vector space V is a scalar-valued function ω defined for
every vector v, with the property
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ω(a1v1 + a2v2) = a1ω(v1)+ a2ω(v2), (A.55)

for real value numbers a1, a2 and vectors v1, v2. The set of all linear functionals
acting on the tangent space at point p, Tp M , of the manifold M , forms the dual
space of the manifold at the point p. This is the vector space of covectors, called
cotangent space to M at the point p, and it is denoted as T ∗

p M . The disjoint union
of the cotangent spaces over all point p of M ,

T ∗M =
⋃

p∈M

T ∗
p M, (A.56)

is the cotangent bundle of M . Like the tangent bundle the cotangent bundle is a
differentiable manifold.

The elements of T ∗
p M are denoted as ωp and are named differential forms of

degree−1 or 1− forms and they are defined:

ω : M 	→ T ∗M : p 	→ ωp ∈ T ∗
p M, (A.57)

that assign to every point p ∈ M an element ωp ∈ T ∗
p M , which is a linear map of

the tangent space Tp M onto the real numbers, i.e., ωp(vp) ∈ R.
Taking a chart (q(p) = (q1(p), . . . , qn(p)) an element of Tp M has the represen-

tation v = (v1(q1)∂1, . . . , vn(qn)∂n) in the coordinate basis set ∂i . The differential
of coordinate qi is dqi and satisfies

dqi (∂ j
∣∣

p) = ∂i

∂q j

∣∣
pdqi = δi

j . (A.58)

Thus, we may conclude that the differentials dqi can be considered as 1−forms
which consist the coordinate basis set for expanding any 1−form

ω =
n∑

i=1

ω(∂i )dqi . (A.59)

The action of dqi on a vector v ∈ Tq M gives the component vi of the vector;

dqi (v) = dqi

⎛

⎝
∑

j

v j∂ j

⎞

⎠ =
∑

j

v j dqi (∂ j
) =

∑

j

v jδi
j = vi . (A.60)

An example of 1−form is the total differential of a function f

d f : T M → R : d f =
n∑

i=1

∂ f

∂qi
dqi =

n∑

i=1

∂i ( f )dqi . (A.61)
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Thus, the relation between tangent space and cotangent space of a manifold M at
the point p is to map the vectors vp ∈ Tp M to real numbers via 1−forms ω(vp) ∈
T ∗

p M . The set (dqi |p) is the coordinate basis for the cotangent vector space and the
set (∂i |p) the coordinate basis for the tangent vector space Tp M .

A.8.1 Coordinate Transformation of 1−Forms

For a transformation of local coordinates, w = F(q), the chain rule implies

dwi =
n∑

j=1

(
∂Fi

∂q j

)
dq j , i = 1, . . . , n. (A.62)

For the components of a general 1−form the transformation is written

n∑

i=1

ωw(∂wi )dw
i =

n∑

i=1

ωwi dwi =
n∑

i=1

ωwi

n∑

j=1

(
∂Fi

∂q j

)
dq j . (A.63)

Since,
n∑

i=1

ωwi dwi =
n∑

j=1

ω
q
j dq j , (A.64)

we conclude that

ω
q
j =

∑

i

ωwi

(
∂Fi

∂q j

)
. (A.65)

Taking the inverse of the Jacobian matrix we write the component transformation of
a covector as

ωwi =
∑

j

ω
q
j

[(
∂F

∂q

)−1
] j

i

. (A.66)

A.9 Exterior (Grassmann) Algebra

A.9.1 Exterior Product

A k−form is a function on a smooth manifold M
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k
ω: M 	→ (T ∗M)k : p 	→ k

ωp, (A.67)

that assigns to each point p ∈ M an element of (T ∗
p M)k , the k−fold direct product of

the cotangent space.
k
ωp is the exterior product of k 1−forms and it is a multilinear,

skew-symmetric function from (Tp M)k onto the real numbers R, i.e., it acts on k
vector fields

k
ωp (v1, . . . , vk) ∈ R, (A.68)

and is antisymmetric in all k arguments. A k−form using determinants and the symbol
of wedge product (∧) is written

(
1
ω1 ∧ 1

ω2 ∧ · · · ∧ 1
ωk)(v1, v2, . . . , vk) = 1

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
ω1 (v1) . . .

1
ω1 (vk)

1
ω2 (v1) . . .

1
ω2 (vk)

. . . . .

. . . . .

. . . . .
1
ωk−1 (v1) . . .

1
ωk−1 (vk)

1
ωk (v1) . . .

1
ωk (vk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(A.69)

An (exterior) k−form is a covariant k−tensor, but not all covariant k−tensors are
k−forms. The collection of all k−forms is a vector space.

Locally (in charts) any k−form can be written as a linear combination of the base
forms,

k
ω =

∑

i1<i2<···<ik

ωi1i2...ik dqi1 ∧ · · · ∧ dqik . (A.70)

The coefficients are given by the action of
k
ω onto the corresponding base vector

fields

ωi1i2...ik = k
ω (∂i1 , . . . , ∂ik ). (A.71)

A.9.2 The Geometric Meaning of Forms in R
n

For an Euclidean metric space, R
n , with Cartesian coordinates, (q1, . . . , qn), the

basis of the tangent space is (∂1, . . . , ∂n) and that of the dual space the basis is
(dq1, . . . , dqn). Then, for a pair of vectors (v, w) the action of the differentials is
dqi (v) = vi , and dq j (w) = w j , i.e., the components of the vectors (v, w). It is valid
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dqi ∧ dq j (v, w) = dqi (v)dq j (w)− dq j (v)dqi (w)

= viw j − v jwi

= det
∣∣∣viw j

∣∣∣ . (A.72)

This is ± the area of the parallelogram spanned by the projections of (v, w) vec-
tors into (qi , q j ) plane; the plus sign is used if the projections determine the same
orientation of the plane as do ∂i and ∂ j .

For a k−form

dqi1 ∧ · · · ∧ dqik (v1, . . . , vk), (A.73)

is the ± k−dimensional volume of the parallelepiped spanned by the projections of
the vi vectors into (qi1 , . . . , qik ) coordinate plane; the plus sign is used only if these
projected vectors define the same orientation as do (∂i1 , . . . , ∂ik ).

A.9.3 Interior Product

If v is a vector and ω is a k−form, their interior product (k − 1)−form, iv
k
ω, is

defined by

iv
0
ω = 0

iv
1
ω = ω(v) =

∑

j

ω j v
j

iv
k
ω (w2, . . . , wk) = k

ω (v, w2, . . . , wk). (A.74)

It is proved that

iv1+v2 = iv1 + iv2

iav = aiv

iv(
k
α ∧ l

β) = [iv
k
α]∧ l

β +(−1)k
k
α ∧[iv

l
β]. (A.75)

A.9.4 Exterior Derivative

We consider smooth functions f on a manifold to be forms of degree zero. The total
differential
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d f =
n∑

i=1

∂ f

∂qi
dqi , (A.76)

is an 1−form expanded in the basis forms dqi and coefficients the partial deriv-

atives of f , i.e., the action of d f ≡ 1
ω onto the corresponding base vector fields,

(∂i1 , . . . , ∂in ).
Generally, the exterior or Cartan derivative of an exterior product of two forms is

defined as

d(
k
ω ∧ l

ω) = (d
k
ω)∧ l

ω +(−1)k
k
ω ∧(d l

ω), (A.77)

where

d
k
ω =

∑

i1<···<ik

dωi1...ik (q
1, . . . , qn) ∧ dqi1 ∧ · · · ∧ dqik . (A.78)

dωi1...ik (q
1, . . . , qn) is the total differential of the component ωi1...ik (q

1, . . . , qn)

function. The d operation is said to be an antiderivation.
In other words, the exterior derivative maps smooth k−forms onto (k +1)−forms

d : k
ω→k+1

ω . (A.79)

It is proved that

d ◦ d = 0. (A.80)

A.9.5 Pull-Back Differential Forms and Push-Forward Vector
Fields

How are vectors from a tangent space of a manifold transformed to another manifold
connected by a differentiable map (or diffeomorphism)? Similarly, how are forms
transformed between cotangent spaces of two manifolds connected by a differentiable
map? To perform such operations we push-forward vectors and pull-back forms.

Let

F : Mm 	→ W r , (A.81)

is a differentiable map between the two manifolds M of dimension m and W of
dimension r , then the push-forward of a vector field Vp ∈ Tp M on the manifold M
to the vector field V ′

F(p) ∈ TF(p)W , the differential of F , is denoted as DF = F∗
and its action is
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V ′
F(p) = (F∗v)F(p) = Vp ◦ F = F∗(Vp). (A.82)

If f : W → R then

V ′
F(p) = F∗Vp

V ′
F(p)( f ) = Vp( f ◦ F). (A.83)

In local coordinates the transformation equations for the vector components are as
those of a coordinate transformation si = Fi (q), where q are the coordinates for the
manifold M and s the coordinates for manifold W .

V i =
∑

j

V ′ j ∂qi

∂s j
(A.84)

V ′ j =
∑

i

V i ∂s j

∂qi
=
∑

i

V i ∂F j

∂qi
. (A.85)

The pull-back operation is defined as

[F∗ k
ωp](v1, . . . , vk) = k

ωF(p) (F∗v1, . . . , F∗vk), (A.86)

where (v1, . . . , vk) are tangent vectors to M and p ∈ M . In other words

M
F→ W

ω→ T ∗W
(F∗)∗→ T ∗M. (A.87)

Properties of the pull-back operation

F∗( k
ω ∧ l

ω) = (F∗ k
ω) ∧ (F∗ l

ω), (A.88)

F∗(d k
ω) = d(F∗ k

ω). (A.89)

If we define a chart q(p) = (q1(p), . . . , qm(p))T at p ∈ M , a chart s(F(p)) =
(s1, . . . , sr )T at F(p) ∈ W , and the components of function F = (F1, . . . , Fm)T

with si = Fi (q1, . . . , qm), the coordinate representation of the pull-back of the

k−form,
k
ω, of the manifold W is

k
ω =

∑

i1<i2<···<ik

ωi1i2...ik dsi1 ∧ · · · ∧ dsik . (A.90)

The pull-back of
k
ω is then
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F∗ k
ω =

∑

i1<i2<···<ik

(ωi1i2...ik ◦ F)d Fi1 ∧ · · · ∧ d Fik . (A.91)

Transforming d Fi to the coordinates q with Jacobians results in

F∗ k
ω =

∑

i1<i2<···<ik

∑

j1< j2<···< jk

(ωi1i2...ik ◦ F)
∂(Fi1, . . . , Fik )

∂(q j1, . . . , q jk )
dq j1 ∧ · · · ∧ dq jk .

(A.92)

A.9.5.1 Example 0−Form

Let us see how the above formulation applies to functions (0−forms). F : M → W
be a differentiable map. In local coordinates q for M and s for W we have si = Fi (q),
or briefly s = s(q). If f : W → R is a smooth function on W we define its pull-back

to M , written F∗ f , to be the composition ( f ◦ F)(q) → R, that is, M
F→ W

f→ R.

(F∗ f )(q) = ( f ◦ F)(q) = f [s(q)]. (A.93)

A vector v ∈ Tq M of M acts on the pull-back of a function in the following way

v(F∗ f ) = v{ f [s(q)]} =
∑

i

vi∂i { f [s(q)]}

=
∑

i

vi
∑

j

(
∂s j

∂qi

)(
∂ f

∂s j

)
, (A.94)

or

v(F∗ f ) = (F∗v)( f ) = d f (F∗v). (A.95)

A.9.6 Lie Derivative of a Form

k
ω is a k−form, Φt (q) a local 1-parameter group of diffeomorphisms (flow) with X
the associated vector field (Φ̇(q) = Xq ). Then, Φtq is the point at time t along the
integral curve of X , the orbit of q , that starts at time t = 0 at the point q. Putting
k
ω (q) = ωq , the Lie derivative is defined by employing the pull-back of the flow,
Φ∗

t ,



Appendix A: Calculus on Differentiable Manifolds 147
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Fig. A.11 Interpretation of the Lie derivative of a form as the rate of deformation of the volume
of a parallelepiped along the flow Φt

LX
k
ω = d

dt

[
Φ∗

t
k
ω

]

t=0

= lim
t→0

Φ∗
t ωΦt (q) − ωq

t
. (A.96)

Let v1, . . . , vk be vector fields at q , then

[
d

dt
Φ∗

t
k
ω

]
(v1, . . . , vk) = d

dt

[
Φ∗

t
k
ω (v1, . . . , vk)

]

= d

dt

{
k
ω [Φt∗v1, . . . , Φt∗vk]

}
. (A.97)

For invariant vector fields along the orbit through q, Φt∗vq = vΦt q , then we can
write

LX
k
ω =

{
d

dt

[
k
ωΦt (q) (v1, . . . , vk)

]}

t=0
. (A.98)

Thus, If we interpret forms as volumes of parallelepipeds spanned by the vectors

(v1, . . . , vk) (Sect. A.9.2), then the Lie derivative LX
k
ω measures the deformation

of this volume along the flow Φt (q), Fig. A.11.
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A.9.6.1 Example : The Lie Derivative of a Function (0−Form)

We have seen that if X is the vector field that generates the local flow Φt (q), then

LX f = X ( f ) =
∑

i

X i∂i f. (A.99)

LX
0
ω = LX f = d

dt
f [Φt (q)]t=0 = d

dt

[
Φ∗

t f
]

t=0 =
∑

i

q̇ i ∂ f

∂qi
. (A.100)

A.9.6.2 Properties of the Lie Derivatives for Forms

(i) LX (
k
ω ∧ l

ω) = (LX
k
ω)∧ l

ω + k
ω ∧(LX

l
ω)

(ii) LX ◦ d = d ◦ LX

A.9.7 Closed Forms and Exact Forms

A form
k
ω is closed if

d
k
ω= 0. (A.101)

We can prove

1. d(
0
ω) = 0 ⇐⇒ 0

ω is a constant function.

2. d(
1
ω) = 0 ⇐⇒ (∂iω j − ∂ jωi ) = 0.

3. d(
2
ω) = 0 ⇐⇒ (∂iω jk + ∂ jωki + ∂kωi j ) = 0.

A form
k
ω is exact if

k
ω = d

k−1
ω . (A.102)

It is also valid

1. Every exact form is closed.
2. The product of two closed forms is closed.
3. The product of a closed form and an exact form is exact.
4. The integral of an exact form over an oriented closed manifold (i.e., compact

without boundary) is 0.
5. The integral of a closed form over the boundary of an oriented compact manifold

is 0.
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A.9.8 Stoke’s Theorem

We may consider forms as densities, and thus, they can be the natural integrands in
physics.

A m−manifold with boundary M has an interior that is a genuine m−manifold,
and a boundary usually written, ∂M .

Theorem A.4 (Stokes’s Theorem [10])

Let V ⊂ M be a compact oriented manifold with boundary ∂V . Let
k−1
ω be a

continuously differentiable (k − 1)−form on M. Then

∫

V

d
k−1
ω =

∫

∂V

k−1
ω . (A.103)

A.9.9 Poincaré Lemma

Theorem A.5 (Poincaré Lemma)

If d(
k
ω) = 0, k ≥ 1, in a neighborhood U of q ∈ M, then there is perhaps a

smaller neighborhood U ′ of q and a (k − 1)−form,
k−1
ω , such that

k
ω = d(

k−1
ω ). (A.104)

A.10 Hamiltonian Normal Forms Around Equilibria

Normal form expansion of Hamiltonians is a powerful method for constructing phase
space structures such as tori, NHIM and stable and unstable manifolds. The aim of
normal form approximation is to build a series of symplectic variable transforma-
tions, which successively and up to a predefined order transform the Hamiltonian
to its ’normal form’, a property given below. The Taylor expansion is made around
equilibria and periodic orbits and the methodology is described in several books of
nonlinear mechanics. Here, we briefly present the theory for a stable equilibrium as
has been described by Meyer [7] (see also [1]).

First, we assume that we can expand the global Hamiltonian in a Taylor series up
to the required order and around the equilibrium x0, which is taken to be stable and
the origin of the coordinate system. Then, assuming the constant term to be zero the
Taylor series is written as

H(x, ε) =
∞∑

l=0

εl

l! H0
l (x). (A.105)
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H0
l is a homogeneous polynomial of degree l + 2 in the variables x = (q1, . . . , qn,

p1, . . . , pn)
T , and ε is a scaling factor (dilation), related to the magnitude of the

neighbourhood that we take around the equilibrium.
H0

0 (x) denotes the quadratic part of the Hamiltonian, H0
0 (x) = 1

2 xT [∂2 H ]x ,
where [∂2 H ] is the Hessian of the Hamiltonian evaluated at the equilibrium point.
The linearized Hamiltonian vector field is defined by

ẋ(t) = J [∂2 H ]x(t) = Ax(t). (A.106)

By diagonalizing the matrix, A = J [∂2 H ], we obtain the normal coordinates of the
molecule which render the quadratic Hamiltonian into a harmonic one 4

H0
0 = 1

2

n∑

i=1

(p2
i + ω2

i qi2), (A.107)

where ωi are the eigenfrequencies of the normal modes.
We can scale the normal coordinates by the symplectic transformation

Qi = √
ωi q

i (A.108)

Pi = pi/
√
ωi , i = 1, . . . , n. (A.109)

Then, the Hamiltonian H0
0 takes the form

H0
0 = 1

2

n∑

i=1

ωi (P
2
i + Qi2). (A.110)

We further transform to complex variables by the normalized symplectic transfor-
mation

zi = 1√
2
(Qi − ıPi )

wi = 1√
2
(−ıQi + Pi ), i = 1, . . . , n, (A.111)

where ı = √−1. Then, the wedge products in the Hamiltonian symplectic 2−form
are transformed as (Eq. 2.57)

dzi ∧ dwi = d Qi ∧ d Pi . (A.112)

The quadratic Hamiltonian becomes

4 To avoid using many symbols we use (q, p) to ascribe both the internal and the normal coordinates.

http://dx.doi.org/10.1007/978-3-319-09988-0_2
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H0
0 =

n∑

i=1

ıωi z
iwi . (A.113)

We introduce the action-angle variables (Ii , φ
i )

zi = √Ii exp(ıφi )

wi = −ı
√

Ii exp(−ıφi ) φ ∈ [0, 2π ], Ii ∈ (0,∞), (A.114)

and the Hamiltonian in action-angle variables is transformed to

H(I, φ, ε) =
∞∑

l=0

εl

l! H0
l (I, φ). (A.115)

The quadratic part is

H0
0 =

n∑

i=1

ωi Ii , (A.116)

and the other terms are written into the form

∑

‖m‖≤l+2

hl
m(I )e

ı<m,φ>, (A.117)

where < m, φ >= ∑n
i=1 miφ

i ,mi ∈ Z and ‖ m ‖= ∑n
i=1 |mi |. hl

m are homoge-
neous polynomials of degree (1 + l/2) in Ii .

For incommensurable harmonic frequencies we can obtain integrable Hamiltoni-
ans which incorporate higher order terms of Eq. A.115 by employing normal form
transformations. It is proved that a symplectic transformation of the variable x , where
now x signifies the complex coordinates x = (z1, . . . , zn, w1, . . . , wn)

T

x = X (y), (A.118)

with inverse

y = Y (x), (A.119)

leads to the normal form Hamiltonian H�(y) = H [X (y)], such as

H�(y) =
∞∑

l=0

εl

l! Hl
0(y). (A.120)

Hl
0(y) is a homogeneous polynomial of degree l + 2 in the normal form variables y.

The vector y collectively denotes the normal form coordinates Fi and their conjugate
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momenta PFi in a complex conjugate manner analogously to z and w, y = [(F1 −
ıPF1)/

√
2, . . . , (Fn − ıPFn )/

√
2, (−ıF1 + PF1)/

√
2, . . . , (−ıFn + PFn )/

√
2] (see

also Sect. 4.1.2).
Taking H0

0 (y) = H0
0 (x), the higher order terms of Hl

0 satisfy

{Hl
0, H0

0 } = 0, l = 0, 1, 2, . . . , L , (A.121)

and the Hamiltonian H� is in normal form through degree L+2. The Poisson bracket
above is defined as

{Hl
0, H0

0 } =
(
∂Hl

0

∂y

)T

J

(
∂H0

0

∂y

)

≡
2n∑

μ,ν=1

(
∂μHl

0

)
Jμν

(
∂νH0

0

)
. (A.122)

J is the symplectic matrix (Eq. 2.49). Eq. A.121 implies that Hl
0(y) are conserved

quantities along the trajectories of the quadratic Hamiltonian H0
0 . The following

theorem has been proved by Meyer [6, 7].

Theorem A.6 Let

H(x, ε) =
∞∑

l=0

εl

l! H0
l (x). (A.123)

be a formal Hamiltonian where H0
i (x) is a homogeneous polynomial of degree (l+2)

and H 0
0 (x) = 1

2 xT ∂2 H x the quadratic Hamiltonian with the matrix A = J∂2 H(x)
to have incommensurable eigenvalues. Then, there exists a real formal canonical
transformation x = X (y, ε) which transforms H to H�, where

H�(y) =
∞∑

l=0

εl

l! Hl
0(y). (A.124)

where Hl
0 is a homogeneous polynonial of degree (l + 2) and

Hl
0(e

At y) = Hl
0(y), (A.125)

for all t and y.

In practice, to find the normal form coordinates we take the following steps. We
are seeking for near identity coordinate transformations

x = y +
∞∑

l=1

εl

l! yl
0. (A.126)

http://dx.doi.org/10.1007/978-3-319-09988-0_4
http://dx.doi.org/10.1007/978-3-319-09988-0_2
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This is obtained by solving Hamilton’s equation to find the generating function W

dx

dε
= J∂W (ε, x), (A.127)

and initial conditions x(0) = y. W is also expanded as

W (x, ε) =
∞∑

l=0

εl

l! Wl+1(x). (A.128)

Wl(x) is a homogeneous polynomial of degree (l + 2). The coordinates yl
0 are then

calculated by the recursive formula

y( j)
i = y( j−1)

i+1 +
i∑

k=0

(
i
k

)
{y( j−1)

k ,Wi+1−k}, (A.129)

where i ≥ 0, j ≥ 1, y(0)i ≡ 0 for i ≥ 1 and y(0)0 ≡ y.
To construct the normal forms for l > 0 we compute the Lie series via the

Lie-Deprit algorithm [2]. The method introduces the functions H j
i , which are ho-

mogeneous polynomials of degree i + j + 2 and with i, j ≥ 0, and are obtained by
the recurrence equation

H j
i = H j−1

i+1 +
i∑

k=0

(
i
k

)
{H j−1

i−k ,Wk+1}. (A.130)

{H j−1
i−k ,Wk+1} are Poisson brackets and the binomial coefficients are written

(
i
k

)
= i !

k!(i − k)! . (A.131)

The functions Wi are found by solving the homological equation

Ĥi + {H0
0 ,Wi } = 0, (A.132)

where Ĥi collects all terms which are not in normal forms. For details see [1, 7].
Similar formulae can also be extracted to calculate the inverse transformation

y = x +
∞∑

l=1

εl

l! xl
0, (A.133)

and
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x ( j)
i = x ( j+1)

i−1 −
i−1∑

k=0

(
i − 1

k

)
{x ( j)

i−k−1,Wk+1}, (A.134)

with i ≥ 1, j ≥ 0, xi
(0) ≡ 0 for i ≥ 1 and x (0)0 ≡ x .

Having obtained the normal form coordinates at a pre-specified order of accuracy,
the constants of motion (action variables) are calculated by

Ii = (Fi2 + P2
Fi )/2. (A.135)

The normal form method can be applied to unstable equilibria as well, for example
at a saddle [1], and then, the actions of the unstable degrees of freedom are expressed
by the equation

J j = F j PF j . (A.136)
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